
ISSN 0021-3640, JETP Letters, 2023, Vol. 118, No. 4, pp. 231–237. © The Author(s), 2023. This article is an open access publication.
Russian Text © The Author(s), 2023, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2023, Vol. 118, No. 4, pp. 227–233.

FIELDS, PARTICLES,
AND NUCLEI
π0, η, η' → γγ Decays and the Explicit Chiral Symmetry Breaking
A. A. Osipov*

Joint Institute for Nuclear Research, Dubna, Moscow region, 141980 Russia
*e-mail: aaosipov@jinr.ru

Received July 3, 2023; revised July 3, 2023; accepted July 19, 2023

Corrections to the Wess–Zumino–Witten anomaly caused by the explicit breaking of the  chi-
ral symmetry are studied using the effective meson Lagrangian based on the Nambu–Jona-Lasinio model
with the simultaneous expansion in derivatives, current quark masses, and 1/Nc powers. The leading contri-
bution and the first correction for the amplitudes of the π0, η, η' → γγ decays and the contact term in the

 amplitudes have been calculated. The results are compared with similar 1/Nc chiral perturba-
tion calculations and existing experimental data.
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The electromagnetic decays of neutral pseu-
doscalar mesons π0, η, and η' into two photons are
possible due to the chiral symmetry breaking. The chi-
ral symmetry in quantum chromodynamics (QCD) is
violated by the light quark masses as well as by the
non-Abelian SU(3)L × SU(3)R Wess–Zumino–Witten
anomaly [1, 2]. The corresponding Lagrangian has an
order of . Here, the standard counting rules
accepted in the chiral perturbation theory (χPT) are
implied [3, 4]. According to this theory, the low-
energy dynamics of the octet of pseudo-Goldstone
states is described by the effective Lagrangian that is
an expansion in powers of low momenta  and

masses  of current quarks.

The consistent inclusion of the η' meson in the the-
ory requires additional arguments related to the 1/Nc
QCD expansion [5–9] and, as a result, the extension
of the chiral symmetry group to U(3)L × U(3)R trans-
formations. The introduction of an additional param-
eter modifies the standard χPT expansion. The mod-
ified approach, which is briefly named the 1/Nc χPT,
involves the effective Lagrangian [6]

(1)

where superscripts indicate the powers of the small
parameter δ, which is introduced in order to represent
the expansion in three small parameters ,

, and  as the expansion in the sin-
gle small parameter δ. The Wess–Zumino–Witten
Lagrangian in the 1/Nc χPT has an order of

 and is thereby included in .

This theory allows the systematization of the calcu-
lation of corrections due to the explicit chiral symme-
try breaking by the light quark masses, which in partic-
ular provides the fundamental possibility to control
the accuracy of theoretical estimates, including those
of the two-photon decay widths of the , η, and 
mesons [10–12]. Alternative calculations are based on
the sum rule technique and give accurate theoretical
estimates [5, 13, 14].

The current interest in the problem of the π0, η,
η' → γγ decays is due to an increase in the accuracy of
experiments carried out at the JLab η-meson factory.
In particular, the record 1.5% accuracy in the mea-
surement of the decay width of the neutral pion is
reached with the PrimEx-I and PrimEx-II data [15]:

The π0–η–η' JLab physical program is reviewed in
[16], where various theoretical methods used to
describe the decays of pseudo-Goldstone states are
also detailed.

In this work, the widths of the π0, η, η' → 2γ decays
are calculated in the 1/Nc Nambu–Jona-Lasinio
(NJL) model [17–21]. The application of the NJL
model for such calculations is of interest for a long
time [5]. However, to implement this approach, it was
necessary to derive the effective meson Lagrangian of
the NJL model taking into account the explicit chiral
symmetry breaking, which has recently been done in
[22–24]. It is noteworthy that the expansion in powers
of the light quark masses, which appears due to the
inclusion of the counting rule  in the
NJL model makes this approach close but not identi-
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cal to the 1/Nc χPT. In addition to the obvious differ-
ence between methods of the effective field theory
used in the 1/Nc χPT and calculations in the model
based on effective four-quark interactions, there are a
number of differences, the main of which are pre-
sented below.

In the absence of external sources, the leading part
of the 1/Nc χPT Lagrangian has the form

(2)

Here,  is the decay constant of pseudo-
Goldstone bosons in the chiral limit ; the nonet
of pseudoscalar fields  takes values in

the U(3) Lie algebra, where  and  are the
Gell-Mann matrices;  is the effective field
corresponding to the exponential parameterization of
the coset space of Goldstone modes at Nc = ∞; the
angle brackets  stand for the trace in the f lavor
space; χ = 2B0m, where  is the second
low-energy constant related to the quark condensate
and m = diag(mu, md, ms); and the last term with the

topological susceptibility  is the mass
term of the η' meson introduced to solve the U(1)
problem [25–30]. It is noteworthy that the mass of the
η' meson vanishes in the limit Nc → ∞ [31]; as a result,
the ninth Goldstone boson appears in the theory and
the chiral symmetry group is extended to U(3) × U(3).

In the 1/Nc NJL model, the free Lagrangian of the
neutral members of the pseudoscalar nonet follows
from the calculations of quark one-loop diagrams;
therefore, it depends on the masses  and  of the
constituent and current quarks, respectively:

(3)

Here, GS and GV are the constants characterizing
the strength of the U(3) × U(3) chiral-symmetric four-
quark interactions of spin-0 and spin-1, respectively,
have a dimension of M–2, and decrease as  in
the limit Nc → ∞; and κAii are the diagonal elements of
the matrix κA determined by the relation

(4)

where

(5)

is the logarithmically divergent part of the quark one-
loop diagram. Here, the covariant cutoff parameter
Λ = 1.1 GeV ≈ 4πfπ, which is related to the character-
istic scale of spontaneous chiral symmetry breaking, is
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introduced to remove the divergence. The details of
the derivation of the above expressions can be found in
[18, 20, 24].

The application of the Lagrangian (3) in the con-
sidered approach requires the preliminary expansion
of the  function in powers of :

(6)

where  is the solution of the gap equation at
. The substitution of  into Eq. (3) gives

the leading contribution , which completely corre-
sponds to the free part of the Lagrangian (2). In this
case, the low-energy constants F and  are expressed
in terms of the parameters of the NJL model as

(7)

(8)

Here and below, the subscript 0 of a function of the
quark masses  means that this function is calculated
in the limit  as . In the
leading approximation, the three parameters GS, GV,
and Λ of the NJL model determine the constants F
and  because vectors and axial vector degrees of
freedom are taken into account in the model. In par-
ticular, due to the elimination of the off-diagonal
pseudoscalar–axial-vector transitions from the
Lagrangian, the constant GV appears in the expression
for the constant F.

The next term in expansion (1) has the order .
The corresponding Lagrangian  includes four
dimensionless constants , , , and

:

(9)

Several remarks are in order.

(i) The Lagrangian  contains only two,  and
, of ten structures of the order  known in the

standard χPT. The others have higher orders in δ;
hence, the 1/Nc χPT is very appropriate in practice.
The calculation of the low-energy constants  and 
in the 1/Nc NJL model by the substitution of the
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expansion (6) into the Lagrangian (3) and the subse-
quent separation of the  terms yields

(10)

Here,

(11)

(12)

where .
(ii) The terms with  and  violate the Okubo–

Zweig–Iizuka rule; for this reason, their origin is
attributed to the gluon exchange. Below,  is set
to reduce the number of independent parameters in
the analysis. Qualitative reasons for this assumption
are given in [5]. Thus, the Lagrangian  in the 1/Nc

NJL model has only one low-energy constant ,
which is unambiguously determined (together with
the constant ) by the experimental masses of the η
and η' mesons.

(iii) Chiral logarithms appearing from one-loop
diagrams constructed on the Lagrangian  have an
order of ; i.e., their contribution
can be neglected with an accuracy of . In the 1/Nc
NJL model, the third term in Eq. (6) has the same
order. Consequently, to calculate it, the standard gap
equation

(13)

where

(14)

should be modified by including terms describing
contributions from meson one-loop diagrams called
tadpoles.

(iv) The Lagrangian  corresponds to the Wess–
Zumino–Witten anomaly and removes the accidental

 symmetry of the Lagrangian  that
should not occur in QCD. The Lagrangian 
breaks this discrete symmetry and is certainly (up to a
common factor of Nc) determined by the topology of
the mapping of the Minkowski space to the coset space
of Goldstone fields by the matrix . In particular,
the Lagrangian responsible for two-photon decays of
the π0, η, and η' mesons has the form
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where ,  is the fine struc-

ture constant,  = ∂μAν – ∂νAμ is the electromagnetic
strength tensor for the electromagnetic four-potential

, and Q = diag(2/3, –1/3, –1/3) is the matrix of the
electric charges of the quarks. Taking into account the
count rule for the electric charge , one can
easily verify that these vertices have an order of δ.

(v) The Lagrangian  provides a reason-
able approximation to the total effective Lagrangian

. It allows one to exactly describe the spectrum of
the nonet of pseudo-Goldstone states, to calculate the
ratios of the masses of light quarks avoiding an uncer-
tainty introduced by the Kaplan–Manohar transfor-
mation [32], and to obtain the low-energy coupling
constants and mixing angles. In the 1/Nc NJL model,
all these results are achieved with the following main
model parameters: GS = 6.6 GeV–2, GV = 7.4 GeV–2, Λ
= 1.1 GeV, mu = 2.6 MeV, md = 4.6 MeV, ms = 84 MeV,
λU = (285 MeV)4, and Λ2 = 0.46 [19–21].

After these remarks, the two-photon decay widths
can be directly calculated in the 1/Nc NJL model. To
this end, it is necessary to pass from the bare dimen-
sionless field φ in Eq. (15) to the variables correspond-
ing to the π0, η, and η' physical states. The detailed
solution of this problem was presented in [20]. Using
this result, we obtain

(16)

where . As a result, the two-photon
decay width is given by the expression

(17)

In the leading order (LO), we obtain

(18)

where , , and ,
, and  are the η–η', π0–η, and

π0–η' mixing angles, respectively.
In the next-to-leading order (NLO), additional

terms  appear in Eqs. (18) due both to small cor-
rections , , and 
‒1.2 × 10–3 to the mixing angles and to the linear
dependence of the decay constants on the current
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quark masses . The corre-
sponding expressions have the form

(19)

Here, the small terms  are neglected and
.

We discuss the results.
(a) In Eq. (16), the general constant F is changed to
 = (92.277 ± 0.095) MeV. This fixes the normaliza-

tion of the anomaly. As is known [1], the Ward identi-
ties determine the effective vertices of the anomalous
part of the Lagrangian up to an arbitrary constant F,
which is usually related to the decay constant of the
neutral pion  and its value can be determined from
the weak decay constant of the charged pions .
They differ from F only in the next order of the chiral
expansion, which is insignificant when considering
the leading contribution. In particular, the known
result for the decay width of the π0 meson:

(20)

follows from Eq. (18) if mixing effects are neglected,
i.e., at . The error in Eq. (20) is due to the error
in the determination of the constant .

The inclusion of mixing gives , which
increases the decay width by 4.4% to Γ(π0 → 2γ) =
(8.094 ± 0.017) eV. The dominant contribution to this
increase comes from the π0–η mixing, which gives
3.4% of the indicated 4.4%; the π0–η' mixing gives the
remaining 1.0%. The same picture is also observed in
the 1/Nc χPT [10]. Alternative calculations in the χPT
with the inclusion of effects of quark masses and
dynamic photons give an estimate of Γ(π0 → 2γ) =
(8.06 ± 0.02 ± 0.06) eV [33]. Thus, the general ten-
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dency is that the mixing in the leading approximation
increases the decay width of the π0 meson by about
4.5%.

This contradicts the experimental value Γ(π0 → 2γ) =
(7.72 ± 0.12) eV reported by the Particle Data Group
[34], as well as the joined result of the PrimEx-I
and PrimEx-II Collaborations presented above. Phe-
nomenological data confirm the chiral anomaly pre-
diction (20) with a high accuracy. Consequently, it is
important to study higher corrections in the used the-
oretical schemes. This goal becomes even more rele-
vant because the previous estimates indicate that the
LO result remains valid with the NLO corrections
[10]. The only known exception is the result of the join
application of the dispersion relations and sum rules.
The corresponding estimate is Γ(π0 → 2γ) = (7.93 ±
0.12) eV [13], which on the one hand has an accuracy
corresponding to the accuracy of the PrimEx Collab-
oration measurements and on the other hand indicates
that mixing effects increase the decay width (20) only
by 2.3%. This result is in agreement with the experi-
mental data within the presented errors.

We now discuss the NLO contribution given by
Eqs. (19) to the picture described above. Since all
model parameters in Eqs. (19) are known, we obtain

(21)

This result includes the contributions from the correc-
tions , , and  to the mixing angles ,

, and , as well as a contribu-
tion that explicitly depends on the current quark
masses and is proportional to , and in the sum with
the leading contribution yields  or

(22)

It is important that the correction  is negative and
significantly (by 3.1%) suppresses mixing effects in the
pion decay amplitude; the pion decay width is finally
in agreement both with the experimental data [15, 34]
and with the sum rule prediction [13]. The error in
Eq. (22) includes only the spread in . The uncer-
tainty in the estimate of chiral corrections is not con-
sidered here.

The suppression of mixing effects is not accidental.
This suppression can be prevented by a contribution

, but the correction to the η–η' mixing angle in
the 1/Nc NJL model is negligibly small (this correc-
tion in the 1/Nc χPT is about 50%). A similar situation
occurs in the  decay [21], where the U(1) axial
anomaly plays a special role in the suppression of the
η–η' mixing. The π0 → γγ decay is another example,
where the NLO corrections suppress the significant
isospin symmetry breaking in the leading approxi-
mation.
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(b) We now discuss the results obtained for the two-
photon decays of the η and  mesons. These pro-
cesses significantly differ from the pion decay in the
role of mixing effects. They are small for the π0 → γγ
decay and the theory should explain the mechanism of
this suppression. On the contrary, if the mixture is dis-
regarded to describe the η, η' → γγ decays, Eqs. (18)
give the known values  and

 corresponding to the U(3) sym-
metry, which are significantly different from the
experimental estimates  and

, respectively [34]. Therefore, the
theoretical description of two-photon decays of the η
and η' mesons is an important step to understand the
mechanism of the explicit chiral symmetry breaking
in QCD.

In the leading order, Eqs. (18) give  and

; i.e., the inclusion of the η–η' mixing
noticeably improves the result: the observed ampli-
tudes differ from the predicted values by no more than
13%. The NLO corrections given by Eqs. (19) improve
agreement:  and . The dominant

contribution to the constants  and 
‒0.185 comes from the terms with the factor , which
give 0.111 and –0.173, respectively. The theoretical
estimate of the decay width Γ(η' → 2γ) = (4.26 ±
0.01) keV is in complete agreement with the value
Γ(η' → 2γ) = (4.28 ± 0.19) keV given by the Particle
Data Group, whereas the decay width of the η meson
Γ(η → 2γ) = (0.626 ± 0.001) keV is larger than the
experimental value Γ(η → 2γ) = (0.515 ± 0.018) keV.

Thus, the 1/Nc NJL model gives good results for all
three two-photon decays. Further progress here can be
achieved beyond the NLO approximation [43] or with
the inclusion of a new interaction violating the Zweig
rule [36]. The latter is possible in the presence of off-
diagonal terms in the kinetic part of the effective
Lagrangian, whose diagonalization requires two η–η'
mixing angles. In both cases, the number of free
parameters increases and, thereby, additional possi-
bilities appear to successfully describe two photon
decays [37].

Finally, we calculate the contact part of the ampli-
tudes of the  decays, which is described
by the Lagrangian

(23)

The WASA-at-COSY, ARGUS, KLOE, MARK II,
JADE, CELLO, PLUTO, WA76, TASSO, TPC,
Crystal Barrel, and BESIII collaborations studying
the  radiative decay always pay attention
to the contribution from the box anomaly. On the one
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hand, these modes make it possible to test the contact
term of the non-Abelian Wess–Zumino–Witten
anomaly; on the other hand, effects of the explicit
symmetry breaking in the contact interaction can be
studies with the high statistics of events. This aspect of
studies is of no less interest because it promotes a
deeper insight into the fine details of the mechanism
of the explicit chiral symmetry breaking in QCD.

Success can hardly be achieved here without reli-
able calculation methods (both analytical and lattice).
The problem is complicated because it is necessary to
carefully take into account strong interactions respon-
sible for the production of a  pair. To describe the

 decays, methods of the chiral perturba-
tion theory [38], as well as the effective meson
Lagrangians including the contribution from vector
particles [39, 40], are used. Dispersion methods com-
bined with the effective chiral field theory are also
applied [41]. This approach allows one to reproduce
the analytic properties of the amplitude, to include the
interaction of pions in the final state, and to take into
account effects of the explicit isospin symmetry break-
ing due to the ρ—ω mixing. As a result, data obtained
by the BESIII Collaboration with a very high statistics
(9.7 × 105  events) were described with a
high accuracy [42]. The most accurate description of
spectral data on two-pion events is achieved by fitting
with the contact contribution α0 as a free parameter.
This fit ensures the minimum χ2 = 1.74 and gives the
result [41]

(24)

At the same time, the quantity  can be calculated
theoretically as

(25)

where ,  is the η–η'

mixing angle, and  is the Omnes function, which
appears when the interaction of pions in the final state
is taken into account. The choice  is the chiral
fit, which reduces the number of the parameters in the
amplitude; correspondingly, . The
substitution of this value and the mixing angle

 into Eq. (25) yields α0 = 14.37 GeV−3.
The approach with two mixing angles gives α0 =
15.17 GeV−3 [41], which is closer to Eq. (24). The
authors of [41] used the parameters obtained in the
NNLO approximation of the  χPT [43].

The parameter α0 can be determined in the 1/Nc
NJL model in the NLO approximation. The corre-
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0 18.41 0.19  GeV( ) .

α0

+ −η π π
ππ

α
π Ω0

c
0 2 3 1 2 '

1

2= ,
18 3 (4 )

N c
f m

+ −η π π
θ + θ

'
= sin 2 cosP Pc θP

Ω1
1( )s

π
2= 4s m

πΩ1 2
1(4 ) = 1.159m

θ − °= 21.37P

(3)U
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sponding contributions to the coefficient 

 have the form

(26)

The substitution of Eqs. (26) into Eq. (25) gives

(27)

Within the indicated errors, this value is 14% below
the value presented in Eq. (24); nevertheless, the value
given in Eq. (27) is the closest among the presented
theoretical estimates to the BESIII data. It is seen that
the NLO correction reduces the LO result 
16.69 ∓ 0.05 GeV–3. The other terms in Eq. (26) make
the following contributions:  = (–0.28 + 0.03 +
0.00 – 0.84 = –1.09) GeV–3. As expected, the contri-
butions responsible for the SU(3) symmetry breaking
dominate. Corrections due to the isospin symmetry
breaking are smaller than 3%. The NNLO calculations
in the 1/Nc NJL model can further improve agreement
with Eq. (24).

For completeness, similar calculations for the
 decay give , where

(28)

The existing experimental data on the 
decay are yet obtained with a statistics insufficient to
determine the contact contribution with a high accu-
racy. For this reason, we calculate the contact term
only by Eq. (25) (with the obvious substitutions

 and ), which provides an
additional test for the 1/Nc NJL model compared to
future precise measurements. According to Eqs. (28),

(29)

Here, the NLO result is smaller than that in the case of
the  meson, but the tendency remains the same: the

first correction  = (0.23 + 0.16 + 0.03 –1.01 =

‒0.59) GeV–3 reduces the leading contribution  =
(19.70 ∓ 0.06) GeV–3. It is noteworthy that the isospin

+ −η π π'
=c

+ − + −η π π η π π
+(0) (1)

' '
c c

+ −η π π
+ − ε

(0)
0 0 0'

'= 2 3 ,c s c

+ −η π π
Δθ − − Δ +ε ε

(1)
0 0 0'

0

ˆ '= ( 2 ) 3 ' 3 3
2
mac c s
M

− + +0 0
0

(2 )( 2 ).
2 u d

a m m c s
M

−α = ∓
3

0 15.60 0.05  GeV( ) .

α =(0)
0

α(1)
0

+ −η → π π γ + − + − + −ηπ π ηπ π ηπ π
+(0) (1)=c c c

+ −ηπ π
− − ε

(0)
0 0 0= 2 3 ,c c s

+ −ηπ π
−Δθ + − Δ +ε ε

(1)
0 0 0

0

ˆ= ( 2 ) 3 3 3
2
mac s c
M

+ + −0 0
0

(2 )( 2 ).
2 u d

a m m s c
M

+ −η → π π γ

+ − + −η π π ηπ π
→

'
c c ηα → α0 0

−
ηα = ∓

3
0 19.11 0.06  GeV( ) .

η'

ηα(1)
0

ηα(0)
0

symmetry breaking makes a noticeable contribution
and provides about 24% of the NLO correction.

ACKNOWLEDGMENTS
I am grateful to D.I. Kazakov and M.K. Volkov for inter-

est in this work and stimulating discussions.

CONFLICT OF INTEREST
The author declares that he has no conflicts of interest.

OPEN ACCESS
This article is licensed under a Creative Commons Attri-

bution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Com-
mons license, and indicate if changes were made. The images
or other third party material in this article are included in the
article’s Creative Commons license, unless indicated other-
wise in a credit line to the material. If material is not included
in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

REFERENCES
1. J. Wess and B. Zumino, Phys. Lett. B 37, 95 (1971).
2. E. Witten, Nucl. Phys. B 223, 422 (1983).
3. S. Weinberg, Phys. A (Amsterdam, Neth.) 96, 327

(1979).
4. J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 465

(1985).
5. B. Moussallam, Phys. Rev. D 51, 4939 (1995).
6. H. Leutwyler, Phys. Lett. B 374, 163 (1996).
7. H. Leutwyler, Phys. Lett. B 374, 181 (1996).
8. P. Herrera-Siklódy, J. I. Latorre, P. Pascual, and

J. Taron, Nucl. Phys. B 497, 345 (1997).
9. R. Kaiser and H. Leutwyler, Eur. Phys. J. C 17, 623

(2000).
10. J. L. Goity, A. M. Bernstein, and B. R. Holstein, Phys.

Rev. D 66, 076014 (2002).
11. A. M. Bernstein and B. R. Holstein, Rev. Mod. Phys.

85, 49 (2013).
12. P. Bickert and S. Scherer, Phys. Rev. D 102, 074019

(2020).
13. B. L. Ioffe and A. G. Oganesian, Phys. Lett. B 647, 389

(2007).
14. S. Khlebtsov, Y. Klopot, A. Oganesian, and O. Teryaev,

Phys. Rev. D 104, 016011 (2021).
15. I. Larin, Y. Zhang, A. Gasparian, et al. (PrimEx-II

Collab.), Science (Washington, DC, U. S.) 368, 506
(2020).

16. L. Gan, B. Kubis, E. Passemar, and S. Tulin, Phys.
Rep. 945, 1 (2022).
JETP LETTERS  Vol. 118  No. 4  2023



π0, η, η' → γγ DECAYS AND THE EXPLICIT CHIRAL SYMMETRY BREAKING 237
17. A. A Osipov, JETP Lett. 115, 305 (2022).
18. A. A. Osipov, JETP Lett. 115, 371 (2022).
19. A. A. Osipov, Phys. Rev. D 108, 016014 (2023).
20. A. A. Osipov, Phys. Rev. D 108, 036012 (2023).
21. A. A. Osipov, JETP Lett. 117, 898 (2023).
22. A. A. Osipov, JETP Lett. 113, 413 (2021).
23. A. A. Osipov, Phys. Lett. B 817, 136300 (2021).
24. A. A. Osipov, Phys. Rev. D 104, 105019 (2021).
25. G. Veneziano, Nucl. Phys. B 159, 213 (1979).
26. C. Rosenzweig, J. Schechter, and G. Trahern, Phys.

Rev. D 21, 3388 (1980).
27. P. di Vecchia and G. Veneziano, Nucl. Phys. B 171, 253

(1980).
28. K. Kawarabayashi and N. Ohta, Nucl. Phys. B 175, 477

(1980).
29. P. di Vecchia, F. Nicodemi, R. Pettorino, and G. Vene-

ziano, Nucl. Phys. B 181, 318 (1981).
30. K. Kawarabayashi and N. Ohta, Prog. Theor. Phys. 66,

1709 (1981).
31. E. Witten, Nucl. Phys. B 156, 269 (1979).
32. D. B. Kaplan and A. V. Manohar, Phys. Rev. Lett. 56,

2004 (1986).
33. B. Ananthanarayan and B. Moussallam, J. High Ener-

gy Phys., No. 05, 052 (2002).

34. R. L. Workman, V. D. Burkert, V. Crede, et al. (Particle
Data Group), Prog. Theor. Exp. Phys. 2022, 083C01
(2022).

35. X.-K. Guoa, Z.-H. Guoa, J. A. Oller, and J. J. Sanz-
Cillerod, J. High Energy Phys., No. 06, 175 (2015).

36. J. Schechter, A. Subbaraman, and H. Weigel, Phys.
Rev. D 48, 339 (1993).

37. R. Escribano and J-M. Frère, J. High Energy Phys.
0506, 029 (2005).

38. J. Bijnens, A. Bramon, and F. Cornet, Phys. Lett. B
237, 488 (1990).

39. M. Benayoun, P. David, L. Del Buono, Ph. Leruste,
and H. B. O’Connell, Eur. Phys. J. C 31, 525 (2003).

40. A. A. Osipov, A. A. Pivovarov, M. K. Volkov, and
M. M. Khalifa, Phys. Rev. D 101, 094031 (2020).

41. L.-Y. Dai, X.-W. Kang, U.-G. Meißner, X.-Y. Song,
and D.-L. Yao, Phys. Rev. D 97, 036012 (2018).

42. M. Ablikim, M. N. Achasov, S. Ahmed, et al. (BESIII
Collab.), Phys. Rev. Lett. 120, 242003 (2018).

43. X. K. Guo, Z. H. Guo, J. A. Oller, and J. J. Sanz-Cil-
lero, J. High Energy Phys. 175, 1506 (2015).

Translated by R. Tyapaev
JETP LETTERS  Vol. 118  No. 4  2023


	REFERENCES

		2023-10-03T18:44:02+0300
	Preflight Ticket Signature




