ISSN 0021-3640, JETP Letters, 2023, Vol. 118, No. 4, pp. 231—237. © The Author(s), 2023. This article is an open access publication.
Russian Text © The Author(s), 2023, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2023, Vol. 118, No. 4, pp. 227—233.

FIELDS, PARTICLES,

AND NUCLEI

%, 1, n' = 7y Decays and the Explicit Chiral Symmetry Breaking

A. A. Osipov*
Joint Institute for Nuclear Research, Dubna, Moscow region, 141950 Russia
*e-mail: aaosipov@jinr.ru
Received July 3, 2023; revised July 3, 2023; accepted July 19, 2023

Corrections to the Wess—Zumino—Witten anomaly caused by the explicit breaking of the SU(3) X SU(3) chi-
ral symmetry are studied using the effective meson Lagrangian based on the Nambu—Jona-Lasinio model
with the simultaneous expansion in derivatives, current quark masses, and 1/N, powers. The leading contri-

bution and the first correction for the amplitudes of the m°, M, N' — 7Yy decays and the contact term in the
n/n' = n'w y amplitudes have been calculated. The results are compared with similar 1/N, chiral perturba-

tion calculations and existing experimental data.
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The electromagnetic decays of neutral pseu-
doscalar mesons ©°, 1M, and M’ into two photons are
possible due to the chiral symmetry breaking. The chi-
ral symmetry in quantum chromodynamics (QCD) is
violated by the light quark masses as well as by the
non-Abelian SU(3); X SU(3)g Wess—Zumino—Witten
anomaly [1, 2]. The corresponding Lagrangian has an

order of 0(p4). Here, the standard counting rules
accepted in the chiral perturbation theory (xPT) are
implied [3, 4]. According to this theory, the low-
energy dynamics of the octet of pseudo-Goldstone
states is described by the effective Lagrangian that is
an expansion in powers of low momenta p, and

masses m; = O( pz) of current quarks.

i=u,d,s

The consistent inclusion of the ' meson in the the-
ory requires additional arguments related to the 1/N,
QCD expansion [5—9] and, as a result, the extension
of the chiral symmetry group to U(3); X U(3)y trans-
formations. The introduction of an additional param-
eter modifies the standard }PT expansion. The mod-
ified approach, which is briefly named the 1/N, yPT,
involves the effective Lagrangian [6]

Lo =L+ 4., (1)

where superscripts indicate the powers of the small
parameter &, which is introduced in order to represent

the expansion in three small parameters /N, = O(J),
p2 = (0(d), and m; = O(J) as the expansion in the sin-
gle small parameter 8. The Wess—Zumino—Witten
Lagrangian in the 1/N, xPT has an order of

O( p4NC) = ((8) and is thereby included in £".
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This theory allows the systematization of the calcu-
lation of corrections due to the explicit chiral symme-
try breaking by the light quark masses, which in partic-
ular provides the fundamental possibility to control
the accuracy of theoretical estimates, including those

of the two-photon decay widths of the no, M, and 1’
mesons [10—12]. Alternative calculations are based on
the sum rule technique and give accurate theoretical
estimates [5, 13, 14].

The current interest in the problem of the m°, 1,
Mn' — Yy decays is due to an increase in the accuracy of
experiments carried out at the JLab n-meson factory.
In particular, the record 1.5% accuracy in the mea-
surement of the decay width of the neutral pion is
reached with the PrimEx-I and PrimEx-1I data [15]:

@ — 2y
= (7.802 £ 0.052(stat.) = 0.105(syst.)) eV.

The n°~m—-n"' JLab physical program is reviewed in
[16], where various theoretical methods used to
describe the decays of pseudo-Goldstone states are
also detailed.

In this work, the widths of the ©°, 1|, ' — 2y decays
are calculated in the 1/N, Nambu—Jona-Lasinio
(NJL) model [17—21]. The application of the NJL
model for such calculations is of interest for a long
time [5]. However, to implement this approach, it was
necessary to derive the effective meson Lagrangian of
the NJL model taking into account the explicit chiral
symmetry breaking, which has recently been done in
[22—24]. It is noteworthy that the expansion in powers
of the light quark masses, which appears due to the
inclusion of the counting rule m, = O(d) in the
NJL model makes this approach close but not identi-
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cal to the 1/N, xPT. In addition to the obvious differ-
ence between methods of the effective field theory
used in the 1/N_ xPT and calculations in the model
based on effective four-quark interactions, there are a
number of differences, the main of which are pre-
sented below.

In the absence of external sources, the leading part
of the 1/N, xPT Lagrangian has the form

2
L0 = FT@uUa“U’r +x U +y¢'Uy - %Uq)ﬁ. )

Here, F = O({N,) is the decay constant of pseudo-
Goldstone bosons in the chiral limit m;, = 0; the nonet

of pseudoscalar fields ¢ = Z i oc(1)‘17»‘1 takes values in

the U(3) Lie algebra, where A, = \/273 and A, are the
Gell-Mann matrices; U = exp(i9) is the effective field
corresponding to the exponential parameterization of
the coset space of Goldstone modes at N, = oo; the

angle brackets (...) stand for the trace in the flavor

space; ¥ = 2Bym, where B, = —{qq)/F ? is the second
low-energy constant related to the quark condensate
and m = diag(m,,, m,, m;); and the last term with the

topological susceptibility A, = (’)(NC0 ) is the mass
term of the n' meson introduced to solve the U(1)
problem [25—30]. It is noteworthy that the mass of the
7' meson vanishes in the limit N, — oo [31]; as a result,
the ninth Goldstone boson appears in the theory and
the chiral symmetry group is extended to U(3) X U(3).

In the 1/N, NJL model, the free Lagrangian of the
neutral members of the pseudoscalar nonet follows
from the calculations of quark one-loop diagrams;

therefore, it depends on the masses M, and m; of the
constituent and current quarks, respectively:

_ Kaii 2o Mmoo | Ay o
L*igﬂﬁmwﬂﬂ 4%¢i To O

Here, G5 and Gy, are the constants characterizing
the strength of the U(3) X U(3) chiral-symmetric four-
quark interactions of spin-0 and spin-1, respectively,
have a dimension of M~2, and decrease as O(1/N,) in
the limit N, — oo; and K ; are the diagonal elements of
the matrix K, determined by the relation

2

Kpp = 14— T (4)
NGyM}J,(M,)
where
2 2
J(M) = ln(l +A—2j S S 5)
M) AP+ M

is the logarithmically divergent part of the quark one-
loop diagram. Here, the covariant cutoff parameter
A = 1.1 GeV = 4xf,, which is related to the character-
istic scale of spontaneous chiral symmetry breaking, is
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introduced to remove the divergence. The details of
the derivation of the above expressions can be found in
[18, 20, 24].

The application of the Lagrangian (3) in the con-
sidered approach requires the preliminary expansion

of the M,(m,) function in powers of m; = O(J):
Mi(m) = My + M'O)m; + O(my), (6)

where M, = (’)(80) is the solution of the gap equation at
m; = 0. The substitution of M, = M, into Eq. (3) gives
the leading contribution 4;), which completely corre-
sponds to the free part of the Lagrangian (2). In this

case, the low-energy constants F'and B, are expressed
in terms of the parameters of the NJL model as

K
F= "0 = oW/N 7
4G, N, (7

_ M, _2G/M,
2GF>  GsKy

B, - _om). @)
F

Here and below, the subscript 0 of a function of the

quark masses m; means that this function is calculated

in the limit m, — 0 as K, = lim,, ,(k,); . In the

leading approximation, the three parameters Gs, Gy,

and A of the NJL model determine the constants F

and B, because vectors and axial vector degrees of
freedom are taken into account in the model. In par-
ticular, due to the elimination of the off-diagonal
pseudoscalar—axial-vector transitions from the
Lagrangian, the constant Gy, appears in the expression
for the constant F.

The next term in expansion (1) has the order O(9).

The corresponding Lagrangian £ includes four
dimensionless constants Ls, Ly = O(N,), A,, and
A, =O(1/N,):

£Y = LU U U + Uy

+ L UY'U + He) + %Alﬂauq)oa“q)o 9)

A
+§%ﬂ%mw—UW+£ww

Several remarks are in order.

(i) The Lagrangian £ contains only two, Ls and

L, of ten structures of the order O( p*) known in the
standard xPT. The others have higher orders in 9;
hence, the 1/N, xPT is very appropriate in practice.

The calculation of the low-energy constants L; and Lg
in the 1/N, NJL model by the substitution of the

JETP LETTERS  Vol. 118 No. 4 2023
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expansion (6) into the Lagrangian (3) and the subse-
quent separation of the O() terms yields

aGF* aGyF*
L. = S , Ly =275 (10)
T osM? 16M2
Here,
2
G
a=M©0)=—7"——=TV(x-1 (11)
N GsMgJY Gs< w=l)
4
a=2a(-x)|l-2—| (12
TN + MY

where JIO = J,(M,).

(i) The terms with A, and A, violate the Okubo—
Zweig—lizuka rule; for this reason, their origin is
attributed to the gluon exchange. Below, A, = 0 is set
to reduce the number of independent parameters in
the analysis. Qualitative reasons for this assumption
are given in [5]. Thus, the Lagrangian £ in the 1 /N,
NJL model has only one low-energy constant A,,
which is unambiguously determined (together with

the constant A, ) by the experimental masses of the 1
and 1" mesons.

(iii) Chiral logarithms appearing from one-loop
diagrams constructed on the Lagrangian £9 have an

order of m;/N,Inm, = O(&°); i.e., their contribution
can be neglected with an accuracy of O(9). In the 1/N,
NJL model, the third term in Eq. (6) has the same
order. Consequently, to calculate it, the standard gap
equation

M, (1 — NCst JO(Mi)) =m (13)
21
where
2 2 A’
JoM)=A" -—M In 1+—2 , (14)
M;

should be modified by including terms describing
contributions from meson one-loop diagrams called
tadpoles.

(iv) The Lagrangian Ly, corresponds to the Wess—
Zumino—Witten anomaly and removes the accidental

U—-u" symmetry of the Lagrangian L2 + £V that
should not occur in QCD. The Lagrangian Ly,
breaks this discrete symmetry and is certainly (up to a
common factor of N.) determined by the topology of
the mapping of the Minkowski space to the coset space
of Goldstone fields by the matrix U(x). In particular,
the Lagrangian responsible for two-photon decays of
the %, 1, and ' mesons has the form

N o v
Lywzw = quu <Q o) +.
41

15)
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where F* = %e“ PR, o= e’ /4w is the fine struc-

ture constant, £, = d A4, — 9,4, is the electromagnetic
strength tensor for the electromagnetic four-potential
A, ,and Q = diag(2/3, —1/3, —1/3) is the matrix of the
electric charges of the quarks. Taking into account the

count rule for the electric charge e = O(\/S), one can
easily verify that these vertices have an order of §.

(v) The Lagrangian £+ 0 provides a reason-
able approximation to the total effective Lagrangian
L. - It allows one to exactly describe the spectrum of
the nonet of pseudo-Goldstone states, to calculate the
ratios of the masses of light quarks avoiding an uncer-
tainty introduced by the Kaplan—Manohar transfor-
mation [32], and to obtain the low-energy coupling
constants and mixing angles. In the 1/N, NJL model,
all these results are achieved with the following main
model parameters: Gg = 6.6 GeV2, Gy, = 7.4 GeV2, A
—llGeV m,=2.6 MeV, m;=4.6 MeV, m,= 84 MeV,

= (285 MeV)4 and A, = 0.46 [19-21].

After these remarks, the two-photon decay widths
can be directly calculated in the 1/N. NJL model. To
this end, it is necessary to pass from the bare dimen-
sionless field ¢ in Eq. (15) to the variables correspond-
ing to the ©°, 1, and N’ physical states. The detailed
solution of this problem was presented in [20]. Using
this result, we obtain

Q) = (4¢u + O +0,) = (16)

3foP Z ik

=’
where ¢, = cff)) + c}”. As a result, the two-photon
decay width is given by the expression

Ocm 2

(P — vy = (17)
i 64w f
In the leading order (LO), we obtain
9 =1+ ﬁ[eo(co J8s,) + €)(sy + \/?;co)],
o _ 1 J3
¢, = —=lcy —V8sy) — €, (18)
m \/3( 0 0) 0
o _ 1 \/‘ '
¢ = =59+ V8¢ ) — ¢,
n \/g( 0 0) €
where ¢, =cos,, s, =sin6,, and 6, =—-14.97°,

€ = 0.0177, and ¢, = 0.0033 are the n—n', t’~n, and
7’1" mixing angles, respectively.

In the next-to-leading order (NLO), additional
terms CP appear in Egs. (18) due both to small cor-

rections AB = —0.79°, Ae = -6.3x107° , and A¢' =
—1.2 x 1073 to the mixing angles and to the linear
dependence of the decay constants on the current
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quark masses f_,,, = F (1+am;/(2M,)). The corre-
sponding expressions have the form

) = %[(Ae + A8 (cy — V8sy) + (A€’ — ABey)

X (8, + \/§co)] - &{4mu —my

0

+ %[66(50 + ‘/5‘30) + 6(co — ‘/ESO)J

+ \Ems[e(')(co - \/550) — €Sy + \/ECO)J},

_ 19)
A )
CT(]l) = —Ac —Tg(so + \/gco) + #%[3\/51’”60
+ (4m, + m;) (25, — ¢) +V2m (s, +V2c) |,

V= Ac' + ATg(Co —8sy) + ﬁ[&@’%
0

- (4m, + md)(\/§c0+ So) — \/Ems(co - «/Eso ]

Here, the small terms (m, — mu)2 are neglected and
m=(m, +my)/2.

We discuss the results.

(a) In Eq. (16), the general constant Fis changed to
S0 =1(92.277 £ 0.095) MeV. This fixes the normaliza-

tion of the anomaly. As is known [1], the Ward identi-
ties determine the effective vertices of the anomalous
part of the Lagrangian up to an arbitrary constant F,
which is usually related to the decay constant of the

neutral pion fn » and its value can be determined from

the weak decay constant of the charged pions fnt'
They differ from F only in the next order of the chiral
expansion, which is insignificant when considering
the leading contribution. In particular, the known
result for the decay width of the ©° meson:

0 (sz3o
I'm — 2y) = 3“2 =7.750+0.016 eV,
64m s

(20)

follows from Eq. (18) if mixing effects are neglected,

i.e., at c:r(ﬂ) = 1. The error in Eq. (20) is due to the error

in the determination of the constant fn 0.

The inclusion of mixing gives c:t%) =1.022, which
increases the decay width by 4.4% to I'(n° — 2y) =
(8.094 £ 0.017) eV. The dominant contribution to this
increase comes from the m°—m mixing, which gives
3.4% of the indicated 4.4%; the °—n' mixing gives the
remaining 1.0%. The same picture is also observed in
the 1/N,xPT [10]. Alternative calculations in the y PT
with the inclusion of effects of quark masses and

dynamic photons give an estimate of I'(n’ — 2y) =
(8.06 £ 0.02 = 0.06) eV [33]. Thus, the general ten-
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dency is that the mixing in the leading approximation

increases the decay width of the ©° meson by about
4.5%.

This contradicts the experimental value T'(t’ — 2y) =
(7.72 £ 0.12) eV reported by the Particle Data Group
[34], as well as the joined result of the PrimEx-I
and PrimEx-1II Collaborations presented above. Phe-
nomenological data confirm the chiral anomaly pre-
diction (20) with a high accuracy. Consequently, it is
important to study higher corrections in the used the-
oretical schemes. This goal becomes even more rele-
vant because the previous estimates indicate that the
LO result remains valid with the NLO corrections
[10]. The only known exception is the result of the join
application of the dispersion relations and sum rules.
The corresponding estimate is T'(® — 2y) = (7.93 +
0.12) eV [13], which on the one hand has an accuracy
corresponding to the accuracy of the PrimEx Collab-
oration measurements and on the other hand indicates
that mixing effects increase the decay width (20) only
by 2.3%. This result is in agreement with the experi-
mental data within the presented errors.

We now discuss the NLO contribution given by
Egs. (19) to the picture described above. Since all
model parameters in Egs. (19) are known, we obtain

¢y = =(6.15+1.66 — 0.3 +8.6)x10™°

= —0.016.
This result includes the contributions from the correc-
tions Ae, Ae', and AO to the mixing angles € = ¢, + Ae,

(21

€ =¢ + A€, and 6 = 0, + AB, as well as a contribu-
tion that explicitly depends on the current quark
masses and is proportional to @, and in the sum with

the leading contribution yields Co = 1.006 or

(' — 2y) = (7.84 £0.02) eV. (22)

It is important that the correction c:tf)) is negative and

significantly (by 3.1%) suppresses mixing effects in the
pion decay amplitude; the pion decay width is finally
in agreement both with the experimental data [15, 34]
and with the sum rule prediction [13]. The error in
Eq. (22) includes only the spread in fn”' The uncer-

tainty in the estimate of chiral corrections is not con-
sidered here.

The suppression of mixing effects is not accidental.
This suppression can be prevented by a contribution
<A, but the correction to the n—n' mixing angle in
the 1/N, NJL model is negligibly small (this correc-
tionin the 1/N,yPT is about 50%). A similar situation

occurs in the 1 — 3w decay [21], where the U(1) axial
anomaly plays a special role in the suppression of the
N—n' mixing. The ©° — vy decay is another example,
where the NLO corrections suppress the significant
isospin symmetry breaking in the leading approxi-
mation.

JETP LETTERS Vol. 118
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(b) We now discuss the results obtained for the two-
photon decays of the m and n' mesons. These pro-
cesses significantly differ from the pion decay in the
role of mixing effects. They are small for the ° — vy
decay and the theory should explain the mechanism of
this suppression. On the contrary, if the mixture is dis-
regarded to describe the 1, ' — vy decays, Egs. (18)

give the known values cT(‘O) = 1/«/3 ~ (.58 and

cf]q) = \/g/\/g =~ 1.63 corresponding to the U(3) sym-
metry, which are significantly different from the
experimental estimates ¢, =0.997+0.017 and

¢y = 1.243+£0.028, respectively [34]. Therefore, the
theoretical description of two-photon decays of the |
and 1' mesons is an important step to understand the

mechanism of the explicit chiral symmetry breaking
in QCD.

In the leading order, Egs. (18) give cT(]O) = 0.962 and
cfﬁ) = 1.425; i.e., the inclusion of the n—n' mixing
noticeably improves the result: the observed ampli-
tudes differ from the predicted values by no more than

13%. The NLO corrections given by Egs. (19) improve
agreement: ¢, = 1.10 and ¢,. = 1.24. The dominant

contribution to the constants c,(]l) = (0.137 and cT(]l-) =

—0.185 comes from the terms with the factor @, which
give 0.111 and —0.173, respectively. The theoretical
estimate of the decay width I'(" — 2y) = (4.26 =
0.01) keV is in complete agreement with the value
I'm' — 2y) = (4.28 = 0.19) keV given by the Particle
Data Group, whereas the decay width of the 1 meson
I'm — 2y) = (0.626 £ 0.001) keV is larger than the
experimental value I'(n — 2y) = (0.515 + 0.018) keV.

Thus, the 1/N_, NJL model gives good results for all
three two-photon decays. Further progress here can be
achieved beyond the NLO approximation [43] or with
the inclusion of a new interaction violating the Zweig
rule [36]. The latter is possible in the presence of off-
diagonal terms in the kinetic part of the effective
Lagrangian, whose diagonalization requires two nN—n'
mixing angles. In both cases, the number of free
parameters increases and, thereby, additional possi-
bilities appear to successfully describe two photon
decays [37].

Finally, we calculate the contact part of the ampli-
tudes of the n/n' — ©' 1y decays, which is described
by the Lagrangian

ieN. oo
Lyzw = 22" 4 (09,00,00,0).
241

The WASA-at-COSY, ARGUS, KLOE, MARK 11,
JADE, CELLO, PLUTO, WA76, TASSO, TPC,
Crystal Barrel, and BESIII collaborations studying

(23)

then/n' —» n%‘y radiative decay always pay attention
to the contribution from the box anomaly. On the one
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hand, these modes make it possible to test the contact
term of the non-Abelian Wess—Zumino—Witten
anomaly; on the other hand, effects of the explicit
symmetry breaking in the contact interaction can be
studies with the high statistics of events. This aspect of
studies is of no less interest because it promotes a
deeper insight into the fine details of the mechanism
of the explicit chiral symmetry breaking in QCD.

Success can hardly be achieved here without reli-
able calculation methods (both analytical and lattice).
The problem is complicated because it is necessary to
carefully take into account strong interactions respon-

sible for the production of a t'm_ pair. To describe the

n/n' = ©'n y decays, methods of the chiral perturba-
tion theory [38], as well as the effective meson
Lagrangians including the contribution from vector
particles [39, 40], are used. Dispersion methods com-
bined with the effective chiral field theory are also
applied [41]. This approach allows one to reproduce
the analytic properties of the amplitude, to include the
interaction of pions in the final state, and to take into
account effects of the explicit isospin symmetry break-
ing due to the p—m mixing. As a result, data obtained
by the BESIII Collaboration with a very high statistics

(9.7 x 10° ' = w'n y events) were described with a
high accuracy [42]. The most accurate description of
spectral data on two-pion events is achieved by fitting
with the contact contribution o, as a free parameter.
This fit ensures the minimum 2 = 1.74 and gives the
result [41]
o, = (18.41 £ 0.19) GeV™. 24)
At the same time, the quantity o, can be calculated
theoretically as

V2N, 25)

= C _
18V30° £3Q)(4my) T

(o)

where ¢ . _ =sinBp, ++v2cosB,, 0, is the n—'
nn'n

mixing angle, and Q}(s) is the Omnes function, which
appears when the interaction of pions in the final state

is taken into account. The choice s = 4mﬁ is the chiral
fit, which reduces the number of the parameters in the
amplitude; correspondingly, Q}(4mﬁ) =1.159. The
substitution of this value and the mixing angle
0, = —21.37° into Eq. (25) yields o, = 14.37 GeV 2.
The approach with two mixing angles gives 0, =
15.17 GeV 3 [41], which is closer to Eq. (24). The
authors of [41] used the parameters obtained in the
NNLO approximation of the U(3) xPT [43].

The parameter ¢, can be determined in the 1/N,
NJL model in the NLO approximation. The corre-
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sponding contributions to the coefficient ¢ , _ =
n'nn

) (1

c +c

N Nt

have the form

C((?)+_ :S0+\/§CO_\/_3€('),

nn'n
mn _ _ ' ma
e i CTCH V2s,) = V3A€ + 343 T (26)
a
- ——QCm, +m Ve, + sp).
2M0 ( d)( 0 O)
The substitution of Egs. (26) into Eq. (25) gives

o, = (15.60 F 0.05) GeV™ (27)

Within the indicated errors, this value is 14% below
the value presented in Eq. (24); nevertheless, the value
given in Eq. (27) is the closest among the presented
theoretical estimates to the BESIII data. It is seen that

the NLO correction reduces the LO result oc(o)
16.69 F 0.05 GeV3. The other terms in Eq. (26) make

the following contributions: o D = = (-0.28 + 0.03 +
0.00 — 0.84 = —1.09) GeV—3. As expected, the contri-
butions responsible for the SU(3) symmetry breaking
dominate. Corrections due to the isospin symmetry
breaking are smaller than 3%. The NNLO calculations
in the 1/N, NJL model can further improve agreement
with Eq. (24).

For completeness, similar calculations for the

(1)

+_— . _

N — ©' © y decay give cnn+n_ = cmE+ + c S where
C:::%f =6 — \/ESO - \/_360,

quln)m = —AB(s, +V2¢y) — 3Ae + 343 Weo (28)

0

+ %(2% +my) (25, — ¢y).

0

The existing experimental data on the n — T'® ¥
decay are yet obtained with a statistics insufficient to
determine the contact contribution with a high accu-
racy. For this reason, we calculate the contact term
only by Eq. (25) (with the obvious substitutions

c. ,_— € it and o) — 0,), which provides an
n'n'n

additional test for the 1/N, NJL model compared to
future precise measurements. According to Egs. (28),

Oy = (19.11 F 0.06) GeV ™ (29)

Here, the NLO result is smaller than that in the case of
the n' meson, but the tendency remains the same: the

first correction o, = (0.23 + 0.16 + 0.03 —1.01 =

—0.59) GeV—3 reduces the leading contribution Oc(m =

(19.70 ¥ 0.06) GeV—3. It is noteworthy that the isospin

OSIPOV

symmetry breaking makes a noticeable contribution
and provides about 24% of the NLO correction.
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