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We consider two-H doublet models (THDMs) with a supersymmetric UV completion.1 Con-
trary to the Standard Model, THDMs can be embedded in high-scale supersymmetry with
a SUSY breaking scale as high as the scale of grand unification. The stability of the elec-
troweak vacuum and experimental constraints point towards low values of tanβ � 2 and
a pseudoscalar mass of at least about a TeV. If the higgsino superpartners of the H fields
are also kept light, the conclusions are similar and essentially independent of the higgsino
mass. However, if all gauginos are also given electroweak-scale masses (split supersymmetry
with two H doublets), the predicted Standard Model-like H boson mass is always too large.
Light neutral and charged higgsinos emerge as a promising signature of minimal theories with
supersymmetric UV completions at high scales, and can be searched for at colliders.

1 Introduction

In the history of particle physics, we have found that the world tends to exhibit more and more
symmetry when probing shorter and shorter distance scales. Therefore it seems not unreasonable
to speculate that, at extremely high energies, the fundamental constituents of nature and their
interactions will be governed by supersymmetry and possibly additional space-time dimensions.
However, with our present knowledge we cannot predict at what scale these structures will
appear.

Before the LHC era, a plausible and well-motivated possibility for the scale of supersymmetry
was just above the electroweak scale. This has led to the expectation of a wealth of new particles
in the mass range of a few hundred GeV waiting to be discovered at the LHC. But by now it
seems that the SUSY scale is rather higher, and the main promise of sub-TeV supersymmetry
— a simple and natural solution of the electroweak hierarchy problem — is no longer realistic;
models compatible with the LHC’s null findings so far tend to be either quite contrived or to be
plagued by at least a “little hierarchy” problem.

In these proceedings we will adopt the point of view that, given that supersymmetry does
not appear to completely resolve the fine-tuning problem of the electroweak scale, it may as
well be completely unrelated to its eventual resolution (of which we are agnostic) and that
the SUSY breaking scale may therefore be anywhere. In fact, the only scale of new physics
we know about with certainty is the Planck scale of quantum gravity, MPlanck = 2.4 · 1018
GeV, and from a top-down perspective of, for example, superstring theory, there is no a priori
reason why the supersymmetry breaking scale should be parametrically lower than MPlanck.
Thus, our working hypothesis will be that short-distance physics is described by the minimal
supersymmetric Standard Model (for concreteness) which takes effect at a scale MS ∼ 1014−17

GeV, corresponding to the largest superpartner masses in the theory. For an even higher MS it
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would be hard to justify the use of the MSSM as an effective field theory to be UV-completed
at MPlanck, since there is no large separation between MS and MPlanck. Lower MS are of course
possible, but are not the subject of this study.

Our second hypothesis is that all particles in the spectrum are either extremely heavy, with
masses of the order ofMS or at most one or two orders of magnitudes below, or have electroweak-
scale masses at most of O(TeV): There are no intermediate mass scales between the electroweak
scale and MS . This is motivated mostly by simplicity, and by the hope that some of the extra
states may eventually be observable at colliders.

What can the low-energy field content be? It should include at least the Standard Model,
but are just the Standard Model particles enough to match to high-scale SUSY, or do we need
other states with electroweak-scale masses for consistency?

2 Supersymmetry at high scales

2.1 Just the Standard Model at low scales

The simplest scenario of this kind that one might imagine is usually called “high-scale super-
symmetry”: all superpartners and all additional Higgs bosons of the supersymmetric Standard
Model have masses of the order of MS . One should regard the Standard Model as an effective
field theory which is matched, at the scale MS ∼ 1014−17 GeV, to its supersymmetric extension.2

As is well known3, this scenario is in some tension with experimental data due to the be-
haviour of the Higgs quartic coupling λ. For an electroweak-scale value of λ corresponding to
the know value of the lightest Higgs boson mass Mh = 125 GeV, λ becomes negative in the
ultraviolet during its evolution with the renormalization group. A −|λ|φ4 scalar potential is
unbounded from below and therefore cannot be matched to global supersymmetry; in fact the
tree-level matching condition for λ at the scale MS reads

λ = cos2 2β
g2 + g′2

4
(1)

and so λ(MS) is manifestly positive. The scale MS,max where λ turns negative depends sensi-
tively on the value of the top Yukawa coupling, and thus on mt. For the current central value
mt = 173 GeV it is around MS,max ≈ 1010 GeV, which precludes in particular matching to the
MSSM at scales close to MPlanck.

a

2.2 Split SUSY

An alternative scenario which is theoretically appealing and has therefore been extensively stud-
ied is split supersymmetry4,5. Here the gaugino and higgsino superpartners of the Standard
Model gauge and Higgs fields have masses close to the electroweak scale (with a somewhat
heavier gluino to avoid LHC search bounds), whereas the scalar states of the MSSM are heavy
with masses around MS , except for the Standard Model Higgs field. Similarly as in the Stan-
dard Model, this model cannot be extrapolated and matched to the MSSM at very high scales
because the Higgs quartic coupling becomes negative.6,7 In fact, this behaviour is even more pro-
nounced here than in the Standard Model, with MS,max ≈ 108 GeV. The reason is that adding
new fermions with Yukawa couplings to the Higgs field accelerates the running of the quartic
coupling towards negative values in the UV.

2.3 Two-H doublet models

For the remainder of this proceedings contribution we will investigate models in which both of
the MSSM Higgs doublets obtain electroweak-scale masses, whereas the other MSSM scalars

aIt should be noted that MS,max = MPlanck would still be possible if the top mass were about 2–3σ below its
current central value.3
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(and possibly the fermionic superpartners) are heavy with masses around MS . This scenario
has recently been studied in some detail by Lee and Wagner8 who found that a two Higgs
doublet model can indeed be matched to the MSSM at high scales while reproducing the known
electroweak-scale observables, in particular the lightest Higgs mass of 125 GeV.

However, the renormalization group evolution of the scalar quartic potential b

V4 =
λ1
2
(H†

1H1)
2 +

λ2
2
(H†

2H2)
2 + λ3(H

†
1H1)(H

†
2H2) + λ4|H†

1H2|2 (2)

is still problematic in general. When imposing the matching conditions, the potential is positive
by construction at the scale MS , but the RG improved quartic potential at lower scales may
still become formally unbounded from below, signalling the presence of unphysical vacua whose
energy is in general much lower than the one of the electroweak vacuum. This implies that
the electroweak vacuum would be unstable, and that the universe would eventually tunnel to a
lower-energy configuration. The very minimum requirement one should impose in that case is
that the lifetime of our universe should be larger than what we have observed, τ > 1010 yr. We
follow the usual convention in calling such a configuration metastable. In a metastable model,
cosmic history should still explain why our universe happened to end up in the false electroweak
vacuum rather than the true one. One may avoid this by imposing the stricter requirement of
absolute stability, i.e. the absence of any unphysical vacuum whatsoever.

We will show in the following that requiring absolute stability, or even just metastability,
significantly reduces the viable parameter space of two Higgs doublet models with a SUSY UV
completion at high scales.

3 Vacuum decay

The theory of vacuum tunnelling in quantum field theory was largely established in the seminal
papers of Coleman9 and Callan and Coleman10, which showed that the decay rate times cosmic
time τ (the “decay probability”) is given by

p =
τ4

R4
e−SB . (3)

Here SB is the euclidean action of a particular classical field configuration called the “bounce”,
and R is a scale which at one-loop order is essentially given by a certain functional determinant
of fluctuations around this configuration. It can be identified with the characteristic scale of
the bubble of true vacuum through which the tunnelling proceeeds. To be consistent with our
survival until current cosmic times we should demand p � 1 for τ = 1010 yrs. For the case of
a single real scalar field with a potential V , the bounce is an O(4) invariant field configuration
whose radial part φ(r) solves the differential equation

φ′′ +
3φ′

r
=

dV

dφ
(4)

subject to the boundary conditions

φ′(0) = 0 , lim
r→∞φ(r) = 〈φ〉false vacuum . (5)

Such tunnelling solutions may exist even for potentials which also admit classical rolling solutions11.
The case relevant for us is −|λ|φ4 theory, whose potential of course possesses neither a false nor
a true vacuum, strictly speaking; nevertheless a field configuration at the origin of the potential
at φ = 0 is metastable, and can decay through a bounce of the form

φ(r) =

√
2

|λ|
2R

r2 +R2
(6)

bHere we neglect all terms which are not generated by tree-level matching to SUSY.
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whose euclidean action is

SB =
8π2

3|λ| . (7)

Owing to the classical scale invariance of the potential, R is undetermined in Eq. (6), and does
not enter into Eq. (7). In quantum theory the potential is no longer scale invariant since λ
evolves according to its RGE. The decay probability can then be calculated as12

p = max
R

τ4

R4
e−SB(R) , SB(R) =

8π2

3|λ( 1R |
+ΔS , (8)

where ΔS are numerically subdominant one-loop corrections. In this way one obtains a metasta-
bility criterion for the case of a single real scalar field, e.g. the Standard Model Higgs boson
(whose potential is approximately λ(μ)φ(μ)4 at large RG scales μ�Mh).

In the THDM case there are five real scalars and the four nonzero quartic couplings of
Eq. (2). At the tree level, the conditions for absolute stability are well known13:

λ1 > 0 , λ2 > 0 , λ3 + (λ1λ2)
1/2 > 0 , (9)

λ3 + λ4 + (λ1λ2)
1/2 > 0 . (10)

Numerically, one finds that Eqns. (9) are always satisfied at all scales when matching to SUSY,
but that Eq. (10) may be violated at intermediate scales below MS . If this is the case, then the
vacuum is not absolutely stable. The fact that at most one of the four conditions is violated
allows us to derive a criterion for metastability analytically (except that we rely on a numerical
solution for the RGEs): One identifies a particular direction in field space along which the
quartic potential decreases most steeply. Along this direction φ the scalar potential turns out
to be

Veff(φ) =
λ

4
φ4 , λ =

4 (λ1λ2)
1/2
(
λ3 + λ4 + (λ1λ2)

1/2
)

λ1 + λ2 + 2 (λ1λ2)1/2
. (11)

We can now apply the formalism for a single scalar field to calculate the decay probability
of the electroweak vacuum along this direction (with respect to which all possible others are
exponentially suppressed). This yields the metastability condition

λ(μ) � − 2.82

41.1 + log10
μ

GeV

(12)

which must be satisfied at all RG scales μ for the decay probability to be < 1.

4 Numerical results and implications

We use two-loop RGEs generated by SARAH14 and one-loop (partial two-loop) matching to the
Standard Model observables with FlexibleSUSY15. We set all high-scale SUSY threshold cor-
rections to zero, since the details of SUSY breaking are unknown, and assign a correspondingly
large uncertainty of ±3 GeV on the resulting low-scale prediction of the Higgs mass spectrum.
(The effect of high-scale threshold corrections on the vacuum stability conditions is rather small.)
There exist examples of GUT-scale models16 where these thresholds are indeed suppressed with
respect to the generic expectation, because of degeneracies in the leading-order soft term spec-
trum.

The results of our analysis for a particular choice of matching scale MS = 2 · 1017 GeV are
illustrated in Fig. 1. The remaining free parameters at low energies are the pseudoscalar Higgs
mass mA and the ratio of vacuum expectation values tanβ, before calculating the Higgs mass
spectrum. Demanding Mh = 125 ± 3 GeV effectively removes one more parameter. It is clear
that most of the parameter space is ruled out by vacuum instability. In the right panel of Fig. 1
one sees that a small stable strip is remaining for very low tanβ and large mA � 1 TeV.
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Figure 1 – Contours of the lightest Higgs massMh in themA(Mt) – tanβ plane in the pure THDM forMS = 2·1017
GeV. The Higgs mass prediction is computed for Mt = 173.34± 0.76 GeV (solid black, dashed green and dotted
blue). Left: full range of tan β, low mA(Mt); right: region of low tanβ, large mA(Mt). Unshaded regions are
allowed by vacuum stability. In the orange region, the electroweak vacuum is unstable but its lifetime is larger
than the age of the universe. Red regions are excluded by vacuum stability.

Independently of vacuum stability, the metastable high tanβ, low mA region in the left
panel is ruled out by measurements such as BR(B → sγ) and H,A → ττ . This leaves the
low tanβ, large mA region as the only viable one. The constraints from vacuum stability
become milder when lowering MS ; for example, one finds that for MS = 2 · 1014 GeV, mA is
essentially unconstrained from absolute vacuum stability, and can be sub-TeV when allowing for
a metastable electroweak vacuum.

Fig. 2 shows the RG evolution of the quartic couplings in a situation where the vacuum is
not absolutely stable but still satisfies the metastability constraint.
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Figure 2 – RG evolution of selected couplings in the THDM. The coupling λ relevant for vacuum stability is
defined in Eq. (11). The metastability bound of Eq. (12) is the dashed red line.
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5 Variations of the model

Besides the two H doublets, it turns out that one may also keep the superpartners of the MSSM
Higgs fields among the EW-scale degrees of freedom. The resulting “Higgsino-THDM” is even
more constrained from vacuum stability, but may be experimentally more accessible. In partic-
ular, almost pure higgsino-like neutralino and chargino states may be probed by disappearing
track searches at the LHC (as is already the case for the somewhat easier wino-like case17,18).

We have also studied a third option, namely, keeping all the MSSM gauginos and higgsinos
light down to the electroweak scale. However, we find that in this case of a “split-THDM”, the
theory can no longer be matched to the MSSM at large scales when imposing Mh = 125 GeV.
In fact, adding too many fermions with Yukawa couplings to the Higgs sector accelerates the
running of the quartic couplings towards negative values at high energies, and thus tends to
destabilize the electroweak vacuum.
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