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5Dipartimento di Ingegneria, Università di Salerno, Via Giovanni Paolo II, 132 I-84084
Fisciano (SA), Italy

6Institut für Theoretische Physik, Albert-Einstein-Allee 11, Universität Ulm, 89069 Ulm,
Germany

E-mail: ∗p.jizba@fjfi.cvut.cz,†lambiase@sa.infn.it,§lupetruzziello@unisa.it,
‡giuseppegaetano.luciano@udl.cat

Abstract. We study coherent states associated with a generalized uncertainty principle
(GUP). Our particular focus is on the negative deformation parameter β. We show that
the ensuing coherent state can be identified with Tsallis’ probability amplitude with the non-
extensivity parameter q being a monotonically increasing function of β. Furthermore, for β < 0,
we reformulate the GUP in terms of a one-parameter class of Tsallis entropy based uncertainty
relations, which are again saturated by the GUP coherent states. We argue that this combination
of coherent states with Tsallis entropy offers a natural conceptual framework allowing to study
the quasi-classical regime of GUP in terms of non-extensive thermostatistics. We bolster this
claim by discussing a generalization of Verlinde’s entropic force and the ensuing implications in
the late-inflation epoch. The corresponding dependence of the β parameter on the cosmological
time is derived for the reheating epoch. The obtained β is consistent with both values predicted
by string-theory models and the naturalness principle.

1. Introduction
The Heisenberg Uncertainty Principle (HUP) – the cornerstone of quantum mechanics – provides
an intrinsic limitation on the simultaneous knowledge of position and momentum of any quantum
system. While working successfully in low-energy regime, it is anticipated that modifications
will occur as we approach the Planck scale, likely due to quantum gravitational effects. Several
models of quantum gravity, such as String Theory, Loop Quantum Gravity, Quantum Geometry
and Doubly Special Relativity, have converged to the idea that the HUP should be generalized so
as to account for the emergence of a minimal length at the Planck scale. The ensuing uncertainty
relations are typically referred to as Generalized Uncertainty Principles (GUPs).

The simplest version of GUP can be obtained by adding a term quadratic in the momentum
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uncertainty to the right-hand side of HUP [1, 2, 3, 4, 5, 6], namely

δx δp ≥ ℏ
2

(
1 + β

δp2

m2
p

)
, (1)

where mp stands for the Planck mass and the β parameter quantifies the departure from HUP.
Here and throughout we set c = 1. Note that such term is not fixed by the theory, albeit it is
generally assumed to be of order unity [1, 2, 3, 4]. Clearly, the traditional HUP form is recovered
for β → 0 and/or δp≪ mp.

The symbol δ in Eq. (1) represents the uncertainty of a given observable, and it does not
necessarily have to be associated with the standard deviation. In fact, in the original HUP δ
can represent, e.g. Heisenberg’s “ungenauigkeiten” (i.e., error-disturbance uncertainties caused
by the back-reaction in simultaneous measurement) or δp = ⟨ψ||p||ψ⟩ ≡ ⟨|p|⟩ψ. Nevertheless, in
cases where δ is identified with the standard deviation (henceforth denoted by ∆), the generalized
uncertainty principle (1) can be derived from the deformed commutation relation (DCR)

[x̂, p̂] = iℏ
(
1 + β

p̂2

m2
p

)
, (2)

via the Cauchy–Schwarz inequality [7, 8], provided one restricts the attention to mirror
symmetric states, i.e. states satisfying ⟨p̂⟩ψ = 0. Commutator (2) is typically supplemented
with the commutators

[x̂, x̂] = [p̂, p̂] = 0 , (3)

which, together with (2), satisfy Jacobi identities and determine the whole symplectic structure
of the model. So far, the quadratic GUP (1) has been mostly used to study phenomenology
of quantum gravity in many sectors, ranging from quantum mechanics [9, 10, 11] to particle
physics [12, 13, 14, 15] and cosmology [16, 17]. In contrast, comparatively less research has been
conducted on the quasi-classical domain of the GUP. Nevertheless, this domain has relevant and
possibly observable implications for the early Universe cosmology and astrophysics [18, 19]. To
explore physics in the quasi-classical realm, it is common to use coherent states (CSs). CSs are,
in a sense, privileged quantum states in the description of the quantum-to-classical transition,
as they are the only states that remain pure in the decoherence process [20, 21]. Since CSs are
pure, they allow for maximal resolution in phase-space, thus appearing as the closest quantum
counterparts of classical points. Additionally, the CS formalism offers a convenient description
which can draw upon developments in quantum optics [22].

Our principal aim here is to address the issue of CSs for GUP and, in particular, to point
out the role that Tsallis’ entropy plays in this context. Being equipped with the ensuing CSs,
we would like to discuss some simple consequences of GUP systems in their decoherence regime.
To this end, we first introduce the Schrödinger–Nieto type of minimum-uncertainty CSs [7, 23]
associated with GUP. Subsequently, we show that these states coincide with Tsallis’ probability
amplitudes. Furthermore, by using Bekner–Babenko inequality, we recast the GUP for β < 0
in terms of a one-parameter class of Tsallis entropy-power based uncertainty relations (EPUR),
which are again saturated by the GUP CSs. Finally, we invoke the Maximum Entropy Principle
(MEP), i.e. the principle which posits that the thermodynamic entropy is the statistical entropy
evaluated at the maximum entropy distribution, to understand the quasi-classical domain of
GUP in terms of non-extensive Tsallis thermostatistics. To further illustrate our point, we
will examine two relevant examples from cosmology: a) the GUP generalization of Verlinde’s
entropic gravity force [24] and b) its connection with conformal gravity (CG) [25, 26, 27].

The remainder of the work is organized as follows: in Sec. 2 we derive coherent states for the
quadratic GUP and reformulate the GUP in terms of Tsallis entropy-power based uncertainty
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relations. Within this setting, we discuss in Sec. 3 some illustrative examples from the early
Universe cosmology by employing Verlinde’s entropic gravity together with Tsallis’ non-extensive
thermostatistics. Conclusions and outlook are finally summarized in Sec. 4.

2. Coherent states for GUP
2.1. GUP (1) — closer look
Let us first briefly review the steps leading to (1) from the DCR (2). To this end, we shall quantify

the uncertainty of an observable Ô with respect to a state |ψ⟩ via its standard deviation. In
particular, for the variance (i.e., square of the standard deviation) we have

(∆Ô)2 = ⟨ψ|Ô2|ψ⟩ − ⟨ψ|Ô|ψ⟩2 ≡ ⟨Ô2⟩ψ − ⟨Ô⟩2ψ . (4)

In the upcoming considerations, the subscript ψ in ⟨· · · ⟩ will be omitted. By specializing the
analysis to the observables x̂ and p̂ and mirror states, it is easy to check that the DCR (2) holds.
Indeed, by employing the Cauchy–Schwarz inequality, one can write

(∆x)2(∆p)2 = ⟨x̂2⟩⟨p̂2⟩ ≥ |⟨x̂ p̂⟩|2 . (5)

At this point, we rewrite x̂ p̂ as the sum of Hermitian and anti-Hermitian operators, so that

x̂ p̂ = 1
2 [x̂, p̂]+ + 1

2 [x̂, p̂] = 1
2 [x̂, p̂]+ +

iℏ
2

(
1 + β

p̂2

m2
p

)
. (6)

Here [, ]+ denotes the anticommutator. By inserting this expression back into (5), we arrive at

(∆x)2(∆p)2 ≥ 1
4 ⟨[x̂, p̂]+⟩

2 +
ℏ2

4

[
1 + β

(∆p)2

m2
p

]2
≥ ℏ2

4

[
1 + β

(∆p)2

m2
p

]2
. (7)

To obtain the last step, we have used the Robertson trick [8] and neglected the anticommutator
part. Equation (7) clearly coincides with the GUP (1), with variances in place of error
disturbances. In passing, we should mention that the inequality (7) based on (2) is valid not
only for pure states, but holds also for mixed states [29].

2.2. Coherent states and GUP
Coherent states in quantum mechanics are quantum states that saturate Heisenberg uncertainty
relations (URs). In fact, there are more defining properties that CSs could/should satisfy
and there are many names used in the literature to denote states which have part but not
all properties of the CSs, like the aforementioned minimal uncertainty states, or maximal
localization states, or quasi-classical states, or weak coherent states. Here, we will concentrate
on the so-called Schrödinger–Nieto type CSs where the only requirement is the saturation of
URs [7, 23]. Such CSs are the most classical-like states in the sense that positions and momenta
are in these states as well defined/localized as QM allows. We can mention yet another important
property associated with the Schrödinger–Nieto CSs, namely that they most closely approximate
the classical motion of a particle as they entangle least with the environment (and so they are
least perturbed by it). It is this robustness with respect to decoherence that makes them an
ideal tool for quantum optics applications.

It is thus natural to ask how such CSs look like in a GUP-driven Universe. In order to find
the states |ψ⟩ that saturate the GUP inequality (7), we might observe from Eqs. (5) and (7)
that two requirements must hold simultaneously [28], namely

p̂|ψ⟩ = c x̂|ψ⟩ , ⟨[x̂, p̂]+⟩ = 0 , (8)



Tenth International Workshop DICE2022 - Spacetime - Matter - Quantum Mechanics
Journal of Physics: Conference Series 2533 (2023) 012043

IOP Publishing
doi:10.1088/1742-6596/2533/1/012043

4

with c ∈ C. The first condition saturates the Cauchy–Schwarz inequality, whereas the second
one saturates the Robertson trick. Note that from the second requirement it automatically
follows that c = −c∗, so we can write c = iγ, with γ ∈ R. Consequently, the state |ψ⟩ that
saturates the GUP inequality (7) must satisfy the equation

(p̂− iγx̂) |ψ⟩ = 0 . (9)

We now seek the solution to (9) in the momentum representation, i.e |ψ⟩ 7→ ψ(p) = ⟨p|ψ⟩. It is
not difficult to see that in momentum space the operators x̂ and p̂ have the form [29]

p̂ ψ(p) = pψ(p) , x̂ ψ(p) = iℏ
(
d

dp
+

β

2m2
p

[
p2,

d

dp

]
+

)
ψ(p) . (10)

This form is chosen so that both x̂ and p̂ are manifestly symmetric. With this, we can cast
Eq. (9) into a differential equation

d

dp
ψ(p) = −

(
1 + βγℏ

m2
p

)
γℏ

(
1 + β p2

m2
p

) pψ(p) , (11)

which has a generic solution of the form

ψ(p) = N
[
1 + (β p2)/m2

p

]− m2
p

2βγℏ−
1
2

+
. (12)

Here, [z]+ = max{z, 0} guarantees that the wave functions (12) are single-valued. The
normalization coefficient N ensures that

∫
|ψ(p)|2dp = 1 and for β < 0 it is

N< =

√√√√√√
|β|
m2
pπ

Γ
(
1
2 +

m2
p

|β|γℏ

)
Γ
(

m2
p

|β|γℏ

) , (13)

with Γ(x) being the Euler gamma function. In passing, we observe that as β → 0 then
Eq. (12) reduces to the usual minimum uncertainty Gaussian wave-packet (Glauber coherent
state) associated with the Heisenberg uncertainty relation.

In order to determine the significance of the γ parameter, we note that (9) implies

0 = ⟨ψ| (p̂+ iγx̂) (p̂− iγx̂) |ψ⟩ = (∆p)2 − γ |⟨ψ| [x̂, p̂] |ψ⟩|+ γ2
|⟨ψ| [x̂, p̂] |ψ⟩|2

4(∆p)2
, (14)

where we utilized that (7) is saturated. This has a single solution for γ, which with the help of
(2) can be written as

γ =
2(∆p)2

ℏ
[
1 + β (∆p)2/m2

p

] . (15)

We note that γ can be defined also in the limit ∆p→ ∞, even though GUP (7) is in such a case
meaningless. In addition, states (12) are clearly mirror symmetric.
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2.3. Tsallis’ transition amplitude and Tsallis’ entropies
Let us now take in (12) the following substitutions (valid for β ≶ 0):

q =
βγℏ

m2
p + βγℏ

+ 1 , b =
2mp

γℏ
+

2β

mp
. (16)

With this, we can rewrite the two-parameter class of CSs (12) as

ψ(p) = Ñ

[
1− b (1− q)

p2

2mp

] 1
2(1−q)

+

, (17)

where Ñ is appropriately rescaled N . The above expression is nothing but the probability
amplitude for the Tsallis distribution of a free, non-relativistic particle

qT (p|q, b) = |ψ(p)|2 =
1

Z

[
1− b (1− q)

p2

2mp

] 1
1−q

+

, (18)

with Z being the “partition function”.
Two-parameter class of probability distributions (18) decays asymptotically following power

law rather than exponential law. If we keep variance and mean as the only statistical
observables, power-law type distributions are incompatible with the conventional maximum
entropy prescription (MaxEnt) applied to Shannon–Gibbs entropy. It is, however, the Shannon–
Gibbs’ MaxEnt that provides Gaussian probability distributions associated with canonical (or
Glauber) CSs. In this respect, it is interesting to observe that distributions (18) are maximizers
for Tsallis (differential) entropy [30, 31, 32], i.e., entropy of the form

STq (F) =
1

(1− q)

(∫
R
dpFq(p)− 1

)
, (19)

where F is a probability density function. It can easily be seen (by applying L’Hopital’s rule)
that in the limit q → 1 the Tsallis entropy tends to the Shannon entropy

SS(F) = −
∫
R
dpF(p) log2F(p) , (20)

and the ensuing maximizer, i.e. distribution (18), tends to a Gaussian distribution.

2.4. Connection with entropic uncertainty relations
Now, having the entropy that is maximized by CSs, we can rephrase the original GUP in terms
of entropies. The strategy is basically the same as in conventional quantum mechanics.

To illustrate this point we start with the canonical commutation relation [x̂, p̂] = iℏ. This
induces ordinary representations of x̂ and p̂. For instance, in momentum representation we have

(x̂)P = iℏ
d

dp
and (p̂)P = p . (21)

Since eigenstates ⟨p|ψx⟩ ≡ ψx(p) and ⟨x|ψp⟩ ≡ ψp(x) are plane waves, generic states in
momentum and position representation are connected via the Fourier transform

ψ(x) =

∫
R
eip·x/ℏ ψ̂(p)

dp

(2πℏ)1/2
.
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By using Beckner–Babenko’s inequality for the Fourier transform duals (basically inequality
between their norms) [34, 35], one can derive the Shannon entropy-based UR [37]

N(|ψ|2)N(|ψ̂|2) ≥ ℏ2

4
, (22)

which for white Gaussian distributions (i.e. Gaussian distributions whose covariance matrix is
proportional to the identity matrix) reduces to σxσp = ℏ

2 . The function N(. . .) is the so-called
Shannon entropy power, which is defined as [36]

SS (X ) = −
∫
dDxF(x) logF(x) = SS

(√
N(X ) · ZG

)
. (23)

Here, {ZG
i } is a Gaussian random vector with zero mean and unit covariance matrix and D is the

dimension of the random vector. So, N(. . .) is the variance of a would-be Gaussian distribution
that has the same (Shannon’s) information content as the random variable X in question. In
(23), we have employed the short-hand notation SS(A) ≡ SS(FA), with FA being a probability
density function associated with the random variable describing the system A. Equation (23)
has the unique solution [36]

N(X ) =
1

2πe
exp

(
2

D
S(X )

)
. (24)

A few observation are in order: a) entropy-power UR represented by (22) is saturated only for
ψ̃ and ψ that are Gaussian (and white for higher dimensional random vectors), b) Shannon’s
entropy power is defined only for distributions with continuous spectrum (integral calculus is
essential in the proof) and c) the above EPUR indicates that Shannon entropy is a pertinent
entropy in the semi-classical regime of conventional quantum mechanics.

Let us now repeat the above steps for our GUP; in particular, we concentrate on β < 0. In

this case, the canonical commutation relation reads [x̂, p̂] = iℏ
(
1− |β| p̂

2

m2
p

)
, which induces in

momentum space the representation

(x̂)P = iℏ
(
d

dp
− |β|

2m2
p

[
p2,

d

dp

]
+

)
and (p̂)P = p . (25)

Eigenstates ⟨p|ψx⟩ ≡ ψx(p) are not plane waves but rather they have the form

ψx(p) = Bx
e
−ixmparctanh

(
p
√

|β|/mp

)
/ℏ
√

|β|√
m2
p − p2|β|

, Bx =
√
m2
p/2πℏ . (26)

Note that ψx(p) are not quadratically integrable, namely ψx(p) /∈ L2((−mp/
√

|β|,mp/
√
|β|)),

but instead ψx(p) ∈ S1′((−mp/
√
|β|,mp/

√
|β|)), i.e. they belong to the space of complex-

valued tempered distributions (like plane waves). It can be further shown [29] that for β < 0
the operator (x̂)P is self-adjoint and its spectrum is continuous.

Generic states in momentum and position representation are thus not connected via the
Fourier transform, but via the Abel transform

ψ(x) =

∫ mp/
√

|β|

−mp/
√

|β|
dp ψp(x)ψ̃(p) =

∫ mp/
√

|β|

−mp/
√

|β|

dp√
2πℏ

e
ixmparctanh

(
p
√

|β|/mp

)
/ℏ
√

|β|√
1− p2|β|/m2

p

ψ̃(p) , (27)
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where ψ̃(p) = ⟨p|ψ⟩. Analogous relation holds for the inverse transformation.
At this stage, we define the entropy power based on Tsallis entropy as

STq (X ) = STq
(√

MT
q (X ) · ZT

2−q

)
. (28)

Here {ZT
i } is a Tsallisian random vector (i.e. random vector distributed according to Tsallis

distribution) with zero mean and unit covariance matrix. Eq. (28) has a unique solution [29, 37]

MT
q (X ) = Aq

[
expq(STq (X ))

]2/D
= Aq exp1−(1−q)D/2

(
2

D
STq (X )

)
, (29)

with Aq being a q-dependent constant and D dimension of the random vector. In (29) we have

employed the q-exponential exq = [1 + (1− q)x]1/(1−q). As a consistency check, we might notice
that in the q → 1 limit we recover Shannon’s EP, namely

lim
q→1

MT
q (X ) =

1

2πe
exp

(
2

D
SS(X )

)
= N(X ) . (30)

At this stage one can employ the fact that the Abel transform (27) can be equivalently rewritten
as the Fourier transform of the function

ψ̄(z) =
ψ̃(mp tanh(z

√
|β|/mp)/

√
|β|)

cosh(z
√
|β|/mp)

, (31)

and use again Beckner–Babenko’s inequality for the Fourier transform duals. After some algebra,
one obtains the Tsallis entropy-based URs [29]

MT
q/2(|ψ|

2)MT
q′/2(|ψ̃|

2) ≥ ℏ2

4
, (32)

where q′ and q are Hölder conjugates, i.e. 1/q + 1/q′ = 1 with q ∈ R+. This one-parameter
class of entropy power URs clearly resembles the form of Shannon’s entropy power UR (22) by
having the unique irreducible lower bound.

It is now worth noting a few points; a) the inequality (32) is saturated if and only if ψ and
ψ̃ are CSs of GUP (1), b) the above entropy power URs can be formulated only for β < 0 (as in
such cases the spectrum is continuous) and c) entropic URs (32) indicate that Tsallis entropy
is a pertinent entropy functional in the GUP framework. CSs saturating UR belong to the
class of so-called pointer states, i.e. those states that are least affected by the interaction with
the environment [38, 39]. Such states are particularly pertinent to the quasi-classical domain
of quantum theory, as they are maximally predictable despite decoherence [40, 41]. Among all
pointer states in the would-be GUP-driven Universe, only CSs (18) saturate both the “x-p” GUPs
and ensuing Tsallis entropy power URs. Moreover, the existence of Tsallis entropy power UR
indicates that Tsallis’ entropy should be a relevant entropy in the GUP context. If we couple this
observation with the fact that CSs (18) extremize Tsallis entropy, we might invoke (similarly as
in conventional statistical physics) MEP, but this time with Tsallis entropy (in place of Shannon–
Gibbs entropy) to discuss a statistical physics of an ensemble of non-interacting GUP-governed
particles in their quasi-classical regime. In this context, non-extensive thermostatistics of Tsallis
(NTT) [30] should provide the necessary mathematical framework that ought to be employed
to describe the borderline between classical and quantum physics in the GUP Universe.
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3. Applications
3.1. Verlinde’s entropic gravity
Particularly interesting applications of the aforementioned observation can be expected in the
early-Universe gravity. To do this, we must extend our one-dimensional analysis to three
dimensions. This can be done, e.g., by extending the algebra (2)-(3) as, cf. [6, 42]

[x̂i, p̂j ] = iℏδij
(
1 + β

p2

m2
p

)
, [x̂i, x̂j ] = 2iℏ

β

m2
p

(x̂ip̂j − x̂jp̂i) , [p̂i, p̂j ] = 0 , (33)

which in the momentum space representation (in terms of symmetric operators) yields

p̂i ψ(p) = pi ψ(p) , x̂i ψ(p) = iℏ
(

d

dpi
+

β

2m2
p

[
p2,

d

dpi

]
+

)
ψ(p) . (34)

By following a similar route as in 1 dimension, the system of commutators admits only one
(normalized) mirror-symmetry solution for ψ ∈ L2(R3), namely

ψ(p) = N
[
1 + (β p2)/m2

p

]− m2
p

2βγℏ−
1
2

+
with N2

<
=

β3/2

2πm3
pB(5/2,m2

p/|β|γℏ)
. (35)

Here, B(x, y) is the beta function. At this stage, we can ask what modifications to Newton’s
law should be expected in the quasi-classical limit of the GUP-based Universe. To answer
this question, we can combine Verlinde’s idea that gravity is an entropy-driven phenomenon —
entropic gravity (EG), with the non-extensive thermostatistics of Tsallis.

Following Verlinde [24], we suppose that the true (unknown) microscopic degrees of freedom
in any given part of space are stored in discrete bits on the holographic screen that surrounds
them. A holographic screen can be considered to be spherically symmetric of area A = 4πR2.
Outside of the screen is the emergent world, so the screen acts as an interface between known
and unknown physics. When a test particle moves away from the screen, it feels an effective force
F satisfying Fδx = TδS, where T and δS are the temperature and the entropy change on the
holographic surface, respectively, and δx is the distance of the particle from the screen. In NTT
the heat one-form TδS must be replaced with [43]: TδSTq /[1 + ((1− q)/kB)STq ] (in our context
Sq 7→ S2−q as it is S2−q that is extremized by qT (p|q, b)). If L is a (dimensionless) characteristic
length scale (e.g. radius R/ℓp) then the Bekenstein–Hawking entropy SBH = lnW (L) ∝ L2,

which implies that the total number of internal configurations W behaves as W (L) = ϕ(L)νL
2

for L ≫ 1 (ϕ is a positive function satisfying limL→∞ lnϕ/L2 = 0 and ν > 1 constant). Hence,
from the outside, the holographic screen has Tsallis’entropy

ST2−q= kB ln2−qW (L)=
kB
q − 1

[(
ϕ(L)νL

2
)q−1

− 1

]
. (36)

Consequently, the entropic force follows from the relation

Fδx =
TδST2−q

1 + (q − 1) (ω3L3 + ω2L2 + · · · ) + · · ·
, (37)

where ω2, ω3 > 0 are intensive coefficients — so-called Hills’ coefficients, known from entropy
expansion in (conventional) thermodynamics of small and mesoscopic systems [44]. To comply
with Hills’ expansion, we have formally included the term ω3L

3, even if it is not supported
by the EG prescription. It will be seen that such a term is cosmologically unfeasible in the
quasi-classical regime, so that ω3 ≈ 0.
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By holographic scaling, the energy residing inside the holographic screen is related with the
on-screen degrees of freedom via the equipartition theorem E = NkBT/2, with E = M being
the total mass enclosed by the surface and N = A/(Gℏ) the number of bits connected with the
area by the holographic principle [24]. EG paradigm posits that the minimum possible increase
in the screen entropy (equivalent to one bit of Shannon’s information) happens if a particle of
radius of Compton wave length λC is added to a holographic sphere [24, 45]. This happens
when a point-like quantum particle appears at the distance λC from the screen (note that λC
is the minimal distance at which a particle stil retains its single-particle picture). By setting
δx = λC = ℏ/m and using the non-extensive version of Landauer principle [46, 47], which states
that the erasure of information leads to an entropy increase δSTq = 2πkB/(3 − 2q) per erased
bit, we derive the following modified Newton’s law

F (R) =
GMm

wR2

1

1− κ3εqR3 − κ2εqR2
, (38)

with εq = 1− q, w = 1+ 2εq and κn = ωn/ℓ
n
p (ℓp = ℏ/mp ≈ 1.6× 10−35m is the Planck length),

n = 2, 3. Since 2εq is small (see below), we can set w = 1. The ensuing gravitational potential
up to the first-order in εq then reads

V (R) =
rs
2

[
− 1

R
+ εqκ2R +

εqκ3
2

R2

]
, (39)

where rs = 2GM is the Schwarzschild radius. The gravitational potential (39) coincides with the
Mannheim–Kazanas gravitational potential of a static, spherically symmetric source of mass M
in conformal Weyl gravity (CWG) [26, 27]. Strictly speaking, in CWG a given local gravitational
source generates only a gravitational potential

VMK(R) = − rs
2R

+
χ

2
R =

rs
2

[
− 1

R
+ (1− q)κ2R

]
, (40)

where κ2 = ω2/ℓ
2
p (ω2 = π is the second Hill’s coefficient [29, 44]). The would-be term

∝ R2 corresponds to a trivial vacuum solution of CG and hence does not couple to matter
sources [25, 26, 27]. Fitting with CWG thus implies ω3 ≈ 0.

3.2. Some cosmological consequences
In CWG, the parameter in front of the linear term is identified with the inverse Hubble length
RH (more precisely with 1/(2RH)) [48]. It s quite intriguing that, for present macroscopic scales
(i.e., RH ∼ 1026m), the Mannheim–Kazanas solution has been successful in fitting more than two
hundred galactic rotation curves with no adjustable parameters (other than the galactic mass-
to-light ratios) with no need for dark matter or other exotic modifications of gravity [26, 27].
Despite the fact that macroscopic-scale gravity does not fall within the assumed quasi-classical
regime, the idea that the coefficient in front of a linear term in (40) should be associated with
the inverse Hubble length is valid even in the early Universe cosmology. This is because the
argument of CWG leading to this result is independent of an actual Universe epoch [49].

In conventional cosmology, it is expected that a quasi-classical description becomes pertinent
at the late-inflation epoch (after the first Hubble radius crossing) and perhaps even after its end
during reheating [51, 50]. So, in this period the NTT should be a suitable framework for the
description of an “inflaton gas”. For instance, by viewing the “inflaton gas” as an ideal gas, the
NTT predicts that the inflaton pressure for 0 < q < 1 should satisfy a polytrope relation [52, 53]

p =
2πℏ2

mi e5/3
ρ5/3 , (41)
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where ρ = N/V is the particle density. In this connection, it should be stressed that the relation
(41) holds for 0 < q < 1 but not in the limit q → 1, see, e.g. [53]. In fact, at q = 1 one has the
familiar pressure relation p ∝ ρE . So, the NTT and extensive limits are not interchangeable.
The polytrope relation of the type (41) often appears in studies on late inflation, see, e.g. [54, 55].

In order to gain information about β, we employ the CWG observation that the cosmologically
viable linear term in (40) should have its parameter associated with 1/RH . According to CWG,
the Newtonian potential (40) should dominate on short scales, while the linear one becomes
prominent at large scales. Both potentials get equal at RH , which in our case implies that
q = 1− ℓ2p/(πR2

H). Note that this is compatible with the condition that rs = RH . By combining

the latter expression for q with (15) and (16), we obtain |β| ≃ m2
p ℓ

2
p/(2π (∆p)

2
ψ R

2
H).

To see how such β explicitly depends on a cosmological time t, we first write RH(t) =
H−1(t) = a(t)/ȧ(t), where H is the Hubble parameter and a(t) is the scale factor. The latter can
be evaluated, e.g., from the Vilenkin–Ford inflationary model [56], where a(t) = A

√
sinh (B t),

with B = 2
√
Λ/3 (Λ is the cosmological constant). We then use the result from the relativistic

equipartition theorem (∆p)2ψ ≃ 12 (kBT )
2 and after simple algebraic manipulations, we obtain

|β| ≡ |β(t)| =
m2
p ℓ

2
p Λ

72π (kBT )
2 tanh2

(
2t
√

Λ/3
) . (42)

For concreteness’ sake, let us consider the reheating epoch, i.e. time scale t ≃ 10−33s. By taking
the mass of the inflaton mi = 1012 ÷ 1013GeV, T of the order of the reheating temperature
TR ≃ 107÷ 108GeV and the presently known value of the cosmological constant Λ ≃ 10−52m−2,
we obtain |β| ∼ 10−2 ÷ 1, which is in agreement with the values predicted by string-theory
models, cf. e.g. [1, 3, 4]. This result is also consistent with the naturalness principle that
dictates that not so far from the Planck scale the β should not be too large nor too small.

4. Conclusions
In this paper, we have unified two seemingly unrelated concepts, namely generalized uncertainty
principle and Tsallis thermostatistics. On the one hand, the GUP strives to explore consequences
of the existence of a minimal length scale. On the other hand, Tsallis statistics is a theoretical
concept that accounts for systems with long-range correlations or long-time memory, for which
the conventional central limit theorem does not apply. A merger of these two concepts presented
here is intriguing from both a conceptual perspective and from a phenomenological point of view.

In order to substantiate our point, we have employed the NTT to generalize Verlinde’s
entropic force. Apart from obtaining a modified Newtonian (basically Mannheim–Kazanas-like)
potential, we have argued that such a generalization should be phenomenologically pertinent
at the late-inflation epoch. The corresponding dependence of the GUP β parameter on the
cosmological time t has also been derived for the reheating epoch. The β parameter obtained is
consistent both with values predicted by string-theory models and with the naturalness principle.
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