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Chapter

Introduction

The confrontation between theory and experiment is one of the basic ingredients
of the scientific method. It is a thrilling moment for every physicist when theoret-
ical predictions face experimental observations and either consistency or diverging
results are brought to light. Todays particle physics offers a wide field of activity
with new developments regarding theoretical, experimental and also computational
aspects. Especially the lepton sector with the discovery of neutrino oscillations,
implications on dark matter and hints of new physics has become a playground
for model building over the last decades. Often based on the Standard Model
numerous techniques and extensions were investigated, e.g. discrete symmetries,
the seesaw mechanism or even grand unification, to find an accurate description
of neutrino phenomena. Rising interest in neutrino physics also provides us with
frequently renewed measurement data since more and more collaborations are re-
searching solar, atmospheric or reactor neutrinos. This allows to test if model
predictions are compatible with combined experiment data.

Referring to the introductory statement the present work describes methods to
compare theory with experiment even in the presence of involved dependencies on
model parameters and calculated observables therefrom. The analysis relies on
numerical techniques which will be tested on a model for tri-bimaximal mixing
and its modifications. This thesis is organized as follows. Chapter 2 gives an
overview of the Standard Model and its basic extensions in the lepton sector,
e.g. Majorana neutrinos and the seesaw mechanism. Chapter 3 then focuses on
neutrino phenomena like neutrino oscillations and provides the current data for
mixing angles and mass squared differences. Chapter 4 introduces a figure of
merit function which allows to quantify the agreement between model predictions
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and measurement data. The best possible match is obtained by minimization of
the function. Depending on the model this task may only be accomplished by
application of numerical tools. Thus, the Nelder-Mead method, a procedure for
non-linear optimization problems applicable also in higher dimensions, is presented
and its Fortran implementation detailed. In Chapter 5 two models extending the
Standard Model in the lepton sector with additional right-handed neutrinos are
reviewed. First, the model for tri-bimaximal mixing found by Grimus and Lavoura
[1] is discussed, followed by a modification thereof employing C'P invariance and
additional spontaneous symmetry breaking. These two models are put to test with
the described numerical techniques and the results are presented in Chapter 6.

A major aspect of this work is to develop the program which includes the min-
imization via the Nelder-Mead procedure. The source code is provided in the
appendix and allows future application to more elaborate models.



Chapter

The Standard Model and its extensions in
the lepton sector

During the last decades there has been an enormous progress in both experimental
and theoretical particle physics. One of the greatest achievements was the discov-
ery of what we call today the Standard Model of elementary particle physics, which
is still a very accurate description of particles and their interactions. But it would
not be physics if there were not some details missing and indeed experiments gave
results that lack an explanation by the Standard Model (SM). Neutrinos in the
SM are described as massless particles, a fact that can not be brought into ac-
cordance with experimental data of neutrino oscillations. Today there is a great
variety of models, many of them based on the SM, which imply new features like
massive neutrinos. In this chapter we will first recapitulate the most important
characteristics of the SM (see also [2, 3]) and in the second part discuss the basic
extensions in the lepton sector.

2.1 The Standard Model

The SM is a quantum field theory based on the non-abelian gauge group SU(3)¢ X
SU(2);xU(1)y. The three Lie groups in the direct product represent color charge,
weak isospin and weak hypercharge respectively. Because this work deals with
models concerning only the lepton sector, the SU(3)s gauge invariance is not
discussed in detail. Unlike quarks, leptons do not carry any color charge and

11
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therefore are not affected by strong interaction. We shall now concentrate on the
remaining symmetries and particles.

2.1.1 The GWS model of electroweak interaction

Ignoring the SU(3)¢ color symmetry one gets a model for electroweak interactions

based on the remaining gauge group SU(2); x U(1)y first discovered by Glashow,

Weinberg and Salam [4, 5, 6]. It contains spin 0, 1 and 1 fields organized in

2
different multiplets and generations as follows:

e 3 left-handed quark® doublets (spin 1)

@gdgz(“%) | @gsgz(%) , @gbgz(f%), (2.1

dor,

3 left-handed lepton doublets (spin 1)

L(e): VeL ’ L(M): VuL ’ L(T): VrL ’ 29
O o= (i) = (). e

e 6 right-handed quark singlets (spin %)
UoR , Cor » tor , dor , Sor ; bor, (2.3)
e 3right-handed lepton singlets (spin %, note the missing right-handed neutrino
fields)

€rR , MR, TR, (24)

4 gauge boson fields corresponding to the generators of SU(2); and U(1)y
respectively (spin 1)

Wi, a=1,23 and B, (2.5)

oo

e 1 scalar Higgs doublet (spin 0)

b — @;) | (2.6)

IThe subscript “0” indicates that the quark fields listed here are preliminary fields, which will
be transformed into physical ones (mass eigenfields) in chapter 2.1.2.
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These fields contribute to the total Lagrangian of the GWS model, which is in-
variant under the following SU(2); gauge transformation.

v — UV for all doublets
U — WU for all singlets
SUQ@)r Wl‘j% — UWS%U‘l + é (0,U) Ut (2.7)
Bu — Bu

This transformation, where U € SU(2);, acts on all doublets and the three gauge
bosons corresponding to the weak isospin. The second gauge group U(1)y gives
multiplication with different phase factors.

(/SN efia%Y\I,
Ul)y: § We — we (2.8)
B, — B,+ i@ua

The real number Y denotes the weak hypercharge, which can be chosen indepen-
dently to a large degree for every field. In the GWS model the weak hypercharge
is correlated with the weak isospin and the electric charge by

Q:h+%Y (2.9)

A list of all these quantities is provided in Table (2.1).

(()Cés’b) L(Le " wor, cors tor | dors sor, bor | €rs 1irs Tr @
_|_l _|_l _|_l
L * X 0 0 0 :
2 2 )
1
v +§ —1 1 K 5 +1
) 3 3
+3 1 +1
2
Q +§ 0 2 1 . +1
) 3 3
~1 1 0

Table 2.1: List of weak isospins, weak hypercharges and electric charges of fields
contained in the GWS model.

We may now write down the Lagrangian for the GWS model as a sum of the
fermion, gauge boson, Higgs and Yukawa terms:

‘CGWS = Ltermion + Lgauge + ‘CHiggs + Lyukawa (210)
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Each part is individually SU(2); x U(1)y gauge invariant. The first term contains
the kinetics of all fermions and their couplings to the gauge bosons:

. —. l
Liemion = > QWin"D, QW + S LViy'D, LY+

st I=eust (2.11)
+ > @riYDugor+ Y. lriv"D,lg.
q=d,s,b,u,c,t l=e,u,T

Here we used the covariant derivative D,, which is different for doublets and
singlets and varies also with different weak hypercharges.

: ara 1
D, = 0, +igWiI" + zéYg'Bu (2.12)
The term with the SU(2); gauge bosons contributes only for the doublets.

o { % for SU(2) doublets (2.13)

0 for SU(2) singlets

The second term in the total Lagrangian is the kinetic term for all four gauge
bosons.

1 a apv 1 v
£gauge - —ZWﬂVW me — ZBMVBu (214)
The tensor fields Wy, and B, are defined by the relations:
WZ/ = GMWI? - aVWﬁ - ggachSWyc (215)
B,, =0,B,—0,B,. (2.16)

Comparing these two definitions one finds an additional term proportional to W?
in the first line. The reason lies in SU(2); being a non-abelian group resulting in
self-interaction of related gauge bosons. The structure constants of SU(2); also
enter at this point.

The Higgs Lagrangian comprises the kinetic term and the potential of the scalar
doublet ®. ,
Litiggs = (D, ®)" (DFD) — 1?01 — A (21) (2.17)

Together with the Yukawa Lagrangian

Lyukawa = — Z Lyg ngL) q)%R - Z Ay ngL)(I)Q(/)R
q=d,s,b q=d,s,b
q'=d,s,b q'=u,c,t (2]_8)

— Z %L—g)q)lRJrH.c.

l:e#,’r
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these terms are essential for the mass creation in the GWS model since all the
masses of fermions and bosons are generated via spontaneous symmetry breaking
(SSB) of SU(2); xU(1)y — U(1)em. In order to get all allowed Yukawa interaction
terms one defines the conjugate scalar doublet .

= 0 =i\ ot [ ™ = (-1
O = ind" =1 (z 0) <¢0*> = <_¢> —  Y(P) = (_1> (2.19)

We have now listed all terms constructing the GWS model before the symmetry
breaking Higgs mechanism. In the next chapter the focus will lie on the mass
generation and the physical fields in the Standard Model.

2.1.2 Higgs mechanism

So far there have been no mass terms in the GWS-Lagrangian, neither for the
fermions nor for the gauge bosons. Simply adding mass terms would destroy the
gauge invariance in both cases. One possible procedure to get massive fermions
and bosons despite these difficulties was introduced by Peter Higgs [7, 8, 9, 10,
11, 12]. The so called Higgs-mechanism breaks the SU(2); x U(1)y symmetry
spontaneously to one remaining U(1),, symmetry and creates the desired masses.
The essence of this process lies in the form of the Higgs potential V

V(@) = 1210 4 A (21)” (2.20)
where the constant 2 is assumed to fulfill
p? < 0. (2.21)

Searching for the minimum of the potential one finds the relation

2

v (®) | 2\
d(q)Tq))ZOZ>\/<I>T :(—5> = 75" (2.22)

which constrains the four parameters of the complex vector ®. To obtain a min-
imum we can choose three parameters freely, the last one is then fixed by (2.22).
Evidently this leads not to a single, but to a continuous set of minima of the
Higgs potential. The vacuum state (which is the state minimizing the potential) is
therefore degenerate and the choice of one particular ® fixes the gauge and hides
the original SU(2); x U(1)y symmetry. In addition the Higgs field is shifted to a
physical field whose vacuum expectation value vanishes. One can now eliminate
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three of four real components of the doublet of complex scalar fields by an appro-
priate choice of the gauge. A useful convention is the unitary gauge, which leaves
a real scalar field A in the ¢° component.

(ot +int SSB 1 0\
¢ = (O’O + 'L’I]O> unitary gauge E v+ h N (I)u <223>

The spontaneous symmetry breaking has now effects on various parts of the GWS-
Lagrangian.

Higgs mass

Upon SSB the Higgs doublet is transformed into a real scalar field with mass and
self-interaction terms.

1 1 \2 ot
(0,)' (0®) — V() = = (§,1) (") — M <1 + %h) +25 e
The Higgs mass is therefore
m; = 2 v, (2.25)

Gauge boson masses

Since the Higgs mechanism breaks a symmetry with 4 generators down to one
U(1)em symmetry three gauge bosons gain masses. The mass eigenstates are not
the initial gauge fields W7 and B, but fields rotated by the following prescription:

1
We=—
V2

Zy\ _ [cosVy —sindy) (W)
<Au> N (sinﬁw cos Uy, ) (Bu> ’ (2.27)
While W#* and Z bosons are now massive fields, the photon A stays massless

and represents the electromagnetic U(1),, symmetry. The weak angle 9, may be
expressed in terms of the couplings ¢g and ¢'.

(Wi 5iw?) (2.26)

/

9 9

The electromagnetic charge associated with the unbroken generator () is now

costy, = sin,, = (2.28)

e = gsind,. (2.29)
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The kinetic term of the Higgs-Lagrangian comprises the kovariant derivative and
therefore the gauge fields. Applying the Higgs mechanism leads to mass terms and
interactions with the scalar Higgs field h:

et ol
PT (—ngM7 —ig q)g’Bﬂ) (ngM? - ig qulBH) o

2

2
SSB L oo o+ —p h L/, 2\ 2 o h
T it 19 U WA LA +§(9 +g)vZﬂZ L+—] . (2:30)

The masses of the physical gauge fields are

1 1
mis = ZQQUQ . omy = 1 (92 +g'2) vt o mA4 =0 (2.31)

The masses of the W and Z bosons are related by the weak angle:

m%/Vi . g
myz g +g

= 052 Uy, (2.32)

Fermion masses

As previously mentioned, fermion masses cannot be created by simple addition
of mass terms because of gauge invariance. Anyway, the Yukawa-Lagrangian to-
gether with the Higgs mechanism is capable of generating masses. After SSB the
Lagrangian contains Yukawa couplings with the scalar h as well as terms quadratic
in the fermion fields proportional to the vacuum expectation value v. The later
may be used to form mass terms for all fermions except for the neutrinos.?

Fdd Fds de dOR

‘CYukawa = - %(’U + h) (dO—L Sor bO—L) Fsd Fss Fsb SOR
Toa Tos v/ \bor
1 Auu Auc Aut UOR
- %(’U + h) (u—OL CoL tO_L) Acu Acc Act CoR
Atu Atc Att tOR
1

——(w+h Il + H.c.
\/§(v )Z;W YilLlRr C

20One could argue at this point that no Yukawa coupling matrices comparable to I' and A are
introduced in the lepton sector. It is not necessary to write down a non-diagonal matrix ~ #
diag(7e, Yu,v-) since no physical consequences arise from this generalization as long as no right-
handed neutrino fields are present. A possible mixing matrix resulting from the diagonalization
of a charged-lepton mass matrix (comparable to (2.36)) can be absorbed into the left handed
neutrino fields in the charged current term (2.87) of the Lagrangian.

(2.33)
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One can now easily read off the masses of the charged leptons:

1
m; = —=uv , l=eu,T. 2.34
l \/é M 2 ( )
The quark mass matrices I' and A are in general not diagonal, so the quark fields
until now where not mass eigenstates. Fortunately there is a procedure which

allows us to bring the mass matrices in a positive, diagonal form.

Theorem. Let M be an arbitrary non-singular complex matrix, then M can al-
ways be decomposed as

M =UMVT (2.35)

where U,V are unitary and M is a diagonal and positive matrix.

The diagonal elements of M are the singular values and the whole procedure there-
fore called singular value decomposition or bi-unitary diagonalization. Applying
this to our problem gives:

V2 V2

The quark masses are now contained in the diagonal mass matrices

I'=UMqV)  and A =UM,V]. (2.36)

mg 0 0 m, 0 0
Mg=|0 my 0 and M,=|0 m, 0 (2.37)
0 0 my 0 0 my

while the unitary matrices are absorbed into the quark fields by definition of the
physical mass eigenfields.

dp dor, dr dor
sp | = I/{;r SoL sp | = V; SOR (2.38)
br bor br bor
ur, UprL UR UoR
cp | =Ul | cor cr | ==V | cor (2.39)
i torL lr lor

This results in the quark mass terms:

L UR - L dR
coek = —(mp o )M, |er |~ (dp 5 Br) M| sk | +He  (240)
IR bR

By now we have depicted the generation of all particle masses in the GWS model.
We will continue describing the physical effects of the quark mixture in the next
section.
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2.1.3 Charged currents and CKM matrix

The unitary matrices U, and U, introduced before play an important role in the
charged current terms of the GWS Lagrangian.

dOL
£t = 75 (wr e fou) 2" | sow | W+ He (2.41)
bor,

Expressing this in terms of mass eigenfields yields

dr,
Lk~ —% (T & ) Ul |50 | W) +He . (242)
=Uckm b,

The combination of U, and U, that appears at this point is defined as the famous
Cabbibo-Kobayashi-Maskawa matrix Ucky [13, 14]. Naturally the CKM matrix is
unitary itself and thus allows a simple parametrization [15]. Consider an arbitray
unitary matrix A fulfilling ATA = 1. The unitarity constraint in index notation
gives

3 3

(AN A = AL Aj = Sk (2.43)

Jj=1 J=1
These are 3 real (i = k) and 3 complex (i # k) equations for the 9 complex
entries giving a total of 18 — 3 — 3 -2 = 9 independent real elements. Con-
ventionally one chooses a parametrization with 3 angles and 6 phases. 5 of 6
phases can be absorbed into the quark fields by redefinition. Finally we end up
with a unitary matrix Ucky with 4 parameters commonly parametrized as follows
(8i; = sinv;;,¢;; = cosy;):

UCKM = U23 U13 U12

_i(;cp

1 0 0 C13 0 S13€ C12 S12 0

=10 Co3 S23 0 1 0 —S12 C12 0
SCP
0 —s23 ca3) \—s13¢” " 0 13 0 0 1 (2.44)
72‘5CP
C12€13 512C13 513€

_ i6CFr i6CF
= | —S12€23 — C12523513€ C12C23 — 512523513€ 523C13

i5CP Z-(;CP
512C23 — C12523513€ —C12C23 — 512523513€ C23C13

Note that it is not possible to eliminate the last phase 6“7 in the present case
of 3 quark generations [14]. Also a non-zero phase is the only possibility for a
complex Ucky and thus is responsible for C'P violating processes in weak interac-
tions. The whole procedure here, starting from Yukawa couplings, then applying
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the bi-unitary diagonalization and ending up with the quark mixing matrix, was
motivated by S. Glashow, J. Iliopoulos and L. Maiani [16] who suggested an ad-
ditional fourth quark ¢ to u, d and s known at the time. In the GIM model they
introduced two doublets containing the four quarks and the well-known Cabbibo
angle

d _ ur (s) _ Ccr,
Qr = <dL cos Vo + sy, sin 190> Lo (—dL sindo + s, COS’l90> (2.45)

where the mixture of d and s was set by hand. This way they solved the problem of
flavour changing neutral currents appearing in the three quark predecessor model,
which led to wrong predictions, e.g. in Kt decays. A different approach to the
quark mixture is via the diagonalization of the mass matrix depicted in the previous
chapter. In the GIM model this would correspond to two doublets

d Uu s C
A Y (2.46)
dor, S0L

and a 2 x 2 lepton mixing matrix

(2.47)

Usrar = UJUd _ < cos¥e  sin 790)

—sin¥e  cosVe

Besides the natural outcome of the Cabbibo angle ¥¢ this procedure gives also an
explanation for the orthogonal mixture in (2.45).3

2.2 Extensions in the lepton sector

The aim of this chapter is to discuss the most basic extensions to the SM leading
to massive neutrinos (see also [17, 18, 19, 20]). Before one can introduce additional
mass terms to the Lagrangian one has to decide whether neutrinos are Dirac- or
Majorana particles.

2.2.1 Dirac- and Majorana particles

The fermionic particles of the SM until now were all assumed to be Dirac particles
represented by fields fulfilling the Dirac equation:

(iv"0, — m)Y(x) = 0. (2.48)

3See [2], p.216ff. for a detailed analysis.
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Fourier expansion of the four-component Dirac field ¢ yields

= T 7, s)u(p, s)e” P + d (7, s)v(p, s)e™”
W)= 3| G (0 e 4 d @)} (249

with different annihilation and creation operators b and d for particles and an-
tiparticles. The charge conjugated field ¢ is defined by the action of the charge
conjugation operation C on the original field as follows:

CyC ! = = 0w (2.50)

where 7). is an arbitrary phase. In the case of Dirac particles one can clearly
distinguish between particles and antiparticles, so

U # Y° (2.51)

This is particularly obvious for particles that carry any additional conserved quan-
tum number, e.g. electric charge. An electron is always distinguishable from its
antiparticle, because of the different charges. The situation gets more involved
with neutrinos, since they do not carry an electric charge. Thus it is not clear
whether neutrinos and antineutrinos are distinct particles. One could stick to the
Dirac particle concept and to statement (2.51). Another possibility is to set par-
ticle and antiparticle indistinguishable imposing the so called Majorana condition

b = ° (2.52)

Applying this to the explicit form of ¢ (2.49) gives together with

Culps) =v(@,s) Colp.s) =ulp,s) (2.53)

the desired constraint on the creation and annihilation operators:

b(p,s) =d(p.s) b (5,s)=d(ps). (2.54)

Hence there is no mathematical difference between the original and the charge
conjugated fields, in other words the Majorana particle is its own antiparticle. In
the Standard model there is an additional global U(1) symmetry in the lepton sec-
tor that ensures the lepton number conservation (L). This symmetry is accidental
and may be broken by a Majorana-type lepton by 2 units.

Switching to the chiral characterization of fields with the well known projection
operators

Prp=S(1-) Prp = (1+7) (2.55)

1
2

DO | —
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one has to modify the usual decomposition for Dirac particles

Y =19+ Yr. (2.56)

In the Majorana case only one projection eigenstate is necessary to create a physical
field. If one chooses the left-handed field 17, the right-handed part can be played
by the charge conjugate state (¢r)°".

Y=+ (Yr)° (2.57)

Obviously 9 defined in (2.57) fulfills the Majorana condition (2.52) because (¢°)° =
1. A right-handed field ¢z may describe a different particle or may be completely
absent in the theory.

2.2.2 Mass terms

Depending on the model and the desired particle type it is possible to write down
different bilinear terms that are interpreted as mass terms.

Dirac mass term

A Dirac mass term is constructed using the chiral fields ¢, and 1. Both fields
must be present and are combined to form a bilinear and Lorentz-invariant expres-
sion

—m (ripr + rop) = —my  with (2.56). (2.58)
Note that the second term in (2.58) is the Hermitean conjugate of the first. Adding
a Dirac mass term for the neutrinos in the Standard model is quite simple. It is
necessary to add the (so far missing) right-handed neutrino fields veg, vur, V-r as
singlets to the particle content. The most general Dirac mass term with these 3
lepton flavours is

L — — ZWRMI?VI/L +H.c. with LI =e 7. (2.59)
L

The complex 3 x 3 matrix M? is composed of the Yukawa couplings and the VEV

of the Higgs field. The mass term can be diagonalized in the same manner as the
quark fields described in (2.35) (See also 2.2.4).

Majorana mass term

A Majorana mass term makes only use of one chiral projection of 1) (¢, or ¥r) to
construct a bilinear term

—%mW@/)L +H.c. = —%m@@b with (2.57). (2.60)
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The above expression may be recast with help of the identity

@) = (C02") 70 = wEnaC "0 = —oF (i) O = —wfC (2.61)

to a form where the charge conjugation matrix enters

1

§m¢€0’1% + H.c. (2.62)
In the case of 3 neutrino flavours this would give the following Lagrangian:

1 -
LM = "9 Z () Mpvpr + Hee, with LU =ep,T. (2.63)
L

Note that although the left-handed neutrino fields v, are present a Majorana
mass term (2.63) is forbidden within the Standard model due to gauge invariance.
The same Lagrangian for the right-handed neutrinos would be allowed if the fields
Ver, Vur and vy g are added to the model.

: l 7
LM = D) > (vir) " Myiver + Hee. with — LI'=e,pu,7 (2.64)

L
To get mass eigenstates from a Majorana mass terms like (2.64) one has to di-
agonalize MPT first. It turns out that the matrix is symmetric because of the
antisymmetry of C' and the anticommutation property of the fermionic fields.

VrC e =) (nr)i(C™ V)i (wr); = Y (mr)ilvrr); (C77 )5

i BT anti ‘ ‘
anticommute antisymmetric (2 i 65)

= (wr)i(CNji(vir)i = yrC ™ uir
¥

From this follows immediately

1

2 > (vr) Mjjvig = —

Z (VIR)CMlI,%lI/l/R = MR = (MR)T. (266)
L L

N —

A theorem of I. Schur [21, 22, 23] ensures that the symmetric matrix M%® can
always be diagnonalized:

Theorem. Let M be a symmetric, complex n x n matrix. Then there exists a
diagonal, positive matrix m and a unitary matrix U so that

M = UHTmu'. (2.67)
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The resulting mass eigenstates fulfill again the Majorana condition.
Dirac-Majorana mass term

One may find models where Majorana and Dirac mass terms occur. In general

this would look like

1 S P
LM = —mppyy, — §mL(¢L) YL — 57711%(1/151) Yr+ H.c. (2.68)
Splitting up the Dirac part using
_ [ L
—mpYrYr = —§mD¢R@/}L - émD<wL) (Vr) (2.69)

gives the possibility to write all mass terms in a compact notation

ooty ) (e o) () e

—-MD+M =ny, (27())

11—
= — §(nL)cMD+MnL —|— H.C.

The symmetric matrix MP*+M is diagonalized by the unitary matrix U

MPM = MW’y with = (mdy)  my > 0. (2.71)
Defining new fields 1, 19
N = (;ﬁ) =Ung + Uy (2.72)
the mass Lagrangian takes the simple form
LPHM = —%NmN = —%m@@bl — %mg%@z&. (2.73)

Although we started with both Dirac- and Majorana mass terms we finally ended
up with two Majorana fields since

N = N°. (2.74)

In the case of 3 or more lepton flavours we have to replace v, and ¥ g with vectors
containing the various neutrino fields

Vis
v
el I/SQR
v = | Vur VR = , (2.75)
VrL

VsnRR
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and n; with

ny = (J;) . (2.76)

Note that we assumed 3 (e, u,7) and ng lepton flavours for the left- and right-
handed neutrino fields, respectively. The number of right-handed flavours is free,
because there has been no experimental or theoretical limitation so far. The com-
bined mass matrix MP™M has now (3 + ng) x (3 + ng) elements arranged in 3
matrices MY, M and MP

MPHM — <ﬁ; Mjfj]f) : (2.77)

The Majorana particles resulting from the usual diagonalization are again denoted
by a vector

n

%)

No=| " [ =Un,+Unye. (2.78)

V3+7LR

2.2.3 The seesaw mechanism

Starting from a general Dirac-Majorana mass term the seesaw mechanism [24, 25,
26] gives a possible explanation for the smallness of the neutrino masses. Of course
it would be possible to simply set the corresponding Yukawa couplings accord-
ingly, but this would be an unmotivated step. Instead one tries to find a different
mass production procedure that naturally explains the mass discrepancies between
charged and neutral leptons. It is based on a scenario with Dirac-Majorana mass
term described in (2.75) to (2.78) with 3 left-handed and n right-handed neutri-
nos. There are different types of the seesaw mechanism, we will concentrate on
type I seesaw:

Type I seesaw

Based on the mass matrix (2.77) with M% = 0, the type I seesaw mechanism
corresponds to the SM with ng additional right-handed neutrinos and all possible

mass terms. r
MPTM = (A;D (%R) ) (2.79)

There is no Majorana mass term for vy, because the left-handed fields are arranged
in doublets, thus a gauge invariant bilinear term can not be produced. The seesaw



26 2. THE STANDARD MODEL AND EXTENSIONS

mechanism makes now assumptions on the scales of the matrices M” and M?%.
The eigenvalues of MP are at the same level as the masses of the charged leptons
or the quarks, whereas those of M are at much larger scale.

MD = Mquarks,charged leptons < MR (280)

Under these conditions one may try to bring (2.79) into a block-diagonal form,
applying a small rotation

M 0
Ty fD+M1i7 v _
W MPHMYY ~ ( ) Mheavy> = M. (2.81)

The rotation matrix W that performs the partial diagonalization is

- (1 SO ey
W ~ ( _(MR)—lMD 1 — %(MR)_lMD(MD)T(MR)T_1> (2.82)

up to orders (M®)~1MP. The resulting Majorana mass matrix M, is now
M, =— (MP)" (M)~ MP
+%<MD)T<MR)1MD<MD)T<<MR>*<MR>T)1<MD>*
HMP)T (MM (M) (MR (M) T P
= — (MP)" (MR P {140 [(M*) ' MP)?]}

(2.83)

which explains the term “seesaw”. If M gets bigger in (2.83) then consequently
M, gets smaller due to the inverse operator. Thus the small masses for the left-
handed neutrinos observed until now is explained by the existence of n, heavy
right-handed neutrinos and the possible mass terms in the Lagrangian

1—
Lo — §(nL)CMD+MnL + H.c.
; (2.84)
= 5(m)cvv*/wwm +He +O[(M™MP)].

The rotation W changes the states nj, slightly to n’, but the mixture of v, and
(vgr)© is suppressed by (MT)~1MP

n'L:WTnL:(

v = (MP) () (M) M Py + (vg)°| )
(vr)® — (M®)"1MP [L(MP)H(ME) 1 (vg)e — v (2.85)

:(&&>+OﬂMﬁlMﬂ.
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Finally we end up with a Lagrangian containing Majorana mass terms for the light
left-handed neutrinos and their heavy right-handed counterparts which have not
been observed yet.

1
[D+M _ 5(;/L)CJ\/lVI/L + H.c. + (terms with Mpeavy) (2.86)
+0 {((MR)flMD)ﬂ

Note that the matrix M, is still not diagonal since we only performed a block-
diagonalization.

2.2.4 The lepton mixing matrix

Most models with massive neutrinos and neutrino oscillations operate with non-
diagonal mass matrices in the lepton sector. A diagonalization has effects on the
charged current terms in the Lagrangian just like in the quark sector.

VeL
cop =~ (e ) (v | Wy He @)
Vrr

Consider a Dirac mass term like (2.59) in short notation

Ve
LP = —vpMPyp +He with v=[v,]. (2.88)
Vr
Diagonalization via
MP = ump? (2.89)
gives in analogy to the quark case the mass eigenfields
1299 Vel, VIR Ver
Uar | = qu VML MR | = VT VMR . (290)
V3L Vrr VsRr UrR
Inserting into (2.87) yields
lept g Vi
Llepten -5 (q 7 ﬁ) U A | var | W, +He (2.91)
=:UpmNs V3L

where U is the analogy to the CKM matrix which in the lepton sector is often
referred to as the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. Note that
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we assumed here that the charged lepton mass matrix is already in a diagonal
form. Without this assumption the PMNS matrix would consist of two unitary
matrices like in (2.42).

Upuns = U;ruu (2.92)

The parametrization of Upy s [15] is also analogous to the quark case, where
V23 = Vatm Y12 = Vs dcp — 013 (2.93)

so that

o
Upning = UamU13Ug

1 0 0 C13 0 sp3e7013 o S 0
=10 Catm Satm 0 ' 1 0 —So Cp 0
0 —Satm  Catm _5136u$13 0 C13 0 0 1 (294)
—is
CoC13 S6C13 s13e” 0
et —S — Z‘513 _ i513
- ®Catm CoSatmS13€ CoCatm S®SatmS13€ SatmC13

i i
SeCatm — C(Dsatmslfﬂez 13 —CoCatm — S(DsautmslfﬂeZ 13 CatmC13
In the Majorana mass term scenario with

£ = —%WMLI/L + H.c. (2.95)
the proper diagonalization is described in (2.67). Only one matrix U is needed
and the parametrization is the same with one exception: In the Dirac case 5
of 6 phases were absorbed into the lepton fields. With a Majorana mass term
only the 3 charged leptons are allowed to be redefined, since (2.95) itself is not
invariant under rephasing. This results in a lepton mixing matrix that contains
two additional phases 1; and 7y called Majorana phases.

em 0 0
Majorana irac N2
Upnins = %’)MNS {0 e 0 (2.96)
0 0 1

Right-handed Majorana neutrino fields added to the SM do not carry electric or
color charge nor do they take part in weak interactions (2.87). Thus their number
and their mass is unknown and they are often called sterile neutrinos.



Chapter

Neutrino phenomena and experiments

After describing the basic extensions in the lepton sector we will proceed describing
the phenomena resulting from massive neutrinos. The most important consequence
is the possibility for neutrino oscillations, by now verified by several collaborations
(see section 3.4). Also, one still has to decide experimentally whether neutrinos
are Dirac or Majorana particles. Currently the most promising candidate for a
crucial experiment is the search for neutrinoless double beta ((53)o,) decay. If
(803)0, decay is discovered neutrinos must be Majorana particles.

3.1 Neutrino oscillations

We start with the question why massive neutrinos give rise to neutrino oscillations,
for detailed discussions see [17, 18, 19, 20]. Consider a model with a unitary lepton
mixing matrix Upyns, so that

3
VoL = Z UakVkL- (3.1)
k=1

where v, is a flavour eigenfield and v, is a mass eigenfield. This means that,
depending on the explicit form of U, each flavour field may be a superposition
of up to 3 mass eigenfields. Now, neutrinos are produced in CC interactions in
(2.87), with the flavour of the lepton occuring in the process. This is the only
possible way to define the neutrino flavour. The same is true for the neutrino
detection, again the flavour is not measured directly but defined by the associated

29
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lepton. Producing a neutrino of flavour « is described by the action of the creation
operator b}, contained in v, on the vacuum state |0).

bL10) = [va) (3.2)
Because of (3.1) this state is a superposition of the mass eigenstates |vy).
3 3 .
Vo) = 3 Uslvw) = > Usibi(Pi, 51)10) (3.3)
k=1 k=1

To get the neutrino oscillation formula, we now consider a neutrino with flavour «
produced at time t = 0 at ¥ = 0. The propability for the neutrino to be detected
with another flavour § at t = At and 7 = (Ax,0,0) is then given by

Praows (A, A) = A,y (AL, Az) |2 = [(0,0) (V5] Va) (at,80) |- (3.4)

The propagation of v, from the production to the detection point is carried out
via the operators H and P:

V) (atazy = € " FATPAD L0 6.0). (3.5)

According to (3.3) |Va)(,0) may be rewritten as a coherent superposition of the
mass eigenstates. We assume that they all have the same energy E, but differ in
their momenta pg. Additionally we take the relativistic limit £ > my, which is a
good approximation for all neutrino experiments:

2
m
pk:,/Eng:E—Q—E’f. (3.6)

Then (3.5) becomes

3
|Va>(At,A:v) = e_ZEAt Z U;kGZpkAx‘I/khO’(]). (37)
k=1

With the inverse of (3.3),

) = Z U’Yk‘|y“f>7 (3.8)
¥
we get
3
Vo) (ataz) =€ AN UL AU ) 0.0)- (3.9)
v k=1

Projecting out the flavour of interest [ and taking the relativistic limit delivers
the amplitude for the process:

3 m2
Ayaﬁyﬁ (At, AJ}) = (0,0)<V,B‘Va>(At,A:v) = ¢ tB(AL-Az) Z U;keilQ_gAxUﬁk. (310)
k=1
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1E(At—Ax

The time dependence in the phase e~ ) becomes irrelevant in the resulting

propability

3 ,miL 2
Pyaﬂyﬁ(Al’ = L) = Z U;keilWUﬁk (3.11)
k=1

This is the well-known formula for neutrino oscillations with dependence on the
energy F, the distance source - detector L and the differences of the squared masses
Am;. The latter will become clear if we write down all terms of the sum in (3.11)

‘m2L ‘m2L ,mQL 2
Py (L) = Uy €728 Ugy + Ulye ™25 Upy + Ulye™ 28 Upy

2

" " 7i(M2—m1)2L " 7i(m3—m1)2L
- UCMIU,GI + Ua2€ 2E UﬁQ _'_ UCV3€ 2E Uﬁ«?} (312)
3 _AmilL 2
= 505+ZU;k | Uﬁk ,
k=2
where Am?; = m; — m5 and we used the unitarity relation
3

S UsUs, =1 (3.13)
k=1

for the mixing matrix. Next we investigate the case of transitions between two
neutrino flavours (and two mass eigenstates). Then the mixing matrix U is simply

parametrized as
~ (Uw Us\ [ cos? sind
U= <U61 UﬁQ) o (— sin ¥ COS’[9> : (314)

Inserting the explicit form of U in (3.12) we end up with the transition propability
in the two-neutrino case

1., Am?L
Pys(L) = 5 sin (29)(1 — cos( ¥ ) (3.15)
=cos(2w L/ Losc)
The oscillation length L is
AT E E(MeV)
Lose = —— >~ 2.48———m. 3.16
Am? Am2(e\/2)m (3.16)

Here lies the justification for the term neutrino oscillation. An experiment vary-
ing either the length L or the energy E may be able to capture the oscillatory
behaviour of the transition propability P, .,,. The region of (L, E) where to find
significant oscillations is determined by the scale of the mass square difference
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Am?. Furthermore the mixing angle 1 enters as a parameter controlling the “am-
plitude” of the oscillation curve. Some additional remarks concerning neutrino
oscillations are in order at this point:

e The transition propability (3.11) is invariant under rephasing of the mixing
matrix U:
U — diag(e!, e'?, e'3) U diag (e, €2, e'). (3.17)

Consequently, neutrino oscillation experiments cannot determine the Dirac
or Majorana nature hidden in two phases of the mixing matrix (see (2.96)).

e The transformation U — U* gives the transition propability P, ., for the
case of antineutrinos. Additional exchange of the flavours o < 3 gives the
equality

Pya_”/ﬁ = Pf/ﬁ_,pa, (318)

being a consequence of the C'PT-invariance of the theory.
e Evidently neutrino oscillations violate family lepton numbers L,,.

e The derivation of the neutrino oscillation formula was performed without
taking into account various aspects of quantum mechanics that may play
an important role during production and detection. Also the relativistic
limit (3.6) may be questioned in favour of a more general description. Many
authors have approached the problem in different ways by now, but the
validity of (3.11) has been confirmend within the experimental limitations

27, 28, 29, 30].

e Until now the neutrinos were assumed to propagate in vacuum. A more
detailed analysis shows that effects of neutrinos passing through matter are
not negligible for oscillation phenomena, especially in the case of the solar
neutrino deficit [31, 32, 33, 34, 35].

3.2 Mass spectra

In the previous section we found that neutrino oscillations depend on the mass
squared differences (3.12). Thus, experiments observing oscillations cannot give
absolute values for the masses and, moreover, allow for two possible mass spectra
[36]. The two mass squared differences are denoted as Am2,, and Am? for atmo-

spheric and solar neutrino oscillations, respectively. From experiments we know
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that they are not at the same scale (for a detailed listing see section 3.4):
AmZ,, ~ 30 Am2. (3.19)

We make use of this information and choose a convention for the so far arbitrary
numbering of the neutrino mass eigenfields. The smaller mass squared difference
Amé is associated with the masses m; and ms and chosen to fulfill:

AmZ = Am3, >0 = my < mo. (3.20)

The remaining mass ms3 may now be smaller or greater than m; ~ ms, i.e. the

sign of Am?Z_, is not fixed by experiment. Thus, one has to distinguish between

two different mass spectra.

{20 F— L S 9
m1 I Amg,

2
A’rn'atm

(L1 J—— 5
{245 tAmG) \l L% J——

(a) (b)

Figure 3.1: Normal (a) and inverted (b) mass spectrum with mass squared differ-
ences

e Normal spectrum

my <my <mz , AmZ, =Amj (3.21)
e Inverted spectrum
my<my <my , AmZ, = Ami. (3.22)

See Figure 3.1 for an illustration of the possibilities.
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3.3 Neutrinoless double beta decay

Beside neutrino oscillations there is another possibility to extract neutrino prop-
erties from experiment. The neutrinoless double beta decay ((5/3)o, decay) not
only allows us to get information about masses and mixing angles but maybe also
a decision in the question whether neutrions are Dirac- or Majorana particles (see
e.g. [37, 38]). The idea of a (83)o, decay is based on the already observed double
beta decay

(Z,A) = (Z+2,A) + 2 + 27, (3.23)

If the neutrinos in the process are Majorana fermions, then one could imagine
another double beta decay without the outgoing 7,:

(Z,A) = (Z+2,A) + 2¢". (3.24)

This (6/3)o, decay is possible only if ¥ = v and thus both neutrinos can be
eliminated via the Wick contraction. Figure 3.2 shows the process on the quark
level. The propagator (0|Tv.r(z)rl; (y)|0) is nonzero because one can employ

d
Figure 3.2: (83)o, decay - Feynman diagram at quark level
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vl = —7;C and ends up with
T 1 ’Vg
(O ver(x)ver,(y)|0) = 0|T2Uek ZUek’ka 510
’Y5 7
= Z 2 (0T (y >|O>T5

B (3.25)
%E: 01T @nmIQ%c

dip e PEY) 1 — 44
— N2 ' /
Z ekl (2m)i p2 — 27 9

my

Consequently the lepton number conservation is violated by two units. Models
beyond the standard model may be equipped with other Majorana particles or
different mechanisms for lepton number violation. Therefore, these additional
effects must be taken into account when drawing any conclusions about neutrino
masses. Anyway, if (53)o, decay exists then a Majorana neutrino mass term cannot
be forbidden by a symmetry and thus contributes to lepton number violating
processes [39, 40]. If the sole source of ((3/3)q, decay is the contraction of Majorana
neutrinos the decay rate for this process is proportional to the effective Majorana
neutrino mass

[(mgs)| = |D_ UZemal (3.26)

as already indicated in (3.25). Writing (3.26) in terms of mass squared differences
and inserting the standard parametrization of the lepton mixing matrix (2.94) and
(2.96) gives

[(mss)| = '<mlcé &M 4 \Jm? + Am2 s eim) &2,

| (3.27)
Fyfmi + Amiy, size”
and
(gl = | (/g + B, — At & e
(3.28)

2 2 2 i172 2 2 71'513
+/m3 + Amg, so e ) Cl3 +mgsige

for normal and inverted spectrum, respectively. Note that a possible nonzero phase
013 may be absent if a different parametrization of the lepton mixing matrix (2.94)
is chosen. In contrast Majorana phases cannot be removed from the effective
Majorana mass.
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Observable O; O, + 10; | 30; interval

Am2[107° eV? | 7.657035 | 7.05 —8.34

Am?, [1073 eV?] | 2.40707F | 2.07 —2.75
sin? 13 0.010190:% | < 0.056
sin 0.304739%2 | 0.25 — 0.37
sin? Yatm 0.507006 | 0.36 —0.67

Table 3.1: Experimental global fit values.

3.4 Experiments and data

This section presents the experimental data employed in the later chapters of this

work.

Oscillation parameters

While the search for neutrinoless double beta decay is still in progress, neutrino
oscillations have been confirmed by many collaborations up to now. The data from
several experiments is combined to obtain a global fit in recent reviews [41, 42].
The resulting mass squared differences and mixing angles therein are presented in
Table 3.1. The review includes the latest data from the following collaborations:

e MINOS (Main Injector Neutrino Oscillation Search)

MINOS [43, 44] is a long-baseline accelerator experiment studying neutrino
oscillations on the basis of a v,-beam and two separate detectors. The neu-
trino beam is produced at Fermilab and first analysed by the MINOS Near
detector on-site. The second MINOS Far detector is located 735km away at
the Soudan Underground Laboratory in Northern Minnesota. The survival
propability of the v,-beam with a peak energy of 3 GeV allows measurement
of Am?_ and sin?2VU,,. In addition MINOS searches for sterile neutrino

atm

flavours and further limits sin? 2¢;3.

SNO-NCD (The Sudbury Neutrino Observatory)

The Sudbury Neutrino Observatory [45, 46] uses a Cherenkov detector with
1 kton of heavy water to investigate the neutrino flux coming from the sun.
The laboratory is placed 2km under the surface in the Creighton mine near
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Sudbury, Ontario. While charged current interactions with the deuterium
allow only the detection of v, - neutrinos the neutral current detection (NCD)
is sensitive to all neutrino flavours. The experiment gives results for Am?

and Y.

e KamLAND (Kamioka Liquid-scintillator Anti-Neutrino Detector)

The KamLAND experiment [47], located at the site of the former Kamiokande
experiment, utilizes a 1 kton liquid scintillator detector. It observes v,-
neutrinos emitted from the 55 Japanese nuclear reactors via inverse (3 - de-
cay. The experiment confirmes neutrino oscillations and provides valuable
data for the determination of Am?2 and sin® .

e Borexino

Borexino [48] is a scintillator detector experiment at the Laboratori Nazionali
del Gran Sasso. The focus lies on low energy neutrinos from the electron
capture decay of " Be in the sun.

This enumeration adds up to a long list of experiments already finished or still
in progress: CHOOZ [49] , GALLEX [50, 51|, SAGE [52], Superkamiokande [53],
K2K [54], T2K [55], OPERA [56], MiniBooNE [57], KATRIN [58].

The numerical values for the mixing angles encouraged theorists to find possible
analytic expressions matching the global fit data. The so-called tri-bimaximal
mixing is a common choice of a mixing pattern introduced by Harrison, Perkins
and Scott [59]. With the mixing angles fulfilling

1 1
sint3 =0, sin®ds = 3 sin? ¥atm = 3 (3.29)
we get the Harrison-Perkins-Scott mixing matrix
2 1
P
Unps = ooV (3.30)
V6 VB V2

Note that tri-bimaximal mixing does not fully comply with current data in Table
3.1. While sin? 1,3 and sin? 04, are within the 1o - bound, sin? 9, is only within
the 20 - bound. In order to allow deviation from fixed angles Grimus and Lavoura
[60] suggested a trimaximal mixing pattern. While the second column in (3.30)
remains unchanged, i.e.

1
Ual® = Ul* = |Unl” = 3, (3.31)
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no further constraints are stated. Thus, trimaximal mixing allows e.g. for a
nonzero J;3.

Neutrinoless double beta decay

For years the existence of neutrinoless double beta decay was subject of ongoing
discussion. Among the few so far finished experiments are IGEX [61], CUORI-
CINO [62] and Heidelberg-Moscow [63]. While the first two could not confirm
neutrinoless double beta decay and gave only upper bounds on the effective Majo-
rana mass |(mgs)|, a subgroup of Heidelberg-Moscow [64] claimed the observation

and reported
[(mgg)| = 0.321705 €V. (3.32)

Though heavily criticized [65, 66, 67, 68], they repeatedly defended their claim
in [69, 70, 71]. Hopefully this issue will be resolved in the upcoming neutrino-
less double beta decay experiments, namely GERDA [72, 73], CUORE [74] and

others.



Chapter

Numerical Methods

In the following chapter numerical methods are presented which are helpful for the
comparison of model predictions with experimental data. In order to achieve the
best possible agreement one often has to deal with involved dependencies between
observable quantities and the theory underlying model parameters. In such cases,
especially when there is a large number of parameters, one is restricted to numerical
tools to find the parameter values that provide a good match.

4.1 A figure of merit function

The numerical analysis is based on the concept of a figure of merit function x?,
as previously described and applied in [75, 76, 77, 78, 79, 80, 81]. This function
depending on the model parameters quantifies the agreement or discrepancy be-
tween theoretical predictions and experimental data values with a single number
> 0. Consider the following typical case: The measurement results for several
obervables O; are given in the form of mean value O; and the corresponding lo

standard deviation. B

From theory we know how to calculate the predictions P;(x) for these observables
from the model parameters x, where x = (21, z,...) contains all free parameters
x, of the model. Obviously for N observables

) =3 (”X)—‘O) (1)

i—1 Oi

39
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is a useful definition of the x? function, since it provides the best fit values P;(Xpiy)
at the global minimum

Xoin = X (Xmin)  With 0 < X2 < xP(x)  Vx. (4.3)

Once the global minimum is found, one often denotes the difference between pre-
diction and data for every observable with the “pull”

Pi<xmin) - Oi

ag;

pull(0;) = (4.4)
With the figure of merit function the task of comparing model predictions to
experimental data is transformed into a search for the global minimum of y%. A
lot of numerical tools are known to cope with this standard minimization problem.
A good choice for our case is the Nelder-Mead method, see [75], p.19 for details
on pros and cons.

4.2 The Nelder-Mead method

The Nelder-Mead method (NMM) [82, 83, 84, 85] or downhill simplex method
for minimization problems can be categorized as a direct search method [86]. It
does not require the computation of derivatives and therefore is even applicable
if the function is not differentiable or continuous. The procedure is based on the
movement of a geometric figure, the simplex, in the n-dimensional parameter space
R™ towards a (local) minimum of the scalar function of interest f(x). The simplex
is best described as the convex hull of n 4 1 vertices x;, e.g. for n = 2 the simplex
is a triangle. The movement of the simplex is performed stepwise, at each iteration
step the function values at the vertices determine the position and shape of the
next simplex in the series from the starting point to the minimum.

We will now discuss in detail the constituent branchings and calculations of a
single Nelder-Mead iteration step. The procedure requires the definition of four
parameters p, x, v and o corresponding to different actions on the simplex, namely
reflection, expansion, contraction and shrinkage, respectively. We employ the stan-
dard choice!

p=1
X =2, (4.5)
vy=0=1/2.

The following enumeration shows all ingredients of one Nelder-Mead iteration step.

I Allowed values are: p>0,x>1, x>p,0<y<land0<o <1
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1. Start of the iteration step

The simplex containing the vertices x; and the function values f; := f(x;)
are taken from the last iteration (or the initial values).

2. Sorting

The vertices are sorted according to increasing function values, i.e. after
sorting the vertices fulfill

3. Calculate Centroid

The “mean value* of the n best vertices, the centroid, is calculated:

X =

éxi. (4.7)

4. Reflection point

The reflection point x, is calculated:
X, =X+ p(X — Xpi1)- (4.8)

If fi < fi < f, then x, is accepted, i.e. x,,1 is replaced by x, (Iteration
step terminated).

5. Expansion Point

If f. < fi then calculate the expansion point
Xe ==X + X(X; — X). (4.9)

If fo < f. then x, is accepted (Iteration step terminated).
If fo > f: then x, is accepted (Iteration step terminated).

6. Outside Contraction

If f,, < fi < fus1, an outside contraction is performed:
Xoe := X + (% — X). (4.10)

If foo < fr then x,. is accepted (Iteration step terminated).

Otherwise a shrinkage is performed.
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7. Inside Contraction

If fi > fani1, an outside contraction is performed:
Xic =X — V(X — Xp41)- (4.11)
If fic < fni1 then x;. is accepted (Iteration step terminated).

Otherwise a shrinkage is performed.

8. Shrinkage

If either outside or inside contraction fails, then all vertices are contracted
towards the best point x;:

X, > X1 t+o(x—x1), 1=2,...,n+1. (4.12)

Then the iteration step is terminated.

Sorting (2.), calculating the centroid (3.) and the reflection point (4.) are always
performed, while the steps (5.) to (8.) are optional and depend on the function
value of the reflection point f,. The sequence of decisions and calculations becomes
clearer with the flow chart of the NMM, provided in Figure 4.1. An illustration
of the different actions on the simplex in two dimensions is given in Figure 4.2.
Obviously the reflection step is the least time-consuming possibility, since it re-
quires only one function evaluation per iteration.? Expansion and both contraction
options demand a second function call and shrinkage enforces the recalculation of
n + 2 function values. Fortunately in a typical scenario the shrinkage step is ex-
ecuted repeatedly only at the end of the search, when the simplex is contracted
towards the minimum. The basic step during the procedure is the reflection, while
expansion and contractions allow the simplex to adapt its geometrical shape to the
surrounding function shape. In this way the NMM can cope with rather complex
function landscapes, e.g. where the same relative change of parameters causes a
deviation of the function at different orders of magnitude. In conclusion the major
advantages of the NMM in our search for the mimimum of y? are the low number
of function evaluations and the ability to adopt to a complex topology.

The NMM described so far lacks a procedure to stop the simplex movement when
no further optimization is made. In this case the function values differ only slightly
at all vertices. Thus, a good criterion to halt the iteration is the variance of the
functions values

1 ntl ., - 1 ntl
i — < ith =— i 4.13
n+1;(f f)?<e with f n+1i;f (4.13)

2Note that every function evaluation is probably computationally intensive, because it may
include singular value decomposition, diagonalization, etc.
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Xoc

X1

(©) (d)

Figure 4.2: Different actions on the Nelder-Mead simplex in two dimensions after
the sorting step: (a) reflection, (b) expansion, (c¢) inside contraction, (d) outside
contraction and (e) shrinkage. The green filling denotes the simplex before, the
red one after the iteration step.

If the variance falls below the predefined accuracy parameter € the NMM is stopped
and the minimum reached.

One major disadvantage of the NMM should not be overlooked: as the alternative
name downhill simplex method suggests, there are no measures that prevent the
simplex from getting stuck in a local minimum. The simplex moves strictly down-
hill and may never reach the global minimum. Therefore several extensions of the
NMM with other computational methods were employed by [75, 85]. Among these
hybrid algorithms are the NMM plus Simulated Annealing or NMM plus Pertur-
bations. Both procedures were also coded for testing purposes but turned out not
to be advantageous in view of the models of chapter 5. Another simple method to
reach the global minimum is to repeat the Nelder-Mead procedure with different
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initial simplices, e.g. set by a random number generator as implemented in the
presented program.

4.3 Pinning term and fine-tuning properties

Besides the so far presented normal operation of the NMM, two supplemental
techniques are employed to investigate models: the addition of a so called pinning
term to the y2-function and an analysis of the fine-tuning properties.

Pinning term

The pinning term method is a helpful tool to elaborate the dependency between
x? and any observable O of interest. Consider the following extension of (4.2)

where O is the numerical value and P is the theoretical prediction for the observable
O. The additional term Xf) pins O down to the value O in a minimization procedure
because of the assigned small 1%-error. This allows to check how low y? can get
while incorporating additional constraints on observables. Repeated application of
the pinning term method with a whole set of values gives the possibility to plot y?
against O. The procedure requires that the pinning term itself gives a negligible
contribution to x. Also, if O is identical to any of the other observables O;, the
original term with o; is removed.

Fine-tuning properties

If the search for a global minimum of y? suceeds, one can analyse the fine-tuning
properties of the best-fit solution in a very simple way. While all other parameters
are fixed at the values corresponding to the minimum, one variable x; is slightly
changed by a factor £. The effect on the y2-function

XAE) = X (™, ™ ™) (4.15)

can be plotted easily. Comparing the graphs of all parameters one can extract
robust and fine-tuned variables, although a generalization of the properties from
one sample solution is not allowed.
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4.4 Implementation

The source code for the NMM is written in the Fortran programming language
and compiled with the ¢95 Fortran compiler.®* No additional libraries or code
segments from other authors are used, the program is "made from scratch® It
is divided into two separate files, nmm.£f90 for the iteration itself and dnmm.£90
for the data analysis. In order to achieve the best possible accuracy all floating
point numbers are defined as 10-byte real which leads to the following smallest
and largest possible numbers.

3.3621031431120935063E-4932
1.189731495357231765E+4932

tiny(fn)
huge (fn)

Thus, function values and simplex vertices are calculated and saved with at least
18-digit precision. Next, the content of the source files is roughly described.

nmm.f90

This is the main program file, which contains the placement of initial simplices,
the Nelder-Mead iteration and an outer loop for repetition. The minima found are
saved in an array and finally written to a binary file. The source code contains two
Fortran modules, one for the global variables and one for the following subroutines:

e init()

Asks the user for the number of repetitions and allocates memory.

e initf()

Calculates model constants required for the evaluation of the x? function.

e prepf ()

Sets a random simplex and calls calcf to compute y? at each vertex.

e calcf(a,b,sres)

This subroutine contains most of the model depending information. It takes
coordinates in parameter space as input, calculates the predictions for the
observables and returns x2. If sres is true, intermediate data is saved into
an additional array.

3The source code is presented in Appendix A.
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e sort()
Sorts the vertices according to their function value, i.e. step (2) of the
Nelder-Mead procedure.

e centroid()

Calculates the centroid of a given simplex, step (3) of the NMM.

e shrinkage ()

Performs a shrinkage of the simplex as described in step (8).

e calcd()

Computes the variance of the function values for the stopping criterion.

e wfile()

Writes a binary file with all found minima, the corresponding model param-
eters and important observables. Figure 4.3 shows the arrangement of the
data inside the array saved to disk.

contributions observables and

model parameters x? to x2 other quantities

dataset 1 — | I N SRR

dataset 2 — | ... [ P IR

Figure 4.3: pattern for the data arrangement. Each data set stands for a
minimum found by the NMM.

Besides the model depending constants and parameters, the user has to set two
important values: eps is the accuracy parameter ¢ for the stopping routine and
crit defines the maximum y? allowed for a data set (model parameters, x? con-
tributions and observables) to be saved and further processed.

As previously indicated the present implementation tries to find the global mini-
mum via repetition of the NMM with randomly set starting simplices. The user
enters the desired number of turns at the beginning, every 1000 a short status
information is displayed. Each turn contains a search for a minimum via Nelder-
Mead, two additional stopping criteria are implemeted. First, if no minimum is
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found after 1000 iterations (i.e. simplex movements), the iteration is terminated as
unsuccessful. Also, every 100 iterations the vertices are checked for infinite, unde-
termined or unreasonable values (NaN, Inf). After the last repetition all gathered
data is written into the binary file nmm.dat, which is opened by the data analysis
program.

dnmm.f90

This file contains routines to perform various tasks on the data supplied by nmm. £90.
In doing so, no additional model-specific calculations (e.g. computing observables)
are made. Therefore, the previously mentioned calcf is not included in the list of
subroutines.

e readin()

The content of nmm.dat is read into allocated memory.

e remdup()

The data sets are searched for duplicate entries which are removed.

e sort()
The data array is sorted in rising order of x2?. Afterwards the best-fit data
set is on the first position.

e cmvsd()
Calculates mean value and standard deviation for model parameters and
observables for possible later use.

e wdata()
Writes the previously sorted data, all model constants and statistics into a
formatted file named nmm. txt.

e clist(lin,lout,lstart,l)

This subroutine accepts one column in Figure 4.3 as input. The interval from
the smallest to the largest value thereof is divided into a user-specified num-
ber of bins. The number of entries per bin is computed and thus histogram
data for plotting created.

e wlist()

Data from all calls of the clist subroutine is written to a file named 1ist.txt,
which can be easily used for plotting results.
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Pinning term method implementation

The pinning term method presented in this chapter requires some changes in the
source code. Based on the original files the major modifications comprise:

e An additional loop encloses the program to run through a list of values
belonging to the desired pinned-down observable.

e The pinning term y; in (4.14) is added in the calcf routine.

e Since there are now multiple output files, they are numbered and saved into
a subfolder. The sorting in rising order of y? is now carried out in the main
program.

e The data analysis does not create any histogram data. Instead it picks
out the best minima for each pinning value respecting that the pinning term
itself should be negligible. The desired output, y? as a function of the pinned
observable, is saved into a file named pin.txt.

Analysing Fine-tuning properties

In order to carry out the procedure described in 4.3 the output file of dnmm.£90
is opened with Mathematica. The model parameters for the best-fit solution are
read in and entered into the y? function. A combined plot shows then the variation
of x? as a function of ¢ for all parameters.

The Mathematica script presented in A.3 serves another important purpose. The
x? function is not copied from the Fortran program code, but derived from simple
expressions taken from the investigated model. Thus, if the results match the
correctness of the main program is supported, typing errors are almost excluded.



Chapter

Models

In the following chapter a model for tri-bimaximal mixing and its modifications
are described. These will undergo the numerical analysis of chapter 4 and the
results are presented in the next chapter. The basic model was found by Grimus
and Lavoura [1] and makes use of five right-handed neutrinos and the seesaw
mechanism. Together with symmetries in the lepton sector, tri-bimaximal mixing
is achieved. A slight modification concerning the symmetries allows to unfix the
mixing angles and gives the possibility to find better fitting values for current data.

5.1 Model for tri-bimaximal mixing

5.1.1 Field content

The model for tri-bimaximal mixing found by Grimus and Lavoura [1] is an exten-
sion of the Standard model, both in the lepton and the scalar sector. Additionally
the gauge group SU(2); x U(1)y is complemented by symmetries ensuring the
desired form of the neutrino mass matrix obtained via the seesaw mechanism.
Neglecting the quark sector, the field content is as follows:

e 3 left-handed lepton doublets
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e 3 charged right-handed lepton singlets
€R s MR TR (5.2)
e 5 right-handed neutrino singlets
Ver s VurR » VrR » ViR , 2R, (5-3)
e 1 complex scalar singlet
X (5.4)

4 scalar Higgs doublets

+ + + +
oo~ (%) w= (5) o= (%) o= (%) 69
e I T

The doublets D, and the singlets ar (o = e,u,7) are analogous to those in
the Standard model. Five right-handed neutrino singlets v,z and v (I = 1,2)
are added and give rise to various neutrino mass terms described in 5.1.3. The
Yukawa Lagrangian is also enlarged by the four Higgs doublets ®,, ®; and one
scalar singlet y in the model.

5.1.2 Symmetries

Besides the SU(2); x U(1)y gauge group there are three additional symmetries
employed in the model.

e 53 permutation symmetry
S3 is the group of all permutations of three objects, in our case the three
flavour indices e, u and 7. The 3! = 6 elements of S35 may be expressed in
the two row notation
3
2 )

s={(23)( 730
Do)t}

1
3
or in the cycle notation

Sy ={(), (12), (23), (13), (123), (132) }. (5.7)

NN W N



52

5. MODELS

To construct all elements of the permutation group we have to choose two
non-commuting elements as generators. A convenient choice is the cyclic
permutation (123) and the interchange (23). The fields contained in the
model are now arranged in multiplets with respect to S3. There are four
triplets

DeL €R VeRr (I)e
D;LL ) MR ; ViR ) (I),u (58)
D’T‘L TR VrRr (I)T

together with the three-dimensional representations of the cyclic transfor-
mation C and the pu7 interchange I

010 100
Copr— |0 0 1|, Ly— [0 0 1], (5.9)
10 0 010

The three-dimensional representation of S5 is reducible, while the two-dimensional

representation for the doublets

<22> : @) (5.10)

w 0 01
Ce;rr = <0 w2> ) Iw’ = <1 0)7 (511)

where w := e73 . The SU(2); Higgs doublet @, is a singlet with respect to
S3. The horizontal permutation symmetry is essential for the form of the
mass matrix and therefore for tri-bimaximal mixing.

is irreducible:

2mi
3

Three U(1);, lepton family symmetries
Eeach of the lepton families is assigned a U(1) symmetry:

DaL - eiwal)c\zL
ap — eVeap (5.12)
Var — eianaR

U(l)g

a

with ¢» € [0,27[. Thus the family lepton number L, = 1 for D,,ar and
vor and L, = 0 for all other fields.

Three Z{*) symmetries

The cyclic groups Zga) concerns only the right-handed charged leptons ag

and the Higgs doublets &, (v = e, and 7):

(. Jar — —ag
VARE {% S e (5.13)
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This symmetry is important to restrict certain couplings in the Yukawa La-
grangian.

The whole group structure aside from SU(2); x U(1)y may be written in a compact
form as a semidirect product

G=(NxH)xS; (5.14)

where
N=27Y %28 x2 |, H=U(Q1),, x U(1)y, x U(1)p.. (5.15)
5.1.3 Lagrangian

With the given fields and symmetries one has to find all allowed terms of the
Lagrangian. The Yukawa Lagrangian

‘CYukawa =—U Z EozLOéR(bcu (5168“)
a=e,u,T

— Yo Z Darvar (iT205) (5.16Db)
a=e,u,T

+ % (XVfRC_lVlR + X*I/;‘FRC_ll/gR) + H.c. (5.16¢)

introduces three coupling constants v, y», y3 and respects all symmetries described.
Spontaneous symmetry breaking leads to VEVs of the Higgs fields

Ve = (D)0 (5.17a)
Vo = <¢8>0 (5.17b)
vy = {P3)os (5.17¢)

which are employed to form various mass terms, e.g. for the masses of the charged
leptons

Ma = |Y10a]. (5.18)

In addition to the Dirac mass terms of (5.16) the symmetries also allow dimension-
three Majorana mass terms for the right-handed neutrino fields which respect the
S3 symmetry. The three U(1),, symmetries on the other hand are softly broken
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at the seesaw scale [87, 88, 89).

M*
EMajorana :70 Z VchilyaR (519&)
a=e,u,
+ My (I/ZRC_ll/MR + I/;‘fRC_ll/TR + l/fRC'_ll/eR) (5.19b)
+ M {IJITBC'*1 (yeR + wrup + wzuTR)
+ I/QTRC’*l (I/eR + Q)QI/MR + Q)I/TR)} (5.19¢)
+ Mivl,C vor + Hee. (5.19d)

For a detailed view on the scalar potential and the symmetry breaking therein,
see [1]. Putting all mass terms together to prepare the application of the seesaw
mechanism we find

Vel
— (feR Uur Urr VIR 721«2) Mp | v
VrL

1
—§<veR Vyr Vrr TiR 723) MgpC zTR + H.c. (520)

with the Dirac- and Majorana mass matrices

My M, M, M, M,
M, M, M, WM, wM,
M1 MO wMQ w2M2 y (521)
M2 w2M2 u)MQ MN M4
M2 u)MQ w2M2 M4 M]IV

5

I
coocoa
cocooa o
coa oo

5

I

=

where a 1= ysv9, My = y3vy and My = yzv,. According to the seesaw mecha-
nism described in 2.2.3, we compute the light-neutrino mass matrix as

TH+y+t 24+ Wy +wt 24wy +wt
M, =-MIMg*Mp = [z + 0y +wt z+wy+w?t  2+y+t |, (5.22)
zrwy+wit  z+y+t  r+wiy+owt



5.1. Model for tri-bimaximal mixing 55

In order to keep focus on the basic form of M, we introduced abbreviations

it [V = 002) (vt — a12)

+ (4Mo + 2My) M3 M, — 3Mj] (5.23a)
2= de‘tj\; (M} = MoMy) (My My, — M)

+ (Mo — 4My) M3 M, — 3Mj] (5.23D)
y ::de; ];R (Mo + 2M;) M2M},, (5.23¢c)
t ::de_t];R (Mo + 2My) M2My (5.23d)

and

det Mg = (M + 2My) { (Mo — My)* My M

_ [(MO — M) My — 3M§]2} : (5.23¢)
Obviously y and ¢ fulfill
y My vy
4 _ = X 5.24
t MN U; ( )

As shown in [1] there is a range of parameters of the scalar potential upon SSB
for which the symmetry I, is preserved. Thus, v, is real and y = ¢ holds.

% (XV{Rcille + X*Vchfll/m) + H.c.
558, % (vxleRCflvm + U;Vchill/QR) + H.c. (5.25)
I _ % _
- % (”xVZ‘TRC g + vgpiC 1’/13) +He.

Together with a property of the cubic root w? = w* we can simplify (5.22) and
achieve
r+2y z—y z—y
M,=|z—y x—y z+2y]|. (5.26)
z—y z+2y x—vy

The tri-bimaximal mixing matrix Ugps (3.30) diagonalizes M, as desired:
M1 0 0

m = UlpsM,Unps = [ 0 a0 |, (5.27)
0 0 pus
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where
P =x+3y— =z (5.28a)
fy =T + 22 (5.28b)
ps =2 — 3y — 2. (5.28¢)

Since in general x,y, z and thus the pu; are complex, we have to take the absolute
values to get the light neutrino masses

This step is justified because any phases occuring in m can be absorbed into
Majorana phases or by rephasing of the charged lepton fields. Consider the case

wi € C,  py=my - e’ (5.30)
Then from (5.27) we deduce

mq 0 0
m=U"MU=[0 my 0 (5.31)
0 0 ms
with the help of the phase matrix P
e"la/2 0 | em 0 0
U := UHpsp = UHPS 0 671’0‘2/2 0 = ezﬁUHpS 0 6“72 0 s
0 0 e ias/? 0 0 1
(5.32)
where
Q3 — g ': a3 — (g .: _%

The phase factor e’ turns out to be unphysical because it may be absorbed into
the lepton fields in (2.91), while n; and 75 act as Majorana phases in the mixing
matrix.

5.2 Modifications

Alongside with the basic model for tri-bimaximal mixing, two modifications are
described in this section. Omne motivation for the changes is the reduction of
parameters that have to be fitted to experimental data. The described model
contains five complex parameters relevant for the numerical procedure but only
two known data values, i.e. the mass squared differences. To include also the
mixing angles in the fitting process an additional symmetry breaking is included,
giving rise to a possible non-zero ;3. In short, the modifications applied are:
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e (P invariance
Stating an additional C'P symmetry renders the Yukawa couplings y;, ¢ =
1,2,3 and the constants M;, j = 0,1, 2,4 real and thus reduces the number
of free parameters of the model.

e /,,-violation
The I, symmetry is now spontaneously broken by a complex VEV v, leading
to a deviation from tri-bimaximal mixing. For a recent discussion see also

[90)].

5.2.1 (CP invariance

The C'P symmetry is realized via the non-standard C'P tranformation introduced
in [91] and previously applied in [92]. The doublets and singlets with different
flavours are collected in the following form:

DeL €R VeR (I)e
DL = DNL s ZR = | UR |, VR = V,uR s o = (I)N . (534)
DTL TR VrRr (I)T

Introducing the matrix
100

S=10 01 (5.35)
010

that acts on flavour space as an interchange of the p and 7 components, we can
write down the C'P transformation for all fields.
VR — ZSCVE
¢ — 5S¢
vsp — 1CVip s=1,2
X=X

cP: (5.36)

C'is the standard charge-conjugation operator satisfying C~! = C' and C7 = —C.
We may now apply this C'P transformation to the Lagrangian for the lepton sector
and obtain constraints on the Yukawa-coupling constants and elements of the
Majorana mass matrix Mg.

First we write down two general results, which will be useful for our calculations.
The C'P transformation acts on a dirac spinor as follows:

W E5 iy (5.37)
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Using the identity C~'4v*C = —~#T one obtains the C'P transformation for the
Dirac-conjugate field:

D=9l £ (0P = —ipT Ol =i Cly P = ig"cl. (5.38)

This of course also holds for doublets like D,;. Next we investigate the effect of
the C'P transformation on an arbitrary Majorana mass term:

IOy S5 (103)T CTHCY; = — p{CTCOv) = vl

5.39
= gjous = ($707,) 3

Yukawa Lagrangian

We now apply C'P transformation and demand that the Lagrangian stays invariant.
For (5.16a) we simply have to use (5.37), (5.38) and then the anticommutation
relations for fermions.

— Y Z ﬁ(:\zLOZB(Zboz + H.c.

Ly a=zu iD,;CliCapes + H.c
ame,T
= +uy a; ) (EaLaR%)* + H.c
= 4+ Z (¢§a£ﬁ£L)T + He. (5:40)
ameq,T
= —Wn a_czu (ﬁaLaR%)T + H.c
= - i (EaLOéR%)T + H.c

n=y < ymekR (5.41)
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The second Yukawa Lagrangian term (5.16b) requires the same treatment.

— 12 Y. Darvar (ing)) + H.c.

a=e,lU,T

Ly, " WD, CliCV., (iTahy) + H.c

a=e,l,T

= 4y Y {BaLVaR(iTWS)TJFHC (5.42)

a=e,l,T

= — Y2 Z [ﬁaLVaR (ZTQQSS)}T + H.c

a=e,U,T

— . a7
. —ys Y [DQLVQR(ZTQ%)} + H.c

a=e,l,T

|3
Yo=1vy, < y€R (5.43)

Using the C'P transformation relation for Majorana mass terms (5.39) one gets
from the sterile neutrino Yukawa terms (5.16¢).

% (XV1TRC_11/1R + X*I/;FRC_11/2R) + He.
% [X* (VlTRC_lle)T +X (VzTRC_lVQR) T} + H.c. y
% (XVfRCﬂVm + X*I/QTRC’IUQR)T + H.c. (5:44)
%* (XleRC_lle + X*VQTJ'%C_lVQR)T + H.c.
U
ys =¥ < Y ER (5.45)

As a result of C'P invariance all three Yukawa coupling constants y;, y» and ys3
must be real. Especially the constraint on y3 is important for later calculations
concerning the mass matrix.

Majorana-Lagrangian

The Majorana Lagrangian of the considered model consists of 4 terms which re-
spect all allowed combinations of right handed neutrinos. The 4 constants M;
(1 = 0,1,2,4) corresponding to these terms are in general complex and will be-
come real through C'P invariance like the Yukawa coupling constants The first
Majorana mass term (5.19a) is easily C'P transformed via (5.39). The matrix S
mixes g and 7 but since there is a summation over all flavour indices this effect
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cancels out.

0 Z I/Z;RC_ll/aR + H.c.
2 a=e,u,T
M*
CLR 20 > (VgRCfluaR)T + H.c. (5.46)
a=e,u,T
M,
L o Z (1/3;1,{0_11/043)Jr + H.c.
2 a=e,u,T
4
My=M; & MyeR (5.47)

In order to show that M in (5.19b) is real, we use the antisymmetry of the charge
conjugation matrix C.

M7 (v.zC™ UNR—FVMRC YWer + V1pC” 1/63)+Hc

(v
(1/ UTR—l—VTRC* VHR+1/”RC* yeR)T—l—H.c.
(

P My
i (5.48)
= M I/IRC VeR+VRC VTR+I/RC I/MR) + H.c.
L M, (1/ Cc- I/MR+I/MRC VTR+VTRC VER)TJrH.c.
I
M, =M; & MeR (5.49)

For the third term (5.19¢) one has to utilise the special form of w = e **. Since
w* = w? the pur-exchange is again canceled out and leads to a real Ms.

M35 {VfRC*I (yeR +wyyr + wszR)
+ V2TR0_1 (I/eR + LUQI/MR + WVTR)} + H.c.
M3 {l/fRC*I (I/eR +w'vrp + (wz)*l/MR)
t (5.50)
+ 13071 (I/eR + (W) *vrg + w*I/MR)} + H.c.
= M, {V{RC*I (yeR +wryur + wQVTR)
+ VgRCfl (VeR + W2U}LR + WVTR)}T + H.c.

U
My=M; & MeR (5.51)

C'P invariance is straightforward in the fourth term of the Majorana Lagrangian
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(5.19d).
Mivl,C  'vop + Hee. <, Mj (lel,%C_lym)T + He =M, (VlTRC_lng)T + H.c.
(5.52)
4
My,=M; & DMyeR (5.53)

Finally we have now obtained that the following model constants must be real in
order to ensure C'P invariance: y; for i = 1,2,3 and M, for j =0,1,2,4.

5.2.2 Spontaneous [, -violation in the neutrino sector

So far a real VEV v, ensured the permutation symmetry S; leading to y = ¢, see
(5.25). We will now generalize [1] for a complex VEV and thus allow spontaneous
symmetry breaking of I, in the neutrino sector. This modification alters the
lepton mixing matrix from tri-bimaximal mixing to trimaximal mixing.

To work out the differences to the model with tri-bimaximal mixing the complex
v, is parametrized in the following form:
, T
vy =0,-€° v, R, g€ [——,—}.
X X X 279
Note that this is not the regular polar decomposition since v, may be positive or
negative. y and t may be written as follows:

(5.54)

y=ye*

tmue (5.55)
_ —a .

Y= qut M (Mo + 2My) M3y30,.

Inserting this into the mass matrix gives:
T+ ,!7 (eis + efie) Z+ ,!7 (w26i€ + wefis) Z+ ,!7 (weis + (,()2671'6)
M, =247 W +we ™) x+7(we+wie @) z47(e”€ +e )
2+ 7 (we +wle ™€) z4y(e+e®) x4y (weF +we ™)
(5.56)
The expressions in brackets can be written in terms of cosine, where ¢ = %” denotes
the angle corresponding to w:

we' + w?e ™ = 2cos(e + ), (5.57)
w?e’ + we " = 2cos(e — ¢). (5.58)
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This leads to the following form of the mass matrix which is now real except for
—a* hidden in z,y,z and ¢ (see (5.23)). —a* can be pulled out and written as
an overall factor of the matrix. Thus, M, is treated as real for diagonalization
purposes.

T+ 2ycos(e)  z+2ycos(e — @) z+ 2ycos(e + @)
M, =|z+2ycos(e —¢) x+2ycos(e +¢)  z+ 2ycos(e) (5.59)
z+2ycos(e+¢) z+2ycos(e) x+2ycos(e —¢)

We can try to find a real U by solving the eigenvalue diagonalization UT M, U =
diag (1, p2, p13). The eigenvalues are solutions of the following equation:

—p® + Bup® + (322 = 32”4 957) p + 22° + 2® — 3w2” — 182% — 927” = 0. (5.60)

It turns out that they are very similar to the expressions obtained in (5.28).

=1 +37—2=x+3ye -2 (5.61a)
po = + 22 (5.61b)
ps =r — 3y — 2 =1x — 3ye © — 2 (5.61c)
The corresponding mixing matrix is composed of the normalized eigenvectors.
2 cos(g) NG 2 sin()
U= —% cos(£) — /3sin(§) % _\/LE cos(5) + % sin(5) (5.62)
% cos(£) +v/3sin(§) % 75 (cos(5) — % sin(5)

Obviously a small but nonvanishing phase ¢ results in a deviation from tri-bimaximal
mixing with nonzero sin?¥;3 (note U.). However, trimaximal mixing is always
ensured. In addition there is again no Dirac phase, this results from the group
structure (special form of w) of the model. Remarkably this diagonalization holds
also if one waives the C'P invariance, a recent publication [90] discusses this model.

Clearly, mixing angles are independent of the model parameters M; (i =0, 1,2,4)
and y3. On the other hand the phase ¢, solely affecting the mixing angles, does
not alter the neutrino masses in (5.61). As a consequence the parameter space
splits up into two separate parts affecting different observables.

5.2.3 Mixing angles and figure of merit function

Comparing (5.62) with the standard parametrization (2.94) allows to express the
mixing angles in terms of the phase €. From U3 we deduce

. 2 .
sin? ¥y5 = 3 s (5.63)
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Next, we exploit trimaximal mixing using sin ¥, cos 13 = 1/3 to find

1 1 1

3—2sin2s 3 1—sindyy

sin? ¥, = (5.64)

Finally from the matrix element U,3 we derive

1 1 sine
.2

Watm = = . . 5.65
SIN” Uyt 2+2\/§ 1= sin® Vs ( )

Since all three mixing angles depend on only one model parameter, it is an easy
task to find analytically the minimum of the x? (a for angles) function. The
individual contributions corresponding to the mixing angles are shown in Figure

5.1, where

X2 = X33 + X5 + Xotm- (5.66)

14 |

12

10

-0.6  -04 -0.2 0 0.2 0.4 0.6

Figure 5.1: Different contributions to x? as functions of .

While the contribution from Y%, would prefer ¢ ~ +0.25, the total x* function
shows only a minimum at ¢ = 0. Evidently, any deviation of € from zero leads
both solar and atmospheric mixing angle further away from the experimental mean
values. The overall curve shows an approximate interval, ¢ € [—0.1,0.1], where
only minor additional stress is added between theory and experiment.



Chapter

Results

In the following chapter the results of the numerical analysis described in chapter
4 are presented. Two different models of chapter 5, each with normal and inverted
mass spectrum, are investigated.

6.1 Model for tri-bimaximal mixing

Prior to the numerical analysis one has to decide which parameters in the model
are independent and count as free variables in the fitting procedure. The model
for tri-bimaximal mixing fixes the PMNS-matrix (except for the Majorana phases)
and thus introduces a constant contribution to x?, denoted with y2.

X2 = 2.1684
sin2 ’1913 =0 (6 1)
sin® g = 1/3 '

sin? Yo = 1/2

The pull coming from the solar mixing angle is largest with pull(sin®9,) = 1.333,
while pull(sin?;3) = —0.625 and pull(sin® J,:,,) = 0. Since the angles are fixed
the only remaining observables for a fit are the mass squared differences. These
depend on eight complex model parameters

y27y37UO7UX7M07M17M27M47 (62)

see section 5.1.3. Some of them can be absorbed into each other or alternatively
their values may be fixed. The following list shows the reduction of free parameters.

64
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e 1y, and vy appear only in the product a = yjvy = One complex parameter
removed.

e The model restricts v, to be real, v, = v} = One phase removed.

e v, and y3 appear only in the product M}y = yjv, = One real parameter
removed.

e Consider the expressions of z,y, z and det Mg in (5.23). With

M4
x,y,zocdet;wR and det Mp oc M?, i=0,1,2,4, N’ (6.3)
we get
M# 1
L= —. 6.4
b o g = (6.4)

Thus, a = yjvy can be absorbed into the M; = One complex parameter
removed.

Altogether three of eight complex parameters can be removed, the parameter space
of the Nelder-Mead procedure is reduced from 16 to 10 dimensions. For the three
fixed parameters we choose vy, v, and y, because their values are deductable from
the seesaw mechanism. The VEV vy is identified with the electroweak scale, while
v, is at the GUT scale.

vy = 170 GeV

6.5
v, = 210" GeV (6.5)

The value of y, can be estimated because a = y3vy should be comparable to the
scale of m,, » ~ 10% — 10*> MeV. So y» lies in the region of 1073 — 1072, we choose

Yy =107, (6.6)

The remaining parameters
ys, Mo, My, My, My € C (6.7)
span the 10-dimensional space wherein the Nelder-Mead simplex is placed. The

11 vertices that build up the initial simplex before the iteration procedure are set
by a random number generator. In order to get reasonable neutrino masses while
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employing the seesaw mechanism, the initial values are taken from the following
intervals:

Re{My}, Re{M,}, Re{ M}, Re{ M} € [-10'°,10'°] GeV
Im{ My}, Im{ M, }, Im{ M>}, Im{M,} € [-10"°, 10"°] GeV
Re{y;} = Re{M} /v, } € [-107°,107°]
Im{y;} = Im{My /v, } € [-107°,1079 .

After preparing the first simplex the Nelder-Mead method for minimizing x?, (m
for masses) is carried out until one of the stopping criteria (4.13) is fulfilled. The
data sets with y2, < 1 are saved for further processing. The whole procedure of
setting a random simplex and searching for a (local) minimum is repeated 10° and
5 - 108 times for normal and inverted spectrum, respectively.

(6.8)

6.1.1 Normal spectrum

The minimization procedure in the case of the normal mass spectrum succeds all
10° times, with 48 data sets identified as duplicates and removed. The criterion
X2, < 1is fulfilled 215462 times, the data is sorted according to the x2 -value. The
best fit for the input data is

X2, = 2.07022-107°

my = 9.97243 - 107* eV
my = 8.80311 - 1072 eV
ms = 4.89998 - 1072 eV,

(6.9)

with the following model parameters:

My = (—3.79927 + 1.45186i) - 10” GeV
M, = (2.25056 — 2.329444) - 10° GeV
My = (3.51239 + 5.03910) - 10° GeV (6.10)
My = (4.00159 — 4.03739i) - 10° GeV
Y3 = (—4.48194 — 2.23229:) - 10",

To get an idea of the mass distribution of all solutions, the interval between the
smallest m; and the largest ms found is cut into 10® bins. The number of solutions
lying in each bin is counted, resulting in Figure 6.1. One can clearly see the cut
at my = /Am? ~ 8.75- 1072 eV, values below this bound can only be achieved
with increasing 2.
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Figure 6.1: Mass distribution for normal mass ordering.

6.1.2 Inverted spectrum

The minimization procedure for the inverted mass spectrum is carried out 5 - 10°
times, of which 4999973 stable minima are reached. 58898 data sets give x2, < 1,
60 duplicate solutions are removed. The best fit values are

2 =6.82855-107°

my = 4.82388 - 107 eV

my = 4.90252- 1072 eV

m3 = 1.87701- 107 eV,

(6.11)

the corresponding model parameters are

My = (1.72909 — 3.255604) - 10° GeV
M, = (—1.15458 + 1.57532i) - 10° GeV
My = (5.63025 — 0.790257) - 107 GeV (6.12)
My = (3.21648 + 1.72047i) - 10° GeV
ys = (3.82251 — 5.18326i) - 107",

Figure 6.2 gives an overview of the mass distribution in the case of the inverted
mass spectrum (Again 10 bins are used to produce this figure).



68 6. RESULTS

4500 T T T T T
4000 F -
3500 f mg —— .

3000 F .
2500 F .
2000 F _
1500 } _

1000 } -
500 .

0 1 1
0 0.01 0.02 0.03 0.04 0.05 0.06

m;[eV]

Figure 6.2: Mass distribution for inverted mass ordering.
6.2 Modified model

The modifications of the model for tri-bimaximal mixing described in section 5.2
are now employed. Starting from the list of model parameters (6.2) we can re-
duce the number of the degrees of freedom by taking into account the following
properties.

e ('P-invariance forces ys, y3, Moy, My, My, My € R.

e 1y, and vy appear only in the product a = y3vy = One parameter removed
(not the phase of vy).

e v, and y3 appear only in the product My = yzv, and My = yzv; = One
parameter removed (not the phase of v,)

e The absolute value of a = y3vy can be absorbed into the M; = One parameter
removed.

e The phase of a = y3vy appears only inside a absolute value = One phase
removed.
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Altogether there are now six free parameters including one phase ¢, € [—7/2,7/2],
see (5.54). Since the Nelder-Mead method is based on a simplex in R™ we repara-
metrize the phase:

1

We choose the values for the fixed values in the same manner as with the model
for tri-bimaximal mixing:

e'ox = ! AretanTx — (1 +iry). (6.13)

Vo = 170 GeV
o, = 210" GeV (6.14)
yp = 1075,

The six degrees of freedom for the Nelder-Mead simplex are:
Ty, Ys, Mo, My, My, My € R. (6.15)
The initial values are chosen randomly from the previously mentioned intervals.
My, My, My, My € [—10",10'] GeV = [~10"?,10"] eV
ys = My /v, € [-107%,1079] (6.16)
ry € 10711071
The interval limits of r, correspond to angles of +5.7°. The fitting procedure is

started 10% and 5 - 10° times for normal and inverted spectrum, respectively. All
solutions fulfilling x? < 10 are accepted for further processing this time.

6.2.1 Normal spectrum

The normal spectrum run of the numerics gives 393132 data sets, 96 duplicates
are removed. The best fit values for the masses are

X2, = 2.41483-107°
my = 2.13116 - 1073 eV

6.17
my = 9.00222 - 1072 eV (6.17)
ms = 4.90421 - 1072 eV,
while the mixing angles give
X2 = 2.16841
in? 5 = 1.50553 - 107
S Vs (6.18)

sin? ¥ = 3.33333 - 107!
sin? Yaum = 5.00274 - 1071,
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The corresponding model parameter values are:

7, = 9.50432- 107
My = —1.10014 - 10'° GeV
M; = 7.10587 - 10° GeV
M, = 3.74447 - 10° GeV
M, = —5.75068 - 10° GeV
ys = —1.75045 - 107",

(6.19)

The fine-tuning properties (see section 4.3) of the best fit solution are shown in
Figure 6.3. The fit is most sensitive to slight change of M, and M, where = varies
from 0.995 to 1.005. Other interesting quantities calculated from these results are
the effective Majorana mass for the neutrinoless double beta decay |(mgg)|, the

mass ratio R = my/y/Am?2 and the angle ¢,.

|(mpg)| = 4.42152 - 1072 eV
R =2.43664-10"" (6.20)
£y = 9.50432 - 107" = 0.054°

The distributions of the neutrino masses, the effective Majorana mass, the mass ra-
tio, the phase €, and the mixing angles are shown in Figure 6.4 to 6.8. The mass
distributions look very similar to those of the model for tri-bimaximal mixing,
except for the shape of the ms-peak (Figure 6.4). The effective mass for neutrino-
less double beta decay is calculated under the assumption of vanishing Majorana
phases, i.e. §; = 5 = 0 (Figure 6.5). The ratio R shows a maximum between
0.1 and 0.3 with a clear restriction to values < 1 (Figure 6.6). As expected from
the analytical analysis in section 5.2.3 values of ¢, # 0 are disfavoured (Figure
6.7). The distribution of the mixing angles shows no noticeable movement away
from sin® s = 1/3 (Figure 6.8). The variation of sin?,, is quite broad with
values from 0.47 to 0.53, sin?,3 is hardly visible on the combined plot and thus
plotted separately (Figure 6.9). In order to show the rise of x?, for small values
of the effective Majorana mass, the numerical method of a pinning term (section
4.3) was applied to generate Figure 6.10.
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Figure 6.3: Fine-tuning properties of the best fit solution.
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Figure 6.4: Mass distribution of the normal mass spectrum.
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Figure 6.5: Distribution of the effective Majorana mass.
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Figure 6.6: Distribution of the mass ratio R.



6.2. Modified model

2500 T T T T
Ex
2000 F i
1500 } i
<,
1000 } i
500 } -
0 1 1 1
-0.4 -0.2 0 0.2 0.4
€x
Figure 6.7: Distribution of the phase ¢,.
300000 T T T T T
Siﬂ2 1913
250000 } sin? g, 1
sin? Vptyy ——
200000 F -
=, 150000 F -
100000 t -
50000 t -
0 1 1 1 1 i
0 0.1 0.2 0.3 0.4 0.5 0.6

sin? v,

Figure 6.8: Distribution of the lepton mixing angles.
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Figure 6.10: Lower bound of the effective Majorana mass.
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6.2.2 Inverted spectrum

The Nelder-Mead method yields 282132 data sets fulfilling x? < 10, 383 entries
are duplicates. The best fit values for the masses are:

X2, = 3.17560 - 1077

my = 4.83400 - 1072 eV
my = 4.91249 - 1072 eV
ms = 3.72542 - 1073 V.

(6.21)

As expected the mixing angles do not veer away from tri-bimaximal mixing. The
results are comparable to those of normal mass ordering because the parameter
space for masses and angles are completely separated as shown in section 5.2.3.

X2 = 2.16841
sin? 915 = 4.59687 - 10°
sin® ¥ = 3.33333 - 107"
Sin® Uaem = 4.99848 - 1071

(6.22)

The best fit solution presented corresponds to the following model parameters:

r, = —5.25178 107"
My = 3.02744 - 10° GeV
M; = —1.21957 - 10° GeV
M, = 7.38539 - 10° GeV
M, = —6.41894 - 10° GeV
ys = 2.00966 - 10~°.

(6.23)

In contrast to the normal mass spectrum the fine-tuning properties are slightly
changed as shown in Figure 6.11. Instead of My now M; seems to be rather fine-
tuned. The effective Majorana mass [(mgg)| is comparable to m, 2, also note that

the definition of R = ms/,/Am? is different for the inverted mass spectrum.

|(mgs)| = 4.86016 - 1072 eV
R =4.25950-10"" (6.24)
e=—5.25178-10""
The distributions for the various quantities are again depicted in Figure 6.12 to

6.17. Besides the mass spectrum there are no changes compared to the normal
mass ordering. Again the lower bound of |(mgg)| is shown in Figure 6.18.
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Figure 6.11: Fine-tuning properties of the best fit solution.
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Figure 6.12: Mass distribution of the normal mass spectrum.
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Figure 6.18: Lower bound of the effective Majorana mass.
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6.2.3 Effective Majorana mass versus lightest mass

Reconsider equations (3.27) and (3.28) for the effective Majorana neutrino mass
for normal and inverted spectrum, respectively. While the experimental data for
mass squared differences and mixing angles is given in Table 3.1, the lightest mass
mo (:= my for normal, := my for inverted spectrum) and the phases 3; and (3
are not yet determined. This allows to plot those regions in the (mq, [(mgg)|)-
plane that are accessible via variation of both phases. Figure 6.19 shows |(mgg)]
versus mg, the area between the red lines denotes possible values for the normal
spectrum, the green lines the same for the inverted spectrum. Note that Figure

|<mgg>| [eV]

0.01
0.005
0.001 - \
. . . . Comp [eV]

0.0001 0.001 0.01 0.1 1

Figure 6.19: Effective Majorana mass |(mgg)| versus the lightest neutrino mass
mo.

6.19 disregards the uncertainties of the experimental data, see [93] for a detailed
analysis. The black dots show values taken from the best 1000 data sets (modified
model) for both mass spectra, where 3 = 5 = 0. Obviously the combination
of random set simplices and the Nelder-Mead minimization procedure leads to a
spread in the smallest mass of several orders of magnitude.



Chapter

Conclusions

In this thesis we discussed the basic extensions in the lepton sector and presented
two models which allow for tri-bimaximal and trimaximal lepton mixing. These
models were tested with the help of numerical tools to compare predictions with
experimental data.

The main conclusions concerning the investigated models are as follows. Both
models allow a perfect fit to current mass squared differences for normal and
inverted mass spectrum. The contributions to the total y? are negligible, i.e.
10~% — 107°. Unlike the masses the mixing angles introduce some stress between
theory and experiment, since 2 = 2.1684 for tri-bimaximal mixing. Also with the
described modifications which unfix the angles no further improvement is made,
as expected from the analytical discussion in 5.2.3.

Regarding the numerics the Nelder-Mead method proved to be an effective tool for
the minimization of the figure of merit function. With the tested models there were
no problems finding excellent minima. Further application of the provided sample
code should be considered with more elaborate models including also the quark
sector. This would be a good chance to test the algorithm with more parameters
and observables. Adaption of the source code would be an easy task since most of
the model-related information is part of one subroutine.

Considering the great variety of models today there is still a lot of potential for the
application of the Nelder-Mead method in combination with the figure of merit
function to serve as a tool to provide information about consistency of theory and
experiment.
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Appendix

The Appendix contains sample program code as described in section 4.4. Both
the normal and the pinning term versions are provided, each with nmm.f90 and
dnmm. £90. The Mathematica script to read data and analyse the fine-tuning prop-
erties is also included.

82



A.1. Main program 83

A.1 Main program

nmm.f90 1
1 ]****x********x********x*************x********x********x*************x********x*
2!

3 ! file: nmm.f90
4 ! Nelder Mead Method
5 !/
6 ! Modified model, CP-invariance, nonzero thetal3
7!
8 ! constants: vOt,vct,r0,y2
9 ! parameters: rc,MO,M1,M2,M4,y3
10 ! res values:
chi2, chi2m, chi2a, mass1,mass2,mass3,dm2atm, dm2sol, mbb,R,epsilo, sin213,sin2sol,sin2atm
]
i; }****X********X********K*************X********X********K*************X********X*
13
14 module nmm_var
15
16 implicit none
17 integer,parameter :: N=6,Nres=13,Nc=4,fout=11,pl8=selected_real_kind(p=18)
18 real (kind=p18),parameter ::
rho=1.0 p18,chi=2.0 p18,gam=0.5 p18,sig=0.5 p18,eps=1.0E-6 pl8,crit=1.0E1l p18
19 complex(kind=p18),parameter :: cl=(1.0 pl8,0.0 pl8), ci=(0.0 pl8,1.0 pl8)

20 real(kind=p18) :: c_vOt,c vct,c r0,c y2

21 complex(kind=p18) :: c_a

22 integer :: i,j,k,loop,nrand,nloop=10000

23 integer,dimension(6) :: stats

24 integer,dimension(:),allocatable :: seed

25 real :: tstart,tstop

26 real(kind=p18) :: fr,fn,d,tmp

27 real(kind=p18),dimension(Nres) :: res

28 real(kind=p18),dimension(N) :: xc,xr,xn

29 real(kind=p18),dimension(N+1) :: f

30 real(kind=p18),dimension(N+1,N) :: x

31 real(kind=p18),dimension(:,:),allocatable :: sav

32

33 end module nmm var

34

R R e R L

36 RHRRKRKAAKAAAK KKK A KA A KKK KKK KA A A A A A A A A A A A A A A A A A KA A KA KA KK KK

37

38 module nmm_sub

39

40 use nmm_var

41

42 implicit none

43

44 contains

45

46 ]****x********x********x*************x********x********x*************x********x*
47 subroutine init()

48

49 write(unit=*,fmt="'("nloop = ")',advance='no")
50 read(*,*) nloop

51 call random_seed(size=nrand)

52 allocate(seed(nrand),sav(nloop,N+Nres+1))

53 seed=0

54 xc=0

55 x=0

56 f=0

57 sav=0

58 res=0

59 stats=0

60

61 end subroutine init

62 j****X********X********X*************X********X********X*************X********X*
63 subroutine initf()

64

65 c vOt=1.7E11 pl8

66 c_vct=2.0E25 pl8
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67 Cc_ro=0.0E0 p18

68 c_y2=1.0E-3 pl8

69

70 c_a= -1.0_pl8*(c_y2*c_vOt*(cl+c_rO*ci)/ (1.0 _pl8+c_r0**2.0 pl8))**2.0 pl8

71

72 end subroutine initf

73 j:&?k**i'***'13'***-W**413-***\36’**At«'ik**»:&***'***'13'***-36’**413-***\36’**4@'***»3&***'***'13'***-3?

74 subroutine prepf()

75

76 call random_seed

77 call random_seed(get=seed)

78 !lwrite(unit=*, fmt="'(4(Z8.8,TR1))"') seed

79 do i=1,N+1

80 do j=1,1

81 call random_number(x(i,j))

82 x(i,j)=1.0E-1 pl8 * 2.0 pl8*(x(i,j)-0.5 pl8)

83 end do

84 do j=2,N-1

85 call random_number(x(i,j))

86 x(i,j)=1.0E19 pl8 * 2.0 pl8*(x(i,j)-0.5 pl8)

87 end do

88 do j=N,N

89 call random_number(x(i,j))

90 x(i,j)=2.0_p18 * 1,0E-06 _pl8 * 2.0 pl8*(x(i,j)-0.5 pl8)

91 end do

92 call calcf(f(i),x(i,:),.FALSE.)

93 end do

94

95 end subroutine prepf
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97

98 subroutine calcf(a,b,sres)

99

100 implicit none

101 logical,intent(in) :: sres

102 real(kind=p18),intent(inout) :: a

103 real (kind=p18),dimension(N),intent(in) :: b

104 real(kind=p18) :: rc,Mo,M1,M2,M4,y3

105 real (kind=p18) :: MN2,x,yt,z,detM

106 real(kind=p18) :: massl,mass2,mass3,dm2atm,dm2sol,chi2m,mbb,R

107 real (kind=p18),parameter ::
MV_dm2atm=2.4E-3 p18,SD_dm2atm=0.12E-3 pl8,MV_dm2sol=7.65E-5 p18,SD dm2sol=0.23E-5 pl8

108 real (kind=p18) :: epsilo,sin213,sin2sol,sin2atm,chi2a

109 real (kind=p18),parameter ::
MV_sin213=1.0E-2 p18,SD_sin213=1.6E-2 p18,MV_sin2sol=3.04E-1 p18,SD sin2sol=0.22E-1 pl8, &

1160 MV_sin2atm=5.0E-1 p18,SD_sin2atm=0.7E-1 pl8

111

112 rc=b(1)

113 MO=b(2)

114 M1=b(3)

115 M2=b(4)

116 M4=b(5)

117 y3=b(6)

118

119 IMASSES

120 MN2=(y3*c_vct)**2.0 pl8

121

122 detM = (MO+2.0 _pl8*M1)*( (MO-M1)**2.0 pl8*MN2 - ( (MO-M1)*M4 -
3.0 pl8*M2**2.0 pl8)**2.0 pl8 )

123 x = 1.0_pl8/detM * ( (MO**2.0 pl8-M1**2.0 pl8)*(MN2-M4**2.0 pl8) + &

124 (4.0 _pl8*MO+2.0 pl8*M1)*M2**2.0 pl8*M4 - 3.0 pl8*M2**4.0 pl8 )

125 z = 1.0 pl8/detM * ( (M1**2.0 pl8-MO*M1)*(MN2-M4**2.0 pl8) +
(MO-4.0 pl8*M1)*M2**2.0 pl8*M4 - 3.0 pl8*M2**4.0 pl8 )

126 yt = 1.0_pl8/detM * ( (MO+2.0_pl8*M1)*M2**2.0 pl8+*y3*c_vct )

127

128 massl = abs( c_a * (x+3.0 pl8*yt-z) )

129 mass2 = abs( c a * (x+2.0 pl8*z) )

130 mass3 = abs( c_a * (x-3.0 pl8*yt-z) )
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131

132 dm2atm = mass3**2.0 pl8 - massl**2.0 pl8

133 dm2sol = mass2**2.0 pl8 - massl**2.0 pl8

134

135 chi2m = ((dm2atm-MV_dm2atm)/SD_dm2atm)**2.0 pl8 +
((dm2sol-MV_dm2sol)/SD_dm2sol)**2.0 pl8

136

137 !ANGLES

138 epsilo = atan(rc)

139

140 sin213 = 2.0 pl18/3.0 _pl8 * sin(epsilo/2.0_p18)**2.0 pl8

141 sin2sol = 1.0 pl18 / (3.0_pl8 * (1.0 pl8 - sin213))

142 sin2atm = 0.5 pl8 + sin(epsilo) / (sqrt(12.0 pl8)*(1-sin213))

143

144 chi2a = ((sin213-MV_sin213)/SD_sin213)**2.0 pl8 +

((sin2sol-MV_sin2sol)/SD_sin2sol)**2.0 pl8 + &
145 ((sin2atm-MV_sin2atm)/SD_sin2atm)**2.0 pl8

146

147 a = chi2m + chi2a

148

149 if(sres) then

150

151 mbb = abs( ( mass1*(1.0 pl8-sin2sol) +

sqrt(mass1**2.0 pl8+dm2sol)*sin2sol*exp(ci*0.0 pl8) )*(1.0 pl8-sin213) + &
152 sqrt(massl**2.0 pl8 + dm2atm)*sin213*exp(ci*0.0 pl8) )

153

154 R = massl/sqrt(dm2sol)
155

156 res(1)=chi2m

157 res(2)=chi2a

158 res(3)=massl

159 res(4)=mass2

160 res(5)=mass3

161 res(6)=dm2atm

162 res(7)=dm2sol

163 res(8)=mbb

164 res(9)=R

165 res(10)=epsilo

166 res(11)=sin213

167 res(12)=sin2sol

168 res(13)=sin2atm

169 end if

170

171 end subroutine calcf
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173 subroutine sort()

174

175 integer,dimension(1) :: imin
176 real(kind=p18),dimension(N) :: vtemp
177 real (kind=p18) :: stemp

178

179 do i=1,N

180 imin=i-1+minloc(f(1i:N+1))
181 vtemp=x(1i,:)

182 stemp=f(1i)

183 x(1,:)=x(imin(1),:)
184 f(i)=Ff(imin(1))

185 x(imin(1),:)=vtemp

186 f(imin(1))=stemp

187 end do

188

189 end subroutine sort

e L AR e e e e e
191 subroutine centroid()

192

193 xc=0

194 do j=1,N

195 do i=1,N
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196
197
198
199
200
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217
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228
229
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246
247
248
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250
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254
255
256
257
258
259
260
261
262

xc(j) = xc(j) + x(i,3)
end do
xc(j)=xc(j)/N
end do
lwrite(*,*) “centroid =", xc

end subroutine centroid
TR KR K KKK KKK oK K oK K oK R K KR KKK KoK R K oK K oK o KKK KR oK oK K oK ok KoK K SR oK ok Kok K oK oK ok oK ok oK

subroutine shrinkage()

do j=2,N+1
x(j, 1) = x(1,:) + sig*(x(j,:)-x(1,:))
call calcf(f(j),x(j,:),.FALSE.)

end do

end subroutine shrinkage
‘/*)f**x*4<*****rkx*&**x#*rkx*)f**x*k*x*#**x*4<***karkx*)¢**x#*rkx*#**x*k*x*#**x*k***#**x*

subroutine show()

do i=1,N+1
write(unit=*,fmt="'("x("I2.2") =")"',advance='no') i
do j=1,N
write(unit=*,fmt='(F13.8)"',advance='no') x(i,j)
end do
write(*,*)
end do

write(*,*) "f =" f

end subroutine show
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subroutine calcd()

real (kind=p18) :: fm

fm=0.0 pl8
d=0.0_pl8
do j=1,N+1
fm = fm + f(j)
end do
fm=fm/ (N+1)
do j=1,N+1
d=d+ (f(j)-fm)**2, 0**pl8
end do
d=d/ (N+1)

end subroutine calcd
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subroutine wfile()

open(unit=fout, file="nmm.dat",status="replace",action="write",form="unformatte

d",position="rewind")

write(unit=fout) N,Nres,nloop,Nc
write(unit=fout) stats
do loop=1,nloop
if(sav(loop,N+Nres+1)/=0) write(unit=fout) sav(loop,:)
end do
write(unit=fout) c_vOt,c vct,c r0,c_y2
close(fout)

end subroutine wfile
J e e e

subroutine finish()

lwrite(*,*) "Steps: ",k
deallocate(seed,sav)

end subroutine finish
'/****x*******#x****x**#x****x#**x****x*******#x****x**#x***$X#**K***$X**$****$K*
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263 end module nmm_sub
264
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267

268 program nmm

269

270 use nmm_var

271 use nmm_sub

272

273 implicit none

274

275 write(*,*) huge(fn)

276 write(*,*) tiny(fn)

277

278 call cpu_time(tstart)

279

280 call init()

281 call initf()

282 do loop=1,nloop

283 call prepf()

284 k=1

285 do

286 k=k+1

287 call sort()

288 call centroid()

289 xr = xc + rho*(xc-x(N+1,:))

290 call calcf(fr,xr,.FALSE.)

291 if(f(1)<=fr .AND. fr<f(N)) then

292 X(N+1, :)=xr

293 f(N+1)=Ffr

294 lwrite(*,*) "Reflection accepted"

295 go to 10

296 else if(fr<f(1)) then

297 xn = xc + chi*(xr-xc)

298 call calcf(fn,xn,.FALSE.)

299 if(fn<fr) then

300 X(N+1, :)=xn

301 f(N+1)=fn

302 lwrite(*,*) "Expansion accepted"

303 go to 10

304 else

305 X (N+1, :)=xr

306 f(N+1)=fr

307 lwrite(*,*) "Expansion rejected -> Reflection"

308 go to 10

309 end if

310 else if(f(N)<=fr .AND. fr<f(N+1)) then

311 XN = XC + gam*(xr-xc)

312 call calcf(fn,xn, .FALSE.)

313 if(fn<=fr) then

314 X(N+1, :)=xn

315 f(N+1)=fn

316 lwrite(*,*) "Outside contraction accepted"

317 go to 10

318 else

319 lwrite(*,*) "Outside contraction rejected ->
Shrinkage"

320 call shrinkage()

321 go to 10

322 end if

323 else if(fr>=f(N+1)) then

324 Xn = Xc - gam*(xc-x(N+1,:))

325 call calcf(fn,xn,.FALSE.)

326 if(fn<f(N+1)) then

327 X(N+1, :)=xn

328 f(N+1)=fn

329 lwrite(*,*) "Inside contraction accepted"



88

A. APPENDIX

nmm.f90

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388

10

20

go to 10
else
!write(*,*) "Inside contraction rejected -> Shrinkage"
call shrinkage()
go to 10
end if

end if
call calcd()
if(d<=eps) then

lwrite(*,*) "Minimum reached: stats(1)",x(1,1),f(1)

stats(l)=stats(1)+1

exit
end if
if(mod(k,100)==0) then
tmp=0.0 p18
do i=1,N+1
do j=1,N
tmp=tmp+x(1i,j)
end do
tmp=tmp+f (1)
end do
if(tmp*0.0 pl8 /= 0.0 pl8 .OR. tmp >= 1E99 pl8) then
lwrite(*,*) "Detect infinity: stats(4)"
stats(4)=stats(4)+1
go to 20
end if
end if

if(k>=1000) then
lwrite(*,*) "No minimum reached: stats(3)"
stats(3)=stats(3)+1
go to 20
end if
end do
call sort()
if(f(1)<=crit) then
call calcf(f(1),x(1,:),.TRUE.)
if(res(3)<=res(4) .AND. res(4)<=res(5)) then
lwrite(*,*) "Criterion fulfilled: stats(2)"
sav(loop,1:N)=x(1,:)
sav(loop,N+1)=f(1)
sav(loop,N+2:N+Nres+1) = res
stats(2)=stats(2)+1
else
!write(*,*) "Wrong mass order: stats(5)"
stats(5)=stats(5)+1
end if
end if
if(mod(loop,1000)==0) write(unit=*,fmt='(7(I10,TR1))"') loop,stats
end do
call wfile()
call finish()

call cpu_time(tstop)

write(*,*) "Time: ", tstop-tstart,"sec"

end program nmm
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program 89

dnmm.f90 1
1 ]****X********x********x*************x********x********x*************x********x*
2!

3 ! file: dnmm.f90
4 | Data Processing for Nelder Mead Method
5 !/
6 ! Modified model, CP-invariance, nonzero thetal3
7!
8 ! constants: vOt,vct,r0,y2
9 ! parameters: rc,MO,M1,M2,M4,y3
10 ! res values:
chi2, chi2m, chi2a, mass1,mass2,mass3,dm2atm, dm2sol, mbb,R,epsilo, sin213,sin2sol, sin2atm

i; '/****X********X********K*************X********X********K*************X********X*
13
14 module dnmm var
15
16 implicit none
17 integer,parameter :: fin=11,fout=12,pl8=selected_real_kind(p=18)

18 integer :: i,j,k,N,Nres,nloop,Nc,nch=100
19 integer,dimension(6) :: stats
20 real(kind=p18),dimension(:,:),allocatable :: sav,mvsd
21 real(kind=p18),dimension(:),allocatable :: const
22 type listl
23 sequence
24 real(kind=p18) :: c
25 integer :: n
26 end type listl
27 type(listl),dimension(:),allocatable ::

1M1, M2, M3, tmbb, 1R, lepsilo, 1sin213, lsin2sol, lsin2atm

28 real(kind=p18) :: lstarttemp,ltemp
29

30 end module dnmm_var
3; '!****X********xipk******X**********k**X********xipk******X*************X********X*
33 j****x********X********x*************X********X********x*************X********X*
34
35 module dnmm_sub
36
37 use dnmm_var
38
39 contains
40
42 subroutine readin()

43
44 write(unit=*,fmt='("nch = ")',advance='no")

45 read(*,*) nch
46 allocate(M1(nch),M2(nch),M3(nch),lmbb(nch),1R(nch),lepsilo(nch),1sin213(nch

), lsin2sol(nch),lsin2atm(nch))

47
48 open(unit=fin,file="nmm.dat",status="old",action="read", form="unformatted",pos

ition="rewind")

49 read(unit=fin) N,Nres,nloop,Nc
50 read(unit=fin) stats
51 allocate(sav(l:stats(2),1:N+Nres+1),mvsd(1:2,1:N+Nres+1),const(1:Nc))
52 mvsd=0
53 do i=1,stats(2)

54 read(unit=fin) sav(i,:)

55 end do
56 read(unit=fin) const(1:Nc)

57 close(fin)

58
59 end subroutine readin
60 j****X********X********X*************X********X********X*************X********X*
61 subroutine remdup()

62
63 write(unit=*,fmt="'("Removing duplicates: ")',advance='no')

64 do i=1,stats(2)-stats(6)-1



90

A. APPENDIX

if(abs((sav(i,k)-sav(j,k))/sav(i,k)) > 1E-5 pl18) exit
if(sav(i,k) .NE. sav(j,k)) exit

sav(j,:)=sav(stats(2)-stats(6),:)
sav(stats(2)-stats(6),:)=0

if(i/=stats(2)-stats(6)) j=j-1

. tempsav

")',advance='no")

mvsd(2,1i)=mvsd(2,1)+(sav(j,1i)-mvsd(1l,1i))**2.0 pl8

mvsd(2,:)=sqrt(mvsd(2,:)/(real(stats(2),pl8)*real(stats(2)-1,p18)))

open(unit=fout, file="nmm.txt",status="replace",action="write", form="formatted"

")',advance='no")

dnmm.f90

65 if(mod (i, floor(stats(2)/10.0))==0)
write(unit=*,fmt='("*")"',advance='no')

66 j=i+l

67 do while(j<=stats(2)-stats(6))

68 do k=1,N

69 lwrite(*,*)
i,j,k,sav(i,k),sav(j,k),abs(sav(i,k)-sav(j, k))

70 !

71

72 end do

73 if(k==N+1) then

74 lwrite(*,*) i,sav(i,1)

75 lwrite(*,*) j,sav(j,1)

76

77

78 stats(6)=stats(6)+1

79

80 end if

81 j=j+1

82 end do

83 end do

84 stats(2)=stats(2)-stats(6)

85 write(*,*)

86

87 end subroutine remdup

88 '/****’#*******K****X**#X****X***X****’#*******K****X**#X****X***X****’#*******K*

89 subroutine sort()

90

91 real(kind=p18),dimension(N+Nres+1)

92 integer,dimension(1) :: imin

93

94 write(unit=*,fmt="'("Sorting results:

95 do i=1,stats(2)-1

96 if(mod (i, floor(stats(2)/10.0))==0)
write(unit=*,fmt='("*")"',advance='no')

97 imin = i-1+minloc(sav(i:stats(2),N+1))

98 tempsav = sav(imin(1l),:)

99 sav(imin(1),:) = sav(i,:)

100 sav(i,:) = tempsav

101 end do

102 write(*,*)

103

104 end subroutine sort

105 ‘/****X**)ﬁ**«***x****x***x****‘K***X****X**)ﬁ**«***x****x***x****‘K***X****X**)ﬁ*****x*

106 subroutine cmvsd()

107

108 do i=1,N+Nres+1

109 do j=1,stats(2)

110 mvsd(1,i)=mvsd(1,1i)+sav(j,1i)

111 end do

112 end do

113 mvsd(1,:)=mvsd(1,:)/stats(2)

114 do i=1,N+Nres+1

115 do j=1,stats(2)

116

117 end do

118 end do

119

120

121 end subroutine cmvsd

122 ‘/****X********x****x***K****X***X****X********x****X***K****X***X****X********X*

123 subroutine wdata()

124

125
,position="rewind")

126 write(unit=fout, fmt="(" rc

127 write(unit=fout, fmt="(" MO

")',advance='no')
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91

dnmm.f90

128 write(unit=fout, fmt="(" M1 ")',advance="'no"
129 write(unit=fout, fmt="(" M2 ")',advance='no")
130 write(unit=fout, fmt="(" M4 ")',advance='no")
131 write(unit=fout, fmt="(" y3 ")',advance='no')
132 write(unit=fout, fmt="(" Chi~2 ")',advance='no")
133 write(unit=fout, fmt="(" Chi~2m ")',advance='no")
134 write(unit=fout, fmt="(" Chi~2a ")',advance='no")
135 write(unit=fout, fmt="(" massl ")',advance='no")
136 write(unit=fout, fmt="(" mass2 ")',advance='no")
137 write(unit=fout, fmt="(" mass3 ")',advance='no")
138 write(unit=fout, fmt="(" dm2atm ")",advance='no")
139 write(unit=fout, fmt="(" dm2sol ")',advance='no")
140 write(unit=fout, fmt="(" mbb ")",advance='no")
141 write(unit=fout, fmt="(" R ")',advance='no")
142 write(unit=fout, fmt="(" epsilo ")',advance='no")
143 write(unit=fout, fmt="(" sin213 ")',advance='no")
144 write(unit=fout, fmt="(" sin2sol ")',advance='no")
145 write(unit=fout, fmt="(" sin2atm ")",advance='yes")
146 do i=1,stats(2)

147 do j=1,N+Nres+1

148 write(unit=fout, fmt='(ES26.18,TR1)"',advance='no') sav(i,j)
149 end do

150 write(unit=fout, fmt=*)

151 end do

152 write(unit=fout, fmt=*)

153 do i=1,N+Nres+1

154 write(unit=fout, fmt="'(ES26.18,TR1)"',advance='no"') mvsd(1,1i)
155 end do

156 write(unit=fout, fmt=*)

157 do i=1,N+Nres+1

158 write(unit=fout, fmt="'(ES26.18,TR1)"',advance='no"') mvsd(2,1i)
159 end do

160 write(unit=fout, fmt=*)

161 write(unit=fout, fmt=*)

162 write(unit=fout, fmt="("Constants:")")

163 write(unit=fout, fmt="(" vot ")',advance='no"'
164 write(unit=fout, fmt="(" vct ")',advance='no")
165 write(unit=fout, fmt="(" ro ")',advance='no")
166 write(unit=fout, fmt="(" y2 ")",advance='yes")
167 do i=1,Nc

168 write(unit=fout, fmt="(ES26.18,TR1)"',advance="'no"') const(i)
169 end do

170 write(unit=fout, fmt=*)

171 write(unit=fout, fmt="*)

172 write(unit=fout, fmt="'("Stable minimum reached: "I10)') stats(1)

173 write(unit=fout, fmt="("Criterion fulfilled: "I10)"') stats(2)

174 write(unit=fout, fmt="'("No minimum reached: "110)"') stats(3)

175 write(unit=fout, fmt='("Infinity detected: "I10)') stats(4)

176 write(unit=fout, fmt="'("Wrong mass order: "I10)"') stats(5)

177 write(unit=fout, fmt="'("Duplicates removed: "I10)"') stats(6)

178 close(fout)

179

180 end subroutine wdata

182 subroutine clist(lin,lout,lstart,l)

183

184 implicit none

185 real (kind=p18),dimension(stats(2)),intent(in) :: lin

186 real(kind=p18),intent(in) :: lstart,l

187 type(listl),dimension(nch),intent(out) :: lout

188 real (kind=p18) :: step

189 integer :: tmp

190

191 lout%c=0

192 lout%n=0

193 !'lstart=minval(lin)

194 !'l=maxval(lin)-lstart

195 !lstart=lstart-0.05 p18*1
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196 11=1.1 p18*1

197 step=1/(nch-1)

198 do i=1,nch

199 lout(i)%c=1lstart + i*step - 0.5 pl8*step

200 end do

201 do i=1,stats(2)

202 tmp=floor((lin(i)-lstart)/step)+1

203 !write(*,*) 1i,(lin(i)-lstart)/step,tmp

204 lout (tmp)%n=lout (tmp)%n+1

205 end do

206

207 end subroutine clist

208 ‘/****x*****«***x**)ﬂ*x***x****X***X****x*****«***x**)ﬂ*x***x****‘K***X****x********x*

209 subroutine wlist()

210

211 open(unit=fout, file="1list.txt",status="replace",action="write", form="formatted
",position="rewind")

212 do i=1,nch

213 write(unit=fout, fmt="(9(ES27.19,TR1,16))")
TM1(1)%c, IM1(1i)%n, M2 (1i)%c, IM2(i)%n, M3 (1)%c, M3 (1)%n, lmbb(i)%c, lmbb(i)%n, &

214 1R(i)%c,R(1i)%n,lepsilo(i)%c,lepsilo(i)%n,1sin213(1i)%c,1sin213(i)%n,lsin2sol(1i)%c,lsin2sol(i)%
n,lsin2atm(i)%c, lsin2atm(i)%n

215 end do

216 close(fout)

217

218 end subroutine wlist

219 '/****’********‘-‘****X**"fX****X***X****’#*******K****X**#X****X***X****’********‘-‘*

220 subroutine wscreen()

221

222 write(unit=*,fmt="'("Stable minimum reached: "I10)') stats(1)

223 write(unit=*,fmt='("Criterion fulfilled: "110) ") stats(2)

224 write(unit=*,fmt="'("No minimum reached: "110)') stats(3)

225 write(unit=*,fmt="'("Infinity detected: "I10)') stats(4)

226 write(unit=*,fmt="'("Wrong mass order: "110)') stats(5)

227 write(unit=*,fmt="'("Duplicates removed: "I10)') stats(6)

228

229 end subroutine wscreen

230 '/***},n***»;****K***#,n***,-;****,n***p;****,n***»;****!***#,n***p;***}x***m****m********!*

231 subroutine finish()

232

233 deallocate(sav, M1, M2, M3, lmbb, IR, lepsilo, 1sin213, 1sin2sol, lsin2atm, mvsd, cons
t)

234

235 end subroutine finish

236 ‘/****x*****«***x**)ﬂ*x***x****X***X****x*****«***x**)ﬂ*x***x****‘K***X****x********x*

237

238 end module dnmm_sub

239

240 ‘/*# ok 3k 5k >k 3K 5k 3k 5k >k 5K 5k 3k 5k 3k 5K >k 3k >k 3K 5k >k 3k >k 3K >k 3k 5k >k 3K >k 3K 5k 3k 3k >k 3K >k 5k 5k >k 3k >k 3k 5k %k >k >k %k >k >k >k k. ok sk 3k >k ok ok ok ok ok ok 5k ok ok ok ok ok ok ok ok ok

241 /*4 kK 3k >k >k >k 3k Sk Sk ok ok ok >k >k Sk Sk 3k Sk ok ok %k >k 3k ok 3k 3k ok >k ok 3k Sk Sk k ok ok >k >k ok k Sk Sk ok ok ok >k % ok K K ok ok k k- kK 3k >k >k >k >k Sk Sk ok ok ok >k ok ok ok K ok ok k k k

242

243 program dnmm

244

245 use dnmm_var

246 use dnmm_sub

247

248 call readin()

249 call remdup()

250 call sort()

251 call cmvsd()

252 call wdata()

253

254 lstarttemp=min(minval(sav(:,N+4)),minval(sav(:,N+5)),minval(sav(:,N+6)))

255 ltemp=max (maxval(sav(:,N+4)),maxval(sav(:,N+5)),maxval(sav(:,N+6)))-1lstarttemp

256 call clist(sav(:,N+4),1M1, lstarttemp, Ltemp)

257 call clist(sav(:,N+5),1M2,lstarttemp, Ltemp)

258 call clist(sav(:,N+6),1M3,lstarttemp, Ltemp)

259
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260 lstarttemp=minval(sav(:,N+9))

261 ltemp=maxval(sav(:,N+9))-1lstarttemp

262 call clist(sav(:,N+9),lmbb,lstarttemp, ltemp)

263

264 lstarttemp=minval(sav(:,N+10))

265 ltemp=maxval(sav(:,N+10))-lstarttemp

266 call clist(sav(:,N+10),1R,lstarttemp, Lltemp)

267

268 lstarttemp=minval(sav(:,N+11))

269 ltemp=maxval(sav(:,N+11))-lstarttemp

270 call clist(sav(:,N+11),lepsilo,lstarttemp,ltemp)

271

272 lstarttemp=min(minval(sav(:,N+12)),minval(sav(:,N+13)),minval(sav(:,N+14)))
273 ltemp=max(maxval(sav(:,N+12)),maxval(sav(:,N+13)),maxval(sav(:,N+14)))-1lstarttemp
274 call clist(sav(:,N+12),1sin213, lstarttemp,ltemp)

275 call clist(sav(:,N+13),1lsin2sol, lstarttemp, ltemp)

276 call clist(sav(:,N+14),lsin2atm, lstarttemp, ltemp)

277

278 call wlist()

279 call wscreen()

280 call finish()

281

282 end program dnmm

283

284
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A.2 Program for pinning term method

nmm.f90 1
1 ]****x********x********x****x********x********x********x****x********x********x*
2!

3 ! file: nmm.f90
4 ! Nelder Mead Method
5 !/
6 ! Modified Model, CP-invariance, nonzero thetal3, inverted spectrum
7!
8 ! constants: vOt,vct,r0,y2
9 ! parameters: rc,MO,M1,M2,M4,y3
10 ! res values:
chi2, chi2m, chi2a,mass1,mass2,mass3,dm2atm,dm2sol,mbb,R, epsilo,sin213,sin2sol, sin2atm
]
i; j****X********X********K****X********X********X********K****X********X********X*
13
14 module nmm_var
15
16 implicit none
17 integer,parameter :: N=6,Nres=14,Nc=4,fout=11,pl8=selected_real_kind(p=18)
18 real(kind=p18),parameter :: rho=1.0 pl8,chi=2.0 pl8,gam=0.5 p18,sig=0.5 p18
19 real(kind=p18),parameter :: eps=1.0E-6 pl8,crit=1.0E2 pl8
20 complex(kind=p18),parameter :: cl=(1.0 pl8,0.0 pl8),ci=(0.0 pl8,1.0 pl8)
21 real(kind=p18) :: c_vOt,c vct,c _r@,c y2,startpin,stoppin
22 complex(kind=p18) :: c_a
23 integer :: i,j,k,loop,nrand,nloop=10000,ipin,npin=10
24 integer,dimension(6) :: stats
25 integer,dimension(:),allocatable :: seed
26 real :: tstart,tstop
27 real(kind=p18) :: fr,fn,d,tmp,vpin
28 real(kind=p18),dimension(Nres) :: res
29 real(kind=p18),dimension(N) :: xc,xr,xn

30 real(kind=p18),dimension(N+1) :: f

31 real(kind=p18),dimension(N+1,N) :: x

32 real(kind=p18),dimension(:,:),allocatable :: sav

33 real(kind=p18),dimension(:,:),allocatable :: respin

34 character(len=4) :: nstr

35

36 end module nmm var

37

e I R e R S e e

39 Irkskskkskkokskkkksk Rk Rk sksk Rk sk Rk Rk R sk Rk R sk ok sk ok sk R sk ok sk ks Rk ok sk kR sk ok sk ko sk sk sk ok ok

40

41 module nmm_sub

42

43 use nmm_var

44

45 implicit none

46

47 contains

48

49 ]****X********x********x****X********X********x********x****X********X********x*
50 subroutine init()

51

52 write(unit=*,fmt='("nloop = ")',advance='no")
53 read(*,*) nloop

54 write(unit=*,fmt='(" npin = ")',advance='no")
55 read(*,*) npin

56 call random_seed(size=nrand)

57 allocate(seed(nrand),sav(nloop,N+Nres+1),respin(1l:npin, 1:N+Nres+2))
58 startpin=3.5E-2 pl8

59 stoppin=6.0E-2 pl8

60 seed=0

61 xc=0

62 x=0

63 =0

64 sav=0

65 res=0

66 stats=0

67
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68 end subroutine init
69 '/*#**X*****&W‘*X****X#**X****X***X*Jwt‘*X*****#*‘*X****X#**X****X***X*&W‘*X*****#**X*
70 subroutine initf()
71
72 c_vOt=1.7E11 p18
73 c_vct=2.0E25 pl8
74 c_r0=0.0E0 p18
75 c_y2=1.0E-3 pl8
76
77 c_a= -1.0_pl8*(c_y2*c_ vOt*(cl+c_rO*ci)/(1.0 pl8+c_r0**2.0 pl8))**2.0 pl8
78
79 stats=0
80 sav=0
81
82 lvpin = 10.0 _pl8**(loglO(startpin) +
(ipin-1)*(logl0(stoppin)-logl@(startpin))/(npin-1))
83 vpin = startpin + (ipin-1) * (stoppin-startpin)/(npin-1)
84 write(unit=*,fmt="'(" ipin = "I10)') ipin
85 write(unit=*,fmt="'(" vpin = "ES10.3)') vpin
86
87
88 end subroutine initf
89 ! >k 3k >k 3k 3k >k 3k >k 3K 5k K 5k >k 3k >k 3K >k >k 3k >k 3K >k >k 3k K 3K >k 3k 5k 5K 3K >k 3k >k 3k 5K >k 3k >k 3K 5K >k 3k >k 3K >k >k 5k >k 3K >k 3k 5k >k 3k >k 3k >k >k 5k >k 3k >k %k 5k %k 3K >k 3k >k %k >k %k %k >k Kk *k k
90 subroutine prepf()
91
92 call random_seed
93 call random_seed(get=seed)
94 lwrite(unit=*, fmt="'(4(Z8.8,TR1))"') seed
95 do i=1,N+1
96 do j=1,1
97 call random_number(x(i,j))
98 x(i,j)=1.0E-1 pl8 * 2.0 pl8*(x(i,j)-0.5 pl8)
99 end do
100 do j=2,N-1
101 call random_number(x(i,j))
102 x(i,j)=1.0E19 pl8 * 2.0 pl8*(x(i,j)-0.5 pl8)
103 end do
104 do j=N,N
105 call random_number(x(i,j))
106 x(i,j)=2.0_p18 * 1.0E-06 pl8 * 2.0 pl8*(x(i,j)-0.5 pl8)
107 end do
108 call calcf(f(i),x(i,:),.FALSE.)
109 end do
110
111 end subroutine prepf
I e e e e e
113
114 subroutine calcf(a,b,sres)
115
116 implicit none
117 logical,intent(in) :: sres
118 real (kind=p18),intent(inout) :: a
119 real(kind=p18),dimension(N),intent(in) :: b
120 real (kind=p18) :: rc,M0,M1,M2,M4,y3
121 real(kind=p18) :: MN2,x,yt,z,detM
122 real (kind=p18) :: massl,mass2,mass3,dm2atm,dm2sol,chi2m,chi2pin,mbb,R
123 real (kind=p18),parameter ::
MV_dm2atm=2.4E-3 p18,SD_dm2atm=0.12E-3 pl8,MV_dm2sol=7.65E-5 p18,SD dm2sol=0.23E-5 pl8
124 real (kind=p18) :: epsilo,sin213,sin2sol,sin2atm,chi2a
125 real (kind=p18),parameter ::
MV_sin213=1.0E-2 p18,SD_sin213=1.6E-2 pl8,MV_sin2sol=3.04E-1 p18,SD sin2sol=0.22E-1 pl8, &
126 MV_sin2atm=5.0E-1 p18,SD_sin2atm=0.7E-1 pl8
127
128 rc=b(1)
129 MO=b(2)
130 M1=b(3)
131 M2=b(4)
132 M4=b(5)
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133
134
135
136
137
138

y3=b(6)

!MASSES
MN2=(y3*c_vct)**2.0 pl8

detM = (MO+2.0 pl8*M1)*( (MO-M1)**2.0 pl8*MN2 - ( (MO-M1)*M4 -

3.0 pl8*M2**2.0 pl8)**2.0 pl8 )

139

X = 1.0_pl8/detM * ( (MO**2.0 pl8-M1**2.0 pl8)*(MN2-M4**2.0 pl8) + &

140 (4.0_pl8*MO+2.0 pl8*M1)*M2**2.0 pl8*M4 - 3.0 pl8*M2**4.0 pl8 )

141

z = 1.0 _pl8/detM * ( (M1**2.0 pl8-MO*M1)*(MN2-M4**2.0 pl8) +

(MO-4.0 pl8*M1)*M2**2.0 pl8*M4 - 3.0 pl8*M2**4.0 pl8 )

142
143
144
145
146
147
148
149
150
151

yt = 1.0 pl8/detM * ( (MO+2.0 pl8*ML)*M2%%2.0 pl8*y3*c vct )

massl = abs( c_a * (x+3.0 pl8*yt-z) )
mass2 = abs( c_a * (x+2.0 pl8*z) )

mass3 = abs( c_a * (x-3.0 pl8*yt-z) )
dm2atm = mass2**2.0 pl8 - mass3**2.0 pl8
dm2sol = mass2**2.0 pl8 - massl**2.0 pl8

chi2m = ((dm2atm-MV_dm2atm)/SD_dm2atm)**2.0 pl8 +

((dm2sol-MV_dm2sol)/SD_dm2sol)**2.0 p18

152
153
154
155
156
157
158
159
160

IANGLES
epsilo = atan(rc)

sin213 = 2.0 pl8/3.0 pl8 * sin(epsilo/2.0 pl8)**2.0 pl8
sin2sol 1.0 p18 / (3.0 _p18 * (1.0 pl8 - sin213))
sin2atm = 0.5 pl8 + sin(epsilo) / (sqrt(12.0 p18)*(1-sin213))

chi2a = ((sin213-MV_sin213)/SD_sin213)**2.0 pl8 +

((sin2s0l-MV_sin2sol)/SD_sin2sol)**2.0 pl8 + &
161 ((sin2atm-MV_sin2atm)/SD_sin2atm)**2.0 pl8

162
163

mbb = abs( ( sqrt(mass3**2.0 pl8 + dm2atm -

dm2sol)*(1.0_pl8-sin2sol)*exp(ci*0.0 pl8) + &

164 sqrt(mass3**2.0 pl8 + dm2atm)*sin2sol*exp(ci*0.0 p18) )*(1.0 pl8-sin213) + mass3*sin213)

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

chi2pin = (mbb-vpin)**2.0 p18/(0.01 pl8*vpin)**2.0 pl8
a = chi2m + chi2a + chi2pin
if(sres) then

R = mass3/sqrt(dm2sol)

res(1l)=chi2m
res(2)=chiz2a
res(3)=chi2pin
res(4)=massl
res(5)=mass2
res(6)=mass3
res(7)=dm2atm
res(8)=dm2sol
res(9)=mbb
res(10)=R
res(1ll)=epsilo
res(12)=sin213
res(13)=sin2sol
res(14)=sin2atm
end if

end subroutine calcf

TOT [ HFRFFAA A A AR AR A A A A KA A A A A AR AR AR A AR AR A A AR AR A A A AR AR A AR A A AR K

192
193
194
195

subroutine sort()

integer,dimension(1) :: imin
real(kind=p18),dimension(N) :: vtemp
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196 real (kind=p18) :: stemp

197

198 do i=1,N

199 imin=i-1+minloc(f(1i:N+1))

200 vtemp=x(1i,:)

201 stemp=f (i)

202 x(1,:)=x(imin(1),:)

203 f(i)=Ff(imin(1))

204 x(imin(1),:)=vtemp

205 f(imin(1))=stemp

206 end do

207

208 end subroutine sort

200 1 HFF AR AR KA A AA A KA AR KA AR AR KA KKK KKK KKK K KKKk K Kok oK ok
210 subroutine centroid()

211

212 xc=0

213 do j=1,N

214 do i=1,N

215 xc(j) = xc(j) + x(i,3)

216 end do

217 xc(j)=xc(j)/N

218 end do

219 lwrite(*,*) "centroid =", xc

220

221 end subroutine centroid

222 IHRFFAK KA KA KA A A A A KA AR A AR A A KA A A A AR KA KA A KK AR KA KA A KA A KKK K KKK
223 subroutine shrinkage()

224

225 do j=2,N+1

226 x(j,:) = x(1,:) + sig*(x(j,:)-x(1,:))

227 call calcf(f(j),x(j,:),.FALSE.)

228 end do

229

230 end subroutine shrinkage

231 '/***#!***RX**ﬁ‘!****fw*7%!****14:**K***#!***RX**ﬁ‘!****xiv*7%!****14:**K***#!***\f%ﬂk*!*
232 subroutine show()

233

234 do i=1,N+1

235 write(unit=*,fmt="("x("I2.2") =")',advance='no') i
236 do j=1,N

237 write(unit=*,fmt="'(ES10.3,TR1)"',advance='no") x(i,j)
238 end do

239 write(*,*)

240 end do

241 write(*,*) "f =",f

242

243 end subroutine show

244 ‘/*&**X*&*7():#+*X*&**><J¢+7kxxf&**X***X*&**X*&*K)f#**xxf&**xif+TkX*&**X***X*&**X*&*KX&W*X*
245 subroutine calcd()

246

247 real (kind=p18) :: fm

248

249 fm=0.0 pl8

250 d=0.0 pl8

251 do j=1,N+1

252 fm = fm + f(j)

253 end do

254 fm=fm/ (N+1)

255 do j=1,N+1

256 d=d+ (f(j)-fm)**2, 0**pl8

257 end do

258 d=d/ (N+1)

259

260 end subroutine calcd

261 /*#%*X***KX&W*X*&**X#**X*&**X***K*&W*X***KX&W*X*&**X&W*X*Jf**X***K*&W*X***KX&W*X*
262 subroutine sortpin()

263
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264 real (kind=p18),dimension(N+Nres+1) :: tempsav

265 integer,dimension(1l) :: imin

266

267 do i=1,stats(2)

268 if(sav(i,N+1)==0.0 p18) then

269 do j=i+1,nloop

270 if(sav(j,N+1)/=0.0 pl8) then

271 sav(i,:)=sav(j,:)

272 sav(j,:)=0

273 exit

274 end if

275 end do

276 end if

277 end do

278 do i=1,stats(2)-1

279 imin = i-1+minloc(sav(i:stats(2),N+1))

280 tempsav = sav(imin(1),:)

281 sav(imin(1l),:) = sav(i,:)

282 sav(i,:) = tempsav

283 end do

284

285 end subroutine sortpin

286 ! >k 3k 3k 3k >k >k 3k >k >k >k sk ok >k >k ok ok ok ok ok ok ok ok ok sk ok ok ok Sk ok >k ok ok sk Kk ok Sk >k ok ok Sk ok ok ok 3k >k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok Kok ok ok Kok ok k ok

287 subroutine wfile()

288

289 write(unit=nstr,fmt="'(I4.4)"') ipin

290 open(unit=fout, file="data/nmm-" // nstr //
".dat",status="replace",action="write", form="unformatted",position="rewind")

291 write(unit=fout) N,Nres,stats(2),vpin

292 do loop=1,stats(2)

293 write(unit=fout) sav(loop,:)

294 end do

295 close(fout)

296

297 end subroutine wfile

298 '/***#K***\»(***K****»fw*‘%t****rﬁf**K***#K***\»(***K****iﬁ**K**$$X4f**K***#K***\»(***K*

299 subroutine finish()

300

301 lwrite(*,*) "Steps: ",k

302 deallocate(seed, sav, respin)

303

304 end subroutine finish

305 [ Hkkkkkksokkokokoksokokokk ok okkok kool kot kokokok koo ko sk skt sk ko sk kol sk kol sk kot sk ko o

306 end module nmm_sub
307

308 [ HHwkRkkok
309 [HkkRkkKkkKkk

stk sk ko ok sk ok sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk Sk ok sk sk ok sk ok sk ok skok ok ok ok

sk sk sk sk ok ok o ok ok ok ok ok sk sk ok ok sk sk ok ok ok sk sk ok ok sk sk sk ok ok ok sk sk ok ok ks ok ok ok ok ok sk sk sk sk sk sk ok ok ok ok sk ok ok ok sk

310

311 program nmm

312

313 use nmm_var

314 use nmm_sub

315

316 implicit none

317

318 write(*,*) huge(fn)
319 write(*,*) tiny(fn)
320

321 call cpu_time(tstart)
322

323 call init()

324

325 do ipin=1,npin

326

327 30 call initf()
328 do loop=1,nloop
329 call prepf()

330 k=1
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331 do

332 k=k+1

333 call sort()

334 call centroid()

335 Xr = xc + rho*(xc-x(N+1,:))

336 call calcf(fr,xr,.FALSE.)

337 if(f(1)<=fr .AND. fr<f(N)) then

338 X(N+1, :)=xr

339 f(N+1)=fr

340 lwrite(*,*) "Reflection accepted"

341 go to 10

342 else if(fr<f(1)) then

343 XN = XC + chi*(xr-xc)

344 call calcf(fn,xn,.FALSE.)

345 if(fn<fr) then

346 X(N+1, :)=xn

347 f(N+1)=fn

348 lwrite(*,*) "Expansion accepted"

349 go to 10

350 else

351 X(N+1,:)=xr

352 f(N+1)=Fr

353 lwrite(*,*) "Expansion rejected -> Reflection"

354 go to 10

355 end if

356 else if (f(N)<=fr .AND. fr<f(N+1)) then

357 XN = XC + gam*(xr-xc)

358 call calcf(fn,xn,.FALSE.)

359 if(fn<=fr) then

360 x(N+1, :)=xn

361 f(N+1)=fn

362 lwrite(*,*) "Outside contraction accepted"

363 go to 10

364 else

365 !write(*,*) "Outside contraction rejected ->
Shrinkage"

366 call shrinkage()

367 go to 10

368 end if

369 else if(fr>=f(N+1)) then

370 Xn = Xc - gam*(xc-x(N+1,:))

371 call calcf(fn,xn,.FALSE.)

372 if(fn<f(N+1)) then

373 X(N+1, :)=xn

374 f(N+1)=fn

375 !write(*,*) "Inside contraction accepted"

376 go to 10

377 else

378 !write(*,*) "Inside contraction rejected ->
Shrinkage"

379 call shrinkage()

380 go to 10

381 end if

382 end if

383 10 call calcd()

384 Icall show()

385 if(d<=eps) then

386 lwrite(*,*) "Minimum reached: stats(1)",x(1,1),f(1)

387 stats(l)=stats(1)+1

388 exit

389 end if

390 if(mod(k,10)==0) then

391 tmp=0.0 pl18

392 do i=1,N+1

393 do j=1,N

394 tmp=tmp+x(1i,j)

395 end do

396 tmp=tmp+f (1)
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397 end do

398 if (tmp*0.0 pl8 /= 0.0 pl8 .OR. tmp >= 1E99 pl8) then
399 lwrite(*,*) "Detect infinity: stats(4)"
400 stats(4)=stats(4)+1

401 go to 20

402 end if

403 end if

404 if(k>=1000) then

405 lwrite(*,*) "No minimum reached: stats(3)"
406 stats(3)=stats(3)+1

407 go to 20

408 end if

409 end do

410 call sort()

411 Icall show()

412 if(f(1)<=crit) then

413 call calcf(f(1),x(1,:),.TRUE.)

414 if((res(6)<=res(4)) .AND. (res(4)<=res(5))) then
415 lwrite(*,*) "Criterion fulfilled: stats(2)"
416 sav(loop,1:N)=x(1,:)

417 sav(loop,N+1)=f(1)

418 sav(loop,N+2:N+Nres+1) = res

419 stats(2)=stats(2)+1

420 else

421 lwrite(*,*) "Wrong mass order: stats(5)"
422 stats(5)=stats(5)+1

423 end if

424 end if

425 20 if(mod(loop,1000)==0) write(unit=*,fmt='(7(I10,TR1))"') loop,stats
426 end do

427

428 call sortpin()

429 call wfile()

430

431 end do

432

433 call finish()

434

435 call cpu_time(tstop)

436

437 write(*,*) "Time: ", tstop-tstart,"sec
438

439 end program nmm

440

441
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dnmm.f90 1
1 ]****x********x**********************x********x**********************x********x*
2!

3 ! file: dnmm.f90
4 | Data Processing for Nelder Mead Method
5 !/
6 ! Modified Model, CP-invariance, nonzero thetal3
7!
8 ! constants: vOt,vct,r0,y2
9 ! parameters: rc,MO,M1,M2,M4,y3
10 ! res values:
chi2, chi2m, chi2a, mass1,mass2,mass3,dm2atm, dm2sol, mbb,R,epsilo, sin213,sin2sol, sin2atm

i; '/****X********X**********************X********X**********************X********X*
13
14 module dnmm var
15
16 implicit none
17 integer,parameter :: fin=11,fout=12,pl8=selected_real_kind(p=18)

18 integer :: i,j,ipin,N,Nres,stats2,npin=10
19 real(kind=p18),parameter :: critpin=1.0E-2 pl8

20 real(kind=p18) :: vpin
21 real(kind=p18),dimension(:,:),allocatable :: sav,respin
22 character(len=4) :: nstr
23
24 end module dnmm_var
;Z '/****x********x**********************x********x**********************x********x*
27 '/****X********x**********************X********x**********************X********x*
28
29 module dnmm_sub
30
31 use dnmm_var
32
33 contains
34 RRkkkskkokokkokkokskskokokok koo skskoksk sk okokkk ki sk sk ko ksksk ki sk sk sk ok kskskskokskk ko sk skskskokskok ok ok skskskok sk ok ok ok k sk sk ok ok ok
35 subroutine readin()

36
37 write(unit=nstr,fmt="'(I4.4)") ipin
38 open(unit=fin, file="data/nmm-" // nstr //

".dat",status="old",action="read", form="unformatted",position="rewind")

39 read(unit=fin) N,Nres,stats2,vpin
40 allocate(sav(1l:stats2,1:N+Nres+1))

41 do i=1,stats2
42 read(unit=fin) sav(i,:)

43 end do
44 close(fin)

45
46 end subroutine readin
47 j****X********X**********************X********X**********************X********X*
48 subroutine init()

49
50 allocate(respin(1l:npin,1:N+Nres+2))

51
52 end subroutine init
53 '/****K********X**********************K********X**********************K********X*
54 subroutine find()

55
56 if(stats2==0) then
57 write(*,*) " ipin = ",ipin,": No data"

58 respin(ipin, 1:N+Nres+1)=0
59 respin(ipin,N+Nres+2)=vpin
60 end if
61 do i=1,stats2
62 if((sav(i,N+1+3)/sav(i,N+1+1) <= critpin) .AND.

(sav(i,N+1+3)/sav(i,N+1+2) <= critpin)) then

63 respin(ipin,1:N+Nres+l)=sav(i,:)

64 respin(ipin,N+Nres+2)=vpin
65 write(unit=*,fmt='(TR1,I110,I110,110,ES14.3)")
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ipin,i,stats2,vpin

66
67
68
69
70
71
72
73
74
75

end if

exit

if(i==stats2) then

end if
end do

end subroutine find

write(*,*) " ipin = ",ipin,":

respin(ipin,1:N+Nres+1)=0

respin(ipin,N+Nres+2)=vpin

Nothing found"

T Irkrkskkckkokokkkkkkok ko kkok ko sokoR ok Rk sk Rk sk Rkt skoR sk kR kR sk Rk kR sk kR SRk Rk sk kR sk ok ok

77
78
79

subroutine wdata()

open(unit=fout, file="data/nmm-" // nstr //

".txt",status="replace",action="write", form="formatted",position="rewind")
write(unit=fout, fmt="(" rc

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

write(unit=fout, fmt="'(ES26.18,TR1)"',advance='no') sav(i,j)
end do

105
106

107
108
109
110
111

write(unit=fout, fmt=
write(unit=fout, fmt=
write(unit=fout, fmt=
write(unit=fout, fmt=
write(unit=fout, fmt
write(unit=fout, fmt=
write(unit=fout, fmt=
write(unit=fout, fmt
write(unit=fout, fmt
write(unit=fout, fmt
write(unit=fout, fmt
write(unit=fout, fmt=
write(unit=fout, fmt=
write(unit=fout, fmt=
write(unit=fout, fmt=
write(unit=fout, fmt
write(unit=fout, fmt:
write(unit=fout, fmt
write(unit=fout, fmt
write(unit=fout, fmt
write(unit=fout, fmt

do i=1,stats2

" MO
" M1

" M2

" M4

" y3

" Chin2
" Chi”2m
" Chi~2a

(
(
(
(
(
(
(
(
(
(" massl
(" mass2
(
(
(
(
(
(
(
(
(
(

" mass3
" dm2atm
" dm2sol
" mbb

" R

epsilo
" sin213

vpin

do j=1,N+Nres+1

if(sav(i,11)/=0.0 pl8)

if(sav(i,11)/=0.0 p18)
write(unit=fout, fmt="'(ES26.18,TR1)"',advance='no') vpin
write(unit=fout, fmt=*)

end do
close(fout)

end subroutine wdata

" Chi~2pin

" sin2sol
" sin2atm

")*',advance="'no
")',advance="'no"
")',advance='no"
")',advance="'no
")',advance='no
")',advance="'no
")',advance='no"'
")',advance="'no"
")',advance='no"'
")*',advance="'no"
")',advance="'no"
")*',advance="'no"
")',advance="'no
")*',advance="'no
")',advance="'no
")*',advance="'no
")',advance="'no
")*',advance="no
")',advance="'no"
")',advance='no"'
")',advance="'no"
")",advance='yes

B R e S P R

113
114
115

116
117
118
119
120
121
122
123
124
125
126
127
128

subroutine wpindata()

)

open(unit=fout, file="pin.txt",status="replace",action="write", form="formatted"
,position="rewind")

write(unit=fout, fmt
write(unit=fout, fmt
write(unit=fout, fmt
write(unit=fout, fmt
write(unit=fout, fmt
write(unit=fout, fmt
write(unit=fout, fmt
write(unit=fout, fmt
write(unit=fout, fmt
write(unit=fout, fmt
write(unit=fout, fmt=
write(unit=fout, fmt="
write(unit=fout, fmt="

( rc
(" Mo
(" M1
(" M2
(" M4
(" y3
(" Chi~2

(

(

(

(

(

(

" Chi”2m
" Chi~2a

massl
" mass2
" mass3

" Chi~2pin

")',advance="'no"
")',advance='no"'
")*',advance="'no"
")',advance="'no"
")",advance='no"’
")',advance="'no
")*',advance="'no
")',advance="'no
")*',advance="'no
")',advance="'no
")*',advance="no
")',advance="'no
")',advance='no"

)
)
)
)
)
)
)
)
)

)
)
)
)
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dnmm.f90
129 write(unit=fout, fmt="("
130 write(unit=fout, fmt="("
131 write(unit=fout, fmt="("
132 write(unit=fout, fmt="("
133 write(unit=fout, fmt="("
134 write(unit=fout, fmt="("
135 write(unit=fout, fmt="("
136 write(unit=fout, fmt="("
137 write(unit=fout, fmt="("
138 do ipin=1,npin
139 do j=1,N+Nres+2
140
write(unit=fout, fmt="'(ES26.18,TR1)"',advance='no') respin(ipin,j)
141 end do
142 write(unit=fout, fmt=*)
143 end do
144 close(fout)
145
146 end subroutine wpindata
147
148 subroutine finish()
149
150 deallocate(respin)
151
152 end subroutine finish
153
154
155 end module dnmm_sub
156
157
158
159
160 program dnmm
161
162 use dnmm_var
163 use dnmm_sub
164
165
166 write(unit=*,fmt="(" npin = ")',advance='no')
167 read(*,*) npin
168
169 do ipin=1,npin
170 call readin()
171 if(ipin==1) call init()
172 Icall wdata()
173 call find()
174 deallocate(sav)
175 end do
176 call wpindata()
177 call finish()
178
179 end program dnmm
180

181

if(respin(ipin,11)/=0.0 p18)

dm2atm
dm2sol

mbb

R

epsilo
sin213
sin2sol
sin2atm
vpin

)
)
)
)
)
)
)
)
)

,advance='no"
,advance='no")
,advance='no")
,advance='no")
,advance='no")
)
)
)

,advance='no"'
,advance='no
,advance='no
,advance='yes"')

1 sk stk ok o ok ok ok sk sk sk sk ok o o ok ok sk sk sk sk sk ok ok sk ok sk sk sk sk sk ok ok sk sk sk sk sk s ook sk sk sk sk sk sk ko sk sk sk sk sk sk sk stk o R ok ok ok sk sk sk sk ok ok

1 stttk s ok ok sk sk sk stk sk sk ook sk sk sk sk sk sk sk sk ok sk ok sk sk sk sk stk o ok ok sk sk sk stk s ok ok sk sk sk sk sk sk sk ko sk sk sk sk sk sk sk stk ok sk k sk sk sk sk sk ok ok

13K 3K ok o o koK ok oK ok oK oK 3 o K K oK oK 5K oK oK o K 3K KoK oK 5K oK 3 o K 3K oK oK oK 3K o 3 K oK 3K oK oK oK 3 o K K ok 5K oK oK ok o 3 K ok ok oK oK oK oK o K ok ok ok oK oK o o kK ok oK ok oK

I kokokokskksk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk ok sk ok sk ok sk sk sk ok sk sk sk ok sk sk sk sk ok ok ok
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A.3 Program for fine-tuning properties

nmm3finetune.nb 1

In[80]:= Clear["Global ‘x"]

In[81]:= MVdm2atm = 2.4*-3
SDdm2atm = 0.12*~-3
MVdm2sol = 7.65%*-5
SDdm2so0l = 0.23**-5

out [81]= 0.0024

out [82]= 0.00012

out [83]=0.0000765

out [84]= 23x107

In[85]:= str = OpenRead|["nmm.txt"]
out [85]= InputStream[nmm.txt, 16]

In[86]:= SetStreamPosition[str, 0];
Read[str, String]
start = StreamPosition[str];

out[87]= rc MO Ml M2 M4
y3 Chir2 Chi"2m Chi*2a massl
mass2 mass3 dm2atm dm2sol mbb
R epsilo sin213 sin2sol sin2atm

In[89]:= SetStreamPosition[str, start];
datal = SetPrecision[ReadList[str, Real, 18], 19]

out [90]=1{0.0009504318008238979248, —1.100141136440566817 x 10", 7.105865183385642507 x 10'8,

3.744470897331724208 x 10, —5.750681316081949160 % 10'®, —1.750449985696605240 x 1077,
2.168436609718819464, 0.00002414827643799047893, 2.168412461442381474, 0.002131161213549920478,
0.009002220644959019749, 0.04904205743944022251, 0.002400581549775214504, 0.00007649812842238681975,

0.004421521419944718966, 0.2436637358659582784, 0.0009504315146425089665, 1.505533326711212685x 1077}

In[91]:= Vrc =datal[[1]
VMO = datal[[2]
VM1 = datal[[3]
VM2 = datal[[4]
VM4 = datal[[5]
Vy3 =datal[[6]

1

1

1

1

1

1

out [91]= 0.0009504318008238979248
out [92]= —1.100141136440566817 x 10
out [93]= 7.105865183385642507 x 10'®
out [94]= 3.744470897331724208 x 10'®
out [95]= —5.750681316081949160 % 10"

out[96]= —1.750449985696605240 x 10~7
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nmm3finetune.nb

In[97]:=

SetStreamPosition[str, start]

Find[str, "Constants"];

StreamPosition[str];

Skip[str, String];

Read[str, String]

data2 = SetPrecision[ReadList[str, Real, 4], 19]

out[97]= 541

Out [101]

Out [102]

In[103]:

Out [103]

Oout [104]

Out [105]

Oout [106]

In[107]:

In[108]:

Oout [108]

In[109]:

In[110]:

In[115]:

In[116]:

vOt vet 10 y2

{1.700000000000000000 x 10'", 2.000000000000000000 x 10%, 0, 0.001000000000000000000}

vOt = data2[[1]]
vct = data2[[2]]
r0 = data2[[3]]
y2 = data2[[4]]

1.700000000000000000 x 10'!

2.000000000000000000 x 107

0

0.001000000000000000000

detM = SetPrecision|
(MO+2M1) ((MO-M1)*2%xy3*2%xvect*2- ((MO-M1) xM4 -3M2xM3)~2) /. M3 >M2, 19];

MN2 = y3%2*vct”*2

4.000000000000000000 x 10°° y32

replxzyt = SetPrecision|
({x-> ((MO*2-M172) % (MN2 -M4"2) + (4%MO +2%xM1) *M2+*M3xM4 - 3xM2°2xM3"2) /detM,
z- ((MLA2-MO*ML)  (MN2 -M4~2) + (MO - 4 +ML) xM2 M3 xM4 - 3M242 xM3~2) /detM,
y- ((MO+2xM1) +M2~2xy3*vct) /detM,
t-> ((MO+2M1) *xM3%2xy3*vct) /detM}) /. M3 >M2, 19];

massl =
SetPrecision[Abs[-y272*v0t*2% (1 +I*x0)/ (1+xr0°2) % (x+3y-2)] /. replxzyt, 20];
mass2 = SetPrecision[Abs[-y242%*v0t*2% (1 +I%x0)/ (1+r072) x (x+22z)] /. replxzyt,
20];
mass3 = SetPrecision[Abs[-y242*v0t*2% (1 +Ixx0)/ (1+r0%2) *x (x-3y-2)] /. replxzyt,
20];
dm2atm,= mass3%2 -massl”*2;
dm2sol = mass2”2 -massl”*2;

chi2m[MO_, M1_, M2_, M4_, y3_] =
(dm2atm - MVdm2atm) A2 / SDdm2atm*2 + (dm2sol - MVdm2sol) ~2 / SDdm2sol*2;

<< Graphics ‘Graphics®
<< Graphics ‘Legend"’
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nmm3finetune.nb 3

In[118]:=
pl = Plot[{chi2m[x » VMO, VM1, VM2, VM4, Vy3], chi2m[VMO, x % VM1, VM2, VM4, Vy3],

chi2m[VMO, VM1, x * VM2, VM4, Vy3], chi2m[VMO, VM1, VM2, x %VM4, Vy3],
chi2m[VMO, VM1, VM2, VM4, x*Vy3]}, {x, 0.995, 1.005},

PlotStyle » {{RGBColor[1l, 0, 0]}, {RGBColor[0O, 1, 0]}, {RGBColor[O, O, 1]},

{RGBColor[1l, 0, 1]}, {RGBColor[0, 1, 1]}}, AxesLabel » {x, x2_ 1},

PlotLegend -» {"M;", "M;", "Mp;", "M;", "y3"}, LegendOrientation - Horizontal,

LegendPosition - {-0.43, -0.9}, LegendShadow - {.01, -.01}, LegendSpacing - .6]

X2n

60

0.996

Mo My My My Y3

Out[118]=
- Graphics -

In[119]:=
Export["nmm3finetune.eps", pl, "EPS", ImageSize » {500, Automatic}]

Out[119]=
nmm3finetune.eps



Software

The following software was used for programming, data analysis and creating fig-
ures:

e 295 - version 0.91 (March 2008)
Fortran Compiler implementing the Fortran 95 standard,
http://www.g95.0rg/

e Mathematica - version 5.2
Computational software program,
Wolfram Research, Inc.,
http://www.wolfram.com/

e gnuplot - version 4.2 patchlevel 2
Command-line driven graphing utility,
http://www.gnuplot.info/

e Xfig - version 3.2 patchlevel 5
Vector graphics editor,
http://www.xfig.org/

o feynMP

KETEX tool to draw Feynman graphs,
http://osksn2.hep.sci.osaka-u.ac.jp/ taku/osx/feynmp.html
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Zusammenfassung

Der direkte Vergleich zwischen Theorie und Experiment ist ein Grundpfeiler der
wissenschaftlichen Methode. Fiir jeden Physiker ist es ein spannender Augenblick
wenn theoretische Vorhersagen auf Resultate von experimentellen Beobachtun-
gen treffen, um entweder Ubereinstimmung oder widerspriichliche Ergebnisse zu
Tage zu fordern. Heutzutage eroffnet die Teilchenphysik ein weites Betatigungs-
feld mit bahnbrechenden Entwicklungen auf theoretischer und experimenteller
Ebene. Auch das relativ junge Teilgebiet der computergestiitzten Physik leistet
einen wichtigen Beitrag, der Einsatz von leistungsfahigen Rechnern schreitet immer
weiter voran. In den letzten Jahren wurde speziell der Lepton-Sektor zu einer Spiel-
wiese fiir die Entwicklung neuer theoretischer Modelle, angespornt durch die Ent-
deckung der Neutrinooszillationen, Beitrage zur Frage der Dunklen Materie und
Hinweise auf Neue Physik. Basierend auf dem Standardmodell der Teilchenphysik
wurden bereits eine Vielzahl von Techniken und Erweiterungen untersucht, um
Eigenheiten der Neutrinos zu erklaren, darunter etwa diskrete Symmetriegruppen
oder der seesaw-Mechanismus, bis hin zu Modellen zur Groflen Vereinheitlichung
(GUT). Das steigende Interesse an der Neutrinophysik fithrt auch zu einer wach-
senden Zahl an Experimenten iiber solare, atmospharische und Reaktor-Neutrinos,
wodurch die Genauigkeit der Messwerte weiter zunimmt und theoretische Modelle
mit diesen konfrontiert werden konnen.

Im Sinne der einleitenden Worte behandelt die vorliegende Arbeit Methoden,
um Theorie und Experiment zu vergleichen, auch wenn ein komplizierter Zusam-
menhang zwischen Modellparametern und daraus zu berechnenden Observablen
besteht. Die Analyse beruht dabei auf numerischen Verfahren, die anhand eines
Modells zur tri-bimaximalen Mischung und dessen Modifikationen getestet wer-
den. Zu Beginn werden die wichtigsten Eigenschaften des Standardmodells wieder-
holt und grundlegende Erweiterungen, wie Majorana-Neutrinos oder der seesaw-
Mechanismus diskutiert. Darauf aufbauend werden verschiedene Phénomene der
Neutrinophysik beschrieben, beispielsweise Neutrinooszillationen und der neutri-
nolose doppelte Beta-Zerfall. Die neueren experimentellen Ergebnisse dazu werden
ebenfalls bereitgestellt. Danach folgt ein thematischer Wechsel zu den verwende-
ten numerischen Methoden. Es wird die y?-Funktion als Beurteilungskriterium
eingefithrt, das die Ubereinstimmung zwischen Modellvorhersagen und Messwerten
quantifiziert. Es entspricht dann das Minimum dieser Funktion der bestmoglichen
Anpassung zwischen Theorie und Experiment. Abhéngig der Komplexitat des un-
tersuchten Modells ist eine analytische Minimierung mitunter nicht moglich, sodass



man auf den Einsatz von numerischen Methoden angewiesen ist. Daher wird das
sogenannte Nelder-Mead Verfahren und die Fortran-Implementation ausfiihrlich
beschrieben, die bei der Analyse der getesteten Modelle zur Anwendung kom-
men. Als Ausgangspunkt dient dabei ein Modell fiir tri-bimaximale Mischung, das
um C'P-Erhaltung und zuséatzliche spontane Symmetriebrechung erweitert wird.
Schliefllich werden die Resultate der numerischen Verfahren prasentiert.

Ein wesentlicher Bestandteil der vorliegenden Arbeit war die Erstellung und An-
wendung des Nelder-Mead Programms. Daher wird der Quellcode im Anhang
bereitgestellt.
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