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Chapter1
Introduction

The confrontation between theory and experiment is one of the basic ingredients
of the scientific method. It is a thrilling moment for every physicist when theoret-
ical predictions face experimental observations and either consistency or diverging
results are brought to light. Todays particle physics offers a wide field of activity
with new developments regarding theoretical, experimental and also computational
aspects. Especially the lepton sector with the discovery of neutrino oscillations,
implications on dark matter and hints of new physics has become a playground
for model building over the last decades. Often based on the Standard Model
numerous techniques and extensions were investigated, e.g. discrete symmetries,
the seesaw mechanism or even grand unification, to find an accurate description
of neutrino phenomena. Rising interest in neutrino physics also provides us with
frequently renewed measurement data since more and more collaborations are re-
searching solar, atmospheric or reactor neutrinos. This allows to test if model
predictions are compatible with combined experiment data.

Referring to the introductory statement the present work describes methods to
compare theory with experiment even in the presence of involved dependencies on
model parameters and calculated observables therefrom. The analysis relies on
numerical techniques which will be tested on a model for tri-bimaximal mixing
and its modifications. This thesis is organized as follows. Chapter 2 gives an
overview of the Standard Model and its basic extensions in the lepton sector,
e.g. Majorana neutrinos and the seesaw mechanism. Chapter 3 then focuses on
neutrino phenomena like neutrino oscillations and provides the current data for
mixing angles and mass squared differences. Chapter 4 introduces a figure of
merit function which allows to quantify the agreement between model predictions
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10 1. INTRODUCTION

and measurement data. The best possible match is obtained by minimization of
the function. Depending on the model this task may only be accomplished by
application of numerical tools. Thus, the Nelder-Mead method, a procedure for
non-linear optimization problems applicable also in higher dimensions, is presented
and its Fortran implementation detailed. In Chapter 5 two models extending the
Standard Model in the lepton sector with additional right-handed neutrinos are
reviewed. First, the model for tri-bimaximal mixing found by Grimus and Lavoura
[1] is discussed, followed by a modification thereof employing CP invariance and
additional spontaneous symmetry breaking. These two models are put to test with
the described numerical techniques and the results are presented in Chapter 6.

A major aspect of this work is to develop the program which includes the min-
imization via the Nelder-Mead procedure. The source code is provided in the
appendix and allows future application to more elaborate models.



Chapter2
The Standard Model and its extensions in

the lepton sector

During the last decades there has been an enormous progress in both experimental
and theoretical particle physics. One of the greatest achievements was the discov-
ery of what we call today the Standard Model of elementary particle physics, which
is still a very accurate description of particles and their interactions. But it would
not be physics if there were not some details missing and indeed experiments gave
results that lack an explanation by the Standard Model (SM). Neutrinos in the
SM are described as massless particles, a fact that can not be brought into ac-
cordance with experimental data of neutrino oscillations. Today there is a great
variety of models, many of them based on the SM, which imply new features like
massive neutrinos. In this chapter we will first recapitulate the most important
characteristics of the SM (see also [2, 3]) and in the second part discuss the basic
extensions in the lepton sector.

2.1 The Standard Model

The SM is a quantum field theory based on the non-abelian gauge group SU(3)C×
SU(2)I×U(1)Y . The three Lie groups in the direct product represent color charge,
weak isospin and weak hypercharge respectively. Because this work deals with
models concerning only the lepton sector, the SU(3)C gauge invariance is not
discussed in detail. Unlike quarks, leptons do not carry any color charge and

11



12 2. THE STANDARD MODEL AND EXTENSIONS

therefore are not affected by strong interaction. We shall now concentrate on the
remaining symmetries and particles.

2.1.1 The GWS model of electroweak interaction

Ignoring the SU(3)C color symmetry one gets a model for electroweak interactions
based on the remaining gauge group SU(2)I ×U(1)Y first discovered by Glashow,
Weinberg and Salam [4, 5, 6]. It contains spin 0, 1

2
and 1 fields organized in

different multiplets and generations as follows:

• 3 left-handed quark1 doublets (spin 1
2
)

Q
(d)
0L =

(
u0L

d0L

)
, Q

(s)
0L =

(
c0L

s0L

)
, Q

(b)
0L =

(
t0L
b0L

)
, (2.1)

• 3 left-handed lepton doublets (spin 1
2
)

L
(e)
L =

(
νeL
eL

)
, L

(µ)
L =

(
νµL
µL

)
, L

(τ)
L =

(
ντL
τL

)
, (2.2)

• 6 right-handed quark singlets (spin 1
2
)

u0R , c0R , t0R , d0R , s0R , b0R, (2.3)

• 3 right-handed lepton singlets (spin 1
2
, note the missing right-handed neutrino

fields)
eR , µR , τR, (2.4)

• 4 gauge boson fields corresponding to the generators of SU(2)I and U(1)Y
respectively (spin 1)

W a
µ , a = 1, 2, 3 and Bµ, (2.5)

• 1 scalar Higgs doublet (spin 0)

Φ =

(
φ+

φ0

)
. (2.6)

1The subscript “0” indicates that the quark fields listed here are preliminary fields, which will
be transformed into physical ones (mass eigenfields) in chapter 2.1.2.



2.1. The Standard Model 13

These fields contribute to the total Lagrangian of the GWS model, which is in-
variant under the following SU(2)I gauge transformation.

SU(2)I :





Ψ → UΨ for all doublets
Ψ → Ψ for all singlets

W a
µ
τa

2
→ UW a

µ
τa

2
U−1 + i

g
(∂µU)U−1

Bµ → Bµ

(2.7)

This transformation, where U ∈ SU(2)I , acts on all doublets and the three gauge
bosons corresponding to the weak isospin. The second gauge group U(1)Y gives
multiplication with different phase factors.

U(1)Y :





Ψ → e−iα
1
2
Y Ψ

W a
µ → W a

µ

Bµ → Bµ + 1
g′
∂µα

(2.8)

The real number Y denotes the weak hypercharge, which can be chosen indepen-
dently to a large degree for every field. In the GWS model the weak hypercharge
is correlated with the weak isospin and the electric charge by

Q = I3 +
1

2
Y. (2.9)

A list of all these quantities is provided in Table (2.1).

Q
(d,s,b)
0L L

(e,µ,τ)
L u0R, c0R, t0R d0R, s0R, b0R eR, µR, τR Φ

I3




+1
2

−1
2







+1
2

−1
2


 0 0 0




+1
2

−1
2




Y




+1
3

+1
3






−1

−1


 4

3
−2

3
−2




+1

+1




Q




+2
3

−1
3







0

−1


 2

3
−1

3
−1




+1

0




Table 2.1: List of weak isospins, weak hypercharges and electric charges of fields
contained in the GWS model.

We may now write down the Lagrangian for the GWS model as a sum of the
fermion, gauge boson, Higgs and Yukawa terms:

LGWS = Lfermion + Lgauge + LHiggs + LYukawa (2.10)
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Each part is individually SU(2)I ×U(1)Y gauge invariant. The first term contains
the kinetics of all fermions and their couplings to the gauge bosons:

Lfermion =
∑

q=d,s,b

Q
(q)
0Liγ

µDµQ
(q)
0L +

∑

l=e,µ,τ

L
(l)
L iγ

µDµL
(l)
L +

+
∑

q=d,s,b,u,c,t

q0Riγ
µDµq0R +

∑

l=e,µ,τ

lRiγ
µDµlR.

(2.11)

Here we used the covariant derivative Dµ, which is different for doublets and
singlets and varies also with different weak hypercharges.

Dµ = ∂µ + igW a
µI

a + i
1

2
Y g′Bµ (2.12)

The term with the SU(2)I gauge bosons contributes only for the doublets.

Ia =

{
τa

2
for SU(2) doublets

0 for SU(2) singlets
(2.13)

The second term in the total Lagrangian is the kinetic term for all four gauge
bosons.

Lgauge = −1

4
W a
µνW

aµν − 1

4
BµνB

µν (2.14)

The tensor fields W a
µν and Bµν are defined by the relations:

W a
µν = ∂µW

a
ν − ∂νW a

µ − gεabcW b
µW

c
ν (2.15)

Bµν = ∂µBν − ∂νBµ. (2.16)

Comparing these two definitions one finds an additional term proportional to W 2

in the first line. The reason lies in SU(2)I being a non-abelian group resulting in
self-interaction of related gauge bosons. The structure constants of SU(2)I also
enter at this point.

The Higgs Lagrangian comprises the kinetic term and the potential of the scalar
doublet Φ.

LHiggs = (DµΦ)† (DµΦ)− µ2Φ†Φ− λ
(
Φ†Φ

)2
(2.17)

Together with the Yukawa Lagrangian

LYukawa =−
∑

q=d,s,b
q′=d,s,b

Γqq′Q
(q)
0LΦq′0R −

∑

q=d,s,b
q′=u,c,t

∆qq′Q
(q)
0LΦ̃q′0R

−
∑

l=e,µ,τ

γlL
(l)
L ΦlR + H.c.

(2.18)
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these terms are essential for the mass creation in the GWS model since all the
masses of fermions and bosons are generated via spontaneous symmetry breaking
(SSB) of SU(2)I×U(1)Y → U(1)em. In order to get all allowed Yukawa interaction
terms one defines the conjugate scalar doublet Φ̃.

Φ̃ := iτ2Φ∗ = i

(
0 −i
i 0

)(
φ+∗

φ0∗

)
=

(
φ0∗

−φ−
)
→ Y (Φ̃) =

(
−1
−1

)
(2.19)

We have now listed all terms constructing the GWS model before the symmetry
breaking Higgs mechanism. In the next chapter the focus will lie on the mass
generation and the physical fields in the Standard Model.

2.1.2 Higgs mechanism

So far there have been no mass terms in the GWS-Lagrangian, neither for the
fermions nor for the gauge bosons. Simply adding mass terms would destroy the
gauge invariance in both cases. One possible procedure to get massive fermions
and bosons despite these difficulties was introduced by Peter Higgs [7, 8, 9, 10,
11, 12]. The so called Higgs-mechanism breaks the SU(2)I × U(1)Y symmetry
spontaneously to one remaining U(1)em symmetry and creates the desired masses.
The essence of this process lies in the form of the Higgs potential V

V (Φ) = µ2Φ†Φ + λ
(
Φ†Φ

)2
(2.20)

where the constant µ2 is assumed to fulfill

µ2 < 0. (2.21)

Searching for the minimum of the potential one finds the relation

dV (Φ)

d (Φ†Φ)
!

= 0⇒
√

Φ†Φ =

(
−µ

2

2λ

) 1
2

=:
1√
2
v (2.22)

which constrains the four parameters of the complex vector Φ. To obtain a min-
imum we can choose three parameters freely, the last one is then fixed by (2.22).
Evidently this leads not to a single, but to a continuous set of minima of the
Higgs potential. The vacuum state (which is the state minimizing the potential) is
therefore degenerate and the choice of one particular Φ fixes the gauge and hides
the original SU(2)I × U(1)Y symmetry. In addition the Higgs field is shifted to a
physical field whose vacuum expectation value vanishes. One can now eliminate
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three of four real components of the doublet of complex scalar fields by an appro-
priate choice of the gauge. A useful convention is the unitary gauge, which leaves
a real scalar field h in the φ0 component.

Φ =

(
σ+ + iη+

σ0 + iη0

)
SSB−−−−−−−→

unitary gauge

1√
2

(
0

v + h

)
= Φu (2.23)

The spontaneous symmetry breaking has now effects on various parts of the GWS-
Lagrangian.

Higgs mass

Upon SSB the Higgs doublet is transformed into a real scalar field with mass and
self-interaction terms.

(∂µΦ)† (∂µΦ)− V (Φ) SSB−−→ 1

2
(∂µh) (∂µh)− λv2h2

(
1 +

1

2v
h
)2

+
λv4

4
(2.24)

The Higgs mass is therefore

m2
h = 2λv2. (2.25)

Gauge boson masses

Since the Higgs mechanism breaks a symmetry with 4 generators down to one
U(1)em symmetry three gauge bosons gain masses. The mass eigenstates are not
the initial gauge fields W a

µ and Bµ but fields rotated by the following prescription:

W±µ =
1√
2

(
W 1
µ ∓ iW 2

µ

)
(2.26)

(
Zµ
Aµ

)
=

(
cos ϑw − sin ϑw
sinϑw cosϑw

)(
W 3
µ

Bµ

)
. (2.27)

While W± and Z bosons are now massive fields, the photon A stays massless
and represents the electromagnetic U(1)em symmetry. The weak angle ϑw may be
expressed in terms of the couplings g and g′.

cos ϑw =
g√

g2 + g′2
sin ϑw =

g′√
g2 + g′2

(2.28)

The electromagnetic charge associated with the unbroken generator Q is now

e = g sin ϑw. (2.29)
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The kinetic term of the Higgs-Lagrangian comprises the kovariant derivative and
therefore the gauge fields. Applying the Higgs mechanism leads to mass terms and
interactions with the scalar Higgs field h:

Φ†
(
−igW a

µ

τa

2
− i1

2
YΦg

′Bµ

)(
igW a

µ

τa

2
+ i

1

2
YΦg

′Bµ

)
Φ

SSB−−−−−−−→
physical fields

1

4
g2v2W+

µ W
−µ
(

1 +
h

v

)2

+
1

8

(
g2 + g′2

)
v2ZµZ

µ

(
1 +

h

v

)2

. (2.30)

The masses of the physical gauge fields are

m2
W± =

1

4
g2v2 , m2

Z =
1

4

(
g2 + g′2

)
v2 , m2

A = 0. (2.31)

The masses of the W and Z bosons are related by the weak angle:

m2
W±

m2
Z

=
g2

g2 + g′2
= cos2 ϑw. (2.32)

Fermion masses

As previously mentioned, fermion masses cannot be created by simple addition
of mass terms because of gauge invariance. Anyway, the Yukawa-Lagrangian to-
gether with the Higgs mechanism is capable of generating masses. After SSB the
Lagrangian contains Yukawa couplings with the scalar h as well as terms quadratic
in the fermion fields proportional to the vacuum expectation value v. The later
may be used to form mass terms for all fermions except for the neutrinos.2

LYukawa =− 1√
2

(v + h)
(
d0L s0L b0L

)



Γdd Γds Γdb
Γsd Γss Γsb
Γbd Γbs Γbb






d0R

s0R

b0R




− 1√
2

(v + h)
(
u0L c0L t0L

)



∆uu ∆uc ∆ut

∆cu ∆cc ∆ct

∆tu ∆tc ∆tt






u0R

c0R

t0R




− 1√
2

(v + h)
∑

l=e,µ,τ

γllLlR + H.c.

(2.33)

2One could argue at this point that no Yukawa coupling matrices comparable to Γ and ∆ are
introduced in the lepton sector. It is not necessary to write down a non-diagonal matrix γ 6=
diag(γe, γµ, γτ ) since no physical consequences arise from this generalization as long as no right-
handed neutrino fields are present. A possible mixing matrix resulting from the diagonalization
of a charged-lepton mass matrix (comparable to (2.36)) can be absorbed into the left handed
neutrino fields in the charged current term (2.87) of the Lagrangian.
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One can now easily read off the masses of the charged leptons:

ml =
1√
2
vγl , l = e, µ, τ . (2.34)

The quark mass matrices Γ and ∆ are in general not diagonal, so the quark fields
until now where not mass eigenstates. Fortunately there is a procedure which
allows us to bring the mass matrices in a positive, diagonal form.

Theorem. Let M be an arbitrary non-singular complex matrix, then M can al-
ways be decomposed as

M = UMV† (2.35)

where U ,V are unitary andM is a diagonal and positive matrix.

The diagonal elements ofM are the singular values and the whole procedure there-
fore called singular value decomposition or bi-unitary diagonalization. Applying
this to our problem gives:

v√
2

Γ = UdMdV†d and
v√
2

∆ = UuMuV†u. (2.36)

The quark masses are now contained in the diagonal mass matrices

Md =



md 0 0
0 ms 0
0 0 mb


 and Mu =



mu 0 0
0 mc 0
0 0 mt


 (2.37)

while the unitary matrices are absorbed into the quark fields by definition of the
physical mass eigenfields.



dL
sL
bL


 := U †d



d0L

s0L

b0L






dR
sR
bR


 := V†d



d0R

s0R

b0R


 (2.38)



uL
cL
tL


 := U †u



u0L

c0L

t0L






uR
cR
tR


 := V†u



u0R

c0R

t0R


 (2.39)

This results in the quark mass terms:

Lquark
mass = −

(
uL cL tL

)
Mu



uR
cR
tR


−

(
dL sL bL

)
Md



dR
sR
bR


+ H.c. (2.40)

By now we have depicted the generation of all particle masses in the GWS model.
We will continue describing the physical effects of the quark mixture in the next
section.
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2.1.3 Charged currents and CKM matrix

The unitary matrices Uu and Ud introduced before play an important role in the
charged current terms of the GWS Lagrangian.

Lquark
CC = − g√

2

(
u0L c0L t0L

)
γµ



d0L

s0L

b0L


W+

µ + H.c. (2.41)

Expressing this in terms of mass eigenfields yields

Lquark
CC = − g√

2

(
uL cL tL

)
γµ U †uUd︸ ︷︷ ︸

:=UCKM



dL
sL
bL


W+

µ + H.c. . (2.42)

The combination of Uu and Ud that appears at this point is defined as the famous
Cabbibo-Kobayashi-Maskawa matrix UCKM [13, 14]. Naturally the CKM matrix is
unitary itself and thus allows a simple parametrization [15]. Consider an arbitray
unitary matrix A fulfilling A†A = 1. The unitarity constraint in index notation
gives

3∑

j=1

(A†)ijAjk =
3∑

j=1

A∗jiAjk = δik. (2.43)

These are 3 real (i = k) and 3 complex (i 6= k) equations for the 9 complex
entries giving a total of 18 − 3 − 3 · 2 = 9 independent real elements. Con-
ventionally one chooses a parametrization with 3 angles and 6 phases. 5 of 6
phases can be absorbed into the quark fields by redefinition. Finally we end up
with a unitary matrix UCKM with 4 parameters commonly parametrized as follows
(sij := sin ϑij ,cij := cosϑij):

UCKM = U23U13U12

=




1 0 0
0 c23 s23

0 −s23 c23







c13 0 s13e
−iδCP

0 1 0
−s13e

iδCP 0 c13






c12 s12 0
−s12 c12 0

0 0 1




=




c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13

s12c23 − c12s23s13e
iδCP −c12c23 − s12s23s13e

iδCP c23c13


 .

(2.44)

Note that it is not possible to eliminate the last phase δCP in the present case
of 3 quark generations [14]. Also a non-zero phase is the only possibility for a
complex UCKM and thus is responsible for CP violating processes in weak interac-
tions. The whole procedure here, starting from Yukawa couplings, then applying
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the bi-unitary diagonalization and ending up with the quark mixing matrix, was
motivated by S. Glashow, J. Iliopoulos and L. Maiani [16] who suggested an ad-
ditional fourth quark c to u, d and s known at the time. In the GIM model they
introduced two doublets containing the four quarks and the well-known Cabbibo
angle

Q
(d)
L =

(
uL

dL cosϑC + sL sin ϑC

)
Q

(s)
L =

(
cL

−dL sin ϑC + sL cosϑC

)
(2.45)

where the mixture of d and s was set by hand. This way they solved the problem of
flavour changing neutral currents appearing in the three quark predecessor model,
which led to wrong predictions, e.g. in K+ decays. A different approach to the
quark mixture is via the diagonalization of the mass matrix depicted in the previous
chapter. In the GIM model this would correspond to two doublets

Q
(d)
0L =

(
u0L

d0L

)
Q

(s)
0L =

(
c0L

s0L

)
(2.46)

and a 2× 2 lepton mixing matrix

UGIM = U †uUd =

(
cos ϑC sin ϑC
− sin ϑC cosϑC

)
(2.47)

Besides the natural outcome of the Cabbibo angle ϑC this procedure gives also an
explanation for the orthogonal mixture in (2.45).3

2.2 Extensions in the lepton sector

The aim of this chapter is to discuss the most basic extensions to the SM leading
to massive neutrinos (see also [17, 18, 19, 20]). Before one can introduce additional
mass terms to the Lagrangian one has to decide whether neutrinos are Dirac- or
Majorana particles.

2.2.1 Dirac- and Majorana particles

The fermionic particles of the SM until now were all assumed to be Dirac particles
represented by fields fulfilling the Dirac equation:

(iγµ∂µ −m)ψ(x) = 0. (2.48)

3See [2], p.216ff. for a detailed analysis.
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Fourier expansion of the four-component Dirac field ψ yields

ψ(x) =
∑

s=±1/2

∫ d3p

(2π)3/2(2p0)1/2

{
b(~p, s)u(~p, s)e−ipx + d†(~p, s)v(~p, s)eipx

}
(2.49)

with different annihilation and creation operators b and d† for particles and an-
tiparticles. The charge conjugated field ψc is defined by the action of the charge
conjugation operation C on the original field as follows:

C ψ C−1 = ηcψ
c = ηcCψ

T
(2.50)

where ηc is an arbitrary phase. In the case of Dirac particles one can clearly
distinguish between particles and antiparticles, so

ψ 6= ψc. (2.51)

This is particularly obvious for particles that carry any additional conserved quan-
tum number, e.g. electric charge. An electron is always distinguishable from its
antiparticle, because of the different charges. The situation gets more involved
with neutrinos, since they do not carry an electric charge. Thus it is not clear
whether neutrinos and antineutrinos are distinct particles. One could stick to the
Dirac particle concept and to statement (2.51). Another possibility is to set par-
ticle and antiparticle indistinguishable imposing the so called Majorana condition

ψ = ψc. (2.52)

Applying this to the explicit form of ψ (2.49) gives together with

Cu(~p, s)
T

= v(~p, s) Cv(~p, s)
T

= u(~p, s) (2.53)

the desired constraint on the creation and annihilation operators:

b(~p, s) = d(~p, s) b†(~p, s) = d†(~p, s). (2.54)

Hence there is no mathematical difference between the original and the charge
conjugated fields, in other words the Majorana particle is its own antiparticle. In
the Standard model there is an additional global U(1) symmetry in the lepton sec-
tor that ensures the lepton number conservation (L). This symmetry is accidental
and may be broken by a Majorana-type lepton by 2 units.

Switching to the chiral characterization of fields with the well known projection
operators

PL =
1

2
(1− γ5) PR =

1

2
(1 + γ5) (2.55)
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one has to modify the usual decomposition for Dirac particles

ψ = ψL + ψR. (2.56)

In the Majorana case only one projection eigenstate is necessary to create a physical
field. If one chooses the left-handed field ψL, the right-handed part can be played
by the charge conjugate state (ψL)c.

ψ = ψL + (ψL)c (2.57)

Obviously ψ defined in (2.57) fulfills the Majorana condition (2.52) because (ψc)c =
ψ. A right-handed field ψR may describe a different particle or may be completely
absent in the theory.

2.2.2 Mass terms

Depending on the model and the desired particle type it is possible to write down
different bilinear terms that are interpreted as mass terms.

Dirac mass term

A Dirac mass term is constructed using the chiral fields ψL and ψR. Both fields
must be present and are combined to form a bilinear and Lorentz-invariant expres-
sion

−m
(
ψRψL + ψLψR

)
= −mψψ with (2.56). (2.58)

Note that the second term in (2.58) is the Hermitean conjugate of the first. Adding
a Dirac mass term for the neutrinos in the Standard model is quite simple. It is
necessary to add the (so far missing) right-handed neutrino fields νeR, νµR, ντR as
singlets to the particle content. The most general Dirac mass term with these 3
lepton flavours is

LD = −
∑

l,l′
νlRM

D
ll′νl′L + H.c. with l, l′ = e, µ, τ . (2.59)

The complex 3×3 matrix MD is composed of the Yukawa couplings and the VEV
of the Higgs field. The mass term can be diagonalized in the same manner as the
quark fields described in (2.35) (See also 2.2.4).

Majorana mass term

A Majorana mass term makes only use of one chiral projection of ψ (ψL or ψR) to
construct a bilinear term

−1

2
m(ψL)cψL + H.c. = −1

2
mψψ with (2.57). (2.60)
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The above expression may be recast with help of the identity

(ψL)c =
(
CψL

T
)†
γ0 = ψTLγ

∗
0C
−1γ0 = −ψTL

(
γ0γ
†
0

)∗
C−1 = −ψTLC−1 (2.61)

to a form where the charge conjugation matrix enters

1

2
mψTLC

−1ψL + H.c. (2.62)

In the case of 3 neutrino flavours this would give the following Lagrangian:

LML = −1

2

∑

l,l′

(νlL)cML
ll′νl′L + H.c. with l, l′ = e, µ, τ . (2.63)

Note that although the left-handed neutrino fields νlL are present a Majorana
mass term (2.63) is forbidden within the Standard model due to gauge invariance.
The same Lagrangian for the right-handed neutrinos would be allowed if the fields
νeR, νµR and ντR are added to the model.

LMR = −1

2

∑

l,l′

(νlR)cMR
ll′νl′R + H.c. with l, l′ = e, µ, τ (2.64)

To get mass eigenstates from a Majorana mass terms like (2.64) one has to di-
agonalize MR first. It turns out that the matrix is symmetric because of the
antisymmetry of C and the anticommutation property of the fermionic fields.

νTlRC
−1νl′R =

∑

i,j

(νlR)i(C
−1)ij(νl′R)j =

∑

i,j

(νlR)i(νl′R)j︸ ︷︷ ︸
anticommute

(C−1T )ji︸ ︷︷ ︸
antisymmetric

=
∑

i,j

(νl′R)j(C
−1)ji(νlR)i = νTl′RC

−1νlR
(2.65)

From this follows immediately

−1

2

∑

l,l′

(νlR)cMR
ll′νl′R = −1

2

∑

l,l′

(νlR)cMR
l′lνl′R ⇒ MR = (MR)T . (2.66)

A theorem of I. Schur [21, 22, 23] ensures that the symmetric matrix MR can
always be diagnonalized:

Theorem. Let M be a symmetric, complex n × n matrix. Then there exists a
diagonal, positive matrix m̂ and a unitary matrix U so that

M = (U †)T m̂ U †. (2.67)
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The resulting mass eigenstates fulfill again the Majorana condition.

Dirac-Majorana mass term

One may find models where Majorana and Dirac mass terms occur. In general
this would look like

LD+M = −mDψRψL −
1

2
mL(ψL)cψL −

1

2
mR(ψR)cψR + H.c. (2.68)

Splitting up the Dirac part using

−mDψRψL = −1

2
mDψRψL −

1

2
mD(ψL)c (ψR)c (2.69)

gives the possibility to write all mass terms in a compact notation

LD+M =− 1

2

(
(ψL)c ψR

)(mL mD

mD mR

)

︸ ︷︷ ︸
=:MD+M

(
ψL

(ψR)c

)

︸ ︷︷ ︸
=:nL

+H.c.

=− 1

2
(nL)cMD+MnL + H.c.

(2.70)

The symmetric matrix MD+M is diagonalized by the unitary matrix U

MD+M = (U †)T m̂(U †) with m̂ = (miδij) mi > 0. (2.71)

Defining new fields ψ1, ψ2

N =

(
ψ1

ψ2

)
:= U †nL + (U †nL)c (2.72)

the mass Lagrangian takes the simple form

LD+M = −1

2
Nm̂N = −1

2
m1ψ1ψ1 −

1

2
m2ψ2ψ2. (2.73)

Although we started with both Dirac- and Majorana mass terms we finally ended
up with two Majorana fields since

N = N c. (2.74)

In the case of 3 or more lepton flavours we have to replace ψL and ψR with vectors
containing the various neutrino fields

νL :=



νeL
νµL
ντL


 νR :=




νs1R

νs2R
...

νsnRR




(2.75)
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and nL with

nL :=

(
νL

(νR)c

)
. (2.76)

Note that we assumed 3 (e, µ, τ) and nR lepton flavours for the left- and right-
handed neutrino fields, respectively. The number of right-handed flavours is free,
because there has been no experimental or theoretical limitation so far. The com-
bined mass matrix MD+M has now (3 + nR) × (3 + nR) elements arranged in 3
matrices ML,MR and MD

MD+M =

(
ML (MD)T

MD MR

)
. (2.77)

The Majorana particles resulting from the usual diagonalization are again denoted
by a vector

N :=




ν1

ν2
...

ν3+nR




= U †nL + (U †nL)c. (2.78)

2.2.3 The seesaw mechanism

Starting from a general Dirac-Majorana mass term the seesaw mechanism [24, 25,
26] gives a possible explanation for the smallness of the neutrino masses. Of course
it would be possible to simply set the corresponding Yukawa couplings accord-
ingly, but this would be an unmotivated step. Instead one tries to find a different
mass production procedure that naturally explains the mass discrepancies between
charged and neutral leptons. It is based on a scenario with Dirac-Majorana mass
term described in (2.75) to (2.78) with 3 left-handed and ns right-handed neutri-
nos. There are different types of the seesaw mechanism, we will concentrate on
type I seesaw:

Type I seesaw

Based on the mass matrix (2.77) with ML = 0, the type I seesaw mechanism
corresponds to the SM with ns additional right-handed neutrinos and all possible
mass terms.

MD+M =

(
0 (MD)T

MD MR

)
(2.79)

There is no Majorana mass term for νL because the left-handed fields are arranged
in doublets, thus a gauge invariant bilinear term can not be produced. The seesaw
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mechanism makes now assumptions on the scales of the matrices MD and MR.
The eigenvalues of MD are at the same level as the masses of the charged leptons
or the quarks, whereas those of MR are at much larger scale.

MD ≃ mquarks,charged leptons ≪MR (2.80)

Under these conditions one may try to bring (2.79) into a block-diagonal form,
applying a small rotation

W TMD+MW ≃
(
Mν 0

0 Mheavy

)
=M. (2.81)

The rotation matrix W that performs the partial diagonalization is

W ≃
(

1− 1
2
(MD)†(MR(MR)†)−1MD (MD)†(MR)†−1

−(MR)−1MD 1− 1
2
(MR)−1MD(MD)†(MR)†−1

)
(2.82)

up to orders (MR)−1MD. The resulting Majorana mass matrixMν is now

Mν =− (MD)T (MR)−1MD

+
1

2
(MD)T (MR)−1MD(MD)T ((MR)∗(MR)T )−1(MD)∗

+(MD)T (MR)−1TMD(MD)†(MR(MR)†)−1MD

=− (MD)T (MR)−1MD
{
1 +O

[
((MR)−1MD)2

]}

(2.83)

which explains the term “seesaw”. If MR gets bigger in (2.83) then consequently
Mν gets smaller due to the inverse operator. Thus the small masses for the left-
handed neutrinos observed until now is explained by the existence of ns heavy
right-handed neutrinos and the possible mass terms in the Lagrangian

LD+M =− 1

2
(nL)cMD+MnL + H.c.

=− 1

2
(nL)cW ∗MW †nL + H.c. +O

[
((MR)−1MD)2

]
.

(2.84)

The rotation W changes the states nL slightly to n′L, but the mixture of νL and
(νR)c is suppressed by (MR)−1MD

n′L = W †nL =


 νL − (MD)†(MR)†−1

[
1
2
(MR)−1MDνL + (νR)c

]

(νR)c − (MR)−1MD
[

1
2
(MD)†(MR)†−1(νR)c − νL

]



=

(
νL

(νR)c

)
+O

[
(MR)−1MD

]
.

(2.85)
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Finally we end up with a Lagrangian containing Majorana mass terms for the light
left-handed neutrinos and their heavy right-handed counterparts which have not
been observed yet.

LD+M =− 1

2
(νL)cMννL + H.c. + (terms withMheavy)

+O
[
((MR)−1MD)2

] (2.86)

Note that the matrix Mν is still not diagonal since we only performed a block-
diagonalization.

2.2.4 The lepton mixing matrix

Most models with massive neutrinos and neutrino oscillations operate with non-
diagonal mass matrices in the lepton sector. A diagonalization has effects on the
charged current terms in the Lagrangian just like in the quark sector.

Llepton
CC = − g√

2

(
eL µL τL

)
γµ



νeL
νµL
ντL


W−µ + H.c. (2.87)

Consider a Dirac mass term like (2.59) in short notation

LD = −νRMDνL + H.c. with ν =



νe
νµ
ντ


 . (2.88)

Diagonalization via
MD = Um̂V† (2.89)

gives in analogy to the quark case the mass eigenfields


ν1L

ν2L

ν3L


 = U †



νeL
νµL
ντL






ν1R

ν2R

ν3R


 = V†



νeR
νµR
ντR


 . (2.90)

Inserting into (2.87) yields

Llepton
CC = − g√

2

(
eL µL τL

)
U︸︷︷︸

=:UPMNS

γµ



ν1L

ν2L

ν3L


W−µ + H.c. (2.91)

where U is the analogy to the CKM matrix which in the lepton sector is often
referred to as the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. Note that
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we assumed here that the charged lepton mass matrix is already in a diagonal
form. Without this assumption the PMNS matrix would consist of two unitary
matrices like in (2.42).

UPMNS = U †eUν (2.92)

The parametrization of UPMNS [15] is also analogous to the quark case, where

ϑ23 → ϑatm ϑ12 → ϑ⊙ δCP → δ13 (2.93)

so that

UDirac
PMNS = UatmU13U⊙

=




1 0 0
0 catm satm

0 −satm catm







c13 0 s13e
−iδ13

0 1 0
−s13e

iδ13 0 c13






c⊙ s⊙ 0
−s⊙ c⊙ 0

0 0 1




=




c⊙c13 s⊙c13 s13e
−iδ13

−s⊙catm − c⊙satms13e
iδ13 c⊙catm − s⊙satms13e

iδ13 satmc13

s⊙catm − c⊙satms13e
iδ13 −c⊙catm − s⊙satms13e

iδ13 catmc13


 .

(2.94)

In the Majorana mass term scenario with

LM = −1

2
(νL)cMLνL + H.c. (2.95)

the proper diagonalization is described in (2.67). Only one matrix U is needed
and the parametrization is the same with one exception: In the Dirac case 5
of 6 phases were absorbed into the lepton fields. With a Majorana mass term
only the 3 charged leptons are allowed to be redefined, since (2.95) itself is not
invariant under rephasing. This results in a lepton mixing matrix that contains
two additional phases η1 and η2 called Majorana phases.

UMajorana
PMNS = UDirac

PMNS ·



eiη1 0 0
0 eiη2 0
0 0 1


 (2.96)

Right-handed Majorana neutrino fields added to the SM do not carry electric or
color charge nor do they take part in weak interactions (2.87). Thus their number
and their mass is unknown and they are often called sterile neutrinos.



Chapter3
Neutrino phenomena and experiments

After describing the basic extensions in the lepton sector we will proceed describing
the phenomena resulting from massive neutrinos. The most important consequence
is the possibility for neutrino oscillations, by now verified by several collaborations
(see section 3.4). Also, one still has to decide experimentally whether neutrinos
are Dirac or Majorana particles. Currently the most promising candidate for a
crucial experiment is the search for neutrinoless double beta ((ββ)0ν) decay. If
(ββ)0ν decay is discovered neutrinos must be Majorana particles.

3.1 Neutrino oscillations

We start with the question why massive neutrinos give rise to neutrino oscillations,
for detailed discussions see [17, 18, 19, 20]. Consider a model with a unitary lepton
mixing matrix UPMNS, so that

ναL =
3∑

k=1

UαkνkL. (3.1)

where ναL is a flavour eigenfield and νkL is a mass eigenfield. This means that,
depending on the explicit form of U , each flavour field may be a superposition
of up to 3 mass eigenfields. Now, neutrinos are produced in CC interactions in
(2.87), with the flavour of the lepton occuring in the process. This is the only
possible way to define the neutrino flavour. The same is true for the neutrino
detection, again the flavour is not measured directly but defined by the associated

29
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lepton. Producing a neutrino of flavour α is described by the action of the creation
operator b†α, contained in ν†α, on the vacuum state |0〉.

b†α|0〉 = |να〉 (3.2)

Because of (3.1) this state is a superposition of the mass eigenstates |νk〉.

|να〉 =
3∑

k=1

U∗αk|νk〉 =
3∑

k=1

U∗αkb
†
k(~pk, sk)|0〉 (3.3)

To get the neutrino oscillation formula, we now consider a neutrino with flavour α
produced at time t = 0 at ~x = ~0. The propability for the neutrino to be detected
with another flavour β at t = ∆t and ~x = (∆x, 0, 0) is then given by

Pνα→νβ(∆t,∆x) = |Aνα→νβ(∆t,∆x)|2 = |(0,0)〈νβ|να〉(∆t,∆x)|2. (3.4)

The propagation of να from the production to the detection point is carried out
via the operators H and P :

|να〉(∆t,∆x) = e−i(H∆t−P∆x)|να〉(0,0). (3.5)

According to (3.3) |να〉(0,0) may be rewritten as a coherent superposition of the
mass eigenstates. We assume that they all have the same energy E, but differ in
their momenta pk. Additionally we take the relativistic limit E ≫ mk, which is a
good approximation for all neutrino experiments:

pk =
√
E2 −m2

k ≃ E −
m2
k

2E
. (3.6)

Then (3.5) becomes

|να〉(∆t,∆x) = e−iE∆t
3∑

k=1

U∗αke
ipk∆x|νk〉(0,0). (3.7)

With the inverse of (3.3),
|νk〉 =

∑

γ

Uγk|νγ〉, (3.8)

we get

|να〉(∆t,∆x) = e−iE∆t
∑

γ

3∑

k=1

U∗αke
ipk∆xUγk|νγ〉(0,0). (3.9)

Projecting out the flavour of interest β and taking the relativistic limit delivers
the amplitude for the process:

Aνα→νβ(∆t,∆x) = (0,0)〈νβ |να〉(∆t,∆x) = e−iE(∆t−∆x)
3∑

k=1

U∗αke
−i
m2
k

2E
∆xUβk. (3.10)
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The time dependence in the phase e−iE(∆t−∆x) becomes irrelevant in the resulting
propability

Pνα→νβ(∆x = L) =

∣∣∣∣∣

3∑

k=1

U∗αke
−i
m2
k
L

2E Uβk

∣∣∣∣∣

2

. (3.11)

This is the well-known formula for neutrino oscillations with dependence on the
energy E, the distance source - detector L and the differences of the squared masses
∆m2

ij . The latter will become clear if we write down all terms of the sum in (3.11)

Pνα→νβ(L) =

∣∣∣∣∣U
∗
α1e
−im

2
1L

2E Uβ1 + U∗α2e
−im

2
2L

2E Uβ2 + U∗α3e
−im

2
3L

2E Uβ3

∣∣∣∣∣

2

=
∣∣∣∣U
∗
α1Uβ1 + U∗α2e

−i (m2−m1)2L

2E Uβ2 + U∗α3e
−i (m3−m1)2L

2E Uβ3

∣∣∣∣
2

=

∣∣∣∣∣δαβ +
3∑

k=2

U∗αk

[
e−i

∆m2
k1
L

2E − 1

]
Uβk

∣∣∣∣∣

2

,

(3.12)

where ∆m2
ij = m2

i −m2
j and we used the unitarity relation

3∑

k=1

U∗αkUβk = 1 (3.13)

for the mixing matrix. Next we investigate the case of transitions between two
neutrino flavours (and two mass eigenstates). Then the mixing matrix U is simply
parametrized as

U =

(
Uα1 Uα2

Uβ1 Uβ2

)
=

(
cosϑ sin ϑ
− sin ϑ cosϑ

)
. (3.14)

Inserting the explicit form of U in (3.12) we end up with the transition propability
in the two-neutrino case

Pνα→νβ(L) =
1

2
sin2(2ϑ)(1− cos(

∆m2L

2E
)

︸ ︷︷ ︸
=cos(2πL/Losc)

) (3.15)

The oscillation length L is

Losc =
4πE

∆m2
≃ 2.48

E(MeV)

∆m2(eV2)
m. (3.16)

Here lies the justification for the term neutrino oscillation. An experiment vary-
ing either the length L or the energy E may be able to capture the oscillatory
behaviour of the transition propability Pνα→νβ . The region of (L,E) where to find
significant oscillations is determined by the scale of the mass square difference
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∆m2. Furthermore the mixing angle ϑ enters as a parameter controlling the “am-
plitude” of the oscillation curve. Some additional remarks concerning neutrino
oscillations are in order at this point:

• The transition propability (3.11) is invariant under rephasing of the mixing
matrix U :

U → diag(eiφ1 , eiφ2 , eiφ3)U diag(eiψ1 , eiψ2 , eiψ3). (3.17)

Consequently, neutrino oscillation experiments cannot determine the Dirac
or Majorana nature hidden in two phases of the mixing matrix (see (2.96)).

• The transformation U → U∗ gives the transition propability Pν̄α→ν̄β for the
case of antineutrinos. Additional exchange of the flavours α ↔ β gives the
equality

Pνα→νβ = Pν̄β→ν̄α, (3.18)

being a consequence of the CPT -invariance of the theory.

• Evidently neutrino oscillations violate family lepton numbers Lα.

• The derivation of the neutrino oscillation formula was performed without
taking into account various aspects of quantum mechanics that may play
an important role during production and detection. Also the relativistic
limit (3.6) may be questioned in favour of a more general description. Many
authors have approached the problem in different ways by now, but the
validity of (3.11) has been confirmend within the experimental limitations
[27, 28, 29, 30].

• Until now the neutrinos were assumed to propagate in vacuum. A more
detailed analysis shows that effects of neutrinos passing through matter are
not negligible for oscillation phenomena, especially in the case of the solar
neutrino deficit [31, 32, 33, 34, 35].

3.2 Mass spectra

In the previous section we found that neutrino oscillations depend on the mass
squared differences (3.12). Thus, experiments observing oscillations cannot give
absolute values for the masses and, moreover, allow for two possible mass spectra
[36]. The two mass squared differences are denoted as ∆m2

atm and ∆m2
⊙ for atmo-

spheric and solar neutrino oscillations, respectively. From experiments we know
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that they are not at the same scale (for a detailed listing see section 3.4):

∆m2
atm ∼ 30 ·∆m2

⊙. (3.19)

We make use of this information and choose a convention for the so far arbitrary
numbering of the neutrino mass eigenfields. The smaller mass squared difference
∆m2

⊙ is associated with the masses m1 and m2 and chosen to fulfill:

∆m2
⊙ = ∆m2

21 > 0 ⇒ m1 < m2. (3.20)

The remaining mass m3 may now be smaller or greater than m1 ≈ m2, i.e. the
sign of ∆m2

atm is not fixed by experiment. Thus, one has to distinguish between
two different mass spectra.

m2

m3

m1

m1

m2

m3

∆m2
⊙

∆m2
⊙

∆m2
atm

(a) (b)

Figure 3.1: Normal (a) and inverted (b) mass spectrum with mass squared differ-
ences

• Normal spectrum

m1 < m2 < m3 , ∆m2
atm = ∆m2

31 (3.21)

• Inverted spectrum

m3 < m1 < m2 , ∆m2
atm = ∆m2

23. (3.22)

See Figure 3.1 for an illustration of the possibilities.
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3.3 Neutrinoless double beta decay

Beside neutrino oscillations there is another possibility to extract neutrino prop-
erties from experiment. The neutrinoless double beta decay ((ββ)0ν decay) not
only allows us to get information about masses and mixing angles but maybe also
a decision in the question whether neutrions are Dirac- or Majorana particles (see
e.g. [37, 38]). The idea of a (ββ)0ν decay is based on the already observed double
beta decay

(Z,A)→ (Z + 2, A) + 2e− + 2νe. (3.23)

If the neutrinos in the process are Majorana fermions, then one could imagine
another double beta decay without the outgoing νe:

(Z,A)→ (Z + 2, A) + 2e−. (3.24)

This (ββ)0ν decay is possible only if νc = ν and thus both neutrinos can be
eliminated via the Wick contraction. Figure 3.2 shows the process on the quark
level. The propagator 〈0|TνeL(x)νTeL(y)|0〉 is nonzero because one can employ

W−

ν

W−

d

d

u

e−

e−

u

Figure 3.2: (ββ)0ν decay - Feynman diagram at quark level



3.3. Neutrinoless double beta decay 35

νTk = −νkC and ends up with

〈0|TνeL(x)νTeL(y)|0〉 = 〈0|T
∑

k

Uek
1− γ5

2
νk(x)

∑

k′
Uek′ν

T
k′(y)

1− γT5
2
|0〉

=
1− γ5

2

∑

k

U2
ek〈0|Tνk(x)νTk (y)|0〉1− γ

T
5

2

= −1− γ5

2

∑

k

U2
ek〈0|Tνk(x)νk(y)|0〉1− γ5

2
C

= −
∑

k

U2
ekmki

∫ d4p

(2π)4

e−ip(x−y)

p2 −m2
k

1− γ5

2
C.

(3.25)

Consequently the lepton number conservation is violated by two units. Models
beyond the standard model may be equipped with other Majorana particles or
different mechanisms for lepton number violation. Therefore, these additional
effects must be taken into account when drawing any conclusions about neutrino
masses. Anyway, if (ββ)0ν decay exists then a Majorana neutrino mass term cannot
be forbidden by a symmetry and thus contributes to lepton number violating
processes [39, 40]. If the sole source of (ββ)0ν decay is the contraction of Majorana
neutrinos the decay rate for this process is proportional to the effective Majorana
neutrino mass

|〈mββ〉| =
∣∣∣∣∣
∑

k

U2
ekmk

∣∣∣∣∣ , (3.26)

as already indicated in (3.25). Writing (3.26) in terms of mass squared differences
and inserting the standard parametrization of the lepton mixing matrix (2.94) and
(2.96) gives

|〈mββ〉| =
∣∣∣∣
(
m1c

2
⊙ e

iη1 +
√
m2

1 + ∆m2
⊙ s

2
⊙ e

iη2

)
c2

13

+
√
m2

1 + ∆m2
atm s

2
13 e
−iδ13

∣∣∣∣
(3.27)

and

|〈mββ〉| =
∣∣∣∣
(√

m2
3 + ∆m2

atm −∆m2
⊙ c

2
⊙ e

iη1

+
√
m2

3 + ∆m2
atm s

2
⊙ e

iη2

)
c2

13 +m3s
2
13 e
−iδ13

∣∣∣∣
(3.28)

for normal and inverted spectrum, respectively. Note that a possible nonzero phase
δ13 may be absent if a different parametrization of the lepton mixing matrix (2.94)
is chosen. In contrast Majorana phases cannot be removed from the effective
Majorana mass.



36 3. NEUTRINO PHENOMENA AND EXPERIMENTS

Observable Oi Ōi ± 1σi 3σi interval

∆m2
⊙[10−5 eV2] 7.65+0.23

−0.20 7.05− 8.34

∆m2
atm[10−3 eV2] 2.40+0.12

−0.11 2.07− 2.75

sin2 ϑ13 0.010+0.016
−0.011 ≤ 0.056

sin2 ϑ⊙ 0.304+0.022
−0.016 0.25− 0.37

sin2 ϑatm 0.50+0.07
−0.06 0.36− 0.67

Table 3.1: Experimental global fit values.

3.4 Experiments and data

This section presents the experimental data employed in the later chapters of this
work.

Oscillation parameters

While the search for neutrinoless double beta decay is still in progress, neutrino
oscillations have been confirmed by many collaborations up to now. The data from
several experiments is combined to obtain a global fit in recent reviews [41, 42].
The resulting mass squared differences and mixing angles therein are presented in
Table 3.1. The review includes the latest data from the following collaborations:

• MINOS (Main Injector Neutrino Oscillation Search)

MINOS [43, 44] is a long-baseline accelerator experiment studying neutrino
oscillations on the basis of a νµ-beam and two separate detectors. The neu-
trino beam is produced at Fermilab and first analysed by the MINOS Near
detector on-site. The second MINOS Far detector is located 735km away at
the Soudan Underground Laboratory in Northern Minnesota. The survival
propability of the νµ-beam with a peak energy of 3 GeV allows measurement
of ∆m2

atm and sin2 2ϑatm. In addition MINOS searches for sterile neutrino
flavours and further limits sin2 2ϑ13.

• SNO-NCD (The Sudbury Neutrino Observatory)

The Sudbury Neutrino Observatory [45, 46] uses a Cherenkov detector with
1 kton of heavy water to investigate the neutrino flux coming from the sun.
The laboratory is placed 2km under the surface in the Creighton mine near
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Sudbury, Ontario. While charged current interactions with the deuterium
allow only the detection of νe - neutrinos the neutral current detection (NCD)
is sensitive to all neutrino flavours. The experiment gives results for ∆m2

⊙
and ϑ⊙.

• KamLAND (Kamioka Liquid-scintillator Anti-Neutrino Detector)

The KamLAND experiment [47], located at the site of the former Kamiokande
experiment, utilizes a 1 kton liquid scintillator detector. It observes ν̄e-
neutrinos emitted from the 55 Japanese nuclear reactors via inverse β - de-
cay. The experiment confirmes neutrino oscillations and provides valuable
data for the determination of ∆m2

⊙ and sin2 ϑ⊙.

• Borexino

Borexino [48] is a scintillator detector experiment at the Laboratori Nazionali
del Gran Sasso. The focus lies on low energy neutrinos from the electron
capture decay of 7Be in the sun.

This enumeration adds up to a long list of experiments already finished or still
in progress: CHOOZ [49] , GALLEX [50, 51], SAGE [52], Superkamiokande [53],
K2K [54], T2K [55], OPERA [56], MiniBooNE [57], KATRIN [58].

The numerical values for the mixing angles encouraged theorists to find possible
analytic expressions matching the global fit data. The so-called tri-bimaximal
mixing is a common choice of a mixing pattern introduced by Harrison, Perkins
and Scott [59]. With the mixing angles fulfilling

sin2 ϑ13 = 0, sin2 ϑ⊙ =
1

3
, sin2 ϑatm =

1

2
(3.29)

we get the Harrison-Perkins-Scott mixing matrix

UHPS =




√
2
3

1√
3

0
− 1√

6
1√
3

1√
2

− 1√
6

1√
3
− 1√

2


 . (3.30)

Note that tri-bimaximal mixing does not fully comply with current data in Table
3.1. While sin2 ϑ13 and sin2 ϑatm are within the 1σ - bound, sin2 ϑ⊙ is only within
the 2σ - bound. In order to allow deviation from fixed angles Grimus and Lavoura
[60] suggested a trimaximal mixing pattern. While the second column in (3.30)
remains unchanged, i.e.

|Ue2|2 = |Uµ2|2 = |Uτ2|2 =
1

3
, (3.31)
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no further constraints are stated. Thus, trimaximal mixing allows e.g. for a
nonzero ϑ13.

Neutrinoless double beta decay

For years the existence of neutrinoless double beta decay was subject of ongoing
discussion. Among the few so far finished experiments are IGEX [61], CUORI-
CINO [62] and Heidelberg-Moscow [63]. While the first two could not confirm
neutrinoless double beta decay and gave only upper bounds on the effective Majo-
rana mass |〈mββ〉|, a subgroup of Heidelberg-Moscow [64] claimed the observation
and reported

|〈mββ〉| = 0.32+0.03
−0.03 eV. (3.32)

Though heavily criticized [65, 66, 67, 68], they repeatedly defended their claim
in [69, 70, 71]. Hopefully this issue will be resolved in the upcoming neutrino-
less double beta decay experiments, namely GERDA [72, 73], CUORE [74] and
others.



Chapter4
Numerical Methods

In the following chapter numerical methods are presented which are helpful for the
comparison of model predictions with experimental data. In order to achieve the
best possible agreement one often has to deal with involved dependencies between
observable quantities and the theory underlying model parameters. In such cases,
especially when there is a large number of parameters, one is restricted to numerical
tools to find the parameter values that provide a good match.

4.1 A figure of merit function

The numerical analysis is based on the concept of a figure of merit function χ2,
as previously described and applied in [75, 76, 77, 78, 79, 80, 81]. This function
depending on the model parameters quantifies the agreement or discrepancy be-
tween theoretical predictions and experimental data values with a single number
≥ 0. Consider the following typical case: The measurement results for several
obervables Oi are given in the form of mean value Ōi and the corresponding 1σ
standard deviation.

Oi = Ōi ± σi (4.1)

From theory we know how to calculate the predictions Pi(x) for these observables
from the model parameters x, where x = (x1, x2, . . .) contains all free parameters
xk of the model. Obviously for N observables

χ2(x) :=
N∑

i=1

(
Pi(x)− Ōi

σi

)2

(4.2)

39
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is a useful definition of the χ2 function, since it provides the best fit values Pi(xmin)
at the global minimum

χ2
min := χ2(xmin) with 0 ≤ χ2

min ≤ χ2(x) ∀x. (4.3)

Once the global minimum is found, one often denotes the difference between pre-
diction and data for every observable with the “pull”

pull(Oi) =
Pi(xmin)− Ōi

σi
. (4.4)

With the figure of merit function the task of comparing model predictions to
experimental data is transformed into a search for the global minimum of χ2. A
lot of numerical tools are known to cope with this standard minimization problem.
A good choice for our case is the Nelder-Mead method, see [75], p.19 for details
on pros and cons.

4.2 The Nelder-Mead method

The Nelder-Mead method (NMM) [82, 83, 84, 85] or downhill simplex method
for minimization problems can be categorized as a direct search method [86]. It
does not require the computation of derivatives and therefore is even applicable
if the function is not differentiable or continuous. The procedure is based on the
movement of a geometric figure, the simplex, in the n-dimensional parameter space
Rn towards a (local) minimum of the scalar function of interest f(x). The simplex
is best described as the convex hull of n+ 1 vertices xi, e.g. for n = 2 the simplex
is a triangle. The movement of the simplex is performed stepwise, at each iteration
step the function values at the vertices determine the position and shape of the
next simplex in the series from the starting point to the minimum.

We will now discuss in detail the constituent branchings and calculations of a
single Nelder-Mead iteration step. The procedure requires the definition of four
parameters ρ, χ, γ and σ corresponding to different actions on the simplex, namely
reflection, expansion, contraction and shrinkage, respectively. We employ the stan-
dard choice1

ρ = 1,

χ = 2,

γ = σ = 1/2.

(4.5)

The following enumeration shows all ingredients of one Nelder-Mead iteration step.

1Allowed values are: ρ > 0, χ > 1, χ > ρ, 0 < γ < 1 and 0 < σ < 1.
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1. Start of the iteration step

The simplex containing the vertices xi and the function values fi := f(xi)
are taken from the last iteration (or the initial values).

2. Sorting

The vertices are sorted according to increasing function values, i.e. after
sorting the vertices fulfill

f1 ≤ . . . ≤ fn ≤ fn+1. (4.6)

3. Calculate Centroid

The “mean value“ of the n best vertices, the centroid, is calculated:

x :=
1

n

n∑

i=1

xi. (4.7)

4. Reflection point

The reflection point xr is calculated:

xr := x + ρ(x − xn+1). (4.8)

If f1 ≤ fr < fn then xr is accepted, i.e. xn+1 is replaced by xr (Iteration
step terminated).

5. Expansion Point

If fr < f1 then calculate the expansion point

xe := x + χ(xr − x). (4.9)

If fe < fr then xe is accepted (Iteration step terminated).

If fe ≥ fr then xr is accepted (Iteration step terminated).

6. Outside Contraction

If fn ≤ fr < fn+1, an outside contraction is performed:

xoc := x + γ(xr − x). (4.10)

If foc ≤ fr then xoc is accepted (Iteration step terminated).

Otherwise a shrinkage is performed.
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7. Inside Contraction

If fr ≥ fn+1, an outside contraction is performed:

xic := x− γ(x− xn+1). (4.11)

If fic < fn+1 then xic is accepted (Iteration step terminated).

Otherwise a shrinkage is performed.

8. Shrinkage

If either outside or inside contraction fails, then all vertices are contracted
towards the best point x1:

xi → x1 + σ(xi − x1), i = 2, . . . , n+ 1. (4.12)

Then the iteration step is terminated.

Sorting (2.), calculating the centroid (3.) and the reflection point (4.) are always
performed, while the steps (5.) to (8.) are optional and depend on the function
value of the reflection point fr. The sequence of decisions and calculations becomes
clearer with the flow chart of the NMM, provided in Figure 4.1. An illustration
of the different actions on the simplex in two dimensions is given in Figure 4.2.
Obviously the reflection step is the least time-consuming possibility, since it re-
quires only one function evaluation per iteration.2 Expansion and both contraction
options demand a second function call and shrinkage enforces the recalculation of
n + 2 function values. Fortunately in a typical scenario the shrinkage step is ex-
ecuted repeatedly only at the end of the search, when the simplex is contracted
towards the minimum. The basic step during the procedure is the reflection, while
expansion and contractions allow the simplex to adapt its geometrical shape to the
surrounding function shape. In this way the NMM can cope with rather complex
function landscapes, e.g. where the same relative change of parameters causes a
deviation of the function at different orders of magnitude. In conclusion the major
advantages of the NMM in our search for the mimimum of χ2 are the low number
of function evaluations and the ability to adopt to a complex topology.

The NMM described so far lacks a procedure to stop the simplex movement when
no further optimization is made. In this case the function values differ only slightly
at all vertices. Thus, a good criterion to halt the iteration is the variance of the
functions values

1

n + 1

n+1∑

i=1

(fi − f̄)2 ≤ ε with f̄ :=
1

n + 1

n+1∑

i=1

fi. (4.13)

2Note that every function evaluation is probably computationally intensive, because it may
include singular value decomposition, diagonalization, etc.
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Figure 4.2: Different actions on the Nelder-Mead simplex in two dimensions after
the sorting step: (a) reflection, (b) expansion, (c) inside contraction, (d) outside
contraction and (e) shrinkage. The green filling denotes the simplex before, the
red one after the iteration step.

If the variance falls below the predefined accuracy parameter ε the NMM is stopped
and the minimum reached.

One major disadvantage of the NMM should not be overlooked: as the alternative
name downhill simplex method suggests, there are no measures that prevent the
simplex from getting stuck in a local minimum. The simplex moves strictly down-
hill and may never reach the global minimum. Therefore several extensions of the
NMM with other computational methods were employed by [75, 85]. Among these
hybrid algorithms are the NMM plus Simulated Annealing or NMM plus Pertur-
bations. Both procedures were also coded for testing purposes but turned out not
to be advantageous in view of the models of chapter 5. Another simple method to
reach the global minimum is to repeat the Nelder-Mead procedure with different
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initial simplices, e.g. set by a random number generator as implemented in the
presented program.

4.3 Pinning term and fine-tuning properties

Besides the so far presented normal operation of the NMM, two supplemental
techniques are employed to investigate models: the addition of a so called pinning
term to the χ2-function and an analysis of the fine-tuning properties.

Pinning term

The pinning term method is a helpful tool to elaborate the dependency between
χ2 and any observable O of interest. Consider the following extension of (4.2)

χ2(x) :=
N∑

i=1

(
Pi(x)− Ōi

σi

)2

+

(
P (x)− Ō

0.01Ō

)2

︸ ︷︷ ︸
χ2
p

, (4.14)

where Ō is the numerical value and P is the theoretical prediction for the observable
O. The additional term χ2

p pins O down to the value Ō in a minimization procedure
because of the assigned small 1%-error. This allows to check how low χ2 can get
while incorporating additional constraints on observables. Repeated application of
the pinning term method with a whole set of values gives the possibility to plot χ2

against O. The procedure requires that the pinning term itself gives a negligible
contribution to χ. Also, if O is identical to any of the other observables Oi, the
original term with σi is removed.

Fine-tuning properties

If the search for a global minimum of χ2 suceeds, one can analyse the fine-tuning
properties of the best-fit solution in a very simple way. While all other parameters
are fixed at the values corresponding to the minimum, one variable xi is slightly
changed by a factor ξ. The effect on the χ2-function

χ2(ξ) = χ2(xmin
1 , . . . , ξxmin

i , . . . , xmin
n ) (4.15)

can be plotted easily. Comparing the graphs of all parameters one can extract
robust and fine-tuned variables, although a generalization of the properties from
one sample solution is not allowed.
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4.4 Implementation

The source code for the NMM is written in the Fortran programming language
and compiled with the g95 Fortran compiler.3 No additional libraries or code
segments from other authors are used, the program is ”made from scratch“. It
is divided into two separate files, nmm.f90 for the iteration itself and dnmm.f90

for the data analysis. In order to achieve the best possible accuracy all floating
point numbers are defined as 10-byte real which leads to the following smallest
and largest possible numbers.

tiny(fn) = 3.3621031431120935063E-4932

huge(fn) = 1.189731495357231765E+4932

Thus, function values and simplex vertices are calculated and saved with at least
18-digit precision. Next, the content of the source files is roughly described.

nmm.f90

This is the main program file, which contains the placement of initial simplices,
the Nelder-Mead iteration and an outer loop for repetition. The minima found are
saved in an array and finally written to a binary file. The source code contains two
Fortran modules, one for the global variables and one for the following subroutines:

• init()

Asks the user for the number of repetitions and allocates memory.

• initf()

Calculates model constants required for the evaluation of the χ2 function.

• prepf()

Sets a random simplex and calls calcf to compute χ2 at each vertex.

• calcf(a,b,sres)

This subroutine contains most of the model depending information. It takes
coordinates in parameter space as input, calculates the predictions for the
observables and returns χ2. If sres is true, intermediate data is saved into
an additional array.

3The source code is presented in Appendix A.
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• sort()

Sorts the vertices according to their function value, i.e. step (2) of the
Nelder-Mead procedure.

• centroid()

Calculates the centroid of a given simplex, step (3) of the NMM.

• shrinkage()

Performs a shrinkage of the simplex as described in step (8).

• calcd()

Computes the variance of the function values for the stopping criterion.

• wfile()

Writes a binary file with all found minima, the corresponding model param-
eters and important observables. Figure 4.3 shows the arrangement of the
data inside the array saved to disk.

data set 1→

data set 2→
...

other quantities

observables and

χ2

...
...

contributions
model parameters

...

to χ2

Figure 4.3: pattern for the data arrangement. Each data set stands for a
minimum found by the NMM.

Besides the model depending constants and parameters, the user has to set two
important values: eps is the accuracy parameter ε for the stopping routine and
crit defines the maximum χ2 allowed for a data set (model parameters, χ2 con-
tributions and observables) to be saved and further processed.

As previously indicated the present implementation tries to find the global mini-
mum via repetition of the NMM with randomly set starting simplices. The user
enters the desired number of turns at the beginning, every 1000 a short status
information is displayed. Each turn contains a search for a minimum via Nelder-
Mead, two additional stopping criteria are implemeted. First, if no minimum is
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found after 1000 iterations (i.e. simplex movements), the iteration is terminated as
unsuccessful. Also, every 100 iterations the vertices are checked for infinite, unde-
termined or unreasonable values (NaN, Inf). After the last repetition all gathered
data is written into the binary file nmm.dat, which is opened by the data analysis
program.

dnmm.f90

This file contains routines to perform various tasks on the data supplied by nmm.f90.
In doing so, no additional model-specific calculations (e.g. computing observables)
are made. Therefore, the previously mentioned calcf is not included in the list of
subroutines.

• readin()

The content of nmm.dat is read into allocated memory.

• remdup()

The data sets are searched for duplicate entries which are removed.

• sort()

The data array is sorted in rising order of χ2. Afterwards the best-fit data
set is on the first position.

• cmvsd()

Calculates mean value and standard deviation for model parameters and
observables for possible later use.

• wdata()

Writes the previously sorted data, all model constants and statistics into a
formatted file named nmm.txt.

• clist(lin,lout,lstart,l)

This subroutine accepts one column in Figure 4.3 as input. The interval from
the smallest to the largest value thereof is divided into a user-specified num-
ber of bins. The number of entries per bin is computed and thus histogram
data for plotting created.

• wlist()

Data from all calls of the clist subroutine is written to a file named list.txt,
which can be easily used for plotting results.
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Pinning term method implementation

The pinning term method presented in this chapter requires some changes in the
source code. Based on the original files the major modifications comprise:

• An additional loop encloses the program to run through a list of values
belonging to the desired pinned-down observable.

• The pinning term χ2
p in (4.14) is added in the calcf routine.

• Since there are now multiple output files, they are numbered and saved into
a subfolder. The sorting in rising order of χ2 is now carried out in the main
program.

• The data analysis does not create any histogram data. Instead it picks
out the best minima for each pinning value respecting that the pinning term
itself should be negligible. The desired output, χ2 as a function of the pinned
observable, is saved into a file named pin.txt.

Analysing Fine-tuning properties

In order to carry out the procedure described in 4.3 the output file of dnmm.f90

is opened with Mathematica. The model parameters for the best-fit solution are
read in and entered into the χ2 function. A combined plot shows then the variation
of χ2 as a function of ξ for all parameters.

The Mathematica script presented in A.3 serves another important purpose. The
χ2 function is not copied from the Fortran program code, but derived from simple
expressions taken from the investigated model. Thus, if the results match the
correctness of the main program is supported, typing errors are almost excluded.



Chapter5
Models

In the following chapter a model for tri-bimaximal mixing and its modifications
are described. These will undergo the numerical analysis of chapter 4 and the
results are presented in the next chapter. The basic model was found by Grimus
and Lavoura [1] and makes use of five right-handed neutrinos and the seesaw
mechanism. Together with symmetries in the lepton sector, tri-bimaximal mixing
is achieved. A slight modification concerning the symmetries allows to unfix the
mixing angles and gives the possibility to find better fitting values for current data.

5.1 Model for tri-bimaximal mixing

5.1.1 Field content

The model for tri-bimaximal mixing found by Grimus and Lavoura [1] is an exten-
sion of the Standard model, both in the lepton and the scalar sector. Additionally
the gauge group SU(2)I × U(1)Y is complemented by symmetries ensuring the
desired form of the neutrino mass matrix obtained via the seesaw mechanism.
Neglecting the quark sector, the field content is as follows:

• 3 left-handed lepton doublets

DeL =

(
νeL
eL

)
, DµL =

(
νµL
µL

)
, DτL =

(
ντL
τL

)
, (5.1)

50
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• 3 charged right-handed lepton singlets

eR , µR , τR , (5.2)

• 5 right-handed neutrino singlets

νeR , νµR , ντR , ν1R , ν2R, (5.3)

• 1 complex scalar singlet
χ, (5.4)

• 4 scalar Higgs doublets

Φe =

(
φ+
e

φ0
e

)
, Φµ =

(
φ+
µ

φ0
µ

)
, Φτ =

(
φ+
τ

φ0
τ

)
, Φ0 =

(
φ+

0

φ0
0

)
. (5.5)

The doublets DαL and the singlets αR (α = e, µ, τ) are analogous to those in
the Standard model. Five right-handed neutrino singlets ναR and νlR (l = 1, 2)
are added and give rise to various neutrino mass terms described in 5.1.3. The
Yukawa Lagrangian is also enlarged by the four Higgs doublets Φα, Φ0 and one
scalar singlet χ in the model.

5.1.2 Symmetries

Besides the SU(2)I × U(1)Y gauge group there are three additional symmetries
employed in the model.

• S3 permutation symmetry
S3 is the group of all permutations of three objects, in our case the three
flavour indices e, µ and τ . The 3! = 6 elements of S3 may be expressed in
the two row notation

S3 =

{(
1 2 3
1 2 3

)
,

(
1 2 3
2 1 3

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
3 2 1

)
,

(
1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)}
,

(5.6)

or in the cycle notation

S3 = {(), (12), (23), (13), (123), (132)} . (5.7)
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To construct all elements of the permutation group we have to choose two
non-commuting elements as generators. A convenient choice is the cyclic
permutation (123) and the interchange (23). The fields contained in the
model are now arranged in multiplets with respect to S3. There are four
triplets 


DeL

DµL

DτL


 ,



eR
µR
τR


 ,



νeR
νµR
ντR


 ,




Φe

Φµ

Φτ


 (5.8)

together with the three-dimensional representations of the cyclic transfor-
mation C and the µτ interchange I

Ceµτ 7→




0 1 0
0 0 1
1 0 0


 , Iµτ 7→




1 0 0
0 0 1
0 1 0


 . (5.9)

The three-dimensional representation of S3 is reducible, while the two-dimensional
representation for the doublets

(
ν1R

ν2R

)
,

(
χ
χ∗

)
(5.10)

is irreducible:

Ceµτ 7→
(
ω 0
0 ω2

)
, Iµτ 7→

(
0 1
1 0

)
, (5.11)

where ω := e
2πi

3 . The SU(2)I Higgs doublet Φ0 is a singlet with respect to
S3. The horizontal permutation symmetry is essential for the form of the
mass matrix and therefore for tri-bimaximal mixing.

• Three U(1)Lα lepton family symmetries
Eeach of the lepton families is assigned a U(1) symmetry:

U(1)Lα :





DαL → eiψαDαL

αR → eiψααR
ναR → eiψαναR

(5.12)

with ψ ∈ [0, 2π[. Thus the family lepton number Lα = 1 for DαL, αR and
ναR and Lα = 0 for all other fields.

• Three Z
(α)
2 symmetries

The cyclic groups Z
(α)
2 concerns only the right-handed charged leptons αR

and the Higgs doublets Φα (α = e, µ and τ):

Z
(α)
2 :

{
αR → −αR
Φα → −Φα

(5.13)
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This symmetry is important to restrict certain couplings in the Yukawa La-
grangian.

The whole group structure aside from SU(2)I×U(1)Y may be written in a compact
form as a semidirect product

G = (N ×H) ⋊ S3 (5.14)

where

N = Z
(e)
2 × Z

(µ)
2 ×Z

(τ)
2 , H = U(1)Le × U(1)Lµ × U(1)Lτ . (5.15)

5.1.3 Lagrangian

With the given fields and symmetries one has to find all allowed terms of the
Lagrangian. The Yukawa Lagrangian

LYukawa =− y1

∑

α=e,µ,τ

DαLαRφα (5.16a)

− y2

∑

α=e,µ,τ

DαLναR (iτ2φ
∗
0) (5.16b)

+
y3

2

(
χνT1RC

−1ν1R + χ∗νT2RC
−1ν2R

)
+ H.c. (5.16c)

introduces three coupling constants y1, y2, y3 and respects all symmetries described.
Spontaneous symmetry breaking leads to VEVs of the Higgs fields

vα = 〈φ0
α〉0 (5.17a)

v0 = 〈φ0
0〉0 (5.17b)

vχ = 〈φ0
χ〉0, (5.17c)

which are employed to form various mass terms, e.g. for the masses of the charged
leptons

mα = |y1vα|. (5.18)

In addition to the Dirac mass terms of (5.16) the symmetries also allow dimension-
three Majorana mass terms for the right-handed neutrino fields which respect the
S3 symmetry. The three U(1)Lα symmetries on the other hand are softly broken
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at the seesaw scale [87, 88, 89].

LMajorana =
M∗0
2

∑

α=e,µ,τ

νTαRC
−1ναR (5.19a)

+M∗1
(
νTeRC

−1νµR + νTµRC
−1ντR + νTτRC

−1νeR
)

(5.19b)

+M∗2
[
νT1RC

−1
(
νeR + ωνµR + ω2ντR

)

+ νT2RC
−1
(
νeR + ω2νµR + ωντR

)]
(5.19c)

+M∗4 ν
T
1RC

−1ν2R + H.c. (5.19d)

For a detailed view on the scalar potential and the symmetry breaking therein,
see [1]. Putting all mass terms together to prepare the application of the seesaw
mechanism we find

−
(
νeR νµR ντR ν1R ν2R

)
MD



νeL
νµL
ντL




− 1

2

(
νeR νµR ντR ν1R ν2R

)
MRC




νTeR
νTµR
νTτR
νT1R
νT2R




+ H.c. (5.20)

with the Dirac- and Majorana mass matrices

MD =




a 0 0
0 a 0
0 0 a
0 0 0
0 0 0



, MR =




M0 M1 M1 M2 M2

M1 M0 M1 ω2M2 ωM2

M1 M1 M0 ωM2 ω2M2

M2 ω2M2 ωM2 MN M4

M2 ωM2 ω2M2 M4 M ′N




, (5.21)

where a := y∗2v0, MN := y∗3v
∗
χ and M ′N := y∗3vχ. According to the seesaw mecha-

nism described in 2.2.3, we compute the light-neutrino mass matrix as

Mν = −MT
DM

−1
R MD =




x+ y + t z + ω2y + ωt z + ωy + ω2t
z + ω2y + ωt x+ ωy + ω2t z + y + t
z + ωy + ω2t z + y + t x+ ω2y + ωt


 . (5.22)
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In order to keep focus on the basic form ofMν we introduced abbreviations

x :=
−a2

detMR

[(
M2

0 −M2
1

) (
MNM

′
N −M2

4

)

+ (4M0 + 2M1)M2
2M4 − 3M4

2

]
, (5.23a)

z :=
−a2

detMR

[(
M2

1 −M0M1

) (
MNM

′
N −M2

4

)

+ (M0 − 4M1)M
2
2M4 − 3M4

2

]
, (5.23b)

y :=
−a2

detMR

(M0 + 2M1)M2
2M

′
N , (5.23c)

t :=
−a2

detMR

(M0 + 2M1)M2
2MN (5.23d)

and

detMR = (M0 + 2M1)
{
(M0 −M1)2 MNM

′
N

−
[
(M0 −M1)M4 − 3M2

2

]2}
. (5.23e)

Obviously y and t fulfill
y

t
=
M ′N
MN

=
vχ
v∗χ

. (5.24)

As shown in [1] there is a range of parameters of the scalar potential upon SSB
for which the symmetry Iµν is preserved. Thus, vχ is real and y = t holds.

y3

2

(
χνT1RC

−1ν1R + χ∗νT2RC
−1ν2R

)
+ H.c.

SSB−−→ y3

2

(
vχν

T
1RC

−1ν1R + v∗χν
T
2RC

−1ν2R

)
+ H.c.

Iµν−−→ y3

2

(
vχν

T
2RC

−1ν2R + v∗χν
T
1RC

−1ν1R

)
+ H.c.

(5.25)

Together with a property of the cubic root ω2 = ω∗ we can simplify (5.22) and
achieve

Mν =



x+ 2y z − y z − y
z − y x− y z + 2y
z − y z + 2y x− y


 . (5.26)

The tri-bimaximal mixing matrix UHPS (3.30) diagonalizesMν as desired:

m̂ = UT
HPSMνUHPS =



µ1 0 0
0 µ2 0
0 0 µ3


 , (5.27)
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where

µ1 = x+ 3y − z (5.28a)

µ2 = x+ 2z (5.28b)

µ3 = x− 3y − z. (5.28c)

Since in general x, y, z and thus the µi are complex, we have to take the absolute
values to get the light neutrino masses

mi = |µi|, (i = 1, 2, 3) (5.29)

This step is justified because any phases occuring in m̂ can be absorbed into
Majorana phases or by rephasing of the charged lepton fields. Consider the case

µi ∈ C, µi = mi · eiαi . (5.30)

Then from (5.27) we deduce

m̃ := UTMνU =



m1 0 0
0 m2 0
0 0 m3


 (5.31)

with the help of the phase matrix P

U := UHPSP = UHPS



e−iα1/2 0 0

0 e−iα2/2 0
0 0 e−iα3/2


 = eiβUHPS



eiη1 0 0
0 eiη2 0
0 0 1


 ,

(5.32)
where

η1 :=
α3 − α1

2
, η2 :=

α3 − α2

2
, β := −α3

2
. (5.33)

The phase factor eiβ turns out to be unphysical because it may be absorbed into
the lepton fields in (2.91), while η1 and η2 act as Majorana phases in the mixing
matrix.

5.2 Modifications

Alongside with the basic model for tri-bimaximal mixing, two modifications are
described in this section. One motivation for the changes is the reduction of
parameters that have to be fitted to experimental data. The described model
contains five complex parameters relevant for the numerical procedure but only
two known data values, i.e. the mass squared differences. To include also the
mixing angles in the fitting process an additional symmetry breaking is included,
giving rise to a possible non-zero ϑ13. In short, the modifications applied are:
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• CP invariance
Stating an additional CP symmetry renders the Yukawa couplings yi, i =
1, 2, 3 and the constants Mj , j = 0, 1, 2, 4 real and thus reduces the number
of free parameters of the model.

• Iµτ -violation
The Iµν symmetry is now spontaneously broken by a complex VEV vχ leading
to a deviation from tri-bimaximal mixing. For a recent discussion see also
[90].

5.2.1 CP invariance

The CP symmetry is realized via the non-standard CP tranformation introduced
in [91] and previously applied in [92]. The doublets and singlets with different
flavours are collected in the following form:

DL =



DeL

DµL

DτL


 , lR =



eR
µR
τR


 , νR =



νeR
νµR
ντR


 , Φ =




Φe

Φµ

Φτ


 . (5.34)

Introducing the matrix

S =




1 0 0
0 0 1
0 1 0


 (5.35)

that acts on flavour space as an interchange of the µ and τ components, we can
write down the CP transformation for all fields.

CP :





DL → iSCD∗L
lR → iSCl∗R
νR → iSCν∗R
φ→ Sφ∗

νsR → iCν∗sR s = 1, 2
χ→ χ∗

(5.36)

C is the standard charge-conjugation operator satisfying C−1 = C† and CT = −C.
We may now apply this CP transformation to the Lagrangian for the lepton sector
and obtain constraints on the Yukawa-coupling constants and elements of the
Majorana mass matrix MR.

First we write down two general results, which will be useful for our calculations.
The CP transformation acts on a dirac spinor as follows:

ψ
CP−−→ iCψ∗ (5.37)
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Using the identity C−1γµC = −γµT one obtains the CP transformation for the
Dirac-conjugate field:

ψ = ψ†γ0 CP−−→ (iCψ∗)† γ0 = −iψTC†γ0 = iψ
∗
C†γ0†γ0 = iψ

∗
C†. (5.38)

This of course also holds for doublets like DαL. Next we investigate the effect of
the CP transformation on an arbitrary Majorana mass term:

ψT1 C
−1ψ2

CP−−→ (iCψ∗1)T C−1iCψ∗2 =− ψ†1CTC−1Cψ∗2 = ψ†1Cψ
∗
2

= ψ†2Cψ
∗
1 =

(
ψT1 C

−1ψ2

)†
.

(5.39)

Yukawa Lagrangian

We now apply CP transformation and demand that the Lagrangian stays invariant.
For (5.16a) we simply have to use (5.37), (5.38) and then the anticommutation
relations for fermions.

− y1

∑

α=e,µ,τ

DαLαRφα +H.c.

CP−−→ − y1

∑

α=e,µ,τ

iD
∗
αLC

†iCα∗Rφ
∗
α +H.c

= + y1

∑

α=e,µ,τ

(
DαLαRφα

)∗
+H.c

= + y1

∑

α=e,µ,τ

(
φTαα

T
RD

T
αL

)†
+H.c.

= − y1

∑

α=e,µ,τ

(
DαLαRφα

)†
+H.c

!
= − y∗1

∑

α=e,µ,τ

(
DαLαRφα

)†
+H.c

(5.40)

⇓
y1 = y∗1 ⇔ y1 ∈ R (5.41)
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The second Yukawa Lagrangian term (5.16b) requires the same treatment.

− y2

∑

α=e,µ,τ

DαLναR (iτ2φ
∗
0) +H.c.

CP−−→ − y2

∑

α=e,µ,τ

iD
∗
αLC

†iCν∗αR (iτ2φ0) +H.c

= + y2

∑

α=e,µ,τ

[
DαLναR (iτ2φ

∗
0)
]∗

+H.c

= − y2

∑

α=e,µ,τ

[
DαLναR (iτ2φ

∗
0)
]†

+H.c

!
= − y∗2

∑

α=e,µ,τ

[
DαLναR (iτ2φ

∗
0)
]†

+H.c

(5.42)

⇓
y2 = y∗2 ⇔ y2 ∈ R (5.43)

Using the CP transformation relation for Majorana mass terms (5.39) one gets
from the sterile neutrino Yukawa terms (5.16c).

y3

2

(
χνT1RC

−1ν1R + χ∗νT2RC
−1ν2R

)
+H.c.

CP−−→ y3

2

[
χ∗
(
νT1RC

−1ν1R

)†
+ χ

(
νT2RC

−1ν2R

)†]
+H.c.

=
y3

2

(
χνT1RC

−1ν1R + χ∗νT2RC
−1ν2R

)†
+H.c.

!
=

y3

2

∗ (
χνT1RC

−1ν1R + χ∗νT2RC
−1ν2R

)†
+H.c.

(5.44)

⇓
y3 = y∗3 ⇔ y3 ∈ R (5.45)

As a result of CP invariance all three Yukawa coupling constants y1, y2 and y3

must be real. Especially the constraint on y3 is important for later calculations
concerning the mass matrix.

Majorana-Lagrangian

The Majorana Lagrangian of the considered model consists of 4 terms which re-
spect all allowed combinations of right handed neutrinos. The 4 constants Mi

(i = 0, 1, 2, 4) corresponding to these terms are in general complex and will be-
come real through CP invariance like the Yukawa coupling constants The first
Majorana mass term (5.19a) is easily CP transformed via (5.39). The matrix S
mixes µ and τ but since there is a summation over all flavour indices this effect
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cancels out.

M∗0
2

∑

α=e,µ,τ

νTαRC
−1ναR +H.c.

CP−−→ M∗0
2

∑

α=e,µ,τ

(
νTαRC

−1ναR
)†

+H.c.

!
=

M0

2

∑

α=e,µ,τ

(
νTαRC

−1ναR
)†

+H.c.

(5.46)

⇓
M0 = M∗0 ⇔ M0 ∈ R (5.47)

In order to show that M1 in (5.19b) is real, we use the antisymmetry of the charge
conjugation matrix C.

M∗1
(
νTeRC

−1νµR + νTµRC
−1ντR + νTτRC

−1νeR
)

+H.c.

CP−−→ M∗1
(
νTeRC

−1ντR + νTτRC
−1νµR + νTµRC

−1νeR
)†

+H.c.

= M∗1
(
νTτRC

−1νeR + νTµRC
−1ντR + νTeRC

−1νµR
)†

+H.c.

!
= M1

(
νTeRC

−1νµR + νTµRC
−1ντR + νTτRC

−1νeR
)†

+H.c.

(5.48)

⇓
M1 = M∗1 ⇔ M1 ∈ R (5.49)

For the third term (5.19c) one has to utilise the special form of ω = e
2πi

3 . Since
ω∗ = ω2 the µτ -exchange is again canceled out and leads to a real M2.

M∗2
[
νT1RC

−1
(
νeR + ωνµR + ω2ντR

)

+ νT2RC
−1
(
νeR + ω2νµR + ωντR

)]
+H.c.

CP−−→ M∗2
[
νT1RC

−1
(
νeR + ω∗ντR + (ω2)∗νµR

)

+ νT2RC
−1
(
νeR + (ω2)∗ντR + ω∗νµR

)]†
+H.c.

!
= M2

[
νT1RC

−1
(
νeR + ωνµR + ω2ντR

)

+ νT2RC
−1
(
νeR + ω2νµR + ωντR

)]†
+H.c.

(5.50)

⇓
M2 = M∗2 ⇔ M2 ∈ R (5.51)

CP invariance is straightforward in the fourth term of the Majorana Lagrangian
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(5.19d).

M∗4 ν
T
1RC

−1ν2R +H.c.
CP−−→M∗4

(
νT1RC

−1ν2R

)†
+H.c.

!
= M4

(
νT1RC

−1ν2R

)†
+H.c.

(5.52)

⇓
M4 = M∗4 ⇔ M4 ∈ R (5.53)

Finally we have now obtained that the following model constants must be real in
order to ensure CP invariance: yi for i = 1, 2, 3 and Mj for j = 0, 1, 2, 4.

5.2.2 Spontaneous Iµν-violation in the neutrino sector

So far a real VEV vχ ensured the permutation symmetry S3 leading to y = t, see
(5.25). We will now generalize [1] for a complex VEV and thus allow spontaneous
symmetry breaking of Iµν in the neutrino sector. This modification alters the
lepton mixing matrix from tri-bimaximal mixing to trimaximal mixing.

To work out the differences to the model with tri-bimaximal mixing the complex
vχ is parametrized in the following form:

vχ = ṽχ · eiε, ṽχ ∈ R, ε ∈
[
−π

2
,
π

2

]
. (5.54)

Note that this is not the regular polar decomposition since ṽχ may be positive or
negative. y and t may be written as follows:

y = ỹ eiε

t = ỹ e−iε

ỹ =
−a2

detMR

(M0 + 2M1)M
2
2 y
∗
3 ṽχ.

(5.55)

Inserting this into the mass matrix gives:

Mν =




x+ ỹ
(
eiε + e−iε

)
z + ỹ

(
ω2eiε + ωe−iε

)
z + ỹ

(
ωeiε + ω2e−iε

)

z + ỹ
(
ω2eiε + ωe−iε

)
x+ ỹ

(
ωeiε + ω2e−iε

)
z + ỹ

(
eiε + e−iε

)

z + ỹ
(
ωeiε + ω2e−iε

)
z + ỹ

(
eiε + e−iε

)
x+ ỹ

(
ω2eiε + ωe−iε

)


 .

(5.56)
The expressions in brackets can be written in terms of cosine, where φ = 2π

3
denotes

the angle corresponding to ω:

ωeiε + ω2e−iε = 2 cos(ε+ φ), (5.57)

ω2eiε + ωe−iε = 2 cos(ε− φ). (5.58)
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This leads to the following form of the mass matrix which is now real except for
−a2 hidden in x, y, z and t (see (5.23)). −a2 can be pulled out and written as
an overall factor of the matrix. Thus, Mν is treated as real for diagonalization
purposes.

Mν =




x+ 2ỹ cos(ε) z + 2ỹ cos(ε− φ) z + 2ỹ cos(ε+ φ)
z + 2ỹ cos(ε− φ) x+ 2ỹ cos(ε+ φ) z + 2ỹ cos(ε)
z + 2ỹ cos(ε+ φ) z + 2ỹ cos(ε) x+ 2ỹ cos(ε− φ)


 (5.59)

We can try to find a real U by solving the eigenvalue diagonalization UTMνU =
diag (µ1, µ2, µ3). The eigenvalues are solutions of the following equation:

−µ3 + 3xµ2 +
(
3z2 − 3x2 + 9ỹ2

)
µ+ 2z3 + x3 − 3xz2 − 18zỹ2 − 9xỹ2 = 0. (5.60)

It turns out that they are very similar to the expressions obtained in (5.28).

µ1 =x+ 3ỹ − z = x+ 3ye−iε − z (5.61a)

µ2 =x+ 2z (5.61b)

µ3 =x− 3ỹ − z = x− 3ye−iε − z (5.61c)

The corresponding mixing matrix is composed of the normalized eigenvectors.

U =




√
2
3

cos( ε
2
) 1√

3

√
2
3

sin( ε
2
)

− 1√
6

(
cos( ε

2
)−
√

3 sin( ε
2
)
)

1√
3
− 1√

2

(
cos( ε

2
) + 1√

3
sin( ε

2
)
)

− 1√
6

(
cos( ε

2
) +
√

3 sin( ε
2
)
)

1√
3

1√
2

(
cos( ε

2
)− 1√

3
sin( ε

2
)
)


 (5.62)

Obviously a small but nonvanishing phase ε results in a deviation from tri-bimaximal
mixing with nonzero sin2 ϑ13 (note Ue3). However, trimaximal mixing is always
ensured. In addition there is again no Dirac phase, this results from the group
structure (special form of ω) of the model. Remarkably this diagonalization holds
also if one waives the CP invariance, a recent publication [90] discusses this model.

Clearly, mixing angles are independent of the model parameters Mi (i = 0, 1, 2, 4)
and y3. On the other hand the phase ε, solely affecting the mixing angles, does
not alter the neutrino masses in (5.61). As a consequence the parameter space
splits up into two separate parts affecting different observables.

5.2.3 Mixing angles and figure of merit function

Comparing (5.62) with the standard parametrization (2.94) allows to express the
mixing angles in terms of the phase ε. From Ue3 we deduce

sin2 ϑ13 =
2

3
· sin2 ε

2
. (5.63)
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Next, we exploit trimaximal mixing using sin ϑ⊙ cosϑ13 = 1/3 to find

sin2 ϑ⊙ =
1

3− 2 sin2 ε
2

=
1

3
· 1

1− sin2 ϑ13
. (5.64)

Finally from the matrix element Uν3 we derive

sin2 ϑatm =
1

2
+

1

2
√

3
· sin ε

1− sin2 ϑ13
. (5.65)

Since all three mixing angles depend on only one model parameter, it is an easy
task to find analytically the minimum of the χ2

a (a for angles) function. The
individual contributions corresponding to the mixing angles are shown in Figure
5.1, where

χ2
a = χ2

13 + χ2
⊙ + χ2

atm. (5.66)
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Figure 5.1: Different contributions to χ2 as functions of ε.

While the contribution from χ2
13 would prefer ε ≈ ±0.25, the total χa function

shows only a minimum at ε = 0. Evidently, any deviation of ε from zero leads
both solar and atmospheric mixing angle further away from the experimental mean
values. The overall curve shows an approximate interval, ε ∈ [−0.1, 0.1], where
only minor additional stress is added between theory and experiment.



Chapter6
Results

In the following chapter the results of the numerical analysis described in chapter
4 are presented. Two different models of chapter 5, each with normal and inverted
mass spectrum, are investigated.

6.1 Model for tri-bimaximal mixing

Prior to the numerical analysis one has to decide which parameters in the model
are independent and count as free variables in the fitting procedure. The model
for tri-bimaximal mixing fixes the PMNS-matrix (except for the Majorana phases)
and thus introduces a constant contribution to χ2, denoted with χ2

a.

χ2
a = 2.1684

sin2 ϑ13 = 0

sin2 ϑ⊙ = 1/3

sin2 ϑatm = 1/2

(6.1)

The pull coming from the solar mixing angle is largest with pull(sin2 ϑ⊙) = 1.333,
while pull(sin2 ϑ13) = −0.625 and pull(sin2 ϑatm) = 0. Since the angles are fixed
the only remaining observables for a fit are the mass squared differences. These
depend on eight complex model parameters

y2, y3, v0, vχ,M0,M1,M2,M4, (6.2)

see section 5.1.3. Some of them can be absorbed into each other or alternatively
their values may be fixed. The following list shows the reduction of free parameters.

64
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• y2 and v0 appear only in the product a = y∗2v0 ⇒ One complex parameter
removed.

• The model restricts vχ to be real, vχ = v∗χ ⇒ One phase removed.

• vχ and y3 appear only in the product M ′N = y∗3vχ ⇒ One real parameter
removed.

• Consider the expressions of x, y, z and detMR in (5.23). With

x, y, z ∝ M4
i

detMR

and detMR ∝M5
i , i = 0, 1, 2, 4, N ′ (6.3)

we get

x, y, z ∝ M4
i

M5
i

=
1

Mi

. (6.4)

Thus, a = y∗2v0 can be absorbed into the Mi ⇒ One complex parameter
removed.

Altogether three of eight complex parameters can be removed, the parameter space
of the Nelder-Mead procedure is reduced from 16 to 10 dimensions. For the three
fixed parameters we choose v0, vχ and y2 because their values are deductable from
the seesaw mechanism. The VEV v0 is identified with the electroweak scale, while
vχ is at the GUT scale.

v0 = 170 GeV

vχ = 2 · 1016 GeV
(6.5)

The value of y2 can be estimated because a = y∗2v0 should be comparable to the
scale of mµ,τ ≈ 102 − 103 MeV. So y2 lies in the region of 10−3 − 10−2, we choose

y2 = 10−3. (6.6)

The remaining parameters

y3,M0,M1,M2,M4 ∈ C (6.7)

span the 10-dimensional space wherein the Nelder-Mead simplex is placed. The
11 vertices that build up the initial simplex before the iteration procedure are set
by a random number generator. In order to get reasonable neutrino masses while
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employing the seesaw mechanism, the initial values are taken from the following
intervals:

Re{M0},Re{M1},Re{M2},Re{M4} ∈ [−1010, 1010] GeV

Im{M0}, Im{M1}, Im{M2}, Im{M4} ∈ [−1010, 1010] GeV

Re{y∗3} = Re{M ′N/vχ} ∈ [−10−6, 10−6]

Im{y∗3} = Im{M ′N/vχ} ∈ [−10−6, 10−6] .

(6.8)

After preparing the first simplex the Nelder-Mead method for minimizing χ2
m (m

for masses) is carried out until one of the stopping criteria (4.13) is fulfilled. The
data sets with χ2

m < 1 are saved for further processing. The whole procedure of
setting a random simplex and searching for a (local) minimum is repeated 106 and
5 · 106 times for normal and inverted spectrum, respectively.

6.1.1 Normal spectrum

The minimization procedure in the case of the normal mass spectrum succeds all
106 times, with 48 data sets identified as duplicates and removed. The criterion
χ2
m < 1 is fulfilled 215462 times, the data is sorted according to the χ2

m-value. The
best fit for the input data is

χ2
m = 2.07022 · 10−8

m1 = 9.97243 · 10−4 eV

m2 = 8.80311 · 10−3 eV

m3 = 4.89998 · 10−2 eV,

(6.9)

with the following model parameters:

M0 = (−3.79927 + 1.45186i) · 109 GeV

M1 = (2.25056− 2.32944i) · 109 GeV

M2 = (3.51239 + 5.03910i) · 109 GeV

M4 = (4.00159− 4.03739i) · 109 GeV

y3 = (−4.48194− 2.23229i) · 10−7.

(6.10)

To get an idea of the mass distribution of all solutions, the interval between the
smallest m1 and the largest m3 found is cut into 103 bins. The number of solutions
lying in each bin is counted, resulting in Figure 6.1. One can clearly see the cut

at m2 =
√

∆m2
⊙ ≈ 8.75 · 10−3 eV, values below this bound can only be achieved

with increasing χ2
m.
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Figure 6.1: Mass distribution for normal mass ordering.

6.1.2 Inverted spectrum

The minimization procedure for the inverted mass spectrum is carried out 5 · 106

times, of which 4999973 stable minima are reached. 58898 data sets give χ2
m < 1,

60 duplicate solutions are removed. The best fit values are

χ2 = 6.82855 · 10−6

m1 = 4.82388 · 10−2 eV

m2 = 4.90252 · 10−2 eV

m3 = 1.87701 · 10−3 eV,

(6.11)

the corresponding model parameters are

M0 = (1.72909− 3.25560i) · 109 GeV

M1 = (−1.15458 + 1.57532i) · 109 GeV

M2 = (5.63025− 0.79025i) · 109 GeV

M4 = (3.21648 + 1.72047i) · 109 GeV

y3 = (3.82251− 5.18326i) · 10−7.

(6.12)

Figure 6.2 gives an overview of the mass distribution in the case of the inverted
mass spectrum (Again 103 bins are used to produce this figure).
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Figure 6.2: Mass distribution for inverted mass ordering.

6.2 Modified model

The modifications of the model for tri-bimaximal mixing described in section 5.2
are now employed. Starting from the list of model parameters (6.2) we can re-
duce the number of the degrees of freedom by taking into account the following
properties.

• CP -invariance forces y2, y3,M0,M1,M2,M4 ∈ R.

• y2 and v0 appear only in the product a = y∗2v0 ⇒ One parameter removed
(not the phase of v0).

• vχ and y3 appear only in the product M ′N = y∗3vχ and MN = y∗3v
∗
χ ⇒ One

parameter removed (not the phase of vχ)

• The absolute value of a = y∗2v0 can be absorbed into theMi⇒One parameter
removed.

• The phase of a = y∗2v0 appears only inside a absolute value ⇒ One phase
removed.
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Altogether there are now six free parameters including one phase εχ ∈ [−π/2, π/2],
see (5.54). Since the Nelder-Mead method is based on a simplex in Rn we repara-
metrize the phase:

eiεχ = ei arctan rχ =
1√

1 + r2
χ

(1 + irχ). (6.13)

We choose the values for the fixed values in the same manner as with the model
for tri-bimaximal mixing:

v0 = 170 GeV

ṽχ = 2 · 1016 GeV

y2 = 10−3.

(6.14)

The six degrees of freedom for the Nelder-Mead simplex are:

rχ, y3,M0,M1,M2,M4 ∈ R. (6.15)

The initial values are chosen randomly from the previously mentioned intervals.

M0,M1,M2,M4 ∈ [−1010, 1010] GeV = [−1019, 1019] eV

y∗3 = M ′N/vχ ∈ [−10−6, 10−6]

rχ ∈ [−10−1, 10−1].

(6.16)

The interval limits of rχ correspond to angles of ±5.7◦. The fitting procedure is
started 106 and 5 · 106 times for normal and inverted spectrum, respectively. All
solutions fulfilling χ2 < 10 are accepted for further processing this time.

6.2.1 Normal spectrum

The normal spectrum run of the numerics gives 393132 data sets, 96 duplicates
are removed. The best fit values for the masses are

χ2
m = 2.41483 · 10−5

m1 = 2.13116 · 10−3 eV

m2 = 9.00222 · 10−3 eV

m3 = 4.90421 · 10−2 eV,

(6.17)

while the mixing angles give

χ2
a = 2.16841

sin2 ϑ13 = 1.50553 · 10−7

sin2 ϑ⊙ = 3.33333 · 10−1

sin2 ϑatm = 5.00274 · 10−1.

(6.18)
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The corresponding model parameter values are:

rχ = 9.50432 · 10−4

M0 = −1.10014 · 1010 GeV

M1 = 7.10587 · 109 GeV

M2 = 3.74447 · 109 GeV

M4 = −5.75068 · 109 GeV

y3 = −1.75045 · 10−7.

(6.19)

The fine-tuning properties (see section 4.3) of the best fit solution are shown in
Figure 6.3. The fit is most sensitive to slight change of M2 and M4 where x varies
from 0.995 to 1.005. Other interesting quantities calculated from these results are
the effective Majorana mass for the neutrinoless double beta decay |〈mββ〉|, the

mass ratio R = m1/
√

∆m2
⊙ and the angle εχ.

|〈mββ〉| = 4.42152 · 10−3 eV

R = 2.43664 · 10−1

εχ = 9.50432 · 10−4 = 0.054◦
(6.20)

The distributions of the neutrino masses, the effective Majorana mass, the mass ra-
tio, the phase εχ and the mixing angles are shown in Figure 6.4 to 6.8. The mass
distributions look very similar to those of the model for tri-bimaximal mixing,
except for the shape of the m3-peak (Figure 6.4). The effective mass for neutrino-
less double beta decay is calculated under the assumption of vanishing Majorana
phases, i.e. β1 = β2 = 0 (Figure 6.5). The ratio R shows a maximum between
0.1 and 0.3 with a clear restriction to values < 1 (Figure 6.6). As expected from
the analytical analysis in section 5.2.3 values of εχ 6= 0 are disfavoured (Figure
6.7). The distribution of the mixing angles shows no noticeable movement away
from sin2 ϑ⊙ = 1/3 (Figure 6.8). The variation of sin2 ϑatm is quite broad with
values from 0.47 to 0.53, sin2 ϑ13 is hardly visible on the combined plot and thus
plotted separately (Figure 6.9). In order to show the rise of χ2

m for small values
of the effective Majorana mass, the numerical method of a pinning term (section
4.3) was applied to generate Figure 6.10.
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Figure 6.3: Fine-tuning properties of the best fit solution.
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6.2.2 Inverted spectrum

The Nelder-Mead method yields 282132 data sets fulfilling χ2 < 10, 383 entries
are duplicates. The best fit values for the masses are:

χ2
m = 3.17560 · 10−5

m1 = 4.83400 · 10−2 eV

m2 = 4.91249 · 10−2 eV

m3 = 3.72542 · 10−3 eV.

(6.21)

As expected the mixing angles do not veer away from tri-bimaximal mixing. The
results are comparable to those of normal mass ordering because the parameter
space for masses and angles are completely separated as shown in section 5.2.3.

χ2
a = 2.16841

sin2 ϑ13 = 4.59687 · 10−8

sin2 ϑ⊙ = 3.33333 · 10−1

sin2 ϑatm = 4.99848 · 10−1

(6.22)

The best fit solution presented corresponds to the following model parameters:

rχ = −5.25178 · 10−4

M0 = 3.02744 · 109 GeV

M1 = −1.21957 · 109 GeV

M2 = 7.38539 · 109 GeV

M4 = −6.41894 · 109 GeV

y3 = 2.00966 · 10−6.

(6.23)

In contrast to the normal mass spectrum the fine-tuning properties are slightly
changed as shown in Figure 6.11. Instead of M4 now M1 seems to be rather fine-
tuned. The effective Majorana mass |〈mββ〉| is comparable to m1,2, also note that

the definition of R = m3/
√

∆m2
⊙ is different for the inverted mass spectrum.

|〈mββ〉| = 4.86016 · 10−2 eV

R = 4.25950 · 10−1

ε = −5.25178 · 10−4

(6.24)

The distributions for the various quantities are again depicted in Figure 6.12 to
6.17. Besides the mass spectrum there are no changes compared to the normal
mass ordering. Again the lower bound of |〈mββ〉| is shown in Figure 6.18.
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Figure 6.11: Fine-tuning properties of the best fit solution.
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6.2.3 Effective Majorana mass versus lightest mass

Reconsider equations (3.27) and (3.28) for the effective Majorana neutrino mass
for normal and inverted spectrum, respectively. While the experimental data for
mass squared differences and mixing angles is given in Table 3.1, the lightest mass
m0 (:= m1 for normal, := m3 for inverted spectrum) and the phases β1 and β2

are not yet determined. This allows to plot those regions in the (m0, |〈mββ〉|)-
plane that are accessible via variation of both phases. Figure 6.19 shows |〈mββ〉|
versus m0, the area between the red lines denotes possible values for the normal
spectrum, the green lines the same for the inverted spectrum. Note that Figure
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Figure 6.19: Effective Majorana mass |〈mββ〉| versus the lightest neutrino mass
m0.

6.19 disregards the uncertainties of the experimental data, see [93] for a detailed
analysis. The black dots show values taken from the best 1000 data sets (modified
model) for both mass spectra, where β1 = β2 = 0. Obviously the combination
of random set simplices and the Nelder-Mead minimization procedure leads to a
spread in the smallest mass of several orders of magnitude.



Chapter7
Conclusions

In this thesis we discussed the basic extensions in the lepton sector and presented
two models which allow for tri-bimaximal and trimaximal lepton mixing. These
models were tested with the help of numerical tools to compare predictions with
experimental data.

The main conclusions concerning the investigated models are as follows. Both
models allow a perfect fit to current mass squared differences for normal and
inverted mass spectrum. The contributions to the total χ2 are negligible, i.e.
10−8 − 10−5. Unlike the masses the mixing angles introduce some stress between
theory and experiment, since χ2

a = 2.1684 for tri-bimaximal mixing. Also with the
described modifications which unfix the angles no further improvement is made,
as expected from the analytical discussion in 5.2.3.

Regarding the numerics the Nelder-Mead method proved to be an effective tool for
the minimization of the figure of merit function. With the tested models there were
no problems finding excellent minima. Further application of the provided sample
code should be considered with more elaborate models including also the quark
sector. This would be a good chance to test the algorithm with more parameters
and observables. Adaption of the source code would be an easy task since most of
the model-related information is part of one subroutine.

Considering the great variety of models today there is still a lot of potential for the
application of the Nelder-Mead method in combination with the figure of merit
function to serve as a tool to provide information about consistency of theory and
experiment.
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AppendixA
Appendix

The Appendix contains sample program code as described in section 4.4. Both
the normal and the pinning term versions are provided, each with nmm.f90 and
dnmm.f90. The Mathematica script to read data and analyse the fine-tuning prop-
erties is also included.
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A.1 Main program

nmm.f90 1

1 !*******************************************************************************
2 !
3 ! file: nmm.f90
4 ! Nelder Mead Method
5 ! 
6 ! Modified model, CP�invariance, nonzero theta13
7 !
8 ! constants:  v0t,vct,r0,y2
9 ! parameters: rc,M0,M1,M2,M4,y3
10 ! res values: 

chi2,chi2m,chi2a,mass1,mass2,mass3,dm2atm,dm2sol,mbb,R,epsilo,sin213,sin2sol,sin2atm
11 !
12 !*******************************************************************************
13
14 module nmm_var
15
16         implicit none
17         integer,parameter :: N=6,Nres=13,Nc=4,fout=11,p18=selected_real_kind(p=18)
18         real(kind=p18),parameter :: 

rho=1.0_p18,chi=2.0_p18,gam=0.5_p18,sig=0.5_p18,eps=1.0E(6_p18,crit=1.0E1_p18
19         complex(kind=p18),parameter :: c1=(1.0_p18,0.0_p18), ci=(0.0_p18,1.0_p18)
20         real(kind=p18) :: c_v0t,c_vct,c_r0,c_y2
21         complex(kind=p18) :: c_a
22         integer :: i,j,k,loop,nrand,nloop=10000
23         integer,dimension(6) :: stats
24         integer,dimension(:),allocatable :: seed
25         real :: tstart,tstop
26         real(kind=p18) :: fr,fn,d,tmp
27         real(kind=p18),dimension(Nres) :: res
28         real(kind=p18),dimension(N) :: xc,xr,xn
29         real(kind=p18),dimension(N+1) :: f
30         real(kind=p18),dimension(N+1,N) :: x
31         real(kind=p18),dimension(:,:),allocatable :: sav
32
33 end module nmm_var
34
35 !*******************************************************************************
36 !*******************************************************************************
37
38 module nmm_sub
39
40         use nmm_var
41         
42         implicit none
43
44         contains
45         
46 !*******************************************************************************
47         subroutine init()
48
49                 write(unit=*,fmt='("nloop = ")',advance='no')
50                 read(*,*) nloop
51                 call random_seed(size=nrand)
52                 allocate(seed(nrand),sav(nloop,N+Nres+1))
53                 seed=0
54                 xc=0
55                 x=0
56                 f=0
57                 sav=0
58                 res=0
59                 stats=0
60
61         end subroutine init
62 !*******************************************************************************
63         subroutine initf()
64
65                 c_v0t=1.7E11_p18
66                 c_vct=2.0E25_p18
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nmm.f90 2

67                 c_r0=0.0E0_p18
68                 c_y2=1.0E(3_p18
69
70                 c_a= �1.0_p18*(c_y2*c_v0t*(c1+c_r0*ci)/(1.0_p18+c_r0**2.0_p18))**2.0_p18
71
72         end subroutine initf
73 !*******************************************************************************
74         subroutine prepf()
75
76                 call random_seed
77                 call random_seed(get=seed)
78                 !write(unit=*,fmt='(4(Z8.8,TR1))') seed
79                 do i=1,N+1
80                         do j=1,1
81                                 call random_number(x(i,j))
82                                 x(i,j)=1.0E(1_p18  *  2.0_p18*(x(i,j)�0.5_p18)
83                         end do
84                         do j=2,N�1
85                                 call random_number(x(i,j))
86                                 x(i,j)=1.0E19_p18  *  2.0_p18*(x(i,j)�0.5_p18)
87                         end do
88                         do j=N,N
89                                 call random_number(x(i,j))
90                                 x(i,j)=2.0_p18  *   1.0E(06_p18  *  2.0_p18*(x(i,j)�0.5_p18)
91                         end do
92                         call calcf(f(i),x(i,:),.FALSE.)
93                 end do
94
95         end subroutine prepf
96 !*******************************************************************************
97
98         subroutine calcf(a,b,sres)
99         
100                 implicit none
101                 logical,intent(in) :: sres
102                 real(kind=p18),intent(inout) :: a
103                 real(kind=p18),dimension(N),intent(in) :: b
104                 real(kind=p18) :: rc,M0,M1,M2,M4,y3
105                 real(kind=p18) :: MN2,x,yt,z,detM
106                 real(kind=p18) :: mass1,mass2,mass3,dm2atm,dm2sol,chi2m,mbb,R
107                 real(kind=p18),parameter :: 

MV_dm2atm=2.4E(3_p18,SD_dm2atm=0.12E(3_p18,MV_dm2sol=7.65E(5_p18,SD_dm2sol=0.23E(5_p18
108                 real(kind=p18) :: epsilo,sin213,sin2sol,sin2atm,chi2a
109                 real(kind=p18),parameter :: 

MV_sin213=1.0E(2_p18,SD_sin213=1.6E(2_p18,MV_sin2sol=3.04E(1_p18,SD_sin2sol=0.22E(1_p18, &
110 MV_sin2atm=5.0E(1_p18,SD_sin2atm=0.7E(1_p18
111                 
112                 rc=b(1)
113                 M0=b(2)
114                 M1=b(3)
115                 M2=b(4)
116                 M4=b(5)
117                 y3=b(6)        
118
119                 !MASSES
120                 MN2=(y3*c_vct)**2.0_p18        
121
122                 detM = (M0+2.0_p18*M1)*( (M0�M1)**2.0_p18*MN2 � ( (M0�M1)*M4 � 

3.0_p18*M2**2.0_p18)**2.0_p18 )
123                 x = 1.0_p18/detM * ( (M0**2.0_p18�M1**2.0_p18)*(MN2�M4**2.0_p18) + & 
124 (4.0_p18*M0+2.0_p18*M1)*M2**2.0_p18*M4 � 3.0_p18*M2**4.0_p18 )
125                 z = 1.0_p18/detM * ( (M1**2.0_p18�M0*M1)*(MN2�M4**2.0_p18) + 

(M0�4.0_p18*M1)*M2**2.0_p18*M4 � 3.0_p18*M2**4.0_p18 )
126                 yt = 1.0_p18/detM * ( (M0+2.0_p18*M1)*M2**2.0_p18*y3*c_vct )
127
128                 mass1 = abs( c_a * (x+3.0_p18*yt�z) )
129                 mass2 = abs( c_a * (x+2.0_p18*z) )
130                 mass3 = abs( c_a * (x�3.0_p18*yt�z) )
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131
132                 dm2atm = mass3**2.0_p18 � mass1**2.0_p18
133                 dm2sol = mass2**2.0_p18 � mass1**2.0_p18
134
135                 chi2m = ((dm2atm�MV_dm2atm)/SD_dm2atm)**2.0_p18 + 

((dm2sol�MV_dm2sol)/SD_dm2sol)**2.0_p18
136
137                 !ANGLES
138                 epsilo = atan(rc)
139
140                 sin213 = 2.0_p18/3.0_p18 * sin(epsilo/2.0_p18)**2.0_p18
141                 sin2sol = 1.0_p18 / (3.0_p18 * (1.0_p18 � sin213))
142                 sin2atm = 0.5_p18 + sin(epsilo) / (sqrt(12.0_p18)*(1�sin213))
143
144                 chi2a = ((sin213�MV_sin213)/SD_sin213)**2.0_p18 + 

((sin2sol�MV_sin2sol)/SD_sin2sol)**2.0_p18 + &
145 ((sin2atm�MV_sin2atm)/SD_sin2atm)**2.0_p18
146
147                 a = chi2m + chi2a
148
149                 if(sres) then
150
151                         mbb = abs( ( mass1*(1.0_p18�sin2sol) + 

sqrt(mass1**2.0_p18+dm2sol)*sin2sol*exp(ci*0.0_p18) )*(1.0_p18�sin213) + &
152 sqrt(mass1**2.0_p18 + dm2atm)*sin213*exp(ci*0.0_p18) )
153
154                         R = mass1/sqrt(dm2sol) 
155
156                         res(1)=chi2m
157                         res(2)=chi2a
158                         res(3)=mass1
159                         res(4)=mass2
160                         res(5)=mass3
161                         res(6)=dm2atm
162                         res(7)=dm2sol
163                         res(8)=mbb
164                         res(9)=R
165                         res(10)=epsilo
166                         res(11)=sin213
167                         res(12)=sin2sol
168                         res(13)=sin2atm
169                 end if
170
171         end subroutine calcf
172 !*******************************************************************************
173         subroutine sort()
174
175                 integer,dimension(1) :: imin
176                 real(kind=p18),dimension(N) :: vtemp
177                 real(kind=p18) :: stemp
178
179                 do i=1,N
180                         imin=i�1+minloc(f(i:N+1))
181                         vtemp=x(i,:)
182                         stemp=f(i)
183                         x(i,:)=x(imin(1),:)
184                         f(i)=f(imin(1))
185                         x(imin(1),:)=vtemp
186                         f(imin(1))=stemp                
187                 end do
188
189         end subroutine sort
190 !*******************************************************************************
191         subroutine centroid()
192                 
193                 xc=0
194                 do j=1,N
195                         do i=1,N
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196                                 xc(j) = xc(j) + x(i,j)
197                         end do
198                         xc(j)=xc(j)/N
199                 end do
200                 !write(*,*) "centroid =", xc
201         
202         end subroutine centroid
203 !*******************************************************************************
204         subroutine shrinkage()
205
206                 do j=2,N+1
207                         x(j,:) = x(1,:) + sig*(x(j,:)�x(1,:))
208                         call calcf(f(j),x(j,:),.FALSE.)
209                 end do
210
211         end subroutine shrinkage
212 !*******************************************************************************
213         subroutine show()
214
215                 do i=1,N+1
216                         write(unit=*,fmt='("x("I2.2") =")',advance='no') i
217                         do j=1,N
218                                 write(unit=*,fmt='(F13.8)',advance='no') x(i,j)
219                         end do
220                         write(*,*)
221                 end do
222                 write(*,*) "f =",f
223
224         end subroutine show
225 !*******************************************************************************
226         subroutine calcd()
227
228                 real(kind=p18) :: fm
229                 
230                 fm=0.0_p18
231                 d=0.0_p18
232                 do j=1,N+1
233                         fm = fm + f(j)
234                 end do
235                 fm=fm/(N+1)
236                 do j=1,N+1
237                         d = d + (f(j)�fm)**2.0**p18
238                 end do
239                 d=d/(N+1)
240                 
241         end subroutine calcd
242 !*******************************************************************************
243         subroutine wfile()
244         
245                 open(unit=fout,file="nmm.dat",status="replace",action="write",form="unformatte

d",position="rewind")
246                 write(unit=fout) N,Nres,nloop,Nc
247                 write(unit=fout) stats
248                 do loop=1,nloop
249                         if(sav(loop,N+Nres+1)/=0) write(unit=fout) sav(loop,:)        
250                 end do
251                 write(unit=fout) c_v0t,c_vct,c_r0,c_y2
252                 close(fout)
253
254         end subroutine wfile
255 !*******************************************************************************
256         subroutine finish()
257
258                 !write(*,*) "Steps: ",k
259                 deallocate(seed,sav)
260
261         end subroutine finish
262 !*******************************************************************************
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263 end module nmm_sub
264
265 !*******************************************************************************
266 !*******************************************************************************
267
268 program nmm
269
270         use nmm_var
271         use nmm_sub
272
273         implicit none
274         
275         write(*,*) huge(fn)
276         write(*,*) tiny(fn)
277         
278         call cpu_time(tstart)
279
280         call init()
281         call initf()
282         do loop=1,nloop
283                 call prepf()
284                 k=1
285                 do
286                         k=k+1
287                         call sort()
288                         call centroid()        
289                         xr = xc + rho*(xc�x(N+1,:))
290                         call calcf(fr,xr,.FALSE.)
291                         if(f(1)<=fr .AND. fr<f(N)) then
292                                 x(N+1,:)=xr
293                                 f(N+1)=fr
294                                 !write(*,*) "Reflection accepted"
295                                 go to 10
296                         else if(fr<f(1)) then
297                                 xn = xc + chi*(xr�xc)
298                                 call calcf(fn,xn,.FALSE.)
299                                 if(fn<fr) then
300                                         x(N+1,:)=xn
301                                         f(N+1)=fn
302                                         !write(*,*) "Expansion accepted"
303                                         go to 10
304                                 else
305                                         x(N+1,:)=xr
306                                         f(N+1)=fr
307                                         !write(*,*) "Expansion rejected �> Reflection"
308                                         go to 10
309                                 end if
310                         else if(f(N)<=fr .AND. fr<f(N+1)) then
311                                 xn = xc + gam*(xr�xc)
312                                 call calcf(fn,xn,.FALSE.)
313                                 if(fn<=fr) then
314                                         x(N+1,:)=xn
315                                         f(N+1)=fn
316                                         !write(*,*) "Outside contraction accepted"
317                                         go to 10
318                                 else
319                                         !write(*,*) "Outside contraction rejected �> 

Shrinkage"
320                                         call shrinkage()
321                                         go to 10
322                                 end if         
323                         else if(fr>=f(N+1)) then
324                                 xn = xc � gam*(xc�x(N+1,:))
325                                 call calcf(fn,xn,.FALSE.)
326                                 if(fn<f(N+1)) then
327                                         x(N+1,:)=xn
328                                         f(N+1)=fn
329                                         !write(*,*) "Inside contraction accepted"
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330                                         go to 10
331                                 else
332                                         !write(*,*) "Inside contraction rejected �> Shrinkage"
333                                         call shrinkage()
334                                         go to 10
335                                 end if                
336                         end if
337 10                        call calcd()
338                         if(d<=eps) then 
339                                 !write(*,*) "Minimum reached: stats(1)",x(1,1),f(1)
340                                 stats(1)=stats(1)+1
341                                 exit
342                         end if
343                         if(mod(k,100)==0) then
344                                 tmp=0.0_p18
345                                 do i=1,N+1
346                                         do j=1,N
347                                                 tmp=tmp+x(i,j)
348                                         end do
349                                         tmp=tmp+f(i)
350                                 end do
351                                 if(tmp*0.0_p18 /= 0.0_p18 .OR. tmp >= 1E99_p18) then
352                                         !write(*,*) "Detect infinity: stats(4)"
353                                         stats(4)=stats(4)+1
354                                         go to 20
355                                 end if
356                         end if
357                         if(k>=1000) then
358                                 !write(*,*) "No minimum reached: stats(3)"
359                                 stats(3)=stats(3)+1
360                                 go to 20
361                         end if                
362                 end do
363                 call sort()
364                 if(f(1)<=crit) then
365                         call calcf(f(1),x(1,:),.TRUE.)
366                         if(res(3)<=res(4) .AND. res(4)<=res(5)) then
367                                 !write(*,*) "Criterion fulfilled: stats(2)"
368                                 sav(loop,1:N)=x(1,:)
369                                 sav(loop,N+1)=f(1)
370                                 sav(loop,N+2:N+Nres+1) = res
371                                 stats(2)=stats(2)+1
372                         else
373                                 !write(*,*) "Wrong mass order: stats(5)"
374                                 stats(5)=stats(5)+1
375                         end if
376                 end if
377 20                if(mod(loop,1000)==0) write(unit=*,fmt='(7(I10,TR1))') loop,stats
378         end do
379         call wfile()
380         call finish()
381
382         call cpu_time(tstop)
383
384         write(*,*) "Time: ",tstop�tstart,"sec"
385
386 end program nmm
387
388
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1 !*******************************************************************************
2 !
3 ! file: dnmm.f90
4 ! Data Processing for Nelder Mead Method
5 !
6 ! Modified model, CP�invariance, nonzero theta13
7 !
8 ! constants:  v0t,vct,r0,y2
9 ! parameters: rc,M0,M1,M2,M4,y3
10 ! res values: 

chi2,chi2m,chi2a,mass1,mass2,mass3,dm2atm,dm2sol,mbb,R,epsilo,sin213,sin2sol,sin2atm
11
12 !*******************************************************************************
13
14 module dnmm_var
15         
16         implicit none
17         integer,parameter :: fin=11,fout=12,p18=selected_real_kind(p=18)
18         integer :: i,j,k,N,Nres,nloop,Nc,nch=100
19         integer,dimension(6) :: stats
20         real(kind=p18),dimension(:,:),allocatable :: sav,mvsd
21         real(kind=p18),dimension(:),allocatable :: const
22         type list1
23                 sequence
24                 real(kind=p18) :: c
25                 integer :: n
26         end type list1
27         type(list1),dimension(:),allocatable :: 

lM1,lM2,lM3,lmbb,lR,lepsilo,lsin213,lsin2sol,lsin2atm
28         real(kind=p18) :: lstarttemp,ltemp
29
30 end module dnmm_var
31
32 !*******************************************************************************
33 !*******************************************************************************
34
35 module dnmm_sub
36
37         use dnmm_var
38         
39         contains
40
41 !*******************************************************************************
42         subroutine readin()
43
44                 write(unit=*,fmt='("nch = ")',advance='no')
45                 read(*,*) nch
46                 allocate(lM1(nch),lM2(nch),lM3(nch),lmbb(nch),lR(nch),lepsilo(nch),lsin213(nch

),lsin2sol(nch),lsin2atm(nch))
47
48                 open(unit=fin,file="nmm.dat",status="old",action="read",form="unformatted",pos

ition="rewind")
49                 read(unit=fin) N,Nres,nloop,Nc
50                 read(unit=fin) stats
51                 allocate(sav(1:stats(2),1:N+Nres+1),mvsd(1:2,1:N+Nres+1),const(1:Nc))
52                 mvsd=0
53                 do i=1,stats(2)
54                         read(unit=fin) sav(i,:)
55                 end do
56                 read(unit=fin) const(1:Nc)
57                 close(fin)
58                 
59         end subroutine readin
60 !*******************************************************************************
61         subroutine remdup()
62
63                 write(unit=*,fmt='("Removing duplicates: ")',advance='no')
64                 do i=1,stats(2)�stats(6)�1
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65                         if(mod(i,floor(stats(2)/10.0))==0) 
write(unit=*,fmt='("*")',advance='no') 

66                         j=i+1
67                         do while(j<=stats(2)�stats(6))
68                                 do k=1,N
69                                         !write(*,*) 

i,j,k,sav(i,k),sav(j,k),abs(sav(i,k)�sav(j,k))
70 !                                        if(abs((sav(i,k)�sav(j,k))/sav(i,k)) > 1E�5_p18) exit
71                                         if(sav(i,k) .NE. sav(j,k)) exit                        

        
72                                 end do
73                                 if(k==N+1) then
74                                         !write(*,*) i,sav(i,1)
75                                         !write(*,*) j,sav(j,1)
76                                         sav(j,:)=sav(stats(2)�stats(6),:)
77                                         sav(stats(2)�stats(6),:)=0
78                                         stats(6)=stats(6)+1
79                                         if(i/=stats(2)�stats(6)) j=j�1
80                                 end if
81                                 j=j+1
82                         end do
83                 end do
84                 stats(2)=stats(2)�stats(6)        
85                 write(*,*)
86         
87         end subroutine remdup
88 !*******************************************************************************
89         subroutine sort()
90                 
91                 real(kind=p18),dimension(N+Nres+1) :: tempsav
92                 integer,dimension(1) :: imin
93                 
94                 write(unit=*,fmt='("Sorting results:     ")',advance='no')
95                 do i=1,stats(2)�1
96                         if(mod(i,floor(stats(2)/10.0))==0) 

write(unit=*,fmt='("*")',advance='no') 
97                         imin = i�1+minloc(sav(i:stats(2),N+1))
98                         tempsav = sav(imin(1),:)
99                         sav(imin(1),:) = sav(i,:)
100                         sav(i,:) = tempsav
101                 end do                
102                 write(*,*)                
103
104         end subroutine sort
105 !*******************************************************************************
106         subroutine cmvsd()
107                 
108                 do i=1,N+Nres+1
109                         do j=1,stats(2)
110                                 mvsd(1,i)=mvsd(1,i)+sav(j,i)
111                         end do
112                 end do
113                 mvsd(1,:)=mvsd(1,:)/stats(2)
114                 do i=1,N+Nres+1
115                         do j=1,stats(2)
116                                 mvsd(2,i)=mvsd(2,i)+(sav(j,i)�mvsd(1,i))**2.0_p18
117                         end do
118                 end do
119                 mvsd(2,:)=sqrt(mvsd(2,:)/(real(stats(2),p18)*real(stats(2)�1,p18)))
120
121         end subroutine cmvsd
122 !*******************************************************************************
123         subroutine wdata()
124         
125                 open(unit=fout,file="nmm.txt",status="replace",action="write",form="formatted"

,position="rewind")
126                 write(unit=fout,fmt='("             rc            ")',advance='no')
127                 write(unit=fout,fmt='("             M0            ")',advance='no')
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128                 write(unit=fout,fmt='("             M1            ")',advance='no')
129                 write(unit=fout,fmt='("             M2            ")',advance='no')
130                 write(unit=fout,fmt='("             M4            ")',advance='no')
131                 write(unit=fout,fmt='("             y3            ")',advance='no')
132                 write(unit=fout,fmt='("            Chi^2          ")',advance='no')
133                 write(unit=fout,fmt='("            Chi^2m         ")',advance='no')
134                 write(unit=fout,fmt='("            Chi^2a         ")',advance='no')
135                 write(unit=fout,fmt='("            mass1          ")',advance='no')
136                 write(unit=fout,fmt='("            mass2          ")',advance='no')
137                 write(unit=fout,fmt='("            mass3          ")',advance='no')
138                 write(unit=fout,fmt='("            dm2atm         ")',advance='no')
139                 write(unit=fout,fmt='("            dm2sol         ")',advance='no')
140                 write(unit=fout,fmt='("             mbb           ")',advance='no')
141                 write(unit=fout,fmt='("              R            ")',advance='no')
142                 write(unit=fout,fmt='("            epsilo         ")',advance='no')
143                 write(unit=fout,fmt='("            sin213         ")',advance='no')
144                 write(unit=fout,fmt='("            sin2sol        ")',advance='no')
145                 write(unit=fout,fmt='("            sin2atm        ")',advance='yes')
146                 do i=1,stats(2)
147                         do j=1,N+Nres+1
148                                 write(unit=fout,fmt='(ES26.18,TR1)',advance='no') sav(i,j)
149                         end do
150                         write(unit=fout,fmt=*)
151                 end do 
152                 write(unit=fout,fmt=*)
153                 do i=1,N+Nres+1
154                         write(unit=fout,fmt='(ES26.18,TR1)',advance='no') mvsd(1,i)
155                 end do
156                 write(unit=fout,fmt=*)
157                 do i=1,N+Nres+1
158                         write(unit=fout,fmt='(ES26.18,TR1)',advance='no') mvsd(2,i)
159                 end do
160                 write(unit=fout,fmt=*)
161                 write(unit=fout,fmt=*)
162                 write(unit=fout,fmt='("Constants:")')
163                 write(unit=fout,fmt='("             v0t           ")',advance='no')
164                 write(unit=fout,fmt='("             vct           ")',advance='no')
165                 write(unit=fout,fmt='("             r0            ")',advance='no')
166                 write(unit=fout,fmt='("             y2            ")',advance='yes')
167                 do i=1,Nc
168                         write(unit=fout,fmt='(ES26.18,TR1)',advance='no') const(i)
169                 end do
170                 write(unit=fout,fmt=*)
171                 write(unit=fout,fmt=*)
172                 write(unit=fout,fmt='("Stable minimum reached: "I10)') stats(1)
173                 write(unit=fout,fmt='("Criterion fulfilled:    "I10)') stats(2)
174                 write(unit=fout,fmt='("No minimum reached:     "I10)') stats(3)
175                 write(unit=fout,fmt='("Infinity detected:      "I10)') stats(4)
176                 write(unit=fout,fmt='("Wrong mass order:       "I10)') stats(5)
177                 write(unit=fout,fmt='("Duplicates removed:     "I10)') stats(6)
178                 close(fout)
179
180         end subroutine wdata
181 !*******************************************************************************
182         subroutine clist(lin,lout,lstart,l)
183
184                 implicit none
185                 real(kind=p18),dimension(stats(2)),intent(in) :: lin
186                 real(kind=p18),intent(in) :: lstart,l
187                 type(list1),dimension(nch),intent(out) :: lout
188                 real(kind=p18) :: step
189                 integer :: tmp
190
191                 lout%c=0
192                 lout%n=0
193                 !lstart=minval(lin)
194                 !l=maxval(lin)�lstart
195                 !lstart=lstart�0.05_p18*l
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196                 !l=1.1_p18*l
197                 step=l/(nch�1)
198                 do i=1,nch
199                         lout(i)%c=lstart + i*step � 0.5_p18*step
200                 end do
201                 do i=1,stats(2)
202                         tmp=floor((lin(i)�lstart)/step)+1
203                         !write(*,*) i,(lin(i)�lstart)/step,tmp
204                         lout(tmp)%n=lout(tmp)%n+1
205                 end do
206
207         end subroutine clist
208 !*******************************************************************************
209         subroutine wlist()
210
211                 open(unit=fout,file="list.txt",status="replace",action="write",form="formatted

",position="rewind")
212                 do i=1,nch
213                         write(unit=fout,fmt='(9(ES27.19,TR1,I6))') 

lM1(i)%c,lM1(i)%n,lM2(i)%c,lM2(i)%n,lM3(i)%c,lM3(i)%n,lmbb(i)%c,lmbb(i)%n, &
214 lR(i)%c,lR(i)%n,lepsilo(i)%c,lepsilo(i)%n,lsin213(i)%c,lsin213(i)%n,lsin2sol(i)%c,lsin2sol(i)%

n,lsin2atm(i)%c,lsin2atm(i)%n
215                 end do
216                 close(fout)
217
218         end subroutine wlist
219 !*******************************************************************************
220         subroutine wscreen()
221
222                 write(unit=*,fmt='("Stable minimum reached: "I10)') stats(1)
223                 write(unit=*,fmt='("Criterion fulfilled:    "I10)') stats(2)
224                 write(unit=*,fmt='("No minimum reached:     "I10)') stats(3)
225                 write(unit=*,fmt='("Infinity detected:      "I10)') stats(4)
226                 write(unit=*,fmt='("Wrong mass order:       "I10)') stats(5)
227                 write(unit=*,fmt='("Duplicates removed:     "I10)') stats(6)
228
229         end subroutine wscreen
230 !*******************************************************************************
231         subroutine finish()
232
233                 deallocate(sav,lM1,lM2,lM3,lmbb,lR,lepsilo,lsin213,lsin2sol,lsin2atm,mvsd,cons

t)
234
235         end subroutine finish
236 !*******************************************************************************
237
238 end module dnmm_sub
239
240 !*******************************************************************************
241 !*******************************************************************************
242
243 program dnmm
244
245         use dnmm_var
246         use dnmm_sub
247         
248         call readin()
249         call remdup()
250         call sort()
251         call cmvsd()
252         call wdata()
253
254         lstarttemp=min(minval(sav(:,N+4)),minval(sav(:,N+5)),minval(sav(:,N+6)))
255         ltemp=max(maxval(sav(:,N+4)),maxval(sav(:,N+5)),maxval(sav(:,N+6)))�lstarttemp
256         call clist(sav(:,N+4),lM1,lstarttemp,ltemp)
257         call clist(sav(:,N+5),lM2,lstarttemp,ltemp)
258         call clist(sav(:,N+6),lM3,lstarttemp,ltemp)
259
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260         lstarttemp=minval(sav(:,N+9))
261         ltemp=maxval(sav(:,N+9))�lstarttemp
262         call clist(sav(:,N+9),lmbb,lstarttemp,ltemp)
263
264         lstarttemp=minval(sav(:,N+10))
265         ltemp=maxval(sav(:,N+10))�lstarttemp
266         call clist(sav(:,N+10),lR,lstarttemp,ltemp)
267
268         lstarttemp=minval(sav(:,N+11))
269         ltemp=maxval(sav(:,N+11))�lstarttemp
270         call clist(sav(:,N+11),lepsilo,lstarttemp,ltemp)
271
272         lstarttemp=min(minval(sav(:,N+12)),minval(sav(:,N+13)),minval(sav(:,N+14)))
273         ltemp=max(maxval(sav(:,N+12)),maxval(sav(:,N+13)),maxval(sav(:,N+14)))�lstarttemp
274         call clist(sav(:,N+12),lsin213,lstarttemp,ltemp)
275         call clist(sav(:,N+13),lsin2sol,lstarttemp,ltemp)
276         call clist(sav(:,N+14),lsin2atm,lstarttemp,ltemp)
277
278         call wlist()
279         call wscreen()
280         call finish()
281
282 end program dnmm
283
284
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A.2 Program for pinning term method

nmm.f90 1

1 !*******************************************************************************
2 !
3 ! file: nmm.f90
4 ! Nelder Mead Method
5 ! 
6 ! Modified Model, CP�invariance, nonzero theta13, inverted spectrum
7 !
8 ! constants:  v0t,vct,r0,y2
9 ! parameters: rc,M0,M1,M2,M4,y3
10 ! res values: 

chi2,chi2m,chi2a,mass1,mass2,mass3,dm2atm,dm2sol,mbb,R,epsilo,sin213,sin2sol,sin2atm
11 !
12 !*******************************************************************************
13
14 module nmm_var
15
16         implicit none
17         integer,parameter :: N=6,Nres=14,Nc=4,fout=11,p18=selected_real_kind(p=18)
18         real(kind=p18),parameter :: rho=1.0_p18,chi=2.0_p18,gam=0.5_p18,sig=0.5_p18
19         real(kind=p18),parameter :: eps=1.0E(6_p18,crit=1.0E2_p18
20         complex(kind=p18),parameter :: c1=(1.0_p18,0.0_p18),ci=(0.0_p18,1.0_p18)
21         real(kind=p18) :: c_v0t,c_vct,c_r0,c_y2,startpin,stoppin
22         complex(kind=p18) :: c_a
23         integer :: i,j,k,loop,nrand,nloop=10000,ipin,npin=10
24         integer,dimension(6) :: stats
25         integer,dimension(:),allocatable :: seed
26         real :: tstart,tstop
27         real(kind=p18) :: fr,fn,d,tmp,vpin
28         real(kind=p18),dimension(Nres) :: res
29         real(kind=p18),dimension(N) :: xc,xr,xn
30         real(kind=p18),dimension(N+1) :: f
31         real(kind=p18),dimension(N+1,N) :: x
32         real(kind=p18),dimension(:,:),allocatable :: sav
33         real(kind=p18),dimension(:,:),allocatable :: respin
34         character(len=4) :: nstr
35
36 end module nmm_var
37
38 !*******************************************************************************
39 !*******************************************************************************
40
41 module nmm_sub
42
43         use nmm_var
44         
45         implicit none
46
47         contains
48         
49 !*******************************************************************************
50         subroutine init()
51
52                 write(unit=*,fmt='("nloop = ")',advance='no')
53                 read(*,*) nloop
54                 write(unit=*,fmt='(" npin = ")',advance='no')
55                 read(*,*) npin
56                 call random_seed(size=nrand)
57                 allocate(seed(nrand),sav(nloop,N+Nres+1),respin(1:npin,1:N+Nres+2))
58                 startpin=3.5E(2_p18
59                 stoppin=6.0E(2_p18
60                 seed=0
61                 xc=0
62                 x=0
63                 f=0
64                 sav=0
65                 res=0
66                 stats=0
67
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68         end subroutine init
69 !*******************************************************************************
70         subroutine initf()
71
72                 c_v0t=1.7E11_p18
73                 c_vct=2.0E25_p18
74                 c_r0=0.0E0_p18
75                 c_y2=1.0E(3_p18
76
77                 c_a= �1.0_p18*(c_y2*c_v0t*(c1+c_r0*ci)/(1.0_p18+c_r0**2.0_p18))**2.0_p18
78                 
79                 stats=0
80                 sav=0
81         
82                 !vpin = 10.0_p18**(log10(startpin) + 

(ipin�1)*(log10(stoppin)�log10(startpin))/(npin�1))
83                 vpin = startpin + (ipin�1) * (stoppin�startpin)/(npin�1)
84                 write(unit=*,fmt='(" ipin = "I10)') ipin
85                 write(unit=*,fmt='(" vpin = "ES10.3)') vpin
86                 
87
88         end subroutine initf
89 !*******************************************************************************
90         subroutine prepf()
91
92                 call random_seed
93                 call random_seed(get=seed)
94                 !write(unit=*,fmt='(4(Z8.8,TR1))') seed
95                 do i=1,N+1
96                         do j=1,1
97                                 call random_number(x(i,j))
98                                 x(i,j)=1.0E(1_p18  *  2.0_p18*(x(i,j)�0.5_p18)
99                         end do
100                         do j=2,N�1
101                                 call random_number(x(i,j))
102                                 x(i,j)=1.0E19_p18  *  2.0_p18*(x(i,j)�0.5_p18)
103                         end do
104                         do j=N,N
105                                 call random_number(x(i,j))
106                                 x(i,j)=2.0_p18  *   1.0E(06_p18  *  2.0_p18*(x(i,j)�0.5_p18)
107                         end do
108                         call calcf(f(i),x(i,:),.FALSE.)
109                 end do
110
111         end subroutine prepf
112 !*******************************************************************************
113
114         subroutine calcf(a,b,sres)
115         
116                 implicit none
117                 logical,intent(in) :: sres
118                 real(kind=p18),intent(inout) :: a
119                 real(kind=p18),dimension(N),intent(in) :: b
120                 real(kind=p18) :: rc,M0,M1,M2,M4,y3
121                 real(kind=p18) :: MN2,x,yt,z,detM
122                 real(kind=p18) :: mass1,mass2,mass3,dm2atm,dm2sol,chi2m,chi2pin,mbb,R
123                 real(kind=p18),parameter :: 

MV_dm2atm=2.4E(3_p18,SD_dm2atm=0.12E(3_p18,MV_dm2sol=7.65E(5_p18,SD_dm2sol=0.23E(5_p18
124                 real(kind=p18) :: epsilo,sin213,sin2sol,sin2atm,chi2a
125                 real(kind=p18),parameter :: 

MV_sin213=1.0E(2_p18,SD_sin213=1.6E(2_p18,MV_sin2sol=3.04E(1_p18,SD_sin2sol=0.22E(1_p18, &
126 MV_sin2atm=5.0E(1_p18,SD_sin2atm=0.7E(1_p18
127                 
128                 rc=b(1)
129                 M0=b(2)
130                 M1=b(3)
131                 M2=b(4)
132                 M4=b(5)
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133                 y3=b(6)        
134
135                 !MASSES
136                 MN2=(y3*c_vct)**2.0_p18        
137
138                 detM = (M0+2.0_p18*M1)*( (M0�M1)**2.0_p18*MN2 � ( (M0�M1)*M4 � 

3.0_p18*M2**2.0_p18)**2.0_p18 )
139                 x = 1.0_p18/detM * ( (M0**2.0_p18�M1**2.0_p18)*(MN2�M4**2.0_p18) + & 
140 (4.0_p18*M0+2.0_p18*M1)*M2**2.0_p18*M4 � 3.0_p18*M2**4.0_p18 )
141                 z = 1.0_p18/detM * ( (M1**2.0_p18�M0*M1)*(MN2�M4**2.0_p18) + 

(M0�4.0_p18*M1)*M2**2.0_p18*M4 � 3.0_p18*M2**4.0_p18 )
142                 yt = 1.0_p18/detM * ( (M0+2.0_p18*M1)*M2**2.0_p18*y3*c_vct )
143
144                 mass1 = abs( c_a * (x+3.0_p18*yt�z) )
145                 mass2 = abs( c_a * (x+2.0_p18*z) )
146                 mass3 = abs( c_a * (x�3.0_p18*yt�z) )
147
148                 dm2atm = mass2**2.0_p18 � mass3**2.0_p18
149                 dm2sol = mass2**2.0_p18 � mass1**2.0_p18
150
151                 chi2m = ((dm2atm�MV_dm2atm)/SD_dm2atm)**2.0_p18 + 

((dm2sol�MV_dm2sol)/SD_dm2sol)**2.0_p18
152
153                 !ANGLES
154                 epsilo = atan(rc)
155
156                 sin213 = 2.0_p18/3.0_p18 * sin(epsilo/2.0_p18)**2.0_p18
157                 sin2sol = 1.0_p18 / (3.0_p18 * (1.0_p18 � sin213))
158                 sin2atm = 0.5_p18 + sin(epsilo) / (sqrt(12.0_p18)*(1�sin213))
159
160                 chi2a = ((sin213�MV_sin213)/SD_sin213)**2.0_p18 + 

((sin2sol�MV_sin2sol)/SD_sin2sol)**2.0_p18 + &
161 ((sin2atm�MV_sin2atm)/SD_sin2atm)**2.0_p18
162
163                 mbb = abs( ( sqrt(mass3**2.0_p18 + dm2atm � 

dm2sol)*(1.0_p18�sin2sol)*exp(ci*0.0_p18) + &
164 sqrt(mass3**2.0_p18 + dm2atm)*sin2sol*exp(ci*0.0_p18) )*(1.0_p18�sin213) + mass3*sin213)
165
166                 chi2pin = (mbb�vpin)**2.0_p18/(0.01_p18*vpin)**2.0_p18
167
168                 a = chi2m + chi2a + chi2pin
169
170                 if(sres) then
171
172                         R = mass3/sqrt(dm2sol)
173
174                         res(1)=chi2m
175                         res(2)=chi2a
176                         res(3)=chi2pin
177                         res(4)=mass1
178                         res(5)=mass2
179                         res(6)=mass3
180                         res(7)=dm2atm
181                         res(8)=dm2sol
182                         res(9)=mbb
183                         res(10)=R
184                         res(11)=epsilo
185                         res(12)=sin213
186                         res(13)=sin2sol
187                         res(14)=sin2atm
188                 end if
189
190         end subroutine calcf
191 !*******************************************************************************
192         subroutine sort()
193
194                 integer,dimension(1) :: imin
195                 real(kind=p18),dimension(N) :: vtemp
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196                 real(kind=p18) :: stemp
197
198                 do i=1,N
199                         imin=i�1+minloc(f(i:N+1))
200                         vtemp=x(i,:)
201                         stemp=f(i)
202                         x(i,:)=x(imin(1),:)
203                         f(i)=f(imin(1))
204                         x(imin(1),:)=vtemp
205                         f(imin(1))=stemp                
206                 end do
207
208         end subroutine sort
209 !*******************************************************************************
210         subroutine centroid()
211                 
212                 xc=0
213                 do j=1,N
214                         do i=1,N
215                                 xc(j) = xc(j) + x(i,j)
216                         end do
217                         xc(j)=xc(j)/N
218                 end do
219                 !write(*,*) "centroid =", xc
220         
221         end subroutine centroid
222 !*******************************************************************************
223         subroutine shrinkage()
224
225                 do j=2,N+1
226                         x(j,:) = x(1,:) + sig*(x(j,:)�x(1,:))
227                         call calcf(f(j),x(j,:),.FALSE.)
228                 end do
229
230         end subroutine shrinkage
231 !*******************************************************************************
232         subroutine show()
233
234                 do i=1,N+1
235                         write(unit=*,fmt='("x("I2.2") =")',advance='no') i
236                         do j=1,N
237                                 write(unit=*,fmt='(ES10.3,TR1)',advance='no') x(i,j)
238                         end do
239                         write(*,*)
240                 end do
241                 write(*,*) "f =",f
242
243         end subroutine show
244 !*******************************************************************************
245         subroutine calcd()
246
247                 real(kind=p18) :: fm
248                 
249                 fm=0.0_p18
250                 d=0.0_p18
251                 do j=1,N+1
252                         fm = fm + f(j)
253                 end do
254                 fm=fm/(N+1)
255                 do j=1,N+1
256                         d = d + (f(j)�fm)**2.0**p18
257                 end do
258                 d=d/(N+1)
259                 
260         end subroutine calcd
261 !*******************************************************************************
262         subroutine sortpin()
263                 
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264                 real(kind=p18),dimension(N+Nres+1) :: tempsav
265                 integer,dimension(1) :: imin
266                 
267                 do i=1,stats(2)
268                         if(sav(i,N+1)==0.0_p18) then
269                                 do j=i+1,nloop
270                                         if(sav(j,N+1)/=0.0_p18) then
271                                                 sav(i,:)=sav(j,:)
272                                                 sav(j,:)=0
273                                                 exit
274                                         end if
275                                 end do
276                         end if
277                 end do
278                 do i=1,stats(2)�1
279                         imin = i�1+minloc(sav(i:stats(2),N+1))
280                         tempsav = sav(imin(1),:)
281                         sav(imin(1),:) = sav(i,:)
282                         sav(i,:) = tempsav
283                 end do
284
285         end subroutine sortpin
286 !*******************************************************************************
287         subroutine wfile()
288                 
289                 write(unit=nstr,fmt='(I4.4)') ipin
290                 open(unit=fout,file="data/nmm(" // nstr // 

".dat",status="replace",action="write",form="unformatted",position="rewind")
291                 write(unit=fout) N,Nres,stats(2),vpin
292                 do loop=1,stats(2)
293                         write(unit=fout) sav(loop,:)        
294                 end do
295                 close(fout)
296
297         end subroutine wfile
298 !*******************************************************************************
299         subroutine finish()
300
301                 !write(*,*) "Steps: ",k
302                 deallocate(seed,sav,respin)
303
304         end subroutine finish
305 !*******************************************************************************
306 end module nmm_sub
307
308 !*******************************************************************************
309 !*******************************************************************************
310
311 program nmm
312
313         use nmm_var
314         use nmm_sub
315
316         implicit none
317         
318         write(*,*) huge(fn)
319         write(*,*) tiny(fn)
320         
321         call cpu_time(tstart)
322
323         call init()
324         
325         do ipin=1,npin
326         
327 30                call initf()
328                 do loop=1,nloop
329                         call prepf()
330                         k=1
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331                         do
332                                 k=k+1
333                                 call sort()
334                                 call centroid()        
335                                 xr = xc + rho*(xc�x(N+1,:))
336                                 call calcf(fr,xr,.FALSE.)
337                                 if(f(1)<=fr .AND. fr<f(N)) then
338                                                 x(N+1,:)=xr
339                                         f(N+1)=fr
340                                         !write(*,*) "Reflection accepted"
341                                         go to 10
342                                 else if(fr<f(1)) then
343                                         xn = xc + chi*(xr�xc)
344                                         call calcf(fn,xn,.FALSE.)
345                                         if(fn<fr) then
346                                                 x(N+1,:)=xn
347                                                 f(N+1)=fn
348                                                 !write(*,*) "Expansion accepted"
349                                                 go to 10
350                                         else
351                                                 x(N+1,:)=xr
352                                                 f(N+1)=fr
353                                                 !write(*,*) "Expansion rejected �> Reflection"
354                                                 go to 10
355                                         end if
356                                 else if(f(N)<=fr .AND. fr<f(N+1)) then
357                                         xn = xc + gam*(xr�xc)
358                                         call calcf(fn,xn,.FALSE.)
359                                         if(fn<=fr) then
360                                                 x(N+1,:)=xn
361                                                 f(N+1)=fn
362                                                 !write(*,*) "Outside contraction accepted"
363                                                 go to 10
364                                         else
365                                                 !write(*,*) "Outside contraction rejected �> 

Shrinkage"
366                                                 call shrinkage()
367                                                 go to 10
368                                         end if         
369                                 else if(fr>=f(N+1)) then
370                                         xn = xc � gam*(xc�x(N+1,:))
371                                         call calcf(fn,xn,.FALSE.)
372                                         if(fn<f(N+1)) then
373                                                 x(N+1,:)=xn
374                                                 f(N+1)=fn
375                                                 !write(*,*) "Inside contraction accepted"
376                                                 go to 10
377                                         else
378                                                 !write(*,*) "Inside contraction rejected �> 

Shrinkage"
379                                                 call shrinkage()
380                                                 go to 10
381                                         end if                
382                                 end if
383 10                                call calcd()
384                                 !call show()
385                                 if(d<=eps) then 
386                                         !write(*,*) "Minimum reached: stats(1)",x(1,1),f(1)
387                                         stats(1)=stats(1)+1
388                                         exit
389                                 end if
390                                 if(mod(k,10)==0) then
391                                         tmp=0.0_p18
392                                         do i=1,N+1
393                                                 do j=1,N
394                                                         tmp=tmp+x(i,j)
395                                                 end do
396                                                 tmp=tmp+f(i)
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397                                         end do
398                                         if(tmp*0.0_p18 /= 0.0_p18 .OR. tmp >= 1E99_p18) then
399                                                 !write(*,*) "Detect infinity: stats(4)"
400                                                 stats(4)=stats(4)+1
401                                                 go to 20
402                                         end if
403                                 end if
404                                 if(k>=1000) then
405                                         !write(*,*) "No minimum reached: stats(3)"
406                                         stats(3)=stats(3)+1
407                                         go to 20
408                                 end if                
409                         end do
410                         call sort()
411                         !call show()
412                         if(f(1)<=crit) then
413                                 call calcf(f(1),x(1,:),.TRUE.)
414                                 if((res(6)<=res(4)) .AND. (res(4)<=res(5))) then
415                                         !write(*,*) "Criterion fulfilled: stats(2)"
416                                         sav(loop,1:N)=x(1,:)
417                                         sav(loop,N+1)=f(1)
418                                         sav(loop,N+2:N+Nres+1) = res
419                                         stats(2)=stats(2)+1
420                                 else
421                                         !write(*,*) "Wrong mass order: stats(5)"
422                                         stats(5)=stats(5)+1
423                                 end if
424                         end if
425 20                        if(mod(loop,1000)==0) write(unit=*,fmt='(7(I10,TR1))') loop,stats
426                 end do
427
428                 call sortpin()
429                 call wfile()
430         
431         end do
432
433         call finish()
434
435         call cpu_time(tstop)
436
437         write(*,*) "Time: ",tstop�tstart,"sec"
438
439 end program nmm
440
441
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dnmm.f90 1

1 !*******************************************************************************
2 !
3 ! file: dnmm.f90
4 ! Data Processing for Nelder Mead Method
5 !
6 ! Modified Model, CP�invariance, nonzero theta13
7 !
8 ! constants:  v0t,vct,r0,y2
9 ! parameters: rc,M0,M1,M2,M4,y3
10 ! res values: 

chi2,chi2m,chi2a,mass1,mass2,mass3,dm2atm,dm2sol,mbb,R,epsilo,sin213,sin2sol,sin2atm
11
12 !*******************************************************************************
13
14 module dnmm_var
15                 
16         implicit none
17         integer,parameter :: fin=11,fout=12,p18=selected_real_kind(p=18)
18         integer :: i,j,ipin,N,Nres,stats2,npin=10
19         real(kind=p18),parameter :: critpin=1.0E(2_p18
20         real(kind=p18) :: vpin
21         real(kind=p18),dimension(:,:),allocatable :: sav,respin
22         character(len=4) :: nstr
23
24 end module dnmm_var
25
26 !*******************************************************************************
27 !*******************************************************************************
28
29 module dnmm_sub
30
31         use dnmm_var
32         
33         contains
34 !*******************************************************************************
35         subroutine readin()
36
37                 write(unit=nstr,fmt='(I4.4)') ipin
38                 open(unit=fin,file="data/nmm(" // nstr // 

".dat",status="old",action="read",form="unformatted",position="rewind")
39                 read(unit=fin) N,Nres,stats2,vpin
40                 allocate(sav(1:stats2,1:N+Nres+1))
41                 do i=1,stats2
42                         read(unit=fin) sav(i,:)
43                 end do
44                 close(fin)
45                 
46         end subroutine readin
47 !*******************************************************************************
48         subroutine init()
49
50                 allocate(respin(1:npin,1:N+Nres+2))
51
52         end subroutine init
53 !*******************************************************************************
54         subroutine find()
55
56                 if(stats2==0) then 
57                         write(*,*) " ipin = ",ipin,": No data" 
58                         respin(ipin,1:N+Nres+1)=0
59                         respin(ipin,N+Nres+2)=vpin
60                 end if
61                 do i=1,stats2
62                         if((sav(i,N+1+3)/sav(i,N+1+1) <= critpin) .AND. 

(sav(i,N+1+3)/sav(i,N+1+2) <= critpin)) then 
63                                 respin(ipin,1:N+Nres+1)=sav(i,:)
64                                 respin(ipin,N+Nres+2)=vpin
65                                 write(unit=*,fmt='(TR1,I10,I10,I10,ES14.3)') 
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dnmm.f90 2

ipin,i,stats2,vpin
66                                 exit
67                         end if
68                         if(i==stats2) then 
69                                 write(*,*) " ipin = ",ipin,": Nothing found" 
70                                 respin(ipin,1:N+Nres+1)=0
71                                 respin(ipin,N+Nres+2)=vpin
72                         end if
73                 end do
74
75         end subroutine find
76 !*******************************************************************************
77         subroutine wdata()
78         
79                 open(unit=fout,file="data/nmm(" // nstr // 

".txt",status="replace",action="write",form="formatted",position="rewind")
80                 write(unit=fout,fmt='("             rc            ")',advance='no')
81                 write(unit=fout,fmt='("             M0            ")',advance='no')
82                 write(unit=fout,fmt='("             M1            ")',advance='no')
83                 write(unit=fout,fmt='("             M2            ")',advance='no')
84                 write(unit=fout,fmt='("             M4            ")',advance='no')
85                 write(unit=fout,fmt='("             y3            ")',advance='no')
86                 write(unit=fout,fmt='("            Chi^2          ")',advance='no')
87                 write(unit=fout,fmt='("            Chi^2m         ")',advance='no')
88                 write(unit=fout,fmt='("            Chi^2a         ")',advance='no')
89                 write(unit=fout,fmt='("            Chi^2pin       ")',advance='no')
90                 write(unit=fout,fmt='("             mass1         ")',advance='no')
91                 write(unit=fout,fmt='("             mass2         ")',advance='no')
92                 write(unit=fout,fmt='("             mass3         ")',advance='no')
93                 write(unit=fout,fmt='("            dm2atm         ")',advance='no')
94                 write(unit=fout,fmt='("            dm2sol         ")',advance='no')
95                 write(unit=fout,fmt='("             mbb           ")',advance='no')
96                 write(unit=fout,fmt='("              R            ")',advance='no')
97                 write(unit=fout,fmt='("            epsilo         ")',advance='no')
98                 write(unit=fout,fmt='("            sin213         ")',advance='no')
99                 write(unit=fout,fmt='("            sin2sol        ")',advance='no')
100                 write(unit=fout,fmt='("            sin2atm        ")',advance='no')
101                 write(unit=fout,fmt='("            vpin           ")',advance='yes')
102                 do i=1,stats2
103                         do j=1,N+Nres+1
104                                 if(sav(i,11)/=0.0_p18) 

write(unit=fout,fmt='(ES26.18,TR1)',advance='no') sav(i,j)
105                         end do
106                         if(sav(i,11)/=0.0_p18) 

write(unit=fout,fmt='(ES26.18,TR1)',advance='no') vpin
107                         write(unit=fout,fmt=*)
108                 end do 
109                 close(fout)
110
111         end subroutine wdata
112 !*******************************************************************************
113         subroutine wpindata()
114         
115                 open(unit=fout,file="pin.txt",status="replace",action="write",form="formatted"

,position="rewind")
116                 write(unit=fout,fmt='("             rc            ")',advance='no')
117                 write(unit=fout,fmt='("             M0            ")',advance='no')
118                 write(unit=fout,fmt='("             M1            ")',advance='no')
119                 write(unit=fout,fmt='("             M2            ")',advance='no')
120                 write(unit=fout,fmt='("             M4            ")',advance='no')
121                 write(unit=fout,fmt='("             y3            ")',advance='no')
122                 write(unit=fout,fmt='("            Chi^2          ")',advance='no')
123                 write(unit=fout,fmt='("            Chi^2m         ")',advance='no')
124                 write(unit=fout,fmt='("            Chi^2a         ")',advance='no')
125                 write(unit=fout,fmt='("            Chi^2pin       ")',advance='no')
126                 write(unit=fout,fmt='("             mass1         ")',advance='no')
127                 write(unit=fout,fmt='("             mass2         ")',advance='no')
128                 write(unit=fout,fmt='("             mass3         ")',advance='no')
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dnmm.f90 3

129                 write(unit=fout,fmt='("            dm2atm         ")',advance='no')
130                 write(unit=fout,fmt='("            dm2sol         ")',advance='no')
131                 write(unit=fout,fmt='("             mbb           ")',advance='no')
132                 write(unit=fout,fmt='("              R            ")',advance='no')
133                 write(unit=fout,fmt='("            epsilo         ")',advance='no')
134                 write(unit=fout,fmt='("            sin213         ")',advance='no')
135                 write(unit=fout,fmt='("            sin2sol        ")',advance='no')
136                 write(unit=fout,fmt='("            sin2atm        ")',advance='no')
137                 write(unit=fout,fmt='("            vpin           ")',advance='yes')
138                 do ipin=1,npin
139                         do j=1,N+Nres+2
140                                 if(respin(ipin,11)/=0.0_p18) 

write(unit=fout,fmt='(ES26.18,TR1)',advance='no') respin(ipin,j)
141                         end do
142                         write(unit=fout,fmt=*)
143                 end do 
144                 close(fout)
145
146         end subroutine wpindata
147 !*******************************************************************************
148         subroutine finish()
149
150                 deallocate(respin)
151
152         end subroutine finish
153 !*******************************************************************************
154
155 end module dnmm_sub
156
157 !*******************************************************************************
158 !*******************************************************************************
159
160 program dnmm
161
162         use dnmm_var
163         use dnmm_sub
164
165
166         write(unit=*,fmt='(" npin = ")',advance='no')
167         read(*,*) npin
168
169         do ipin=1,npin
170                 call readin()
171                 if(ipin==1) call init()
172                 !call wdata()
173                 call find()
174                 deallocate(sav)
175         end do
176         call wpindata()
177         call finish()
178
179 end program dnmm
180
181
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A.3 Program for fine-tuning properties

In[80]:= Clear@"Global‘*"D

In[81]:= MVdm2atm = 2.4*^−3
SDdm2atm = 0.12*^−3
MVdm2sol = 7.65*^−5
SDdm2sol = 0.23*^−5

Out[81]= 0.0024

Out[82]= 0.00012

Out[83]= 0.0000765

Out[84]= 2.3´10-6

In[85]:= str = OpenRead@"nmm.txt"D

Out[85]= InputStream@nmm.txt, 16D

In[86]:= SetStreamPosition@str, 0D;
Read@str, StringD
start = StreamPosition@strD;

Out[87]= rc M0 M1 M2 M4
y3 Chi^2 Chi^2m Chi^2a mass1
mass2 mass3 dm2atm dm2sol mbb
R epsilo sin213 sin2sol sin2atm

In[89]:= SetStreamPosition@str, startD;
data1 = SetPrecision@ReadList@str, Real, 18D, 19D

Out[90]= 80.0009504318008238979248, -1.100141136440566817´1019 , 7.105865183385642507´1018 ,

3.744470897331724208´1018 , -5.750681316081949160´1018 , -1.750449985696605240´10-7 ,

2.168436609718819464, 0.00002414827643799047893, 2.168412461442381474, 0.002131161213549920478,
0.009002220644959019749, 0.04904205743944022251, 0.002400581549775214504, 0.00007649812842238681975,

0.004421521419944718966, 0.2436637358659582784, 0.0009504315146425089665, 1.505533326711212685´10-7
<

In[91]:= Vrc = data1@@1DD
VM0 = data1@@2DD
VM1 = data1@@3DD
VM2 = data1@@4DD
VM4 = data1@@5DD
Vy3 = data1@@6DD

Out[91]= 0.0009504318008238979248

Out[92]= -1.100141136440566817´1019

Out[93]= 7.105865183385642507´1018

Out[94]= 3.744470897331724208´1018

Out[95]= -5.750681316081949160´1018

Out[96]= -1.750449985696605240´10-7

nmm3finetune.nb 1
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In[97]:= SetStreamPosition@str, startD
Find@str, "Constants"D;
StreamPosition@strD;
Skip@str, StringD;
Read@str, StringD
data2 = SetPrecision@ReadList@str, Real, 4D, 19D

Out[97]= 541

Out[101]=

v0t vct r0 y2

Out[102]=

81.700000000000000000´1011 , 2.000000000000000000´1025 , 0, 0.001000000000000000000<

In[103]:=

v0t = data2@@1DD
vct = data2@@2DD
r0 = data2@@3DD
y2 = data2@@4DD

Out[103]=

1.700000000000000000´1011

Out[104]=

2.000000000000000000´1025

Out[105]=

0

Out[106]=

0.001000000000000000000

In[107]:=

detM = SetPrecision@
HM0 + 2 M1L HHM0 - M1L^2*y3^2*vct^2 - HHM0 - M1L*M4 - 3 M2*M3L^2L �. M3 ® M2, 19D;

In[108]:=

MN2 = y3^2*vct^2

Out[108]=

4.000000000000000000´1050 y32

In[109]:=

replxzyt = SetPrecision@
H8x ® HHM0^2 - M1^2L*HMN2 - M4^2L + H4*M0 + 2*M1L*M2*M3*M4 - 3*M2^2*M3^2L�detM,

z ® HHM1^2 - M0*M1L*HMN2 - M4^2L + HM0 - 4*M1L*M2*M3*M4 - 3 M2^2*M3^2L�detM,
y ® HHM0 + 2*M1L*M2^2*y3*vctL�detM,
t ® HHM0 + 2 M1L*M3^2*y3*vctL�detM<L �. M3 ® M2, 19D;

In[110]:=

mass1 =

SetPrecision@Abs@-y2^2*v0t^2*H1 + I*r0L�H1 + r0^2L*Hx + 3 y - zLD �. replxzyt, 20D;
mass2 = SetPrecision@Abs@-y2^2*v0t^2*H1 + I*r0L�H1 + r0^2L*Hx + 2 zLD �. replxzyt,

20D;
mass3 = SetPrecision@Abs@-y2^2*v0t^2*H1 + I*r0L�H1 + r0^2L*Hx - 3 y - zLD �. replxzyt,

20D;
dm2atm = mass3^2 - mass1^2;
dm2sol = mass2^2 - mass1^2;

In[115]:=

chi2m@M0_, M1_, M2_, M4_, y3_D =

Hdm2atm - MVdm2atmL^2�SDdm2atm^2 + Hdm2sol - MVdm2solL^2�SDdm2sol^2;

In[116]:=

<< Graphics‘Graphics‘
<< Graphics‘Legend‘

nmm3finetune.nb 2
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In[118]:=

pl = Plot@8chi2m@x* VM0, VM1, VM2, VM4, Vy3D, chi2m@VM0, x* VM1, VM2, VM4, Vy3D,
chi2m@VM0, VM1, x* VM2, VM4, Vy3D, chi2m@VM0, VM1, VM2, x* VM4, Vy3D,
chi2m@VM0, VM1, VM2, VM4, x* Vy3D<, 8x, 0.995, 1.005<,
PlotStyle ® 88RGBColor@1, 0, 0D<, 8RGBColor@0, 1, 0D<, 8RGBColor@0, 0, 1D<,
8RGBColor@1, 0, 1D<, 8RGBColor@0, 1, 1D<<, AxesLabel ® 8x, Χ2m<,

PlotLegend ® 8"M0", "M1", "M2", "M4", "y3"<, LegendOrientation ® Horizontal,
LegendPosition ® 8-0.43, -0.9<, LegendShadow ® 8.01, -.01<, LegendSpacing ® .6D

0.996 0.998 1.002 1.004
x

10

20

30

40

50

60

Χ2m

M0 M1 M2 M4 y3

Out[118]=

� Graphics �

In[119]:=

Export@"nmm3finetune.eps", pl, "EPS", ImageSize ® 8500, Automatic<D

Out[119]=

nmm3finetune.eps

nmm3finetune.nb 3



Software

The following software was used for programming, data analysis and creating fig-
ures:

• g95 - version 0.91 (March 2008)

Fortran Compiler implementing the Fortran 95 standard,
http://www.g95.org/

• Mathematica - version 5.2

Computational software program,
Wolfram Research, Inc.,
http://www.wolfram.com/

• gnuplot - version 4.2 patchlevel 2

Command-line driven graphing utility,
http://www.gnuplot.info/

• Xfig - version 3.2 patchlevel 5

Vector graphics editor,
http://www.xfig.org/

• feynMP

LATEX tool to draw Feynman graphs,
http://osksn2.hep.sci.osaka-u.ac.jp/˜taku/osx/feynmp.html
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Zusammenfassung

Der direkte Vergleich zwischen Theorie und Experiment ist ein Grundpfeiler der
wissenschaftlichen Methode. Für jeden Physiker ist es ein spannender Augenblick
wenn theoretische Vorhersagen auf Resultate von experimentellen Beobachtun-
gen treffen, um entweder Übereinstimmung oder widersprüchliche Ergebnisse zu
Tage zu fördern. Heutzutage eröffnet die Teilchenphysik ein weites Betätigungs-
feld mit bahnbrechenden Entwicklungen auf theoretischer und experimenteller
Ebene. Auch das relativ junge Teilgebiet der computergestützten Physik leistet
einen wichtigen Beitrag, der Einsatz von leistungsfähigen Rechnern schreitet immer
weiter voran. In den letzten Jahren wurde speziell der Lepton-Sektor zu einer Spiel-
wiese für die Entwicklung neuer theoretischer Modelle, angespornt durch die Ent-
deckung der Neutrinooszillationen, Beiträge zur Frage der Dunklen Materie und
Hinweise auf Neue Physik. Basierend auf dem Standardmodell der Teilchenphysik
wurden bereits eine Vielzahl von Techniken und Erweiterungen untersucht, um
Eigenheiten der Neutrinos zu erklären, darunter etwa diskrete Symmetriegruppen
oder der seesaw-Mechanismus, bis hin zu Modellen zur Großen Vereinheitlichung
(GUT). Das steigende Interesse an der Neutrinophysik führt auch zu einer wach-
senden Zahl an Experimenten über solare, atmosphärische und Reaktor-Neutrinos,
wodurch die Genauigkeit der Messwerte weiter zunimmt und theoretische Modelle
mit diesen konfrontiert werden können.

Im Sinne der einleitenden Worte behandelt die vorliegende Arbeit Methoden,
um Theorie und Experiment zu vergleichen, auch wenn ein komplizierter Zusam-
menhang zwischen Modellparametern und daraus zu berechnenden Observablen
besteht. Die Analyse beruht dabei auf numerischen Verfahren, die anhand eines
Modells zur tri-bimaximalen Mischung und dessen Modifikationen getestet wer-
den. Zu Beginn werden die wichtigsten Eigenschaften des Standardmodells wieder-
holt und grundlegende Erweiterungen, wie Majorana-Neutrinos oder der seesaw-
Mechanismus diskutiert. Darauf aufbauend werden verschiedene Phänomene der
Neutrinophysik beschrieben, beispielsweise Neutrinooszillationen und der neutri-
nolose doppelte Beta-Zerfall. Die neueren experimentellen Ergebnisse dazu werden
ebenfalls bereitgestellt. Danach folgt ein thematischer Wechsel zu den verwende-
ten numerischen Methoden. Es wird die χ2-Funktion als Beurteilungskriterium
eingeführt, das die Übereinstimmung zwischen Modellvorhersagen und Messwerten
quantifiziert. Es entspricht dann das Minimum dieser Funktion der bestmöglichen
Anpassung zwischen Theorie und Experiment. Abhängig der Komplexität des un-
tersuchten Modells ist eine analytische Minimierung mitunter nicht möglich, sodass



man auf den Einsatz von numerischen Methoden angewiesen ist. Daher wird das
sogenannte Nelder-Mead Verfahren und die Fortran-Implementation ausführlich
beschrieben, die bei der Analyse der getesteten Modelle zur Anwendung kom-
men. Als Ausgangspunkt dient dabei ein Modell für tri-bimaximale Mischung, das
um CP -Erhaltung und zusätzliche spontane Symmetriebrechung erweitert wird.
Schließlich werden die Resultate der numerischen Verfahren präsentiert.

Ein wesentlicher Bestandteil der vorliegenden Arbeit war die Erstellung und An-
wendung des Nelder-Mead Programms. Daher wird der Quellcode im Anhang
bereitgestellt.
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