
Diplomarbeit

Titel der Diplomarbeit

Lepton mixing modelling
and

numerical methods

angestrebter akademischer Grad

Magister der Naturwissenschaften (Mag. rer. nat.)

Verfasser: Andreas Singraber

Matrikelnummer: 0403346

Studienrichtung: A 411 Diplomstudium Physik

Betreuer: Ao. Univ.-Prof. Dr. Walter Grimus

Wien, am 25. Juni 2010

Danksagung

Zunächst möchte ich mich hier bei allen Personen bedanken, die diese Arbeit erst
möglich gemacht haben.

An erster Stelle bedanke ich mich besonders herzlich bei meinem Betreuer Prof.
Walter Grimus, der mir stets mit Rat und Tat zur Seite gestanden hat. Mit
viel Engagement und Geduld hat er sich all meinen Fragen gestellt, mit mir viele
anregende Diskussionen geführt und mich immer ausgezeichnet betreut.

Bedanken möchte ich mich außerdem bei meinen Freunden und Studienkollegen,
insbesondere bei Patrick Ludl für die vielen interessanten Gespräche über Physik
und allerlei Anderes. Ich wünsche ihm weiterhin viel Erfolg bei seinem Studium.

Meinen Dank möchte ich auch an alle Professoren und Lehrer richten, die mich
auf meinem Ausbildungsweg begleitet haben. Besonders hervorzuheben ist hierbei
Prof. Martin Neumann, der mich während meines Studiums mit dem nötigen
Rüstzeug auf dem Gebiet der Numerik und Programmierung ausgestattet hat.

Von ganzem Herzen möchte ich meinen Eltern dafür danken, dass sie mir dieses
Studium ermöglicht haben. Stets habe ich von meiner Familie den nötigen Rück-
halt und auch in schwierigen Zeiten viel Unterstützung bekommen.

It doesn’t matter how beautiful your theory is, it doesn’t matter how
smart you are. If it doesn’t agree with experiment, it’s wrong.

Richard Feynman

Contents

1 Introduction 9

2 The Standard Model and its extensions in the lepton sector 11
2.1 The Standard Model . 11

2.1.1 The GWS model of electroweak interaction 12
2.1.2 Higgs mechanism . 15
2.1.3 Charged currents and CKM matrix 19

2.2 Extensions in the lepton sector . 20
2.2.1 Dirac- and Majorana particles 20
2.2.2 Mass terms . 22
2.2.3 The seesaw mechanism . 25
2.2.4 The lepton mixing matrix 27

3 Neutrino phenomena and experiments 29
3.1 Neutrino oscillations . 29
3.2 Mass spectra . 32
3.3 Neutrinoless double beta decay . 34
3.4 Experiments and data . 36

4 Numerical Methods 39
4.1 A figure of merit function . 39
4.2 The Nelder-Mead method . 40
4.3 Pinning term and fine-tuning properties 45
4.4 Implementation . 46

5 Models 50
5.1 Model for tri-bimaximal mixing . 50

5.1.1 Field content . 50

7

8 CONTENTS

5.1.2 Symmetries . 51
5.1.3 Lagrangian . 53

5.2 Modifications . 56
5.2.1 CP invariance . 57
5.2.2 Spontaneous Iµν-violation in the neutrino sector 61
5.2.3 Mixing angles and figure of merit function 62

6 Results 64
6.1 Model for tri-bimaximal mixing . 64

6.1.1 Normal spectrum . 66
6.1.2 Inverted spectrum . 67

6.2 Modified model . 68
6.2.1 Normal spectrum . 69
6.2.2 Inverted spectrum . 75
6.2.3 Effective Majorana mass versus lightest mass 80

7 Conclusions 81

A Appendix 82
A.1 Main program . 83
A.2 Program for pinning term method 94
A.3 Program for fine-tuning properties 104

Software 106

List of Tables 107

List of Figures 108

Bibliography 110

Chapter1
Introduction

The confrontation between theory and experiment is one of the basic ingredients
of the scientific method. It is a thrilling moment for every physicist when theoret-
ical predictions face experimental observations and either consistency or diverging
results are brought to light. Todays particle physics offers a wide field of activity
with new developments regarding theoretical, experimental and also computational
aspects. Especially the lepton sector with the discovery of neutrino oscillations,
implications on dark matter and hints of new physics has become a playground
for model building over the last decades. Often based on the Standard Model
numerous techniques and extensions were investigated, e.g. discrete symmetries,
the seesaw mechanism or even grand unification, to find an accurate description
of neutrino phenomena. Rising interest in neutrino physics also provides us with
frequently renewed measurement data since more and more collaborations are re-
searching solar, atmospheric or reactor neutrinos. This allows to test if model
predictions are compatible with combined experiment data.

Referring to the introductory statement the present work describes methods to
compare theory with experiment even in the presence of involved dependencies on
model parameters and calculated observables therefrom. The analysis relies on
numerical techniques which will be tested on a model for tri-bimaximal mixing
and its modifications. This thesis is organized as follows. Chapter 2 gives an
overview of the Standard Model and its basic extensions in the lepton sector,
e.g. Majorana neutrinos and the seesaw mechanism. Chapter 3 then focuses on
neutrino phenomena like neutrino oscillations and provides the current data for
mixing angles and mass squared differences. Chapter 4 introduces a figure of
merit function which allows to quantify the agreement between model predictions

9

10 1. INTRODUCTION

and measurement data. The best possible match is obtained by minimization of
the function. Depending on the model this task may only be accomplished by
application of numerical tools. Thus, the Nelder-Mead method, a procedure for
non-linear optimization problems applicable also in higher dimensions, is presented
and its Fortran implementation detailed. In Chapter 5 two models extending the
Standard Model in the lepton sector with additional right-handed neutrinos are
reviewed. First, the model for tri-bimaximal mixing found by Grimus and Lavoura
[1] is discussed, followed by a modification thereof employing CP invariance and
additional spontaneous symmetry breaking. These two models are put to test with
the described numerical techniques and the results are presented in Chapter 6.

A major aspect of this work is to develop the program which includes the min-
imization via the Nelder-Mead procedure. The source code is provided in the
appendix and allows future application to more elaborate models.

Chapter2
The Standard Model and its extensions in

the lepton sector

During the last decades there has been an enormous progress in both experimental
and theoretical particle physics. One of the greatest achievements was the discov-
ery of what we call today the Standard Model of elementary particle physics, which
is still a very accurate description of particles and their interactions. But it would
not be physics if there were not some details missing and indeed experiments gave
results that lack an explanation by the Standard Model (SM). Neutrinos in the
SM are described as massless particles, a fact that can not be brought into ac-
cordance with experimental data of neutrino oscillations. Today there is a great
variety of models, many of them based on the SM, which imply new features like
massive neutrinos. In this chapter we will first recapitulate the most important
characteristics of the SM (see also [2, 3]) and in the second part discuss the basic
extensions in the lepton sector.

2.1 The Standard Model

The SM is a quantum field theory based on the non-abelian gauge group SU(3)C×
SU(2)I×U(1)Y . The three Lie groups in the direct product represent color charge,
weak isospin and weak hypercharge respectively. Because this work deals with
models concerning only the lepton sector, the SU(3)C gauge invariance is not
discussed in detail. Unlike quarks, leptons do not carry any color charge and

11

12 2. THE STANDARD MODEL AND EXTENSIONS

therefore are not affected by strong interaction. We shall now concentrate on the
remaining symmetries and particles.

2.1.1 The GWS model of electroweak interaction

Ignoring the SU(3)C color symmetry one gets a model for electroweak interactions
based on the remaining gauge group SU(2)I ×U(1)Y first discovered by Glashow,
Weinberg and Salam [4, 5, 6]. It contains spin 0, 1

2
and 1 fields organized in

different multiplets and generations as follows:

• 3 left-handed quark1 doublets (spin 1
2
)

Q
(d)
0L =

(
u0L

d0L

)
, Q

(s)
0L =

(
c0L

s0L

)
, Q

(b)
0L =

(
t0L
b0L

)
, (2.1)

• 3 left-handed lepton doublets (spin 1
2
)

L
(e)
L =

(
νeL
eL

)
, L

(µ)
L =

(
νµL
µL

)
, L

(τ)
L =

(
ντL
τL

)
, (2.2)

• 6 right-handed quark singlets (spin 1
2
)

u0R , c0R , t0R , d0R , s0R , b0R, (2.3)

• 3 right-handed lepton singlets (spin 1
2
, note the missing right-handed neutrino

fields)
eR , µR , τR, (2.4)

• 4 gauge boson fields corresponding to the generators of SU(2)I and U(1)Y
respectively (spin 1)

W a
µ , a = 1, 2, 3 and Bµ, (2.5)

• 1 scalar Higgs doublet (spin 0)

Φ =

(
φ+

φ0

)
. (2.6)

1The subscript “0” indicates that the quark fields listed here are preliminary fields, which will
be transformed into physical ones (mass eigenfields) in chapter 2.1.2.

2.1. The Standard Model 13

These fields contribute to the total Lagrangian of the GWS model, which is in-
variant under the following SU(2)I gauge transformation.

SU(2)I :





Ψ → UΨ for all doublets
Ψ → Ψ for all singlets

W a
µ
τa

2
→ UW a

µ
τa

2
U−1 + i

g
(∂µU)U−1

Bµ → Bµ

(2.7)

This transformation, where U ∈ SU(2)I , acts on all doublets and the three gauge
bosons corresponding to the weak isospin. The second gauge group U(1)Y gives
multiplication with different phase factors.

U(1)Y :





Ψ → e−iα
1
2
Y Ψ

W a
µ → W a

µ

Bµ → Bµ + 1
g′
∂µα

(2.8)

The real number Y denotes the weak hypercharge, which can be chosen indepen-
dently to a large degree for every field. In the GWS model the weak hypercharge
is correlated with the weak isospin and the electric charge by

Q = I3 +
1

2
Y. (2.9)

A list of all these quantities is provided in Table (2.1).

Q
(d,s,b)
0L L

(e,µ,τ)
L u0R, c0R, t0R d0R, s0R, b0R eR, µR, τR Φ

I3




+1
2

−1
2







+1
2

−1
2


 0 0 0




+1
2

−1
2




Y




+1
3

+1
3






−1

−1


 4

3
−2

3
−2




+1

+1




Q




+2
3

−1
3







0

−1


 2

3
−1

3
−1




+1

0




Table 2.1: List of weak isospins, weak hypercharges and electric charges of fields
contained in the GWS model.

We may now write down the Lagrangian for the GWS model as a sum of the
fermion, gauge boson, Higgs and Yukawa terms:

LGWS = Lfermion + Lgauge + LHiggs + LYukawa (2.10)

14 2. THE STANDARD MODEL AND EXTENSIONS

Each part is individually SU(2)I ×U(1)Y gauge invariant. The first term contains
the kinetics of all fermions and their couplings to the gauge bosons:

Lfermion =
∑

q=d,s,b

Q
(q)
0Liγ

µDµQ
(q)
0L +

∑

l=e,µ,τ

L
(l)
L iγ

µDµL
(l)
L +

+
∑

q=d,s,b,u,c,t

q0Riγ
µDµq0R +

∑

l=e,µ,τ

lRiγ
µDµlR.

(2.11)

Here we used the covariant derivative Dµ, which is different for doublets and
singlets and varies also with different weak hypercharges.

Dµ = ∂µ + igW a
µI

a + i
1

2
Y g′Bµ (2.12)

The term with the SU(2)I gauge bosons contributes only for the doublets.

Ia =

{
τa

2
for SU(2) doublets

0 for SU(2) singlets
(2.13)

The second term in the total Lagrangian is the kinetic term for all four gauge
bosons.

Lgauge = −1

4
W a
µνW

aµν − 1

4
BµνB

µν (2.14)

The tensor fields W a
µν and Bµν are defined by the relations:

W a
µν = ∂µW

a
ν − ∂νW a

µ − gεabcW b
µW

c
ν (2.15)

Bµν = ∂µBν − ∂νBµ. (2.16)

Comparing these two definitions one finds an additional term proportional to W 2

in the first line. The reason lies in SU(2)I being a non-abelian group resulting in
self-interaction of related gauge bosons. The structure constants of SU(2)I also
enter at this point.

The Higgs Lagrangian comprises the kinetic term and the potential of the scalar
doublet Φ.

LHiggs = (DµΦ)† (DµΦ)− µ2Φ†Φ− λ
(
Φ†Φ

)2
(2.17)

Together with the Yukawa Lagrangian

LYukawa =−
∑

q=d,s,b
q′=d,s,b

Γqq′Q
(q)
0LΦq′0R −

∑

q=d,s,b
q′=u,c,t

∆qq′Q
(q)
0LΦ̃q′0R

−
∑

l=e,µ,τ

γlL
(l)
L ΦlR + H.c.

(2.18)

2.1. The Standard Model 15

these terms are essential for the mass creation in the GWS model since all the
masses of fermions and bosons are generated via spontaneous symmetry breaking
(SSB) of SU(2)I×U(1)Y → U(1)em. In order to get all allowed Yukawa interaction
terms one defines the conjugate scalar doublet Φ̃.

Φ̃ := iτ2Φ∗ = i

(
0 −i
i 0

)(
φ+∗

φ0∗

)
=

(
φ0∗

−φ−
)
→ Y (Φ̃) =

(
−1
−1

)
(2.19)

We have now listed all terms constructing the GWS model before the symmetry
breaking Higgs mechanism. In the next chapter the focus will lie on the mass
generation and the physical fields in the Standard Model.

2.1.2 Higgs mechanism

So far there have been no mass terms in the GWS-Lagrangian, neither for the
fermions nor for the gauge bosons. Simply adding mass terms would destroy the
gauge invariance in both cases. One possible procedure to get massive fermions
and bosons despite these difficulties was introduced by Peter Higgs [7, 8, 9, 10,
11, 12]. The so called Higgs-mechanism breaks the SU(2)I × U(1)Y symmetry
spontaneously to one remaining U(1)em symmetry and creates the desired masses.
The essence of this process lies in the form of the Higgs potential V

V (Φ) = µ2Φ†Φ + λ
(
Φ†Φ

)2
(2.20)

where the constant µ2 is assumed to fulfill

µ2 < 0. (2.21)

Searching for the minimum of the potential one finds the relation

dV (Φ)

d (Φ†Φ)
!

= 0⇒
√

Φ†Φ =

(
−µ

2

2λ

) 1
2

=:
1√
2
v (2.22)

which constrains the four parameters of the complex vector Φ. To obtain a min-
imum we can choose three parameters freely, the last one is then fixed by (2.22).
Evidently this leads not to a single, but to a continuous set of minima of the
Higgs potential. The vacuum state (which is the state minimizing the potential) is
therefore degenerate and the choice of one particular Φ fixes the gauge and hides
the original SU(2)I × U(1)Y symmetry. In addition the Higgs field is shifted to a
physical field whose vacuum expectation value vanishes. One can now eliminate

16 2. THE STANDARD MODEL AND EXTENSIONS

three of four real components of the doublet of complex scalar fields by an appro-
priate choice of the gauge. A useful convention is the unitary gauge, which leaves
a real scalar field h in the φ0 component.

Φ =

(
σ+ + iη+

σ0 + iη0

)
SSB−−−−−−−→

unitary gauge

1√
2

(
0

v + h

)
= Φu (2.23)

The spontaneous symmetry breaking has now effects on various parts of the GWS-
Lagrangian.

Higgs mass

Upon SSB the Higgs doublet is transformed into a real scalar field with mass and
self-interaction terms.

(∂µΦ)† (∂µΦ)− V (Φ) SSB−−→ 1

2
(∂µh) (∂µh)− λv2h2

(
1 +

1

2v
h
)2

+
λv4

4
(2.24)

The Higgs mass is therefore

m2
h = 2λv2. (2.25)

Gauge boson masses

Since the Higgs mechanism breaks a symmetry with 4 generators down to one
U(1)em symmetry three gauge bosons gain masses. The mass eigenstates are not
the initial gauge fields W a

µ and Bµ but fields rotated by the following prescription:

W±µ =
1√
2

(
W 1
µ ∓ iW 2

µ

)
(2.26)

(
Zµ
Aµ

)
=

(
cos ϑw − sin ϑw
sinϑw cosϑw

)(
W 3
µ

Bµ

)
. (2.27)

While W± and Z bosons are now massive fields, the photon A stays massless
and represents the electromagnetic U(1)em symmetry. The weak angle ϑw may be
expressed in terms of the couplings g and g′.

cos ϑw =
g√

g2 + g′2
sin ϑw =

g′√
g2 + g′2

(2.28)

The electromagnetic charge associated with the unbroken generator Q is now

e = g sin ϑw. (2.29)

2.1. The Standard Model 17

The kinetic term of the Higgs-Lagrangian comprises the kovariant derivative and
therefore the gauge fields. Applying the Higgs mechanism leads to mass terms and
interactions with the scalar Higgs field h:

Φ†
(
−igW a

µ

τa

2
− i1

2
YΦg

′Bµ

)(
igW a

µ

τa

2
+ i

1

2
YΦg

′Bµ

)
Φ

SSB−−−−−−−→
physical fields

1

4
g2v2W+

µ W
−µ
(

1 +
h

v

)2

+
1

8

(
g2 + g′2

)
v2ZµZ

µ

(
1 +

h

v

)2

. (2.30)

The masses of the physical gauge fields are

m2
W± =

1

4
g2v2 , m2

Z =
1

4

(
g2 + g′2

)
v2 , m2

A = 0. (2.31)

The masses of the W and Z bosons are related by the weak angle:

m2
W±

m2
Z

=
g2

g2 + g′2
= cos2 ϑw. (2.32)

Fermion masses

As previously mentioned, fermion masses cannot be created by simple addition
of mass terms because of gauge invariance. Anyway, the Yukawa-Lagrangian to-
gether with the Higgs mechanism is capable of generating masses. After SSB the
Lagrangian contains Yukawa couplings with the scalar h as well as terms quadratic
in the fermion fields proportional to the vacuum expectation value v. The later
may be used to form mass terms for all fermions except for the neutrinos.2

LYukawa =− 1√
2

(v + h)
(
d0L s0L b0L

)



Γdd Γds Γdb
Γsd Γss Γsb
Γbd Γbs Γbb






d0R

s0R

b0R




− 1√
2

(v + h)
(
u0L c0L t0L

)



∆uu ∆uc ∆ut

∆cu ∆cc ∆ct

∆tu ∆tc ∆tt






u0R

c0R

t0R




− 1√
2

(v + h)
∑

l=e,µ,τ

γllLlR + H.c.

(2.33)

2One could argue at this point that no Yukawa coupling matrices comparable to Γ and ∆ are
introduced in the lepton sector. It is not necessary to write down a non-diagonal matrix γ 6=
diag(γe, γµ, γτ) since no physical consequences arise from this generalization as long as no right-
handed neutrino fields are present. A possible mixing matrix resulting from the diagonalization
of a charged-lepton mass matrix (comparable to (2.36)) can be absorbed into the left handed
neutrino fields in the charged current term (2.87) of the Lagrangian.

18 2. THE STANDARD MODEL AND EXTENSIONS

One can now easily read off the masses of the charged leptons:

ml =
1√
2
vγl , l = e, µ, τ . (2.34)

The quark mass matrices Γ and ∆ are in general not diagonal, so the quark fields
until now where not mass eigenstates. Fortunately there is a procedure which
allows us to bring the mass matrices in a positive, diagonal form.

Theorem. Let M be an arbitrary non-singular complex matrix, then M can al-
ways be decomposed as

M = UMV† (2.35)

where U ,V are unitary andM is a diagonal and positive matrix.

The diagonal elements ofM are the singular values and the whole procedure there-
fore called singular value decomposition or bi-unitary diagonalization. Applying
this to our problem gives:

v√
2

Γ = UdMdV†d and
v√
2

∆ = UuMuV†u. (2.36)

The quark masses are now contained in the diagonal mass matrices

Md =



md 0 0
0 ms 0
0 0 mb


 and Mu =



mu 0 0
0 mc 0
0 0 mt


 (2.37)

while the unitary matrices are absorbed into the quark fields by definition of the
physical mass eigenfields.



dL
sL
bL


 := U †d



d0L

s0L

b0L






dR
sR
bR


 := V†d



d0R

s0R

b0R


 (2.38)



uL
cL
tL


 := U †u



u0L

c0L

t0L






uR
cR
tR


 := V†u



u0R

c0R

t0R


 (2.39)

This results in the quark mass terms:

Lquark
mass = −

(
uL cL tL

)
Mu



uR
cR
tR


−

(
dL sL bL

)
Md



dR
sR
bR


+ H.c. (2.40)

By now we have depicted the generation of all particle masses in the GWS model.
We will continue describing the physical effects of the quark mixture in the next
section.

2.1. The Standard Model 19

2.1.3 Charged currents and CKM matrix

The unitary matrices Uu and Ud introduced before play an important role in the
charged current terms of the GWS Lagrangian.

Lquark
CC = − g√

2

(
u0L c0L t0L

)
γµ



d0L

s0L

b0L


W+

µ + H.c. (2.41)

Expressing this in terms of mass eigenfields yields

Lquark
CC = − g√

2

(
uL cL tL

)
γµ U †uUd︸ ︷︷ ︸

:=UCKM



dL
sL
bL


W+

µ + H.c. . (2.42)

The combination of Uu and Ud that appears at this point is defined as the famous
Cabbibo-Kobayashi-Maskawa matrix UCKM [13, 14]. Naturally the CKM matrix is
unitary itself and thus allows a simple parametrization [15]. Consider an arbitray
unitary matrix A fulfilling A†A = 1. The unitarity constraint in index notation
gives

3∑

j=1

(A†)ijAjk =
3∑

j=1

A∗jiAjk = δik. (2.43)

These are 3 real (i = k) and 3 complex (i 6= k) equations for the 9 complex
entries giving a total of 18 − 3 − 3 · 2 = 9 independent real elements. Con-
ventionally one chooses a parametrization with 3 angles and 6 phases. 5 of 6
phases can be absorbed into the quark fields by redefinition. Finally we end up
with a unitary matrix UCKM with 4 parameters commonly parametrized as follows
(sij := sin ϑij ,cij := cosϑij):

UCKM = U23U13U12

=




1 0 0
0 c23 s23

0 −s23 c23







c13 0 s13e
−iδCP

0 1 0
−s13e

iδCP 0 c13






c12 s12 0
−s12 c12 0

0 0 1




=




c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13

s12c23 − c12s23s13e
iδCP −c12c23 − s12s23s13e

iδCP c23c13


 .

(2.44)

Note that it is not possible to eliminate the last phase δCP in the present case
of 3 quark generations [14]. Also a non-zero phase is the only possibility for a
complex UCKM and thus is responsible for CP violating processes in weak interac-
tions. The whole procedure here, starting from Yukawa couplings, then applying

20 2. THE STANDARD MODEL AND EXTENSIONS

the bi-unitary diagonalization and ending up with the quark mixing matrix, was
motivated by S. Glashow, J. Iliopoulos and L. Maiani [16] who suggested an ad-
ditional fourth quark c to u, d and s known at the time. In the GIM model they
introduced two doublets containing the four quarks and the well-known Cabbibo
angle

Q
(d)
L =

(
uL

dL cosϑC + sL sin ϑC

)
Q

(s)
L =

(
cL

−dL sin ϑC + sL cosϑC

)
(2.45)

where the mixture of d and s was set by hand. This way they solved the problem of
flavour changing neutral currents appearing in the three quark predecessor model,
which led to wrong predictions, e.g. in K+ decays. A different approach to the
quark mixture is via the diagonalization of the mass matrix depicted in the previous
chapter. In the GIM model this would correspond to two doublets

Q
(d)
0L =

(
u0L

d0L

)
Q

(s)
0L =

(
c0L

s0L

)
(2.46)

and a 2× 2 lepton mixing matrix

UGIM = U †uUd =

(
cos ϑC sin ϑC
− sin ϑC cosϑC

)
(2.47)

Besides the natural outcome of the Cabbibo angle ϑC this procedure gives also an
explanation for the orthogonal mixture in (2.45).3

2.2 Extensions in the lepton sector

The aim of this chapter is to discuss the most basic extensions to the SM leading
to massive neutrinos (see also [17, 18, 19, 20]). Before one can introduce additional
mass terms to the Lagrangian one has to decide whether neutrinos are Dirac- or
Majorana particles.

2.2.1 Dirac- and Majorana particles

The fermionic particles of the SM until now were all assumed to be Dirac particles
represented by fields fulfilling the Dirac equation:

(iγµ∂µ −m)ψ(x) = 0. (2.48)

3See [2], p.216ff. for a detailed analysis.

2.2. Extensions in the lepton sector 21

Fourier expansion of the four-component Dirac field ψ yields

ψ(x) =
∑

s=±1/2

∫ d3p

(2π)3/2(2p0)1/2

{
b(~p, s)u(~p, s)e−ipx + d†(~p, s)v(~p, s)eipx

}
(2.49)

with different annihilation and creation operators b and d† for particles and an-
tiparticles. The charge conjugated field ψc is defined by the action of the charge
conjugation operation C on the original field as follows:

C ψ C−1 = ηcψ
c = ηcCψ

T
(2.50)

where ηc is an arbitrary phase. In the case of Dirac particles one can clearly
distinguish between particles and antiparticles, so

ψ 6= ψc. (2.51)

This is particularly obvious for particles that carry any additional conserved quan-
tum number, e.g. electric charge. An electron is always distinguishable from its
antiparticle, because of the different charges. The situation gets more involved
with neutrinos, since they do not carry an electric charge. Thus it is not clear
whether neutrinos and antineutrinos are distinct particles. One could stick to the
Dirac particle concept and to statement (2.51). Another possibility is to set par-
ticle and antiparticle indistinguishable imposing the so called Majorana condition

ψ = ψc. (2.52)

Applying this to the explicit form of ψ (2.49) gives together with

Cu(~p, s)
T

= v(~p, s) Cv(~p, s)
T

= u(~p, s) (2.53)

the desired constraint on the creation and annihilation operators:

b(~p, s) = d(~p, s) b†(~p, s) = d†(~p, s). (2.54)

Hence there is no mathematical difference between the original and the charge
conjugated fields, in other words the Majorana particle is its own antiparticle. In
the Standard model there is an additional global U(1) symmetry in the lepton sec-
tor that ensures the lepton number conservation (L). This symmetry is accidental
and may be broken by a Majorana-type lepton by 2 units.

Switching to the chiral characterization of fields with the well known projection
operators

PL =
1

2
(1− γ5) PR =

1

2
(1 + γ5) (2.55)

22 2. THE STANDARD MODEL AND EXTENSIONS

one has to modify the usual decomposition for Dirac particles

ψ = ψL + ψR. (2.56)

In the Majorana case only one projection eigenstate is necessary to create a physical
field. If one chooses the left-handed field ψL, the right-handed part can be played
by the charge conjugate state (ψL)c.

ψ = ψL + (ψL)c (2.57)

Obviously ψ defined in (2.57) fulfills the Majorana condition (2.52) because (ψc)c =
ψ. A right-handed field ψR may describe a different particle or may be completely
absent in the theory.

2.2.2 Mass terms

Depending on the model and the desired particle type it is possible to write down
different bilinear terms that are interpreted as mass terms.

Dirac mass term

A Dirac mass term is constructed using the chiral fields ψL and ψR. Both fields
must be present and are combined to form a bilinear and Lorentz-invariant expres-
sion

−m
(
ψRψL + ψLψR

)
= −mψψ with (2.56). (2.58)

Note that the second term in (2.58) is the Hermitean conjugate of the first. Adding
a Dirac mass term for the neutrinos in the Standard model is quite simple. It is
necessary to add the (so far missing) right-handed neutrino fields νeR, νµR, ντR as
singlets to the particle content. The most general Dirac mass term with these 3
lepton flavours is

LD = −
∑

l,l′
νlRM

D
ll′νl′L + H.c. with l, l′ = e, µ, τ . (2.59)

The complex 3×3 matrix MD is composed of the Yukawa couplings and the VEV
of the Higgs field. The mass term can be diagonalized in the same manner as the
quark fields described in (2.35) (See also 2.2.4).

Majorana mass term

A Majorana mass term makes only use of one chiral projection of ψ (ψL or ψR) to
construct a bilinear term

−1

2
m(ψL)cψL + H.c. = −1

2
mψψ with (2.57). (2.60)

2.2. Extensions in the lepton sector 23

The above expression may be recast with help of the identity

(ψL)c =
(
CψL

T
)†
γ0 = ψTLγ

∗
0C
−1γ0 = −ψTL

(
γ0γ
†
0

)∗
C−1 = −ψTLC−1 (2.61)

to a form where the charge conjugation matrix enters

1

2
mψTLC

−1ψL + H.c. (2.62)

In the case of 3 neutrino flavours this would give the following Lagrangian:

LML = −1

2

∑

l,l′

(νlL)cML
ll′νl′L + H.c. with l, l′ = e, µ, τ . (2.63)

Note that although the left-handed neutrino fields νlL are present a Majorana
mass term (2.63) is forbidden within the Standard model due to gauge invariance.
The same Lagrangian for the right-handed neutrinos would be allowed if the fields
νeR, νµR and ντR are added to the model.

LMR = −1

2

∑

l,l′

(νlR)cMR
ll′νl′R + H.c. with l, l′ = e, µ, τ (2.64)

To get mass eigenstates from a Majorana mass terms like (2.64) one has to di-
agonalize MR first. It turns out that the matrix is symmetric because of the
antisymmetry of C and the anticommutation property of the fermionic fields.

νTlRC
−1νl′R =

∑

i,j

(νlR)i(C
−1)ij(νl′R)j =

∑

i,j

(νlR)i(νl′R)j︸ ︷︷ ︸
anticommute

(C−1T)ji︸ ︷︷ ︸
antisymmetric

=
∑

i,j

(νl′R)j(C
−1)ji(νlR)i = νTl′RC

−1νlR
(2.65)

From this follows immediately

−1

2

∑

l,l′

(νlR)cMR
ll′νl′R = −1

2

∑

l,l′

(νlR)cMR
l′lνl′R ⇒ MR = (MR)T . (2.66)

A theorem of I. Schur [21, 22, 23] ensures that the symmetric matrix MR can
always be diagnonalized:

Theorem. Let M be a symmetric, complex n × n matrix. Then there exists a
diagonal, positive matrix m̂ and a unitary matrix U so that

M = (U †)T m̂ U †. (2.67)

24 2. THE STANDARD MODEL AND EXTENSIONS

The resulting mass eigenstates fulfill again the Majorana condition.

Dirac-Majorana mass term

One may find models where Majorana and Dirac mass terms occur. In general
this would look like

LD+M = −mDψRψL −
1

2
mL(ψL)cψL −

1

2
mR(ψR)cψR + H.c. (2.68)

Splitting up the Dirac part using

−mDψRψL = −1

2
mDψRψL −

1

2
mD(ψL)c (ψR)c (2.69)

gives the possibility to write all mass terms in a compact notation

LD+M =− 1

2

(
(ψL)c ψR

)(mL mD

mD mR

)

︸ ︷︷ ︸
=:MD+M

(
ψL

(ψR)c

)

︸ ︷︷ ︸
=:nL

+H.c.

=− 1

2
(nL)cMD+MnL + H.c.

(2.70)

The symmetric matrix MD+M is diagonalized by the unitary matrix U

MD+M = (U †)T m̂(U †) with m̂ = (miδij) mi > 0. (2.71)

Defining new fields ψ1, ψ2

N =

(
ψ1

ψ2

)
:= U †nL + (U †nL)c (2.72)

the mass Lagrangian takes the simple form

LD+M = −1

2
Nm̂N = −1

2
m1ψ1ψ1 −

1

2
m2ψ2ψ2. (2.73)

Although we started with both Dirac- and Majorana mass terms we finally ended
up with two Majorana fields since

N = N c. (2.74)

In the case of 3 or more lepton flavours we have to replace ψL and ψR with vectors
containing the various neutrino fields

νL :=



νeL
νµL
ντL


 νR :=




νs1R

νs2R
...

νsnRR




(2.75)

2.2. Extensions in the lepton sector 25

and nL with

nL :=

(
νL

(νR)c

)
. (2.76)

Note that we assumed 3 (e, µ, τ) and nR lepton flavours for the left- and right-
handed neutrino fields, respectively. The number of right-handed flavours is free,
because there has been no experimental or theoretical limitation so far. The com-
bined mass matrix MD+M has now (3 + nR) × (3 + nR) elements arranged in 3
matrices ML,MR and MD

MD+M =

(
ML (MD)T

MD MR

)
. (2.77)

The Majorana particles resulting from the usual diagonalization are again denoted
by a vector

N :=




ν1

ν2
...

ν3+nR




= U †nL + (U †nL)c. (2.78)

2.2.3 The seesaw mechanism

Starting from a general Dirac-Majorana mass term the seesaw mechanism [24, 25,
26] gives a possible explanation for the smallness of the neutrino masses. Of course
it would be possible to simply set the corresponding Yukawa couplings accord-
ingly, but this would be an unmotivated step. Instead one tries to find a different
mass production procedure that naturally explains the mass discrepancies between
charged and neutral leptons. It is based on a scenario with Dirac-Majorana mass
term described in (2.75) to (2.78) with 3 left-handed and ns right-handed neutri-
nos. There are different types of the seesaw mechanism, we will concentrate on
type I seesaw:

Type I seesaw

Based on the mass matrix (2.77) with ML = 0, the type I seesaw mechanism
corresponds to the SM with ns additional right-handed neutrinos and all possible
mass terms.

MD+M =

(
0 (MD)T

MD MR

)
(2.79)

There is no Majorana mass term for νL because the left-handed fields are arranged
in doublets, thus a gauge invariant bilinear term can not be produced. The seesaw

26 2. THE STANDARD MODEL AND EXTENSIONS

mechanism makes now assumptions on the scales of the matrices MD and MR.
The eigenvalues of MD are at the same level as the masses of the charged leptons
or the quarks, whereas those of MR are at much larger scale.

MD ≃ mquarks,charged leptons ≪MR (2.80)

Under these conditions one may try to bring (2.79) into a block-diagonal form,
applying a small rotation

W TMD+MW ≃
(
Mν 0

0 Mheavy

)
=M. (2.81)

The rotation matrix W that performs the partial diagonalization is

W ≃
(

1− 1
2
(MD)†(MR(MR)†)−1MD (MD)†(MR)†−1

−(MR)−1MD 1− 1
2
(MR)−1MD(MD)†(MR)†−1

)
(2.82)

up to orders (MR)−1MD. The resulting Majorana mass matrixMν is now

Mν =− (MD)T (MR)−1MD

+
1

2
(MD)T (MR)−1MD(MD)T ((MR)∗(MR)T)−1(MD)∗

+(MD)T (MR)−1TMD(MD)†(MR(MR)†)−1MD

=− (MD)T (MR)−1MD
{
1 +O

[
((MR)−1MD)2

]}

(2.83)

which explains the term “seesaw”. If MR gets bigger in (2.83) then consequently
Mν gets smaller due to the inverse operator. Thus the small masses for the left-
handed neutrinos observed until now is explained by the existence of ns heavy
right-handed neutrinos and the possible mass terms in the Lagrangian

LD+M =− 1

2
(nL)cMD+MnL + H.c.

=− 1

2
(nL)cW ∗MW †nL + H.c. +O

[
((MR)−1MD)2

]
.

(2.84)

The rotation W changes the states nL slightly to n′L, but the mixture of νL and
(νR)c is suppressed by (MR)−1MD

n′L = W †nL =


 νL − (MD)†(MR)†−1

[
1
2
(MR)−1MDνL + (νR)c

]

(νR)c − (MR)−1MD
[

1
2
(MD)†(MR)†−1(νR)c − νL

]



=

(
νL

(νR)c

)
+O

[
(MR)−1MD

]
.

(2.85)

2.2. Extensions in the lepton sector 27

Finally we end up with a Lagrangian containing Majorana mass terms for the light
left-handed neutrinos and their heavy right-handed counterparts which have not
been observed yet.

LD+M =− 1

2
(νL)cMννL + H.c. + (terms withMheavy)

+O
[
((MR)−1MD)2

] (2.86)

Note that the matrix Mν is still not diagonal since we only performed a block-
diagonalization.

2.2.4 The lepton mixing matrix

Most models with massive neutrinos and neutrino oscillations operate with non-
diagonal mass matrices in the lepton sector. A diagonalization has effects on the
charged current terms in the Lagrangian just like in the quark sector.

Llepton
CC = − g√

2

(
eL µL τL

)
γµ



νeL
νµL
ντL


W−µ + H.c. (2.87)

Consider a Dirac mass term like (2.59) in short notation

LD = −νRMDνL + H.c. with ν =



νe
νµ
ντ


 . (2.88)

Diagonalization via
MD = Um̂V† (2.89)

gives in analogy to the quark case the mass eigenfields


ν1L

ν2L

ν3L


 = U †



νeL
νµL
ντL






ν1R

ν2R

ν3R


 = V†



νeR
νµR
ντR


 . (2.90)

Inserting into (2.87) yields

Llepton
CC = − g√

2

(
eL µL τL

)
U︸︷︷︸

=:UPMNS

γµ



ν1L

ν2L

ν3L


W−µ + H.c. (2.91)

where U is the analogy to the CKM matrix which in the lepton sector is often
referred to as the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. Note that

28 2. THE STANDARD MODEL AND EXTENSIONS

we assumed here that the charged lepton mass matrix is already in a diagonal
form. Without this assumption the PMNS matrix would consist of two unitary
matrices like in (2.42).

UPMNS = U †eUν (2.92)

The parametrization of UPMNS [15] is also analogous to the quark case, where

ϑ23 → ϑatm ϑ12 → ϑ⊙ δCP → δ13 (2.93)

so that

UDirac
PMNS = UatmU13U⊙

=




1 0 0
0 catm satm

0 −satm catm







c13 0 s13e
−iδ13

0 1 0
−s13e

iδ13 0 c13






c⊙ s⊙ 0
−s⊙ c⊙ 0

0 0 1




=




c⊙c13 s⊙c13 s13e
−iδ13

−s⊙catm − c⊙satms13e
iδ13 c⊙catm − s⊙satms13e

iδ13 satmc13

s⊙catm − c⊙satms13e
iδ13 −c⊙catm − s⊙satms13e

iδ13 catmc13


 .

(2.94)

In the Majorana mass term scenario with

LM = −1

2
(νL)cMLνL + H.c. (2.95)

the proper diagonalization is described in (2.67). Only one matrix U is needed
and the parametrization is the same with one exception: In the Dirac case 5
of 6 phases were absorbed into the lepton fields. With a Majorana mass term
only the 3 charged leptons are allowed to be redefined, since (2.95) itself is not
invariant under rephasing. This results in a lepton mixing matrix that contains
two additional phases η1 and η2 called Majorana phases.

UMajorana
PMNS = UDirac

PMNS ·



eiη1 0 0
0 eiη2 0
0 0 1


 (2.96)

Right-handed Majorana neutrino fields added to the SM do not carry electric or
color charge nor do they take part in weak interactions (2.87). Thus their number
and their mass is unknown and they are often called sterile neutrinos.

Chapter3
Neutrino phenomena and experiments

After describing the basic extensions in the lepton sector we will proceed describing
the phenomena resulting from massive neutrinos. The most important consequence
is the possibility for neutrino oscillations, by now verified by several collaborations
(see section 3.4). Also, one still has to decide experimentally whether neutrinos
are Dirac or Majorana particles. Currently the most promising candidate for a
crucial experiment is the search for neutrinoless double beta ((ββ)0ν) decay. If
(ββ)0ν decay is discovered neutrinos must be Majorana particles.

3.1 Neutrino oscillations

We start with the question why massive neutrinos give rise to neutrino oscillations,
for detailed discussions see [17, 18, 19, 20]. Consider a model with a unitary lepton
mixing matrix UPMNS, so that

ναL =
3∑

k=1

UαkνkL. (3.1)

where ναL is a flavour eigenfield and νkL is a mass eigenfield. This means that,
depending on the explicit form of U , each flavour field may be a superposition
of up to 3 mass eigenfields. Now, neutrinos are produced in CC interactions in
(2.87), with the flavour of the lepton occuring in the process. This is the only
possible way to define the neutrino flavour. The same is true for the neutrino
detection, again the flavour is not measured directly but defined by the associated

29

30 3. NEUTRINO PHENOMENA AND EXPERIMENTS

lepton. Producing a neutrino of flavour α is described by the action of the creation
operator b†α, contained in ν†α, on the vacuum state |0〉.

b†α|0〉 = |να〉 (3.2)

Because of (3.1) this state is a superposition of the mass eigenstates |νk〉.

|να〉 =
3∑

k=1

U∗αk|νk〉 =
3∑

k=1

U∗αkb
†
k(~pk, sk)|0〉 (3.3)

To get the neutrino oscillation formula, we now consider a neutrino with flavour α
produced at time t = 0 at ~x = ~0. The propability for the neutrino to be detected
with another flavour β at t = ∆t and ~x = (∆x, 0, 0) is then given by

Pνα→νβ(∆t,∆x) = |Aνα→νβ(∆t,∆x)|2 = |(0,0)〈νβ|να〉(∆t,∆x)|2. (3.4)

The propagation of να from the production to the detection point is carried out
via the operators H and P :

|να〉(∆t,∆x) = e−i(H∆t−P∆x)|να〉(0,0). (3.5)

According to (3.3) |να〉(0,0) may be rewritten as a coherent superposition of the
mass eigenstates. We assume that they all have the same energy E, but differ in
their momenta pk. Additionally we take the relativistic limit E ≫ mk, which is a
good approximation for all neutrino experiments:

pk =
√
E2 −m2

k ≃ E −
m2
k

2E
. (3.6)

Then (3.5) becomes

|να〉(∆t,∆x) = e−iE∆t
3∑

k=1

U∗αke
ipk∆x|νk〉(0,0). (3.7)

With the inverse of (3.3),
|νk〉 =

∑

γ

Uγk|νγ〉, (3.8)

we get

|να〉(∆t,∆x) = e−iE∆t
∑

γ

3∑

k=1

U∗αke
ipk∆xUγk|νγ〉(0,0). (3.9)

Projecting out the flavour of interest β and taking the relativistic limit delivers
the amplitude for the process:

Aνα→νβ(∆t,∆x) = (0,0)〈νβ |να〉(∆t,∆x) = e−iE(∆t−∆x)
3∑

k=1

U∗αke
−i
m2
k

2E
∆xUβk. (3.10)

3.1. Neutrino oscillations 31

The time dependence in the phase e−iE(∆t−∆x) becomes irrelevant in the resulting
propability

Pνα→νβ(∆x = L) =

∣∣∣∣∣

3∑

k=1

U∗αke
−i
m2
k
L

2E Uβk

∣∣∣∣∣

2

. (3.11)

This is the well-known formula for neutrino oscillations with dependence on the
energy E, the distance source - detector L and the differences of the squared masses
∆m2

ij . The latter will become clear if we write down all terms of the sum in (3.11)

Pνα→νβ(L) =

∣∣∣∣∣U
∗
α1e
−im

2
1L

2E Uβ1 + U∗α2e
−im

2
2L

2E Uβ2 + U∗α3e
−im

2
3L

2E Uβ3

∣∣∣∣∣

2

=
∣∣∣∣U
∗
α1Uβ1 + U∗α2e

−i (m2−m1)2L

2E Uβ2 + U∗α3e
−i (m3−m1)2L

2E Uβ3

∣∣∣∣
2

=

∣∣∣∣∣δαβ +
3∑

k=2

U∗αk

[
e−i

∆m2
k1
L

2E − 1

]
Uβk

∣∣∣∣∣

2

,

(3.12)

where ∆m2
ij = m2

i −m2
j and we used the unitarity relation

3∑

k=1

U∗αkUβk = 1 (3.13)

for the mixing matrix. Next we investigate the case of transitions between two
neutrino flavours (and two mass eigenstates). Then the mixing matrix U is simply
parametrized as

U =

(
Uα1 Uα2

Uβ1 Uβ2

)
=

(
cosϑ sin ϑ
− sin ϑ cosϑ

)
. (3.14)

Inserting the explicit form of U in (3.12) we end up with the transition propability
in the two-neutrino case

Pνα→νβ(L) =
1

2
sin2(2ϑ)(1− cos(

∆m2L

2E
)

︸ ︷︷ ︸
=cos(2πL/Losc)

) (3.15)

The oscillation length L is

Losc =
4πE

∆m2
≃ 2.48

E(MeV)

∆m2(eV2)
m. (3.16)

Here lies the justification for the term neutrino oscillation. An experiment vary-
ing either the length L or the energy E may be able to capture the oscillatory
behaviour of the transition propability Pνα→νβ . The region of (L,E) where to find
significant oscillations is determined by the scale of the mass square difference

32 3. NEUTRINO PHENOMENA AND EXPERIMENTS

∆m2. Furthermore the mixing angle ϑ enters as a parameter controlling the “am-
plitude” of the oscillation curve. Some additional remarks concerning neutrino
oscillations are in order at this point:

• The transition propability (3.11) is invariant under rephasing of the mixing
matrix U :

U → diag(eiφ1 , eiφ2 , eiφ3)U diag(eiψ1 , eiψ2 , eiψ3). (3.17)

Consequently, neutrino oscillation experiments cannot determine the Dirac
or Majorana nature hidden in two phases of the mixing matrix (see (2.96)).

• The transformation U → U∗ gives the transition propability Pν̄α→ν̄β for the
case of antineutrinos. Additional exchange of the flavours α ↔ β gives the
equality

Pνα→νβ = Pν̄β→ν̄α, (3.18)

being a consequence of the CPT -invariance of the theory.

• Evidently neutrino oscillations violate family lepton numbers Lα.

• The derivation of the neutrino oscillation formula was performed without
taking into account various aspects of quantum mechanics that may play
an important role during production and detection. Also the relativistic
limit (3.6) may be questioned in favour of a more general description. Many
authors have approached the problem in different ways by now, but the
validity of (3.11) has been confirmend within the experimental limitations
[27, 28, 29, 30].

• Until now the neutrinos were assumed to propagate in vacuum. A more
detailed analysis shows that effects of neutrinos passing through matter are
not negligible for oscillation phenomena, especially in the case of the solar
neutrino deficit [31, 32, 33, 34, 35].

3.2 Mass spectra

In the previous section we found that neutrino oscillations depend on the mass
squared differences (3.12). Thus, experiments observing oscillations cannot give
absolute values for the masses and, moreover, allow for two possible mass spectra
[36]. The two mass squared differences are denoted as ∆m2

atm and ∆m2
⊙ for atmo-

spheric and solar neutrino oscillations, respectively. From experiments we know

3.2. Mass spectra 33

that they are not at the same scale (for a detailed listing see section 3.4):

∆m2
atm ∼ 30 ·∆m2

⊙. (3.19)

We make use of this information and choose a convention for the so far arbitrary
numbering of the neutrino mass eigenfields. The smaller mass squared difference
∆m2

⊙ is associated with the masses m1 and m2 and chosen to fulfill:

∆m2
⊙ = ∆m2

21 > 0 ⇒ m1 < m2. (3.20)

The remaining mass m3 may now be smaller or greater than m1 ≈ m2, i.e. the
sign of ∆m2

atm is not fixed by experiment. Thus, one has to distinguish between
two different mass spectra.

m2

m3

m1

m1

m2

m3

∆m2
⊙

∆m2
⊙

∆m2
atm

(a) (b)

Figure 3.1: Normal (a) and inverted (b) mass spectrum with mass squared differ-
ences

• Normal spectrum

m1 < m2 < m3 , ∆m2
atm = ∆m2

31 (3.21)

• Inverted spectrum

m3 < m1 < m2 , ∆m2
atm = ∆m2

23. (3.22)

See Figure 3.1 for an illustration of the possibilities.

34 3. NEUTRINO PHENOMENA AND EXPERIMENTS

3.3 Neutrinoless double beta decay

Beside neutrino oscillations there is another possibility to extract neutrino prop-
erties from experiment. The neutrinoless double beta decay ((ββ)0ν decay) not
only allows us to get information about masses and mixing angles but maybe also
a decision in the question whether neutrions are Dirac- or Majorana particles (see
e.g. [37, 38]). The idea of a (ββ)0ν decay is based on the already observed double
beta decay

(Z,A)→ (Z + 2, A) + 2e− + 2νe. (3.23)

If the neutrinos in the process are Majorana fermions, then one could imagine
another double beta decay without the outgoing νe:

(Z,A)→ (Z + 2, A) + 2e−. (3.24)

This (ββ)0ν decay is possible only if νc = ν and thus both neutrinos can be
eliminated via the Wick contraction. Figure 3.2 shows the process on the quark
level. The propagator 〈0|TνeL(x)νTeL(y)|0〉 is nonzero because one can employ

W−

ν

W−

d

d

u

e−

e−

u

Figure 3.2: (ββ)0ν decay - Feynman diagram at quark level

3.3. Neutrinoless double beta decay 35

νTk = −νkC and ends up with

〈0|TνeL(x)νTeL(y)|0〉 = 〈0|T
∑

k

Uek
1− γ5

2
νk(x)

∑

k′
Uek′ν

T
k′(y)

1− γT5
2
|0〉

=
1− γ5

2

∑

k

U2
ek〈0|Tνk(x)νTk (y)|0〉1− γ

T
5

2

= −1− γ5

2

∑

k

U2
ek〈0|Tνk(x)νk(y)|0〉1− γ5

2
C

= −
∑

k

U2
ekmki

∫ d4p

(2π)4

e−ip(x−y)

p2 −m2
k

1− γ5

2
C.

(3.25)

Consequently the lepton number conservation is violated by two units. Models
beyond the standard model may be equipped with other Majorana particles or
different mechanisms for lepton number violation. Therefore, these additional
effects must be taken into account when drawing any conclusions about neutrino
masses. Anyway, if (ββ)0ν decay exists then a Majorana neutrino mass term cannot
be forbidden by a symmetry and thus contributes to lepton number violating
processes [39, 40]. If the sole source of (ββ)0ν decay is the contraction of Majorana
neutrinos the decay rate for this process is proportional to the effective Majorana
neutrino mass

|〈mββ〉| =
∣∣∣∣∣
∑

k

U2
ekmk

∣∣∣∣∣ , (3.26)

as already indicated in (3.25). Writing (3.26) in terms of mass squared differences
and inserting the standard parametrization of the lepton mixing matrix (2.94) and
(2.96) gives

|〈mββ〉| =
∣∣∣∣
(
m1c

2
⊙ e

iη1 +
√
m2

1 + ∆m2
⊙ s

2
⊙ e

iη2

)
c2

13

+
√
m2

1 + ∆m2
atm s

2
13 e
−iδ13

∣∣∣∣
(3.27)

and

|〈mββ〉| =
∣∣∣∣
(√

m2
3 + ∆m2

atm −∆m2
⊙ c

2
⊙ e

iη1

+
√
m2

3 + ∆m2
atm s

2
⊙ e

iη2

)
c2

13 +m3s
2
13 e
−iδ13

∣∣∣∣
(3.28)

for normal and inverted spectrum, respectively. Note that a possible nonzero phase
δ13 may be absent if a different parametrization of the lepton mixing matrix (2.94)
is chosen. In contrast Majorana phases cannot be removed from the effective
Majorana mass.

36 3. NEUTRINO PHENOMENA AND EXPERIMENTS

Observable Oi Ōi ± 1σi 3σi interval

∆m2
⊙[10−5 eV2] 7.65+0.23

−0.20 7.05− 8.34

∆m2
atm[10−3 eV2] 2.40+0.12

−0.11 2.07− 2.75

sin2 ϑ13 0.010+0.016
−0.011 ≤ 0.056

sin2 ϑ⊙ 0.304+0.022
−0.016 0.25− 0.37

sin2 ϑatm 0.50+0.07
−0.06 0.36− 0.67

Table 3.1: Experimental global fit values.

3.4 Experiments and data

This section presents the experimental data employed in the later chapters of this
work.

Oscillation parameters

While the search for neutrinoless double beta decay is still in progress, neutrino
oscillations have been confirmed by many collaborations up to now. The data from
several experiments is combined to obtain a global fit in recent reviews [41, 42].
The resulting mass squared differences and mixing angles therein are presented in
Table 3.1. The review includes the latest data from the following collaborations:

• MINOS (Main Injector Neutrino Oscillation Search)

MINOS [43, 44] is a long-baseline accelerator experiment studying neutrino
oscillations on the basis of a νµ-beam and two separate detectors. The neu-
trino beam is produced at Fermilab and first analysed by the MINOS Near
detector on-site. The second MINOS Far detector is located 735km away at
the Soudan Underground Laboratory in Northern Minnesota. The survival
propability of the νµ-beam with a peak energy of 3 GeV allows measurement
of ∆m2

atm and sin2 2ϑatm. In addition MINOS searches for sterile neutrino
flavours and further limits sin2 2ϑ13.

• SNO-NCD (The Sudbury Neutrino Observatory)

The Sudbury Neutrino Observatory [45, 46] uses a Cherenkov detector with
1 kton of heavy water to investigate the neutrino flux coming from the sun.
The laboratory is placed 2km under the surface in the Creighton mine near

3.4. Experiments and data 37

Sudbury, Ontario. While charged current interactions with the deuterium
allow only the detection of νe - neutrinos the neutral current detection (NCD)
is sensitive to all neutrino flavours. The experiment gives results for ∆m2

⊙
and ϑ⊙.

• KamLAND (Kamioka Liquid-scintillator Anti-Neutrino Detector)

The KamLAND experiment [47], located at the site of the former Kamiokande
experiment, utilizes a 1 kton liquid scintillator detector. It observes ν̄e-
neutrinos emitted from the 55 Japanese nuclear reactors via inverse β - de-
cay. The experiment confirmes neutrino oscillations and provides valuable
data for the determination of ∆m2

⊙ and sin2 ϑ⊙.

• Borexino

Borexino [48] is a scintillator detector experiment at the Laboratori Nazionali
del Gran Sasso. The focus lies on low energy neutrinos from the electron
capture decay of 7Be in the sun.

This enumeration adds up to a long list of experiments already finished or still
in progress: CHOOZ [49] , GALLEX [50, 51], SAGE [52], Superkamiokande [53],
K2K [54], T2K [55], OPERA [56], MiniBooNE [57], KATRIN [58].

The numerical values for the mixing angles encouraged theorists to find possible
analytic expressions matching the global fit data. The so-called tri-bimaximal
mixing is a common choice of a mixing pattern introduced by Harrison, Perkins
and Scott [59]. With the mixing angles fulfilling

sin2 ϑ13 = 0, sin2 ϑ⊙ =
1

3
, sin2 ϑatm =

1

2
(3.29)

we get the Harrison-Perkins-Scott mixing matrix

UHPS =




√
2
3

1√
3

0
− 1√

6
1√
3

1√
2

− 1√
6

1√
3
− 1√

2


 . (3.30)

Note that tri-bimaximal mixing does not fully comply with current data in Table
3.1. While sin2 ϑ13 and sin2 ϑatm are within the 1σ - bound, sin2 ϑ⊙ is only within
the 2σ - bound. In order to allow deviation from fixed angles Grimus and Lavoura
[60] suggested a trimaximal mixing pattern. While the second column in (3.30)
remains unchanged, i.e.

|Ue2|2 = |Uµ2|2 = |Uτ2|2 =
1

3
, (3.31)

38 3. NEUTRINO PHENOMENA AND EXPERIMENTS

no further constraints are stated. Thus, trimaximal mixing allows e.g. for a
nonzero ϑ13.

Neutrinoless double beta decay

For years the existence of neutrinoless double beta decay was subject of ongoing
discussion. Among the few so far finished experiments are IGEX [61], CUORI-
CINO [62] and Heidelberg-Moscow [63]. While the first two could not confirm
neutrinoless double beta decay and gave only upper bounds on the effective Majo-
rana mass |〈mββ〉|, a subgroup of Heidelberg-Moscow [64] claimed the observation
and reported

|〈mββ〉| = 0.32+0.03
−0.03 eV. (3.32)

Though heavily criticized [65, 66, 67, 68], they repeatedly defended their claim
in [69, 70, 71]. Hopefully this issue will be resolved in the upcoming neutrino-
less double beta decay experiments, namely GERDA [72, 73], CUORE [74] and
others.

Chapter4
Numerical Methods

In the following chapter numerical methods are presented which are helpful for the
comparison of model predictions with experimental data. In order to achieve the
best possible agreement one often has to deal with involved dependencies between
observable quantities and the theory underlying model parameters. In such cases,
especially when there is a large number of parameters, one is restricted to numerical
tools to find the parameter values that provide a good match.

4.1 A figure of merit function

The numerical analysis is based on the concept of a figure of merit function χ2,
as previously described and applied in [75, 76, 77, 78, 79, 80, 81]. This function
depending on the model parameters quantifies the agreement or discrepancy be-
tween theoretical predictions and experimental data values with a single number
≥ 0. Consider the following typical case: The measurement results for several
obervables Oi are given in the form of mean value Ōi and the corresponding 1σ
standard deviation.

Oi = Ōi ± σi (4.1)

From theory we know how to calculate the predictions Pi(x) for these observables
from the model parameters x, where x = (x1, x2, . . .) contains all free parameters
xk of the model. Obviously for N observables

χ2(x) :=
N∑

i=1

(
Pi(x)− Ōi

σi

)2

(4.2)

39

40 4. NUMERICAL METHODS

is a useful definition of the χ2 function, since it provides the best fit values Pi(xmin)
at the global minimum

χ2
min := χ2(xmin) with 0 ≤ χ2

min ≤ χ2(x) ∀x. (4.3)

Once the global minimum is found, one often denotes the difference between pre-
diction and data for every observable with the “pull”

pull(Oi) =
Pi(xmin)− Ōi

σi
. (4.4)

With the figure of merit function the task of comparing model predictions to
experimental data is transformed into a search for the global minimum of χ2. A
lot of numerical tools are known to cope with this standard minimization problem.
A good choice for our case is the Nelder-Mead method, see [75], p.19 for details
on pros and cons.

4.2 The Nelder-Mead method

The Nelder-Mead method (NMM) [82, 83, 84, 85] or downhill simplex method
for minimization problems can be categorized as a direct search method [86]. It
does not require the computation of derivatives and therefore is even applicable
if the function is not differentiable or continuous. The procedure is based on the
movement of a geometric figure, the simplex, in the n-dimensional parameter space
Rn towards a (local) minimum of the scalar function of interest f(x). The simplex
is best described as the convex hull of n+ 1 vertices xi, e.g. for n = 2 the simplex
is a triangle. The movement of the simplex is performed stepwise, at each iteration
step the function values at the vertices determine the position and shape of the
next simplex in the series from the starting point to the minimum.

We will now discuss in detail the constituent branchings and calculations of a
single Nelder-Mead iteration step. The procedure requires the definition of four
parameters ρ, χ, γ and σ corresponding to different actions on the simplex, namely
reflection, expansion, contraction and shrinkage, respectively. We employ the stan-
dard choice1

ρ = 1,

χ = 2,

γ = σ = 1/2.

(4.5)

The following enumeration shows all ingredients of one Nelder-Mead iteration step.

1Allowed values are: ρ > 0, χ > 1, χ > ρ, 0 < γ < 1 and 0 < σ < 1.

4.2. The Nelder-Mead method 41

1. Start of the iteration step

The simplex containing the vertices xi and the function values fi := f(xi)
are taken from the last iteration (or the initial values).

2. Sorting

The vertices are sorted according to increasing function values, i.e. after
sorting the vertices fulfill

f1 ≤ . . . ≤ fn ≤ fn+1. (4.6)

3. Calculate Centroid

The “mean value“ of the n best vertices, the centroid, is calculated:

x :=
1

n

n∑

i=1

xi. (4.7)

4. Reflection point

The reflection point xr is calculated:

xr := x + ρ(x − xn+1). (4.8)

If f1 ≤ fr < fn then xr is accepted, i.e. xn+1 is replaced by xr (Iteration
step terminated).

5. Expansion Point

If fr < f1 then calculate the expansion point

xe := x + χ(xr − x). (4.9)

If fe < fr then xe is accepted (Iteration step terminated).

If fe ≥ fr then xr is accepted (Iteration step terminated).

6. Outside Contraction

If fn ≤ fr < fn+1, an outside contraction is performed:

xoc := x + γ(xr − x). (4.10)

If foc ≤ fr then xoc is accepted (Iteration step terminated).

Otherwise a shrinkage is performed.

42 4. NUMERICAL METHODS

7. Inside Contraction

If fr ≥ fn+1, an outside contraction is performed:

xic := x− γ(x− xn+1). (4.11)

If fic < fn+1 then xic is accepted (Iteration step terminated).

Otherwise a shrinkage is performed.

8. Shrinkage

If either outside or inside contraction fails, then all vertices are contracted
towards the best point x1:

xi → x1 + σ(xi − x1), i = 2, . . . , n+ 1. (4.12)

Then the iteration step is terminated.

Sorting (2.), calculating the centroid (3.) and the reflection point (4.) are always
performed, while the steps (5.) to (8.) are optional and depend on the function
value of the reflection point fr. The sequence of decisions and calculations becomes
clearer with the flow chart of the NMM, provided in Figure 4.1. An illustration
of the different actions on the simplex in two dimensions is given in Figure 4.2.
Obviously the reflection step is the least time-consuming possibility, since it re-
quires only one function evaluation per iteration.2 Expansion and both contraction
options demand a second function call and shrinkage enforces the recalculation of
n + 2 function values. Fortunately in a typical scenario the shrinkage step is ex-
ecuted repeatedly only at the end of the search, when the simplex is contracted
towards the minimum. The basic step during the procedure is the reflection, while
expansion and contractions allow the simplex to adapt its geometrical shape to the
surrounding function shape. In this way the NMM can cope with rather complex
function landscapes, e.g. where the same relative change of parameters causes a
deviation of the function at different orders of magnitude. In conclusion the major
advantages of the NMM in our search for the mimimum of χ2 are the low number
of function evaluations and the ability to adopt to a complex topology.

The NMM described so far lacks a procedure to stop the simplex movement when
no further optimization is made. In this case the function values differ only slightly
at all vertices. Thus, a good criterion to halt the iteration is the variance of the
functions values

1

n + 1

n+1∑

i=1

(fi − f̄)2 ≤ ε with f̄ :=
1

n + 1

n+1∑

i=1

fi. (4.13)

2Note that every function evaluation is probably computationally intensive, because it may
include singular value decomposition, diagonalization, etc.

4.2. The Nelder-Mead method 43

fa
ls
e

tr
u
e

tr
u
e

fa
ls
e

fa
ls
e

tr
u
e

tr
u
e

tr
u
e

fa
ls
e

fa
ls
e

tr
u
e

tr
u
e

fa
ls
e

f
1
≤
f

r
<
f
n

+
1

x
n

+
1
→

x
r
,
f
n

+
1
→
f

r

f
n
≤
f

r
<
f
n

+
1

f
o

c
≤
f

r

x
n

+
1
→

x
e
,
f
n

+
1
→
f

e

x
n

+
1
→

x
o

c
,
f
n

+
1
→
f

o
c

x
n

+
1
→

x
ic
,
f
n

+
1
→
f

ic
f

ic
<
f
n

+
1

In
si

d
e

C
o
n
tr

a
ct

io
n

:

x
ic

=
x
−
γ

(x
−

x
n

+
1
)

x
o

c
=

x
+
γ

(x
r
−

x
)

O
u

ts
id

e
C

o
n
tr

a
ct

io
n

:

E
x
p

a
n

si
o
n

:

x
e

=
x

+
χ

(x
r
−

x
)

f
e
<
f

r

f
r
≥
f
n

+
1

f
r
<
f

1

R
efl

ec
ti

o
n

:
S

o
rt

in
g

re
su

lt
s:

f
1
≤
..
.
≤
f
n
≤
f
n

+
1

S
ta

rt
o
f

it
er

a
ti

o
n

st
ep

C
a
lc

u
la

te
C

en
tr

o
id

:

x
=

1 n

∑
n i=

1
x
i

x
r

=
x

+
ρ
(x
−

x
n

+
1
)

x
i
→

x
1

+
σ

(x
i
−

x
1
)

R
ec

a
lc

u
la

te
f
i
,
i

=
2
,
..
.,
n

+
1

S
h

ri
n

k
a
g
e:

F
ig

u
re

4.
1:

F
lo

w
ch

ar
t

fo
r

on
e

N
el

d
er

-M
ea

d
it

er
at

io
n

st
ep

.

44 4. NUMERICAL METHODS

x1

x2

x3 xr

x

(a)

x1

x2

x3

x

xe

(b)

x1

x2

x3

xxic

(c)

x1

x2

x3

x

xoc

(d)

x1

x2

x3

(e)

Figure 4.2: Different actions on the Nelder-Mead simplex in two dimensions after
the sorting step: (a) reflection, (b) expansion, (c) inside contraction, (d) outside
contraction and (e) shrinkage. The green filling denotes the simplex before, the
red one after the iteration step.

If the variance falls below the predefined accuracy parameter ε the NMM is stopped
and the minimum reached.

One major disadvantage of the NMM should not be overlooked: as the alternative
name downhill simplex method suggests, there are no measures that prevent the
simplex from getting stuck in a local minimum. The simplex moves strictly down-
hill and may never reach the global minimum. Therefore several extensions of the
NMM with other computational methods were employed by [75, 85]. Among these
hybrid algorithms are the NMM plus Simulated Annealing or NMM plus Pertur-
bations. Both procedures were also coded for testing purposes but turned out not
to be advantageous in view of the models of chapter 5. Another simple method to
reach the global minimum is to repeat the Nelder-Mead procedure with different

4.3. Pinning term and fine-tuning properties 45

initial simplices, e.g. set by a random number generator as implemented in the
presented program.

4.3 Pinning term and fine-tuning properties

Besides the so far presented normal operation of the NMM, two supplemental
techniques are employed to investigate models: the addition of a so called pinning
term to the χ2-function and an analysis of the fine-tuning properties.

Pinning term

The pinning term method is a helpful tool to elaborate the dependency between
χ2 and any observable O of interest. Consider the following extension of (4.2)

χ2(x) :=
N∑

i=1

(
Pi(x)− Ōi

σi

)2

+

(
P (x)− Ō

0.01Ō

)2

︸ ︷︷ ︸
χ2
p

, (4.14)

where Ō is the numerical value and P is the theoretical prediction for the observable
O. The additional term χ2

p pins O down to the value Ō in a minimization procedure
because of the assigned small 1%-error. This allows to check how low χ2 can get
while incorporating additional constraints on observables. Repeated application of
the pinning term method with a whole set of values gives the possibility to plot χ2

against O. The procedure requires that the pinning term itself gives a negligible
contribution to χ. Also, if O is identical to any of the other observables Oi, the
original term with σi is removed.

Fine-tuning properties

If the search for a global minimum of χ2 suceeds, one can analyse the fine-tuning
properties of the best-fit solution in a very simple way. While all other parameters
are fixed at the values corresponding to the minimum, one variable xi is slightly
changed by a factor ξ. The effect on the χ2-function

χ2(ξ) = χ2(xmin
1 , . . . , ξxmin

i , . . . , xmin
n) (4.15)

can be plotted easily. Comparing the graphs of all parameters one can extract
robust and fine-tuned variables, although a generalization of the properties from
one sample solution is not allowed.

46 4. NUMERICAL METHODS

4.4 Implementation

The source code for the NMM is written in the Fortran programming language
and compiled with the g95 Fortran compiler.3 No additional libraries or code
segments from other authors are used, the program is ”made from scratch“. It
is divided into two separate files, nmm.f90 for the iteration itself and dnmm.f90

for the data analysis. In order to achieve the best possible accuracy all floating
point numbers are defined as 10-byte real which leads to the following smallest
and largest possible numbers.

tiny(fn) = 3.3621031431120935063E-4932

huge(fn) = 1.189731495357231765E+4932

Thus, function values and simplex vertices are calculated and saved with at least
18-digit precision. Next, the content of the source files is roughly described.

nmm.f90

This is the main program file, which contains the placement of initial simplices,
the Nelder-Mead iteration and an outer loop for repetition. The minima found are
saved in an array and finally written to a binary file. The source code contains two
Fortran modules, one for the global variables and one for the following subroutines:

• init()

Asks the user for the number of repetitions and allocates memory.

• initf()

Calculates model constants required for the evaluation of the χ2 function.

• prepf()

Sets a random simplex and calls calcf to compute χ2 at each vertex.

• calcf(a,b,sres)

This subroutine contains most of the model depending information. It takes
coordinates in parameter space as input, calculates the predictions for the
observables and returns χ2. If sres is true, intermediate data is saved into
an additional array.

3The source code is presented in Appendix A.

4.4. Implementation 47

• sort()

Sorts the vertices according to their function value, i.e. step (2) of the
Nelder-Mead procedure.

• centroid()

Calculates the centroid of a given simplex, step (3) of the NMM.

• shrinkage()

Performs a shrinkage of the simplex as described in step (8).

• calcd()

Computes the variance of the function values for the stopping criterion.

• wfile()

Writes a binary file with all found minima, the corresponding model param-
eters and important observables. Figure 4.3 shows the arrangement of the
data inside the array saved to disk.

data set 1→

data set 2→
...

other quantities

observables and

χ2

...
...

contributions
model parameters

...

to χ2

Figure 4.3: pattern for the data arrangement. Each data set stands for a
minimum found by the NMM.

Besides the model depending constants and parameters, the user has to set two
important values: eps is the accuracy parameter ε for the stopping routine and
crit defines the maximum χ2 allowed for a data set (model parameters, χ2 con-
tributions and observables) to be saved and further processed.

As previously indicated the present implementation tries to find the global mini-
mum via repetition of the NMM with randomly set starting simplices. The user
enters the desired number of turns at the beginning, every 1000 a short status
information is displayed. Each turn contains a search for a minimum via Nelder-
Mead, two additional stopping criteria are implemeted. First, if no minimum is

48 4. NUMERICAL METHODS

found after 1000 iterations (i.e. simplex movements), the iteration is terminated as
unsuccessful. Also, every 100 iterations the vertices are checked for infinite, unde-
termined or unreasonable values (NaN, Inf). After the last repetition all gathered
data is written into the binary file nmm.dat, which is opened by the data analysis
program.

dnmm.f90

This file contains routines to perform various tasks on the data supplied by nmm.f90.
In doing so, no additional model-specific calculations (e.g. computing observables)
are made. Therefore, the previously mentioned calcf is not included in the list of
subroutines.

• readin()

The content of nmm.dat is read into allocated memory.

• remdup()

The data sets are searched for duplicate entries which are removed.

• sort()

The data array is sorted in rising order of χ2. Afterwards the best-fit data
set is on the first position.

• cmvsd()

Calculates mean value and standard deviation for model parameters and
observables for possible later use.

• wdata()

Writes the previously sorted data, all model constants and statistics into a
formatted file named nmm.txt.

• clist(lin,lout,lstart,l)

This subroutine accepts one column in Figure 4.3 as input. The interval from
the smallest to the largest value thereof is divided into a user-specified num-
ber of bins. The number of entries per bin is computed and thus histogram
data for plotting created.

• wlist()

Data from all calls of the clist subroutine is written to a file named list.txt,
which can be easily used for plotting results.

4.4. Implementation 49

Pinning term method implementation

The pinning term method presented in this chapter requires some changes in the
source code. Based on the original files the major modifications comprise:

• An additional loop encloses the program to run through a list of values
belonging to the desired pinned-down observable.

• The pinning term χ2
p in (4.14) is added in the calcf routine.

• Since there are now multiple output files, they are numbered and saved into
a subfolder. The sorting in rising order of χ2 is now carried out in the main
program.

• The data analysis does not create any histogram data. Instead it picks
out the best minima for each pinning value respecting that the pinning term
itself should be negligible. The desired output, χ2 as a function of the pinned
observable, is saved into a file named pin.txt.

Analysing Fine-tuning properties

In order to carry out the procedure described in 4.3 the output file of dnmm.f90

is opened with Mathematica. The model parameters for the best-fit solution are
read in and entered into the χ2 function. A combined plot shows then the variation
of χ2 as a function of ξ for all parameters.

The Mathematica script presented in A.3 serves another important purpose. The
χ2 function is not copied from the Fortran program code, but derived from simple
expressions taken from the investigated model. Thus, if the results match the
correctness of the main program is supported, typing errors are almost excluded.

Chapter5
Models

In the following chapter a model for tri-bimaximal mixing and its modifications
are described. These will undergo the numerical analysis of chapter 4 and the
results are presented in the next chapter. The basic model was found by Grimus
and Lavoura [1] and makes use of five right-handed neutrinos and the seesaw
mechanism. Together with symmetries in the lepton sector, tri-bimaximal mixing
is achieved. A slight modification concerning the symmetries allows to unfix the
mixing angles and gives the possibility to find better fitting values for current data.

5.1 Model for tri-bimaximal mixing

5.1.1 Field content

The model for tri-bimaximal mixing found by Grimus and Lavoura [1] is an exten-
sion of the Standard model, both in the lepton and the scalar sector. Additionally
the gauge group SU(2)I × U(1)Y is complemented by symmetries ensuring the
desired form of the neutrino mass matrix obtained via the seesaw mechanism.
Neglecting the quark sector, the field content is as follows:

• 3 left-handed lepton doublets

DeL =

(
νeL
eL

)
, DµL =

(
νµL
µL

)
, DτL =

(
ντL
τL

)
, (5.1)

50

5.1. Model for tri-bimaximal mixing 51

• 3 charged right-handed lepton singlets

eR , µR , τR , (5.2)

• 5 right-handed neutrino singlets

νeR , νµR , ντR , ν1R , ν2R, (5.3)

• 1 complex scalar singlet
χ, (5.4)

• 4 scalar Higgs doublets

Φe =

(
φ+
e

φ0
e

)
, Φµ =

(
φ+
µ

φ0
µ

)
, Φτ =

(
φ+
τ

φ0
τ

)
, Φ0 =

(
φ+

0

φ0
0

)
. (5.5)

The doublets DαL and the singlets αR (α = e, µ, τ) are analogous to those in
the Standard model. Five right-handed neutrino singlets ναR and νlR (l = 1, 2)
are added and give rise to various neutrino mass terms described in 5.1.3. The
Yukawa Lagrangian is also enlarged by the four Higgs doublets Φα, Φ0 and one
scalar singlet χ in the model.

5.1.2 Symmetries

Besides the SU(2)I × U(1)Y gauge group there are three additional symmetries
employed in the model.

• S3 permutation symmetry
S3 is the group of all permutations of three objects, in our case the three
flavour indices e, µ and τ . The 3! = 6 elements of S3 may be expressed in
the two row notation

S3 =

{(
1 2 3
1 2 3

)
,

(
1 2 3
2 1 3

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
3 2 1

)
,

(
1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)}
,

(5.6)

or in the cycle notation

S3 = {(), (12), (23), (13), (123), (132)} . (5.7)

52 5. MODELS

To construct all elements of the permutation group we have to choose two
non-commuting elements as generators. A convenient choice is the cyclic
permutation (123) and the interchange (23). The fields contained in the
model are now arranged in multiplets with respect to S3. There are four
triplets 


DeL

DµL

DτL


 ,



eR
µR
τR


 ,



νeR
νµR
ντR


 ,




Φe

Φµ

Φτ


 (5.8)

together with the three-dimensional representations of the cyclic transfor-
mation C and the µτ interchange I

Ceµτ 7→




0 1 0
0 0 1
1 0 0


 , Iµτ 7→




1 0 0
0 0 1
0 1 0


 . (5.9)

The three-dimensional representation of S3 is reducible, while the two-dimensional
representation for the doublets

(
ν1R

ν2R

)
,

(
χ
χ∗

)
(5.10)

is irreducible:

Ceµτ 7→
(
ω 0
0 ω2

)
, Iµτ 7→

(
0 1
1 0

)
, (5.11)

where ω := e
2πi

3 . The SU(2)I Higgs doublet Φ0 is a singlet with respect to
S3. The horizontal permutation symmetry is essential for the form of the
mass matrix and therefore for tri-bimaximal mixing.

• Three U(1)Lα lepton family symmetries
Eeach of the lepton families is assigned a U(1) symmetry:

U(1)Lα :





DαL → eiψαDαL

αR → eiψααR
ναR → eiψαναR

(5.12)

with ψ ∈ [0, 2π[. Thus the family lepton number Lα = 1 for DαL, αR and
ναR and Lα = 0 for all other fields.

• Three Z
(α)
2 symmetries

The cyclic groups Z
(α)
2 concerns only the right-handed charged leptons αR

and the Higgs doublets Φα (α = e, µ and τ):

Z
(α)
2 :

{
αR → −αR
Φα → −Φα

(5.13)

5.1. Model for tri-bimaximal mixing 53

This symmetry is important to restrict certain couplings in the Yukawa La-
grangian.

The whole group structure aside from SU(2)I×U(1)Y may be written in a compact
form as a semidirect product

G = (N ×H) ⋊ S3 (5.14)

where

N = Z
(e)
2 × Z

(µ)
2 ×Z

(τ)
2 , H = U(1)Le × U(1)Lµ × U(1)Lτ . (5.15)

5.1.3 Lagrangian

With the given fields and symmetries one has to find all allowed terms of the
Lagrangian. The Yukawa Lagrangian

LYukawa =− y1

∑

α=e,µ,τ

DαLαRφα (5.16a)

− y2

∑

α=e,µ,τ

DαLναR (iτ2φ
∗
0) (5.16b)

+
y3

2

(
χνT1RC

−1ν1R + χ∗νT2RC
−1ν2R

)
+ H.c. (5.16c)

introduces three coupling constants y1, y2, y3 and respects all symmetries described.
Spontaneous symmetry breaking leads to VEVs of the Higgs fields

vα = 〈φ0
α〉0 (5.17a)

v0 = 〈φ0
0〉0 (5.17b)

vχ = 〈φ0
χ〉0, (5.17c)

which are employed to form various mass terms, e.g. for the masses of the charged
leptons

mα = |y1vα|. (5.18)

In addition to the Dirac mass terms of (5.16) the symmetries also allow dimension-
three Majorana mass terms for the right-handed neutrino fields which respect the
S3 symmetry. The three U(1)Lα symmetries on the other hand are softly broken

54 5. MODELS

at the seesaw scale [87, 88, 89].

LMajorana =
M∗0
2

∑

α=e,µ,τ

νTαRC
−1ναR (5.19a)

+M∗1
(
νTeRC

−1νµR + νTµRC
−1ντR + νTτRC

−1νeR
)

(5.19b)

+M∗2
[
νT1RC

−1
(
νeR + ωνµR + ω2ντR

)

+ νT2RC
−1
(
νeR + ω2νµR + ωντR

)]
(5.19c)

+M∗4 ν
T
1RC

−1ν2R + H.c. (5.19d)

For a detailed view on the scalar potential and the symmetry breaking therein,
see [1]. Putting all mass terms together to prepare the application of the seesaw
mechanism we find

−
(
νeR νµR ντR ν1R ν2R

)
MD



νeL
νµL
ντL




− 1

2

(
νeR νµR ντR ν1R ν2R

)
MRC




νTeR
νTµR
νTτR
νT1R
νT2R




+ H.c. (5.20)

with the Dirac- and Majorana mass matrices

MD =




a 0 0
0 a 0
0 0 a
0 0 0
0 0 0



, MR =




M0 M1 M1 M2 M2

M1 M0 M1 ω2M2 ωM2

M1 M1 M0 ωM2 ω2M2

M2 ω2M2 ωM2 MN M4

M2 ωM2 ω2M2 M4 M ′N




, (5.21)

where a := y∗2v0, MN := y∗3v
∗
χ and M ′N := y∗3vχ. According to the seesaw mecha-

nism described in 2.2.3, we compute the light-neutrino mass matrix as

Mν = −MT
DM

−1
R MD =




x+ y + t z + ω2y + ωt z + ωy + ω2t
z + ω2y + ωt x+ ωy + ω2t z + y + t
z + ωy + ω2t z + y + t x+ ω2y + ωt


 . (5.22)

5.1. Model for tri-bimaximal mixing 55

In order to keep focus on the basic form ofMν we introduced abbreviations

x :=
−a2

detMR

[(
M2

0 −M2
1

) (
MNM

′
N −M2

4

)

+ (4M0 + 2M1)M2
2M4 − 3M4

2

]
, (5.23a)

z :=
−a2

detMR

[(
M2

1 −M0M1

) (
MNM

′
N −M2

4

)

+ (M0 − 4M1)M
2
2M4 − 3M4

2

]
, (5.23b)

y :=
−a2

detMR

(M0 + 2M1)M2
2M

′
N , (5.23c)

t :=
−a2

detMR

(M0 + 2M1)M2
2MN (5.23d)

and

detMR = (M0 + 2M1)
{
(M0 −M1)2 MNM

′
N

−
[
(M0 −M1)M4 − 3M2

2

]2}
. (5.23e)

Obviously y and t fulfill
y

t
=
M ′N
MN

=
vχ
v∗χ

. (5.24)

As shown in [1] there is a range of parameters of the scalar potential upon SSB
for which the symmetry Iµν is preserved. Thus, vχ is real and y = t holds.

y3

2

(
χνT1RC

−1ν1R + χ∗νT2RC
−1ν2R

)
+ H.c.

SSB−−→ y3

2

(
vχν

T
1RC

−1ν1R + v∗χν
T
2RC

−1ν2R

)
+ H.c.

Iµν−−→ y3

2

(
vχν

T
2RC

−1ν2R + v∗χν
T
1RC

−1ν1R

)
+ H.c.

(5.25)

Together with a property of the cubic root ω2 = ω∗ we can simplify (5.22) and
achieve

Mν =



x+ 2y z − y z − y
z − y x− y z + 2y
z − y z + 2y x− y


 . (5.26)

The tri-bimaximal mixing matrix UHPS (3.30) diagonalizesMν as desired:

m̂ = UT
HPSMνUHPS =



µ1 0 0
0 µ2 0
0 0 µ3


 , (5.27)

56 5. MODELS

where

µ1 = x+ 3y − z (5.28a)

µ2 = x+ 2z (5.28b)

µ3 = x− 3y − z. (5.28c)

Since in general x, y, z and thus the µi are complex, we have to take the absolute
values to get the light neutrino masses

mi = |µi|, (i = 1, 2, 3) (5.29)

This step is justified because any phases occuring in m̂ can be absorbed into
Majorana phases or by rephasing of the charged lepton fields. Consider the case

µi ∈ C, µi = mi · eiαi . (5.30)

Then from (5.27) we deduce

m̃ := UTMνU =



m1 0 0
0 m2 0
0 0 m3


 (5.31)

with the help of the phase matrix P

U := UHPSP = UHPS



e−iα1/2 0 0

0 e−iα2/2 0
0 0 e−iα3/2


 = eiβUHPS



eiη1 0 0
0 eiη2 0
0 0 1


 ,

(5.32)
where

η1 :=
α3 − α1

2
, η2 :=

α3 − α2

2
, β := −α3

2
. (5.33)

The phase factor eiβ turns out to be unphysical because it may be absorbed into
the lepton fields in (2.91), while η1 and η2 act as Majorana phases in the mixing
matrix.

5.2 Modifications

Alongside with the basic model for tri-bimaximal mixing, two modifications are
described in this section. One motivation for the changes is the reduction of
parameters that have to be fitted to experimental data. The described model
contains five complex parameters relevant for the numerical procedure but only
two known data values, i.e. the mass squared differences. To include also the
mixing angles in the fitting process an additional symmetry breaking is included,
giving rise to a possible non-zero ϑ13. In short, the modifications applied are:

5.2. Modifications 57

• CP invariance
Stating an additional CP symmetry renders the Yukawa couplings yi, i =
1, 2, 3 and the constants Mj , j = 0, 1, 2, 4 real and thus reduces the number
of free parameters of the model.

• Iµτ -violation
The Iµν symmetry is now spontaneously broken by a complex VEV vχ leading
to a deviation from tri-bimaximal mixing. For a recent discussion see also
[90].

5.2.1 CP invariance

The CP symmetry is realized via the non-standard CP tranformation introduced
in [91] and previously applied in [92]. The doublets and singlets with different
flavours are collected in the following form:

DL =



DeL

DµL

DτL


 , lR =



eR
µR
τR


 , νR =



νeR
νµR
ντR


 , Φ =




Φe

Φµ

Φτ


 . (5.34)

Introducing the matrix

S =




1 0 0
0 0 1
0 1 0


 (5.35)

that acts on flavour space as an interchange of the µ and τ components, we can
write down the CP transformation for all fields.

CP :





DL → iSCD∗L
lR → iSCl∗R
νR → iSCν∗R
φ→ Sφ∗

νsR → iCν∗sR s = 1, 2
χ→ χ∗

(5.36)

C is the standard charge-conjugation operator satisfying C−1 = C† and CT = −C.
We may now apply this CP transformation to the Lagrangian for the lepton sector
and obtain constraints on the Yukawa-coupling constants and elements of the
Majorana mass matrix MR.

First we write down two general results, which will be useful for our calculations.
The CP transformation acts on a dirac spinor as follows:

ψ
CP−−→ iCψ∗ (5.37)

58 5. MODELS

Using the identity C−1γµC = −γµT one obtains the CP transformation for the
Dirac-conjugate field:

ψ = ψ†γ0 CP−−→ (iCψ∗)† γ0 = −iψTC†γ0 = iψ
∗
C†γ0†γ0 = iψ

∗
C†. (5.38)

This of course also holds for doublets like DαL. Next we investigate the effect of
the CP transformation on an arbitrary Majorana mass term:

ψT1 C
−1ψ2

CP−−→ (iCψ∗1)T C−1iCψ∗2 =− ψ†1CTC−1Cψ∗2 = ψ†1Cψ
∗
2

= ψ†2Cψ
∗
1 =

(
ψT1 C

−1ψ2

)†
.

(5.39)

Yukawa Lagrangian

We now apply CP transformation and demand that the Lagrangian stays invariant.
For (5.16a) we simply have to use (5.37), (5.38) and then the anticommutation
relations for fermions.

− y1

∑

α=e,µ,τ

DαLαRφα +H.c.

CP−−→ − y1

∑

α=e,µ,τ

iD
∗
αLC

†iCα∗Rφ
∗
α +H.c

= + y1

∑

α=e,µ,τ

(
DαLαRφα

)∗
+H.c

= + y1

∑

α=e,µ,τ

(
φTαα

T
RD

T
αL

)†
+H.c.

= − y1

∑

α=e,µ,τ

(
DαLαRφα

)†
+H.c

!
= − y∗1

∑

α=e,µ,τ

(
DαLαRφα

)†
+H.c

(5.40)

⇓
y1 = y∗1 ⇔ y1 ∈ R (5.41)

5.2. Modifications 59

The second Yukawa Lagrangian term (5.16b) requires the same treatment.

− y2

∑

α=e,µ,τ

DαLναR (iτ2φ
∗
0) +H.c.

CP−−→ − y2

∑

α=e,µ,τ

iD
∗
αLC

†iCν∗αR (iτ2φ0) +H.c

= + y2

∑

α=e,µ,τ

[
DαLναR (iτ2φ

∗
0)
]∗

+H.c

= − y2

∑

α=e,µ,τ

[
DαLναR (iτ2φ

∗
0)
]†

+H.c

!
= − y∗2

∑

α=e,µ,τ

[
DαLναR (iτ2φ

∗
0)
]†

+H.c

(5.42)

⇓
y2 = y∗2 ⇔ y2 ∈ R (5.43)

Using the CP transformation relation for Majorana mass terms (5.39) one gets
from the sterile neutrino Yukawa terms (5.16c).

y3

2

(
χνT1RC

−1ν1R + χ∗νT2RC
−1ν2R

)
+H.c.

CP−−→ y3

2

[
χ∗
(
νT1RC

−1ν1R

)†
+ χ

(
νT2RC

−1ν2R

)†]
+H.c.

=
y3

2

(
χνT1RC

−1ν1R + χ∗νT2RC
−1ν2R

)†
+H.c.

!
=

y3

2

∗ (
χνT1RC

−1ν1R + χ∗νT2RC
−1ν2R

)†
+H.c.

(5.44)

⇓
y3 = y∗3 ⇔ y3 ∈ R (5.45)

As a result of CP invariance all three Yukawa coupling constants y1, y2 and y3

must be real. Especially the constraint on y3 is important for later calculations
concerning the mass matrix.

Majorana-Lagrangian

The Majorana Lagrangian of the considered model consists of 4 terms which re-
spect all allowed combinations of right handed neutrinos. The 4 constants Mi

(i = 0, 1, 2, 4) corresponding to these terms are in general complex and will be-
come real through CP invariance like the Yukawa coupling constants The first
Majorana mass term (5.19a) is easily CP transformed via (5.39). The matrix S
mixes µ and τ but since there is a summation over all flavour indices this effect

60 5. MODELS

cancels out.

M∗0
2

∑

α=e,µ,τ

νTαRC
−1ναR +H.c.

CP−−→ M∗0
2

∑

α=e,µ,τ

(
νTαRC

−1ναR
)†

+H.c.

!
=

M0

2

∑

α=e,µ,τ

(
νTαRC

−1ναR
)†

+H.c.

(5.46)

⇓
M0 = M∗0 ⇔ M0 ∈ R (5.47)

In order to show that M1 in (5.19b) is real, we use the antisymmetry of the charge
conjugation matrix C.

M∗1
(
νTeRC

−1νµR + νTµRC
−1ντR + νTτRC

−1νeR
)

+H.c.

CP−−→ M∗1
(
νTeRC

−1ντR + νTτRC
−1νµR + νTµRC

−1νeR
)†

+H.c.

= M∗1
(
νTτRC

−1νeR + νTµRC
−1ντR + νTeRC

−1νµR
)†

+H.c.

!
= M1

(
νTeRC

−1νµR + νTµRC
−1ντR + νTτRC

−1νeR
)†

+H.c.

(5.48)

⇓
M1 = M∗1 ⇔ M1 ∈ R (5.49)

For the third term (5.19c) one has to utilise the special form of ω = e
2πi

3 . Since
ω∗ = ω2 the µτ -exchange is again canceled out and leads to a real M2.

M∗2
[
νT1RC

−1
(
νeR + ωνµR + ω2ντR

)

+ νT2RC
−1
(
νeR + ω2νµR + ωντR

)]
+H.c.

CP−−→ M∗2
[
νT1RC

−1
(
νeR + ω∗ντR + (ω2)∗νµR

)

+ νT2RC
−1
(
νeR + (ω2)∗ντR + ω∗νµR

)]†
+H.c.

!
= M2

[
νT1RC

−1
(
νeR + ωνµR + ω2ντR

)

+ νT2RC
−1
(
νeR + ω2νµR + ωντR

)]†
+H.c.

(5.50)

⇓
M2 = M∗2 ⇔ M2 ∈ R (5.51)

CP invariance is straightforward in the fourth term of the Majorana Lagrangian

5.2. Modifications 61

(5.19d).

M∗4 ν
T
1RC

−1ν2R +H.c.
CP−−→M∗4

(
νT1RC

−1ν2R

)†
+H.c.

!
= M4

(
νT1RC

−1ν2R

)†
+H.c.

(5.52)

⇓
M4 = M∗4 ⇔ M4 ∈ R (5.53)

Finally we have now obtained that the following model constants must be real in
order to ensure CP invariance: yi for i = 1, 2, 3 and Mj for j = 0, 1, 2, 4.

5.2.2 Spontaneous Iµν-violation in the neutrino sector

So far a real VEV vχ ensured the permutation symmetry S3 leading to y = t, see
(5.25). We will now generalize [1] for a complex VEV and thus allow spontaneous
symmetry breaking of Iµν in the neutrino sector. This modification alters the
lepton mixing matrix from tri-bimaximal mixing to trimaximal mixing.

To work out the differences to the model with tri-bimaximal mixing the complex
vχ is parametrized in the following form:

vχ = ṽχ · eiε, ṽχ ∈ R, ε ∈
[
−π

2
,
π

2

]
. (5.54)

Note that this is not the regular polar decomposition since ṽχ may be positive or
negative. y and t may be written as follows:

y = ỹ eiε

t = ỹ e−iε

ỹ =
−a2

detMR

(M0 + 2M1)M
2
2 y
∗
3 ṽχ.

(5.55)

Inserting this into the mass matrix gives:

Mν =




x+ ỹ
(
eiε + e−iε

)
z + ỹ

(
ω2eiε + ωe−iε

)
z + ỹ

(
ωeiε + ω2e−iε

)

z + ỹ
(
ω2eiε + ωe−iε

)
x+ ỹ

(
ωeiε + ω2e−iε

)
z + ỹ

(
eiε + e−iε

)

z + ỹ
(
ωeiε + ω2e−iε

)
z + ỹ

(
eiε + e−iε

)
x+ ỹ

(
ω2eiε + ωe−iε

)


 .

(5.56)
The expressions in brackets can be written in terms of cosine, where φ = 2π

3
denotes

the angle corresponding to ω:

ωeiε + ω2e−iε = 2 cos(ε+ φ), (5.57)

ω2eiε + ωe−iε = 2 cos(ε− φ). (5.58)

62 5. MODELS

This leads to the following form of the mass matrix which is now real except for
−a2 hidden in x, y, z and t (see (5.23)). −a2 can be pulled out and written as
an overall factor of the matrix. Thus, Mν is treated as real for diagonalization
purposes.

Mν =




x+ 2ỹ cos(ε) z + 2ỹ cos(ε− φ) z + 2ỹ cos(ε+ φ)
z + 2ỹ cos(ε− φ) x+ 2ỹ cos(ε+ φ) z + 2ỹ cos(ε)
z + 2ỹ cos(ε+ φ) z + 2ỹ cos(ε) x+ 2ỹ cos(ε− φ)


 (5.59)

We can try to find a real U by solving the eigenvalue diagonalization UTMνU =
diag (µ1, µ2, µ3). The eigenvalues are solutions of the following equation:

−µ3 + 3xµ2 +
(
3z2 − 3x2 + 9ỹ2

)
µ+ 2z3 + x3 − 3xz2 − 18zỹ2 − 9xỹ2 = 0. (5.60)

It turns out that they are very similar to the expressions obtained in (5.28).

µ1 =x+ 3ỹ − z = x+ 3ye−iε − z (5.61a)

µ2 =x+ 2z (5.61b)

µ3 =x− 3ỹ − z = x− 3ye−iε − z (5.61c)

The corresponding mixing matrix is composed of the normalized eigenvectors.

U =




√
2
3

cos(ε
2
) 1√

3

√
2
3

sin(ε
2
)

− 1√
6

(
cos(ε

2
)−
√

3 sin(ε
2
)
)

1√
3
− 1√

2

(
cos(ε

2
) + 1√

3
sin(ε

2
)
)

− 1√
6

(
cos(ε

2
) +
√

3 sin(ε
2
)
)

1√
3

1√
2

(
cos(ε

2
)− 1√

3
sin(ε

2
)
)


 (5.62)

Obviously a small but nonvanishing phase ε results in a deviation from tri-bimaximal
mixing with nonzero sin2 ϑ13 (note Ue3). However, trimaximal mixing is always
ensured. In addition there is again no Dirac phase, this results from the group
structure (special form of ω) of the model. Remarkably this diagonalization holds
also if one waives the CP invariance, a recent publication [90] discusses this model.

Clearly, mixing angles are independent of the model parameters Mi (i = 0, 1, 2, 4)
and y3. On the other hand the phase ε, solely affecting the mixing angles, does
not alter the neutrino masses in (5.61). As a consequence the parameter space
splits up into two separate parts affecting different observables.

5.2.3 Mixing angles and figure of merit function

Comparing (5.62) with the standard parametrization (2.94) allows to express the
mixing angles in terms of the phase ε. From Ue3 we deduce

sin2 ϑ13 =
2

3
· sin2 ε

2
. (5.63)

5.2. Modifications 63

Next, we exploit trimaximal mixing using sin ϑ⊙ cosϑ13 = 1/3 to find

sin2 ϑ⊙ =
1

3− 2 sin2 ε
2

=
1

3
· 1

1− sin2 ϑ13
. (5.64)

Finally from the matrix element Uν3 we derive

sin2 ϑatm =
1

2
+

1

2
√

3
· sin ε

1− sin2 ϑ13
. (5.65)

Since all three mixing angles depend on only one model parameter, it is an easy
task to find analytically the minimum of the χ2

a (a for angles) function. The
individual contributions corresponding to the mixing angles are shown in Figure
5.1, where

χ2
a = χ2

13 + χ2
⊙ + χ2

atm. (5.66)

0

2

4

6

8

10

12

14

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

χ
2

ε

χ2
13

χ2
⊙

χ2
atm

χ2
a

Figure 5.1: Different contributions to χ2 as functions of ε.

While the contribution from χ2
13 would prefer ε ≈ ±0.25, the total χa function

shows only a minimum at ε = 0. Evidently, any deviation of ε from zero leads
both solar and atmospheric mixing angle further away from the experimental mean
values. The overall curve shows an approximate interval, ε ∈ [−0.1, 0.1], where
only minor additional stress is added between theory and experiment.

Chapter6
Results

In the following chapter the results of the numerical analysis described in chapter
4 are presented. Two different models of chapter 5, each with normal and inverted
mass spectrum, are investigated.

6.1 Model for tri-bimaximal mixing

Prior to the numerical analysis one has to decide which parameters in the model
are independent and count as free variables in the fitting procedure. The model
for tri-bimaximal mixing fixes the PMNS-matrix (except for the Majorana phases)
and thus introduces a constant contribution to χ2, denoted with χ2

a.

χ2
a = 2.1684

sin2 ϑ13 = 0

sin2 ϑ⊙ = 1/3

sin2 ϑatm = 1/2

(6.1)

The pull coming from the solar mixing angle is largest with pull(sin2 ϑ⊙) = 1.333,
while pull(sin2 ϑ13) = −0.625 and pull(sin2 ϑatm) = 0. Since the angles are fixed
the only remaining observables for a fit are the mass squared differences. These
depend on eight complex model parameters

y2, y3, v0, vχ,M0,M1,M2,M4, (6.2)

see section 5.1.3. Some of them can be absorbed into each other or alternatively
their values may be fixed. The following list shows the reduction of free parameters.

64

6.1. Model for tri-bimaximal mixing 65

• y2 and v0 appear only in the product a = y∗2v0 ⇒ One complex parameter
removed.

• The model restricts vχ to be real, vχ = v∗χ ⇒ One phase removed.

• vχ and y3 appear only in the product M ′N = y∗3vχ ⇒ One real parameter
removed.

• Consider the expressions of x, y, z and detMR in (5.23). With

x, y, z ∝ M4
i

detMR

and detMR ∝M5
i , i = 0, 1, 2, 4, N ′ (6.3)

we get

x, y, z ∝ M4
i

M5
i

=
1

Mi

. (6.4)

Thus, a = y∗2v0 can be absorbed into the Mi ⇒ One complex parameter
removed.

Altogether three of eight complex parameters can be removed, the parameter space
of the Nelder-Mead procedure is reduced from 16 to 10 dimensions. For the three
fixed parameters we choose v0, vχ and y2 because their values are deductable from
the seesaw mechanism. The VEV v0 is identified with the electroweak scale, while
vχ is at the GUT scale.

v0 = 170 GeV

vχ = 2 · 1016 GeV
(6.5)

The value of y2 can be estimated because a = y∗2v0 should be comparable to the
scale of mµ,τ ≈ 102 − 103 MeV. So y2 lies in the region of 10−3 − 10−2, we choose

y2 = 10−3. (6.6)

The remaining parameters

y3,M0,M1,M2,M4 ∈ C (6.7)

span the 10-dimensional space wherein the Nelder-Mead simplex is placed. The
11 vertices that build up the initial simplex before the iteration procedure are set
by a random number generator. In order to get reasonable neutrino masses while

66 6. RESULTS

employing the seesaw mechanism, the initial values are taken from the following
intervals:

Re{M0},Re{M1},Re{M2},Re{M4} ∈ [−1010, 1010] GeV

Im{M0}, Im{M1}, Im{M2}, Im{M4} ∈ [−1010, 1010] GeV

Re{y∗3} = Re{M ′N/vχ} ∈ [−10−6, 10−6]

Im{y∗3} = Im{M ′N/vχ} ∈ [−10−6, 10−6] .

(6.8)

After preparing the first simplex the Nelder-Mead method for minimizing χ2
m (m

for masses) is carried out until one of the stopping criteria (4.13) is fulfilled. The
data sets with χ2

m < 1 are saved for further processing. The whole procedure of
setting a random simplex and searching for a (local) minimum is repeated 106 and
5 · 106 times for normal and inverted spectrum, respectively.

6.1.1 Normal spectrum

The minimization procedure in the case of the normal mass spectrum succeds all
106 times, with 48 data sets identified as duplicates and removed. The criterion
χ2
m < 1 is fulfilled 215462 times, the data is sorted according to the χ2

m-value. The
best fit for the input data is

χ2
m = 2.07022 · 10−8

m1 = 9.97243 · 10−4 eV

m2 = 8.80311 · 10−3 eV

m3 = 4.89998 · 10−2 eV,

(6.9)

with the following model parameters:

M0 = (−3.79927 + 1.45186i) · 109 GeV

M1 = (2.25056− 2.32944i) · 109 GeV

M2 = (3.51239 + 5.03910i) · 109 GeV

M4 = (4.00159− 4.03739i) · 109 GeV

y3 = (−4.48194− 2.23229i) · 10−7.

(6.10)

To get an idea of the mass distribution of all solutions, the interval between the
smallest m1 and the largest m3 found is cut into 103 bins. The number of solutions
lying in each bin is counted, resulting in Figure 6.1. One can clearly see the cut

at m2 =
√

∆m2
⊙ ≈ 8.75 · 10−3 eV, values below this bound can only be achieved

with increasing χ2
m.

6.1. Model for tri-bimaximal mixing 67

0

1000

2000

3000

4000

5000

6000

0 0.01 0.02 0.03 0.04 0.05 0.06

N

mi[eV]

m1

m2

m3

Figure 6.1: Mass distribution for normal mass ordering.

6.1.2 Inverted spectrum

The minimization procedure for the inverted mass spectrum is carried out 5 · 106

times, of which 4999973 stable minima are reached. 58898 data sets give χ2
m < 1,

60 duplicate solutions are removed. The best fit values are

χ2 = 6.82855 · 10−6

m1 = 4.82388 · 10−2 eV

m2 = 4.90252 · 10−2 eV

m3 = 1.87701 · 10−3 eV,

(6.11)

the corresponding model parameters are

M0 = (1.72909− 3.25560i) · 109 GeV

M1 = (−1.15458 + 1.57532i) · 109 GeV

M2 = (5.63025− 0.79025i) · 109 GeV

M4 = (3.21648 + 1.72047i) · 109 GeV

y3 = (3.82251− 5.18326i) · 10−7.

(6.12)

Figure 6.2 gives an overview of the mass distribution in the case of the inverted
mass spectrum (Again 103 bins are used to produce this figure).

68 6. RESULTS

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 0.01 0.02 0.03 0.04 0.05 0.06

N

mi[eV]

m1

m2

m3

Figure 6.2: Mass distribution for inverted mass ordering.

6.2 Modified model

The modifications of the model for tri-bimaximal mixing described in section 5.2
are now employed. Starting from the list of model parameters (6.2) we can re-
duce the number of the degrees of freedom by taking into account the following
properties.

• CP -invariance forces y2, y3,M0,M1,M2,M4 ∈ R.

• y2 and v0 appear only in the product a = y∗2v0 ⇒ One parameter removed
(not the phase of v0).

• vχ and y3 appear only in the product M ′N = y∗3vχ and MN = y∗3v
∗
χ ⇒ One

parameter removed (not the phase of vχ)

• The absolute value of a = y∗2v0 can be absorbed into theMi⇒One parameter
removed.

• The phase of a = y∗2v0 appears only inside a absolute value ⇒ One phase
removed.

6.2. Modified model 69

Altogether there are now six free parameters including one phase εχ ∈ [−π/2, π/2],
see (5.54). Since the Nelder-Mead method is based on a simplex in Rn we repara-
metrize the phase:

eiεχ = ei arctan rχ =
1√

1 + r2
χ

(1 + irχ). (6.13)

We choose the values for the fixed values in the same manner as with the model
for tri-bimaximal mixing:

v0 = 170 GeV

ṽχ = 2 · 1016 GeV

y2 = 10−3.

(6.14)

The six degrees of freedom for the Nelder-Mead simplex are:

rχ, y3,M0,M1,M2,M4 ∈ R. (6.15)

The initial values are chosen randomly from the previously mentioned intervals.

M0,M1,M2,M4 ∈ [−1010, 1010] GeV = [−1019, 1019] eV

y∗3 = M ′N/vχ ∈ [−10−6, 10−6]

rχ ∈ [−10−1, 10−1].

(6.16)

The interval limits of rχ correspond to angles of ±5.7◦. The fitting procedure is
started 106 and 5 · 106 times for normal and inverted spectrum, respectively. All
solutions fulfilling χ2 < 10 are accepted for further processing this time.

6.2.1 Normal spectrum

The normal spectrum run of the numerics gives 393132 data sets, 96 duplicates
are removed. The best fit values for the masses are

χ2
m = 2.41483 · 10−5

m1 = 2.13116 · 10−3 eV

m2 = 9.00222 · 10−3 eV

m3 = 4.90421 · 10−2 eV,

(6.17)

while the mixing angles give

χ2
a = 2.16841

sin2 ϑ13 = 1.50553 · 10−7

sin2 ϑ⊙ = 3.33333 · 10−1

sin2 ϑatm = 5.00274 · 10−1.

(6.18)

70 6. RESULTS

The corresponding model parameter values are:

rχ = 9.50432 · 10−4

M0 = −1.10014 · 1010 GeV

M1 = 7.10587 · 109 GeV

M2 = 3.74447 · 109 GeV

M4 = −5.75068 · 109 GeV

y3 = −1.75045 · 10−7.

(6.19)

The fine-tuning properties (see section 4.3) of the best fit solution are shown in
Figure 6.3. The fit is most sensitive to slight change of M2 and M4 where x varies
from 0.995 to 1.005. Other interesting quantities calculated from these results are
the effective Majorana mass for the neutrinoless double beta decay |〈mββ〉|, the

mass ratio R = m1/
√

∆m2
⊙ and the angle εχ.

|〈mββ〉| = 4.42152 · 10−3 eV

R = 2.43664 · 10−1

εχ = 9.50432 · 10−4 = 0.054◦
(6.20)

The distributions of the neutrino masses, the effective Majorana mass, the mass ra-
tio, the phase εχ and the mixing angles are shown in Figure 6.4 to 6.8. The mass
distributions look very similar to those of the model for tri-bimaximal mixing,
except for the shape of the m3-peak (Figure 6.4). The effective mass for neutrino-
less double beta decay is calculated under the assumption of vanishing Majorana
phases, i.e. β1 = β2 = 0 (Figure 6.5). The ratio R shows a maximum between
0.1 and 0.3 with a clear restriction to values < 1 (Figure 6.6). As expected from
the analytical analysis in section 5.2.3 values of εχ 6= 0 are disfavoured (Figure
6.7). The distribution of the mixing angles shows no noticeable movement away
from sin2 ϑ⊙ = 1/3 (Figure 6.8). The variation of sin2 ϑatm is quite broad with
values from 0.47 to 0.53, sin2 ϑ13 is hardly visible on the combined plot and thus
plotted separately (Figure 6.9). In order to show the rise of χ2

m for small values
of the effective Majorana mass, the numerical method of a pinning term (section
4.3) was applied to generate Figure 6.10.

6.2. Modified model 71

0.996 0.998 1.002 1.004
x

10

20

30

40

50

60

Χ2m

M0 M1 M2 M4 y3

Figure 6.3: Fine-tuning properties of the best fit solution.

0

5000

10000

15000

20000

25000

0 0.01 0.02 0.03 0.04 0.05 0.06

N

mi [eV]

m1

m2

m3

Figure 6.4: Mass distribution of the normal mass spectrum.

72 6. RESULTS

0

1000

2000

3000

4000

5000

6000

0 0.01 0.02 0.03 0.04 0.05 0.06

N

|〈mββ〉| [eV]

〈mββ〉

Figure 6.5: Distribution of the effective Majorana mass.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0.01 0.1 1 10

N

R

R

Figure 6.6: Distribution of the mass ratio R.

6.2. Modified model 73

0

500

1000

1500

2000

2500

-0.4 -0.2 0 0.2 0.4

N

εχ

εχ

Figure 6.7: Distribution of the phase εχ.

0

50000

100000

150000

200000

250000

300000

0 0.1 0.2 0.3 0.4 0.5 0.6

N

sin2 ϑi

sin2 ϑ13

sin2 ϑ⊙
sin2 ϑatm

Figure 6.8: Distribution of the lepton mixing angles.

74 6. RESULTS

0

5000

10000

15000

20000

25000

30000

35000

0 0.0005 0.001 0.0015 0.002 0.0025

N

sin2 ϑ13

sin2 ϑ13

Figure 6.9: Distribution of sin2 ϑ13.

0

10

20

30

40

50

60

70

80

90

0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 0.004

χ
2

|〈mββ〉| [eV]

χ2

Figure 6.10: Lower bound of the effective Majorana mass.

6.2. Modified model 75

6.2.2 Inverted spectrum

The Nelder-Mead method yields 282132 data sets fulfilling χ2 < 10, 383 entries
are duplicates. The best fit values for the masses are:

χ2
m = 3.17560 · 10−5

m1 = 4.83400 · 10−2 eV

m2 = 4.91249 · 10−2 eV

m3 = 3.72542 · 10−3 eV.

(6.21)

As expected the mixing angles do not veer away from tri-bimaximal mixing. The
results are comparable to those of normal mass ordering because the parameter
space for masses and angles are completely separated as shown in section 5.2.3.

χ2
a = 2.16841

sin2 ϑ13 = 4.59687 · 10−8

sin2 ϑ⊙ = 3.33333 · 10−1

sin2 ϑatm = 4.99848 · 10−1

(6.22)

The best fit solution presented corresponds to the following model parameters:

rχ = −5.25178 · 10−4

M0 = 3.02744 · 109 GeV

M1 = −1.21957 · 109 GeV

M2 = 7.38539 · 109 GeV

M4 = −6.41894 · 109 GeV

y3 = 2.00966 · 10−6.

(6.23)

In contrast to the normal mass spectrum the fine-tuning properties are slightly
changed as shown in Figure 6.11. Instead of M4 now M1 seems to be rather fine-
tuned. The effective Majorana mass |〈mββ〉| is comparable to m1,2, also note that

the definition of R = m3/
√

∆m2
⊙ is different for the inverted mass spectrum.

|〈mββ〉| = 4.86016 · 10−2 eV

R = 4.25950 · 10−1

ε = −5.25178 · 10−4

(6.24)

The distributions for the various quantities are again depicted in Figure 6.12 to
6.17. Besides the mass spectrum there are no changes compared to the normal
mass ordering. Again the lower bound of |〈mββ〉| is shown in Figure 6.18.

76 6. RESULTS

0.9996 0.9998 1.0002 1.0004
x

10

20

30

40

50

60

Χ2m

M0 M1 M2 M4 y3

Figure 6.11: Fine-tuning properties of the best fit solution.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 0.01 0.02 0.03 0.04 0.05 0.06

N

mi [eV]

m1

m2

m3

Figure 6.12: Mass distribution of the normal mass spectrum.

6.2. Modified model 77

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 0.01 0.02 0.03 0.04 0.05 0.06

N

〈mββ〉 [eV]

|〈mββ〉|

Figure 6.13: Distribution of the effective Majorana mass.

0

200

400

600

800

1000

1200

1400

1600

1800

0.01 0.1 1 10

N

R

R

Figure 6.14: Distribution of the mass ratio R.

78 6. RESULTS

0

200

400

600

800

1000

1200

1400

1600

1800

-0.4 -0.2 0 0.2 0.4

N

εχ

εχ

Figure 6.15: Distribution of the phase εχ.

0

50000

100000

150000

200000

250000

0 0.1 0.2 0.3 0.4 0.5 0.6

N

sin2 ϑi

sin2 ϑ13

sin2 ϑ⊙
sin2 ϑatm

Figure 6.16: Distribution of the lepton mixing angles.

6.2. Modified model 79

0

5000

10000

15000

20000

25000

0 0.0005 0.001 0.0015 0.002 0.0025

N

sin2 ϑ13

sin2 ϑ13

Figure 6.17: Distribution of sin2 ϑ13.

0

10

20

30

40

50

60

70

80

90

0.035 0.04 0.045 0.05 0.055 0.06

χ
2

|〈mββ〉| [eV]

χ2

Figure 6.18: Lower bound of the effective Majorana mass.

80 6. RESULTS

6.2.3 Effective Majorana mass versus lightest mass

Reconsider equations (3.27) and (3.28) for the effective Majorana neutrino mass
for normal and inverted spectrum, respectively. While the experimental data for
mass squared differences and mixing angles is given in Table 3.1, the lightest mass
m0 (:= m1 for normal, := m3 for inverted spectrum) and the phases β1 and β2

are not yet determined. This allows to plot those regions in the (m0, |〈mββ〉|)-
plane that are accessible via variation of both phases. Figure 6.19 shows |〈mββ〉|
versus m0, the area between the red lines denotes possible values for the normal
spectrum, the green lines the same for the inverted spectrum. Note that Figure

0.0001 0.001 0.01 0.1 1

m0 @eVD

0.001

0.005

0.01

0.05

0.1

0.5

1

È<mΒΒ>È @eVD

Figure 6.19: Effective Majorana mass |〈mββ〉| versus the lightest neutrino mass
m0.

6.19 disregards the uncertainties of the experimental data, see [93] for a detailed
analysis. The black dots show values taken from the best 1000 data sets (modified
model) for both mass spectra, where β1 = β2 = 0. Obviously the combination
of random set simplices and the Nelder-Mead minimization procedure leads to a
spread in the smallest mass of several orders of magnitude.

Chapter7
Conclusions

In this thesis we discussed the basic extensions in the lepton sector and presented
two models which allow for tri-bimaximal and trimaximal lepton mixing. These
models were tested with the help of numerical tools to compare predictions with
experimental data.

The main conclusions concerning the investigated models are as follows. Both
models allow a perfect fit to current mass squared differences for normal and
inverted mass spectrum. The contributions to the total χ2 are negligible, i.e.
10−8 − 10−5. Unlike the masses the mixing angles introduce some stress between
theory and experiment, since χ2

a = 2.1684 for tri-bimaximal mixing. Also with the
described modifications which unfix the angles no further improvement is made,
as expected from the analytical discussion in 5.2.3.

Regarding the numerics the Nelder-Mead method proved to be an effective tool for
the minimization of the figure of merit function. With the tested models there were
no problems finding excellent minima. Further application of the provided sample
code should be considered with more elaborate models including also the quark
sector. This would be a good chance to test the algorithm with more parameters
and observables. Adaption of the source code would be an easy task since most of
the model-related information is part of one subroutine.

Considering the great variety of models today there is still a lot of potential for the
application of the Nelder-Mead method in combination with the figure of merit
function to serve as a tool to provide information about consistency of theory and
experiment.

81

AppendixA
Appendix

The Appendix contains sample program code as described in section 4.4. Both
the normal and the pinning term versions are provided, each with nmm.f90 and
dnmm.f90. The Mathematica script to read data and analyse the fine-tuning prop-
erties is also included.

82

A.1. Main program 83

A.1 Main program

nmm.f90 1

1 !***
2 !
3 ! file: nmm.f90
4 ! Nelder Mead Method
5 !
6 ! Modified model, CP�invariance, nonzero theta13
7 !
8 ! constants: v0t,vct,r0,y2
9 ! parameters: rc,M0,M1,M2,M4,y3
10 ! res values:

chi2,chi2m,chi2a,mass1,mass2,mass3,dm2atm,dm2sol,mbb,R,epsilo,sin213,sin2sol,sin2atm
11 !
12 !***
13
14 module nmm_var
15
16 implicit none
17 integer,parameter :: N=6,Nres=13,Nc=4,fout=11,p18=selected_real_kind(p=18)
18 real(kind=p18),parameter ::

rho=1.0_p18,chi=2.0_p18,gam=0.5_p18,sig=0.5_p18,eps=1.0E(6_p18,crit=1.0E1_p18
19 complex(kind=p18),parameter :: c1=(1.0_p18,0.0_p18), ci=(0.0_p18,1.0_p18)
20 real(kind=p18) :: c_v0t,c_vct,c_r0,c_y2
21 complex(kind=p18) :: c_a
22 integer :: i,j,k,loop,nrand,nloop=10000
23 integer,dimension(6) :: stats
24 integer,dimension(:),allocatable :: seed
25 real :: tstart,tstop
26 real(kind=p18) :: fr,fn,d,tmp
27 real(kind=p18),dimension(Nres) :: res
28 real(kind=p18),dimension(N) :: xc,xr,xn
29 real(kind=p18),dimension(N+1) :: f
30 real(kind=p18),dimension(N+1,N) :: x
31 real(kind=p18),dimension(:,:),allocatable :: sav
32
33 end module nmm_var
34
35 !***
36 !***
37
38 module nmm_sub
39
40 use nmm_var
41
42 implicit none
43
44 contains
45
46 !***
47 subroutine init()
48
49 write(unit=*,fmt='("nloop = ")',advance='no')
50 read(*,*) nloop
51 call random_seed(size=nrand)
52 allocate(seed(nrand),sav(nloop,N+Nres+1))
53 seed=0
54 xc=0
55 x=0
56 f=0
57 sav=0
58 res=0
59 stats=0
60
61 end subroutine init
62 !***
63 subroutine initf()
64
65 c_v0t=1.7E11_p18
66 c_vct=2.0E25_p18

84 A. APPENDIX

nmm.f90 2

67 c_r0=0.0E0_p18
68 c_y2=1.0E(3_p18
69
70 c_a= �1.0_p18*(c_y2*c_v0t*(c1+c_r0*ci)/(1.0_p18+c_r0**2.0_p18))**2.0_p18
71
72 end subroutine initf
73 !***
74 subroutine prepf()
75
76 call random_seed
77 call random_seed(get=seed)
78 !write(unit=*,fmt='(4(Z8.8,TR1))') seed
79 do i=1,N+1
80 do j=1,1
81 call random_number(x(i,j))
82 x(i,j)=1.0E(1_p18 * 2.0_p18*(x(i,j)�0.5_p18)
83 end do
84 do j=2,N�1
85 call random_number(x(i,j))
86 x(i,j)=1.0E19_p18 * 2.0_p18*(x(i,j)�0.5_p18)
87 end do
88 do j=N,N
89 call random_number(x(i,j))
90 x(i,j)=2.0_p18 * 1.0E(06_p18 * 2.0_p18*(x(i,j)�0.5_p18)
91 end do
92 call calcf(f(i),x(i,:),.FALSE.)
93 end do
94
95 end subroutine prepf
96 !***
97
98 subroutine calcf(a,b,sres)
99
100 implicit none
101 logical,intent(in) :: sres
102 real(kind=p18),intent(inout) :: a
103 real(kind=p18),dimension(N),intent(in) :: b
104 real(kind=p18) :: rc,M0,M1,M2,M4,y3
105 real(kind=p18) :: MN2,x,yt,z,detM
106 real(kind=p18) :: mass1,mass2,mass3,dm2atm,dm2sol,chi2m,mbb,R
107 real(kind=p18),parameter ::

MV_dm2atm=2.4E(3_p18,SD_dm2atm=0.12E(3_p18,MV_dm2sol=7.65E(5_p18,SD_dm2sol=0.23E(5_p18
108 real(kind=p18) :: epsilo,sin213,sin2sol,sin2atm,chi2a
109 real(kind=p18),parameter ::

MV_sin213=1.0E(2_p18,SD_sin213=1.6E(2_p18,MV_sin2sol=3.04E(1_p18,SD_sin2sol=0.22E(1_p18, &
110 MV_sin2atm=5.0E(1_p18,SD_sin2atm=0.7E(1_p18
111
112 rc=b(1)
113 M0=b(2)
114 M1=b(3)
115 M2=b(4)
116 M4=b(5)
117 y3=b(6)
118
119 !MASSES
120 MN2=(y3*c_vct)**2.0_p18
121
122 detM = (M0+2.0_p18*M1)*((M0�M1)**2.0_p18*MN2 � ((M0�M1)*M4 �

3.0_p18*M2**2.0_p18)**2.0_p18)
123 x = 1.0_p18/detM * ((M0**2.0_p18�M1**2.0_p18)*(MN2�M4**2.0_p18) + &
124 (4.0_p18*M0+2.0_p18*M1)*M2**2.0_p18*M4 � 3.0_p18*M2**4.0_p18)
125 z = 1.0_p18/detM * ((M1**2.0_p18�M0*M1)*(MN2�M4**2.0_p18) +

(M0�4.0_p18*M1)*M2**2.0_p18*M4 � 3.0_p18*M2**4.0_p18)
126 yt = 1.0_p18/detM * ((M0+2.0_p18*M1)*M2**2.0_p18*y3*c_vct)
127
128 mass1 = abs(c_a * (x+3.0_p18*yt�z))
129 mass2 = abs(c_a * (x+2.0_p18*z))
130 mass3 = abs(c_a * (x�3.0_p18*yt�z))

A.1. Main program 85

nmm.f90 3

131
132 dm2atm = mass3**2.0_p18 � mass1**2.0_p18
133 dm2sol = mass2**2.0_p18 � mass1**2.0_p18
134
135 chi2m = ((dm2atm�MV_dm2atm)/SD_dm2atm)**2.0_p18 +

((dm2sol�MV_dm2sol)/SD_dm2sol)**2.0_p18
136
137 !ANGLES
138 epsilo = atan(rc)
139
140 sin213 = 2.0_p18/3.0_p18 * sin(epsilo/2.0_p18)**2.0_p18
141 sin2sol = 1.0_p18 / (3.0_p18 * (1.0_p18 � sin213))
142 sin2atm = 0.5_p18 + sin(epsilo) / (sqrt(12.0_p18)*(1�sin213))
143
144 chi2a = ((sin213�MV_sin213)/SD_sin213)**2.0_p18 +

((sin2sol�MV_sin2sol)/SD_sin2sol)**2.0_p18 + &
145 ((sin2atm�MV_sin2atm)/SD_sin2atm)**2.0_p18
146
147 a = chi2m + chi2a
148
149 if(sres) then
150
151 mbb = abs((mass1*(1.0_p18�sin2sol) +

sqrt(mass1**2.0_p18+dm2sol)*sin2sol*exp(ci*0.0_p18))*(1.0_p18�sin213) + &
152 sqrt(mass1**2.0_p18 + dm2atm)*sin213*exp(ci*0.0_p18))
153
154 R = mass1/sqrt(dm2sol)
155
156 res(1)=chi2m
157 res(2)=chi2a
158 res(3)=mass1
159 res(4)=mass2
160 res(5)=mass3
161 res(6)=dm2atm
162 res(7)=dm2sol
163 res(8)=mbb
164 res(9)=R
165 res(10)=epsilo
166 res(11)=sin213
167 res(12)=sin2sol
168 res(13)=sin2atm
169 end if
170
171 end subroutine calcf
172 !***
173 subroutine sort()
174
175 integer,dimension(1) :: imin
176 real(kind=p18),dimension(N) :: vtemp
177 real(kind=p18) :: stemp
178
179 do i=1,N
180 imin=i�1+minloc(f(i:N+1))
181 vtemp=x(i,:)
182 stemp=f(i)
183 x(i,:)=x(imin(1),:)
184 f(i)=f(imin(1))
185 x(imin(1),:)=vtemp
186 f(imin(1))=stemp
187 end do
188
189 end subroutine sort
190 !***
191 subroutine centroid()
192
193 xc=0
194 do j=1,N
195 do i=1,N

86 A. APPENDIX

nmm.f90 4

196 xc(j) = xc(j) + x(i,j)
197 end do
198 xc(j)=xc(j)/N
199 end do
200 !write(*,*) "centroid =", xc
201
202 end subroutine centroid
203 !***
204 subroutine shrinkage()
205
206 do j=2,N+1
207 x(j,:) = x(1,:) + sig*(x(j,:)�x(1,:))
208 call calcf(f(j),x(j,:),.FALSE.)
209 end do
210
211 end subroutine shrinkage
212 !***
213 subroutine show()
214
215 do i=1,N+1
216 write(unit=*,fmt='("x("I2.2") =")',advance='no') i
217 do j=1,N
218 write(unit=*,fmt='(F13.8)',advance='no') x(i,j)
219 end do
220 write(*,*)
221 end do
222 write(*,*) "f =",f
223
224 end subroutine show
225 !***
226 subroutine calcd()
227
228 real(kind=p18) :: fm
229
230 fm=0.0_p18
231 d=0.0_p18
232 do j=1,N+1
233 fm = fm + f(j)
234 end do
235 fm=fm/(N+1)
236 do j=1,N+1
237 d = d + (f(j)�fm)**2.0**p18
238 end do
239 d=d/(N+1)
240
241 end subroutine calcd
242 !***
243 subroutine wfile()
244
245 open(unit=fout,file="nmm.dat",status="replace",action="write",form="unformatte

d",position="rewind")
246 write(unit=fout) N,Nres,nloop,Nc
247 write(unit=fout) stats
248 do loop=1,nloop
249 if(sav(loop,N+Nres+1)/=0) write(unit=fout) sav(loop,:)
250 end do
251 write(unit=fout) c_v0t,c_vct,c_r0,c_y2
252 close(fout)
253
254 end subroutine wfile
255 !***
256 subroutine finish()
257
258 !write(*,*) "Steps: ",k
259 deallocate(seed,sav)
260
261 end subroutine finish
262 !***

A.1. Main program 87

nmm.f90 5

263 end module nmm_sub
264
265 !***
266 !***
267
268 program nmm
269
270 use nmm_var
271 use nmm_sub
272
273 implicit none
274
275 write(*,*) huge(fn)
276 write(*,*) tiny(fn)
277
278 call cpu_time(tstart)
279
280 call init()
281 call initf()
282 do loop=1,nloop
283 call prepf()
284 k=1
285 do
286 k=k+1
287 call sort()
288 call centroid()
289 xr = xc + rho*(xc�x(N+1,:))
290 call calcf(fr,xr,.FALSE.)
291 if(f(1)<=fr .AND. fr<f(N)) then
292 x(N+1,:)=xr
293 f(N+1)=fr
294 !write(*,*) "Reflection accepted"
295 go to 10
296 else if(fr<f(1)) then
297 xn = xc + chi*(xr�xc)
298 call calcf(fn,xn,.FALSE.)
299 if(fn<fr) then
300 x(N+1,:)=xn
301 f(N+1)=fn
302 !write(*,*) "Expansion accepted"
303 go to 10
304 else
305 x(N+1,:)=xr
306 f(N+1)=fr
307 !write(*,*) "Expansion rejected �> Reflection"
308 go to 10
309 end if
310 else if(f(N)<=fr .AND. fr<f(N+1)) then
311 xn = xc + gam*(xr�xc)
312 call calcf(fn,xn,.FALSE.)
313 if(fn<=fr) then
314 x(N+1,:)=xn
315 f(N+1)=fn
316 !write(*,*) "Outside contraction accepted"
317 go to 10
318 else
319 !write(*,*) "Outside contraction rejected �>

Shrinkage"
320 call shrinkage()
321 go to 10
322 end if
323 else if(fr>=f(N+1)) then
324 xn = xc � gam*(xc�x(N+1,:))
325 call calcf(fn,xn,.FALSE.)
326 if(fn<f(N+1)) then
327 x(N+1,:)=xn
328 f(N+1)=fn
329 !write(*,*) "Inside contraction accepted"

88 A. APPENDIX

nmm.f90 6

330 go to 10
331 else
332 !write(*,*) "Inside contraction rejected �> Shrinkage"
333 call shrinkage()
334 go to 10
335 end if
336 end if
337 10 call calcd()
338 if(d<=eps) then
339 !write(*,*) "Minimum reached: stats(1)",x(1,1),f(1)
340 stats(1)=stats(1)+1
341 exit
342 end if
343 if(mod(k,100)==0) then
344 tmp=0.0_p18
345 do i=1,N+1
346 do j=1,N
347 tmp=tmp+x(i,j)
348 end do
349 tmp=tmp+f(i)
350 end do
351 if(tmp*0.0_p18 /= 0.0_p18 .OR. tmp >= 1E99_p18) then
352 !write(*,*) "Detect infinity: stats(4)"
353 stats(4)=stats(4)+1
354 go to 20
355 end if
356 end if
357 if(k>=1000) then
358 !write(*,*) "No minimum reached: stats(3)"
359 stats(3)=stats(3)+1
360 go to 20
361 end if
362 end do
363 call sort()
364 if(f(1)<=crit) then
365 call calcf(f(1),x(1,:),.TRUE.)
366 if(res(3)<=res(4) .AND. res(4)<=res(5)) then
367 !write(*,*) "Criterion fulfilled: stats(2)"
368 sav(loop,1:N)=x(1,:)
369 sav(loop,N+1)=f(1)
370 sav(loop,N+2:N+Nres+1) = res
371 stats(2)=stats(2)+1
372 else
373 !write(*,*) "Wrong mass order: stats(5)"
374 stats(5)=stats(5)+1
375 end if
376 end if
377 20 if(mod(loop,1000)==0) write(unit=*,fmt='(7(I10,TR1))') loop,stats
378 end do
379 call wfile()
380 call finish()
381
382 call cpu_time(tstop)
383
384 write(*,*) "Time: ",tstop�tstart,"sec"
385
386 end program nmm
387
388

A.1. Main program 89

dnmm.f90 1

1 !***
2 !
3 ! file: dnmm.f90
4 ! Data Processing for Nelder Mead Method
5 !
6 ! Modified model, CP�invariance, nonzero theta13
7 !
8 ! constants: v0t,vct,r0,y2
9 ! parameters: rc,M0,M1,M2,M4,y3
10 ! res values:

chi2,chi2m,chi2a,mass1,mass2,mass3,dm2atm,dm2sol,mbb,R,epsilo,sin213,sin2sol,sin2atm
11
12 !***
13
14 module dnmm_var
15
16 implicit none
17 integer,parameter :: fin=11,fout=12,p18=selected_real_kind(p=18)
18 integer :: i,j,k,N,Nres,nloop,Nc,nch=100
19 integer,dimension(6) :: stats
20 real(kind=p18),dimension(:,:),allocatable :: sav,mvsd
21 real(kind=p18),dimension(:),allocatable :: const
22 type list1
23 sequence
24 real(kind=p18) :: c
25 integer :: n
26 end type list1
27 type(list1),dimension(:),allocatable ::

lM1,lM2,lM3,lmbb,lR,lepsilo,lsin213,lsin2sol,lsin2atm
28 real(kind=p18) :: lstarttemp,ltemp
29
30 end module dnmm_var
31
32 !***
33 !***
34
35 module dnmm_sub
36
37 use dnmm_var
38
39 contains
40
41 !***
42 subroutine readin()
43
44 write(unit=*,fmt='("nch = ")',advance='no')
45 read(*,*) nch
46 allocate(lM1(nch),lM2(nch),lM3(nch),lmbb(nch),lR(nch),lepsilo(nch),lsin213(nch

),lsin2sol(nch),lsin2atm(nch))
47
48 open(unit=fin,file="nmm.dat",status="old",action="read",form="unformatted",pos

ition="rewind")
49 read(unit=fin) N,Nres,nloop,Nc
50 read(unit=fin) stats
51 allocate(sav(1:stats(2),1:N+Nres+1),mvsd(1:2,1:N+Nres+1),const(1:Nc))
52 mvsd=0
53 do i=1,stats(2)
54 read(unit=fin) sav(i,:)
55 end do
56 read(unit=fin) const(1:Nc)
57 close(fin)
58
59 end subroutine readin
60 !***
61 subroutine remdup()
62
63 write(unit=*,fmt='("Removing duplicates: ")',advance='no')
64 do i=1,stats(2)�stats(6)�1

90 A. APPENDIX

dnmm.f90 2

65 if(mod(i,floor(stats(2)/10.0))==0)
write(unit=*,fmt='("*")',advance='no')

66 j=i+1
67 do while(j<=stats(2)�stats(6))
68 do k=1,N
69 !write(*,*)

i,j,k,sav(i,k),sav(j,k),abs(sav(i,k)�sav(j,k))
70 ! if(abs((sav(i,k)�sav(j,k))/sav(i,k)) > 1E�5_p18) exit
71 if(sav(i,k) .NE. sav(j,k)) exit

72 end do
73 if(k==N+1) then
74 !write(*,*) i,sav(i,1)
75 !write(*,*) j,sav(j,1)
76 sav(j,:)=sav(stats(2)�stats(6),:)
77 sav(stats(2)�stats(6),:)=0
78 stats(6)=stats(6)+1
79 if(i/=stats(2)�stats(6)) j=j�1
80 end if
81 j=j+1
82 end do
83 end do
84 stats(2)=stats(2)�stats(6)
85 write(*,*)
86
87 end subroutine remdup
88 !***
89 subroutine sort()
90
91 real(kind=p18),dimension(N+Nres+1) :: tempsav
92 integer,dimension(1) :: imin
93
94 write(unit=*,fmt='("Sorting results: ")',advance='no')
95 do i=1,stats(2)�1
96 if(mod(i,floor(stats(2)/10.0))==0)

write(unit=*,fmt='("*")',advance='no')
97 imin = i�1+minloc(sav(i:stats(2),N+1))
98 tempsav = sav(imin(1),:)
99 sav(imin(1),:) = sav(i,:)
100 sav(i,:) = tempsav
101 end do
102 write(*,*)
103
104 end subroutine sort
105 !***
106 subroutine cmvsd()
107
108 do i=1,N+Nres+1
109 do j=1,stats(2)
110 mvsd(1,i)=mvsd(1,i)+sav(j,i)
111 end do
112 end do
113 mvsd(1,:)=mvsd(1,:)/stats(2)
114 do i=1,N+Nres+1
115 do j=1,stats(2)
116 mvsd(2,i)=mvsd(2,i)+(sav(j,i)�mvsd(1,i))**2.0_p18
117 end do
118 end do
119 mvsd(2,:)=sqrt(mvsd(2,:)/(real(stats(2),p18)*real(stats(2)�1,p18)))
120
121 end subroutine cmvsd
122 !***
123 subroutine wdata()
124
125 open(unit=fout,file="nmm.txt",status="replace",action="write",form="formatted"

,position="rewind")
126 write(unit=fout,fmt='(" rc ")',advance='no')
127 write(unit=fout,fmt='(" M0 ")',advance='no')

A.1. Main program 91

dnmm.f90 3

128 write(unit=fout,fmt='(" M1 ")',advance='no')
129 write(unit=fout,fmt='(" M2 ")',advance='no')
130 write(unit=fout,fmt='(" M4 ")',advance='no')
131 write(unit=fout,fmt='(" y3 ")',advance='no')
132 write(unit=fout,fmt='(" Chi^2 ")',advance='no')
133 write(unit=fout,fmt='(" Chi^2m ")',advance='no')
134 write(unit=fout,fmt='(" Chi^2a ")',advance='no')
135 write(unit=fout,fmt='(" mass1 ")',advance='no')
136 write(unit=fout,fmt='(" mass2 ")',advance='no')
137 write(unit=fout,fmt='(" mass3 ")',advance='no')
138 write(unit=fout,fmt='(" dm2atm ")',advance='no')
139 write(unit=fout,fmt='(" dm2sol ")',advance='no')
140 write(unit=fout,fmt='(" mbb ")',advance='no')
141 write(unit=fout,fmt='(" R ")',advance='no')
142 write(unit=fout,fmt='(" epsilo ")',advance='no')
143 write(unit=fout,fmt='(" sin213 ")',advance='no')
144 write(unit=fout,fmt='(" sin2sol ")',advance='no')
145 write(unit=fout,fmt='(" sin2atm ")',advance='yes')
146 do i=1,stats(2)
147 do j=1,N+Nres+1
148 write(unit=fout,fmt='(ES26.18,TR1)',advance='no') sav(i,j)
149 end do
150 write(unit=fout,fmt=*)
151 end do
152 write(unit=fout,fmt=*)
153 do i=1,N+Nres+1
154 write(unit=fout,fmt='(ES26.18,TR1)',advance='no') mvsd(1,i)
155 end do
156 write(unit=fout,fmt=*)
157 do i=1,N+Nres+1
158 write(unit=fout,fmt='(ES26.18,TR1)',advance='no') mvsd(2,i)
159 end do
160 write(unit=fout,fmt=*)
161 write(unit=fout,fmt=*)
162 write(unit=fout,fmt='("Constants:")')
163 write(unit=fout,fmt='(" v0t ")',advance='no')
164 write(unit=fout,fmt='(" vct ")',advance='no')
165 write(unit=fout,fmt='(" r0 ")',advance='no')
166 write(unit=fout,fmt='(" y2 ")',advance='yes')
167 do i=1,Nc
168 write(unit=fout,fmt='(ES26.18,TR1)',advance='no') const(i)
169 end do
170 write(unit=fout,fmt=*)
171 write(unit=fout,fmt=*)
172 write(unit=fout,fmt='("Stable minimum reached: "I10)') stats(1)
173 write(unit=fout,fmt='("Criterion fulfilled: "I10)') stats(2)
174 write(unit=fout,fmt='("No minimum reached: "I10)') stats(3)
175 write(unit=fout,fmt='("Infinity detected: "I10)') stats(4)
176 write(unit=fout,fmt='("Wrong mass order: "I10)') stats(5)
177 write(unit=fout,fmt='("Duplicates removed: "I10)') stats(6)
178 close(fout)
179
180 end subroutine wdata
181 !***
182 subroutine clist(lin,lout,lstart,l)
183
184 implicit none
185 real(kind=p18),dimension(stats(2)),intent(in) :: lin
186 real(kind=p18),intent(in) :: lstart,l
187 type(list1),dimension(nch),intent(out) :: lout
188 real(kind=p18) :: step
189 integer :: tmp
190
191 lout%c=0
192 lout%n=0
193 !lstart=minval(lin)
194 !l=maxval(lin)�lstart
195 !lstart=lstart�0.05_p18*l

92 A. APPENDIX

dnmm.f90 4

196 !l=1.1_p18*l
197 step=l/(nch�1)
198 do i=1,nch
199 lout(i)%c=lstart + i*step � 0.5_p18*step
200 end do
201 do i=1,stats(2)
202 tmp=floor((lin(i)�lstart)/step)+1
203 !write(*,*) i,(lin(i)�lstart)/step,tmp
204 lout(tmp)%n=lout(tmp)%n+1
205 end do
206
207 end subroutine clist
208 !***
209 subroutine wlist()
210
211 open(unit=fout,file="list.txt",status="replace",action="write",form="formatted

",position="rewind")
212 do i=1,nch
213 write(unit=fout,fmt='(9(ES27.19,TR1,I6))')

lM1(i)%c,lM1(i)%n,lM2(i)%c,lM2(i)%n,lM3(i)%c,lM3(i)%n,lmbb(i)%c,lmbb(i)%n, &
214 lR(i)%c,lR(i)%n,lepsilo(i)%c,lepsilo(i)%n,lsin213(i)%c,lsin213(i)%n,lsin2sol(i)%c,lsin2sol(i)%

n,lsin2atm(i)%c,lsin2atm(i)%n
215 end do
216 close(fout)
217
218 end subroutine wlist
219 !***
220 subroutine wscreen()
221
222 write(unit=*,fmt='("Stable minimum reached: "I10)') stats(1)
223 write(unit=*,fmt='("Criterion fulfilled: "I10)') stats(2)
224 write(unit=*,fmt='("No minimum reached: "I10)') stats(3)
225 write(unit=*,fmt='("Infinity detected: "I10)') stats(4)
226 write(unit=*,fmt='("Wrong mass order: "I10)') stats(5)
227 write(unit=*,fmt='("Duplicates removed: "I10)') stats(6)
228
229 end subroutine wscreen
230 !***
231 subroutine finish()
232
233 deallocate(sav,lM1,lM2,lM3,lmbb,lR,lepsilo,lsin213,lsin2sol,lsin2atm,mvsd,cons

t)
234
235 end subroutine finish
236 !***
237
238 end module dnmm_sub
239
240 !***
241 !***
242
243 program dnmm
244
245 use dnmm_var
246 use dnmm_sub
247
248 call readin()
249 call remdup()
250 call sort()
251 call cmvsd()
252 call wdata()
253
254 lstarttemp=min(minval(sav(:,N+4)),minval(sav(:,N+5)),minval(sav(:,N+6)))
255 ltemp=max(maxval(sav(:,N+4)),maxval(sav(:,N+5)),maxval(sav(:,N+6)))�lstarttemp
256 call clist(sav(:,N+4),lM1,lstarttemp,ltemp)
257 call clist(sav(:,N+5),lM2,lstarttemp,ltemp)
258 call clist(sav(:,N+6),lM3,lstarttemp,ltemp)
259

A.1. Main program 93

dnmm.f90 5

260 lstarttemp=minval(sav(:,N+9))
261 ltemp=maxval(sav(:,N+9))�lstarttemp
262 call clist(sav(:,N+9),lmbb,lstarttemp,ltemp)
263
264 lstarttemp=minval(sav(:,N+10))
265 ltemp=maxval(sav(:,N+10))�lstarttemp
266 call clist(sav(:,N+10),lR,lstarttemp,ltemp)
267
268 lstarttemp=minval(sav(:,N+11))
269 ltemp=maxval(sav(:,N+11))�lstarttemp
270 call clist(sav(:,N+11),lepsilo,lstarttemp,ltemp)
271
272 lstarttemp=min(minval(sav(:,N+12)),minval(sav(:,N+13)),minval(sav(:,N+14)))
273 ltemp=max(maxval(sav(:,N+12)),maxval(sav(:,N+13)),maxval(sav(:,N+14)))�lstarttemp
274 call clist(sav(:,N+12),lsin213,lstarttemp,ltemp)
275 call clist(sav(:,N+13),lsin2sol,lstarttemp,ltemp)
276 call clist(sav(:,N+14),lsin2atm,lstarttemp,ltemp)
277
278 call wlist()
279 call wscreen()
280 call finish()
281
282 end program dnmm
283
284

94 A. APPENDIX

A.2 Program for pinning term method

nmm.f90 1

1 !***
2 !
3 ! file: nmm.f90
4 ! Nelder Mead Method
5 !
6 ! Modified Model, CP�invariance, nonzero theta13, inverted spectrum
7 !
8 ! constants: v0t,vct,r0,y2
9 ! parameters: rc,M0,M1,M2,M4,y3
10 ! res values:

chi2,chi2m,chi2a,mass1,mass2,mass3,dm2atm,dm2sol,mbb,R,epsilo,sin213,sin2sol,sin2atm
11 !
12 !***
13
14 module nmm_var
15
16 implicit none
17 integer,parameter :: N=6,Nres=14,Nc=4,fout=11,p18=selected_real_kind(p=18)
18 real(kind=p18),parameter :: rho=1.0_p18,chi=2.0_p18,gam=0.5_p18,sig=0.5_p18
19 real(kind=p18),parameter :: eps=1.0E(6_p18,crit=1.0E2_p18
20 complex(kind=p18),parameter :: c1=(1.0_p18,0.0_p18),ci=(0.0_p18,1.0_p18)
21 real(kind=p18) :: c_v0t,c_vct,c_r0,c_y2,startpin,stoppin
22 complex(kind=p18) :: c_a
23 integer :: i,j,k,loop,nrand,nloop=10000,ipin,npin=10
24 integer,dimension(6) :: stats
25 integer,dimension(:),allocatable :: seed
26 real :: tstart,tstop
27 real(kind=p18) :: fr,fn,d,tmp,vpin
28 real(kind=p18),dimension(Nres) :: res
29 real(kind=p18),dimension(N) :: xc,xr,xn
30 real(kind=p18),dimension(N+1) :: f
31 real(kind=p18),dimension(N+1,N) :: x
32 real(kind=p18),dimension(:,:),allocatable :: sav
33 real(kind=p18),dimension(:,:),allocatable :: respin
34 character(len=4) :: nstr
35
36 end module nmm_var
37
38 !***
39 !***
40
41 module nmm_sub
42
43 use nmm_var
44
45 implicit none
46
47 contains
48
49 !***
50 subroutine init()
51
52 write(unit=*,fmt='("nloop = ")',advance='no')
53 read(*,*) nloop
54 write(unit=*,fmt='(" npin = ")',advance='no')
55 read(*,*) npin
56 call random_seed(size=nrand)
57 allocate(seed(nrand),sav(nloop,N+Nres+1),respin(1:npin,1:N+Nres+2))
58 startpin=3.5E(2_p18
59 stoppin=6.0E(2_p18
60 seed=0
61 xc=0
62 x=0
63 f=0
64 sav=0
65 res=0
66 stats=0
67

A.2. Program for pinning term method 95

nmm.f90 2

68 end subroutine init
69 !***
70 subroutine initf()
71
72 c_v0t=1.7E11_p18
73 c_vct=2.0E25_p18
74 c_r0=0.0E0_p18
75 c_y2=1.0E(3_p18
76
77 c_a= �1.0_p18*(c_y2*c_v0t*(c1+c_r0*ci)/(1.0_p18+c_r0**2.0_p18))**2.0_p18
78
79 stats=0
80 sav=0
81
82 !vpin = 10.0_p18**(log10(startpin) +

(ipin�1)*(log10(stoppin)�log10(startpin))/(npin�1))
83 vpin = startpin + (ipin�1) * (stoppin�startpin)/(npin�1)
84 write(unit=*,fmt='(" ipin = "I10)') ipin
85 write(unit=*,fmt='(" vpin = "ES10.3)') vpin
86
87
88 end subroutine initf
89 !***
90 subroutine prepf()
91
92 call random_seed
93 call random_seed(get=seed)
94 !write(unit=*,fmt='(4(Z8.8,TR1))') seed
95 do i=1,N+1
96 do j=1,1
97 call random_number(x(i,j))
98 x(i,j)=1.0E(1_p18 * 2.0_p18*(x(i,j)�0.5_p18)
99 end do
100 do j=2,N�1
101 call random_number(x(i,j))
102 x(i,j)=1.0E19_p18 * 2.0_p18*(x(i,j)�0.5_p18)
103 end do
104 do j=N,N
105 call random_number(x(i,j))
106 x(i,j)=2.0_p18 * 1.0E(06_p18 * 2.0_p18*(x(i,j)�0.5_p18)
107 end do
108 call calcf(f(i),x(i,:),.FALSE.)
109 end do
110
111 end subroutine prepf
112 !***
113
114 subroutine calcf(a,b,sres)
115
116 implicit none
117 logical,intent(in) :: sres
118 real(kind=p18),intent(inout) :: a
119 real(kind=p18),dimension(N),intent(in) :: b
120 real(kind=p18) :: rc,M0,M1,M2,M4,y3
121 real(kind=p18) :: MN2,x,yt,z,detM
122 real(kind=p18) :: mass1,mass2,mass3,dm2atm,dm2sol,chi2m,chi2pin,mbb,R
123 real(kind=p18),parameter ::

MV_dm2atm=2.4E(3_p18,SD_dm2atm=0.12E(3_p18,MV_dm2sol=7.65E(5_p18,SD_dm2sol=0.23E(5_p18
124 real(kind=p18) :: epsilo,sin213,sin2sol,sin2atm,chi2a
125 real(kind=p18),parameter ::

MV_sin213=1.0E(2_p18,SD_sin213=1.6E(2_p18,MV_sin2sol=3.04E(1_p18,SD_sin2sol=0.22E(1_p18, &
126 MV_sin2atm=5.0E(1_p18,SD_sin2atm=0.7E(1_p18
127
128 rc=b(1)
129 M0=b(2)
130 M1=b(3)
131 M2=b(4)
132 M4=b(5)

96 A. APPENDIX

nmm.f90 3

133 y3=b(6)
134
135 !MASSES
136 MN2=(y3*c_vct)**2.0_p18
137
138 detM = (M0+2.0_p18*M1)*((M0�M1)**2.0_p18*MN2 � ((M0�M1)*M4 �

3.0_p18*M2**2.0_p18)**2.0_p18)
139 x = 1.0_p18/detM * ((M0**2.0_p18�M1**2.0_p18)*(MN2�M4**2.0_p18) + &
140 (4.0_p18*M0+2.0_p18*M1)*M2**2.0_p18*M4 � 3.0_p18*M2**4.0_p18)
141 z = 1.0_p18/detM * ((M1**2.0_p18�M0*M1)*(MN2�M4**2.0_p18) +

(M0�4.0_p18*M1)*M2**2.0_p18*M4 � 3.0_p18*M2**4.0_p18)
142 yt = 1.0_p18/detM * ((M0+2.0_p18*M1)*M2**2.0_p18*y3*c_vct)
143
144 mass1 = abs(c_a * (x+3.0_p18*yt�z))
145 mass2 = abs(c_a * (x+2.0_p18*z))
146 mass3 = abs(c_a * (x�3.0_p18*yt�z))
147
148 dm2atm = mass2**2.0_p18 � mass3**2.0_p18
149 dm2sol = mass2**2.0_p18 � mass1**2.0_p18
150
151 chi2m = ((dm2atm�MV_dm2atm)/SD_dm2atm)**2.0_p18 +

((dm2sol�MV_dm2sol)/SD_dm2sol)**2.0_p18
152
153 !ANGLES
154 epsilo = atan(rc)
155
156 sin213 = 2.0_p18/3.0_p18 * sin(epsilo/2.0_p18)**2.0_p18
157 sin2sol = 1.0_p18 / (3.0_p18 * (1.0_p18 � sin213))
158 sin2atm = 0.5_p18 + sin(epsilo) / (sqrt(12.0_p18)*(1�sin213))
159
160 chi2a = ((sin213�MV_sin213)/SD_sin213)**2.0_p18 +

((sin2sol�MV_sin2sol)/SD_sin2sol)**2.0_p18 + &
161 ((sin2atm�MV_sin2atm)/SD_sin2atm)**2.0_p18
162
163 mbb = abs((sqrt(mass3**2.0_p18 + dm2atm �

dm2sol)*(1.0_p18�sin2sol)*exp(ci*0.0_p18) + &
164 sqrt(mass3**2.0_p18 + dm2atm)*sin2sol*exp(ci*0.0_p18))*(1.0_p18�sin213) + mass3*sin213)
165
166 chi2pin = (mbb�vpin)**2.0_p18/(0.01_p18*vpin)**2.0_p18
167
168 a = chi2m + chi2a + chi2pin
169
170 if(sres) then
171
172 R = mass3/sqrt(dm2sol)
173
174 res(1)=chi2m
175 res(2)=chi2a
176 res(3)=chi2pin
177 res(4)=mass1
178 res(5)=mass2
179 res(6)=mass3
180 res(7)=dm2atm
181 res(8)=dm2sol
182 res(9)=mbb
183 res(10)=R
184 res(11)=epsilo
185 res(12)=sin213
186 res(13)=sin2sol
187 res(14)=sin2atm
188 end if
189
190 end subroutine calcf
191 !***
192 subroutine sort()
193
194 integer,dimension(1) :: imin
195 real(kind=p18),dimension(N) :: vtemp

A.2. Program for pinning term method 97

nmm.f90 4

196 real(kind=p18) :: stemp
197
198 do i=1,N
199 imin=i�1+minloc(f(i:N+1))
200 vtemp=x(i,:)
201 stemp=f(i)
202 x(i,:)=x(imin(1),:)
203 f(i)=f(imin(1))
204 x(imin(1),:)=vtemp
205 f(imin(1))=stemp
206 end do
207
208 end subroutine sort
209 !***
210 subroutine centroid()
211
212 xc=0
213 do j=1,N
214 do i=1,N
215 xc(j) = xc(j) + x(i,j)
216 end do
217 xc(j)=xc(j)/N
218 end do
219 !write(*,*) "centroid =", xc
220
221 end subroutine centroid
222 !***
223 subroutine shrinkage()
224
225 do j=2,N+1
226 x(j,:) = x(1,:) + sig*(x(j,:)�x(1,:))
227 call calcf(f(j),x(j,:),.FALSE.)
228 end do
229
230 end subroutine shrinkage
231 !***
232 subroutine show()
233
234 do i=1,N+1
235 write(unit=*,fmt='("x("I2.2") =")',advance='no') i
236 do j=1,N
237 write(unit=*,fmt='(ES10.3,TR1)',advance='no') x(i,j)
238 end do
239 write(*,*)
240 end do
241 write(*,*) "f =",f
242
243 end subroutine show
244 !***
245 subroutine calcd()
246
247 real(kind=p18) :: fm
248
249 fm=0.0_p18
250 d=0.0_p18
251 do j=1,N+1
252 fm = fm + f(j)
253 end do
254 fm=fm/(N+1)
255 do j=1,N+1
256 d = d + (f(j)�fm)**2.0**p18
257 end do
258 d=d/(N+1)
259
260 end subroutine calcd
261 !***
262 subroutine sortpin()
263

98 A. APPENDIX

nmm.f90 5

264 real(kind=p18),dimension(N+Nres+1) :: tempsav
265 integer,dimension(1) :: imin
266
267 do i=1,stats(2)
268 if(sav(i,N+1)==0.0_p18) then
269 do j=i+1,nloop
270 if(sav(j,N+1)/=0.0_p18) then
271 sav(i,:)=sav(j,:)
272 sav(j,:)=0
273 exit
274 end if
275 end do
276 end if
277 end do
278 do i=1,stats(2)�1
279 imin = i�1+minloc(sav(i:stats(2),N+1))
280 tempsav = sav(imin(1),:)
281 sav(imin(1),:) = sav(i,:)
282 sav(i,:) = tempsav
283 end do
284
285 end subroutine sortpin
286 !***
287 subroutine wfile()
288
289 write(unit=nstr,fmt='(I4.4)') ipin
290 open(unit=fout,file="data/nmm(" // nstr //

".dat",status="replace",action="write",form="unformatted",position="rewind")
291 write(unit=fout) N,Nres,stats(2),vpin
292 do loop=1,stats(2)
293 write(unit=fout) sav(loop,:)
294 end do
295 close(fout)
296
297 end subroutine wfile
298 !***
299 subroutine finish()
300
301 !write(*,*) "Steps: ",k
302 deallocate(seed,sav,respin)
303
304 end subroutine finish
305 !***
306 end module nmm_sub
307
308 !***
309 !***
310
311 program nmm
312
313 use nmm_var
314 use nmm_sub
315
316 implicit none
317
318 write(*,*) huge(fn)
319 write(*,*) tiny(fn)
320
321 call cpu_time(tstart)
322
323 call init()
324
325 do ipin=1,npin
326
327 30 call initf()
328 do loop=1,nloop
329 call prepf()
330 k=1

A.2. Program for pinning term method 99

nmm.f90 6

331 do
332 k=k+1
333 call sort()
334 call centroid()
335 xr = xc + rho*(xc�x(N+1,:))
336 call calcf(fr,xr,.FALSE.)
337 if(f(1)<=fr .AND. fr<f(N)) then
338 x(N+1,:)=xr
339 f(N+1)=fr
340 !write(*,*) "Reflection accepted"
341 go to 10
342 else if(fr<f(1)) then
343 xn = xc + chi*(xr�xc)
344 call calcf(fn,xn,.FALSE.)
345 if(fn<fr) then
346 x(N+1,:)=xn
347 f(N+1)=fn
348 !write(*,*) "Expansion accepted"
349 go to 10
350 else
351 x(N+1,:)=xr
352 f(N+1)=fr
353 !write(*,*) "Expansion rejected �> Reflection"
354 go to 10
355 end if
356 else if(f(N)<=fr .AND. fr<f(N+1)) then
357 xn = xc + gam*(xr�xc)
358 call calcf(fn,xn,.FALSE.)
359 if(fn<=fr) then
360 x(N+1,:)=xn
361 f(N+1)=fn
362 !write(*,*) "Outside contraction accepted"
363 go to 10
364 else
365 !write(*,*) "Outside contraction rejected �>

Shrinkage"
366 call shrinkage()
367 go to 10
368 end if
369 else if(fr>=f(N+1)) then
370 xn = xc � gam*(xc�x(N+1,:))
371 call calcf(fn,xn,.FALSE.)
372 if(fn<f(N+1)) then
373 x(N+1,:)=xn
374 f(N+1)=fn
375 !write(*,*) "Inside contraction accepted"
376 go to 10
377 else
378 !write(*,*) "Inside contraction rejected �>

Shrinkage"
379 call shrinkage()
380 go to 10
381 end if
382 end if
383 10 call calcd()
384 !call show()
385 if(d<=eps) then
386 !write(*,*) "Minimum reached: stats(1)",x(1,1),f(1)
387 stats(1)=stats(1)+1
388 exit
389 end if
390 if(mod(k,10)==0) then
391 tmp=0.0_p18
392 do i=1,N+1
393 do j=1,N
394 tmp=tmp+x(i,j)
395 end do
396 tmp=tmp+f(i)

100 A. APPENDIX

nmm.f90 7

397 end do
398 if(tmp*0.0_p18 /= 0.0_p18 .OR. tmp >= 1E99_p18) then
399 !write(*,*) "Detect infinity: stats(4)"
400 stats(4)=stats(4)+1
401 go to 20
402 end if
403 end if
404 if(k>=1000) then
405 !write(*,*) "No minimum reached: stats(3)"
406 stats(3)=stats(3)+1
407 go to 20
408 end if
409 end do
410 call sort()
411 !call show()
412 if(f(1)<=crit) then
413 call calcf(f(1),x(1,:),.TRUE.)
414 if((res(6)<=res(4)) .AND. (res(4)<=res(5))) then
415 !write(*,*) "Criterion fulfilled: stats(2)"
416 sav(loop,1:N)=x(1,:)
417 sav(loop,N+1)=f(1)
418 sav(loop,N+2:N+Nres+1) = res
419 stats(2)=stats(2)+1
420 else
421 !write(*,*) "Wrong mass order: stats(5)"
422 stats(5)=stats(5)+1
423 end if
424 end if
425 20 if(mod(loop,1000)==0) write(unit=*,fmt='(7(I10,TR1))') loop,stats
426 end do
427
428 call sortpin()
429 call wfile()
430
431 end do
432
433 call finish()
434
435 call cpu_time(tstop)
436
437 write(*,*) "Time: ",tstop�tstart,"sec"
438
439 end program nmm
440
441

A.2. Program for pinning term method 101

dnmm.f90 1

1 !***
2 !
3 ! file: dnmm.f90
4 ! Data Processing for Nelder Mead Method
5 !
6 ! Modified Model, CP�invariance, nonzero theta13
7 !
8 ! constants: v0t,vct,r0,y2
9 ! parameters: rc,M0,M1,M2,M4,y3
10 ! res values:

chi2,chi2m,chi2a,mass1,mass2,mass3,dm2atm,dm2sol,mbb,R,epsilo,sin213,sin2sol,sin2atm
11
12 !***
13
14 module dnmm_var
15
16 implicit none
17 integer,parameter :: fin=11,fout=12,p18=selected_real_kind(p=18)
18 integer :: i,j,ipin,N,Nres,stats2,npin=10
19 real(kind=p18),parameter :: critpin=1.0E(2_p18
20 real(kind=p18) :: vpin
21 real(kind=p18),dimension(:,:),allocatable :: sav,respin
22 character(len=4) :: nstr
23
24 end module dnmm_var
25
26 !***
27 !***
28
29 module dnmm_sub
30
31 use dnmm_var
32
33 contains
34 !***
35 subroutine readin()
36
37 write(unit=nstr,fmt='(I4.4)') ipin
38 open(unit=fin,file="data/nmm(" // nstr //

".dat",status="old",action="read",form="unformatted",position="rewind")
39 read(unit=fin) N,Nres,stats2,vpin
40 allocate(sav(1:stats2,1:N+Nres+1))
41 do i=1,stats2
42 read(unit=fin) sav(i,:)
43 end do
44 close(fin)
45
46 end subroutine readin
47 !***
48 subroutine init()
49
50 allocate(respin(1:npin,1:N+Nres+2))
51
52 end subroutine init
53 !***
54 subroutine find()
55
56 if(stats2==0) then
57 write(*,*) " ipin = ",ipin,": No data"
58 respin(ipin,1:N+Nres+1)=0
59 respin(ipin,N+Nres+2)=vpin
60 end if
61 do i=1,stats2
62 if((sav(i,N+1+3)/sav(i,N+1+1) <= critpin) .AND.

(sav(i,N+1+3)/sav(i,N+1+2) <= critpin)) then
63 respin(ipin,1:N+Nres+1)=sav(i,:)
64 respin(ipin,N+Nres+2)=vpin
65 write(unit=*,fmt='(TR1,I10,I10,I10,ES14.3)')

102 A. APPENDIX

dnmm.f90 2

ipin,i,stats2,vpin
66 exit
67 end if
68 if(i==stats2) then
69 write(*,*) " ipin = ",ipin,": Nothing found"
70 respin(ipin,1:N+Nres+1)=0
71 respin(ipin,N+Nres+2)=vpin
72 end if
73 end do
74
75 end subroutine find
76 !***
77 subroutine wdata()
78
79 open(unit=fout,file="data/nmm(" // nstr //

".txt",status="replace",action="write",form="formatted",position="rewind")
80 write(unit=fout,fmt='(" rc ")',advance='no')
81 write(unit=fout,fmt='(" M0 ")',advance='no')
82 write(unit=fout,fmt='(" M1 ")',advance='no')
83 write(unit=fout,fmt='(" M2 ")',advance='no')
84 write(unit=fout,fmt='(" M4 ")',advance='no')
85 write(unit=fout,fmt='(" y3 ")',advance='no')
86 write(unit=fout,fmt='(" Chi^2 ")',advance='no')
87 write(unit=fout,fmt='(" Chi^2m ")',advance='no')
88 write(unit=fout,fmt='(" Chi^2a ")',advance='no')
89 write(unit=fout,fmt='(" Chi^2pin ")',advance='no')
90 write(unit=fout,fmt='(" mass1 ")',advance='no')
91 write(unit=fout,fmt='(" mass2 ")',advance='no')
92 write(unit=fout,fmt='(" mass3 ")',advance='no')
93 write(unit=fout,fmt='(" dm2atm ")',advance='no')
94 write(unit=fout,fmt='(" dm2sol ")',advance='no')
95 write(unit=fout,fmt='(" mbb ")',advance='no')
96 write(unit=fout,fmt='(" R ")',advance='no')
97 write(unit=fout,fmt='(" epsilo ")',advance='no')
98 write(unit=fout,fmt='(" sin213 ")',advance='no')
99 write(unit=fout,fmt='(" sin2sol ")',advance='no')
100 write(unit=fout,fmt='(" sin2atm ")',advance='no')
101 write(unit=fout,fmt='(" vpin ")',advance='yes')
102 do i=1,stats2
103 do j=1,N+Nres+1
104 if(sav(i,11)/=0.0_p18)

write(unit=fout,fmt='(ES26.18,TR1)',advance='no') sav(i,j)
105 end do
106 if(sav(i,11)/=0.0_p18)

write(unit=fout,fmt='(ES26.18,TR1)',advance='no') vpin
107 write(unit=fout,fmt=*)
108 end do
109 close(fout)
110
111 end subroutine wdata
112 !***
113 subroutine wpindata()
114
115 open(unit=fout,file="pin.txt",status="replace",action="write",form="formatted"

,position="rewind")
116 write(unit=fout,fmt='(" rc ")',advance='no')
117 write(unit=fout,fmt='(" M0 ")',advance='no')
118 write(unit=fout,fmt='(" M1 ")',advance='no')
119 write(unit=fout,fmt='(" M2 ")',advance='no')
120 write(unit=fout,fmt='(" M4 ")',advance='no')
121 write(unit=fout,fmt='(" y3 ")',advance='no')
122 write(unit=fout,fmt='(" Chi^2 ")',advance='no')
123 write(unit=fout,fmt='(" Chi^2m ")',advance='no')
124 write(unit=fout,fmt='(" Chi^2a ")',advance='no')
125 write(unit=fout,fmt='(" Chi^2pin ")',advance='no')
126 write(unit=fout,fmt='(" mass1 ")',advance='no')
127 write(unit=fout,fmt='(" mass2 ")',advance='no')
128 write(unit=fout,fmt='(" mass3 ")',advance='no')

A.2. Program for pinning term method 103

dnmm.f90 3

129 write(unit=fout,fmt='(" dm2atm ")',advance='no')
130 write(unit=fout,fmt='(" dm2sol ")',advance='no')
131 write(unit=fout,fmt='(" mbb ")',advance='no')
132 write(unit=fout,fmt='(" R ")',advance='no')
133 write(unit=fout,fmt='(" epsilo ")',advance='no')
134 write(unit=fout,fmt='(" sin213 ")',advance='no')
135 write(unit=fout,fmt='(" sin2sol ")',advance='no')
136 write(unit=fout,fmt='(" sin2atm ")',advance='no')
137 write(unit=fout,fmt='(" vpin ")',advance='yes')
138 do ipin=1,npin
139 do j=1,N+Nres+2
140 if(respin(ipin,11)/=0.0_p18)

write(unit=fout,fmt='(ES26.18,TR1)',advance='no') respin(ipin,j)
141 end do
142 write(unit=fout,fmt=*)
143 end do
144 close(fout)
145
146 end subroutine wpindata
147 !***
148 subroutine finish()
149
150 deallocate(respin)
151
152 end subroutine finish
153 !***
154
155 end module dnmm_sub
156
157 !***
158 !***
159
160 program dnmm
161
162 use dnmm_var
163 use dnmm_sub
164
165
166 write(unit=*,fmt='(" npin = ")',advance='no')
167 read(*,*) npin
168
169 do ipin=1,npin
170 call readin()
171 if(ipin==1) call init()
172 !call wdata()
173 call find()
174 deallocate(sav)
175 end do
176 call wpindata()
177 call finish()
178
179 end program dnmm
180
181

104 A. APPENDIX

A.3 Program for fine-tuning properties

In[80]:= Clear@"Global‘*"D

In[81]:= MVdm2atm = 2.4*^−3
SDdm2atm = 0.12*^−3
MVdm2sol = 7.65*^−5
SDdm2sol = 0.23*^−5

Out[81]= 0.0024

Out[82]= 0.00012

Out[83]= 0.0000765

Out[84]= 2.3´10-6

In[85]:= str = OpenRead@"nmm.txt"D

Out[85]= InputStream@nmm.txt, 16D

In[86]:= SetStreamPosition@str, 0D;
Read@str, StringD
start = StreamPosition@strD;

Out[87]= rc M0 M1 M2 M4
y3 Chi^2 Chi^2m Chi^2a mass1
mass2 mass3 dm2atm dm2sol mbb
R epsilo sin213 sin2sol sin2atm

In[89]:= SetStreamPosition@str, startD;
data1 = SetPrecision@ReadList@str, Real, 18D, 19D

Out[90]= 80.0009504318008238979248, -1.100141136440566817´1019 , 7.105865183385642507´1018 ,

3.744470897331724208´1018 , -5.750681316081949160´1018 , -1.750449985696605240´10-7 ,

2.168436609718819464, 0.00002414827643799047893, 2.168412461442381474, 0.002131161213549920478,
0.009002220644959019749, 0.04904205743944022251, 0.002400581549775214504, 0.00007649812842238681975,

0.004421521419944718966, 0.2436637358659582784, 0.0009504315146425089665, 1.505533326711212685´10-7
<

In[91]:= Vrc = data1@@1DD
VM0 = data1@@2DD
VM1 = data1@@3DD
VM2 = data1@@4DD
VM4 = data1@@5DD
Vy3 = data1@@6DD

Out[91]= 0.0009504318008238979248

Out[92]= -1.100141136440566817´1019

Out[93]= 7.105865183385642507´1018

Out[94]= 3.744470897331724208´1018

Out[95]= -5.750681316081949160´1018

Out[96]= -1.750449985696605240´10-7

nmm3finetune.nb 1

A.3. Program for fine-tuning properties 105

In[97]:= SetStreamPosition@str, startD
Find@str, "Constants"D;
StreamPosition@strD;
Skip@str, StringD;
Read@str, StringD
data2 = SetPrecision@ReadList@str, Real, 4D, 19D

Out[97]= 541

Out[101]=

v0t vct r0 y2

Out[102]=

81.700000000000000000´1011 , 2.000000000000000000´1025 , 0, 0.001000000000000000000<

In[103]:=

v0t = data2@@1DD
vct = data2@@2DD
r0 = data2@@3DD
y2 = data2@@4DD

Out[103]=

1.700000000000000000´1011

Out[104]=

2.000000000000000000´1025

Out[105]=

0

Out[106]=

0.001000000000000000000

In[107]:=

detM = SetPrecision@
HM0 + 2 M1L HHM0 - M1L^2*y3^2*vct^2 - HHM0 - M1L*M4 - 3 M2*M3L^2L �. M3 ® M2, 19D;

In[108]:=

MN2 = y3^2*vct^2

Out[108]=

4.000000000000000000´1050 y32

In[109]:=

replxzyt = SetPrecision@
H8x ® HHM0^2 - M1^2L*HMN2 - M4^2L + H4*M0 + 2*M1L*M2*M3*M4 - 3*M2^2*M3^2L�detM,

z ® HHM1^2 - M0*M1L*HMN2 - M4^2L + HM0 - 4*M1L*M2*M3*M4 - 3 M2^2*M3^2L�detM,
y ® HHM0 + 2*M1L*M2^2*y3*vctL�detM,
t ® HHM0 + 2 M1L*M3^2*y3*vctL�detM<L �. M3 ® M2, 19D;

In[110]:=

mass1 =

SetPrecision@Abs@-y2^2*v0t^2*H1 + I*r0L�H1 + r0^2L*Hx + 3 y - zLD �. replxzyt, 20D;
mass2 = SetPrecision@Abs@-y2^2*v0t^2*H1 + I*r0L�H1 + r0^2L*Hx + 2 zLD �. replxzyt,

20D;
mass3 = SetPrecision@Abs@-y2^2*v0t^2*H1 + I*r0L�H1 + r0^2L*Hx - 3 y - zLD �. replxzyt,

20D;
dm2atm = mass3^2 - mass1^2;
dm2sol = mass2^2 - mass1^2;

In[115]:=

chi2m@M0_, M1_, M2_, M4_, y3_D =

Hdm2atm - MVdm2atmL^2�SDdm2atm^2 + Hdm2sol - MVdm2solL^2�SDdm2sol^2;

In[116]:=

<< Graphics‘Graphics‘
<< Graphics‘Legend‘

nmm3finetune.nb 2

106 A. APPENDIX

In[118]:=

pl = Plot@8chi2m@x* VM0, VM1, VM2, VM4, Vy3D, chi2m@VM0, x* VM1, VM2, VM4, Vy3D,
chi2m@VM0, VM1, x* VM2, VM4, Vy3D, chi2m@VM0, VM1, VM2, x* VM4, Vy3D,
chi2m@VM0, VM1, VM2, VM4, x* Vy3D<, 8x, 0.995, 1.005<,
PlotStyle ® 88RGBColor@1, 0, 0D<, 8RGBColor@0, 1, 0D<, 8RGBColor@0, 0, 1D<,
8RGBColor@1, 0, 1D<, 8RGBColor@0, 1, 1D<<, AxesLabel ® 8x, Χ2m<,

PlotLegend ® 8"M0", "M1", "M2", "M4", "y3"<, LegendOrientation ® Horizontal,
LegendPosition ® 8-0.43, -0.9<, LegendShadow ® 8.01, -.01<, LegendSpacing ® .6D

0.996 0.998 1.002 1.004
x

10

20

30

40

50

60

Χ2m

M0 M1 M2 M4 y3

Out[118]=

� Graphics �

In[119]:=

Export@"nmm3finetune.eps", pl, "EPS", ImageSize ® 8500, Automatic<D

Out[119]=

nmm3finetune.eps

nmm3finetune.nb 3

Software

The following software was used for programming, data analysis and creating fig-
ures:

• g95 - version 0.91 (March 2008)

Fortran Compiler implementing the Fortran 95 standard,
http://www.g95.org/

• Mathematica - version 5.2

Computational software program,
Wolfram Research, Inc.,
http://www.wolfram.com/

• gnuplot - version 4.2 patchlevel 2

Command-line driven graphing utility,
http://www.gnuplot.info/

• Xfig - version 3.2 patchlevel 5

Vector graphics editor,
http://www.xfig.org/

• feynMP

LATEX tool to draw Feynman graphs,
http://osksn2.hep.sci.osaka-u.ac.jp/˜taku/osx/feynmp.html

107

List of Tables

2.1 List of weak isospins, weak hypercharges and electric charges of
fields contained in the GWS model. 13

3.1 Experimental global fit values. 36

108

List of Figures

3.1 Normal (a) and inverted (b) mass spectrum with mass squared dif-
ferences . 33

3.2 (ββ)0ν decay - Feynman diagram at quark level 34

4.1 Flowchart for one Nelder-Mead iteration step. 43
4.2 Different actions on the Nelder-Mead simplex in two dimensions

after the sorting step: (a) reflection, (b) expansion, (c) inside con-
traction, (d) outside contraction and (e) shrinkage. The green filling
denotes the simplex before, the red one after the iteration step. . . 44

4.3 pattern for the data arrangement. Each data set stands for a mini-
mum found by the NMM. 47

5.1 Different contributions to χ2 as functions of ε. 63

6.1 Mass distribution for normal mass ordering. 67
6.2 Mass distribution for inverted mass ordering. 68
6.3 Fine-tuning properties of the best fit solution. 71
6.4 Mass distribution of the normal mass spectrum. 71
6.5 Distribution of the effective Majorana mass. 72
6.6 Distribution of the mass ratio R. 72
6.7 Distribution of the phase εχ. 73
6.8 Distribution of the lepton mixing angles. 73
6.9 Distribution of sin2 ϑ13. 74
6.10 Lower bound of the effective Majorana mass. 74
6.11 Fine-tuning properties of the best fit solution. 76
6.12 Mass distribution of the normal mass spectrum. 76
6.13 Distribution of the effective Majorana mass. 77
6.14 Distribution of the mass ratio R. 77
6.15 Distribution of the phase εχ. 78

109

110 LIST OF FIGURES

6.16 Distribution of the lepton mixing angles. 78
6.17 Distribution of sin2 ϑ13. 79
6.18 Lower bound of the effective Majorana mass. 79
6.19 Effective Majorana mass |〈mββ〉| versus the lightest neutrino mass

m0. 80

Bibliography

[1] W. Grimus and L. Lavoura, Tri-bimaximal lepton mixing from symmetry only,
JHEP 0904, 013 (2009) [arXiv:0811.4766 [hep-ph]].

[2] J. Horejsi, Fundamentals of electroweak theory, Prague, Czech Republic:
Karolinum Pr. (2002) 351 p

[3] A. Pich, The Standard model of electroweak interactions, arXiv:0705.4264
[hep-ph].

[4] S. L. Glashow, Partial Symmetries Of Weak Interactions, Nucl. Phys. 22, 579
(1961).

[5] S. Weinberg, A Model Of Leptons, Phys. Rev. Lett. 19, 1264 (1967).

[6] A. Salam, Weak And Electromagnetic Interactions, In the Proceedings of 8th
Nobel Symposium, Lerum, Sweden, 19-25 May 1968, pp 367-377.

[7] P. W. Higgs, Broken symmetries, massless particles and gauge fields, Phys.
Lett. 12, 132 (1964).

[8] P. W. Higgs, BROKEN SYMMETRIES AND THE MASSES OF GAUGE
BOSONS, Phys. Rev. Lett. 13, 508 (1964).

[9] P. W. Higgs,None Spontaneous Symmetry Breakdown without Massless
Bosons, Phys. Rev. 145, 1156 (1966).

[10] P. W. Anderson, Plasmons, Gauge Invariance, and Mass, Phys. Rev. 130,
439 (1963).

[11] F. Englert and R. Brout, BROKEN SYMMETRY AND THE MASS OF
GAUGE VECTOR MESONS, Phys. Rev. Lett. 13, 321 (1964).

111

112 BIBLIOGRAPHY

[12] G. S. Guralnik, C. R. Hagen and T. W. B. Kibble, GLOBAL CONSER-
VATION LAWS AND MASSLESS PARTICLES, Phys. Rev. Lett. 13, 585
(1964).

[13] N. Cabibbo, Phys. Rev. Lett. 10 (1963) 531.

[14] M. Kobayashi and T. Maskawa, CP Violation In The Renormalizable Theory
Of Weak Interaction, Prog. Theor. Phys. 49, 652 (1973).

[15] L. L. Chau and W. Y. Keung, Comments On The Parametrization Of The
Kobayashi-Maskawa Matrix, Phys. Rev. Lett. 53, 1802 (1984).

[16] S. L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D 2, 1285 (1970).

[17] F. Boehm and P. Vogel, Physics of massive neutrinos, Cambridge, UK: Univ.
Pr. (1992) 249 p

[18] S. M. Bilenky, C. Giunti and W. Grimus, Phenomenology of neutrino oscilla-
tions, Prog. Part. Nucl. Phys. 43 (1999) 1 [arXiv:hep-ph/9812360].

[19] W. Grimus, Neutrino physics: Theory, Lect. Notes Phys. 629, 169 (2004)
[arXiv:hep-ph/0307149].

[20] M. C. Gonzalez-Garcia and M. Maltoni, Phenomenology with Massive Neu-
trinos, Phys. Rept. 460, 1 (2008) [arXiv:0704.1800 [hep-ph]].

[21] I. Schur, EIN SATZ UEBER QUADRATISCHE FORMEN MIT KOM-
PLEXEN KOEFFIZIENTEN, Am. J. Math 67 472 (1945)

[22] B. Zumino, Normal Forms of Complex Matrices, J. Math. Phys. 3 1055 (1962)

[23] W. Grimus and G. Ecker, Basis transformations in generation space and a
criterion for the existence of standard forms for unitarily congruent matrices,
J. Phys. A 21, 2825 (1988).

[24] M. Gell-Mann, P. Ramond and R. Slansky, Supergravity, p.315, edited by
F. van Nieuwenhuizen and D. Freedman, North Holland, Amsterdam, 1979.

[25] T. Yanagida, Proc. of the Workshop on Unified Theory and the Baryon Num-
ber of the Universe, KEK, Japan, 1979.

[26] R. N. Mohapatra and G. Senjanovic, Neutrino mass and spontaneous parity
nonconservation, Phys. Rev. Lett. 44, 912 (1980).

[27] B. Kayser, On The Quantum Mechanics Of Neutrino Oscillation, Phys. Rev.
D 24, 110 (1981).

BIBLIOGRAPHY 113

[28] C. Giunti, C. W. Kim and U. W. Lee, When do neutrinos really oscillate?:
Quantum mechanics of neutrino oscillations, Phys. Rev. D 44, 3635 (1991).

[29] J. Rich, The Quantum mechanics of neutrino oscillations, Phys. Rev. D 48,
4318 (1993).

[30] E. K. Akhmedov and A. Y. Smirnov, Paradoxes of neutrino oscillations, Phys.
Atom. Nucl. 72 (2009) 1363 [arXiv:0905.1903 [hep-ph]].

[31] L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17, 2369 (1978).

[32] L. Wolfenstein, Neutrino Oscillations And Stellar Collapse, Phys. Rev. D 20,
2634 (1979).

[33] S. P. Mikheyev and A. Yu. Smirnov, Resonance Amplification of Oscillations
in Matter and Spectroscopy of Solar Neutrinos, Yad.Fiz. 42 (1985) 1441 [Sov.
J. Nucl. Phys. 42] (1985) 913.

[34] S. P. Mikheyev and A. Yu. Smirnov, Resonant amplification of neutrino os-
cillations in matter and solar neutrino spectroscopy, Nuovo Cim. C 9 (1986)
17.

[35] S. P. Mikheyev and A. Y. Smirnov, Resonant neutrino oscillations in matter,
Prog. Part. Nucl. Phys. 23, 41 (1989).

[36] S. M. Bilenky, C. Giunti, J. A. Grifols and E. Masso, Absolute Values of Neu-
trino Masses: Status and Prospects, Phys. Rept. 379 (2003) 69 [arXiv:hep-
ph/0211462].

[37] R. N. Mohapatra, Particle physics implications of neutrinoless double beta
decay, Nucl. Phys. Proc. Suppl. 77 (1999) 376 [arXiv:hep-ph/9808284].

[38] S. R. Elliott and P. Vogel, Double beta decay, Ann. Rev. Nucl. Part. Sci. 52,
115 (2002) [arXiv:hep-ph/0202264].

[39] J. Schechter and J. W. F. Valle, Neutrinoless double-beta decay in SU(2) x
U(1) theories, Phys. Rev. D 25, 2951 (1982).

[40] E. Takasugi, Can The Neutrinoless Double Beta Decay Take Place In The
Case Of Dirac Neutrinos?, Phys. Lett. B 149, 372 (1984).

[41] T. Schwetz, M. A. Tortola and J. W. F. Valle, Three-flavour neutrino oscil-
lation update, New J. Phys. 10, 113011 (2008) [arXiv:0808.2016 [hep-ph]].

114 BIBLIOGRAPHY

[42] M. Maltoni and T. Schwetz, Three-flavour neutrino oscillation update and
comments on possible hints for a non-zero theta_{13}, PoS IDM2008, 072
(2008) [arXiv:0812.3161 [hep-ph]].

[43] P. L. Vahle [MINOS Collaboration], Neutrino Oscillation Studies with MI-
NOS, arXiv:0810.3627 [hep-ex].

[44] M. V. Diwan, Recent Results from the MINOS experiment, arXiv:0904.3706
[hep-ex].

[45] J. Boger et al. [SNO Collaboration], The Sudbury Neutrino Observatory, Nucl.
Instrum. Meth. A 449, 172 (2000) [arXiv:nucl-ex/9910016].

[46] A. B. McDonald [The SNO Collaboration], Sudbury Neutrino Observatory
results, Phys. Scripta T121, 29 (2005) [arXiv:hep-ex/0412060].

[47] S. Abe et al. [KamLAND Collaboration], Precision Measurement of Neutrino
Oscillation Parameters with KamLAND, Phys. Rev. Lett. 100, 221803 (2008)
[arXiv:0801.4589 [hep-ex]].

[48] G. Alimonti et al. [Borexino Collaboration], The Borexino detector at the
Laboratori Nazionali del Gran Sasso, Nucl. Instrum. Meth. A 600, 568 (2009)
[arXiv:0806.2400 [physics.ins-det]].

[49] M. Apollonio et al. [CHOOZ Collaboration], Initial Results from the CHOOZ
Long Baseline Reactor Neutrino Oscillation Experiment, Phys. Lett. B 420,
397 (1998) [arXiv:hep-ex/9711002].

[50] P. Anselmann et al. [GALLEX Collaboration], Implications Of The Gallex
Determination Of The Solar Neutrino Flux, Phys. Lett. B 285, 390 (1992).

[51] W. Hampel et al. [GALLEX Collaboration], GALLEX solar neutrino obser-
vations: Results for GALLEX III., Phys. Lett. B 388, 384 (1996).

[52] J. N. Abdurashitov et al. [SAGE Collaboration], Measurement of the solar
neutrino capture rate with gallium metal, Phys. Rev. C 60, 055801 (1999)
[arXiv:astro-ph/9907113].

[53] M. Ishitsuka [Super-Kamiokande Collaboration], Super Kamiokande results:
Atmospheric and solar neutrinos, arXiv:hep-ex/0406076.

[54] M. H. Ahn et al. [K2K Collaboration], Measurement of Neutrino Oscilla-
tion by the K2K Experiment, Phys. Rev. D 74, 072003 (2006) [arXiv:hep-
ex/0606032].

BIBLIOGRAPHY 115

[55] Y. Kudenko [T2K Collaboration], The near neutrino detector for the T2K
experiment Nucl. Instrum. Meth. A 598, 289 (2009) [arXiv:0805.0411
[physics.ins-det]].

[56] D. Duchesneau [OPERA Collaboration], The OPERA Long Baseline Experi-
ment: Status and First Results, arXiv:0810.2476 [hep-ex].

[57] A. A. Aguilar-Arevalo et al. [MiniBooNE Collaboration], The MiniBooNE
Detector, Nucl. Instrum. Meth. A 599, 28 (2009) [arXiv:0806.4201 [hep-ex]].

[58] J. Wolf [KATRIN Collaboration], The KATRIN Neutrino Mass Experiment,
arXiv:0810.3281 [physics.ins-det].

[59] P. F. Harrison, D. H. Perkins and W. G. Scott, Tri-bimaximal mixing and
the neutrino oscillation data, Phys. Lett. B 530, 167 (2002) [arXiv:hep-
ph/0202074].

[60] W. Grimus and L. Lavoura, A model for trimaximal lepton mixing, JHEP
0809, 106 (2008) [arXiv:0809.0226 [hep-ph]].

[61] C. E. Aalseth et al. [IGEX Collaboration], The Igex 76ge Neutrinoless Double-
Beta Decay Experiment: Prospects for Next Generation Experiments, Phys.
Rev. D 65, 092007 (2002) [arXiv:hep-ex/0202026].

[62] C. Arnaboldi et al., First results on neutrinoless double beta decay of Te-
130 with the calorimetric CUORICINO experiment, Phys. Lett. B 584, 260
(2004).

[63] H. V. Klapdor-Kleingrothaus et al., Latest Results from the Heidelberg-
Moscow Double Beta Decay Experiment, Eur. Phys. J. A 12, 147 (2001)
[arXiv:hep-ph/0103062].

[64] H. V. Klapdor-Kleingrothaus, A. Dietz, H. L. Harney and I. V. Krivosheina,
Evidence for Neutrinoless Double Beta Decay, Mod. Phys. Lett. A 16, 2409
(2001) [arXiv:hep-ph/0201231].

[65] F. Feruglio, A. Strumia and F. Vissani, Neutrino oscillations and signals in
beta and 0nu 2beta experiments, Nucl. Phys. B 637, 345 (2002) [Addendum-
ibid. B 659, 359 (2003)] [arXiv:hep-ph/0201291].

[66] C. E. Aalseth et al., Comment on ’Evidence for Neutrinoless Double Beta
Decay’, Mod. Phys. Lett. A 17, 1475 (2002) [arXiv:hep-ex/0202018].

[67] H. L. Harney, Reply to the comment on ’Evidence for neutrinoless double beta
decay’. (Mod. Phys. Lett. A16(2001) 2409), arXiv:hep-ph/0205293.

116 BIBLIOGRAPHY

[68] Yu. G. Zdesenko, F. A. Danevich and V. I. Tretyak, Has neutrinoless double
beta decay of Ge-76 been really observed?, Phys. Lett. B 546, 206 (2002).

[69] H. V. Klapdor-Kleingrothaus, A. Dietz and I. V. Krivosheina, Status of Ev-
idence for Neutrinoless Double Beta Decay, Found. Phys. 32, 1181 (2002)
[Erratum-ibid. 33, 679 (2003)] [arXiv:hep-ph/0302248].

[70] H. V. Klapdor-Kleingrothaus, I. V. Krivosheina, A. Dietz and O. Chkvorets,
Search for neutrinoless double beta decay with enriched 76Ge in Gran Sasso
1990-2003, Phys. Lett. B 586, 198 (2004) [arXiv:hep-ph/0404088].

[71] H. V. Klapdor-Kleingrothaus and I. V. Krivosheina, The Evidence For The
Observation Of 0nu Beta Beta Decay: The Identification Of 0nu Beta Beta
Events From The Full Spectra, Mod. Phys. Lett. A 21, 1547 (2006).

[72] K. T. Knopfle [GERDA Collaboration], Search for neutrinoless double-beta
decay of Ge-76 with GERDA, arXiv:0809.5207 [hep-ex].

[73] A. A. Smolnikov [GERDA Collaboration], Status of the GERDA experiment
aimed to search for neutrinoless double beta decay of 76Ge, arXiv:0812.4194
[nucl-ex].

[74] R. Ardito et al., CUORE: A cryogenic underground observatory for rare
events, arXiv:hep-ex/0501010.

[75] H. Kühbock, Neutrino masses in SO(10) models, Dissertation, University of
Vienna (2007).

[76] L. Lavoura, H. Kuhbock and W. Grimus, Charged-fermion masses in SO(10):
Analysis with scalars in 10+120, Nucl. Phys. B 754, 1 (2006) [arXiv:hep-
ph/0603259].

[77] W. Grimus and H. Kuhbock, Fermion masses and mixings in a renormalizable
SO(10) x Z_2 GUT, Phys. Lett. B 643, 182 (2006) [arXiv:hep-ph/0607197].

[78] W. Grimus and H. Kuhbock, A renormalizable SO(10) GUT scenario with
spontaneous CP violation, Eur. Phys. J. C 51, 721 (2007) [arXiv:hep-
ph/0612132].

[79] W. Grimus and H. Kuhbock, Embedding the Zee-Wolfenstein neutrino mass
matrix in an SO(10) x A4 GUT scenario, Phys. Rev. D 77, 055008 (2008)
[arXiv:0710.1585 [hep-ph]].

BIBLIOGRAPHY 117

[80] W. Grimus and H. Kuhbock, Renormalisable SO(10) models and neutrino
masses and mixing, Acta Phys. Polon. B 38, 3373 (2007) [arXiv:0710.2857
[hep-ph]].

[81] L. Lavoura and H. Kuhbock, A_4 model for the quark mass matrices, Eur.
Phys. J. C 55, 303 (2008) [arXiv:0711.0670 [hep-ph]].

[82] J. A. Nelder and R. Mead, A Simplex Method for Function Minimization,
Comput. J. 7 308 (1965).

[83] J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, Convergence
Properties of the Nelder-Mead Simplex Method in Low Dimensions, SIAM J.
Optim. 9 112 (1998).

[84] K. I. M. McKinnon, Convergence of the Nelder-Mead Simplex Method to a
Nonstationary Point, SIAM J. Optim. 9 148 (1998).

[85] W. H. Press, S. A. Teutolsky, W. T. Vetterling and B. P. Flannery, Numerical
Recipes in C++, Cambridge University Press, 2002.

[86] R. M. Lewis, V. Torczon and M. W. Trosset, Direct Search Methods: Then
and Now, J. Comput. Appl. Math. 124 191 (2000).

[87] L. Lavoura and W. Grimus, Seesaw model with softly broken L(e) - L(mu) -
L(tau), JHEP 0009, 007 (2000) [arXiv:hep-ph/0008020].

[88] W. Grimus and L. Lavoura, Softly broken lepton numbers and maximal neu-
trino mixing, JHEP 0107, 045 (2001) [arXiv:hep-ph/0105212].

[89] W. Grimus and L. Lavoura, Softly broken lepton numbers: An approach to
maximal neutrino mixing, Acta Phys. Polon. B 32, 3719 (2001) [arXiv:hep-
ph/0110041].

[90] W. Grimus, L. Lavoura and A. Singraber, Trimaximal lepton mixing with a
trivial Dirac phase, Phys. Lett. B 686, 141 (2010) [arXiv:0911.5120 [hep-ph]].

[91] W. Grimus and L. Lavoura, A non-standard CP transformation leading
to maximal atmospheric neutrino mixing, Phys. Lett. B 579, 113 (2004)
[arXiv:hep-ph/0305309].

[92] W. Grimus and L. Lavoura, A three-parameter neutrino mass matrix with
maximal CP violation, Phys. Lett. B 671, 456 (2009) [arXiv:0810.4516 [hep-
ph]].

118 BIBLIOGRAPHY

[93] S. Pascoli and S. T. Petcov, The SNO solar neutrino data, neutrinoless
double-beta decay and neutrino mass spectrum, Phys. Lett. B 544, 239 (2002)
[arXiv:hep-ph/0205022].

Zusammenfassung

Der direkte Vergleich zwischen Theorie und Experiment ist ein Grundpfeiler der
wissenschaftlichen Methode. Für jeden Physiker ist es ein spannender Augenblick
wenn theoretische Vorhersagen auf Resultate von experimentellen Beobachtun-
gen treffen, um entweder Übereinstimmung oder widersprüchliche Ergebnisse zu
Tage zu fördern. Heutzutage eröffnet die Teilchenphysik ein weites Betätigungs-
feld mit bahnbrechenden Entwicklungen auf theoretischer und experimenteller
Ebene. Auch das relativ junge Teilgebiet der computergestützten Physik leistet
einen wichtigen Beitrag, der Einsatz von leistungsfähigen Rechnern schreitet immer
weiter voran. In den letzten Jahren wurde speziell der Lepton-Sektor zu einer Spiel-
wiese für die Entwicklung neuer theoretischer Modelle, angespornt durch die Ent-
deckung der Neutrinooszillationen, Beiträge zur Frage der Dunklen Materie und
Hinweise auf Neue Physik. Basierend auf dem Standardmodell der Teilchenphysik
wurden bereits eine Vielzahl von Techniken und Erweiterungen untersucht, um
Eigenheiten der Neutrinos zu erklären, darunter etwa diskrete Symmetriegruppen
oder der seesaw-Mechanismus, bis hin zu Modellen zur Großen Vereinheitlichung
(GUT). Das steigende Interesse an der Neutrinophysik führt auch zu einer wach-
senden Zahl an Experimenten über solare, atmosphärische und Reaktor-Neutrinos,
wodurch die Genauigkeit der Messwerte weiter zunimmt und theoretische Modelle
mit diesen konfrontiert werden können.

Im Sinne der einleitenden Worte behandelt die vorliegende Arbeit Methoden,
um Theorie und Experiment zu vergleichen, auch wenn ein komplizierter Zusam-
menhang zwischen Modellparametern und daraus zu berechnenden Observablen
besteht. Die Analyse beruht dabei auf numerischen Verfahren, die anhand eines
Modells zur tri-bimaximalen Mischung und dessen Modifikationen getestet wer-
den. Zu Beginn werden die wichtigsten Eigenschaften des Standardmodells wieder-
holt und grundlegende Erweiterungen, wie Majorana-Neutrinos oder der seesaw-
Mechanismus diskutiert. Darauf aufbauend werden verschiedene Phänomene der
Neutrinophysik beschrieben, beispielsweise Neutrinooszillationen und der neutri-
nolose doppelte Beta-Zerfall. Die neueren experimentellen Ergebnisse dazu werden
ebenfalls bereitgestellt. Danach folgt ein thematischer Wechsel zu den verwende-
ten numerischen Methoden. Es wird die χ2-Funktion als Beurteilungskriterium
eingeführt, das die Übereinstimmung zwischen Modellvorhersagen und Messwerten
quantifiziert. Es entspricht dann das Minimum dieser Funktion der bestmöglichen
Anpassung zwischen Theorie und Experiment. Abhängig der Komplexität des un-
tersuchten Modells ist eine analytische Minimierung mitunter nicht möglich, sodass

man auf den Einsatz von numerischen Methoden angewiesen ist. Daher wird das
sogenannte Nelder-Mead Verfahren und die Fortran-Implementation ausführlich
beschrieben, die bei der Analyse der getesteten Modelle zur Anwendung kom-
men. Als Ausgangspunkt dient dabei ein Modell für tri-bimaximale Mischung, das
um CP -Erhaltung und zusätzliche spontane Symmetriebrechung erweitert wird.
Schließlich werden die Resultate der numerischen Verfahren präsentiert.

Ein wesentlicher Bestandteil der vorliegenden Arbeit war die Erstellung und An-
wendung des Nelder-Mead Programms. Daher wird der Quellcode im Anhang
bereitgestellt.

Curriculum Vitae

Persönliche Daten:

Name: Andreas Singraber

Geburtsdatum: 29. Juli 1986

Geburtsort: Wien

Staatsbürgerschaft: Österreich

Ausbildung:

1992 - 1996 Besuch der Volksschule Lacknergasse in Wien 18.

1996 - 2000 Besuch des BRG Reinprechtsdorfer Straße in Wien 5.

2000 - 2004 Besuch des BRG Neusiedl am See.

Schuljahr 2003/2004 Verfassen der Fachbereichsarbeit “Theorien über das Licht:
Von Sehstrahlen bis zur Quantentheorie” bei Mag. Andreas Wenth.

Juni 2004 Reifeprüfung mit ausgezeichnetem Erfolg bestanden.

Oktober 2004 Beginn des Studiums der Physik an der Universität Wien.

7. Oktober 2005 1. Diplomprüfung mit Auszeichnung bestanden.

7. Februar 2008 2. Diplomprüfung mit Auszeichnung bestanden.

April 2009 - Juni 2010 Verfassen der Diplomarbeit bei Ao. Univ.-Prof. Dr.
Walter Grimus.

Publikationen:

• W. Grimus, L. Lavoura and A. Singraber, Trimaximal lepton mixing with a
trivial Dirac phase, Phys. Lett. B 686 (2010) 141 [arXiv:0911.5120 [hep-ph]].

