
GENERALISED TRUNCATED POWER SERIES ALGEBRA FOR FAST

PARTICLE ACCELERATOR TRANSPORT MAPS

L. Deniau, C. I. Tomoiagă, CERN, Geneva, Switzerland

Abstract

A new Generalised Truncated Power Series Algebra

(GTPSA) has been developed for extending, simplifying and

optimising the transport maps used by particle accelerator

simulation codes. TPSA are intensively used in optics code

to describe transport maps of the elements constituting the

particle accelerator to any order. GTPSA extend the degrees

to inhomogeneous ones, where separate degrees can be spec-

ified for each variable and constrained by two total orders,

one for map variables and one for ordinary variables. This

allows tracking inhomogeneous planes of the 6D phase space

with many extra variables. A complete set of new formulas

and data structures have been derived to address the problem

of memory consumption required for efficient computation

of high order TPSA, including generalised indexing, multi-

plication and composition of inhomogeneous multivariate

polynomials. The implementation has been benchmarked

against well established libraries for the common subset with

TPSA, and outperforms all of them for supported differential

algebra operators on low and high orders, and high number

of variables.

INTRODUCTION

TPSA packages are intensively used in optics code to

describe transport maps of the elements constituting the par-

ticle accelerator to any order [1, 2]. Most of the known fast

multiplication algorithms working for univariate polynomi-

als do not straightforwardly extend to several variables [3],

and therefore the brute force approach remains the most

efficient one for truncated power series. The performance

improvements have to come from other kind of optimiza-

tions [4–7].

Notations

The TPSA are multivariate polynomials P (~z) ∈ K[~z],
~z = {z1, ..., zn} truncated at order d, where the commuta-

tive ring is generally R or C. A multivariate polynomial is

defined by the sum of all the monomials of order d or less:

P (~z) =

N∑

i=1

ai

n∏

j=1

z
αij

j ,

n∑

j=1

αij ≤ d, (1)

where the number N of coefficients ai is given by:

N = C(n + d, n) = C(n + d, d) =
(n + d)!

n!d!
. (2)

The binomial coefficient C is symmetric in variables and

orders, hence a TPSA package can deal equivalently with

high orders and low number of variables or low orders and

high number of variables. The number Ni of monomials of

order i with 0 ≤ i ≤ d or equivalently of monomials in the

variable zd−i
j with 1 ≤ j ≤ n can be calculated from the

recurrence property of the binomial coefficient:

Ni = C(n + i, n) − C(n + i − 1, n)

= C(n + i, n − 1).
(3)

Representations

The (unordered) sum of the monomials in (1) can be or-

dered in two practical forms:

1. By the product of univariate polynomials in the vari-

ables zi, which is used by the indexing function:

P (~z) =

n∏

i=1

P (zi) =

d∑

i=0

Nd−i∑

j=1

aij~zij . (4)

The monomial ~zij associated with the coefficient aij

are generated recursively from zk ×{zk+1, ..., zn}, e.g.

the outer sum over i corresponds to the variable z1. As

an example, a multivariate polynomial of order 3 with

variables {z1, z2, z3} can be represented by the series:

P (~z) =a1z0
1z0

2z0
3+

a2z0
1z0

2z1
3 + a3z0

1z0
2z2

3 + a4z0
1z0

2z3
3+

a5z0
1z1

2z0
3 + a6z0

1z1
2z1

3 + a7z0
1z1

2z2
3+

... + a20z3
1z0

2z0
3 .

(5)

2. By the sum of homogeneous multivariate polynomi-

als in the orders i =
∑n

k=1
αik, , which is used by the

storage of the aij and by the optimized multiplication:

P (~z) =

d∑

i=0

Pi(~z) =

d∑

i=0

Ni∑

j=1

aij~zij . (6)

The monomial ~zij associated with the coefficient aij are

generated recursively from P1 × Pi−1. As an example,

a multivariate polynomial of order 3 with variables

{z1, z2, z3} can be represented by the series:

P (~z) =a1z0
1z0

2z0
3+

a2z0
1z0

2z1
3 + a3z0

1z1
2z0

3 + a4z1
1z0

2z0
3+

a5z0
1z0

2z2
3 + a6z0

1z1
2z1

3 + a7z0
1z2

2z0
3+

... + a20z3
1z0

2z0
3 .

(7)

Generalization

The GTPSA extends the TPSA by splitting the variables

in two kinds ~z = {~x,~k}, where the map variables ~x =
{x1, ..., xv} with v ≥ 1 are present in both the map and

the (G)TPSA of the map variables, and where the knob

variables ~k = {kv+1, ..., kn} with n − v ≥ 0 are only

present in the GTPSA of the map variables.

MOPJE039 Proceedings of IPAC2015, Richmond, VA, USA

ISBN 978-3-95450-168-7
374Co

py
rig

ht
©

20
15

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

5: Beam Dynamics and EM Fields
D11 - Code Developments and Simulation Techniques



This distinction comes from the physical meaning of these

variables, where for example ∂xi/∂kj is the linear variation

of the coordinate xi (e.g. particle position) versus the knob

kj (e.g. magnet strength), while ∂kj/∂xj has no physical

meaning (e.g. magnet strength vs. particle position). Hence,

the knobs are never map variables.

The GTPSA also extends the TPSA by allowing to specify

a maximum order dj for each variable zj as well as two total

orders dx and dk for each kind of variables:

0 ≤ αij ≤ dj ,

v∑

j=1

αij ≤ dx ≤

v∑

j=1

dj , (8)

dk ≤ dx,

n∑

j=v+1

αij ≤ dk ≤

n∑

j=v+1

dj . (9)

Map variables xj can have zero maximum order, which

corresponds to scalars. In this case they do not appear in the

(G)TPSAs of the map variables, only as map variables. On

the other hand knobs cannot be specified with zero maximum

order.

The complexity behind these generalizations is twofold:

to take care of the unallowed monomials in (3), (4) and (6)

due to non-uniform maximum orders, and to handle all com-

binations of operations between scalars and heterogeneous

GTPSA, including the truncation of the calculations to the

specific orders of left-hand-side map variables of the equa-

tions of motion to save unneeded high order computations.

Specifications

The GTPSA extensions are useful to unify different kind

of studies using the same equations of motion, e.g. 4D and

6D beam dynamics. The maps are specified by the variables

maximum order dj and the total orders dx and dk. The fol-

lowing specifications for maps of GTPSA are of particular in-

terest, assuming a 6D phase space ~x = {x, px, y, py, s, ps}:

• ~x = {0, 0, 0, 0, 0, 0} corresponds to 6D zero order par-

ticle tracking, i.e. particles orbits, where the map is

simply a vector of six scalars. In this case, dx = 0,

dk = 0 and ~k = ~0.

• ~x = {2, 2, 2, 2, 0, 0} corresponds to 6D with second

order transverse beam dynamics and zero order lon-

gitudinal beam dynamics, which emulates 4D beam

dynamics. In this case, dx = 2, dk = 0 and ~k = ~0.

• ~x = {1, 1, 1, 1, 4, 4} corresponds to 6D with first order

transverse beam dynamics and fourth order longitudi-

nal beam dynamics. In this case, dx = 4, dk = 0
and ~k = ~0, meaning that mixed high order terms like

∂4ps/(∂x∂px∂y∂py) exist.

• ~x = {1, 1, 1, 1, 0, 0} and ~k = {1, ..., 1} corresponds

to 6D with first order transverse beam dynamics and

zero order longitudinal beam dynamics with n−v (few

hundreds) first order knobs in the GTPSA (e.g. strength

of orbit correctors). In this case, dx = 1 and dk = 1,

meaning that terms like ∂x/∂kj and ∂y/∂kj exist and

can be used directly by orbit correction algorithms.

All these inhomogeneous cases use the same equations of

motion for each kind of element to track the particle through

the lattice. The orders and the complexity of the calculations

are automatically and optimally handled by the GTPSA.

INDEXING

The indexing function is one of the key features of the

GTPSA as it needs to efficiently discard unallowed mono-

mials by (8) and (9), and calculates the index of the allowed

monomials. The indexing function for TPSA is simple as

soon as the TPSA are ordered by variables (i.e. from (4)).

The unique TPSA index ti of the ith-monomial can be cal-

culated from the monomial orders {αij} using:

ti =

n∑

j=1

H(j, sj) − H(j, sj+1), sj =

n∑

k≥j

αik, (10)

where the matrix H of size n × d is given by the equations:

H(j, 0) = 0, j = 1, ..., n (11)

H(1, i) = i, i = 0, ..., d (12)

H(j, 1) = H(j − 1, dj−1 + 1), (13)

H(j, i) = H(j, 1) + H(j, i − 1) − H(j − 1, i − 1) (14)

For example, given a TPSA specified by n = 3 and d = 3,

the matrix H looks like:

(j, i) 0 1 2 3
1 0 1 2 3
2 0 4 7 9
3 0 10 16 19

(15)

The index ti can be trivially translated to the index pi of a

TPSA ordered by homogeneous polynomials by a one-to-one

lookup table T going from (4) to (6), that is pi = T [ti].

Generalization

In the case of the GTPSA, the matrix H becomes sparse

and therefore the recurrent equations (13) and (14) cannot

be used to build H , but of course (10), (11), and (12) are

still valid. The process of building H has two phases.

The first phase initializes H with the indexes where each

variable changes of order in (4). For example, with ~x =
{1, 1, 3, 1} and dx = 4, this phase initializes H with:

(j, i) 0 1 2 3 4
1 0 1 2 3 4
2 0 2 4 · ·
3 0 4 8 12 15
4 0 15 · · ·

(16)

The row H(3, .) indicates that x3 gets orders {1, 2, 3, 4} at

indexes {4, 8, 12, 15} while x4 gets order 1 at index 15. Note

that x3 can reach the mixed order 4 when combined with

other variables due to dx = 4 in (10). The dots represent

unknown monomials remaining after the first phase.

The second phase solves the system of non-linear equa-

tions that replaces (14) not anymore valid for the GTPSA. In

order to quickly find the unknowns of H , the solver linearizes

the problem by doing the following steps:

Proceedings of IPAC2015, Richmond, VA, USA MOPJE039

5: Beam Dynamics and EM Fields
D11 - Code Developments and Simulation Techniques

ISBN 978-3-95450-168-7
375 Co

py
rig

ht
©

20
15

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs



Figure 1: Relative performance of the indexing functions.

1. For each unknown taken by increasing order in H ,

2. Generate a monomial that includes the unknown,

3. Get the index from (10) using the incomplete H ,

4. Find the correct index using representation of (4),

5. The solution is the difference between the two indexes.

This procedure will fill the unknown slots of H in (16) as

follows, where the dots are now the unallowed monomials:

(j, i) 0 1 2 3 4
1 0 1 2 3 4
2 0 2 4 6 8
3 0 4 8 12 15
4 0 15 · · ·

(17)

MULTIPLICATION, COMPOSITION

The multiplication of GTPSA is not very different from

TPSA. It uses the homogeneous polynomials representation

of (6), which is the most efficient for multiplying truncated

multivariate polynomials. The only major difference is that

the indexing function for the resulting monomial indexes is

precomputed using (10) and the lookup table T to obtain the

indexes of (6). These precomputed “destination” indexes

are stored in lookup matrices Lij corresponding to each

combination of multiplication Ri+j = Pi × Qj with i ≤
j, and where a special negative index is used for tagging

unallowed monomials. This saves a huge amount of memory

compared to table handling indexing of the entire TPSA at

once as in the Yang TPSA [4], and increase the number of

variables and/or the high orders supported by the GTPSA.

Optimization

The multiplication of truncated multivariate polynomials

is the key operation of the GTPSA, and requires careful

optimization. GTPSA takes care of the following three cases

that lead to specific optimized multiplications:

• symmetric: Pi × Qj and Pj × Qi both exist,

• asymmetric: either Pi × Qj or Pj × Qi exists,

• triangular: Pi × Qi exists (diagonal).

The representation by homogeneous polynomials offers also

to parallelize these multiplications per resulting orders. The

map composition is optimal as it performs v × N multipli-

cations. For orders ≥ 12 (resp. order ≥ 6 for composition),

we balance the load of the calculation over the available

CPU cores, and we split the highest order on two cores, as it

represents by itself about half of the total calculation.

Figure 2: Relative performance of the multiplications.

Figure 3: Relative performance of the compositions.

Figure 4: Relative performance of the knobs (inhomoge-

neous) vs. variables (homogeneous) for dx = 2 and dk = 1.

BENCHMARK

The relative performances of the indexing function, the

multiplication, and the map composition, all with 6 variables

and no knobs for compatibility with TPSA, (i.e. n = v = 6),

are presented in Figs. 1, 2 and 3, where a ratio of e.g. 4

means ×4 slower than the GTPSA. These results show that

the GPTSA outperforms the Berz TPSA [1] and the Yang

TPSA [4] (resp. BTPSA and YTPSA) despite of its extra

complexity and its extended flexibility. The Fig. 4 shows the

speed improvement of the multiplication using GTPSA that

allows 6 variables at order 2 and many extra knobs at order

1 compared to TPSA where everything must be specified as

variables at order 2.

CONCLUSIONS

We have presented a new Generalized TPSA package that

offers much more flexibility for the computation of maps in

beam dynamics and complex maps for normal form analy-

sis. It outperforms well-known high performance packages

while adding extra flexibility and in spite of complexity.

Future work will focus on optimizing sparse maps using

a mixed representation of dense and sparse homogeneous

polynomials, which should be more efficient for elements

maps.

MOPJE039 Proceedings of IPAC2015, Richmond, VA, USA

ISBN 978-3-95450-168-7
376Co

py
rig

ht
©

20
15

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

5: Beam Dynamics and EM Fields
D11 - Code Developments and Simulation Techniques



REFERENCES

[1] M. Berz, Modern Map Methods in Particle Beam Physics,

Academic Press, 1999, http://bt.pa.msu.edu/pub.

[2] E. Forest, Beam Dynamics, CRC Press, 1998.

[3] J. van der Hoeven and G. Lecerf, On the Complexity of Mul-

tivariate Blockwise Polynomial Multiplication, ISSAC’12,

Grenoble, France, 2012.

[4] L. Yang, Array Based Truncated Power Series Package,

IPAC’09 (THPSC059), San Francisco, USA, 2009.

[5] J.F. Ostiguy and L. Michelotti, MXYZPTLK: An Efficient,

Native, C++ Differentiation Engine, PAC’07 (THPAN113),

Albuquerque, New Mexico, USA, 2007.

[6] J. R. Cary and S. G. Shasharina, Efficient C++ Library for

Differential Algebra, EPAC’98 (THP38C), Stockholm, Swe-

den, 1998.

[7] M. Gastineau, Parallel Operations of Sparse Polynomi-

als on Multicores - I. Multiplication and Poisson Bracket,

PASCO’10, Grenoble, France, 2010.

Proceedings of IPAC2015, Richmond, VA, USA MOPJE039

5: Beam Dynamics and EM Fields
D11 - Code Developments and Simulation Techniques

ISBN 978-3-95450-168-7
377 Co

py
rig

ht
©

20
15

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs


