Math. Struct. in Comp. Science (2016), vol. 26, pp. 1107-1195. (© Cambridge University Press 2014
doi:10.1017/S0960129514000425 First published online 17 November 2014

On quantum lambda calculi: a foundational
perspective

MARGHERITA ZORZI'

Dipartimento di Informatica, Universita degli Studi di Verona, Strada Le Grazie 15, 37134, Verona,
Italy
Email: margherita.zorzi@univr.it, marghi.zorzi@gmail.com

Received 15 November 2011 ; revised 30 June 2014

In this paper, we propose an approach to quantum A-calculi. The ‘quantum data-classical
control’ paradigm is considered. Starting from a measurement-free untyped quantum
A-calculus called Q, we will study standard properties such as confluence and subject
reduction, and some good quantum properties. We will focus on the expressive power,
analysing the relationship with other quantum computational models. Successively, we will
add an explicit measurement operator to Q. On the resulting calculus, called Q*, we will
propose a complete study of reduction sequences regardless of their finiteness, proving
confluence results. Moreover, since the stronger motivation behind quantum computing is
the research of new results in computational complexity, we will also propose a calculus
which captures the three classes of quantum polytime complexity, showing an ICC-like
approach in the quantum setting.

1. Introduction

Quantum computing is a computational paradigm based on abstract computational
models which obey (totally or in part) to quantum mechanics’ physical laws. Quantum
computing is a promising paradigm as testified by a number of interesting results about
computational complexity (Grover 1999; Shor 1994, 1997). The seminal ideas behind
quantum computing are due to Feynman. He posed a simple but interesting question:
is a classical computer able to simulate a generic physical system? The problem can be
formulated in this way: given a physical system of N two-state (spin-%—like) interacting
particles, can it be fully described by a function of the shape y(xi,...,xy,t), where ¢
represents time? The answer to Feynman’s question is the following: the full description
of a classical system can be efficiently simulated by a classical computer with polynomial
slowdown. In the case of a quantum system, the slowdown is exponential.

The birth of quantum computing coincided therefore with the attempt to understand
how a computational device could be created in order to emulate an arbitrary physical
system. Feynman’s idea was resumed in Benioff (1980): he stated the first relationships

T The first version of this work was supported by the project ANR-08-BLANC-0211-01 ‘COMPLICE’
(Implicit Computational Complexity, Concurrency and Extraction), Laboratoire d’Informatique de Paris
Nord (LIPN), UMR CNRS 7030, Institut Galilée - Universite Paris-Nord, 99 avenue Jean-Baptiste Clément,
93430, Villetaneuse.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1108

between the quantum mechanical model and a mathematical computational model such
as Turing machines. After these important introductory investigations, the first concrete
proposal for a quantum abstract computer is due to Deutsch, who introduced quantum
Turing machines (Deutsch 1985). He started from the probabilistic version of the Church—
Turing thesis, attempting to understand what physical basis were required in order to
define stronger and stronger versions of the thesis. Deutsch also introduced the first
quantum algorithm, subsequently called Deutsch’s algorithm (see Section 5, Example 8):
we can affirm that all the algorithmic results in the field of quantum computing are
partially inspired by Deutsch’s intuition.

Starting from Deutsch’s fundamental works, Bernstein and Vazirani defined the quantum
universal Turing machine, giving an accurate set of foundational results about the com-
putational model and its mathematical setting (Bernstein and Vazirani 1997). Bernstein
and Vazirani also developed a complexity theory for quantum computing, revisiting and
extending the results of the classical and the probabilistic cases.

Since quantum Turing machines, other models have been defined. In 1989, Deutsch
introduced quantum circuit families and this topic was subsequently developed in Yao
(1993), where the author further extended the quantum complexity theory. In Nishimura
and Ozawa (2009), the authors established the ‘perfect equivalence’ between quantum
Turing machines and quantum circuit families (this foundational result will be exploited
in Section 8, see also Appendix A.5). Another quantum model, the quantum random
access machine (QRAM), has been defined in Knill (1996); a QRAM is a classically
controlled machine enriched with a quantum device. On the grounds of the QRAM model
(see also Lanzagorta and Uhlmann (2009)), Selinger defined the first functional language
based on the so-called quantum data-classical control paradigm, giving a statically typed
language whose semantics, provided in terms of super-operators (Preskill 2006), are fully
abstract (Selinger 2004). The idea behind this ‘hybrid’ computational model is relevant
to the present work: in fact, the /-calculi proposed in this paper are based on Selinger’s
approach.

The quantum computational paradigm had a strong impact on the notion of ‘com-
putational feasibility’ of problems. The most surprising result is due to Shor, which
proved that the factorization of integers and the discrete logarithm problems (for which
nowadays an efficient classical algorithm is still unknown) could be efficiently solved,
namely in polynomial time, by a quantum computer (Shor 1994, 1997). Shor’s algorithm
for prime factorization catalyzed the interest of the scientific community into the
quantum computing research. Other important quantum algorithms are Grover’s quantum
algorithm for efficient data search and the polytime quantum algorithm for the so-called
Simon’s problem (Nakahara and Ohmi 2008).

On these bases, several attempts to define quantum programming languages, either
imperative or functional, have been proposed over the last 15 years. On one hand, the
design of quantum programming languages is strongly oriented to the implementation of
quantum algorithms for a hoped evolution of technology towards a quantum architecture.
On the other hand, the definition of functional paradigmatic languages or functional
calculi can be a good instrument in order to investigate theoretical aspects of quantum
computing, in particular, the foundational basis of quantum computability.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1109

The aim of this paper is to provide an overview on a possible approach to quantum
functional calculi. The results stated and proved in Dal Lago et al. (2009), Zorzi (2009),
Dal Lago et al. (2010) and Dal Lago et al. (2011) are here revisited a posteriori in an
unified setting.

At the same time, we hope this paper should be a ‘gentle’ introduction to quantum
computing’s mathematical framework and basic concepts to everyone which, starting from
a good background on lambda calculus and linear logic, is interested to an employment
of these familiar topics in a non-classical computational setting.

1.1. Synopsis
The paper is structured as follows:

— In Sections 2 and 3, we will introduce the mathematical framework of quantum
computing and quantum computing bases respectively. The expert reader may skip
this introductory part. The non-expert reader could also read Appendix A before
Section 3.

— Section 4 is devoted to a discussion about quantum computing peculiarities w.r.t.
classical and probabilistic computational paradigms.

— In Section 5, the quantum A-calculus Q is introduced and studied.

— In Section 6, we extend Q with an explicit measurement operator, obtaining the
calculus Q".

— Section 7 is an ‘intermezzo’ about quantum functional languages.

— In Section 8, an implicit polytime quantum /A-calculus called SQ is proposed.

— In Appendix A, we briefly recall quantum computational models and polynomial time
quantum complexity classes (the expert reader may skip this part). In Appendix B,
some detailed proofs about a measurement operator defined in Section 2, and used in
Section 6, are proposed.

2. Mathematical framework of quantum computing (in a nutshell)

The most important concepts introduced by quantum mechanics, such as superposition
and entanglement (see Section 3), are essentially described in terms of properties of Hilbert
spaces. We recall here only essential notions. For the basic definitions of inner product
spaces, Hilbert basis, tensor product, Hilbert spaces and for an exhaustive treatment of
these topics, see e.g. Birkhoff and Mac Lane (1967) and Roman (2008).

2.1. The Hilbert space /*(S)

In this paper, we will deal with particular cases of the Hilbert space /*(S).
Let S be a finite or countable set and let /%(S) be the set of square summable functions

{¢ 1§ :8—>C,Y 19(s) < oo}

seS

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1110

equipped with
1. an inner sum + : 7%(S) x /%(S) — /3(S)

defined by (¢ + v)(s) = ¢(s) + v (s);
2. a multiplication by a scalar - : C x /3(S) — /*(S)

defined by (¢ - @)(s) = ¢ - (¢(s));
3. an inner product’ (-]} : /3(S) x /*(S) —» C

defined by (lw) =3 s d(s)"w(s),
it is easy to show that /%(S) is an Hilbert space.

The inner product (-|-) induces a norm defined as ||y|| = (y|yp)'/? for each vector i in
/X(S).
A vector in /*(S) is normalized if its norm is 1.

Definition 1 (quantum state). A quantum state, or quantum register is any normalized
vector in /%(S).

Notation 1. In the following we will use the ‘Bra/Ket-notation’, introduced by Paul Dirac.
Given a Hilbert space H, a ket |¢) indicates a generic element (column vector) of H. Kets
like |¢) are typically used to describe quantum state. The matching (| is called bra, and
denotes the conjugate transpose of |).

The set B(S) = {|s) : s € S}, where |s) : S — C, is defined by
N1 ifs=
|S>(S)_{O ifs#s
B(S) is a Hilbert basis of /%(S), usually called the computational basis in the literature.

2.2. Unitary operators

In quantum computing, the quantum computational steps are represented by linear
transformations between normalized vectors in /%(S). Unitary operators are one of the
most important classes of operators involved in the mathematical description of quantum
mechanics. For our scope, we can restrict definitions to the finite-dimensional case.

Definition 2 (unitary operators — finite-dimensional case). Let H be a finite-dimensional
Hilbert space, and let U : H — H be a linear transformation. The adjoint of U is the
unique linear transformation U : H — H such that for all ¢,y

(Ug,p) = (¢, UTy). If UTU is the identity, we say that U is a unitary operator.

The tensor product of unitary operators is defined as follows:

 In order the inner product definition to make sense, we should prove that the sum Y ses O(5)"w(s) converges,
see Roman (2008).

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1111

Definition 3 (tensor product of unitary operators). Let H; and H, be finite-dimensional
Hilbert spaces and let U : H; — H; and W : H, — H, be two unitary operators. The
linear unitary operator U® W : H; ® H, — H ® H, is defined by

(UeW)oey)=(Up) e (Wp)
with ¢ € Hy and p € H,.
For details, see Conway (1990) and Roman (2008).

2.3. Two important finite-dimensional Hilbert spaces

In the rest of the paper and in the literature, the following spaces are extensively used.
The space /%({0,1}")

Let S ={0,1}", ie. S is the set of finite binary strings of length n. The Hilbert space
‘H(S) is the standard space used in the field of quantum computing. This kind of space
is useful to describe bits, qubits and quantum registers.

For example, let us consider S = {0, 1}?. The computational basis of /2(S) is
{]00),101),110),|11)}, and a generic quantum register may be expressed, in the compu-
tational basis, as o1|00) + 2|01) + 23]10) + 0| 11), where >, |oi|? = 1.

The space H(V)

Let V be a set of names and let S = {f|f : V — {0,1}}, ie. S is the set of classical
valuations of V into the set {0, 1}. /%(S) is a Hilbert space of dimension 2#V.

Notation 2. In the following we will shorten /2({0, 1}Y) with H().

This space is useful to describe quantum registers when we want to assign names
to qubits, without reference to their ordinal position (as it usually happens in the
literature and in the calculi we propose in this paper). By definition, the set of
quantum registers are normalized vectors of H()), i.e. a quantum register will be a
function ¢ : {0,1}Y — C such that Zfe{O,l}V |¢(f)]> = 1 (normalization condition).
The space H(V) is equipped with the standard or (computational) orthonormal’ basis

BW)={If) : f € {0, 1}V}.

Example 1. The standard basis of the space H({p,q}) is
{Ip— 0,9~ 0),]p—0,g— 1),[p— 1, 0),]p—> 1,g - 1)}.

Let V' and V" be two sets of names such that V' NV’ = @&. With H(V') ® H(V")
we denote the tensor product (defined in the usual way) of H(V') and H(V"). If
BYV') = {lfi) :0<i<2" and B(V") = {|g;) : 0 < j < 2™} are the standard

 Given an inner product space V, a nonempty set U of vectors is an orthogonal set if for all uj,u; € U, if
u;j # u;j then w; Luj, ie. (u;,u;) = 0. If each u; is also a normalized vector, then U is an orthonormal set (for
details, see Conway (1990); Roman (2008)).

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1112

bases respectively of H(V’) and H(V"), then H(V') ® H(V”) is equipped with the basis
{Ifi) ®1gj) :0<i<2",0<j<2"}. We will abbreviate |f) ® |g) with |f, g).

If V is a set of names, then Iy is the identity on H(V), which is clearly unitary.
Moreover, it is easy to show that if V' N V" = & then there is a standard isomorphism
iy

HOV) @ HV') = H(V UV").
In the rest of the paper, we will assume to work up to such an isomorphism (which
holds even if V' or V" are empty). In particular, if Q € H(V),r ¢ V and |r— ¢) € H({r})
then Q ® |r — ¢) will denote the element i(Q ® |r— ¢)) € HV U {r}) .
If @ € H(V') and Q" € H(V") are two quantum registers, with a little abuse of
language (authorized by the isomorphism defined above) we will say that Q' ® Q" is
a quantum register in H(V' U V).
The smallest quantum space H((J) (isomorphic to the field C), is called an empty
quantum register ; it is nothing more than a unitary element of C (i.e. a complex
number ¢ such that |c|] = 1). We chose the scalar number 1 as the canonical empty
quantum register. In particular, the number 1 also represents the computational basis
of H(J).
We will sometimes use a ‘compact’ representation of quantum states. Let V be a set
of names with cardinality n > 1. Moreover, let @ € H(V) and let r € V. Each state Q
may be represented as

2)171 znfl
Q= Zoci\rH()) ®bi+Zﬁ,~|rr—> 1) ® by,
i=1 i=1
where {b;};c1 217 is the computational basis of H(V —{r}). Please note that if V = {r},
then @ = alr— 0) ® 1 + Blr— 1) ® 1, that is, via the previously stated isomorphism,
alr — 0) + Blr— 1).

Other definitions are now in order.

Let u € H({0,1}") be the quantum register u = 04|0...0) + -+ +oa|1...1) and let
{q1,...,q,) be a sequence of names. u'9-9) is the quantum register in H({q1,---,qn})
defined by ularetn) = orlgi— 0,...,qu—>0)+ - Foamlqgr—1,...,q,— 1).

Let U : H(V) — H(V) be an operator and let {(qi,...,q,) be any sequence of

U and <CI13---sQn> induce an Operator U(q1 ,,,,, qn> : H({Qbuan}) - H({qlaaqn})

defined as follows: if |f) = |g;, > bj,,...,q;, +> bj,) is an element of the orthonormal
basis of H({q1,...,qn}), then

def
Ulgreeanlf) = (Ulbr,... b))),
where q;, — bj means that to the qubit named g; we associate the element b; of the
basis.
Let V' = {gj,.....qj,} V. We naturally extend (by suitable standard isomorphisms)
the unitary operator Uy, g H(V') — H(V') to the unitary operator Uy,

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1113

H(V) — H(V) that acts as the identity on variables not in V' and as U ,.q;) ON
variables in V.

In the following, we assume that, when writing U(,, ., the order in which the names
appear in the subscript matters. This convention is exploited in the following example.

Example 2. Let us consider the standard operator enot : />({0,1}%) — /2({0,1}?),
which acts on the computational basis as follows:

cnot|00) |00) cnot|10) [11)
cnot|01) = |01) cnot|11) = |10).

The cnot operator is one of the most important quantum operators (see also Ex-
ample 4). Intuitively, the cnot operator complements the target bit (the second one) if
the control bit (the first one) is 1, and otherwise does not perform any action. Let us
fix the sequence (p,q) of variables, cnot induces the operator

cnot((, 0y - H({p,q}) = H({p.q})

such that
enot(, 1y|q — 0,p— 0) = |g+— 0,p— 0);
cenot(,1|q— 0,pr—> 1) = |g— 1,pr>1);
enot (gl — Lp—0) = |g— 1,p—0);
enot, g — Lp—1) = |g— 0,p— 1).

Please note that |g — ¢1,p+— ¢2) = |p— ¢2,q — c1), since the two expressions denote
the same function. Consequently enot(, ,\|q — c1,p — ¢2) = enot(;, .1y |[p — 2,4 — c1).
On the other hand, the operators enot, ., and enot, , are different: both act as
controlled not, but enot, .y, uses p as control qubit while cnot), uses gq.

2.4. A measurement in H(V)

In this section, we give a mathematical definition of a measurement operator in H(V).
We define two linear maps which perform a destructive measurement on a quantum
register.
It will be used in Section 6, where we propose a quantum A-calculus with explicit
measurement operator (Dal Lago et al. 2011; Zorzi 2009).

Definition 4 (destructive measurements). Let Q) be a set of names with cardinality
n=|QV| > 1,r e QV, {bi}icn 1 is the computational basis of H(QV — {r}) and let Q
be 2,2:]1 oilr— 0) ® b; + 212:7]] pilr— 1) ® b; € H(QV). The two linear functions

My o, Mp1 © H(QV) - H(QV - {r})

such that
2n—I 2n—1

mo(Q) = b mu(Q) = Bib;
i=1 i=1

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1114

are called destructive measurements. If Q is a quantum register, the probability p. of
observing ¢ € {0,1} when observing r in Q is defined as (Q|m,.'m,.|Q) (called expected
value).

The name ‘destructive’ comes from the fact that the functions m,. (¢ € {0,1}) map an
element of a Hilbert space of dimension 2" in an element of a Hilbert space 2"~!. Let us
define now the ‘normalized’ versions of m,o and m,;:

Definition 5 (normalized destructive measurement). Given a set of names Q) and r € QV,
the linear maps

Mr,O, Mr,l : H(QV) - H(QV - {V})
are defined as follows:

Lif (QIm{ m, Q) = 0 then M, (Q) = m,(Q);
2.1f (Q|m;r)cm,‘,c|Q> # 0 then M, (Q) = m.(Q)

N

The just defined measurement operators belong to the class of the so-called general
measurements (Kaye et al. 2007; Nielsen and Chuang 2000) and satisfy some properties,
such as completeness. See Appendix B for statements and detailed proofs.

3. Quantum bits, quantum states and the framework of quantum mechanics

Quantum mechanics was born at the beginning of the 20th century, when it was clear that
the classical theories (such as Newton’s and Maxwell’s theories) had great problems in
order to explain and understand the unexpected results of several physical experiments.
Quantum mechanics is the mathematical framework in which it is possible to develop new
physical theories such as quantum physics, taking into account several surprising rules
and postulates.

Paul Dirac wrote: ‘Quantum Mechanics is more suitable in order to understand atomic
phenomena, and from several points of view, it appear a more elegant theory with respect to
the classical one’ (Dirac 1947). Nowadays, we can still say that we are able to understand
some aspects of the world and the universe only by accepting the unusual point of view
of quantum mechanics.

We will recall here the main ideas of quantum mechanics in a standard, intuitive way:
we introduce the basic notions through some postulates, which capture the fundamental
connections between the physical world and the mathematical formalism; the postulates
give furthermore the basis of quantum computing.

Quantum mechanics’ framework is able to interpret the structure, the evolution and
the interaction of quantum systems. The first postulate of quantum mechanics assigns to
quantum systems a mathematical representation in terms of Hilbert spaces.

Postulate I

The state of a system is described by a normalized vector in a Hilbert space H

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1115

The Hilbert space H of a quantum system is called the state space, and the vector
represents a state vector, which completely describes the system.

This very simple postulate embeds two features of the quantum state: the linearity of
the system’s description (see also Postulate IT) and the existence of a scalar product and of
a norm. In particular, the scalar product permits to link a probability to each observable.

As described in Section 2, each Hilbert space which describes a closed quantum system
is defined on the field of complex numbers. Let us consider the Hilbert space #%(S) as
defined in Section 2.3, and let us take S = {0,1}".

The Hilbert space /*(S) is the standard space used in quantum computing and it is
useful to describe quantum states in a simple, intuitive (but rigorous) way.

The most simple quantum system is a two-dimensional state space whose elements are
called quantum bits or qubits for short.

The more direct way to represent a quantum bit is a unitary vector in the two-
dimensional Hilbert space #%({0,1}). We will denote with |0) and |1) the elements of the
computational basis of /2({0,1}).

The states |0) and |1) of a qubit correspond to the boolean constants 0 and 1, which
are the only possible values of a classical bit. A qubit, however, can assume other values,
different from |0) and |1). In fact, every linear combination |yp) = «|0) + B|1) where
o, f € C and |a)> + |B]* = 1, represents a possible qubit state. These states are said to be
superposed, and the two values o and f are called amplitudes. The amplitudes « and f
univocally represent the qubit with respect to the computational basis.

While we can determine the state of a classical bit, for a qubit we cannot establish with
the same precision the values o and f: quantum mechanics says that a measurement of a
qubit with state «|0) + f|1) has the effect of changing the state to |0) with probability |«|?
and to |1) with probability ||>. We will discuss this when we introduce the measurement
postulate.

When defining quantum computational models, we need a generalization of the notion

of qubit, the quantum register or quantum state (Masini et al. 2008, 2011; Nishimura and
Ozawa 2009; Selinger 2004; Selinger and Valiron 2006; van Tonder 2004; Volpe et al.
2014). A quantum state can be viewed as a system of n qubits and, mathematically,
it is a normalized vector in the Hilbert space /%({0,1}") (Definition 1). The standard
computational basis for /2({0,1}") is
B ={|i) | i is a binary stringof length n}.
In the literature, it is often written that #2({0,1}") is the Hilbert space C?'. This is not
completely correct: we should say that /2({0,1}") is isomorphic to C%'. It is possible to
prove that the map v : /3({0,1}") — C?, such that for each element |i) € B, v(]i)) =
(0...1...0)T (with 1 only in the (i + 1)th position), is an isomorphism of Hilbert spaces.
Note that v maps the computational basis of #%({0, 1}") into the standard basis of C%".

In the following, in order to not make the treatment heavy, we will work up to the
above defined isomorphism v; namely, we will treat /2({0,1}") (which has dimension 2")
and C?" as the same space.

Note also that /2({0,1}") ® /*({0,1}™) is (up to isomorphism) /2({0,1}"*™); the iso-
morphism is given by the map |i) ® |j) — |ij) (see also Postulate III for details about the
composition of quantum system).

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1116

Example 3. Let us consider a two-level quantum system, i.e. a system of 2-qubits. Each
2-qubit quantum register is a normalized vector in /%({0, 1}?) and the computational basis
is {|00),01),]10),|11)}. For example, %\OD + %\OO) € /%({0,1}") is a quantum register
of 2-qubits.

The following postulate describes how an isolated physical system evolves over time.
Since normalized vectors represent physical systems, the (discrete) evolution of systems
can be viewed as a suitable transformation on Hilbert spaces. Postulate II ensures that
the evolution is linear and unitary':

Postulate II

The time evolution of the state of a closed quantum system is described by
a unitary operator. Giving an initial state |yp;) for the closed system, for each
evolution to a state |i,), there exists a unitary operator U such that |yp,) =

Uly1).

Thus, a quantum physical system can be described in term of linear operators and in a
deterministic way*.

In quantum computing we refer to a unitary operator U acting on a n-qubit quantum
register as an n-qubit quantum gate. Via the isomorphism v we can represent operators
on the 2"-dimensional Hilbert space #%({0, 1}") with respect to the standard basis of C*’
as 2" x 2" matrices, and it is possible to prove that to each unitary operator on a Hilbert
space it is possible to associate an algebraic representation.

The application of quantum gates to quantum registers represents the pure quantum
computational step and captures the internal evolution of quantum systems.

The most simple quantum gates act on a single qubit: they are operators on the space
/*({0,1}), represented in C2 by 2 x 2 complex matrices.

For example, the quantum gate X is the unitary operator which maps |0) to |1) and |1)
to |0) and it is represented by the matrix

(7o)

T We refer to a closed system, ie. to a system that interacts in no way with other systems or with the rest of
the world, the observer included. This is an approximation of reality, but it is a very common approximation
in physical theories. We accept this terminology in order to distinguish unitary evolution from quantum
measurement, which implies an explicit interaction of the system with the environment.

¥ It is possible to put in evidence the evolution with respect to time by adopting the notation ‘[y(t))’, which
describes the state at the time t. As a consequence, Postulate II can be written as |y(t2)) = Ul(ta, t1)|p(t1)),
where we also pick out the temporal information for the unitary operator. It is possible to prove that U is an
unitary operator if the following condition holds: there exists a Hermitian operator A such that U = exp[i4].
By means of simple algebraic steps it is easy to derive that U(ty,t;) = exp[id'(t; — t1)] where A’ is again
a Hermitian operator. It is useful to write A" in terms of an operator H (the Hamiltonian operator) which
has energy dimension, i.e. U(ty,t1) = exp[iH(t, — t1)/h] where h is Planck’s constant. This condition gives
an alternative formulation (in differential form) of the second postulate: %W)(t)) = —%HWJ([)). This is the
famous Schrodinger equation, formulated in 1926 (Maccone and Salasnich 2008).

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1117

Being a linear operator, it maps a linear combination of inputs to the corresponding
linear combination of outputs, and so X maps the general qubit state «|0) + |1) into the

state «|1) + f|0) i.e.
(10) (3)-(2)

Other important 1-qubit quantum gates are

() =G

The quantum gates X, Y, Z are the so-called Pauli gates.
Another interesting unitary gate is the Hadamard gate denoted by H which acts on the
computational basis in the following way:

0) — %(I0> +11) 1) —=(l0) = 1))

1
& 7

The Hadamard gate, which therefore is given by the matrix

=)

is useful when we want to create a superposition starting from a classical state. It also
holds that H(H(|c))) = |¢) for ¢ = {0,1}.

1-qubit quantum gates can be used in order to build gates acting on n-qubit quantum
states, since an n-qubit quantum register with n > 2 can be viewed as a composite system.
It is possible to combine two (or more) distinct physical systems into a composite one.
Postulate III tells us how tensor product of Hilbert space can describe the state space of
a composite system.

Postulate III

When two physical systems are treated as one combined system, the state space
of the two combined physical system is the tensor product space H; ® H, of
the state spaces H; and H; of the component subsystems. If the first system is
in the state |¢1) and the second system is in the state |¢,), then the state of the
combined system is |¢1) ® |¢h2).

Notation 3. We will often omit the ‘®” symbol, and will write the joint state as |ypq)|y,)
or as [p1y).

The physical principles behind Postulate I1I thrust the composition law of probability. In
fact, the probability of obtaining two independent observables is exactly the product of
the probabilities of the single results.

If we have a 2-qubit quantum system, we can apply a 1-qubit quantum gate only to one
component of the system, and we implicitly apply the identity operator to the other one.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1118

For example, suppose we want to apply X to the first qubit. The 2-qubits input |yp; ® ;)
gets mapped to X[p1) ® Iy2) = (X ® I)|p1) ® |y2).

3.1. Entanglement

Not all quantum states can be viewed as composite systems. In other words, if |p) is
a state of a tensor product space H; ® H,, it is not generally the case that there exists
lp1) € Hy and |p,2) € Hy such that |p) = |y1) @ [p,). Indeed, it is not always possible to
decompose an n-qubit state as the tensorial product of n qubits.

These non-decomposable state are called entangled and enjoy properties that we cannot
find in any object of classical physics. If n qubits are entangled, they behave as if connected,
independently of the real physical distance. The strength of quantum computation is
essentially based on the existence of entangled states (see, for example, the teleportation
protocol (Nielsen and Chuang 2000)).

Example 4. The 2-qubit states |yp) = %|00)+%|11), lp) = %|01>+%|10) are entangled.
The 2-qubit state ¢ = «|00) + £]01) is not entangled. In fact, it is possible to express it in
the mathematically equivalent form ¢ = |0) ® («|0) + B|1)).

3.2. Measurement

Describing unitary evolution of a quantum system, Postulate II assumes that the system
is closed, i.e. that it is not allowed to interact with its environment. This is a good
assumption in order to describe several properties, but a real system cannot always be
closed.

In a realistic perspective, a quantum system interacts with another one, and also with
a measurement apparatus. Since the evolution of the state during a measurement is not
unitary, so we need a new postulate.

Postulate IV

Let A be a physical system, and let B = {|¢;)} be an orthonormal basis of a
state space H 4 for A. It is possible to perform a measurement on H, w.r.t. B that
given a state |p) = >, oi|¢;) leaves the system in the state ¢; with probability
Joui|.

The described measurement is called von Neumann measurement, and it is a special kind
of projective measurements (see e.g. Isham 1995; Kaye et al. 2007; Nielsen and Chuang
2000). Projective measurement (here proposed in a simplified setting) is intuitive and it
is commonly used to explain the measurement postulate. It enjoys some properties. For
example, repeated measurements give the same result: if after a measurement the system
is (with the related probability) in the state ¢;, a second measurement applied on ¢; acts

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1119

as the identity. Moreover, projective measurement destroys the superposition” but does
not modify the dimension of the Hilbert space.

Nevertheless, this is not the most general type of measurement in quantum mechanics.
The measurement process can be generalized according to the different ways one wants
to manipulate a given system. For example, one could want to apply two or more
successive measurements or apply unitary transforms both before and after a measurement.
A more comprehensive formalism for the description of measurement is the general
measurement (Isham 1995; Kaye et al. 2007; Nielsen and Chuang 2000). An example of
general measurement is the destructive measurement defined in Section 2.4. It is possible,
however, under certain assumptions, to show equivalence between general measurements
and projective measurements (see Nielsen and Chuang (2000) for a detailed discussion
about this topic).

3.3. No-cloning theorem

The no-cloning theorem states that quantum mechanics does not allow us to make a
copy of an unknown quantum state. It was discovered in the early 1980’s (Wooters and
Zurek 1982) and it captures one of the fundamental properties of quantum systems and
of quantum information.

One of the primitive operations in information theory is the copy of a datum but
when we deal with quantum data as qubits, quantum information suffers from lack of
accessibility in comparison to classical one.

Why is it not possible to duplicate a quantum bit? Let |p) = «|0) + f]1) be a 1-qubit
quantum state. We could try to make a copy using a CNOT gate, as for the classical
caset. Let then CNOT gate take the state |ip) as the control input, and a state initialized
to |0) as the target input. The input state is therefore «|00) + 8|10). As output, could the
CNOT gate give the tensor state |p) ® |yp)?

The function of CNOT is to complement the second qubit only if the first is 1,
and thus the output state will be |00 + f|11). This is equal to the state |p) ® |p) =
?|00] + aB]01| + aB|10) + B2|11) if and only if af = 0.

In general, we can prove the following:

Theorem 1 (no-cloning theorem). There does not exist a unitary transformation U such
that, given a quantum state |¢) and a quantum state’ |s)

Ulp) ®1s)) = d) @ ().

 In Postulate IV, the state |ip) collapses to an element of the orthonormal basis, totally loosing the quantum
superposition. It is possible, however, to define projective measurements also with respect to a single qubit,
i.e. it is possible to observe the ith qubit of the basis vectors. In this case, only a part of the superposition is
destroyed, possibly leaving the system in quantum superposition.

 If we take as control input a bit i and as target input a bit 0, the CNOT result is obviously i ® i.

§ The state |s) is assumed to be pure, i.e. a quantum state which is not a probabilistic distribution of other
quantum states. In quantum mechanics, the notion of pure state is opposed to the notion of mixed state, see
Kitaev et al. (2002) and Kaye et al. (2007) for detailed discussions.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1120

Proof. We propose an elementary proof, frequently proposed in the literature (see, for
example Nielsen and Chuang (2000)). Suppose, there exists the cloning operator U and
suppose this copying procedure works for two particular state |yp;) and |ip»).

We have

U(lp1) ®s) = [p1) ® [y1)
U(lp2) ® [s)) = [p2) ® |2).

If we take the inner product of the two equations (remember that U is unitary and
preserves the inner product) we obtain

(pilp2) = (p1lw2))

which has only the solutions 0 and 1. So, either |p;) = |yp,) or the two states are
orthogonal. Thus, a cloning device can only clone the states of the computational basis
(or classical states), but it is not possible to make a copy of a general quantum state.

U

4. Quantum computing: more than probabilistic computing!

The aim of the present section is to offer some intuitions about the potentiality of quantum
computing. The ‘thesis’ of quantum computer scientists is that quantum algorithms (or
quantum models), could outperform their classical and probabilistic counterparts. This
section wishes to provide some convincing arguments in this direction.

The ‘superpower’ of quantum computing essentially comes from exploiting two peculiar
phenomena. The first one is quantum parallelism (Nielsen and Chuang 2000).

Oversimplifying, quantum parallelism allows a quantum computer to evaluate a function
f(x) for different values x at the same time and it is able to extract information about
more than one of the values f(x) from a superposition state.

Given a function f : {0,1} — {0,1}, and a 2-qubit input |x, y), the following circuit

is able to compute the value |x,y ® f(x)), where the operator @ represents the addition
modulo 2. The transformation |x,y) — |x,y @ f(x)) is easily shown to be unitary. In
particular, taking x = w and y = 0 as inputs, the output state will be w
which provides information about f(0) and f(1) simultaneously.

A noticeable application of this situation can be found in Example 8, Section 5.13.1,
where we will propose the encoding of the popular Deutsch’s algorithm.

The second phenomenon (strongly related to quantum parallelism) is called quantum
negative interference. To explain it, we discuss the quantum logical gate /NOT (Deutsch

et al. 2000) (also called quantum coin flip QCF (Brassard 1994)) which has no classical

>

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1121

counterpart. The \/NOT gate is described by the following unitary matrix

1 /1 -1
o= (1)
which takes a vector in the plane and rotates it by 45 degrees counterclockwise.

For example, on input |0), one has that \/NOT(]0)) = ﬁ(|0> + [1)). If one measures the
state, following Postulate IV (Section 3), this means that one can observes |0) and |1) with
the same probability \ﬁ|2 = % Actually, one single application of the matrix behaves as
a random negation, yielding a fair superposition of basis vectors |0) and |1).

One could try to perform the same transformation taking into account a random gate,
i.e a bistochastic matrix (a matrix whose columns and rows entries sum up to 1). This can
be obtained by replacing in the «/NOT matrix the amplitudes +i2 and —ﬁ with positive

f
111

Such a gate, dubbed here CP, simply performs a coin flip (on input |¢), ¢ € {0,1}, it
returns |0) with probability % and |1) with probability %). Observe that CP seems to behave
exactly like \/NOT (once the superposition generated by /NOT has been observed, the
outputs of the two gates appear indistinguishable). The interesting quality of the quantum
gate appears when we link two gates in series.

On one hand, one can plainly verify that, given |¢) (¢ € {0,1}), \/NOT(y/NOT(|c))) = [€)
(where ¢ is the complement of ¢): the machine built out from the concatenation of two
copies of \/NOT globally acts like a classical not gate.

On the other hand, a concatenation of two copies of CP works differently: the second
gate randomizes the vector again, yielding a fair distribution of |0) and |1). In general, it
is easy to verify that any number n of successive applications of CP is equivalent to the
application of a single CP gate.

The example shows a peculiar fact: after the second application of the \/NOT gate,
the ‘randomization’ disappears: in some sense, applying a ‘randomizing’ operation to a
quantum state (which, observed, yields a random value) one produces a deterministic
outcome. What has happened? The answer comes from quantum negative interference.
Let us consider again the computation /NOT./NOT(|0)). The first application of the

quantum gate gives the state ﬁ(lO} + |1)); applying /NOT one more time, the first

summand of the superposition (|0)) turn into i(%(\O) +11))) and the second summand

2
of the superposition (|1)) come to be \lﬁ(\lﬁ\(f—O) + [1))). Indeed, the global state is
%(%00) +11))+ ﬁ(%(—lO) +1))). By trivial algebraic manipulations one has: 3(|0)) +
(1) = 300 + (1) = 3(11) + 5(1) = |1).

In the classical world it is not possible to observe this sort of interference, since in
classical probability theory probabilities can only be positive and no negative interference
phenomena can occur.

At a first glance, the potential power of quantum computing collapses with the peculi-
arities of the randomized computation. But during a quantum computation, phenomena

aqe . 1.
probabilities 3:

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1122

such as parallelism and negative interference can be exploited, making the model radically
different.

5. Q: a measurement-free quantum /-calculus

In the main part of this article we will illustrate Q, a calculus for quantum computable
functions. Q has be introduced in Dal Lago et al. (2009), further developed in Dal Lago
et al. (2010) and successively extended in Dal Lago et al. (2011) (see also (Zorzi 2009)).

A calculus for quantum computable functions should present two very different
computational ‘aims’. On the one hand there is the unitary aspect of the calculus,
that captures the essence of quantum computing as algebraic transformations of state
vectors by means of unitary operators. On the other hand, it is possible to have the
control of the pure quantum computation: this, of course, relaxes the unitarity of the
paradigm (this means that it is not possible to describe each computational step as a
unitary transformation on a Hilbert space), embedding the pure quantum evolution in a
classical computation’. Behind this second aim, we have the usual idea of computation
as a sequence of discrete steps on (the mathematical description of) an abstract machine.

The relationship between these different aspects give rise to different approaches to
quantum functional calculi (as observed in Arrighi and Dowek (2008)).

If we divide the two features, i.e. we separate data from control, we adopt the so-called
quantum data — classical control approach.

This means that classical computation is independent from the quantum part: a classical
program (ideally in execution on a classical machine) computes some ‘directives’: these
directives are sent to a hypothetical device which applies them to quantum data. Therefore,
quantum data are manipulated by the classical program: classical computational steps
control the unitary part of the calculus. In general, the classical control acts on the
quantum side of the computation in two ways: by means of unitary transformation and
by means of data observation, i.e. by means of measurement (usually, in quantum calculi,
a syntactic primitive which acts as a measurement apparatus and returns a classical bit,
see Section 6). Another possible directive the control can perform is the creation of a new
quantum datum (see the function new in Section 5.8).

The calculus Q we propose strictly follows the quantum data — classical control
paradigm, going behind Selinger’s proposal for quantum functional languages (Selinger
2004; Selinger and Valiron 2006). In Figure 1, this concept is depicted as a client-server
architecture: a lambda evaluator client normalizes lambda terms and when a quantum
operation occurs, this step is ‘implemented’ by the quantum server. Notice that in Figure 1,
there does not exist any feedback from the quantum server to the classical evaluator. In

T This choice is theoretically sound in a realistic perspective: a classical control should be the ‘easy’ part of
quantum computing in a hybrid architecture built out of a classical machine and a quantum device. As
suggested in Selinger (2004) it is useful to think of a particular hardware on which a quantum language can
be implemented. A suitable model is the QRAM machine (Knill 1996), a general-purpose computer which
controls a quantum hardware device. Our Figure 1 is reminiscent of such a model.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1123

Quantum “Server”)
~ ~N Classical A evaluator

+

directives sender
quantum reglster' (\

directives

&
<

- add a qubit to the quantum register (A!X.M) ! N

- apply an unitary operator U
to the quantum register

new/ unitary
operators
- J

Fig. 1. Quantum client-server architecture without feedback.

fact, we will start from a measurement-free calculus (as explained and motivated in the
following section).

We will start with a careful operational analysis of Q. In Section 5.14.1, we will prove
that Q is ‘quantum Turing complete’ in the following sense: Q will be showed to be
equivalent to the class of finitely generated uniform quantum circuit families and (by
well-known results) to quantum Turing machines (see Appendix A.5). This is an essential
result, if we want to affirm that a calculus is a suitable instrument for the characterization
of quantum computable functions. For example, a promising calculus such as van Tonder’s
/q (which was the first proposal in this direction, as explained in Section 7) suffers from
the lack of formally proved results about its expressive power.

5.1. The principal features of Q

Developing Q, we made a number of choices with respect to several aspects of the calculus.
In the following paragraphs we will informally describe the principal features of Q, before
giving technical details.

5.2. Configurations

Computational steps in Q are defined between configurations.

A configuration is a triple [Q, QV, M] that gives a full instantaneous description of the
state of a computation in Q: M is a term from a suitable grammar, Q is a quantum state,
QV is a set of quantum variables (a superset of those appearing in M). Computational
rules are of the form [Q, QV, M] — [Q, OV, M']; a configuration can evolve classically
(only the lambda term M is involved in the reduction and Q = @/, QV = QV') or
nonclassically (the reduction involves also the quantum register and the set of quantum
variables).

The notion of configuration is a useful technical instrument in order to model quantum
computation forgetting any representation problem.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1124

5.3. Untyped setting

We will work in an untyped setting in order to capture the full expressiveness of the
calculus. In this way, we are able to prove the ‘quantum Turing completeness’ of Q,
showing the equivalence with the class of finitely generated uniform quantum circuit
families (see Appendix A.2, Definition 32).

Nevertheless, a term’s construction is not free. In fact, in order to respect quantum
features of data, we need to distinguish between linearity and duplicability. A term’s
generation is controlled by means of well-forming rules.

5.4. Linearity of the calculus (static): ‘bang’ operator

Q is a calculus designed for quantum computable functions. However, it deals with
linearity. Linearity corresponds to the constraint that in every term of the shape Ax.M
there is exactly one free occurrence of the variable x in M. Thus, the quantum variables
occurring in a redex Ax.M(N) are exactly the ones occurring in the reduct M{N/x}.

A linear term is neither duplicable nor erasable: this way we are able to guarantee
that the ‘no-cloning and no-erasing’ property is satisfied. The Q syntax includes the
modal operator ‘" (bang), which allows us to distinguish between different syntactical
objects which represent, respectively, classical (duplicable) and quantum (non-duplicable)
resources. In Q, a term in the form !N cannot contain (references to) quantum data.

5.5. Linearity of the calculus (dynamic): surface reduction

The set of well-forming rules captures the separation between the linear and the
classical part of the syntax. Moreover, we capture linearity ‘dynamically’, adopting surface
reduction (Simpson 2005): in Q it is not possible to reduce under the scope of the bang
operator ‘. Let us consider the term A!xM(!N): a correct computation performs the
B-reduction obtaining M{N/x}; a wrong computation reduces the subterm N.

This is not the only way to enforce the no-cloning and no-erasing properties. Other
solutions have been proposed in the literature, see e.g. Altenkirch et al. (2007), where
duplication is modelled by means of sharing.

5.6. Absence of reduction strategies

Surface reduction (Simpson 2005) is the only restriction on reductions. We do not define
any reduction strategy for Q. The calculus is confluent in a strong sense: normal forms are
unique and also strong normalization and weak normalization are equivalent properties
of configurations. It is mandatory to stress that full confluence results are strongly related
to the absence of intermediate measurement steps. We will see in Section 6, that the
presence of an explicit measurement operator imports a probabilistic behaviour into the
computation, thus it is not possible to retrace confluence theorems in a standard form,
and it is necessary to reformulate the problem in a different way.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1125

5.7. Implicit measurement at the end of the computations

In Q it is not possible to classically observe the content of the quantum register. More
specifically, the language of terms does not include any measurement operator which,
applied to a quantum variable, has the effect of observing the value of the related qubit.
Therefore, we start from a measurement-free quantum A-calculus. This means that we
assume to have a unique measurement at the end of the computation. This is a theoretical
well-founded choice (Aharonov et al. 1998; Nielsen and Chuang 2000; Selinger 2004).
Of course, measurement is a fundamental (nonunitary) computational step in some
important quantum algorithms. It also opens some interesting theoretical questions. For
these reasons, in Section 6, we extend the syntax of Q with an explicit measurement
constructor.

5.8. Syntax and well-forming rules

The language of terms of Q, given in the following grammar, is an extension of the syntax
of an untyped A-calculus with constants.

X = X0, X[,... classical variables
rool= 1o, - quantum variables
o= x| (X1,...,Xn) linear patterns
p =7 | Ix patterns
B =011 boolean constants
U .= UyU,,... unitary operators
C :=B | U constants
M:=x|r |!M|C|new(M) | MM, |

(My,...,.M,) | Ap.M terms (where n > 2)

Principal points are the following:

— Variables are partitioned into classical and quantum variables: the first ones are the
usual variables of A-calculus and they can be bound by a A-abstraction; quantum
variables refer to qubits in the underlying quantum register. Roughly speaking,
quantum variables represents names of quantum bits.

— There are two sorts of constants, namely boolean constants (0 and 1) and unmitary
operators : the first ones are useful for generating qubits and play no role in classical
computations; unitary operators are applied to tuples of quantum variables when
performing quantum computation. Then, in our system we take ‘built-in’ unitary
operators, with the watchfulness explained in the following. We associate to each
computable operator U € U a symbol U, where U/ is a denumerable fixed set of
computable unitary operators (see Appendix A.1, Definition 30).

— The term constructor new(-) creates a new qubit when applied to a boolean constant.
For example, new(0) returns |0).

— The syntax of terms includes a modal operator ! (the ‘bang’ operator) introduced in
term calculi for linear logic (see for example Wadler’s syntax (Wadler 1994)). Bang

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1126

modality allows us to distinguish between those syntactical objects (A-terms) that can
be duplicated or erased and those that cannot. In this way, we are able to erase and
duplicate classical terms, which do not contain references to quantum data. Roughly
speaking, a term is duplicable and erasable if and only if it is of the form !M and,
moreover, M does not contain quantum variables. This constraint is ensured ‘statically’
by the well-forming rules in Figure 2.

— The syntax allows pattern abstraction. A pattern is either a classical variable, a tuple of
classical variables, or a ‘banged’ variable, namely an expression of the kind !x, where
x 1s a name of a classical variable. In order to allow an abstraction of the kind A!x.M,
the environment (see below) must be enriched with !-patterns, denoting duplicable or
erasable variables. Then, quantum variables cannot be lambda-abstracted: they can
be passed as an argument to a linear pattern by a particular kind of -reduction (see
Section 5.10, Figure 3, rule q.5).

In the following, we assume to be working modulo variable renaming, i.e. terms
are equivalence classes modulo o-conversion (Barendregt 1984). Substitution up to o-
equivalence is defined in the usual way.

Notation 4. Let us denote with Q(My,..., My) the set of quantum variables occurring in
M;,..., M. In the rest of the paper, a finite subset of quantum variables will be called a
quantum variable set (qus).

Note 5.1. The expressive power of Q depends on the choice of the set U, the constants
which represent unitary operators. If one want, for example, to capture quantum Turing
machines in the style of Bernstein and Vazirani (1997), one fix U to be the set of computable
operators (see Appendix A, Definition 30). On the other hand, the expressivity results
given in Section 5.14.1 relates Q and quantum circuit families; clearly, those that can
be captured by Q terms with computable operators in U are precisely those (finitely)
generated by U (see Appendix A.2).

5.9. Well-forming rules

Since we are working in a untyped setting, term generation is controlled by well-forming
rules. Judgements are defined from various notions of environments, that take into account
the way the variables are used. In the following, a set of variables {xi,...,x,} is often
written simply as xi,...,x,. Analogously, the union of two sets of variables X and Y is
denoted simply as X, Y.

— A classical environment is a (possibly empty) set of classical variables. Classical envir-
onments are denoted by A (possibly with indexes). Examples of classical environments
are x1,Xxp Or x, y,z or the empty set (J. Given a classic environment A = xy,...,X,, A
denotes the set of patterns !xi,..., Ix,.

— A quantum environment is a (possibly empty) set of quantum variables. Quantum
environments are denoted ® (possibly indexed). Examples of quantum environments
are ry, 1,13 or the empty set (.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1127

const —— g—var ——classiccvar ——— der
IA+C IArbEr A,z b x Az Fa
IAFM A AEM As,)JAEN A IAE M- A,)AF My
prom app tens

IAFIM A, Ao, I A MN Aoy AR A (M, .o My)

=M Lzy,..o,an B M Lok M Ilaek M
——__hew laml —— lam2 —— lam3
It new(M) L' XNz, .., z0).M L' \e.M T Mz M

Fig. 2. Well-forming rules.

— A linear environment is a (possibly empty) set, denoted by A (possibly indexed), in the
form A,® where A is a classical environment and ® is a quantum environment. The
set x1, X2,rq is an example of a linear environment.

— An environment, denoted by I" (possibly indexed), is a (possibly empty) set in the form
A, !A where each classical variable x occurs at most once (either as !x or as x) in T
For example, x1,r, x5 is an environment, while x1, !x; is not an environment.

— A judgement is an expression I' = M, where I' is an environment and M is a term of
Q.

We say that a judgement I' = M is well-formed (notation: >T" + M) if it is derivable
by means of the well-forming rules in Figure 2. The rules app and tens are subject to
the constraint that for each i # j, we have A;NA; = ¢J (note that A; and A; are linear
environments).

Moreover, with d> I' = M we mean that d is a derivation of the well-formed judgement
I'FM.If T+ M is well formed, we say also that the term M is well formed with respect
to the environment I'. We say that a term M is well formed if the judgement Q(M) - M
is well formed. It is possible to prove that if a term M is well formed then all its classical
variables are bound.

Notice that the structure of our terms is strongly based on the formulation of linear
logic proposed by Wadler (1994). Moreover, it is easy to observe that, by means of
well-forming rules,

a duplicable term N cannot contain quantum variables.

This way, we statically guarantee that references to quantum bits can be neither
duplicable nor erasable. Dynamically, quantum properties will be assured by means of
surface reduction (Section 5.10).

5.10. Computations

Reductions in Q are defined between configurations. A configuration is a reformulation
of the notion of program state, introduced by Selinger (2004).

We formally define configurations as equivalence classes of preconfigurations, i.e. triples
of the kind [Q, QV, M] where:

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1128

— M is a term;
— QV is a finite qvs such that Q(M) = QV;
— Qe H(QV).

Let 0 : QY — QV’ be a bijective function from a (nonempty) finite set of quantum
variables QV to another set of quantum variables Q). Then we can extend 0 to any term
whose quantum variables are included in QV: O(M) will be identical to M, except on
quantum variables, which are changed according to 0 itself. Observe that Q(0(M)) = QV'.
Similarly, 0 can be extended to a function from H(QV) to H(QV') in the obvious way.

Definition 6 (configurations). Two preconfigurations [Q, QV,M] and [Q/,QV',M'] are
equivalent iff there is a bijection 0 : QV — QV' such that Q' = 0(Q) and M’ = O(M). If
a preconfiguration C is equivalent to D, then we will write C = D. The relation = is an
equivalence relation. A configuration is an equivalence class of preconfigurations modulo
the relation =. Let Conf be the set of configurations.

The way configurations are defined, namely quotienting preconfigurations over a
relation =, is reminiscent of usual a-conversion in lambda terms.

5.11. Reduction rules

A computation in Q is a (possibly infinite) sequence of the form Cy = [QVy, OV, My] —
[QV1, QV1, M{] = ... =4 [QVi, OVi, Mi] —, ... (Where Cy is the initial configuration
and o ranges over a finite set of names of reduction rules).
A computational step, indeed, possibly involves each component of the configuration,
performing a reduction on the lambda term and eventually acting on quantum data.
Computations are formally introduced in Definition 10.

Reduction rules are in Figure 3. Let £ = {Uq,new,l.,q.5,c.f,l.cm,r.cm}. The set
% will be ranged over by a,f5,y. For each o € ., we can define a reduction relation
—,< C x C by means of the rules in Figure 3.

For any subset . of ., we can build a relation — o by just taking the union over
o € & of —,. In particular, — will denote — . The usual notation for the transitive and
reflexive closures will be used. In particular, —* will denote the transitive and reflexive
closure of —.

In the following we will also deal with some particular subsets of .Z:

Definition 7 (subsets of .¥).

— 2 ={Uq,q.p} is the set of quantum rules;

— n% = 20U {new} = {Uq,q.f, new} is the set of non-classical rules (including quantum
reductions and new reductions);

— € =% —n% ={l.B,c.p,l.cm,rcm} is the set of classical rules;

— & = {lem,rem} and A = ¥ — % = {Uqg,new,L.f,q.,c.f} denote the sets of
commutative and non-commutative rules, respectively.

Let us explain the meaning of computational rules. By means of reductions, configurations
can evolve classically and nonclassically.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1129

(—reductions

[Q,QV, (A\x.M)N] —3 [Q, QV, M{N/x}] 1.3
[Q, 9V, (Mx1,...,xn). M)(r1,...,rn)] —q.8 [Q, QV, M{ri/z1,...,mn/xn}] q.0
(9, 0V, A\z.M)!IN| —c5[Q,QV, M{N/z}] c.j3

Unitary transformation of a quantum register

[Q7 QV» U<T1'17 ey Tin>] —Uq [U<(r11 ,,,,, rin>)Q7 vi <Ti17 ey rin” Uq

Creation of a new qubit and quantum variable

[Q, QV,neu(c)] —new [Q® |1+ ¢),QV U {r}, 7] new
(r is fresh,c € {0,1})

Commutative reductions

[Q, QV, L(Ar.M)N)] —1.cm [Q, QV, (Ar.LM)N] l.cm
[Q, OV, (Am.M)N)L] —r.cm [Q, QV, (Ar.ML)N] r.cm
where L is free for m

Context closure

[Q,QV, M;] —a [Q,QV', M]]

t;
[Q, OV, (M1,..., M, ..., Mp)] —a [Q, OV, (M1,...,Mj,..., My)]

[Q, QV, N| —4 [Q, QV', N'] [Q,QV, M] —, [Q,QV', M| |
r.a .a

[Q,QV, MN] —, [Q,QV', MN'] [Q,QV, MN] —, [Q,QV', M'N]

[Q, 0V, M] —4 [Q,QV', M'])
; S , In.new
[Q, QV,new(M)] —q [Q', QV',neu(M')]

[Q7 QV7 M] o [Q/7QV,7MI] .)\ [Qv QV,M] o [Q,7QVI1M/] .)\

n. n.
(0, 0V, (M. M)] —a [, 0V, N M) [0, 0V, (Am.M)] —a [Q,QV, O M)

Fig. 3. Reduction rules.

Let us consider the reduction schema [Q, QV, M] —, [Q, QV', M].

— o € ¢: we have a classical evolution. A reduction step from M is performed, obtaining
M’ as reduct; Q and QV will not be modified, thus @ = Q' and QY = QV'. No
quantum variable has been created, and no unitary transformation has been applied
to the quantum register. The only significant component of the computational step is
the A-term M.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1130

— o € n%: we have a non-classical evolution. This kind of reduction step induces an
interaction between the term M and the quantum register. This class of reductions
(potentially) modifies the set Q) and the quantum register Q in three possible way:

1. The redex is a quantum redex, i.e. a subterm of the kind (A(xy,...,x,).L){r1,...,)
and o = q.f . In this case the computational step does not modify the quantum
register and the qvs (Q = Q' and QV = QV”), but the reduction ‘links’ the subterm
L to quantum data in Q by means of quantum variable names (ry,...,r,).

2.0 = new, then the creation of a new quantum bit occurs by reducing a term of
the shape new(c) (where ¢ is a classical bit). Such a reduction creates a new
quantum variable name r (a fresh variable): as a consequence, Q' = QO ® |¢) and
QV' = QVU{r}. The new quantum variable name is a kind of pointer to the newly
created qubit. In the lambda term M’ the subterm new(c) of M is replaced by the
quantum variable name r.

3. The redex is a term of the shape U(ry,...,r,), where U is the name of a unitary
operator and ry,...,r, are quantum variables. In this case o« = Uq and the reduction
corresponds to the application of a unitary transformation to the quantum register.
No modification in QV are performed, thus QV' = QV, because no change
to quantum variable names are expected; in the lambda term M the subterm
U{ry,...,r,) will be replaced by (ry,...,r,), and Q' is the normalized vector resulting
after the application of U on qubits (rq,...,r,) in Q.

Let us give some further words about the set .#, where we assume that the term L is
free for n: it should appear redundant, but it plays an important role in Q. Commutative
rules permit to commute subterms in order to prevent quantum reductions that can block
classical ones. Moreover, commutative rules will be a useful technical tool in the proof of
standardization theorem (Section 5.13.1, Theorem 6).

As previously seen, the well-forming rules ensure statically that any term of the form
IM cannot contain quantum variables. In order to preserve this property under reduction,

reductions cannot be performed under the scope of a bang.

This constraint is named in the literature as surface reduction (Simpson 2005) and
preserves, dynamically, no-cloning and no-erasing properties on non-duplicable syntactical
objects. The following example shows what happens if a reduction occurs in the scope of
a bang.

Example 5 (a wrong computation in Q). Let us consider the following well-formed
configuration: [1, &, (A!x.cnot(x, x))!(new(1))]. Observe that the subterm !(new(1)) is a
duplicable term because it does not yet contain references to quantum data. The following
is a correct computation (we do not reduce in the scope of the bang and we perform
firstly the c.f-reduction):

[1, &, (A!x.cnot(x,x)) (new(1))] —cp [1, T, cnot(new(1),new(1))]

i’new [lp— 1> ®|q— 1>’{paQ}vcn0t<p:q>)]
—uq [lp—1)®lq—0),{p.q}, (p.q)].

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1131

However, if we permitted to reduce under the scope of the bang (namely reducing the
subterm new(1) before executing the c.f-reduction), we would obtain the computation:

[1, &, (A1x.cnot(x, x))(new(1))] —new [Ip— 1), {p},(Alx.cnot(x,x))!(p)]
—aq.p [|P = 1)9 {p}acn0t<pap>)]~

Notice that we have duplicated the quantum variable p, creating a double reference to
the same qubit. As a consequence we could apply a binary unitary transform (cnot) to a
single qubit (the one referenced by p), which is not compatible with the basic principles
of quantum computing.

Let us remark that the relation —, is neither a call-by-value nor a call-by-name strategy.
In Q the only limitation is that we forbid reductions under the scope of a ‘I, and
nevertheless, confluence holds in a very strong sense (see Section 5.12.2). This is in
contrast with the calculus developed in Selinger and Valiron (2006), where a call-by-value
strategy is indeed necessary, even if we do not take into account the non-deterministic
effects of the measurement operator (see Section 7.2).

Some definitions on configurations (very reminiscent of equivalent definitions on lambda
terms) are in order now. The notion of a well-formed judgement can be extended to
configurations in a natural way:

Definition 8 (well-formed configuration). A configuration [Q, QV, M] is said to be well
formed iff there is an environment I" such that I' = M is well formed.

In the following, by configuration we mean well-formed configuration.

We define now normal forms and computations.

Definition 9 (normal form). A configuration C = [Q, QV, M] is said to be in normal form
iff there is no D such that C — D. Let us denote by NF the set of configurations in normal
form.

Definition 10 (computations). If Cy is a configuration, a computation of length ¢ <
starting with Cy is a sequence of configurations {C;}i<, such that for all 0 < i < ¢,
Ci—1 — C; and either ¢ = w or C,_; € NF.

If a computation starts with a configuration [Qg, @V, My] such that Q) is empty (and,
therefore, Q(My) is empty itself), then at each step i the set QV; coincides with the set

Q(M;):

Proposition 1. Let {[Q;, QVi, Mi]}i<, be a computation, such that Q(Mo) = &J. Then for
every i < ¢ we have QV; = Q(M;).

Proof. Observe that if [Q,Q(M),M] — [Q', @V, M'] then by induction on reduction
rules we immediately have that QV' = Q(M’) whenever QV = Q(M), and conclude. [

Notation 5. In the rest of the paper, [Q, M] denotes the configuration [Q, Q(M), M].

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1132

5.11.1. Examples of computations in Q. In the following examples we work with fixed
lengths of the inputs. In Q it is possible to deal with infinite encodings: an example can
be found in Section 5.14.1, where we will code (infinite) circuit families.

Example 6 (EPR states). We define a lambda term representing a quantum circuit that
generates an EPR state. EPR states are entangled quantum states used by Einstein,
Podolsky and Rosen in a famous thought experiment on quantum mechanics (1935).

EPR states can be easily obtained by means of cnot and Hadamard’s unitary operator
H. The general schema of the term is

M = A(x, y).(cnot(Hx, y))).

The term M takes 2-qubits as input and then gives as output an EPR (entangled) state.
We give an example of computation, with [1,M (new(0),new(1))] as initial configuration:

[P 0) ® g > 1), (A(x, y).(cnot(Hx, y))){p, q)]
P+ 0) ® lg — 1), (cnot(Hp, q))]
L, p—=0)+lp—1)
“ N
—0,g— 0+ |p—1,g—1
g [Ip q—=0)+lp— 1.4 >’<p’q>].
V2
After some reduction steps, two quantum variables p and g appear in the term and

the quantum register is modified accordingly. Finally, constants for unitary operators
corresponding to cnot and H are applied to the quantum state. The quantum register

[1,M (new(0),new(1))] —>neW
—a.p

—

® |g+— 1>,(cn0t<p,q>)}

p—0,g—0)+|p—1,q— 1)

2

is the so-called oy EPR state.

Example 7 (exchange). Consider the following lambda term:
L = A{x, y).(A{a, b).cnot(b, a))((A{w, z).cnot{z, w))(cnot(x, y)))
L builds a quantum circuit that performs the exchange of a pair of qubits.
[1,L (new(1),new(0))]
2 llp 1) ® lg — 0). (Ax. y)-(Aa. b).cnot (b, a)) (2w, 2).cnot (z,w)) (enot (x,) (p. q)]
(4w, z).cnot(z, w))enot(p, q)]) N
(4 (W,Z>.Cn0t<2,W))<p,Q>)]

—q.p ‘p'_’ 1

——<

—uq llp—=1)®lg— 1),(4

== =2 =
R
SRR
NN
o
S
S
=
= 22
p
SHICRCIRS

))
))
—qp [lp— 1) ®lg— 1)
—uq [Ip—0)® g 1),
))
))

—ap \p'—>0 ® |q — 1), (cnot(p, q))]
]

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1133

Notice that the values attributed to p and ¢ in the underlying quantum register are
exchanged between configurations (1) and (2).

5.12. Some good classical properties for Q

5.12.1. Subject reduction. Even if Q is type-free, term formation is syntactically controlled
by means of well-forming rules. It is therefore necessary to prove that the class of well-
formed terms is closed by reduction. For Q, a subject reduction theorem holds in a suitable
form.

A ‘standard’ property such as subject reduction is of course an expected property of
each good defined language. In this case it is also required by the fact that a particular
kind of variable, quantum variables, can be created dynamically during the computation.
This effect is due to the presence of new reductions [Q, QV,new(c)] —new
[Q® |r— ¢),QV U {r},r] which creates a new qubit from the classical constant ¢ and a
quantum variable r.

Thus, the subject reduction theorem is formulated with respect to quantum variables
dynamically created in the computational step:

Theorem 2 (subject reduction).
Ifde THM and [Q,QV,M] — [Q,QV',M’] then> I',QV' — QV M'.

Proof. The proof is by induction on the height of d and by cases on the last rule r of
d. In order to prove subject reduction, we need a number of intermediate results. Firstly
we have to prove that the weakening rule is admissible in the set of well-forming rules,
i.e. we have to prove the following statement:

Weakening For each derivation d, if d> I' H M and x does not occur in I', then
>T, Ix = M.

The proof is by induction on the derivation d.

Moreover, as usual, the proof of subject reduction requires suitable substitution lemmata.
We need three substitution lemmata, according to the different kind of variables we have
in the syntax:

Substitution lemma — linear case: if > A, !A,x - M and > A,, /A N,
with Ai N Ay = ¢, then > A, Ay, A+ M{N/X}

Substitution lemma — nonlinear case: if > A, !A, !x F M and > !A F!N, then
>Ap, 1A F M{N/x}.

Substitution lemma — quantum case: for every nonempty sequence X, ..., X,
if > AJIA X,...,x, F M and ry,...,r, € A, then > A A F, ..., 1 F
M{ri/x1,. ..o Fn/Xn}.

All proofs are by induction on the derivation and by cases on the last rule.

The proof of subject reduction proceeds by induction on the derivation of [Q, OV, M| —
[Q, QV', M']. Let us show some cases:

— r is app and the reduction rule is

[Q, QV, (A(x1,..., xu). P)N] =15 [Q, QV, P{(r1/x1,...r/xn)}] QB

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1134

(the application generates a redex). Suppose we have the following derivation d:
di
d>

At 1A X1, X0 F P
lam1 .
AL AR J{xq,...,x,).P Aty B (i, 1)
Al,/\z, A+ (/l(xl,...,x,,>.P)N

app

Let us consider the reduction
[Q, OV, (Alx1,..o, Xu).P) 1y tn)] —qp [Q, QV, P{ri/x1,...,1a/Xn}]. We note that the
reduction does not modify the QV set, so we just have to apply substitution lemma —
quantum case to d; and da: > Ay, 1A P{ri/x1,...,rn/Xu}.
— ris new
AFc¢

IA F new(c)

We have the following reduction rule:

[Q, QV.new(c)] = [Q® [p+> ¢), QV U {p}, pl.

new

By means of

———qg—var
'A,pkp

we obtain the result.
— r is app and the reduction rule is

[Q, QV, L((A{x1,...,Xn).P)N)] =1em [Q, OV, (A{x1,...,x,).LP)N] l.cm
Note that the reduction rule does not modify Q and QV. So, from derivation:
d>
. d;
Ay A Xy, ., x B P :
d; - - lam1 P
: A IAF A{xy, .y xn). P ALIAEN
Al, IAFL AQ, A+ (/AL<X1,...,X">.P)N
AL A \A L((A{x1,...,X,).P)N)
we exhibit a derivation of Ay, Ay, A F (A{xy,...,x,).LP)N:

d1 d.2

app

app

ALIAFL Ay A XL, xp F P
A1,A’2, !A,xl,...,xn FLP
lam1 :
Al, ,2, A+ ;V<X1,...,xn>.LP A,Z,’ IAFN
A1,A2, A+ (/1<X1,...,X,,>.LP)N

app d3

app

Other cases are similar. For full details see Zorzi (2009).]

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1135

As a consequence of subject reduction, the set of well-formed configurations is closed
under reduction:

Corollary 1. If M is well formed and [Q, OV, M] 5 [Q, 0V, M'] then [Q,QV',M'] is
well formed.

Another immediate corollary (provable by induction) is the following ‘weakening
property’:

Corollary 2. If >T' - M and [Q, QV, M] 5109, QV, M'] then> T,QV — QV - M.

5.12.2. Confluence. In Q, it is possible to show that strong normalization and weak
normalization are equivalent properties. This is due to the fact that confluence holds in a
very strong sense, thanks to surface reduction, which implies that in Q it is not possible
to erase diverging terms (Simpson 2005).

To prove many-step confluence, an ‘imperfect’ version of one-step confluence is proved.

One-step confluence cannot hold in its standard formulation because of the presence of
commutative rules. For example, starting from the configuration [Q, QV, (An.M)((Z2x.N)L)],
then both [Q, QV, (An.M)((Ax.N)L)] —_4 [Q, QV, (Ain.M)(N{L/x})] and
[Q, OV, (Un.M)((Zx.N)L)] — . [Q,QV,(ix.(n.M)N)L] — 4 [Q,QV,(An.M)(N{L/x})]
are legal reduction steps.

Graphically, in presence of commutative rules, the following cases can occur:

O TA
NA T

7N 7N
NAONA

This situation is represented in our version of one-step confluence:

Proposition 2 (one-step confluence). Let C, D, E be configurations with C —, D, C -3 E
and D # E. Then:

1.If « € # and f € 7, then there is F with D — » F and E — » F.
2.If o € A4 and p € A, then there is F with D — 4 F and E — 4 F.
3.Ifx € & and f € ¥, then either D —_4 E or thereis F with D — 4 Fand E — 4 F.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1136

Proof.
Let C = [Q, QV, M]. By induction on the lambda term M.
]

Thanks to Proposition 2 it is possible to prove the general statement about reduction
sequences of arbitrary length:

Theorem 3 (confluence). Let C, Dy, D, be configurations with C LN D; and C e, D.
Then, there is a configuration E with D 2, E and D, ", E with ny < mp, np < mp and
n+m =n, +ms.

Graphically:
C
D; Do
E

Proof. By induction on the length of the reduction sequence, and by cases depending
on the outcome of Proposition 2. The proof is quite long, for full details see Zorzi (2009)
and Dal Lago et al. (2010).]

By means of confluence results, it is possible to prove the uniqueness of normal forms
in Q.

Theorem 4 (uniqueness of normal forms). Any configuration C has at most one normal
form.

Our very strong notion of confluence implies that:
strong and weak normalization are equivalent properties of configurations
as stated in the following theorem:

Theorem 5. A configuration C is strongly normalizing iff C is weakly normalizing.

To prove Theorem 5, we exploit another feature of Q: in a Q computation it is not
possible to build an infinite sequence of commuting reductions. This is Lemma 1:

Lemma 1. The relation — ¢ is strongly normalizing. In other words, there cannot be any
infinite sequence C; — . Cy —>. C3 > ...

Proof. Define the size |M| of a term M as the number of symbols in it. Moreover,
define the abstraction size |M|; of M as the sum over all subterms of M in the form Azn.N,
of |N|. Clearly |[M|; < |[M|*>. Moreover, if [Q, QV, M] — » [Q, QV, N], then |[N| = |M| but
N|, > |M]|;. This concludes the proof.]

We are able now to prove Theorem 5:

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1137

Proof of Theorem 5. Weak normalization implies strong normalization. Suppose, by
way of contradiction, that C is weakly normalizing but not strongly normalizing. This
implies there is a configuration D in normal form and sequence of m € N reduction
steps from C to D. Since C is not strongly normalizing, there is also an infinite sequence
C =Cy,C,,Cs,... with C; - C; —» C3 — ... From this infinite sequence, we can extract
a sequence of m + 1 reduction steps due to Lemma 1. Applying Proposition 3, we get
a configuration F and a sequence of one reduction step from D to F. However, such a
sequence cannot exist, because D is normal. L]

This conclude the ‘classical analysis’ of the calculus Q. In the following section, we will
state and prove new interesting quantum properties.

5.13. Some desirable quantum properties for Q

In the previous section, we explained two classical properties such as subject reduction
and confluence. These results confirm that the classical part of Q, (i.e. the control), is
well designed. However, Q is developed for quantum computing: we describe now two
important quantum features of Q. Firstly, a standardization theorem is stated and proved,
showing that computational steps in Q can be performed in a particular order, in which
all quantum reductions can be postponed. The standardization theorem strengthens the
common idea that a universal quantum computer should consist of a classical device
‘setting up’ a quantum circuit that is then fed with an input.

Secondly, Q is shown to be at least as expressive as the quantum circuit families model.

5.13.1. Standardization theorem: quantum computations in a standard form. Standard
forms of computations are an interesting topic in many computational models. For
example, in the probabilistic model, it was proved that a computation on a Turing
machine can be standardized into a computation separating stochastic and deterministic
parts.

In Q a similar result holds: from each computation, an equivalent computation in
standard form can be extracted. Informally, in a standard computation, computational
steps are performed in the following order: classical reductions, new reductions and
finally quantum reductions.

Remember the subsets of .Z of Definition 7.

Let C —, D and let M be the relevant redex in C; if « € 2 the redex M is called quantum,
if o € ¥ the redex M is called classical.

Different relevant redexes characterize different kinds of configurations:

Definition 11 (classes of configurations).

— A configuration C is called nonclassical if « € n¢ whenever C —, D. Let NCL be the
set of non-classical configurations.

— A configuration C is called essentially quantum if o € 2 whenever C —, D. Let EQT
be the set of essentially quantum configurations.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1138

For example, C = [Q, QV,new(1)] € NCL and C = [Q, OV, A.(x1,...,xk).(X1,...,Xk)
((ri,....m))] € EQT.
We are able now to define standard computations:

Definition 12 (CNQ computation). A CNQ computation starting with a configuration C
is a computation {Ci}i, such that Co = C, ¢ < w and:

l.forevery 1 <i+ 1< g, if Ci_y —=,% C; then C; =, Ciyy;
2.forevery 1 <i+ 1< ¢, if Ci_y =9 C; then C; > 9 Ciy;.

A CNQ computation is built on three different and ordered stages:

— first phase of the computation — classical reductions: this phase builds a lambda
term representing a quantum circuit, without any interaction with the underlined
quantum register;

— second phase of the computation — new reductions: this phase prepares the input,
i.e the quantum register without introducing any superposition;

— third phase of the computation — quantum reductions: in this phase the proper
quantum steps are performed, and unitary operators are applied to qubits (possibly
introducing superposition). Essentially, the circuit built in the first phase is applied to
the quantum register built in the second phase.

From an abstract perspective, we can consider a particular class of terms, called quantum
relevant terms (see Definition 14), as quantum circuit generators; this will be an important
technical ingredient in the proof of the expressive equivalence between Q and the quantum
circuit families model.

Theorem 6 (standardization). For every computation {C;}i<, such that ¢ € N there is a
CNQ computation {D;};<¢ such that Cy = Dy and C,_ = D¢_;.

In order to prove Theorem 6 we need some intermediate results. Informally, we need
to prove that the class NCL of non-classical configurations is closed under new reduction,
while the class EQT of essentially quantum configurations is closed under quantum
reduction. This means that we need to prove that a new redex cannot generate a classical
redex, and that a quantum redex cannot generate a new redex.

Lemma 2.

i. If C e NCL and C —,ew D then D € NCL.
ii. If C € EQT and C — 4 D then D € EQT.

Proof. 1 and ii follow from rules’ inspection. One has to define a notion of context
(a term with one hole) and proceeds by induction on the structure of the context. For a
complete and detailed proof see Zorzi (2009) and Dal Lago et al. (2010).]

By means of Lemma 2 we can prove the standardization theorem.

Proof of standardization theorem
We build a CNQ computation in three steps:

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1139

1. Let us start to reduce Dy = Cyp by using ¥ reductions as much as possible. By
Theorem 5 we must obtain a finite reduction sequence Dy —¢ ... > Dy s.t. 0 < k
and no ¥ reductions are applicable to Dy.

2. Reduce Dy by using new reductions as much as possible. By Theorem 5 we must obtain
a finite reduction sequence Dy —new ... —>new D s.t. k < j and no new reductions are
applicable to D;. Note that by Lemma 2 such reduction steps cannot generate classical
redexes and in particular no classical redex can appear in D;.

3. Reduce D; by using 2 reductions as much as possible. By Theorem 5 we must obtain
a finite reduction sequence D; —» o ... =9 D,, such that j < m and no 2 reductions
are applicable to D,,. Note that by Lemma 2 such reduction steps cannot generate ¢
redexes or new redexes and in particular neither 4" nor new reductions are applicable
to D,,. Therefore D,, is in normal form.

The reduction sequence {D;}i<y+1 is such that Dy = ... =% Di —new ... —new Dj =2
. =9 D, is a CNQ computation. By Theorem 4 we observe that C,_; = D,,, which

implies the thesis.
Ul

The standardization theorem explains the structure of measurement-free quantum
computations, confirming the idea of a composite architecture device-server (i.e. the
advisability of quantum data-classical control approach). Moreover, it plays an important
role in the proof of the equivalence of Q with quantum circuit families: the possibility to
perform quantum steps after the classical ones will be extensively used in Theorem 9.

The following is another example of a Q-computation (that is also in standard form):

Example 8 (Deutsch’s algorithm). Deutsch’s algorithm is the first quantum algorithm to
have been defined. It allows one to compute a global property of a function by combining
results from two components of a superposition (Deutsch 1985). We refer here to the
Deutsch’s algorithm as presented in Nielsen and Chuang (2000). We propose an encoding
in Q’s syntax.

Let Wy be the unitary transformation such that W¢|cica) = [ci,¢2 @ f(c1)) (for any
given boolean function f and ¢,¢; € {0,1}), and let H be the Hadamard transform.

The general quantum circuit that implements Deutsch’s algorithm is represented by the
following lambda term:

D = A{x, y).(A{w, z).(Hw, z))(W;(Hx, Hy))).

Deutsch’s algorithm makes use of quantum parallelism and interference (Section 4) in
order to determine whether f is a constant function by means of a single evaluation of

f(x).

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1140

In order to perform such a task, we first evaluate the normal form of
[1, D{new(0),new(1))].

[1,D(new(0),new(1))]
—new [P 0) ®[g— 1), (2(x, y)(Alw, z).(Hw, 2)) (W (Hx, Hy)))(p, 0)]
—qp [Ip—0)® g 1), (Alw,z).(Hw,z))(W;(Hp, Hq))]

e [w ®lgs 1>,u<w,z>.<Hw,z>><wf<p,Hq>>]

NG
—q ["’H °>j§"’“’ Dglim 05““’ D (3,)., 2)) (0 <p,q>)]
_ [\pn—» 0,;1}—»0) B p— 0,2qH 1) n p— 1,;1}—»0) n [p— l,zq»—> 1>,(l(w,Z).(HW,Z))(W/([),(]))
p—0,g—>08f(0) |p—0g—10f(0) [p—=>Lg—08f(1) Ip—=Lg—1af(1)
U 2 2 + 2 + 2 :
u<w,z>.<Hw,z>><p,q>>}
p—0,g—08f(0) |p—0g—10f(0) |p—>Lg—08f(1) |p—Lg—lef(l)
—q.p > 3 + 3 + > 5
<Hp,q>]
p=0)+lp—=1) _|g—=08f0) [p—=0)+lp—1) |g—1@f(0)
—Uq |: \/2 ® > — \/5 ® D) +
p=0)—lp=1) lg—=00f(1)) lp=0)—lp—1) lg—1ef1)
7 ® 5 NG 3 L (0. q)

We have two cases:

— f is a constant function; i.e. f(0) ® f(1) =0.
In this case the normal form may be rewritten as (by means of simple algebraic
manipulations):
— Ol 1>,<p,q>]-
2
— f is not a constant function; i.e. f(0) ® f(1) = 1.
In this case the normal form may be rewritten as:

(—1)Ops 0) @ 4

If we measure (by means of a final external apparatus) the first qubit p of the term (p,q)
in the normal form configuration, we obtain O if f is constant and 1 otherwise.

It is essential to stress again that quantum parallelism alone is not enough: a quantum
algorithm also has the ability to extract information about more than one of the value
f(x) from a superposition state at the same time, as Deutsch’s algorithm done.

Note that the computation is in standard form, ie. all new reductions come before all
quantum reductions (in this example any classical reduction does not occur).

[(—1YOIp—1)®

5.14. Infinite computations in Q

What about infinite computations? Of course, in Q it is possible to represent diverging
lambda terms, and so non-terminating computations occur. From a quantum computation
point of view, in the absence of an explicit measurement operator non-terminating
computations are not particularly interesting, because there is no final measurable

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1141

quantum state, and consequently the transformations of the quantum register are in-
accessible.

The extension of standardization to the infinite case makes this observation explicit.
First of all, observe that we cannot have an infinite sequence of n%¢ reductions, as the
following lemma shows:

Lemma 3. The relation —,¢ is strongly normalizing (i.e. there cannot be any infinite
sequence C; —,¢ Cy =g C3 —>pg .. 0).

Proof. Define the size |[M| of a term M as the number of symbols in it, observe that if
[Q, QV, M] —,« [Q, OV, N] then |[N| < |M| and conclude. OJ

As a consequence of Lemma 3 only the first, purely classical part of a CNQ computation
can diverge:

Proposition 3. Any infinite CNQ computation only includes classical reduction steps.

The following is a simple example of a non-normalizing term in Q (and then of an
infinite reduction): given M = Alx.(x!x), clearly M(!M) — M(!M).

We can easily state and prove the standardization theorem also for infinite computa-
tions:

Theorem 7 (standardization for infinite computations). For every non-terminating compu-
tation {C;}i<, there is a CNQ computation {D;};<, such that Cy = Dy.

Proof. We build the CNQ computation in the following way: start to reduce Dy = Cy
by using ¥ reductions as much as possible. This procedure cannot end, otherwise we
would contradict Lemma 3 and Theorem 5. L]

Infinite computations are quite irrelevant in the measurement-free case; on the contrary,
they play a fascinating role in the presence of an explicit measurement operator (see
Section 6).

5.14.1. Expressive power: equivalence with quantum circuit families In this section, we
analyse the expressive power of Q, showing that it is ‘quantum Turing complete’. We will
prove that the expressive power of Q is equivalent to a particular class of quantum circuit
families, and consequently (via the results of Nishimura and Ozawa (2009)) we obtain the
equivalence with the model of quantum Turing machines (as defined by Bernstein and
Vazirani (1997)).

Noticeably,

one single lambda term in Q represents an entire family of quantum circuits.

Two important considerations are now in order.

A lambda term is a finite object (we build it by a finite number of applications of
well-forming rules), and in particular it contains only a finite number of constants for
unitary transformations. As a consequence, we will restrict our attention to the class of
finitely generated quantum circuit families (Definition 32, Appendix A.2).

Moreover, in order to encode a quantum circuit family by means of a single lambda
term, we will exploit the classical content of Q. Whereas, in the previous examples we

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1142

provided finite encodings, the encoding of quantum circuit families is an infinite encoding,
as a quantum circuit family defines an infinite class of functions. The pure linear part of
the calculus (it can easily be obtained forgetting modalities and with little adjustments to
the well-forming rules) is not enough: it permits us to encode only one single circuit, i.e.
a particular element of the family which represents the function for one particular input
size.

Before showing some aspects of the encoding, it is mandatory to say a few words about
the classical content of Q and the relationship with the standard untyped A-calculus. The
untyped J-calculus can be embedded in Q, but this does not mean that the encoding
of quantum circuit families is trivial. First of all, the translation into Q has to be done
carefully, because fi-reduction in the lambda calculus does not correspond to surface
reduction in a calculus like Q: it is easy to build a non-normalizable classical lambda term
M such that its (call-by-name) translation M is clearly a normal form in Q. Moreover,
surface reduction shares a stricter relationship with weak head reduction: in this case if
M rewrites to N by weak head reduction, then M rewrites to N in Q, but the converse is
not true. Thus, the embedding into Q it is not immediate.

On the other hand, it is well known that the lambda calculus is Turing complete for
any reasonable encoding and this still holds for Q, even if the notion of reduction is
stricter. But showing ‘classical’ Turing completeness for Q (i.e. to prove that Q has at
least the expressive power of a Turing machine) does not imply, for free, the encoding of
quantum circuit families. This only implies that it is possible to compute the code D, of
the nth circuit C, of any quantum circuit family from input n, ie. the ‘Godel’s number’
of C,. Since we want to evaluate C, inside Q, we need to prove that the correspondence
D, — C, is itself representable in Q and since the way quantum circuits are represented
and evaluated in Q has nothing to do with the encoding of the calculus itself, this is not
a consequence of the alleged (classical) Turing completeness of Q.

In this section, we will show that each finitely generated quantum circuit family can
be captured by a subclass of Q terms, called quantum relevant terms (Definition 14). In
particular, we will prove that the class of functions captured by quantum relevant terms
is exactly the class computed by quantum circuit families.

Informally, a quantum relevant term is a Q term which produces a list of quantum
variables when applied to a list of classical bits, something like the quantum version of
functions on natural numbers in classical recursion theory. It is clear that the way in
which we encode natural numbers and data structures is a crucial point. Moreover, we are
dealing also with quantum data which are, in general, nonerasable and non-duplicable.
Thus, a numbers of constraints have to be added to the encoding, in order to respect
quantum features. In this paper, we will give only the idea of the encoding. All details
can be found in Dal Lago et al. (2009) and Zorzi (2009).

We encode data, classical and quantum, using some variations on Scott’s numer-
als (Wadsworth 1980). In the case of quantum data, a strongly linear discipline is enforced
through a slightly different encoding. What is crucial from a computational point of view
is the way a quantum relevant term can possibly modify the underlying quantum register.
The encoding of data structures is long but quite standard. We summarize the essential
definitions about natural numbers and lists in the following paragraphs.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1143

5.14.2. Natural numbers. In the A-calculus Q natural numbers are encoded nonlinearly.
Any natural number is duplicable by construction, since it has the shape !M for some M.
We have:

[0] = !1Alx.Aly.y
Vn o [n+1] = 1AxAly.x[n]

In the following, for each natural number n we denote [n] as its encoding in Q. As
usual, encodings of basic constructors such as successor and predecessor are provided.

Among other constructors, recursion is of course an essential ingredient. Thus, it is easy
to define a lambda term rec such that, for each M € Q, rec!M = M !(rec!M).

Structural recursion rec"® on natural numbers is definable by means of rec.

5.14.3. Lists. Whereas, natural numbers are duplicable syntactical objects, in Q lists are
encoded linearly.

Given any sequence Mj,..., M, of terms, we can build a term [My,..., M,] encoding
the sequence as follows, by induction on n:

0 = AlxAly.y;
M, M;...,.M,] = Alx.AlyxM[My,..., M,].

The occurrences of M and [Mj,..., M,] which are part of [M, M;,..., M,] do not lie in
the scope of any bang operator.

It is routine to encode standard operations on list such as construction, destruction,
selection, extraction. Iteration is available on lists, too.

Representable functions in Q are defined as follows:

Definition 13. A (partial) function f : N" — N is representable iff there is a term M such
that:

— Whenever M¢[my]...[m,]| has a normal form N (with respect to —), then N = [m]
for some natural number m.
— M¢[m]...[m,] >« [m] iff f(my,...,m,) is defined and equal to m.

As already mentioned, Q reduction relation is quite different from the standard /-
calculus reduction. In Dal Lago et al. (2009) and Zorzi (2009), it is possible to find the full
proof of the following proposition, which ensures the equivalence between representable
and partially recursive functions:

Proposition 4. The class of representable functions in Q coincides with the class of partial
recursive functions (on natural numbers).

We now formally define the class of quantum relevant terms.

In the following, given any subset . of .Z, the expression C |}.»» D means that C N o D
and D is in normal form with respect to the relation — . C || D stands for C | & D.

Confluence and equivalence between weakly normalizing and strongly normalizing
configurations authorize the following definition:

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1144

Definition 14 (quantum relevant terms). A term M is called quantum relevant (shortly, grel)
if it is well formed and for each list ![!cy, ..., le,] (¢; € {0, 1}) there is a quantum register Q
and a natural number m such that [1, 2, M![lcy, ..., 1ea]] 4 [Q, {r 1, s tm}s [F1s s Pl

The class of functions captured by quantum relevant terms coincides with the class of
functions which can be computed by finitely generated quantum circuit families.
The situation is summarized by the following diagram

(0, M] > [0, M[n]] =2 [Q[ri; .-, 7&]]

1+ Th. 8|1Th 9

(Ki)icw > Kp(rn1)([n]) = Q
where M is a quantum relevant term and (K;); is a finitely generated uniform quantum
circuit family. We sketch here both directions of the equivalence. Detailed proofs are given
in Dal Lago et al. (2009) and Zorzi (2009).
We start showing that each finite family of quantum circuit can be ‘represented’ in Q,
i.e that Q is at least as computationally strong as finitely generated uniform quantum
circuit families (Definition 32).

Theorem 8. For every finitely generated uniform family of quantum circuits (f, g, h) there
is a quantum relevant term My, such that for each cy,...,¢, (¢; € {0,1}), the following
two conditions are equivalent:

- [19 @a Mf,g,h![!cls"': !Cn]] U [Qa {rly---yrm}s [rla"'arm]];
— m= f(n) and Q = q)f,g,h(c1>"'>cn)'

Proof. We give the principal ideas of the proof, which is essentially an encoding work.
Since any recursive function can be represented in Q, we can assume that f, ¢ and h are
representable whenever (f,g,h) is a uniform family of circuits.

Recall that:

— f : N - N computes the input dimension.
— h : N — N returns the index of the suitable circuit into the family with respect to the
input dimension.

An essential ingredient is the possibility to represent, in the calculus, elementary
permutations on terms. The nth elementary permutation of m elements (where 1 < n < m)
is the function which maps n to n+ 1, n+ 1 to n and any other elements in the interval
1,...,m to itself. Any (finite) permutation can be effectively decomposed into a product of
elementary permutations. In particular, it is possible to define a term M,; which computes
the n+ 1th elementary permutation on lists : for every list [Ny,..., N,,] with m > n, M,([n])
[Nis....Nu] =% [Nt....s Noots Nust, Ny Nugas .., Nyl

Now, we are able to prove that any finitely generated family of circuits can be
represented in Q. Suppose that {K;},cn is an effective enumeration of quantum circuits
(Appendix A.2) and assume it is based on an elementary set of unitary operators.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1145

Suppose that for every i € N, the circuit K; is
T G Ul)» r,i’(li), e r,i’f;()i’k(i))

where p : N x N — N and k : N —» N are computable functions. Since (f, g, h) is finitely
generated, there is a finite family of gates G = {Uj,..., Uy} such that for every i € N the
gates U?('),...,UZ:;; are all from G. Let ar(1),...,ar(bh) be the arities of Uy,...,U,. Since
the enumeration {K;},cy is effective, we can assume the existence of a recursive function
u: N x N — N such that u(i, j) = x iff U?(’) is Uy. Moreover, we know that for every
i € N and for every 1 < j < k(h(i)), the variables

r;t(i),l, o r?(i),p(h(i),k(h(i)))

are distinct and in {ry,...,rpua)}. So, there are permutations n} of {1,...,f(h(i))} such
that 7i(x) = y iff 7/ = r, for every 1 < x < p(h(i),k(h(i))). Let pi be the inverse of 7.
Clearly, both 7; and pj can be effectively computed from i and j by means of a suitable
decomposition into elementary permutations. As a consequence, the following functions

are partial recursive (in the ‘classical’ sense):

— A function r : N x N — N which, given (i, j) returns the number of elementary
permutations of {1,..., f(h(i))} in which n;. can be decomposed.

— A function ¢ : N x N x N — N such that ¢(i,j,x) = y iff the xth elementary
permutation of {1,...,f(h(i))} in which n} can be decomposed is the yth elementary
permutation.

— A function s : N x N — N which, given (i, j) returns the number of elementary
permutations of {1,...,f(h(i))} in which p; can be decomposed.

— A function ¢ : NxN xN — N such that ¢(i, j, x) = y iff the xth elementary permutation
of {1,...,f(h(i))} in which pj can be decomposed is the yth elementary permutation.

The term representing the quantum circuit family is built out of the following
subterms:

— M,,; that, given a list L of boolean constants and a natural number [n], computes the
input list for K, from L.

— M., that, given a natural number [n] builds a term computing the unitary trans-
formations involved in Ky, acting on lists of quantum variables with length f(n).

— Mengn, which applied to a list [!Ny,..., IN,] computes the length (the representation
[m] of the number of the elements).

Now, the term M; g is:
A !x-(Mcirc(MIengthx))(Minit !X(Mlengthx))-
For the full encoding of M; . see, Dal Lago et al. (2009) and Zorzi (2009). Il

We now state the converse of Theorem 8, completing the proof of the equivalence with
quantum circuit families. In the following, we will use the compact notation [Q, M] for
configurations (Note 5, Section 5.10).

Theorem 9. For each qrel M there is a uniform quantum circuit family (f, g, h) such that
for each list ¢y,...,c, the following two conditions are equivalent:

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1146

— [LM!ler, ..., le 1 V9, [Pty v s mml]
— m= f(n) and Q = O, s(ci,...,cp).

The proof of Theorem 9 is quite intuitive. Noticeably, here the standardization theorem
plays a central role. In fact, we can assume that all non-quantum reduction steps can
be done before any quantum reduction step. Thus, it is possible to work on quantum
relevant terms in separate stages, building the quantum circuit family in two phases.

Firstly, we consider reduction steps in the set n2 = £ — 2 and we show that from a
quantum relevant term it is possible to extract, regardless of the input vector, an essentially
quantum term. Let M be a qrel term, let ![!cy,..., !c,], ![!dy,..., !d,] be two lists of bits
(with the same length) and suppose that [1, M![!lcy,..., lc,]] bno [Q, N] (notice that N
cannot contain any boolean constant, since M is assumed to be a qrel). By applying
exactly the same computation steps that lead from [1, M ![!cy,..., !c,]] to [Q, N], we can
prove that [1, M![!dy,..., d,]] Vne [Q, N], where Q and Q' live in the same Hilbert space
H(Q(N)) and are both elements of the computational basis. Moreover, any computational
step leading from [1, M ![lcy,..., lc,]] to [Q, N] is effective, i.e. it is intuitively computable
(in the classical sense). Therefore, by the Church-Turing’s thesis we obtain the following:

Proposition 5. For each qrel M there exists a term N and two total computable functions
f:N > Nand g : N x N — N such that for every n € N and for every cy,...,cp,
[LM![ler,..., ten] Una [Ir1 = Comiys---»Tfm) = Comfmy)s N1, where we conventionally set
co=0and ¢, = 1.

Note that, at this stage, we have built the quantum circuit from the description function
with respect to the input and we have also built the input, i.e. the quantum register.

Let us now consider computations from essentially quantum terms.

Let [Q,M] € EQT and let us suppose that [Q, M] o [Q,[r1,...,7u]]. Then Q and
@' live in the same Hilbert space H(Q(M)) = H(Q([r1,...,rm])) = H({r1,...,rm}). The
sequence of reductions in this computation allows us to build in an effective way a unitary
transformation U such that Q" = Uy, . +(Q). This is captured by the following:

Proposition 6. Let M be a term only containing quantum redexes. Then, there is a circuit
K such that Q' = Ug(Q) whenever [Q, M] | o [Q', M']. Moreover, K is generated by gates
appearing in M. Furthermore K can be effectively computed from M.

The proof of Theorem 9 follows as a direct consequence of Propositions 5 and 6.

6. Adding measurement operators: theoretical problems and technical instruments

If a quantum state does not interact with the ambient (i.e. with something able to perform
a measurement) its evolution is deterministic: in fact, as explained in Sections 2 and 3,
it persists in a linear, unitary evolution by means of unitary operators (Postulate III).

In Q, data and control are separated: on the one hand, quantum data live in the
quantum world, and all quantum register transformations are unitary and invertible; on
the other hand, the classical part of the calculus, the control, enjoys good computational
properties. In Q it is not possible to classically observe the content of the quantum

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1147

Quantum “Server” Classical A evaluator
4 7\ +
directives sender
-)
quantum register
directives
(\!x.M)!N
new/unitary R
operators outputs of measurements —
_ Y, (Classical data obtained by

measurements can be used
in the following steps of

the computation)

Interaction
classical-quantum
worlds

Fig. 4. Quantum client-server architecture with feedback.

register: the language of terms does not include any measurement operator that, applied
to a quantum variable, has the effect of observing the value of the related qubit. This
is in contrast, for example, with Selinger and Valiron’s Ay (where such a measurement
operator is indeed part of the language of terms) and with other calculi for quantum
computation (like the measurement calculus (Danos et al. 2007)), where the possibility of
observing is even more central (see Section 7). A measurement-free calculus is good for
foundational investigations, and the choice of performing a unique, final measurement
at the end of the computation does not modify the expressive power or the theoretical
generality of the calculus. In Q we are potentially able to encode any quantum computable
functions, but we may not be able to ‘reformulate’ algorithms that provide intermediate
measurement steps (even if we know that the same algorithms can be rewritten in terms
of a unique final measurement). In an arbitrary quantum algorithm, quantum data can
be observed: this interaction with the quantum state gives a set of observables, ie. a
probabilistic distribution of classical data which can be used in the following steps of the
computation.

An explicit measurement constructor becomes an essential ingredient if we want to
encode the process of iterated/intermediate measurements of algorithms like Shor’s
one.

The extension of Q with a measurement operator meas(-) (in the style of Ay) is not
problematic from a linguistic point of view. The architecture in Figure 1 can be updated
with a feedback from the quantum server to the client, which uses the observed data as
classical constants (see Figure 4).

The problem is rather to prove that the extended calculus again enjoys good quantum
and computational properties.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1148

6.1. The measurement problem: from physics to computer science

The so-called measurement problem is one of the most fascinatingly tricky points of
quantum mechanics. Different approaches to it give different interpretations of the theory,
leaving some questions still unanswered.

In quantum computing Postulate V induces less foundational choices, but the possibility
to observe quantum data changes the features of the computational framework in a
sensible way.

An explicit measurement operator in the syntax allows an observation at an intermediate
step of the computation. In quantum calculi the intended meaning of a measurement is
to observe the status of a possibly superposed quantum bit: this observation gives as
output a classical bit and the two possible outcomes 0 and 1 can be observed with two
probabilities summing to 1. The output of a measurement can be successively used in the
following step of the computation as a classical datum. For example, let us consider the
following configuration (written in the extended syntax of Q”, Section 6.2):

C =1, ,(Ax.(if xthen 0 else 1))(meas(H (new(0))))]

From C it is possible to build two different computations, depending on the output
measurement of the quantum state %(|O> + [1)) created by the redex meas(H (new(0))): the
expression meas(H(new(0))) can evaluate (with equal probability) to O or to 1. The first
case yields the normal form C; = [p+— 1, {p},0] with probability 1/2, and the second case
yields the normal form C, = [p+— 0, {p}, 1] with probability 1/2.

Thus a measurement redex breaks confluence, importing a probabilistic behaviour
into the computations. In this situation, a ‘classical’ notion of confluence seems to be
irremediably lost.

Let us change our point of view. Taking the configuration C of the previous example, we
can say that it rewrites deterministically to the probability distribution of configurations
{p1 : C1,p2 : Co}, with py = py = % A computation involving measurement should be seen
as a rewriting between distributions of configurations, which takes into account all the
possible results of measurements steps. Under this point of view, an interesting question
is the following: is it possible to preserve equivalence between different strategies? In
other words, if divergence coming from a single measurement redex is irrecoverable, is it
possible to avoid divergence coming from different redexes?

In this second case, the question has a positive answer. The proof of this confluence
result, which involves probabilistic instruments, is the main result about Q*. In Section 6.5,
the strong confluence result (the equivalence between different strategies) will be stated
and proved for mixed states, distributions of Q* configurations. It is easy to extend in a
natural way the notion of reduction between configurations to reduction between mixed

 This name is ‘imported’ from physics. When the knowledge about a quantum system is complete, the wave
function |¢) fully describes the system, as seen in Postulate I. When the knowledge of the system is not
complete, another mathematical instrument is used, the so-called density matrix p =, pil¢;). The density
matrix describes a mixture of pure quantum states i.e. a set, {p; : [¢)} of pure states with linked probabilities.
The system described by the density matrix can be described with probability p; by the vector |¢;). For a full
treatment of this topic, see for example Isham (1995).

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1149

states. Reduction on mixed states is a non-probabilistic relation, and in this way quantum
computation with intermediate measurements can be described into a standard rewriting
system with a standard notion of confluence.

We will not reason directly with mixed states. We proceed first by studying a new
notion of computation, called probabilistic computation, which extends the usual notion of
computation as a sequence of reduction steps. A probabilistic computation is a possibly
infinite tree, in which the binary choice corresponds to the two different outcomes of
a measurement. The set of leaves of a probabilistic computation is consequently a
probabilistic distribution of configurations.

It is possible to reformulate the confluence theorem in the following way: for every
configuration C and for every configuration in normal form D, there is a fixed real number
p such that the probability of observing D when reducing C is always p, independently of
the reduction strategy (this is essentially the main result of Section 6.4).

Note that our result does not come only from the fact that distributions of possible
outcomes are considered instead of single results: confluence is a feature of Q" and it is not
an obvious property. For example the quantum lambda calculus defined in Selinger and
Valiron (2006) does not enjoy such a property: call-by-value and call-by-name strategies
give different distributions of outcomes (see Section 7, where we will provide an overview
on this calculus and a comparative example).

6.2. Syntax, well-forming rules and computations in Q"

The syntax of Q" extends the syntax of Q with two new constructs if () then (-) else (-)"
and meas(-):

X = X0, X[,... classical variables
rooli= 1o, Fl,-.- quantum variables
T o= Xx | (X1,...,Xn) linear patterns
p =1 | Ix patterns
B ::=0]1 boolean constants
U ::=UyU,,... unitary operators
C :=B | U constants
M :=x|r |!M|C|newM) | M|M; |

meas(M) | if N then M, else M, |
(My,...,M,;) | lp.M | terms (where n > 2)

The set of well-forming rules of Q (Figure 2, Section 5.8) is extended with the following
two rules:

T'FM AFN AFM, 'AF M,

———————— meas if
I' - meas(M) A, A Fif N then M, else M,

 The if (-) then (-) else (-) constructor can be thought of as syntactic sugar, as, of course, can the boolean
constants 0 and 1.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1150

The main important novelty is of course the presence of the explicit construct for
measurement, meas(-), which, informally, takes a (name of) a quantum bit as an argument
and returns a classical bit. The measurement operator has an effect on the quantum
register. In Q*, in fact, three kinds of quantum register transformations can occur: ‘new
operations’ (which add qubits to the current state) as in Q; ‘unitary transformation’ as in
Q; and the ‘single qubit destructive measurement operator’.

The contraction of a measurement redex as meas(q) (see reduction rule meas, in
Figure 5, below) corresponds, at the level of a quantum register, to the application of a
suitably defined function which maps a normalized vector in a certain Hilbert space into
another normalized vector in a smaller dimension Hilbert space. More precisely, for each
qvs QV and for each quantum variable r € Q), we assume to have two, measurement
based, linear transformations of quantum registers: M, o, M, : H(QV) — H(QV — {r})
(see Definition 5, Section 2.4). Given a quantum register Q € H(QV), the measurement
of the qubit named r in Q gives the outcome ¢ (with ¢ € {0,1}) with probability
pe = (QIM, .M, Q) and produces the new quantum register M’;Q. This probabilistic
behaviour also involves the control (i.e. the third component of the configuration, the
lambda term). In fact, the reduction relation —, (as for Q, defined between configurations),
has to be parameterized by a probability p.

Let ¢ = {Uq,new,l.f,q.8,c.p,l.cm,r.cm,ify,if,, meas,}. For every « € £" and for
every p € Ry, we define a relation —f< Conf x Conf by the set of reductions in
Figure 5. The notation C —, D stands for C —! D.

We will still adopt surface reduction, as for Q: reduction is not allowed in the scope of
any ! operator.

Furthermore, we forbid reduction in N and P in the term if M then N else P.

We distinguish again three particular subsets of .Z*:

Definition 15 (subsets of £™*).

— ¢ = {l.ecm,r.cm}
— N =2 — (X U{meas,})
— n# = £ — {meas,}.

In the following, we write M —, N meaning that there are Q, QV, R and RV such that
[Q, 0V, M] —, [R,RV, N]. Similarly for the notation M — s N where . is a subset of
z".

In Q (Section 5) infinite computations do not play an important role, because the
(classical) divergent phase of the computation does not permit the access to quantum
reduction steps. In presence of explicit measurement the situation is quite different.

In QF, an infinite computation can tend to a configuration which is essentially different
from the configurations in the computation itself.

In other words, an infinite numbers of computational steps can be necessary in order to
reach a probabilistic distribution of finite configurations. The following examples provides
an explanation of this phenomenon.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1151

[Q, QV, (A& M)N] =] 5 [Q,QV, M{N/x}] [Q,QV,(Ma.M)IN] —! ; [Q,QV, M{N/x}]
[Q,QV, (Mz1,...,&zn).M)(r1,...,r0)] Héﬂ [Q,QV, M{ri/z1,...,rn/xn}]
[Q, QV,if 1 then M else N] — [Q, QV, M]
[Q, QV,if 0 then M else N] —i [Q, QV, N]
(Q,QV, U (riy, s min)] =g (U(raooorin 1) @ QY5 (Pig s s,)]
[Q, QV, meas(r)] —hias, [Mrc(Q), QV — {r},!d] (c € {0,1} and p. = (Qmyc'm;.c|Q) € Rg 1))
[Q, QV, new(c)] —ley [Q® |r =), QV U {r}, 7] (r is fresh)
[Q, QV, L(Am.M)N)] =i, [Q,QV, (Am.LM)N]

l.cm

[Q, QV, (AT M)N)L] =] o [Q, QV, (Ar.ML)N]

[Q,QV, M] =P [R, RV, N]

ti
[QaQVM<M17'-'7M7"'7Mk’>] *)Il; [RvRV7<M17<'-yN7-'-7Mk'>}
[Q, QV,N] =8 [R, RV, P]
r.a
9,9V, MN] =2 [R, RV, MP]
(9, 9V, M] =% [R, RV, P]
l.a
[Q,QV, MN] —% [R,RV, PN]
[Q, 9V, M] =% [R,RV, N| _
in.new
[Q, QV,new(M)] —F [R, RV, neu(N)]
[Q,QV, M] =% [R,RV, N] _
in.meas
[Q, QV,meas(M)] —F [R,RV,meas(N)]
[Q,QV, M] —F [R,RV, N]
in.if
[Q, QV,if M then L else P] =2 [R,RV,if N then L else P]
[Q,QV, M] =P [R, RV, N] (9, QV, M] =P [R, RV, N|
in.)\l in.)\g
[Q, QV, Az M)] =%, [R, RV, (Alz.N)] [Q, QV, (Ar.M)] ¢ [R, RV, (An.N)]

Fig. 5. Reduction Rules for Q.

Example 9 (infinite computation in Q).
Let us consider the configuration

E =[1,J, (YI(A!f.A!x.if x then O else f(meas(H (new(0))))))(meas(H (new(0))))]

where Y is a fix point operator. Note that after a finite number of reduction steps C
rewrites to a distribution in the form {}°, .., % : [1.&,0l,1 — >, % : D}, and only
after an infinite number of reduction steps the distribution {1 : [1, &, 0]} is reached.

As a consequence, the study of infinite computations is significant in this setting.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1152

1

[p— 0,{p}, (Nax.(if = then O else 1)) (meas(H (p)))]

[w, {p}, (M. (if = then O else 1))(meas(p))]

V2
172 172
[p = 0,0, Nz.(if 2 then 0 else 1)(0)] [p— 1,0, M. (if 2 then 0 else 1)(1)]
| |
[p 0.0, (if 0 then 0 else 1)] [p = 1,0, (if 1 then 0 else 1)]
| I

[p+—0,0,1] [p+1,0,0]

Fig. 6. Example of probabilistic computation.

6.3. A probabilistic notion of computation

We introduce here the notion of probabilistic computation, which permits one to deal with
distributions of possible results and represents the main technical ingredient to retrace
confluence in presence of measurements.

A probabilistic computation is a notion more general than a sequence of reductions
and less general than the reduction tree. Informally, probabilistic computations are trees
in which each node has at most two sons, and in which the binary choice is exactly
represented by the two different outcomes (0 or 1) of a qubit measurement. For example,
let us take the configuration C = [1, J, (A!x.(if x then 0 else 1))(meas(H (new(0))))] of
Section 6.1.

In Figure 6, a probabilistic computation (where we labelled arrows with probabilities)
with root C is given.

We will represent computations as (possibly) infinite trees. A (possibly) infinite tree T
will be an (n+ 1)-tuple [R, T1,..., T;], where 0 < n < 2, R is the root of T and T1y,..., T,
are its immediate subtrees.

Definition 16 (probabilistic computation).

i. A nonempty set of (possibly) infinite trees .# is said to be a set of probabilistic
computations if P € . iff (exactly) one of the following three conditions holds:

1. P =[C] and C € Conf.

2. P = [C,R], where C € Conf, R € . has root D and C —,_4 D

3.P =[(p,q,C),R,Q], where C € Conf, R € . has root D, Q € . has root E and
C -t D, C - E with p.,gc € Ry, ¢ = 0,1 and ¢ is the complement of ¢;

meas, meas,

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1153

ii. The set of all probabilistic computations is the largest set &2 of probabilistic computa-
tions with respect to set inclusion.

iii. The set of finite probabilistic computations is the smallest set .# of probabilistic
computations with respect to set inclusion.

In the point i-3 of the definition above, we mean that the configuration D and E are
respectively obtained from the outcome 0 or 1 of the measurement of the qubit r. Without
loss of generality, we can assume for example that the left subcomputation R (with root
D) comes from the observation of 0 and the right subcomputation Q (with root E) comes
from the observation of 1. In the following, we will sometimes omit the subscripts ¢ and
¢ in the reductions —%, .. and _’%em,

Note that the sets &2 and .# of Definition 16 exist because of the Knapster—Tarski
theorem.

With a little abuse of language, sometimes we will say that the root of P = [(p,¢q, C), R, Q]
is C, diverging from the above definition without any danger of ambiguity. We define now
maximal probabilistic computations, the ‘lifting’ of the normal form notion in this setting.

Definition 17 (maximal probabilistic computation). A probabilistic computation P is
maximal if for every leaf C in P, C € NF.

We can give definitions and proofs over finite probabilistic computations i.e. over .# by
ordinary induction. The same is not true for arbitrary probabilistic computations, since
& is not a well-founded set.

Definition 18 (sub-computation). Let P € & be a probabilistic computation. A finite
probabilistic computation R € .F is a sub-computation of P, written R C P iff one of the
following conditions is satisfied:

— R = [C] and the root of P is C.
— R=[C,0Q], P =[C,S],and Q C S.
- R = [(p’q’ C)aQ9S]5 P = [(p’q’ C)a U: V]a Q E U and S E V

Since the outcomes of a probabilistic computation P are given by the configurations
which appear as leaves of P, it should be useful, for example, to know the probability of
observing a normal form, or to count the number of times a certain normal form occurs.

Thus, we state now some ‘quantitative properties’ of probabilistic computations. Let
6 : Conf — {0,1} be a function defined as 6(C) = 0 if the quantum register of C is 0 and
0(C) = 1 otherwise.

Definition 19. For every finite probabilistic computation P and every C € NF we define
P(P,C) € R,; by induction on the structure of P:
— P([C] C)=9(C);
P([C],D) = 0 whenever C # D;
— 7’([P],D) ="P(P,D);
— P([(p.4,C),P,R],D) = pP(P,D) + qP(R,D);

Informally, P(P, C) is the probability of observing C as a leaf in P. Similarly, we define
N(P, C),which represents the number of times C appears as a leaf in P:

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1154

Definition 20. For every finite probabilistic computation P and every C € NF, we define
N(P,C) < Ny by induction on the structure of P:

N(C].C)=1;

N([C],D) = 0 whenever C # D;
N([C,P],D) = N(P,D)..
N(l(p,q,C),P,R],D) = N(P,D) + N(R, D).

In the following we will also refer to P(P), the probability of observing any configuration
(in normal form) as a leaf in P, and to N(P), the number of times any configuration
appears as a leaf in P. These definitions can be easily obtained from Definitions 19 and
20.

It is possible to extend quantitative properties to arbitrary, possibly infinite, probab-
ilistic computations. We exploit the fact that Ry and N U {No} are complete lattices
(with respect to standard orderings), and we extend the above notions to the case of
arbitrary probabilistic computations, by taking the least upper bound over all finite
subcomputations. Thus, we have the following definition:

Definition 21. If P € &2 and C € NF, then:

— P(P,C) = supgcp P(R,C),
— N(P,C) = supgcp N(R,C),
— P(P) = SUPRCP P(R),
— N(P) = supgpcp N(R).

Notice that, since C € NF, for finite P the two notions coincide.
We are now ready to state and prove our confluence result.

6.4. Strong confluence for Q*

In this section, we will prove the main result about Q. The confluence result can be
informally described in the following way: any two maximal probabilistic computations P
and R with the same root have exactly the same quantitative and qualitative behaviour, that
is to say, the following equations hold for every C € NF:

— P(P,C) = P(R,C): the probability of observing C is independent from the adopted
strategy (then all strategies are equivalent).

— N(P,C) = N(R,C) and N(P) = N(R): the number of (not necessarily distinct) leaves
in any probabilistic computation does not depend on the strategy

— P(P) = P(R): the probability of converging is not affected by the underlying strategy.

We define our confluence result as ‘strong’ because equalities like the ones above do
not even hold for the ordinary A-calculus. It is easy to show a counterexample. Let us
take the lambda term (Ax.1y.y)Q. It is the root of the following two (linear) maximal
computations:

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1155

(1,0, Az.\y.y)Q] (1,0, Az.\y.y)Q]

|

(1,0, Ay.y] (1,0, (Az.Ay.y)Q]

(1,0, Az y.y)Q]

The first has one leaf [1, 7, Ay.y] and the second one has no leaves at all.

The proof of the strong confluence theorem (Theorem 10) is quite long. We omit
non-interesting auxiliary results, but we will dwell on some lemmata which present non-
standard proof-theoretical contents or are essential to introduce the theorem. For full
details see Zorzi (2009).

As for Q, Q" does not enjoy the diamond property in a classical sense, because of the
presence of commutative reduction rules. The quasi-one-step confluence we state below
retraces exactly Proposition 2 (Section 5.12.2). In presence of measurements, we also
have some ‘good’ cases induced by measurement (cases 3, 5 and 6 of Proposition 7);
unfortunately, during the computations, the case C —meas, D and C —meas, E also
occurs, and it cannot be solved.

Proposition 7 (quasi-one-step confluence). Let C,D,E be configurations with C —? D,
C —} E. Then

1.If « € # and € JZ, then either D = E or there is F with D — 5 F and E —_ F.
2. If « € & and f € ¥, then either D — 4 E or there is F with D — 4 Fand E —_ F.
3.If o € # and B = meas,, then there is F with D -3 ., F and E — F.

4. 1f « € A and p € A, then either D = E or there is F with D —» 4 F and E —_4 F.
5.If « € 4 and B = meas,, then there is F with D -3 ., F and E —» F.

6.If « = meas, and f = meas, (r # q), then there are t,u € Ryo;; and a F such that
pt = su, D —! F and E —% F.

meas, meas;

Proof. By induction on M. U]

Note that, as for Q, the strong normalization property for — (Lemma 1) still holds.

The proof of the strong confluence theorem (Theorem 10) is essentially based on quasi-
one-step confluence and on a suitable version of the strip lemma (Barendregt 1984); to
state the strip-lemma, we need to compare quantitatively probabilistic computations.

Some definitions are in order now.
We define the branch degree B(P) of a finite probabilistic computation P by induction
on the structure of P:

— B([C) =1L
— B([C, P]) = B(P).

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1156

Please observe that B(P) > 1 for every P.
We also define the weight W(P) of a finite probabilistic computation P by induction
on the structure of P:

— W([C]) = 0.

— Let D be the root of P. If C —_ D, then W([C, P]) = W(P), otherwise W([C, P]) =
B(P) 4+ W(P).

— W([(p,q,C), P, R]) = B(P) + B(R) + W(P) + W(R).

The following is a probabilistic variation on the classical strip lemma of the A-calculus.
We detail some cases of the proof, which is quite nonstandard.

Lemma 4 (probabilistic strip lemma). Let P be a finite probabilistic computation with
root C and positive weight W(P).

— If C - _4 D, then there is R with root D such that W(R) < W(P), B(R) < B(P) and
for every E € NF, it holds that P(R,E) = P(P,E), N(R,E) = N(P,E), P(R) = P(P)
and NV (R) = N(P).

— If C - D, then there is R with root D such that W(R) < W(P), B(R) < B(P) and
for every E € NF, it holds that P(R,E) = P(P,E), N(R,E) = N(P,E), P(R) = P(P)
and NV (R) = N(P).

— If C —feas, D and C —heas E, then there are R and Q with roots D and E
such that W(R) < W(P), W(Q) < W(P), B(R) < B(P), B(Q) < B(P) and for every
E € NF, it holds that gP(R,E) + pP(Q,E) = P(P,E), N(R,E) + N(Q,E) > N(P,E),
qP(R) + pP(Q) = P(P) and N(R) + N(Q) = N(P).

Proof. By induction on the structure of P:

— P cannot simply be [C], because W(P) > 1.
— If P = [C,S], where S has root F and C —_4 F, then:

— Suppose C —_4 D. If D = F, then the required R is simply S. Otherwise, by
Proposition 7 (quasi-one-step-confluence), there is G such that D —_» G and
F — 4 G. Now, if S is simply [F], then the required probabilistic computation is
simply [D], because neither F nor D are in normal form and, moreover, W([D]) =
0 <1 =W(P). If, on the other hand, S has positive weight we can apply the IH to
it, obtaining a probabilistic computation T with root G such that W(T) < W(S),
B(T) < B(S),P(T,H) = P(S,H) and N(T,H) = N (S, H) for every H € NF. Then,
the required probabilistic computation is [D, T], since

W([D, T]) = B(T)+W(T) < B(T)+ W(S)

< B(S) + W(S) = W(P);
P(D,T),H) = P(T,H) = P(S,H)
= P(P,H);
N([D,T],H) = N(T,H) > N(S,H)
= N(P,H).

— Suppose C — » D. By Proposition 7 one of the following two cases applies:

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1157

e There is G such that D — 4 G and F —_» G Now, if S is simply [F], then
the required probabilistic computation is simply [D, [G]], because W([D, [G]]) =
1 = W(P). If, on the other hand, S has positive weight we can apply the IH to
it, obtaining a probabilistic computation T with root G such that W(T') < W(S),
B(T) < B(S) and P(T,H) = P(T,H) for every H € NF. Then, the required
probabilistic computation is [D, T], since

W([D, T]) = B(T)+W(T) < B(T) + W(S)
< B(S) + W(S) = W(P)
P([D,T].H) = P(T.H) = P(S,H)
= P(P,H);
N(ID,TL.H) = N(T,H) > N(S,H)
= N(P,H).

e D — 4 F. The required probabilistic computation is simply [D, S]. Indeed:
W([D,S]) = B(S) +W(S) = W([C,S]) = W([P]).

— Suppose C —theas, D and C —heas, E. By Proposition 7, there are G and H such
that D — 4 G, E —_y H, F —%eas, G, F —heas, H. Now, if S is simply F, then
the required probabilistic computations are simply [D] and [E], because neither F
nor D nor E are in normal form and, moreover, W([D]) = W([E]) =0 < 1 = W(P).
If, on the other hand, S has positive weight we can apply the IH to it, obtaining
probabilistic computations T and U with roots G and H such that W(T') < W(S),
W(U) < W(S), B(T) < B(S), B(U) < B(S), gP(T,H)+ (p)P(U,H) = P(S,H) and
N(T,H)+N(U,H) = N(S,H) for every H € NF. Then, the required probabilistic
computations are [D, T] and [E, U], since

W([D,T]) = B(T)+W(T) < B(T) + W(S)
B(S) + W(S) = W(P);
B(U) + W(U) < B(U) 4+ W(S)
B(S) + W(S) = W(P).

N

W([E, U])

N

Moreover, for every H € NF

qP([D,T],H)+ pP([E,U],H) = qP(T,H) +pP(U,H)
> P(S,H)=P(P,H)

N(T,H)+ N(U,H)

> N(S,H) = N(P, H).

N([D,T],H)+ N([E,U],H)

— The other cases are similar.]

Proposition 8 follows from the probabilistic strip lemma. This is a simulation result :
if P and R are maximal and they have the same root, then P can simulate R (and
vice-versa).

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1158

Proposition 8. For every maximal probabilistic computation P and for every finite
probabilistic computation R such that P and R have the same root, there is a finite
sub-computation Q of P such that for every C € NF, P(Q,C) = P(R,C) and N(Q,C) >
N(R, C). Moreover, P(Q) = P(R) and N(Q) = N(R).

Proof. Given any probabilistic computation S, its .# -degree ng is the number of
consecutive commutative rules you find descending S, starting at the root. By Lemma 1
(Section 5.12.2), this is a good definition. The proof goes by induction on (W(R),ng),
ordered lexicographically:

— If W(R) = 0, then R is just [D] for some configuration D. Then, Q = R and all the
required conditions hold.
— If W(R) > 0, then we distinguish three cases, depending on the shape of P:

— If P = [D,S], E is the root of S and D —_4 E, then, by Lemma 4, there is a
probabilistic computation T with root E such that W(T) < W(R) and P(T,C) >
P(R,C) for every C € NF. By the inductive hypothesis applied to S and T,
there is a sub-probabilistic computation U of S such that P(U,C) = P(T,C) and
N(U,C) = N(T,C) for every C € NF. Now, consider the probabilistic computation
[D, U]. This is clearly a sub-probabilistic computation of P. Moreover, for every
C € NF:

P([D,U],C) = P(U,C)
P(T,C) = P(R,C)
N(U,C)

> N(T,C) > N(R,C).

\%

N([D,U],C)

— If P = [D,S], E is the root of S and D — » E, then, by Lemma 4, there is a
probabilistic computation T with root E such that W(T) < W(R) and P(T,C) =
P(R, C) for every C € NF. Now, observe that we can apply the inductive hypothesis
to S and T, because W(T) < W(R) and ng < np. So, there is a sub-probabilistic
computation U of S such that P(U,C) = P(T,C) and N(U,C) = N(T,C) for
every C € NF. Now, consider the probabilistic computation [D, U]. This is clearly
a sub-probabilistic computation of P. Moreover, for every C € NF:

P([D,U],C) = P(U,C)
P(T,C)=P(R,C)
N(U,C)

> N(T,C) = N(R,C).

\%

N([D,U],0C)

- P = [(p,q,D),S1,S:], Ey is the root of S; and E, is the root of S,, then, by
Lemma 4, there are probabilistic computations Ty and T, with root E; and
E; such that W(Ty),W(T,) < W(R) and pP(Ty,C) 4+ qP(T>,C) = P(R,C) for
every C € NF. By the inductive hypothesis applied to S; and Ty (to S; and T3,
respectively), there is a sub-probabilistic computation Uy of S; (a sub-probabilistic
computation U, of S, respectively) such that P(U;,C) = P(Ty,C) for every

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1159

C € NF (P(U,,C) = P(T,,C) for every C € NF, respectively). Now, consider
the probabilistic computation [(p, q, D), Uy, U,]. This is clearly a sub-probabilistic
computation of P. Moreover, for every C € NF:

P([(p’ana UlaU2]:C) P(U],C)+CIP(U2,C)

=D

= pP(T1,C) +¢qP(T2,C) = P(R,C).

This concludes the proof. Ul
We are now able to prove our main result:

Theorem 10 (strong confluence). For every maximal probabilistic computations P and R
such that P and R have the same root, and for every C € NF, P(P,C) = P(R,C) and
N(P,C) = N(R,C). Moreover, P(P) = P(R) and N'(P) = N(R).

Proof. Let C € NF be any configuration in normal form. By definition:
P(P,C) =supgcp{P(Q,C)} P(R,C) = supsc{P(5,C)}.

Now, consider the two sets A = {P(Q,C)}ocp and B = {P(S,C)}scr. We claim the two
sets have the same upper bounds. Indeed, if x € R is an upper bound on 4 and S C R,
by Proposition 8 there is Q C P such that P(Q,C) = P(S,C), and so x = P(S,C). As a
consequence, x is an upper bound on B. Symmetrically, if x is an upper bound on B, it is
an upper bound on A. Since 4 and B have the same upper bounds, they have the same
least upper bound, and P(P,C) = P(R, C). The other claims can be proved in exactly the
same way. This concludes the proof. U]

6.5. Computing with mixed states

In the previous section we proved the strong confluence theorem for probabilistic
computations. This result can be reformulated on mixed states, informally introduced
in Section 6.1.

More formally, a mixed state is a finite support distribution of configurations:

Definition 22 (mixed state). A mixed state is a function M : Conf — Ryg; such that
there is a finite set S < Conf with M(C) = 0 except when C € S and, moreover,
Y ces M(C) = 1. Mix is the set of mixed states.

A mixed state M will be denoted with the linear notation {p; : Ci,...,px : Cx} or as
{pi : Ci}1<i<k, where p; is the probability M(C;) associated with the configuration C;, and
where {Cy,...,Ci} is the set S from the above definition.

Remember the discussion in Section 6.1: the reduction between mixed states, as
a deterministic reduction between distributions, permits us to avoid the probabilistic
behaviour of computations, and retrace results proved in the previous section in a
standard, deterministic rewriting system.

The reduction —2 between configurations can be extended to mixed states in the
following way:

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1160

Definition 23 (mixed-reduction). The reduction relation == between mixed states is
defined in the following way: {p; : Ci,...,pm : Cn} = M iff there exist m mixed
states M = {q} : D! }1<ienys---» Mm = {q, : D}, }1<i<n, such that:

1. For every i € [1,m], it holds that 1 < n; < 2;

2. If n; = 1, then either C; is in normal form and C; = Di1 or C; >, » Dil;
3.1f n; = 2, then C; >heas, D}, Ci >heas, D7, p.q € Ry, and q} = p,qi = q;
4.VD € Conf. M(D) =", p; - Mi(D).

Given the reduction relation ==, the corresponding notion of computation (that we call
mixed computation, in order to emphasize that mixed states play the role of configurations)
is completely standard.

We again need to deal with quantitative properties of computations:

Definition 24 (probability of observing a configuration in a mixed state). Given a mixed
state M and a configuration C € NF, the probability of observing C in M is defined as
M(C) and is denoted as P(M, C).

Observe that if M = .#’ and C € NF, then P(M,C) < P(4',C). If {M;}i, is a
mixed computation, then
supP(M;, C)
<@

always exists, and is denoted as P({M;}i<y, C).

Note 6.1. A maximal mixed computation is always infinite. Indeed, if
M = {p; : Ci}1<i<n and for every i € [1,n],C; € NF, then M = M.

Proposition 9 is an essential tool for the proof of Theorem 11. Note that equivalence
between different probabilistic computations with the same root (Theorem 10) is used.

Proposition 9. Let {M,};<, be a maximal mixed computation and let Ci,...,C, be
the configurations on which M, evaluates to a positive real. Then there are maximal
probabilistic computations Py,..., P, with roots Cy,...,C, such that sup; ., M;(D) =
S (Mo(C))P(P;, D)) for every D.

Proof. Let {M,}i<, be a maximal mixed computation. Observe that My =" M,, for
every m € N. For every m € N let M,, be

m .. ~m m . m
{pl 'Clﬂ"'apnm ‘Cn,,, .

For every m, we can build maximal probabilistic computations P{",..., P,", generatively: as-
suming P{”“, ..., P are the probabilistic computations corresponding to {M;}mt1<i<ws

0T Nyt

they can be extended (and possibly merged) into some maximal probabilistic computations
P",..., P corresponding to {M;}m<i<e. But we can even define for every m,k € N with

> Ny
m < k, some finite probabilistic computations Q’ln’k, et QZ’T;" with root Cj,...,C,, and such

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1161

that, for every m, k,

Q"Lk C P m
i i
Ny

> (Ma(CoP©.D)).
i=1

<

=

)
I

This proceeds by induction on k —m. We can easily prove that for every S T P/" there is k
such that S C Q;"’k: this is an induction on S (which is a finite probabilistic computation).
But now, for every D € NF,

no

sup My(D) = sup 3" (Mo(C)P(Q, D))

Jj<w Jj<w i1
noy .
= Z (Mo(ci) sup P(Q?’J,D)>
i—1 j<w

no

=) (Mo(C)P(P).D)).

i=1

This concludes the proof. Ul

Theorem 11 says that maximal mixed computations with the same root are equivalent
in the following sense: normal form configurations have the same probability of being
observed.

Theorem 11. For any two maximal mixed computations {M;}i, and {4/}, such
that My = ., the following condition holds: for every C € NF, P({M;}i<w,,C) =
P{A}i<w, C).

Proof. A consequence of Proposition 9. Sketch: suppose, by way of contradiction and
without loosing generality, that P({M,}i<y, C) < P({.#]}i<,,C). This means there exists
a natural number n < y such that P({M;}i<y, C) < P({#]}i<s, C). The idea is that you
can apply Proposition 8 to the finite probabilistic computations induced by {.#/};, and
to the corresponding maximal probabilistic computations induced by {M;}i<,, obtaining
a contradiction. U]

7. Intermezzo: quantum higher-order languages

In this section, we will recall some contributions in the definition of quantum languages.
We will principally focus on functional calculi. In Section 7.4 we will spend few words
about other important approaches such as the measurement calculus (Danos et al. 2007),
providing some bibliographic references for the interested reader.

It is mandatory to say that the first defined quantum A-calculus, here dubbed /,, has
been introduced in van Tonder (2004). 4, is a higher-order, quantum functional language
without an explicit measurement operator, whose terms’ generation is based on Wadler’s
formulation of linear logic (as for Q). 4, includes explicit constants for quantum bits

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1162

and quantum gates; it aims to model interesting quantum features such as reversibility (a
notion of history, is proposed) and superposition between terms is admitted: this means
that (differently from Q) the syntax allows to write expressions like M + N, where M
and N are lambda terms and the symbol + represents a formal sum. As a matter of
fact, terms in superposition can only differ in occurrences containing the constants 0 and
1 van Tonder (2004). Consequently, in 4, two terms M and N in superposition differ only
Jor qubits values. An informal proof about the equivalence of /, with quantum Turing
machines is sketched.

Jq s a corner stone in the brief history of quantum functional calculi and van Tonder’s
proposal is a valid platform for several investigations (Arrighi et al. 2008; Dal Lago and
Zorzi 2013, 2014).

Nevertheless, here we will focus on other calculi, in our opinion more useful to the
non-expert reader in order to understand how a quantum calculus can be build and used
as a programming paradigm. Where appropriate, we will make some comparisons among
them and with respect to our Q and Q.

7.1. The languages 1sy and QML,

We propose an overview on two distinct foundational proposals: the quantum A-calculus
with classical control defined in Selinger and Valiron (2006), here dubbed As,, and the
functional language QML (Grattage 2006, 2011).

7.2. Selinger’s Ay,

After the first attempt to define a quantum higher-order language in two unpublished
papers (Maymin 1996, 1997), Selinger rigorously defined a first-order quantum functional
language (Selinger 2004). Subsequently the author, in joint work with Valiron (Selinger
and Valiron 2006), defined a quantum A-calculus with classical control, inspired by the
QRAM architecture (Lanzagorta and Uhlmann 2009).

The main goal of Selinger and Valiron’s work is to give the basis of a typed quantum
functional language. The idea is to define a language where only data (the qubits)
are superposed, and where programs live in a standard classical world. This means, in
particular, that it is not necessary to have objects such as A-terms in superposition (i.e.
to have in the syntax expressions of the kind), «;M;, where ¢; is an amplitude and M;
is a lambda term). The approach is well condensed by the slogan: ‘quantum data-classical
control’ (see also Section 5). The proposed calculus, here dubbed A, is based on a call-
by-value A-calculus enriched with constants for unitary transformations and an explicit
measurement operator which allows the program to observe the value of 1-qubit.

Reductions are defined between program states, whose definition is similar to the one of
configuration (Section 5.10). Because of the presence of measurement, the authors provide
the operational semantics introducing a suitable probabilistic reduction system, in order
to define a probabilistic call-by-value procedure for the evaluation.

The type system of Asy is based on linear logic in order to control over the linearity
of the system (linearity is extended to higher types), by distinguishing between duplicable

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1163

and non-duplicable resources. Selinger and Valiron develop the following type syntax:
A,B ::== o|X|!4|A — B|T|A ® B where o ranges over a set of type constants, X ranges
over a countable set of type variables and T is the linear unit type.

The authors restrict the system to be affine, i.e. contraction structural rule is not allowed.
This choice is justified by the no-cloning property of quantum states. The type system
avoids run time errors and is also equipped with subtyping rules, which provide a more
refined control of the resources. The calculus enjoys some good properties such as subject
reduction and progress, and a strong notion of safety. The authors also develop a new
interesting quantum type inference algorithm, based on the idea that a linear (quantum)
type can be viewed as a decoration of an intuitionistic one.

The following is an example of As, well-typed term. The nw constant behaves like our
new constant.

Example 10. The quantum circuit EP R (see Example 6, Section 5.11.1) is encoded in Agy
as EPR = Jx.CNOT{H(nw(0)),nw(0)) and has type !(T — (qgbit ® gbit)) where gbit is
the base type of qubits.

As’s reductions are performed in a call-by-value setting. This is a central characteristic
of the calculus, which makes A, different from Q (and principally from Q", which has
an explicit measurement operator), where no strategy is imposed. The following example
shows that is essential to choose a precise strategy and that different strategies are not
equivalent.

Let us consider, for examples, the following (well typed) term in Ag,:

M = (Jx.x @ x)(ms(H(nw(0)))

where @ is (the encoding of) a XOR operator and ms is the 1y, measurement operator.

Using a call-by-value strategy (dubbed —y,y), if we start from the program state [, M]
we obtain the following computation:

[, M] =y [10), (Ax.x @ x)(MS(H(p))] —cov [5(10) + [1)), (2x.x @ x)(ms(p))]-

The measurement step ms(p) yields the equiprobable program states [|0), (Ax.x @ x)(0)]
and [|1), (Ax.x @ x)(1)] which reduce, respectively, to [|0), (0)] and [|1), (0)]. Thus the initial
state [(J, M] evaluate to 0 with probability 1.

Using a call-by-name reduction strategy, the state [(§, M] reduces with the same
probability % to one of the following states: [|01),1], [|01),1], [|00),0] and [|11),0].
Therefore, the output is 0 or 1 with equal probability %

Moreover, as the authors observe, a mixed strategy can produce an hill-formed term.
Starting from the same program state [, M], let us consider the following computation,
where some steps of call-by-value are followed by call-by-name reductions (dubbed —¢pn):

1 1

7 7

The last state [ﬁ(|0> + [1)),(ms(p)) ® (ms(p))] is not a legal program state, since the
qubit name p has been duplicated.

In Selinger and Valiron (2009), the authors provide a categorical semantics for Ag,.
As they declare in Selinger and Valiron (2009), the construction of a concrete model

[, M] =, (|0>+\1>),(/1X~X®X)(ms(1?))} —con { (10) + 1)), (ms(p)) & (ms(p)) | ...

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1164

for higher-order quantum computations is still a partially open, interesting problem.
For some recent investigations on semantic models, see Gay and Makie (2009). See
also Hashuo and Hoshino (2011), where the authors define a particle-style geometry of
interaction (Abramsky et al. 2002; Haghverdi and Scott 2002) for A,.

7.3. Altenkirch et Grattage’s QML

Another noticeable contribution in the definition of quantum functional calculi is QML,
a typed quantum language for finite quantum computations. QML has been developed
in Altenkirch and Grattage (2005), Grattage (2006), Altenkirch et al. (2007) and Grattage
(2011). Here, we mainly refer to Grattage (2006), Altenkirch et al. (2007) and Grattage
(2011). QML addresses programming issues rather than foundational questions and permits
to encode quantum algorithms in a simple way (more precisely, a single term is able to
encode a quantum circuit, i.e. a single term captures an algorithm of type Q% — QF, where
Q is the type of the qubits for a given k € N). The syntax allows to build expressions
such as ot, where o is an amplitude and ¢ is a term, or expressions like ¢ + u where the
symbol ‘4’ represents the superposition of terms. However, superposition is controlled
by a restrictive notion of ‘orthogonality’ between terms, defined by means of a suitable
notion of inner product between judgements (Altenkirch et al. 2007). Intuitively, t Lu holds
when ¢ and u are ‘distinguishable in some way’ (Grattage 2011): in other words, one can
derive the judgement true_Lfalse from ¢l u by means of orthogonality rules. Orthogonality
judgements are inferred automatically by static analysis of QML’s terms (Grattage 2011).

Quantum superposition can be combined with the conditional construct. The syntax
includes both the usual if then else and the quantum conditional if° then else ; the
quantum conditional if° then else is only allowed when the values in the branches are
orthogonal. As an example, the following term represents the encoding of the Hadamard
gate in QML:

had x = if°x then (\}Efalse + (—\%) true> else (\lﬁfalse + \lﬁtrue> .

Comparing it with Agy, QML shows a different approach to the (central) problem of
copy and discard quantum data. In QML it is possible to write expressions like
let x = (false + true)in (x, x) which (apparently) violates no-cloning properties, since the
variable x is duplicate in the let expression.

This expression does not actually clone quantum data (this is guaranteed by the formal
semantics (Altenkirch et al. 2007)); on the contrary, it shares one copy of the quantum
datum between different references.

This idea is captured by the formulation of the type system, where no restrictions
are imposed on the use of the structural rule of contraction. QML’s type system is
based on strict (multiplicative) linear logic, i.e. linear logic with contraction, but without
implicit weakening. This makes it different from g, type system, which is affine (implicit
contraction, which potentially introduce syntactical violation of the no-cloning property,
is not allowed).

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1165

Example 11 (CNOT in QML). In the following, Q is the type of quantum bits and ® is
the linear logic tensor between linear types.

Let gnot x = if°x then false else true be the encoding of not gate.
gnot has type Q —o Q. Let us define cnot : Q — Q — Q ® Q as

cnot ¢ x = if°c then (true, gnot x) else (false, x).

In QML,, measurement is modelled by means of conditional operator. For more details,
see Grattage (2006).

For QML, some semantics have been proposed. QML’s operational and denotational
semantics are developed in terms of quantum circuits and superoperators (Preskill 2006)
respectively. An equational theory for the measurement-free fragment of QML has been
proposed in Altenkirch et al. (2007). Moreover, Grattage defined a compiler (developed
in Haskell) for the language (Grattage 2011). In an ongoing project, this perspective is
currently developed and extended. For a complete overview on this topic, see AA.VV.
(2013).

7.4. Other approaches

In Arrighi and Dowek (2008), the linear algebraic A-calculus L is proposed. £ is an
untyped calculus, where linear combinations of lambda terms are admitted (as e.g. in the
algebraic A-calculus of Vaux (2006, 2009)) and linearity is enforced by means of suitable
reduction rules. The authors claim the language suitable for a quite easy ‘specialization’
into a quantum functional language. Others references about this approach are (Arrighi
et al. 2012a,b).

Starting from the seminal paper (Nielsen 2003), some measurement based calculi have
been defined. In particular, the so-called measurement calculus (Danos et al. 2007)
has been developed as an efficient rewriting system for measurement based quantum
computation. In Danos et al. (2007), the authors defined a calculus of local equations for
1-qubit one-way quantum computing. Roughly speaking, the idea is that a computation
is built out of three basic commands, entanglement, measurement and local correction.
The authors define a suitable syntax for these primitives, which permits the description
of patterns, ie. sequences of basic commands with qubits as input—output. By pattern
composition, it is possible to implement quantum gates and quantum protocols. Moreover,
a standardization theorem, which has some important consequences, is stated and proved.
Measurement calculus has subsequently been extended and further developed in several
papers (see, for example, (Danos et al. 2009)).

8. Taming quantum complexity classes

One of the strong motivations behind quantum computing is computational complexity:
as showed in Shor (1994, 1997), quantum computers seem to be able to efficiently solve
classical hard problems, thanks to the potential speed up in the execution time induced
by superposition phenomena.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1166

Quantum complexity theory has been developed since the 90s: several quantum classes
have been defined and several results have been proved. Since quantum models are
very complex, it seems to be interesting to characterize quantum complexity classes by
machine-free and resource-independent systems, following the so-called implicit computa-
tional complexity (ICC) approach. The ICC approach involves a number of different
methodologies which include, among others, proof-theoretical methods (logical systems,
types systems), and bounded versions of arithmetic. A trend in linear logic community is
to design type system inspired to controlled-complexity versions of linear logic, such as
bounded linear logic (Girard et al. 1992), light linear logic (Girard 1998) and soft linear
logic (Lafont 2004). Some examples of ICC-oriented calculi are: (Baillot and Mogbil 2004),
a lambda calculus, sound and complete for polynomial time computations; (Gaboardi
et al. 2013), where a characterization of the complexity class PSPACE is given; (Baillot
et al. 2011), in which optimal reduction is studied by means of elementary and light affine
logic inspired type systems. See Baillot et al. (2009) and related bibliographic references
for an overview on some recent ICC trends.

In this section, we will see some results about a significant fragment of Q, called SQ.
SQ is a measurement-free polytime quantum A-calculus inspired by soft linear logic. We
will prove that the construction of lambda terms may be controlled in order to capture
a class of terms for which the size and the normalization procedure are polynomially
bounded. SQ has been developed in Dal Lago et al. (2010), and up to our knowledge it
is the only quantum polytime calculus that has appeared in the literature.

8.1. The polytime quantum A-calculus SQ: syntax and well-forming rules

SQ has the same syntax as Q; the only difference is that we restrict the constants
representing unitary operators to the subclass U of polytime computable operators on
£2{0,1}" (see Definition 30). Then, for each operator U € U, there exists a symbol U in
the grammar which represents it. This restriction is justified by the observations made in
Appendix A.

All assumptions made for Q still hold. SQ is a ‘refinement’ of Q: in particular, we have
to control the use of resources, in order to manipulate the intrinsic complexity of the
system. The well-forming rules of SQ are strong enough to guarantee polystep termination
of computations (Section 8.4).

Note that we are still defining an untyped language: in fact, the structure of untyped
terms is itself sufficient to enforce properties such as soundness and completeness w.r.t.
polynomial time, even in the absence of types. The non-quantum fragment of SQ is
very similar (essentially equivalent) to the language of terms of Baillot and Mogbil’s soft
A-calculus (Baillot and Mogbil 2004).

In SQ, resources are strongly monitored. As a consequence, we need to refine the notions
of environment I" and judgement I' = M. There are three kinds of variables: classical (x),
banged (!x) and sharped (# x). Intuitively a !-variable represents a syntactical object that
has to occur zero or once in a term, whereas a #-variable can occur in the term as many
times as we want but at least once. Judgements and environments are defined taking into
account the way the variables are used:

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1167

— A classical environment is a (possibly empty) set (denoted by A, possibly indexed)
of classical variables. With !A we denote the set !xi,..., !x, whenever A is xi,..., X,.
Analogously, with #A, we denote the environment #x,...,#x, whenever A is xi,..., X,.
If A is empty, then !A and #A are empty. Notice that if A is a nonempty classical
environment, both #A and !A are not classical environments.

— A quantum environment is a (possibly empty) set (denoted by ®, possibly indexed) of
quantum variables.

— A linear environment is a (possibly empty) set (denoted by A, possibly indexed) A, ®
of classical and quantum variables.

— A non-contractible environment is a (possibly empty) set (denoted by W, possibly
indexed) A, !A where each variable name occurs at most once.

— An environment (denoted by I, eventually indexed) is a (possibly empty) set W, #A
where each variable name occurs at most once.

In all the above definitions, we are implicitly assuming that the same (quantum or
classical) variable name cannot appear more than once in an environment, e.g. x, !y, #z is
a correct environment, while x, !x is not.

Judgements are defined in a standard way: a judgment is an expression I' - M, where
I' is an environment and M is a term.

Notation 6. If I',...,I", are (not necessarily pairwise distinct) environments, I’y U...UT,
denotes the environment obtained by means of the standard set-union of I'y,...,T,.

The role of the underlying environment in well-formed judgements can be explained as
follows. If I', x F M is well formed, then x appears free exactly once in M and, moreover,
the only free occurrence of x does not lie in the scope of any ! construct. On the other
hand, if I, #x F M is well formed, then x appears free at least once in M and every free
occurrence of x does not lie in the scope of any ! construct. Finally, if I, Ix F M is well
formed, then x appears at most once in M.

We say that a judgement I' = M is well formed (notation: >1" = M), if it is derivable by
means of the well-forming rules in Figure 7. In the app and tens rules, we relies on the
assumption that the environment in the conclusion is well formed (multiple occurrences
of the same variable name are not allowed).

If d is a derivation of the well-formed judgement I' - M, we write d>T'HF M. If T - M
is well formed we say that M is well formed with respect to the environment T, or, simply,
that M is well formed.

Notice that the full-promotion rules prom (reminiscent of Scott’s rule for modal logic)
forces the parallel introduction of the operator ‘I’ on the left and on the right side of the
sequent: this induces a controlled nesting of ‘!I" Notice also that in arrow introduction
rules abs; and absy the distinction between banged and sharped variables disappears.

As for Q, it is easy to prove that if a term M is well formed all its classical variables
are bound.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi

const — qvar — Cvar
IAFC IArtr Az -z

—— der; ——ders
A, #x b x Az - x

Uy, #A1E M W, #As F M,
Wy, Wo, #A1 UH#As = My M,

Wy, #A1 F My U, #A, F My,
\Pl,...,\Pk,#A1U#AQU”'U#Ak|_<]\/fl,...,]wk>

tens

A kM '+ M T,21,..., 00 F M
— prom — New
1A, 1A, HIM T+ new(M) Tk Ma,. .., @0).M
T,zk M T, #x b M Tz M

—absy ——— abs; ———abs
' e M T'E Nz M I'E Xz M

Fig. 7. Well-forming rules.

8.2. Computations and operational properties of SQ

1168

The notions of configurations and reductions are exactly the same as Q. Even if the
well-forming rules of SQ are different from those of Q, the well-formed terms of SQ are

also well formed with respect to Q.

Therefore we adopt for SQ the same reduction rules as Q, given in Figure 3 (Section 5.10).

Good operational properties hold for SQ. They partially come from equivalent results

on Q with some significant differences.

— 8Q enjoys the subject reduction property, and the subject reduction theorem has to

been reformulated in the following way:

Theorem 12 (subject reduction for SQ). If > A, Ay, #A, - M,

and [Q, OV, M] — [DQ5, OV», M5] then there are environments Aj, A4, such that
A1 = A5, Ay and > A, VA3 #A4 U #A,, QV, — OV = M,. Moreover, QV, — QY =
Q(M>) — Q(M).

We omit the long proof, but it is mandatory to say that, differently from the proof of
Theorem 2, it is quite complex. The main point is the presence of the patterns !x and
#x, which are both mapped into the term A!x by means of the —, and —4 rules. See
Zorzi (2009) and Dal Lago et al. (2010) for full details.

— SQ enjoys confluence exactly as for Q. Confluence can be proved directly (as done
for Q), but it can also be derived as a consequence of Q’s confluence (Theorem 3),
exploiting the fact that the set of SQ terms is a subset of Q terms.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1169

— Finally, standardization also still holds: from each soft quantum computation an
equivalent computation can be built, in which classical reductions are performed
before new reductions and new reductions precede all purely quantum steps. The
standardization result (Theorem 6, Section 5.13.1) is useful for the proof of soundness
in Section 8.4.

Note 8.1. In order to simplify the treatment in Sections 8.3 and 8.4, we will consider
reduction between terms rather than between configurations. If [Q, OV, M] —, [R, RV, N],
then we will simply write M —, N. This is sensible, since N only depends on M (and
does not depend on Q or QV).

8.3. Encoding data structures and representing decision problems

In this section, we define how to encode data structures in SQ and how to represent
decision problems. For full details see Zorzi (2009) and Dal Lago et al. (2010).

We start with natural numbers. Unfortunately, we cannot use the same encoding
adopted in Section 5, because now we have to control the duplication of resources.

Instead of using Scott’s encodings (like in Q), we will use here a major variation on
Church-style encoding: in particular, in SQ we will have several different lambda terms
representing the same natural number.

Given a natural number n € N and a term M, the class of n-banged forms of M is
defined by induction on n:

— The only 0-banged form of M is M itself;

— If N is a n-banged form of M, any term !L where L —;i/y N is an n + 1-banged form
of M.

Let "M denote !(!...(! M)...). Notice that !"M is an n-banged form of M for every
——

n times

n € N and for every term M.
Given natural numbers n,m € N, a term M is said to n-represent the natural number
m iff for every n-banged form L of N

ML -, Jz. N(N(N(...(N z)...))).
H,_/
m times

A term M is said to (n,k)-represent a function f : N — N iff for every natural number
m € N, for every term N which 1-represents m, and for every n-banged form L of N

ML — , P

where P k-represents f(m).
For every natural number m € N, let [m] be the term

AlxAy. x(x(x(...(xy)...)).

m times

For every m, [m] 1-represents the natural number m.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1170

For every natural number m € N and every positive natural number n € N, let [m]" be
the term defined by induction on n:

[m]® = [m];
[m]"! = 2lx.[m]"x.

For every n,m, [m]" can be proved to n + 1-represent the natural number m.
SQ can compute any polynomial, in a strong sense.

Proposition 10. For any polynomial with natural coefficients p : N — N of degree n, there
is a term M, that (2n 4+ 1,2n 4 1)-represents p.

Proof. The proof exploits the fact that any polynomial can be written as a Horner’s
polynomial, which is either:

— The constant polynomial x — k, where k € N does not depend on x.
— Or the polynomial x — k4 x-p(x), where k € N does not depend on x and p : N —» N
is itself a Horner’s polynomial.

So, proving that the thesis holds for Horner’s polynomials suffices. The proof is by
induction, following the recursion schema. L]

We are also interested in representing strings. Given any string s = by...b, € £* (where
Y is a finite alphabet), the term [s]* is the following:

MXgpoo oo Alxg, Ay Az.yxp, VX0, (YXp, (- . (X, 2) - .)))s
where X = {ay,...,an}. Consider the term

strtonaty = Ax.Aly.Az.x N Aw.w) .. . N(Aw.w) (A lw.Ar.yr)z.

m times

As can be easily shown, strtonats[b;...b,|* rewrites to a term 1-representing n:

strtonats[by ... by 15 IL — 4 Az.[by ... by 1= NOw.w)... N (Aw.w)(Alw.Ar.Lr)z

—:/V Az (AW Ar. L) (Aw.w)((Alw.Ar. Lr) [Aw.w)((A!w.Ar.Lr) | (Aw.w)
(... (Aw.Ar.Lr)!(Aw.w)z)...)))
— v (Az. L(L(L(...(L2)...))).
—_——

n times

Lists are the obvious generalization of strings where an infinite amount of constructors

are needed. Given a sequence My,..., M, of terms (with no free variable in common), we
can build a term [M;,..., M,] encoding the sequence as follows, by induction on n:
[=A4xAly.y;

[M,M;...,M,] = AlxAly.xM[Mjy,...,M,].

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1171

This way we can construct and destruct lists in a principled way: the terms cons and sel
can be built as follows:
cons = Az.Aw.Alx.Aly.xzw;

sel = Ax.Ay.Jz.xyz.
They behave as follows on lists:

COHSM[MI,...,MH] _’*/V [M’Mla"'aMl‘l];
sel[]INIL -7, L;

sel[M,My,...,M,]IN!L -, NM[M,,..., M,].
By exploiting cons and sel, we can build more advanced constructors and destructors:
for every natural number n there are the terms append, and extract, behaving as follows:

appendn[Nla'"9Nm]M17"'7Mn _);V [Mla"'aMlea"'aNm];
Vm < n. extract,M[Ny,...,N,] = M[IN,Ny_1...Ny;
Vm = n. extract, M[Ny,...N,,] > M[Nyt1... Ny]NyNy—g ... Ny.

append, terms can be built by induction on n:
appendy = Ax.x;
append, | = Ax.Ayq..... AYnt1.cONs yui1(append,xy; ... yn).

Similarly, extract, terms can be built inductively:

extracty = Ax.Ay.xy;

extract, 1 = Ax.Ay.(sely!(Az.Aw.Av.extract,vwz)!(Az.2]]))x.
Indeed

Vm. extractyM [Ny,... N,y] = M[Ny,...,Nul;
Vn. extract,. 1 M[] -y M[];
Vm < n. extract,; 1 M[N, Ny ... N,] =" extract,M[N,..., N,]N
-y M[]Ny,...NN;
Vm > n.extract,.tM[N,N;...N,] —°, extract,M[Ny,..., N,]N
"y M[Npi1...NyIN,...N{N.

We now need to understand how to represent subsets of {0,1}" in SQ.
A term M outputs the binary string s € {0,1}" with probability p on input N iff there is
m = |s| such that

[17 ga MN] _*) [Qa {qla‘”aqm}a [qla' . '7qi1’l]]
and the probability of observing s when projecting Q into the subspace

H({qs/+1---»9qm}) is precisely p.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1172

Given n € N, two binary strings s,r € {0, 1}* and a probability p € [0, 1], a term M is
said to (n,s,r,p)-decide a language L < {0,1}" iff the following two conditions hold:

— M outputs the binary string s with probability at least p on input "[¢]{®!} whenever
teL;

— M outputs the binary string r with probability at least p on input "[t]{®!} whenever
té L.

With the same hypothesis, M is said to be error-free (with respect to (n,s,r)) iff for every
binary string ¢, the following two conditions hold:

— If M outputs s with positive probability on input "[¢]{%!) then M outputs r with null
probability on the same input;

— Dually, if M outputs r with positive probability on input "[¢]®!), then M outputs s
with null probability on the same input.

We are now able to define some classes of languages decided by terms in SQ:

Definition 25 (classes ESQ, BSQ and ZSQ). Three classes of languages in the alphabet
{0,1} are defined below:

1. ESQ is the class of languages which can be (n,s,r, 1)-decided by a term M of SQ;

2.BSQ is the class of languages which can be (n,s,r,p)-decided by a term M of SQ,
where p > %;

3.Z8Q is the class of languages which can be (n,s,r, p)-decided by an error-free (w.r.t.
(n,s,1r)) term M of SQ, where p > %;

The purpose of the following two sections is precisely proving that ESQ, BSQ and ZSQ
coincide with the quantum polytime complexity classes EQP, BQP ad ZQP (defined in
Appendix A.4), respectively.

8.4. Polytime soundness

In this section and in the following one we will show that SQ is sound and complete with
respect to polynomial time quantum Turing machines as defined by Bernstein and Vazirani
(1997). In particular, we want to prove the ‘perfect’ equivalence of SQ with polynomial
quantum Turing machines (Appendices A.3 and A.4).

To prove the soundness theorem is equivalent to showing that all decision problems
which can be represented in SQ belong to one of the three classes of quantum polytime.
We will only give a sketch of the proof, which is long but quite standard for ICC calculi,
with the exception that the proof of the main theorem (Theorem 14) exploits a quantum
property of SQ computations, i.e. standardization.

Note 8.2. In the following we assume that all the involved terms are well formed.

Some definitions are in order now. It will be useful to deal with the number of free
occurrences of classical variables in a term. For each term M and for each classical

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1173

variable x, we define the number of free occurrences NFO(x, M) of x in M by induction
on M:
NFO(x, x) =1
NFO(x, y) = NFO(x,r) = NFO(x, C) = NFO(x, Ax.M) = NFO(A!x.M) =0
NFO(x, !M) = NFO(x,new(M)) = NFO(x, M)
NFO(x, Ay.M) = NFO(x, A!ly.M) = NFO(x, M)
NFO(x, A{x1,...,Xn).M) = NFO(x, M)
NFO(x, MN) = NFO(x, M) + NFO(x, N)

NFO(x, (Mi,..., M,)) = Y _ NFO(x, M;).
1

The size of a term is defined in a standard way:

Definition 26 (size).

Ix| =[rl=|C] =1
[IN| = [N|+1
Inew(P)| = |P|+1
[PO| = [P|+[Q|+1
(My,...,Mi)| = M|+ ...+ M| + 1
|Ax.N| = |AIX.N| = |A(x1,...,xx).N| = |[N|+1

It is possible to prove that, for each term M and for each free variable x, the size |M| is
an upper bound for NFO(x, M). Moreover, the following results hold:

Lemma 5. If M 55, N, then (i) |[M| = |N|; (i) n < |M|*
Proof. See Dal Lago et al. (2010). U]

We also need to define some weights on lambda terms, and successively we need to prove
that these weights are ‘controllable’ during reductions.
Definition 27 (box-depth, duplicability-factor, weights).
1. the box-depth B(M) of M (the maximum number of nested !~terms in M) is defined
as
B(x) =B(r) =B(C) = 0
B(IN) = B(N)+1
B(new(N)) = B(N)
B(PQ) = max{B(P),B(Q)}
B({Mi,..., My)) = max{B(M),...,B(My)}
B(/x.N) = B(A!x.N) = B(A{x1,...,x¢).N) = B(N);

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi

2. the duplicability-factor D(M
variable bound by a A) is defined as
D(x) =D(r)=D(C) =1

D(!N) = D(N)

D(new(N)) = D(N)

D(PQ) = max{D(P),D(Q)}

1174

) of M (an upper bound on number of occurrences of any

(
D((Ml,...,Mk>) = maX{D(Ml),...,D(Mk)}
D(Ax.N) = D(A!x.N) = max{D(N),NFO(x, N)}
D(A{x1,...,xk).N) = max{D(N),NFO(xy, N),...,NFO(x, N)};

3. the n-weight W,(M) of M (the weight of a term with respect to n) is defined as

Wi(x) = Wp(r) = Wu(C) =
W,(IN) = n- Wn(N)—l—l
W, (newN) = W,(N)+1
W,(PQ) = Wu(P)+W,(Q) +1
W,((My,...,My)) = Wy(Mi) + ...+ Wy(Mj) + 1
W, (Ax.N) = W, (A!x.N) = W, (A{x1,...,xc).N) = W,(N)+1;

4. the weight of a term M is defined as W(M) = Wpun(M).

Let us spend some words about the (sketch of the) proof of soundness. Soundness is
essentially based on three facts we will prove on W(+):

— W(M) is an upper bound for |[M| (Lemma 8);
— W(M) is monotone nonincreasing with respect to reduction steps (Lemma 9);
— W(M) is bounded by a certain polynomial (Lemma 10).

To prove W(:) bounds, we need some results on duplicability factor, size and free
variables.

It is possible to prove, by induction, that the duplicability factor D(-) is nonincreasing
with respect to reduction. Moreover, given a term M, the size of M is an upper bound
for the duplicability factor:

Lemma 6. For every term M, D(M) < |M|.
Proof. By induction on M. See Dal Lago et al. (2010).]

Another essential step towards polytime soundness is the controlled growth of free

variables during the reduction.
Lemma 7. If P — ¢ Q then max{NFO(x, P),D(P)} = NFO(x, Q).

Proof. The proof proceeds by induction on the derivation of P — ¢ Q. L]

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1175

We are now able to prove W(M) is an upper bound of |M]|.
Lemma 8. For every term M, | M| < W(M).
Proof. By induction on the term M. U]

W(M) is strictly decreasing at any non-commutative reduction step and it is nonin-
creasing at any commutative reduction step:

Lemma 9.

1.If M —_ N, then W(M) = W(N);
2.if M —»_4 N, then W(M) > W(N).

Proof. (i) The result follows by definition. Inductive steps are performed by means of
context closures by induction on the derivation of — . (ii) the proof is by cases on the
last rule of the derivation — ¢ and by means of ad hoc substitution lemmata. U]

Finally, we have to prove that W(M) is bounded by a polynomial p(|M]), where the
exponent of p depends on B(M) (but not on |M|). This implies, by Lemma 5, that the
number of reduction steps from M to its normal form is polynomially related to W(M).

Lemma 10. For every term M, W(M) < |M|BM)+1,

Proof. 1t is possible to prove by induction on M that for every term M and for
all positive n € N, W,(M) < |[M| - nB™_ From this fact and by Lemma 6: W(M) =
Woon(M) < [M] - D(M)BM < |M]| - |M[BM) = [M[BOOFL, O

We have all the technical tools to prove another crucial lemma, which tells us that the
size is guaranteed to be polynomially bounded during the reduction.

Lemma 11. If M — N, then |N| < |[M[BOM+!,
Proof. By means of Lemmas 8-10: |N| < W(N) < W(M) < |[M[BM+L, O

The last step towards soundness is the following theorem, which states that each
reduction in SQ is polystep.

Theorem 13 (bounds). There is a family of unary polynomials {p,},cn such that for any
term M, for any m € N, if M 5N (M reduces to N in m steps) then m < pgu)(|M]) and
INT < peo(IM]).

Proof. The suitable polynomials are p,(x) = x3"+D 4 2x>"+1)_We need some definitions.
Let K be a finite sequence My,..., M, such that Vi € [1,v]. M;_; -, M;. f(K) = M,,
I(K) = M, and #K denote respectively the first element, the last element and the length of
the reduction sequence K. Let us define the weight of a sequence K as W(K) = W(f(K)).
We write a computation in the form M = M,,...,M,, = N as a sequence of blocks
of commutative steps Ko,...,K, where My = f(Ky) and I(K;—;) — 4 f(K;) for every
1 <i <o Note that o < |M|[BM+1: indeed, W(Ko) > - -+ > W(K,) and

W(Ko) = W(f(Ko)) = W(Mp) < |[M|BMH,

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1176

For every i € [0, v]

#K; < [f(K)I> < (W(f(K))))? < (W(Mo))* < [M[PEODHD,

Finally
m < #Ko+ -+ #Ky + o
< |M‘2(B(M)+l) 4+ 4 |M|2(B(M)+]) +|M|B(M)+1
o1
< (IMPEMHD 4o 4| MABO+H)
|MBON+ 12
= |[M|ABODHY . (| pgBODHL 4 o) — | pPPBOD+D 4 5| ppj2BOM+HD
= pem)(|M]).
Moreover,
IN| = |f(K,)| < W(F(K,)) < W(Mo) < |M[BOM+
< peoy(IM).
This concludes the proof. -

Note that the strong normalization property of SQ configurations follows as an easy
corollary from Theorem 13.

The following is our soundness theorem. In the proof, we will essentially use three
ingredients: the standardization theorem, which permits to decompose computations in
distinct phases; Theorem 13, which gives our polynomial bounds; and ‘perfect’ equivalence
between the quantum Turing machine and finitely generated uniform quantum circuit
families (Nishimura and Ozawa 2009) (see Appendix A.5).

Theorem 14 (polytime soundness). The following inclusions hold: ESQ < EQP, BSQ <
BQP and ZSQ < ZQP.

Proof. Let us consider the first inclusion. Suppose a language £ is in ESQ. This implies
that £ can be (n,s,r, 1)-decided by a term M. By the standardization theorem, for every
t € {0,1}", there is a CNQ computation {C!}i<c, starting at [1, S, M!"[t]{®1}]. By
Theorem 13, n, is bounded by a polynomial on the length |t| of t. Moreover, the size of
any C! (that is to say, the sum of the term in C! and the number of quantum variables
in the second component of CY) is itself bounded by a polynomial on |t|. Since {C!}i<i<n,
is CNQ, any classical reduction step comes before any new-reduction step, which itself
comes before any quantum reduction step. As a consequence, there is a polynomial time
deterministic Turing machine which, for every ¢, computes one configuration in {C}};<p,
which only contains non-classical redexes (if any). But notice that a configuration only
containing non-classical redexes is nothing but a concise abstract representation of a
quantum circuit, fed with boolean inputs. Moreover, all the quantum circuits produced
in this way are finitely generated, i.e. they can only contain the quantum gates (ie.
unitary operators) which appears in M, since !"[t]!*!} does not contain any unitary
operators and reduction does not introduce new unitary operators in the underlying term.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1177

Summing up, the first component Q of C; is simply an element of a Hilbert space
H({q1,-.-.qm}) (Where [q1,...,qn] is the third component of C;) obtained by evaluating a
finitely generated quantum circuit whose size is polynomially bounded on |¢| and whose
code can be effectively computed from ¢ in polynomial time. By the results in Nishimura
and Ozawa (2009), L € EQP. The other two inclusions can be handled in the same way. []

8.5. Polytime completeness

We prove here the converse of Theorem 14, i.e. that all problems which are computable
in polynomial time by some quantum devices can be decided by an SQ term.

The proof of the completeness theorem will essentially be an encoding of polytime
quantum Turing machines, although not in a direct way: we will exploit Yao’s encoding
of quantum Turing machines with finitely generated quantum circuit families (a sketch
of the encoding can be found in Appendix A.5) and we will show that SQ is able to
simulate Yao’s construction. This way, we avoid dealing directly with both quantum
Turing machines and classical Turing machines (the latter being an essential ingredient of
the definition of a quantum circuit family).

We will recall the principal ‘ingredients’ of Yao’s encoding. A computation of a polytime
quantum Turing machine computing in m = t(n) steps (where n is the length of the input)
can be simulated by a quantum circuit L. For each m, the circuit L,, is composed by m
copies of a circuit K,,: each sub-circuit K,, encodes an instantaneous description of the
state, a particular configuration assumed by the Turing machine during the computation.
The sub-circuit K,, is built by composing further sub-circuits of kind G,, (a ‘switch’ circuit)
and J,,, decomposable in some single-qubit circuit H. See Figure 8 in Appendix A.S.

The simulation must be uniform, i.e. there must be a single term M generating all the
possible L,, where m varies over the natural numbers.

The following two propositions show how sub-circuits G,, and J,, can be generated
uniformly by an SQ term.

Proposition 11. For every n, there is a term M{ which uniformly generates G, i.e. such
that whenever L n-encodes the natural number m, ML —. R where R}} encodes Gy,.

Proof. Consider the following terms:

M = Jx.Jy.extract,(Az.Awy. ... Zwy.append, wi ... w,(Ngxz))y
N¢ = Ax.x1"(Ay.Az.extract;12((Lgy)z))(Ay.y)

L = Ax.Ay.2z1.... 225400 (A{w, q).append; ,(xy)z1 ... z;wq)(cnot(z)41,2;42))

In order to prove the correctness of the encoding, let us define P for every m € N by
induction on m as follows:

P = Jx.x
PIt! = (Ay.dz.(extract;12((Lgy)z)))PE

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1178

Observe that if L n-encodes the natural number m, then
NEL —, L"(Ay.Az.extract;y2((Lgy)z))(Ay.y) = P(P(P(...(P(4x.X))...))) = P
—_———

m times
where P = (Ay.Az.(extract)2((Lgy)z))).

By induction, it is possible to prove that for every m € N:

[Q, OV, Pl g1, Gmii+2)s - - qnl] = [R, @V, (41, - - s Gm(z+2)s - - - > qn]]

where R = enot((, . 4;.,)) (N0 (g, s g5,) (- (ENOY (g 50 g5.2) (D)) --))-
Now, if L n-encodes the natural number m, then

MgL —, Ay.extract,(Az.Aw;..... Jwy.append, wi ... wy(NgLz))y

—. Ay.extract,(Az.Awi.....Awy.append, wi ... wy(Pg'z))y
which has all the properties we require for Rj. This concludes the proof.]

Proposition 12. For every n, there is a term M) which uniformly generates J,,, i.e. such
that MjL —. R} where R} encodes J,, whenever L n-encodes the natural number m.

Proof. The encoding is
MYy = Jxx!"(Nj)(Ly.y)
Ny = ix.Ay.extract,;42(Lyx)y
L; = /x.Ay.Az..... AZy dW1. ... AW,
extract,7+2(;,+2)(PJw1 . sz)(x(appendﬂyzl . Zﬂ))
PJ = ixl. cen)Ltz.iw.iyl /Iy,i.lzl. . /122(/1+2).()u<q1 lqn+3(;~+2)).
append, 3;42)Wq1 - - y+342) H V1o o5 Vs X1s 05 Xi42, 215 -+ 22(142)))
The proof of correctness is similar to the one for Proposition 11.]
We now need a formal definition of what is a faithful simulation of a quantum Turing
machine by an SQ term.

Given a Hilbert’s space H, an element Q of H and a condition E defining a subspace of
Q, the probability of observing E when globally measuring Q is denoted as &g(E). For
example, if H = H(Q x =# x Z) is the configuration space of a quantum Turing machine,
E could be state = g, which means that the current state is ¢ € Q. As another example,
if H is H(QV), E could be q,...,q, = s, which means that the value of the variables
qis---»qn is s € {0, 1}".

Given a quantum Turing machine M = (Q, X,), we say that a term M simulates the
machine M iff there is a natural number n and an injection p : Q — {0, 1}/°2212/1 such

that for every string s € X* it holds that if C is the final configuration of M on input s,
then

[1, & M"[s15] 5 [Q {1 G} (41, g]]
where for every q € Q

Pe(state = q) = Po(q1,-- -, q[log, 0] = P(q))-

Finally, we can state and prove the main result of this section:

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1179

Theorem 15. For every polynomial time quantum Turing machine M = (Q, X,) there is
a term M, such that M, simulates the machine M.

Proof. The theorem follows from Propositions 11, 12 and 10. More precisely, the term
My has the form A!x.(M§7x) (M} x) where
— M7 builds the Yao’s circuit, given a string representing the input;
— M7} builds a list of quantum variables to be fed to the Yao’s circuit, given a string
representing the input.

Now, suppose M works in time p : N — N, where p is a polynomial of degree k. For
every term M and for every natural number n € N, we define {M}, by induction on n:

{Mjo =M
{M}np1 = AIx({M},x).

It is easy to prove that for every M, for every N, for every n € N and for every n-banged
form L of N, {M},L —;Jy P where P is an n-banged form of MN. Now, Mj{,’f has the
following form

)L!x.(Nj(',"fx)(‘/(f{x)
where
NS = JX.Mapy1({strtonaty } o+ 1 (MA2x))
LY = 2x.({P{A Jo41%)
PS¢ = 1122y (MP* Y (My, 11 ({strtonaty } o 112)))(ME T (M, 1 ({strtonats } o+ 12)))y

MZ+! comes from Proposition 11, M?**! comes from Proposition 12 and M»,;; comes
from Proposition 10. Now, consider any string s = by...b, € £*. First of all:

Nj\i/rlc !4k+3 [S]Z _)*/V M2p+1({strt0natz}2k+1 (Mide-ﬁ-Z !4k+3 |—S-|2))
- 4 szﬂ({strtonatz}zkﬂ !2k+1 [S]E)

—_y My (N

where N is a 2k + 1-banged form of strtonats[s]*, itself a term which 1-represents the
natural number n. As a consequence:

M, 1N — L
where L 2k 4 1-represents the natural number 2p(n) + 1. Now:
LT =l (PR e 151
_:W P
where P is a 2k 4 1-banged form of P§i¢1%+2[5]%. So, we can conclude that M§Ie14%+4[5]=
rewrites to a term representing the circuit L,. MY{ can be built with similar techniques. (]

Corollary 3 (polytime completeness). The following inclusions hold:
EQP < ESQ, BQP < BSQ and ZQP < ZSQ.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1180

From Theorem 14 and Corollary 3, EQP = ESQ, BQP = BSQ and ZQP = ZSQ. In other
words, there is a perfect correspondence between (polynomial time) quantum complexity
classes and the classes of languages decidable by SQ terms.

9. Conclusions

In this paper, we introduced an approach to quantum functional calculi. In particular,
we studied a family of untyped quantum lambda calculi with classical control and we
addressed some foundational questions such as the expressive power (the equivalence with
other computational models), the theoretical studies of infinite computations in presence
of an explicit measurement operator and the characterization of quantum polynomial
time complexity classes.

Other approaches are possible. In particular, when the full expressiveness of the language
is not required, one may perform different choices moving, for example, to a typed calculus
as Selinger and Valiron (2006) and Grattage (2006). Some examples of (typed) calculi
without explicit separation of the quantum register can be found in Delbeque (2011) or in
Dal Lago and Zorzi (2014). These calculi represent a good basis for semantical studies. In
the former, a game-style semantics is given, lifting the notion of game to the quantum case.
In the latter, an operational account in terms of wave style token-machine (Abramsky
et al. 2002) is proposed. The study of the role of geometry of interaction in quantum
computing appears a promising direction of investigation, and it represents for us an
ongoing research project.

As a further task, we aim to define the calculus SQ°, ie. an intrinsically polytime
quantum calculus with explicit measurement operator. We plan to start from a calculus
in the style of Delbeque (2011) and Dal Lago and Zorzi (2013).

Acknowledgements

A heartfelt thanks to my co-authors Ugo Dal Lago and Andrea Masini. Thanks also
to the anonymous referees for their useful suggestions. I wish to dedicate this paper to
Franca.

Appendix A. Quantum Computational Models and Quantum Complexity Classes

In this section, we will give some basic notions about computational models for quantum
computing and some related complexity classes. The main quantum models are quantum
Turing machine (QTM) (Bernstein and Vazirani 1997; Nishimura and Ozawa 2009)
and quantum circuit families (QCF) (Nishimura and Ozawa 2002, 2009; Yao 1993).
Equivalence results between the two models have been proved (Nishimura and Ozawa
2009).

A.1. On computable operators

After the introduction of quantum computational models, it is mandatory to spend some
words about the following tricky point.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1181

If we want to define calculi for quantum computational functions and we want to
formalize expressiveness equivalence between different quantum models, we need to restrict
the class of unitary operators we consider.

The following definitions on computability are therefore important.

Definition 28 ((polytime) computable real numbers).

1. A real number x € R is computable iff there is a deterministic Turing machine
which on input 1" computes a binary representation of an integer m € Z such that
|m/2" — x| < % Let R be the set of computable real numbers.

2. A real number x € R is polynomial time computable iff there is a deterministic polytime
Turing machine which on input 1" computes a binary representation of an integer
m € Z such that |m/2" — x| < Zi Let PR be the set of polynomial time real numbers.

Definition 29 ((polytime) computable complex numbers and vectors).

1. A complex number z = x + iy is computable iff x,y € R. Let C be the set of
computable complex numbers.

2. A complex number z = x + iy is polynomial time computable iff x,y € PR. Let PC be
the set of polynomial time computable complex numbers.

3. A normalized vector ¢ in any Hilbert space /*(S) is computable (polynomial time
computable) if the range of ¢ (a function from S to complex numbers) is C (PC).

Now we can define the computable unitary operators:

Definition 30 ((polytime) computable operators). A unitary operator U : /%(S) — /*(S) is
computable (polynomial time computable) if for every computable (polynomial time comput-
able) normalized vector ¢ of /*(S), U(¢) is computable (polynomial time computable).

It is significant to remark that the restriction to a smaller class of quantum gates is
also forced by computability problems, as remarked in Kitaev et al. (2002). The authors
say (remark 9.2, p. 90): ‘the use of an arbitrary complete basis could lead to pathologies’.
In fact they prove that the gate

_(cos(0) —sin(0)
X= <sin(0) cos(0))

where 6 is a non-computable number, ‘enables us to solve the halting problem!’.
In the following section, we introduce QCF, the model we mostly deal with in this
paper.

A.2. Quantum circuit families

Recall that an n-qubit quantum gate is a unitary operator U : /2({0,1}") — /3({0,1}")
(Sections 2, 3). Given two unit vectors |¢),|p) € £2({0, 1}"), if U|p) = [p), we call |p) the
output state for the input state |¢).

A V-qubit gate (where V is a set of names) is a unitary operator G : H(V) — H(V) (see
again Section 2.3 for the definition of the Hilbert space H(V)).

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1182

If G is a set of qubit gates, a V-circuit K based on G is a sequence

1 1 m m
U ryeeosysees Uty

inp? >y
where, for every 1 <i << m:

— U; is an n;-qubit gate in G;
— r’i,...,rﬁ,‘, are distinct quantum variables (names of qubits) in V.

The V-gate determined by a V-circuit

1 1 m m
K=Upriuryse s Uno s r

T2 Ny

is the unitary operator

Uk = (Un)(p.)y © - 0 (U)ot)

e N B
Once we have fixed a class of operators, it is possible to have effective encoding of
circuits as natural numbers and, as a consequence, effective enumeration of quantum
circuits.

Definition 31 (quantum circuit family). Let G be a denumerable set of quantum gates and
let {K;}ien be an effective enumeration of quantum circuits. A family of circuits generated
by G is a triple (f, g, h) where:

— :N—>N;

— g :N x N — N is such that 0 < g(n,m) < n+ 1 whenever 1 < m < f(n);

— h :N — N is such that for every n € N, K is a {ri,...,rsu }-circuit based on G.
Any family of circuits (f, g, h) induces a function @y, (the function induced by (f,g,h))
which, given any finite sequence c¢y,...,c, in {0,1}", returns an element of
H{r 15 i }):

Dy gnlcr....cn) = Uy, (Ir1 = o), 0 > Caimngin)))-
where ¢, c,41 are assumed to be 0 and 1, respectively.

Notice that gave our definition taking into account an arbitrary set G of quantum gates
and arbitrary functions f, g and h. The choice of such a set and functions is instead
crucial, and it induces the definition of particular subclasses of QCF:

Definition 32 (subclasses of quantum circuit families).

i. Uniform QCF
Given a quantum circuit family K = (f, g, h), we say that K is uniform if the functions
f, g, h are computable.

ii. Polynomial-size uniform QCF
Given a quantum circuit family I = (f, g, h), we say that IC is polynomial-size uniform
if the functions f, g, h are polytime.

iii. Finitely generated QCF
Given a set G of quantum gates, we say that a family of circuits (f, g, h) generated by
G 1is finitely generated if G is a finite set.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1183

By definition, any polytime uniformly generated QCF is finitely generated. Finitely
generated uniform QCFs enjoy two main properties: a finitely generated uniform QCF is
based on finite sets of elementary gates (differently from the uniform QCFs); the definition
of a finitely generated uniform QCF is independent of the choice of the set G (differently
from the polynomial time uniformly generated QCF). The class of finitely generated
QCEF is the computational model that we proved to be equivalent to the calculus Q in
Section 5.

A.3. Quantum Turing machines

This is a brief introduction to QTMs. For an exhaustive treatment see Bernstein and
Vazirani (1997), Hirvensalo (2004) and Nishimura and Ozawa (2009).

Let X be is a finite alphabet with a blank symbol O and let Q be a finite set of states.
We distinguish in the set Q an initial state go and a final state g; (with qo # q;). As for
the classical case, the QTM is based on the reading/writing of the tape by a head.

Let us start with the definitions of tape configuration and configuration :

Definition 33 (tape configurations and configurations).

— The set of tape configurations is the set of functions # = {t : Z — Z|t(m) #
O only for a finite m € Z}. Given t € £#, a symbol ¢ € T and an integer k € Z, a new
tape configuration ¢ will be

o ifm=k

film) = { tm) if m# k.

— We will call a frame the pair (Q,X). To each frame, we can associate the configurations
space €(Q,%) = Q x # x Z.
Each element C = (q,t,k) € ¥(Q,XZ), where k € X is the head position, is called a
configuration. Moreover, we define a final configuration as any configuration such that

q =4y
It is possible to build a Hilbert space generated by the configurations space:

Definition 34 (quantum state space). The quantum state space is the Hilbert space
/X(6(Q,X)) (see Section 2.1). In the following, we will denote it as H(Q, X).

We now define the pre-QTM, the QTM, and some related properties. In the following
we will use the notation [a,b]z (a,b € Z) in order to represent the integers between a and
b (with a and b included).

Definition 35 (prequantum Turing machine). A pre-QTM is a triple (Q,%,0) where (Q,X)
is a frame and J is the quantum transition function d : Q x L x O x X x [—1,1]z — C.

The transition function ¢ induces the so-called time evolution operator.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1184

Definition 36 (time evolution operator). Uf,, : H(Q,Z) — H(Q,X), a linear operator
defined as

U%|C) = Ulylg. t,k) = > 8(q.t(k),p.o.d) - |p. 17,k + d).
(p,o.d)eQxEx[—1,1]7

The definition of QTMs requires computable amplitudes and a unitary time evolution
operator:

Definition 37 (quantum Turing machine). QTM is a pre-QTM .# = (Q,%,0) such that
the time evolution operator U’ is unitary (ie. U°,'U%, =1 =U°,U°,").

We can strengthen the definition above by limiting the transition amplitudes to the
polynomial computable complex numbers PC (Definition 29): this does not reduce the
computational power of the QTM (Bernstein and Vazirani 1997; Nishimura and Ozawa
2002, 2009).

The following conditions for the unitarity of a time evolution operator are stated
in Nishimura and Ozawa (2009):

Theorem 16. Given a pre-QTM, .# = (Q, Z, §), the time evolution operator Uf” is unitary
if and only if the function ¢ satisfies the following conditions:

— for each (¢,7) € 0 X Z,
> 0(q. t.p. 0. d) =1
(p,o.d)eQxEx[—1,1]7
— for each (¢,7),(¢,7') € @ x X with (¢,7) # (¢, 7)
> (q',7',p,0,d)"d(q,7,p,0,d) =0

(p.o.d)EQXIX[-1 1]z

— for each (¢,71,0),(¢,7,6') €9 Xx T x X

> 4d.7p.d.d—1)5(¢.7.p.o.d) =0
(pd)eQx[-11]z

— for each (¢,7,0),(¢, 7,6/) €0 x T x X
> 8(d.7.p.o',—1)"0(q. 7. p.0, 1) = 0.

pEQ

Note A.l. In addition to the unitary property, we also require that the time evolution
operator U°, must be (efficiently) computable.

This is not all about QTMs. A QTM needs some input/output conventions and
moreover some careful definitions about the final result, since a QTM halts as a

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1185

superposition of the tapes’ final contents. At the end of the computation, the superposition
of configurations can be observed, obtaining final results or another superposition of
configurations (this is the case of a partial measurement). For the sake of completeness
we recall the following definition (Bernstein and Vazirani 1997):

Definition 38 (observation of a QTM). When QTM .# in superposition ¢ = >, o;c; is
observed or measured, each configuration ¢; is seen with probability |«;|>. We may also
perform a partial measurement, say only on the first cell of the tape. In this case, suppose
that the first cell may contain the values 0 or 1, and suppose the superposition was
¢ =) ;00;c0; + >, 1cl;, where the c0; are those configurations that have a 0 in the first
cell, and c1; are those configurations that have a 1 in the first cell. If a value b, b = 0,1 is
observed, the new superposition is ﬁ[b] >, obich;, where Pr[b] =", |och; 2.

For further details about these crucial discussions see the original paper (Bernstein and
Vazirani 1997).

In the following section, we will introduce quantum polytime complexity classes and the
notions of polytime QTM and acceptance of a language by a QTM (for decision problems).

A.4. Quantum polynomial time complexity classes

Quantum complexity theory is a big field of investigation. A number of important results
about quantum complexity classes and quantum computational problems have been
proved, contributing to shed light also on the relationships with the classical theory. Some
significative examples can be found in Watrous et al. (2009) and Watrous et al. (2011)
(in the latter, the equality between QIP, the quantum analogue of the classical complexity
class IP and PSPACE has been proved).

In this section and in this paper, we will focus our attention only on (the definition of)
quantum polytime complexity classes, extensively used in Section 8.

As for the classical case, quantum complexity classes are defined on a computational
model, but in this setting the definitions are more delicate.

Let us consider the class of QTMs a la Bernstein and Vazirani (1997): each computation
evolves as a superposition in a space of configurations (Definition 34), and each classical
computation in the superposition can evolve independently. So, the result of a quantum
computation is obtained, at the end, with a measurement of the several superpositional
results: as a consequence, it is irremediably probabilistic. This induces the definition of
three distinct quantum polytime classes (EQP, BQP, ZQP), since different constraints can
be imposed on success or error.

Firstly, we need to introduce the polynomial time QTM:

Definition 39 (polynomial time QTM). We say that a QTM .# halts with running time T
on input x if when . is run with input X, at time T the superposition contains only final
configurations, and at any time T; < T the superposition contains no final configurations.

A polynomial time QTM .# is a QTM which for every input x halts in time T with T
polynomial in the length of x.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1186

Note A.2. In this article, we refer to the complexity of the so-called decision problems.
A decision problem is a function Q : {0,1}* — {0,1} and, very informally, it performs a
question on which the QTM has to give an answer of kind yes/no.

The following is the notion of acceptance for QTMs:

Definition 40 (acceptance of languages by a QTM). We say that a QTM .Z accepts a
language L with probability p, if .# accepts with probability at least p every string x € L,
and rejects with probability at least p every string x & L.

EQP is the error-free (or exact) quantum polynomial time complexity class. This means
that the success probability is 1 on all input instances.

Definition 41 (quantum complexity class EQP). The class EQP is the set of the languages
L accepted by polynomial QTM .# with probability 1.

BQP is the bounded-error quantum polynomial time complexity class where the success
probability is imposed to be strictly greater that 2/3 on all input instances.

Definition 42 (quantum complexity class BQP). The class BQP is the set of the languages
L accepted by polynomial QTM .# with probability 2/3.

The class ZQP is the zero-error extension of the class BQP. In fact the QTM never
gives a wrong answer, but in each case with probability 1/3 gives a ‘don’t-know’ answer.

Definition 43 (quantum complexity class ZQP). The class ZQP is the set of the languages
L accepted by polynomial QTM .# such that, for every string x:

— if x € L, then .# accepts x with probability p > 2/3 and rejects with probability
p=0;
— if x ¢ L, then . rejects x with probability p > 2/3 and accepts with probability p = 0.

The inclusions EQP = ZQP < BQP obviously hold. Moreover, P < BPP < BQP <
PSPACE, where BPP is the class of the (bounded error) probabilistic polynomial time
(Arora and Barak 2009).

The separation between BPP and BQP is still an open problem. In Bernstein and
Vazirani (1997), the authors exhibit a problem, relative to an oracle, which requires
polynomial time on a QTM, but requires superpolynomial time on a bounded-error
probabilistic Turing machine. A similar, stronger result is given in Simon (1994), where
the author gives the construction of an oracle problem that requires polynomial time on
a QTM and exponential time on a classical Turing machine. Unfortunately, nowadays
we have not got any strong separation theorem between BPP and BQP. This absence
of strict separation is not an exception in computational complexity and it does not
impair the convincing difference between the two models. A “flavour’ of separation comes
from algorithms: quantum algorithms can exploit phenomena such as superposition and
interference that a probabilistic model cannot emulate (see Section 4).

Notice that if we are able to prove the separation between the classes of probabilistic
and quantum polytime we obtain the separation between P and PSPACE as a by-product.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1187

A.5. Equivalence between quantum Turing machines and quantum circuit families

The equivalence between (a subclass of) QCF and polytime QTMs has been shown
in Nishimura and Ozawa (2009).

This equivalence is called ‘perfect’, since it means a full correspondence between all the
three polytime quantum complexity classes BQP, EQP, ZQP (Definitions 41-43) and their
counterparts defined on QCF (Nishimura and Ozawa 2002).

The equivalence is stated and proved taking into account the class of finitely generated
QCF (Definition 32): more precisely, the families have to be based on a finite subset of
the set G, = {A;(N),R(0), P(0")|0,0" € PCN[0,27]} (where A;(N) is a controlled-not gate,
R(0) is a rotation gate by angle 6 and P(0') is a phase shift gate by angle ¢’).

Notice that all definitions must be based on the notions of computable numbers and
computable operators. In other words, the entries of the matrices representing the quantum
gates in the universal set are required to be polynomial time computable numbers (as
pointed out in Shor (1997)) and the amplitudes of the polynomial time QTMs have to be
in the set PC (Definitions 29 and 30).

We state the main results as in Nishimura and Ozawa (2009).

Theorem 17. Polynomial time QTM with amplitudes from PC and finitely generated
uniform QCF are perfectly equivalent: any polynomial time QTM with amplitudes from
PC can be exactly simulated by a finitely generated QCF, and vice-versa.

The following corollary comes as an immediate consequence of the previous theorem:

Corollary 4. The class of languages recognized with certainty (respectively with zero-
error and bounded-error) by finitely generated QCFs coincide with the corresponding
complexity class EQP (respectively ZQP and BQP) for polynomial time QTM:s.

Nishimura and Ozawa’s proof is largely based in the encoding of QTM into QCF
proposed in Yao (1993).

We recall here a sketch of Yao’s encoding, since it is used in Section 8.5.

Suppose we work with finite alphabets including a special symbol, called blank and
denoted with []. Moreover, each alphabet comes equipped with a function ¢ : ¥ —
(0,1} 1220201 ¥ is the set of infinite strings on the alphabet X, ie. elements of ¢ are
functions from Z to X. =# is a subset of = containing strings which are different from
O in finitely many positions.

Consider a polytime QTM (Definition 39) M = (Q,X,9) working in time bounded by
a polynomial t : N — N. The computation of M on input of length n can be simulated
by a quantum circuit Ly, built as follows:

— for each m, L,, has n + k(4 + 2) inputs (and outputs), where = [log, |Q|], k = 2m+1
and 4 = [log, |Z|]. The first # qubits correspond to a binary encoding ¢ of a state in
Q. The other inputs correspond to a sequence ¢;sy,...,0;S; of binary strings, where
each a; (with |o;] = 1) corresponds to the value of a cell of M, while each s; (with
si| = 2) encodes a value from {0, 1,2, 3} controlling the simulation.

— L, is built up by composing m copies of a circuit K,,, which is depicted in Figure 8
and has n + k(2 + 2) inputs (and outputs) itself.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1188

Gon |
[1 TT []
B B -t |
[1 T[]
I S e + |
T 1T 11
Im :
LT]
I) |
[7} |
[T 1T T
q 0151 0252 Ok—15k—1 OkSk

Fig. 8. The quantum circuit computing one step of the simulation.

— K, is built up by composing G, with J,. G, does nothing but switching the inputs
corresponding to each s; from 1 to 2 and vice-versa.

— Jp can be decomposed into k — 3 instances of a single circuit H with n + 3(1 + 2)
inputs, acting on different qubits as shown in Figure 8. Notice that H can be assumed
to be computable (in the sense of Definition 28), because M can be assumed to have
amplitudes in PC (Nishimura and Ozawa 2009).

Theorem 18 (Yao 1993). The circuit family {L,,}nen simulates the QTM M.

See the original articles Yao (1993) and Nishimura and Ozawa (2009) for a full explanation
of the correspondence results.

Appendix B. On Measurement Operators

We give here the detailed proofs of some properties of the destructive measurement maps
defined in Section 2.4.
Destructive measurements (Definition 4) have to satisfy a completeness condition:

Proposition 13 (completeness condition). Let r € QY and Q € H(QV). Then, mj’om,.,o +
t =1Id
m, 1 Me1 H(QV)-

Proof. In order to prove the proposition we will use the following general property of
inner product spaces: let H be an inner product space and let A : H — H be a linear
map. If for each x,y € H, (Ax,y) = (x,y) then A4 is the identity map (such a property is
an immediate consequence of the Riesz representation theorem, see e.g. Roman (2008)).
Let Q, R € H(QV). If {b;}icn1 2 is the computational basis of H(QV — {r}), then:

2” 2”
Q=Zoci\rb—>0> ®bi+Zﬁi|V'—> 1) ®b;

i=1 i=1

2’1 277

RzZyi|rr—>0)®bi+Zéi|rl—> 1) ® b;.

i=1 i=1

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1189

‘We have

((mfomeo + Ml M. 1)(Q), R) = (m/ m,o(Q), R) + (m! m,1(Q), R)
= (mr,O(Q)» mr,O(R» + <mr,1(Q)a m; 1 (R)>

on on on

on
= () wiby, Z pibi) + () Bibi, Z dibi)
21'1:1 1:21’1 i=1 i=1
= Z oYi + Z ﬁ[(si
i=0 i=0

This concludes the proof. U]
For ¢ € {0, 1}, the measurement operators m, . also enjoy the following properties:

Proposition 14. Let Q € H(QV). Then:

L.m (Q®|g—d)) = (M (Q)®|qr> d) if r € QV and q ¢ QV;
2.(Q® s> d)imf m, |Q® |s—d)) = (Q,m[.m, |Q);if r € QV and r # 5;
3. mq,e(mr,d(Q)) = mr,d(mq,e(g)); if r,q € ov.

Proof.
1. Given the computational basis {b;}ic(12 of H(QV — {r}), we have that

2" o
Q@lgd) = wlr—0)®b®lg—d) +> pilr—1)®blr—d)

i=1 i=1

and therefore
21‘[

mo(Q® lg d)) =D oi(b; ® |r > d))

i=1

o
i=1
= (mr,c(Q)) ®|g— d>

In the same way we prove the equality for m, ;.
2. Just observe that
(Q@® s d)im/ M. |Q® s> d)) = (Q® |s+—> d),m[(M (Q® |s+—> d))))
= (M (Q®[s— d). M (Q®[s— d)))
= <m7‘,C(Q)7 mr,c(Q)>
= <Q’ mI,cmr,cQ> = <Q|mj,cmr,c|Q>-

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1190

3. Given the computational basis {b;}ic[127 of H(QV — {r,q}), we have that

21’! 2"
Q=Zo¢i|rb—>0>® lq — 0) ®bi+2ﬁi|r'—>0>®|q'—> 1) ® b+

i=1 i=1

o o

Y ol 1) @lg—0) @b+ Y dilr— 1) ®lg— 1) ®b;.

i=1 i=1
Let us show that mgo(m,o(Q)) = m,o(my0(Q)), the proof of other cases follow the
same pattern.

211 2?1
My0(Mgo(Q)) = My (Z oulr> 0) @ bi+ Y pilr—> 1) ® b,)

i=1 i=1
2“1 2ﬂ 2’1
= Zflibi =my (Z %lg — 0) ® b; + Zﬂi\q — 1) ® bi)
i=1 i=1 i=1
= mq,O(mr,O(Q))-
This concludes the proof. L]

The following proposition holds for the normalized maps M, o and M, (Definition 5):

Proposition 15. Let Q € H(QV) be a quantum register. Then

1. M, (Q) is a quantum register;

2. My (Q®|r— d)) = (Mye(Q)) ® |r— d), with g € QV and q # r;

3. My o(Mra(Q)) = M, a(M(Q)), with g,r € QV;

4.if g,r € QV, pre = (QMI .M. |Q), pga = (QIm} meQ), Qre = M, (Q), Qu =
Myi(Q), e = (Qqalmf M| Qga), Sqa = <Qr,c‘ml,qu,d‘gr,c> then pyc*Sga = Pga " Sres

5. (U<q1 ,,,,, a ® IQV—{q1 qk})(Mr,c(Q)) = Mr,c((U(ql,.u,qH ® IQV—{(J1 ----- le})(Q)) with

,,,,,

{q1,...,qx} = QV and r # g; for all j=1,... k.

Proof. The proofs of 1, 2 and 5 are immediate consequences of Proposition 14 and of
general basic properties of Hilbert spaces. About 3 and 4: if Q = 0gy then the proof
is trivial; if either p.. = 0 or p,q = O (possibly both), observe that s.. = s,4 = 0 and
MM a(Q)) = M;a(Mye(Q)) = Ogy_i4, and conclude. Suppose now that Q # 0oy,
Pre # 0 and p,q # 0. Given the computational basis {b;}c[127 of H(QV — {r,q}), we have
that:

o on

Q= ulr—0)®lg—0)@bi+ Y Bilr—0) &g 1)®bi+
i=1 i=1
o o
D plr= 1) @lg—0)@bi+) dilr— 1) ®lg— 1) @ b
i=1 i=1

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1191

Let us examine the case ¢ = 0 and d = 0 (the other cases can be handled in the same
way).
o o

Pro—Z\a|z+Z|ﬁ:|2 pqo—Zw HZW

Zizl %lq — 0) ® b; + Zi:1 Bilg— 1) ® b;

Qro = M;o(Q) =
0 0(Q) N
qu — MqO(Q) — Z,zil “ilr — 0> ® bi + lell %‘\V g 1) ® bi

</Pq.0
Now let us consider the two states:

2ﬂ 2'1
= ob: 0 = oub;
Zl71 — QZO = mr,O(Qq,O) = Zlil =

Q%) = myo(Qr0) =
r0 * " DPr0 ’ /Pq.0

By definition

2IX 271
S.0 = Do ‘O‘i|2 Spp = Zizl |°‘i|2
AV r0 —
1 Dro DPq.0
and therefore p, o sqq = pgo-sro. Moreover, if QV = J then M 0(Q,0) = M, 0(Qy0) = 1
otherwise
,0 n n n
M, o(Oy0) = Qo _ Syoubi _ Slijebi S by
g \&r0) = —F=— = = = ;
/Pq,0 JPro o /pq,O \/7 \/ ‘plo‘y 2 \/21'2:1 ‘Ofi|2
0 n n n
Myo(Qs0) = Qo _ >y oub Yiebi S by
T =
\/pr A /pq,O . /pr,O \/ i Joti 2 \/212;1 ‘o{i|2
\/ DPq0
and therefore, M, o(Qr0) = M, o(Qsp).
This concludes the proof. U]

References

AANVV. (2013) Website of the QML Project. Available at: http://fop.cs.nott.ac.uk/qml/.

Abramsky, S., Haghverdi, E. and Scott, P. J. (2002) Geometry of Interaction and Linear Combinatory
Algebras. Mathematical Structures in Computer Science 12 (5) 625-665.

Aharonov, D., Kitaev, A. and Nisan, N. (1998) Quantum circuits with mixed states. In: Proceedings
of the 30th Annual ACM Symposium on the Theory of Computing 20-30.

Aharonov, D., van Dam, W., Kempe, J., Landau, Z., Lloyd, S. and Regev, O. (2007) Adiabatic
quantum computation is equivalent to standard quantum computation. SIAM Journal on
Computing 37 (1) 166—194.

Altenkirch, T. and Grattage, J. (2005) A functional quantum programming language. In: Proceedings
of the 20th Annual IEEE Symposium on Logic in Computer Science 249-258.

Altenkirch, T., Grattage, J., Vizzotto, J. and Sabry, A. (2007) An algebra of pure quantum
programming. Electronic Notes in Theoretical Computer Science 210 (1) 23-47.

Arora, S. and Barak, B. (2009) Computational Complexity: A Modern Approach, Cambridge
University Press.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1192

Arrighi, P, Diaz-Caro, A., Gadella, M. and Grattage, G. (2008) Measurements and confluence in
quantum Lambda calculi with explicit qubits. Electronic Notes in Theoretical Computer Science
270 (1) 59-74.

Arrighi P, Diaz-Caro, A. and Valiron B. (2012a) A system F accounting for scalars. Logical Methods
in Computer Science 8 1-11.

Arrighi P., Diaz-Caro, A. and Valiron B. (2012b) A type system for the vectorial aspects of the linear-
algebraic lambda-calculus. In: Proceedings of the 7th International Workshop on Developments
of Computational Methods. Electronic Proceedings in Theoretical Computer Science 88 1-15.

Arrighi, P. and Dowek, G. (2008) Linear-algebraic lambda-calculus: Higher-order, encodings and
confluence. In: Proceedings of the 19th Annual Conference on Term Rewriting and Applications
17-31.

Baillot, P., Coppola, P. and Dal Lago, U. (2011) Light logics and optimal reduction: Completeness
and complexity. Information and Computation 209 (2) 118-142.

Baillot, P., Marion, Y.-J., Ronchi Della Rocca S. (eds.) (2009) Special issue on implicit complexity.
ACM Transactions on Computational Logic 10 (4).

Baillot, P. and Mogbil, V. (2004) Soft lambda-calculus: A language for polynomial time computation.
In: Proceedings of the 7th International Conference Foundations of Software Science and
Computation Structures. Lecture Notes in Computer Science 2987 27—41.

Barebdregt, H. (1984) The lambda calculus: its Syntax and Semantics, North-Holland Publishing
Co.

Basdevant, J. L. and Dalibard, J. (2005) Quantum Mechanics, Springer.

Benioff, P. (1980) The computer as a physical system: A microscopic quantum mechanical
Hamiltonian model of computers as represented by Turing machines. Journal of Statistical
Physics 5 563-591.

Bennett, C. H. and Landauer, R. (1985) The fundamental physical limits of computation. Scientific
American 253 (1) 48-56.

Bernstein, E. and Vazirani, U. (1997) Quantum complexity theory. SIAM Journal on Computing
26 (5) 1411-1473.

Birkhoff, G. and Mac Lane, S. (1967) Algebra, The Macmillan Co. press.

Brassard, G. (1994) Cryptology column—quantum computing: The end of classical cryptography?
SIGACT News 25 (4) 15-21.

Conway, J. (1990) A Course in Functional Analysis, Springer-Verlag.

Dalla Chiara M. L., Giuntini, R. and Leporini, R (2003) Quantum computational logics. A survey.
In: Proceedings of Trends in Logic. 50 Years of Studia Logica 229-271.

Dal Lago, U., Masini, A. and Zorzi, M. (2009) On a measurement-free quantum lambda calculus
with classical control. Mathematical Structures in Computer Science 19 (2) 297-335.

Dal Lago, U., Masini, A. and Zorzi, M. (2010) Quantum implicit computational complexity.
Theoretical Computer Science 411 (2) 377-409.

Dal Lago, U., Masini, A. and Zorzi, M. (2011) Confluence results for a quantum lambda calculus
with measurements. Electronics Notes in Theoretical Computer Science 207 (2) 251-261.

Dal Lago, U. and Zorzi, M. (2012) Probabilistic operational semantics for the lambda calculus.
RAIRO - Theoretical Informatics and Applications 46 (3) 413-450.

Dal Lago, U. and Zorzi, M. (2013) Wave-style token machines and quantum lambda calculi. Long
version available at: http://arxiv.org/abs/1307.0550.

Dal Lago, U. and Zorzi, M. (2014) Wave-style token machines and quantum lambda calculi. In:
Informal Proceedings (with revision) of LINEARITY’14 (FloC’14), 13th July, Vienna 8 pp.

Danos, V., Kashefi, E. and Panangaden, P. (2005) Distributed measurement based quantum
computation. Electronic Notes in Theoretical Computer Science 170 73-94.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1193

Danos, V., Kashefi, E. and Panangaden, P. (2007) The measurement calculus. Journal of the ACM
52 (2) Article No. 8.

Danos, V., Kashefi, E., Panangaden, P. and Perdrix S. (2009) Extended measurement calculus. In:
Semantic Techniques in Quantum Computation. Cambridge University Press 235-310.

Deutsch, D. (1985) Quantum theory, the Church-Turing principle and the universal quantum
computer. In: Proceedings of the Royal Society of London A 400 97-117.

Deutsch, D., Ekert, A. and Lupacchini, R. (2000) Machines, logic and quantum physics. Bullettin of
Symbolic Logic 6 (3) 265-283.

Delbecque, Y. (2011) Game semantics for quantum data. Electronics Notes in Theoretical Computer
Science 270 (1) 41-57.

Dirac, P. (1947) Quantum theory, the Church-Turing principle and the universal quantum computer.
In: Proceedings of the Royal Society of London A A400 97-117.

Einstein, A., Podolsky, B. and Rosen N. (1935) Can quantum-mechanical description of physical
reality be considered complete? Physical Review 47 777-780.

Feynman, R. P. (1982) Simulating physics with computers. International Journal of Theoretical
Physics 21 (6-7) 467-488.

Gaboardi, M., Marion, J.-Y. and Ronchi Della Rocca, S. (2013) An implicit characterization of
PSPACE. ACM Transactions on Computational Logic 13 (2) 18:1-18:36.

Gay, S. (2011) Bibliography on quantum programming languages. Available at:
http://www.dcs.gla.ac.uk/ simon/quantum/.

Gay, S. and Makie, 1. (eds.) (2009) Semantic Techniques in Quantum Computation, Cambridge
University Press.

Girard, J.-Y. (1987) Linear logic. Theoretical Computer Science 50 (1) 1-102.

Girard, J.-Y., Scedrov, A. and Scott, P. (1992) Bounded linear logic: A modular approach to
polynomial time computability. Theoretical Computer Science 97 1-66.

Girard, J.-Y. (1998) Light linear logic. Information and Computation 14 (3) 175-204.

Grattage, J. (2006) A Functional Quantum Programming Language, Ph.D. thesis, University of
Nottingham.

Grattage, J. (2011) An overview of QML with a concrete implementation in Haskell. Electronic
Notes in Theoretical Computer Science 270 (1) 165-174.

Grover, L. K. (1999) Quantum search on structured problems. Quantum Computing and Quantum
Communications 1509 126-139.

Haghverdi, E. and Scott, P. J. (2002) Geometry of interaction and the dynamics of proof reduction:
A tutorial. New Structures for Physics, Lectures Notes in Physics 813 357-417.

Hashuo, 1. and Hoshino, N. (2011) Semantics of higher-order quantum computation via geometry
of interaction. In: Proceedings of 26th Annual Symposium on Logic in Computer Science 237-246.

Hirvensalo, M. (2004) Quantum Computing, Springer-Verlag.

Isham, C. (1995) Lectures on Quantum Theory, Imperial College Press.

Jain, R., Ji, Z., Upadhyay, S. and Watrous, J. (2011) QIP=PSPACE. Journal of the ACM 58 (6)
Article No. 30.

Jain, R., Upadhyay, S. and Watrous, J. (2009) Two-message quantum interactive proofs are in
PSPACE. In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer
Science, IEEE Computer Society 534-543.

Kaye, P, Laflamme, R. and Mosca, M (2007) An Introduction to Quantum Computing, Oxford
University Press.

Kitaev, A., Shen, A. and Vyalyi, M. (2002) Classical and Quantum Computation, AMS press.

Kleene, S.C. (1936) A-definability and recursiveness. Duke Mathematical Journal 2 (2) 340-353.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

M. Zorzi 1194

Knill, E. (1996) Conventions for quantum pseudocode. Technical Report LAUR-96-2724, Los
Alamos National Laboratory.

Lafont, Y. (2004) Soft linear logic and polynomial time. Theoretical Computer Science 318 163—180.

Lanzagorta, M. and Uhlmann, J. (2009) Quantum Computer Science, Morgan and Claypool Press.

Maccone, L. and Salasnish, L. (2008) Fisica moderna. Meccanica quantistica, caos e sistemi complessi,
Carocci Press.

Masini, A., Vigano, L. and Zorzi, M. (2008) A qualitative modal representation of quantum register
transformations. In: Proceedings of the 38th IEEE International Symposium on Multiple-Valued
Logic (22-23 May 2008, Dallas, Texas, USA), IEEE CS Press 131-137.

Masini, A., Vigano, L. and Zorzi, M. (2011) Modal deduction systems for quantum state
transformations. Multiple-Valued Logic and Soft Computing 17 (5-6) 475-519.

Maymin, P. (1996) Extending the A-calculus to express randomized and quantumized algorithms.
ArXiv:quant-ph/9612052. Unpublished.

Maymin, P. (1997) The lambda-q calculus can efficiently simulate quantum computers.
ArXiv:quant-ph/9702057. Unpublished.

Nakahara, M. and Ohmi, T. (2008) Quantum Computing. From Linear Algebra to Physical
Realizations, CRC Press.

Nielsen, M. A. (2003) Universal quantum computation using only projective measurement, quantum
memory, and preparation of the O state. Physical Letters A 308 (2-3) 96-100.

Nielsen, M. A. and Chuang, I. L. (2000) Quantum Computation and Quantum Information. Physical
Review, volume 308, Cambridge University Press.

Nishimura, H. and Ozawa, M. (2002) Computational complexity of uniform quantum circuit families
and quantum Turing machines. Theoretical Computer Science 276 147-181.

Nishimura, H. and Ozawa, M. (2009) Perfect computational equivalence between quantum Turing
machines and finitely generated uniform quantum circuit families. Quantum Information Processing
8 (1) 12-24.

Papadimitriou, C. (1994) Computational Complexity, Addison-Wesley.

Perdrix, S. (2006) Modéles formels du calcul quantique: Ressources, machines abstraites et calcul par
mesure, Ph.D. thesis, Institut National Polytechnique de Grenoble.

Perdrix, S. (2007) Quantum patterns and types for entanglement and separability. Electronic Notes
in Theoretical Computer Science 170 125-138.

Perdrix, V. and Jorrand, P, (2006) Classically controlled quantum computation. Mathematical
Structures in Computer Science 16 (4) 601-620.

Preskill, J. (2006) Quantum Information and Computation, Lecture Notes in Physics volume 229,
Rinton Press.

Roman, S. (2008) Advanced Linear Algebra, Springer.

Selinger, P. (2004) Towards a quantum programming language. Mathematical Structures in Computer
Science 14 (4) 527-586.

Selinger, P. and Valiron, B. (2006) A A-calculus for quantum computation with classical control.
Mathematical Structures in Computer Science 16 (3) 527-552.

Selinger, P. and Valiron, B. (2009) Quantum A-calculus. In: Semantic Techniques in Quantum
Computation, Cambridge University Press 135-172.

Shor, P. W. (1994) Algorithms for quantum computation: Discrete logarithms and factoring. In:
Proceedings of 35th Annual Symposium on Foundations of Computer Science 124—134.

Shor, P. W. (1997) Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM Journal on Computing 26 1484—1509.

Simon, D. (1994) On the power of quantum computation. SIAM Journal on Computing 26 116-123.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

On quantum lambda calculi 1195

Simpson, A. (2005) Reduction in a linear lambda-calculus with applications to operational semantics.
In: Proceedings of the 16th Annual Conference on Term Rewriting and Applications 219-234.

van Tonder, A. (2004) A Z-calculus for quantum computation. SIAM Journal on Computing 33 (5)
1109-1135.

Vaux, L. (2006) Lambda-calculus in an algebraic setting. Research report, Institut de Mathmatiques
de Luminy.

Vaux, L. (2009) The algebraic lambda-calculus. Mathematical Structures in Computer Science 19 (5)
1029-1059.

Volpe, M., Vigano, L. and Zorzi, M. (2014) Quantum state transformations and branching
distributed temporal logic. In: Proceedings of the 21st Workshop on Logic, Language,
Information and Computation (1-4 September, 2014, Valparaiso, Chile). Lecture Notes in
Computer Science 8652 1-19.

Wadler, P. (1994) A syntax for linear logic. In: Proceedings of the 9th International Conference on
Mathematical Foundations of Programming Semantics 513-529.

Wadsworth, C. (1980) Some unusual A-calculus numeral systems. In: To H.B. Curry: Essays on
Combinatory Logic, A-Calculus and Formalism, Academic Press.

Wootters, W. K. and Zurek, W. H. (1982) A single quantum cannot be cloned. Nature 299 802-803.

Yao, A. (1993) Quantum circuit complexity. In: Proceedings of the 34th Annual Symposium on
Foundations of Computer Science 352-360.

Zorzi, M. (2009) Lambda Calculi and Logics for Quantum Computing, Ph.D. thesis, Dipartimento di
Informatica, Universita degli Studi di Verona.

https://doi.org/10.1017/50960129514000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000425

