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Abstract. In this paper, as a continuation of [Contreras-Astorga A., Escobar-Ruiz A. M.
and Linares R., Phys. Ser. 99 025223 (2024)] the one-dimensional quasi-exactly solvable
(QES) sextic potential V(@) (z) = $(va® + 2v pat + [p® — (4N + 3)v] 2?) is considered. In
the cases N = 0, i, .y % the WKB correction v = (N, n) is calculated for the first lowest
50 states n € [0, 50]2 using highly accurate data obtained by the Lagrange Mesh Method.
Closed analytical approximations for both v and the energy F = E(N,n) of the system are
constructed. They provide a reasonably relative accuracy |Avy| and |Ae|, respectively, with
upper bound < 1073 for all the values of (N, n) studied. Also, it is shown that the QES Morse
potential is shape invariant characterized by a hidden sly(R) Lie algebra and vanishing WKB
correction v = 0.

1 Introduction

Quasi-exactly solvable (QES) systems in quantum mechanics represent a class of Hamiltonian operators
for which solely a finite sector of the whole spectra can be determined exactly (closed analytical expressions
for spectra and wavefunctions) using algebraic methods [1]. Unlike exactly solvable systems (such as
hydrogen atom, the harmonic oscillator and the Morse potentials), in QES systems only a subset of
eigenstates and eigenvalues can be found exactly, while the rest remains unknown.

QES systems play an intermediate role between exactly solvable models and non-integrable systems.
They are instrumental in understanding the boundaries of solvability in quantum mechanics and have
applications in various fields, such as mathematical physics, quantum field theory, and condensed matter
physics.

In a recent publication [2], the present authors studied the SUSY partner Hamiltonians of the QES
sextic potential' V(@) = %(l/ 2+ 2vpat + [/LQ — (4N + 3)1/] 2?) from an algebraic perspective, here
N, v > 0, p are real parameters. If N € Z*, the potential V(9% admits (N +1) exact solutions (including
the ground state) described by the underlying hidden sly(R) Lie algebra. Hence, for each N € ZT the
SUSY partner potential Vi(z, N) can be constructed [3]. Interestingly, in the variable z or z = 22, it
was found that the corresponding SUSY Hamiltonian with potential V;(z, N) does not possess a hidden
sl (IR) algebraic structure.

In this work, we aim to construct closed compact analytical approximations for the energy and for the
so called WKB correction v of the QES sextic potential. The SUSY partner Hamiltonians of the QES
Morse potential are also investigated at the level of the corresponding algebraic operators governing the
polynomial part of the exact QES eigenfunctions.

IThere is a global factor of % with respect to the definition given in [2]
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2 Exact WKB condition: analytical interpolations

Let us consider the one-dimensional Schrodinger equation for the QES sextic potential (v = 1,4 = 1)

L& 1w v 20— 2N )22)] we) = By, M

Haw 0] = | =552 T 3

(h = 1, m = 1) where N is a real parameter. The problem is defined in the domain z € (—o0,0)
with ¢ € £2. For any N, using the Lagrange Mesh Mathematica Package [4] (LMMP), the numerical
eigenfunctions v, () and eigenvalues E,, can be computed in a straightforward manner. Since the LMMP
allows us to achieve very accurate numerical results with high precision (not less than 15 significant figures
in accuracy) we can denote them, in practice, as the ezact ones. These exact values serve as the starting
point to study the so called exact WKB condition (see below).

The Bohr-Sommerfeld quantization condition combined with the WKB correction

v = v(N,n),

(arising from the sum of higher-order WKB terms taken at the exact energies) define the exact WKB
condition [5] which, by construction, must reproduce the ezact energies. The above relation just means
that ~ is a function of both N and n. Explicitly, the correction v is defined by the exact WKB condition

xro (E) 1
/ \/Q(E — V@@es) (g N))der = W(ﬂ—&——i—y), (2)
1(E) 2
where V(9%) (z, N) is the sextic potential function appearing in (1), z1(E) and x5 (E) are the corresponding
(symmetric) turning points obeying V (z) = E, n € ZT is the principal quantum number labeling the state
(the number of nodes in ©), and E = E,, is taken as the ezact energy obtained from the LMMP. Therefore,
by fixing (N, n), one can consider (2) as the defining equation for the WKB correction v = (N, n).

For N < Nitical & 0.73295, the ground state energy Ey = Eo(N) is always greater than the maximum
of the potential V(9%) thus, no instantons (tunneling) effects would be present, see Figs. 1, 2. The
instantons effects are beyond the scope of this consideration.
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Figure 1: Cases N = 0 (left) and N = 1 (right). The QES sextic potential V(@) = 1 (26 4+ 22 —
2(2N + 1)2?) is shown (blue line). The ground state energy (in red) and the first excited level (in
purple) are displayed as well. No instanton/tunneling effects occur. For N = 0, the exact analytical
ground state is known only, for other levels the numerical results were calculated using the LMMP. For
N = i, no exact analytical solutions exist.

In the cases N = 0, %, %7 %, we calculate numerically the WKB correction v = (N,n) for the
first 50 states, n = 0,1,2,...,50. The results are displayed in Fig. 3. At fixed N, the parameter
v ~ 1072 turns out to be a slowly decreasing, smooth function as n increases. Based on [5] and numerical
experiments, it can be fitted by

_ ag + a1 n
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Figure 2: Cases N = % (left) and N = - (right). The QES sextic potential V() = 1 (26 4+ 224 —
2(2N + 1)2?) (blue line). The ground state energy (in red) and the first excited level (in purple) are
displayed. No instanton/tunneling effects occur. For N = %, the exact analytical first excited state is

known only, for other levels the numerical results were calculated using the LMMP. For N = 1—70, no
exact analytical solutions exist.

here n =n—2 > 0, a; = a;(N) and b; = b;(IN) are interpolating parameters. In the particular case
N =0, we have

ag ~ 0.019202 , a1 ~ 0.0038722 ,
b1 =~ 1.09402, by ~ 0.672026, b3 ~ 0.291328, by ~ 0.068666 , 4)
(see Fig. 4). For the cases N = i, %, %, in Table 1 we report the corresponding values of the

interpolating parameters in vg; (3), respectively. The fit (3), in comparison with the exact numerical
values Yexact Obtained from (2), exhibits a small relative error [Ay| < 1072 in the domain 2 < n < 50 for
all values of the parameter NV considered, see Fig. 5.
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Figure 3: Behaviour of the WKB correction v = 7(n) at different values of N. Already for n > 2, the
function v = v(n) remains almost unaffected as the parameter N increases from 0 up to 1—70.
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Figure 4: Case N = 0. The analytical interpolation (3) with parameters (4) corresponds to the green
line whilst the bullets (in blue) mark the numerical values Yexact of the WKB correction v = y(n).

Table 1: The parameters of the analytical interpolation g (3) for the cases N = %, %, %.

parameter N = i N = % N = 1—70
ag 0.0332512 0.0469388 | 0.041918
a, 0.0419986 0.0656 0.0622568
by 3.70908 5.57123 5.08444
bo 2.96296 4.45283 4.17168
b3 2.23779 3.46547 3.26907
by 0.749137 1.17011 1.11086
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Figure 5: Relative error Ay = jmrjf—t vs n at different values of V. The function 75 is taken as in

Yexac

(3), the values of the interpolation parameters are presented in (4) and Table 1, respectively.
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3 Energies: analytical interpolations

As mentioned in Section 2, for the QES sextic potential (1) using the LMMP we computed at N =
0, i, %, % the energy F,, for the first 50 states. At fixed N, it is a slowly increasing, smooth function as

n grows, see Fig. 6. In the domain n € [0,50] the energy varies from ~ 1 up to ~ 410. At fixed n, the
energy decreases monotonously as the parameter N changes from 0 up to N = 0.7.
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Figure 6: The energy E, vs n for the cases N = 0, i, %, %. Results are displayed in atomic units.

At fixed N, the energy E, = E(n) can be interpolated by

. — (ap + A1 + Asn? + Az + Agnt + Asn® + Agi)
E = F vn—1 5
he(n) = Eoit + Vit 1+ BZh + BZi + B2 + BZi* + BZmd G

where n =n+1> 0, A; = A;(N) and B; = B;(N) are interpolating parameters. At n =0 (7 = 1) the
analytical interpolation Fjg; reproduces the exact numerical value of the ground state energy Exy — Ejy
whereas at large n — oo (thus, 7 — 0o0) we reproduce the asymptotic behaviour E n3/2. If n — oo,
in the semi-classical limit we consider large distances x — oo where the sextic potential behaves as

Vaes) ””2—6 Standard Bohr-Sommerfeld quantization condition provides the dominant term

(s 3/2
E, ~ 17r3/4< (3)> n3/2 = 1.13254n%/%

A

in the limit n — oco. Specifically, for the interpolation (5) with N = 0 we obtain

Ay = —303.678, A, = —13.8088, A, = 185841, As; = 22.0053, A, = 13.4821,
Ay = 0.777246, Ag = 1.06539,
B = 16.0303, DB, = 4.22639, Bs; = 3.82635, DB, = 1.17858, B; = 0.969174, (6)

see Fig. 7. In this case, for the asymptotic behaviour at n — oo we found that Fg ~ 1.13424 n3/2.

In Table 2 the corresponding values of the interpolating parameters in Eg; (5) are shown as a function
of N. The fit (5), in comparison with the exact numerical values Fexact Obtained using the LMMP,
exhibits a small relative error [Ae| < 1072 in the whole domain 2 < n < 50 for all values of the parameter
N considered, see Fig. 8. In the particular case N = 0, this error reduces up to |Ae| < 107°.
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Table 2: The parameters of the analytical interpolation Eg; (5) for the cases N = i, %, %. The ratio

Ag/B? defines the asymptotic behaviour at n — oo in Eg; (see text).

parameter N=1 N=12 N==L
Ap —2961.78 —4024.34 —6563.79
Ay 407.572 1776.87 3617.77
Ay 687.568 553.412 25.2448
Az 684.966 210.095 443.209
Ay —1.90414 13.202 20.7142
Asg 0.755926 1.7131 2.55102
Ag 1.06975 1.07253 1.07404
B1 40.1137 37.9358 40.0919
B 22.2057 5.64541 11.9183
B 3.02188 5.36947 6.51999
By 0.936421 1.09358 1.18494
Bs 0.967749 0.965024 0.962401
Ag/BZ | 114224 | 115169 | 1.1596
E,(1N=O)
400/ s
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Figure 7: Case N = 0. The analytical interpolation (5) with parameters (6) corresponds to the green
line whilst the bullets (in blue) mark the numerical values obtained using the LMMP.

4  Supersymmetric quantum mechanics and intertwining relations

Supersymmetric quantum mechanics (SUSY) is a technique used to expand the family of solvable poten-
tials in quantum mechanics [6]. It relates two different Hamiltonian quantum systems, Hy and Hy, by
means of an intertwining operator A as follows:

1 d?

H AT = AT Hy, where Hi:—§@+vi(a:), i=0,1.

(7)
This intertwining relation allows us to map solutions of the eigenvalue equation Hy v = E 1 to solutions
of the isospectral problem H; ¢ = E ¢ (except possibly for certain energy eigenstates). Naturally, the
relation (7) imposes certain restrictions on H;. To see this, let us consider the simplest case when A} is
a first-order differential operator

1 d

+W(z)) = ——

@)= (-

Af = —
' V2

T <1nu<:c>>’) , ®)

7 (i
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Figure 8: Relative error Ae =

where W (z) or, equivalently, u(z) are functions to be found. We denote u/(z) as dl;(f). In the literature,

W () is known as superpotential and u(x) as the seed function. By substituting the explicit form of A}
(8) in (7), we obtain the conditions

H, = Hy — (Inu(x))", Hou(z)=eu(x), wulz)#0, (9)

here € is a constant; i.e., u(z) must be a nodeless solution for the initial Schrédinger equation with
Hamiltonian Hy. Once u(x) is chosen, H; is fixed.

5 SUSY partners of the sextic potentials

Recently, in the work [2], the present authors studied the algebraic structure of the SUSY partners V;(x)
of the sextic potential Vo = V9%(z) = 1 (1228 + 2vpa* + (u? — (4N + 3)v) 2?) as a function of N.
Accordingly, the central object was the Hamiltonian Hy = —%% + Va(z). Here, in the Zo-invariant
variable z = 2, we further elaborate on the relevant intertwining relation between Hy and H; at the
level of the algebraic gauge rotated operators, hg and hq, which govern the polynomial part of the exact

QES eigenfunctions, respectively. Explicitly, using the gauge factor
_ Iz
(z)=exp(—=2"—Z2) , (10)

the gauge-rotated Hamiltonian hy = I'"! Hy T takes the form:
2

P
dz?

d
+ (2uz2+2,uz—1)a —9Nwvz + (11)

ho = —2 5

If the parameter N takes positive integer values, the spectral problem hg P(z) = E P(z) has (N +
1) polynomial eigenfunctions Pj(N)(z)7 j = 0,1,2,N. Accordingly, the QES solutions of the original

Schrédinger equation Hpt = E become ¢;(z) = T'(z = J:Q)P]-(N)(z = 2?%). The above operator hg
possesses a hidden sl (R) algebra.

Now, we can perform a first-order SUSY transformation of Hy, described above in section 4, using
as a seed function the exact (analytical) ground state g (z) = F(IQ)P(EN) (z?). That way, we obtain
the SUSY partner Hamiltonian H;. For this operator Hy, the N exact QES solutions can be written
as ¢;(x) = Tn(x)Pi(z), i =0,1,2,(N — 1) , where the factor P;(z) is a polynomial odd-function in
x—variable whilst I'y is the non-polynomial part. Further details can be found in [2].

Similarly to Hy, one can introduce the operator h; = F;,l H, T'xy which describes the polynomial QES
solutions P;(z) of Hy. From the intertwining relation (7), we can immediately derive the SUSY partner
of hg, namely

hi AT = A by, (12)

with intertwining operator A = T'y' A T and A defined in (8).
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Eventually, from the equation hg P(z) = E P(z) and (12) we obtain that P(y/2) = A P(z) solves
hiP(yv/z) = EP(y/2). In variable z, the operators A and h; read

Af = —V2zp(2) (d N 2p<z>>7

dz p(2)
p(z) d b(2) 2 p(z)
hy = ho +4z2—=— — 22— —Qvz"+2uz+1)— + 3vz + p, 13
LS e T e BTG e W
where we have used the notation p(z) = PO(N)(Z) and p(z) = dz(zz). Note that the global factor p(z) in

Af will avoid rational expressions in the functions P(/z). Except for the case N = 0, no Lie algebraic
structure is known in hq.

6 SUSY partners of the quasi-exactly solvable Morse potential
In this Section, we consider the QES Morse potential [7]

Vo(z; N) = %(aQ(fZam — ae ™ (2b+a(2N+1)) + (Na+1b)?), (14)

a QES system of the first type, € (—00,00) where a > 0, b, « > 0 and N are parameters. Let us take
the fermionic Hamiltonian

1 d? .
Hy = —aw + Vo(l‘,N) . (15)
In the variable
z = e 47 (16)

the operator (15) can be transformed to a quantum “top” [7]; namely, it can be rewritten as a constant
coefficient quadratic combination in the first order differential operators

N

JHN) = 2%20. — Nz, JUN) = 20, — 5 J = 0., (17)

which span, for any value of the parameter N, the sly(R) algebra. Explicitly, using the gauge factor
D(z) = e &¢ 707 — gmq=taloals) (18)

one obtains the gauge-rotated algebraic operator

hY) = TTUHeT
1 9 1 L o o0
= 5 (2aaNz + b —2¢) — iaz(—2az—|—a+2b)8z - oz a; (19)
or, equivalently, in Lie algebraic form
(V) o L + 1 0 1 2

hy'' = -5 J7J" +aad” — 5a(2b+a(N+1))j + 5(2c—b) : (20)

At fixed N, the spectral problem
W P(z) = EP(2), (21)

admits (N + 1) polynomial solutions P;(z) in the z—variable. Accordingly, the original Hamiltonian
operator Hy (15) possesses (N + 1) eigenfunctions in the form

v, = T(2)Pi(z), i=1,2,...,N. (22)
In z—variable, the original Hamiltonian operator Hy (15) reads
1 1
Hy = —§a2(228§ + 20,) + §(a222 — a(a(2N+1) + 2b)z +2¢) . (23)

Below, we present concrete examples.
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6.1 Case N =0
For N = 0, the potential Vj in (15) reads

1 1
Vo(z; N =0) = §(a2e_2°‘z — a(o + 2b)e " +b%) = §(a222 — ao+2b)z+b%) . (24)
The ground state function of (15) is given by
(()N:O) - T = eige—aszg; _ 67% z+% log(z) , (25)
P(z) = 1, with zero energy
EN=Y = 0. (26)

In this case,
_o) 1 _ 1
RN=0 = (") Hy (VY = 2a( —aJY T 4 20T — (a+20b) j°> (27

For instance, taking a = 1, b = 8, a = v/2, the next lowest energies levels are F; = 10.313708498985,
Ey = 18.62741699797, E5 = 24.94112549695, E4 = 29.25483399594, F5 = 31.56854249492, see Fig.
9. Interestingly, for the QES Morse potential, it can be checked that the semiclassical WKB method
reproduces the exact quantum mechanical results. Thus, the WKB correction vanishes v = 0 for all the
bound states. Explicitly,

z2(E) 7 (o —2vb* —2FE +2b
/ V2(E — Vo(e.N =0))dr = ( )
rl(E) 2« (28)
—n(n+1/2),
(v = 0) which leads to the exact quantum spectra E,, = —%an (an — 2b). For the treatment of the

exactly solvable case Vgg ox (e72%% — 2792, see [8].
The associated SUSY partner potential can be derived immediately

1 b? 1
Vi(z; N =0) = 5(126720”” + ae” 7 (%—b) + 5 = §(a2z2 + az (a—2b) + b*). (29)
Also, at N = 0 the bosonic Hamiltonian
=) _ 1 NoQ) = L& __
H,; = T3 a2 + Vi(z; N =0) = 3 da2 + Vo(z, N =-1), (30)

can be transformed into a quantum “top” of the form (20) but with a negative integer (cohomology)
parameter N = —1. Therefore, similar to the QES sextic potential [2] the SUSY partner Hamiltonian

H I(NZO) with potential (29) still possesses a hidden sl3(R) Lie algebraic structure.

6.2 Case N=1
For N =1, we have
1 1
Vo = B (a®e™?** —a(3a+2b)e " + (@ +b)*) = 3 (a*2” —az(Ba+2b) + (a+b)?) , (31)

see Fig. 10. The exact solutions are the ground state function given by

éN:l) _ e_g e T _py T — e—g z+§ log(z) z, (32)
P(z) = z, again with zero energy
ENY =0, (33)
and the first excited state
(N=1) _ —2e by —ax _ M _ =2 a4L log(z) o a+t 2b 34
(= (c 2= (= - 2, (34)
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Figure 9: a = 1,b=8,a = /2 and N = 0, the potential V; (blue curve) in (15) and the first two energy
levels Ey and Ej.

V(x)

60 -

50 -

Figure 10: For fixed a = 1,b = 8,a = v/2 and N = 0, the confining potential V; (blue curve) in (15)
and its susy partner Vj(x).

thus, P(z) = z — 232t with energy

- 1
V=D = 5o (a+2b) . (35)

Eventually, the associated susy partner potential satisfies that

Vift;y N=1) = Vo(x, N =0) . (36)

6.3 Case arbitrary integer N
For arbitrary N, we have
1
Vo = 3 (a®e™** —a(a(2N + 1) +2b)e " + (Na+b)?)

(37)

1
= 3 (a*2” —az (a(2N +1) +2b) + (Na+b)?) .

The ground state function given by
(()N) _ eige—az—bgj efNaw _ 67% Z+§ log(z) ZN , (38)

P(z) = 2V, having zero energy
ENM = o0. (39)

10
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Figure 11: @ = 1,b = 8,a = v/2 and N = 1, the potential Vj (blue curve) in (15) and the first two
energy levels Fy and Fj.
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Figure 12: For fixed a = 1, b = 8, @ = v/2 and N = 1, the confining potential V; (blue curve) in (15)
and its susy partner Vi(z).

The corresponding SUSY partner potential obeys the relation
Vi(z;N) = Vo(x, N —-1), (40)

hence, akin to the case of the exactly solvable Morse potential, in the QES case, V) and V; are shape
invariant potentials; see in [9] more details of the definition of shape invariant potential and the study
of the exactly solvable Morse potential. In the case of the QES Morse potential and its SUSY partner,
instantons effects are absent because no tunneling effects are present.

7 Summary

We studied two quasi-exactly solvable systems: the QES sextic and Morse potentials. For the sextic
potential, approximate expressions for the WKB correction 7 and the energy spectrum FE,(N) were
constructed. Explicit analytical fits were given in the cases N = 0, 1/4, 1/2, 7/10 where instanton
effects are completely absent. At the level of algebraic operators which describe the polynomial QES
solutions, the expression of the associated intertwining operator, in the variable z = z2, were presented.
Furthermore, a first-order SUSY transformation was performed to the QES Morse potential, showing
that it is shape-invariant; as a consequence, the SUSY partner potential has the same hidden sly(R)
Lie algebraic structure with a shifted cohomology parameter N — N — 1. Generalizations of the exact
WKB correction as well as the relation shape invariance- intertwiners [10] for multidimensional systems
(beyond separation of variables) is of great importance. As a future analysis, it would be interesting to
study higher-order SUSY partners of the QES Morse potential using excited states as seed functions.
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