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Abstract

In this thesis, we perform a systematic scrutinization of various well-known at-
tributes of thermal dark matter (DM) models. Part of this thesis is focused on the
development of efficient and computationally less intensive methods for testing
various dark matter scenarios.

Cosmic Microwave Background (CMB) observations help us constrain the
amount of various particle species very precisely, thus requiring an equally accu-
rate theoretical prediction. We provide a simple yet highly efficient method for
estimating the leading radiative corrections to the annihilation cross section of
Majorana DM.

The paramount significance of self-interacting DM (SIDM) in alleviating two
of the small scale problems, cusp vs. core and too-big-to fail (TBTF) is known
for quite some time in the literature. In the most common setting of SIDM, DM
interacts with a light mediator via a Yukawa coupling which results in large self-
scattering rates. In such a setting, the annihilation of DM also gets a strong en-
hancement due to the Sommerfeld effect. We discuss that the most common SIDM
scenario when the mediator particle decays to Standard model particles is strongly
constrained by the data.

A decay of mediator particles to some relativistic dark species is still allowed
and such a scenario can solve cusp vs. core and TBTF problems. We show that
the missing satellites problem can also be solved in this setting due to the efficient
scattering of DM with the relativistic dark species.

Processes like on-resonance Sommerfeld annihilation and DM decay result in
a decreasing comoving number density of DM. We for the first time provide model
independent constraints on such scenarios using a Boltzmann solver. We have
thus tested one of the basic assumptions in the ⇤CDM cosmology of a constant
comoving DM number density by using the latest CMB data from Planck and low-
redshift measurements of the Hubble rate and normalization of the matter power
spectrum.
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Chapter 1

Introduction

It is now well established through various observations that most of the matter in
the universe is non-luminous and interacts with the Standard model (SM) mainly
via gravitational interactions. The observed distribution of cosmic structures [1,2],
Cosmic Microwave Background (CMB) [3, 4] and gravitational lensing [5, 6] are
very hard to explain if we do not include a non-relativistic and non-luminous
component.

The CMB experiments have helped us to know the content of the universe very
precisely. According to the most recent measurement by Planck [4], SM particle
content constitutes only about 15% of the total matter in the universe. The remain-
ing 85% is still elusive to the experiments till date and is termed as Dark Matter
(DM). ‘Dark’ because it does not interact with photons and ‘Matter’ because it
influences the visible structure through gravitation like any other ordinary mat-
ter. N�body simulations of the large scale structure [7, 8] also demonstrate that
a significant amount of the DM in the universe has to be non-relativistic during
structure formation. This class of non-relativistic DM is referred to as Cold Dark
Matter (CDM) in the literature [9].

The most commonly considered mechanism for DM production in the early
universe is that of thermal production, which can naturally provide the observed
DM relic abundance with weak-scale interactions [10]. One assumes DM to be in
thermal equilibrium with the ordinary matter at very early times. After the DM
annihilation rate drops below the expansion rate, DM chemically decouples from
the plasma and the comoving density of DM becomes constant. After chemical
decoupling, DM is still kept in kinetic equilibrium through elastic scatterings with
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the heat bath particles. DM completely decouples from the plasma when the scat-
tering rate also falls behind the Hubble rate and this epoch is referred to as kinetic
decoupling.

The CMB observations constrain the amount of DM to a percent level accu-
racy [4]. We thus require an equally accurate theoretical prediction. Inclusion
of radiative corrections can alter the relic density prediction of a model consider-
ably [11, 12]. In this thesis, we will provide an efficient method to calculate the
radiative corrections to the annihilation rate of a Majorana DM.

On large scales, our universe is well described by the cosmological concor-
dance model or more commonly referred to as the ⇤CDM model [13]. The model
consists of five components: baryons, photons, neutrinos, CDM and a cosmo-
logical constant ⇤. Moreover, DM is assumed to be collisionless in the ⇤CDM
paradigm. Though the model is very successful in explaining the structure of the
universe on large scales, there are some discrepancies between observations and
the N�body simulations on the sub-Mpc scales [14]. The observed discrepan-
cies have various astrophysical solutions within the ⇤CDM paradigm [14]. Al-
ternatively, these problems can also be addressed by efficient self-scattering of
DM [15]. In this thesis, we will consider the latter possibility.

A common assumption in cosmology is that the comoving DM number density
remains constant after chemical freeze out. Scenarios in which DM can decay
[16–19] or have large enhancements to the annihilation cross section [20] are some
of the exceptions to this assumption. Such scenarios result in a modified cosmic
history and thus can be constrained by using cosmological data such as CMB.
The problem with constraining such scenarios is that one has to solve the cosmic
evolution on a model to model basis. In this thesis, we will motivate an efficient
and model independent way of constraining such scenarios.

The thesis is organized into five parts as follows. Some of the background
knowledge for this thesis is briefly discussed in Part I. In chapter 2, we motivate
the general constraints on a DM particle through discussion of some astrophysical
and cosmological pieces of evidence. In chapter 3, we give an overview of the
⇤CDM model. In Part II, we focus on the calculation of the DM relic abundance.
In chapter 4, we will give a brief derivation of the Boltzmann equation for describ-
ing the number density evolution of a particle species. In chapter 5, we will use the
equation to calculate the DM relic abundance for the scenarios relevant to this the-
sis. In Part III, we will discuss kinetic decoupling of DM and discuss its impact
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on structure formation. Part IV discusses the results of the publications which
form the basis of this thesis. In chapter 7, we will discuss an efficient treatment
of radiative corrections for a Majorana DM (based on paper I [21]). Chapter 8 is
dedicated to the solution of small-scale problems of structure formation through
self-scattering DM scenarios (based on papers II [22] and III [23]). In chapter 9,
we motivate a model independent way of constraining a changing comoving DM
density scenario (based on paper IV [24]). We summarize our findings in chapter
10. The four publications which the thesis is based on are included in Part V.
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Chapter 2

Dark matter

DM has now become an essential ingredient for the understanding of our universe.
In section 2.1, we will discuss some of the astrophysical and cosmological pieces
of evidence for DM. In section 2.2, we will discuss some of the general constraints
on a DM particle. In section 2.3, we will discuss some of the detection methods
for unveiling the particle nature of DM. As a detailed discussion is beyond the
scope of this thesis, we refer the interested reader to [10] for a pedagogical review
on DM.

2.1 Evidence for Dark Matter

From kinematics of stars and galaxies: Though today the most credible pieces
of evidence for DM come from cosmology, the first hints for DM to be the dom-
inant form of matter actually came from astrophysics as early as the 1920s. In
1922, astronomer James Jeans studied the vertical motion of stars in the galactic
plane and concluded that there should be at least ‘two dark stars to each bright
star’ to explain the large velocities that he observed [25]. A decade later in 1932,
J.H. Oort also studied the stars in the galactic plane and corroborated that the ve-
locities of the stars were too large for the stars to have been gravitationally bound
by the visible mass [26]. In the subsequent year, Fritz Zwicky, who is usually
credited to discover DM, measured the velocity dispersion in the Coma cluster.
He concluded that in order to hold the galaxies in the cluster there must be huge
amounts of invisible mass in the cluster [27].

It was not until the 1970s that the idea of DM gained the interest of the physics
community. In late 70s, it was discovered by Vera Rubin (and her collaborators)

7



that at large distances from the galactic center, the circular velocity of stars be-
comes independent of the distance from the center [28, 29]. According to Newto-
nian dynamics, one expects the circular velocity at distance r from the center to
be

vc =

r
GM(r)

r
, (2.1)

where G is the Gravitational constant and M(r) is the mass inside the radius
r. Thus, beyond the visible disk one will expect vc to decrease as r

�1/2. The
observation of flattening of the velocities can be explained if there is non-luminous
matter with the mass scaling as M(r) / r. This gave rise to the idea of the visible
galaxies being embedded in much larger DM halos.

From Gravitational lensing: Gravitational potential generated by a massive
object bends the path of the light passing close to it and this phenomenon is called
Gravitational lensing. The optical and gravitational lensing measurements are
thus complementary approaches to probe the mass of an astrophysical object. The
most compelling astrophysical evidence for DM comes from the cluster merging
system, 1E0657-558 or the Bullet Cluster [5, 6]. The gravitational lensing analy-
sis showed that most of the mass of the two colliding clusters went through with
its distribution unaffected after the collision, whereas the X-ray measurements
showed a displaced center of mass of the two clusters w.r.t the lensing measure-
ments. This implies that the visible mass is a small fraction of the total mass of
the clusters and thus is a clear evidence of DM. As the DM passed through with
its distribution unaffected, implies that DM does not interact strongly with either
the visible gas or itself.

CMB and Baryon Acoustic Oscillations: In the early universe, baryons and
photons were tightly coupled through Thompson scattering and acted as a sin-
gle fluid. The pressure exerted by this fluid does not let the perturbations in the
baryons to grow but exhibit an oscillatory behavior called Baryon Acoustic Oscil-
lations (BAO) [30].1

At high temperatures, the formation of stable neutral atoms cannot take place
as they are disintegrated instantaneously. With the universe cooling down due to
expansion, there comes a time when the electrons and nuclei can combine to form
neutral atoms. As the photons do not scatter efficiently with the neutral atoms,

1Gravity makes the fluid fall in a gravitational well and pressure tries to push it outward.
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photons decouple from the plasma at this low temperature and the epoch is known
as recombination. The CMB photons that we observe today are these primordial
photons from the surface of last scattering.

BAOs result in overdense and underdense regions and can be seen as the oscil-
latory behavior in the CMB and the Matter power spectrum (MPS). Baryons and
DM have distinct effects on the CMB and the MPS (see for example [31]). Mea-
surement of the BAO scale from the large scale surveys [32–36] and the CMB
measurements [4] provide complementary handles on the total baryon and DM
density. The values inferred from these two types of measurements are remark-
ably consistent. We will state the observed densities in the next chapter but we
should note that today CMB is the most robust piece of evidence for DM which
fixes the amount of DM to a percent level accuracy.

From the observed large scale structure: If DM is indeed the dominant part
of the matter in the universe, it will definitely influence the structure formation
in the universe. Comparison of N�body simulations [7, 8, 37–40] to the actual
measurements [1,2] shows that the structure in the universe could only have been
formed if a substantial amount of non-relativistic DM is present.

2.2 General constraints on dark matter candidates

The general constraints on a DM particle candidate are—

• Electrically neutral: DM has to be electrically neutral or have an extremely
small fractional charge [41] in order to be dark as compared to the ordinary
baryonic matter.

• Non-baryonic: The observations of Bullet cluster, CMB, BAO and primor-
dial nucleosynthesis [42] imply that DM needs to be non-baryonic.

• Stable: A DM particle has to be stable on cosmological timescales. If it
were to decay, it will have significant effects on the cosmology and thus
stringent limits exist on DM decay rate (see for example [43] and paper
IV [24]).

• Non-relativistic: The N�body simulations are consistent with the mea-
surements only if the dominant part of DM is non-relativistic at the time of
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structure formation. We will see in chapter 6 that a (semi-)relativistic com-
ponent will erase all the structure below its free-streaming length and thus
lower limits of the order of keV can be put on the mass of DM [44, 45].

In addition to the above general constraints, the amount of DM in the universe
should also match with the inferred value from the CMB experiments at least
around recombination. In chapter 9, we will discuss the time-dependence of this
constraint.

As we can see none of the SM particles can satisfy all the above constraints,
thus DM is a Beyond the SM (BSM) particle. There are many proposed candi-
dates and particle theories and we refer the reader to [46] for a nice classification
of many DM candidates according to the above constraints. In this thesis, we
will only focus on Weakly Interacting Massive Particles (WIMPs). As the name
suggests, typical WIMP interactions are of electroweak strength and have mass of
the order of electroweak scale. In chapter 7, we will consider a specific WIMP
candidate, the neutralino which is the most often considered DM candidate in Su-
persymmetry (SUSY) [47]. In the rest of the thesis, our treatment of a WIMP
particle will be quite general.

Another important BSM particle species that we will consider in this thesis is
the dark radiation (DR). Like DM, DR will have highly suppressed interactions
with the photons and thus remains dark. However, it will be relativistic unlike DM.
A common example of DR is the sterile neutrino, i.e. right-handed neutrinos [48].
In chapters 8 and 9, we will see that interactions in the dark sector due to this
relativistic component can have profound effects on cosmology and astrophysics.

2.3 Detection methods

The particle nature of DM can be probed if it interacts (except through gravitation)
with the SM at some level or if it is itself self-interacting. If DM is self-interacting,
it can have an effect on the astrophysical structures [49] and we will discuss the
case in much more detail in chapters 8 and 9. There are three kinds of ways for
detecting DM through interactions with SM. We will now give a brief overview of
the three methods and we refer the reader to [50] for a recent review on the status
of WIMP DM —
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Direct searches: Direct detection is based on the idea of detecting nuclear
recoils after scattering with DM [51]. For a WIMP of mass 100 GeV, there is an
expected flux of ⇠ 109 m�2s�1 of DM on earth [52]. Despite the large flux, the
nuclear recoils will be very small in the 1 � 100 keV range due to the very small
cross sections [53]. Thus, direct detection experiments have to be very sensitive
and are set up underground to avoid the cosmic ray background.

There have previously been claims of a DM detection by CoGeNT [54] and
CRESST [55] experiments, which have disappeared with time. Currently, there
are two detection signals by DAMA/ LIBRA [56] and CDMS II [57] experiments
which are still there and are in conflict with the other experiments. We refer the
reader to [53] for a recent review of the current constraints from direct detection
experiments.

Indirect searches: Indirect searches use astronomical observations to detect
primary or secondary annihilation and decay products of DM such as gamma rays,
neutrinos and cosmic rays. The annihilation (decay) rate of DM is proportional
to the second (first) power of the DM density. Thus, an ideal region to look for
the annihilation/decay products is with large DM density and has small astrophys-
ical backgrounds. We refer the reader to [58] for a recent review on the current
constraints from various indirect detection experiments.

Collider searches: In collider searches, one of the ways to detect a BSM par-
ticle is to look for events with missing transverse energies. With a detection of a
BSM particle in collider searches, we cannot be sure if the discovered particle is
indeed the DM. This is because we cannot know the lifetime or the relic abundance
of the discovered particle. The Large Hadron collider (LHC) is now running at
Center of Mass (COM) energy of 13 TeV and the two detectors ATLAS [59] and
CMS [60] are extensively collecting data. At the time of writing this thesis, there
has not been a detection of a BSM particle. A non-detection results in stringent
constraints on model parameters in a considered model framework. We refer the
reader to [61] for the recent status of LHC searches.
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Chapter 3

⇤CDM cosmology

As mentioned in chapter 1, the ⇤CDM model describes the universe very well
on large scales. In section 3.1, we will give a brief overview of the spacetime
geometry and the dynamics of the constituents in the ⇤CDM model. In section
3.2, we will derive the perturbation equations which we will later use for an ex-
tension of the ⇤CDM model in chapter 9. In section 3.3, we will give an overview
of the some of the excellent agreements and discrepancies of the ⇤CDM model’s
predictions with the observations.

3.1 Background universe

A spatially homogeneous, isotropic and expanding (or contracting) universe can
be described by the Friedmann Lemaître Robertson Walker (FLRW) metric [62–
64], with the line element given by

ds
2 = �dt

2 + a(t)2


dr

2

1 � Kr2
+ r

2
d✓

2 + r
2 sin2

✓d�
2

�
, (3.1)

where a(t) is the scale factor which describes the spatial expansion and K is a
constant that describes the curvature of the universe, with the flat universe given
by K = 0. The current measurements [3,4] are consistent with the universe being
flat and we will assume K = 0 for this thesis. For a flat universe, the above
equation in Cartesian coordinates is

ds
2 = �dt

2 + a(t)2
⇥
dx

2 + dy
2 + dz

2
⇤

. (3.2)

13



The scale factor is a free parameter and can be fixed at any reference time. In this
thesis, we will set the value of a today as one, i.e. a(t0) = 1. For an expanding
universe, this means a < 1 at earlier times. It is also common to consider cos-
mological redshift (z) as a measure of time and is related to the scale factor as
a ⌘ 1/(1 + z). We will use redshift and the scale factor inter-changeably in this
thesis.

In this chapter, we will use the Einstein summation convention and Latin in-
dices to denote spatial coordinates. The physical distance between two points is
dependent on the time of measurement, i.e. r

P (t) = a(t) r = a(t)
p

�ij�xi�xj .

The coordinates x, y, z in the above line-element are known as the comoving
coordinates and the comoving distance is defined as r

c ⌘ r =
p

�ij�xi�xj . In
analogy to comoving spatial coordinates, we can define conformal time (⌧ ) as

d⌧ ⌘ dt/a . (3.3)

In this thesis, we will use a dot (dash) over a variable to denote a derivative w.r.t
proper (conformal) time, i.e ȧ ⌘ da/dt and a

0 ⌘ da/d⌧ . For measuring the rate
of expansion, one defines the Hubble parameter (H) as

H(a) ⌘ ȧ

a
. (3.4)

We can also define a conformal Hubble rate as

H(a) ⌘ a
0

a
= aH . (3.5)

With the coordinate basis (⌧, x, y, z), the FLRW metric now becomes square of
scale factor times the Minkowski metric (⌘µ⌫)

ds
2 = a

2(⌧)[�d⌧
2 + �ijdx

i
dx

j] = a
2(⌧)⌘µ⌫ . (3.6)

For a perfect fluid with energy density ⇢ and pressure P , the dynamics described
by the Einstein equations for the above metric is described by the two Friedmann
equations (see for example [65])

H
2 =

8⇡G

3
⇢ , (3.7)

Ḣ = �3⇡G

3
(⇢ + 3P ) , (3.8)
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where G is the Newton’s gravitational constant. Equations 3.7 and 3.8 can be
combined to get the following evolution of ⇢

⇢̇ = �3H(1 + w)⇢ , (3.9)

where we have defined w ⌘ P/⇢. In the ⇤CDM model the various components
can be divided into three categories according to the value of w—

• w ⇠ 1/3: This corresponds to the relativistic components, i.e. photons (�)
and (at early times) the SM neutrinos (⌫). These components are collec-
tively referred to as radiation. Using equation 3.9, we have ⇢r / a

�4 for
such components.

• w ⌧ 1: The non-relativistic components constitute this category, i.e. CDM(�)
and the baryons(b) and are collectively called matter in cosmology. For such
components we have ⇢m / a

�3. At late times, neutrinos also become non-
relativistic and hence contribute as a matter component.

• w = �1: This is the vacuum component and has a constant energy density

⇢⇤ ⌘ 3⇤

8⇡G
, where ⇤ is called the cosmological constant. The ⇤ term results

in an accelerating expansion at late times.

In the literature, there are two common terminologies that are used when refer-
ring to the energy densities of species X . Firstly, the comoving density is defined
as ⇢Xa

3(1+wX).1 Secondly, the relative density of a component is given in terms
of the density parameter ⌦ defined as

⌦X ⌘ ⇢X

⇢c

=
8⇡G⇢X

3H2
, (3.10)

where ⇢c ⌘ 3H
2

8⇡G
is the critical density of the universe. In this thesis, unless other-

wise stated, we will use ⌦X to denote the density parameter today. Using equation
3.7, we can find the relation between the expansion rate and the energy densities
of various species. For the ⇤CDM model (assuming relativistic neutrinos), we
have

H(a) = 100h
q

⌦⇤ + (⌦b + ⌦�)a�3 + (⌦� + ⌦⌫)a�4 , (3.11)

1Note that if there is no net creation or destruction of a species, with our choice of fixing the
scale factor a0 = 1, the comoving density is the density today. This is the case in the ⇤CDM
model. In chapter 9, we will consider the case when the comoving density of a species changes.

15



where h is defined as h ⌘ H0

100 km/s/Mpc
.

We will now qualitatively discuss the different eras of cosmic history relevant
for this thesis. The fit of a ⇤CDM model to the CMB data helps us to know
the values of the above parameters very precisely: ⌦⇤ ⇠ 0.69, ⌦bh

2 ⇠ 0.022,
⌦�h

2 ⇠ 0.12, ⌦�h
2 ⇠ 2.5 ⇥ 10�5 and at early times ⌦⌫ ⇠ 0.7 ⌦� [3, 4]. The

above values tell us that the universe has been dominated by the ⇤ component
from redshift 0.3 and the relative contribution of ⇤ will increase in the future. For
redshifts larger than 0.3, matter components dominate until the redshift . 3400.
Before z & 3400, it is the radiation components that dominated the universe. The
time at which radiation and matter contribute equally to the expansion of universe
is called matter-radiation equality. The decoupling of photons from the plasma,
i.e. recombination occurs around zrec ⇠ 1100 [3, 4]. For the case of thermal DM
that we will consider in this thesis, chemical and kinetic decoupling will occur
deep in the radiation dominated regime (see [44, 45] or paper II [22]).

The dark radiation (DR) that we described in the previous chapter is not a
part of the vanilla ⇤CDM model. In cosmology, such a DR component is usually
quantified in terms of additional neutrino degrees of freedom as

�Ne↵ =
⇢DR

⇢1⌫

, (3.12)

where ⇢1⌫ is the energy of one neutrino species. CMB measurements put strong
constraints on the amount of DR at recombination, �Ne↵ . 0.4 [4].

3.2 Perturbed universe

The universe described by equation 3.6, describes a completely homogeneous and
isotropic universe. Such a metric cannot result in the cosmic structure we observe
in the universe today. From the observation of the anisotropies in CMB, we know
that at the time of photon decoupling, the inhomogeneities in the universe were
very small, about one part in 105 [66]. We thus make a modification to the above
metric and introduce small inhomogeneities

gµ⌫ = a
2(⌧)[⌘µ⌫ + hµ⌫(⌧,x)] , (3.13)
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where a
2(⌧)hµ⌫(⌧,x) is the small perturbation to the metric dependent on both

space and time coordinates and a
2(⌧)⌘µ⌫ is the background part dependent only

on time. The other quantities of interest can also be divided into a background
part and a perturbation. The perturbed energy and momentum tensor is given by
(see for example [30])

Tµ⌫ = (⇢ + P )uµu⌫ + Pgµ⌫ + ⇧µ⌫ , (3.14)

where uµ is the four velocity and ⇧µ⌫ is the anisotropic stress [67]. Note that
⇧µ⌫ is a perturbation, i.e. a first order quantity. Whereas ⇢, p and uµ contain a
background as well as a perturbation part–

⇢ ⌘ ⇢̄ + �⇢ , P ⌘ P̄ + �P , (3.15)
uµ ⌘ a(�1,v) and u

µ = a
�1(1,v) , (3.16)

where �⇢, �P and v are the perturbations to the background quantities ⇢̄, P̄ and
four-velocity ūµ ⌘ (�a,0), respectively. In this section we will denote the back-
ground quantities with an overhead bar to distinguish them from the perturbed
quantities.

In general, a perturbation can be divided into a sum of scalar, vector and tensor
parts [30]. The vector parts decay in time, i.e. become smaller in magnitude [30].
The scalar and tensor parts can oscillate or grow in time. In this thesis, we will
only consider scalar perturbations. Moreover, in this section we will derive the
expressions that will be used in chapter 9. A detailed discussion of cosmological
perturbations is beyond the scope of this thesis and we refer the reader to Ref. [30]
for a pedagogical discussion.

Our way of defining the perturbations is not unique, by making an infinitesimal
coordinate transformation we can change the value of the perturbation. Whereas,
the background quantity will by definition only depend on the background confor-
mal time ⌧ . The observables cannot be dependent on our choice of coordinates.
This problem is cured by fixing the gauge, i.e. the time slicing and computing
the gauge invariant variables. There is no unique choice to fix the gauge and it
can be convenient to do a particular calculation in a specific gauge. In this thesis
(more specifically chapter 9), we use the synchronous gauge [68]. In synchronous
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gauge, the perturbed line element of the FRW metric is given by [68]

ds
2 = gµ⌫dx

µ
dx

⌫ = a
2
⇥
�d⌧

2 + (�ij + hij)dx
i
dx

j
⇤

. (3.17)

We can now calculate the dynamics by using the conservation of energy-momentum
tensor r⌫T

µ⌫ = 0 , where r⌫ denotes the covariant derivative.

In this thesis, we are primarily interested in the perturbative analysis in the
situation when w

0
X

= 0, i.e. a particle is either non-relativistic or ultra-relativistic.
This assumption also implies �p = w�⇢ for isentropic fluids [68]. Assuming w

0 =

0 and keeping only the zeroth and first order terms, we calculate the covariant
derivatives for isentropic fluids to be

a
2r⌫T

0⌫ = ⇢̄�
0 + [⇢̄0 + 3H(1 + w)⇢̄](1 + �) + (1 + w)⇢̄

✓
✓ +

h
0

2

◆
, (3.18)

a
2
@i(r⌫T

i⌫) = (1 + w)⇢̄✓
0 + (1 + w)(⇢̄0 + 4H⇢̄)✓ + w⇢̄r2

� +
2

3
r4⇧ , (3.19)

where we have defined the conventional perturbation variables h ⌘ hii , � ⌘
�⇢/⇢ , ✓ ⌘ @iv

i and ⇧ij ⌘ (@i@j � �ij

3 r2)⇧ .2

In the scenario when the different particle species are decoupled from each
other, we can use r⌫T

µ⌫

X
= 0 even for individual particles. The background part

of equation 3.18 in this case is ⇢̄
0
X

+ 3H⇢̄X(1 + wX) = 0 , which is the same as
equation 3.9. In section 9.2, we will consider a scenario when a particle species
converts to another species resulting in a different evolution of the densities.

The observable related to the density perturbations is the matter power spec-
trum P (k), defined in terms of the correlation function of the density contrasts �

as [65]

h�(x1)�(x2)i ⌘
Z 1

0

d
3
k

(2⇡)3
e

ik·(x1�x2)
P (k) . (3.20)

For describing the large scale structure, an often used parametrization in the lit-
erature is that of �8, which is rms fluctuation in matter in a sphere of radius

2We hope that the use of same conventional symbol h for describing the metric perturbations
and the Hubble rate today does not create confusion for the reader. Except this section and section

9.2, h =
H0

100 km/s/Mpc
is used consistently in this thesis.
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R8 ⌘ 8h�1 Mpc and is related to the power spectrum as [65]

�
2
8 =

Z 1

0

dk

2⇡2
k

2
P (k)

✓
3j1(kR8)

kR8

◆2

, (3.21)

where j1 is the first spherical Bessel function.

The anisotropies in the CMB background are also described by the pertur-
bative analysis we just presented. They are conventionally described by angular
power spectrum C`, which is defined by the correlation of temperature anisotropies
�T in two directions n̂ and n̂0 on the surface of last scattering [65]

⌧
�T (n̂)

T

�T (n̂0)

T

�
⌘

X

`

2` + 1

4⇡
C`P`(n̂ · n̂0) , (3.22)

where ` are the multipoles and P` is the Legendre polynomial.

3.3 Successes and challenges to the ⇤CDM paradigm

As already mentioned, the ⇤CDM model is highly successful in describing the
universe at large scales or equivalently at early times. In Fig. 3.1, we show the
matter power spectrum for the best-fit ⇤CDM model (see [2] for the details) com-
pared with various large scale measurements. We see that there is an excellent
agreement on the large scales & 1 Mpc.3 Another great success of the ⇤CDM
model is the high degree of agreement of the predicted CMB spectrum with the
actual measurements [4]. In Fig. 3.2, we show the spectrum of the best-fit ⇤CDM
model (red) and the actual measurements (blue).

The ⇤CDM model is described by only a set of six independent parameters.
There exists multiple parametrizations with different sets of parameters (see for
example [3, 69]), but in this thesis we will use the following set: Baryon density
⌦bh

2, CDM density ⌦�h
2, approximate angular size of the sound horizon ✓MC, re-

ionization optical depth ⌧ , logarithm of amplitude of primordial scalar curvature
perturbations ln(1010

As) and the scalar spectral index ns. We refer the reader
to [70] for details about the various parameters.

3The lack of measurements or interest on very large scales (& 103 Mpc) is due to the theoretical
uncertainty, the cosmic variance [65].
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FIG. 1: Matter power spectrum inferred through cosmological measurements. Red line shows the best fit
for ⇤CDM cosmology for a simplified five-parameter model, assuming a flat spatial geometry and a scale-
invariant primordial spectrum. Reprinted from Ref. [32]. See therein and Ref. [33] for further information.

mology (e.g., Ref. [34]). Of the total mass-energy content of the Universe, approximately 26%
is cold dark matter (CDM) and 5% is baryonic matter (while the remainder is consistent with a
cosmological constant ⇤), with a nearly scale-invariant spectrum of primordial fluctuations [22].
In this picture, structure in the Universe forms as primordial overdensities collapse under gravity.
Since CDM, acting as a pressureless fluid, is more dominant and collapses more readily than bary-
onic matter, it provides the gravitational potential underlying the distribution of visible matter in
the Universe. The observed matter power spectrum, as obtained from a variety of cosmological
probes, is in remarkable agreement with ⇤CDM cosmology, shown in Fig. 1. In addition, the
⇤CDM model also explains many important aspects of galaxy formation [35, 36].

Despite this success, all evidence to date for DM comes from its gravitational influence in
the Universe. With no viable DM candidate within SM, the underlying theory for DM remains
unknown. Many new particle physics theories proposed to address shortcomings of the SM simul-
taneously predict new particles that can be a DM candidate. Examples include weakly-interacting
massive particles (WIMPs) motivated by the hierarchy problem, such as neutralinos in the su-
persymmetric models [37, 38] and Kaluza-Klein states in extra dimensional models [39, 40], as
well as extremely light axion particles [41] associated with the solution to the strong CP prob-
lem in QCD [42]. The comic abundance of these new particles can be naturally close to the DM
abundance inferred from the cosmological observations (e.g., Ref. [43]). This coincidence has mo-
tivated decades of efforts to discover the particle physics realization of DM through experimental
searches for new physics beyond the SM (e.g., see [44, 45, 46] and references therein).

On large scales, the structure of the Universe is consistent with DM particles that are cold, colli-
sionless, and interact with each other and SM particles purely via gravity. WIMPs and axions have
interactions with the SM that are potentially large enough to be detectable in the laboratory, while

5

Figure 3.1: Matter power spectrum measurements from various large scale exper-
iments. The red line is the spectrum of the best-fit ⇤CDM model of [2]. Figure
taken from [2].

As can be seen from Fig. 3.2, the best-fit model has a remarkable agreement
with the measurement. Another success of the ⇤CDM model is that the polariza-
tion spectrum obtained from the best-fit values from temperature data only agrees
very well with the independently measured polarization spectrum. In this the-
sis, we will use the combined Planck 2015 temperature and polarization data:
TTTEEE+low-P likelihood [71] and as we are going to use the best-fit values of
the above parameters at multiple places in this thesis, we state the values here [4]

⌦bh
2 = 0.02225 , ⌦�h

2 = 0.1198 , 100✓MC = 1.04077 ,

⌧ = 0.0790 , ln(1010
As) = 3.094 , ns = 0.9645. (3.23)

The ⇤CDM prediction of BAOs also agrees quite well with the measurements at
large scales [32–36].

Despite the immense success of such a simple model, there exist some dis-
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Figure 3.2: Measurement of angular power spectrum of temperature anisotropies
by Planck [4] shown as blue data points. The red curve is the spectrum of the
best-fit ⇤CDM model obtained using the blue points as the data. Figure from [4].

crepancies and open questions that remain unanswered. We will discuss the two
kinds of the discrepancies now and we refer the reader to [72] for a recent review
on the discussion of current status of ⇤CDM paradigm.

3.3.1 Small scale problems of ⇤CDM

The ⇤CDM predictions for large scale structure (> 1 Mpc) agree very nicely with
the observations [2, 38, 73, 74]. At smaller (galactic) scales there exist some long
standing, but not undisputed (see below), discrepancies between the predictions
and the observations. We will now briefly discuss three of the small scale discrep-
ancies and refer the reader to [14] for a very comprehensive review—

• Missing Satellites: According to N�body simulations of Milky Way sized
halos, DM clumps should exist at all scales in the ⇤CDM paradigm and we
expect to see thousands of subhalos � 107

M� in our galaxy [40, 75–79].
The Missing satellite problems is that we see only ⇠ 50 satellite galaxies
upto a mass of ⇠ 300M� [80].

• Cusp core problem: The ⇤CDM simulations predict the inner density pro-
files of small galaxies to increase steeply ⇢(r) / r

�� , with � ' 0.8 � 1.4
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[81, 82]. The increasing density towards the center is known as a cusp like
profile. Though the observations suggest that the DM-dominated low-mass
galaxies have more core like profiles with � ⇡ 0 � 0.5 [83, 84].

• Too big to fail (TBTF): The most massive subhalos do not form galaxies
but galaxies are observed in lower mass halos [85, 86]. The most massive
satellites should be too big to fail to trigger star formation and hence be
visible. This was originally observed in Milky Way, but it was subsequently
also seen in Andromeda [87] and in the Local group [88].

There exist many astrophysical solutions for solving the above three problems
in the ⇤CDM paradigm. For example, the missing satellites can be solved if the
star formation becomes inefficient for small mass subhalos (see for example [14]).
Cusp-core problem can be solved if baryon feedback processes like supernova
could reduce the central density (see for example [89]). The TBTF problem is
harder to explain in the ⇤CDM paradigm [14]. In chapter 8, we will show that
the three problems can be solved by going beyond the ⇤CDM paradigm, when we
consider weakly self-interacting DM.

3.3.2 Low-redshift data and CMB
There also exist discrepancies of CMB and direct measurements of the Hubble
rate [90] and �8⌦↵

m
[91–93], where ↵ > 0 and varies for different experiments.

CMB data from Planck predicts a smaller value of H0 ⇠ 67.27 km/s/Mpc [4]
for the ⇤CDM model as compared to the most recent direct measurement of the
Hubble space telescope H0 ⇠ 73.24 km/s/Mpc [90]. The discrepancy is about
3.4� [90].

The best-fit value of the normalization of the matter power spectrum on the
other hand has a larger value with CMB only data �8 = 0.831 ± 0.013 than the
direct measurements �8(⌦m/0.27)0.3 = 0.782 ± 0.010 [93], which using the best-
fit value of ⌦m from Planck gives �8 ⇠ 0.74.

In Fig. 3.3, we show the 1� and 2� constraints on H0 and the parameters com-
bination �8(⌦m/0.27)0.3 to illustrate the discrepancy. The red contours signify the
constraints from temperature and polarization data from Planck [71] and the cyan
and orange bands show the direct measurements of H0 [90] and �8(⌦m/0.27)0.3

[93]. The green and blue contours are with the Planck data combined with the
direct low-redshift measurements (see paper IV [24]).
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Figure 3.3: The discrepancies of the low-redshift measurements of the Hubble
rate and the matter power spectrum normalization in the ⇤CDM paradigm. The
red contours show the 1� and 2� constraints on the parameters using CMB data
only [71]. The cyan and orange bands show the direct measurements of the pa-
rameters from [90] and [93], respectively. The green and blue contours show
the effect of combining CMB data with the the low-redshift measurements: lens-
ing [71], Hubble space telescope (HST) [90] and Planck Clusters (PC) [93]. For
details, see paper IV [24] from which the figure is taken.
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Part II

Dynamics I: Chemical freeze out
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Chapter 4

Solving the Boltzmann equation

In chapter 1, we stated that the comoving number density of different particle
species becomes constant when their annihilation rate falls below the Hubble rate.
In this chapter, we will justify this criterion by laying the mathematical framework
for decoupling in an expanding universe. In the end of the chapter, we will arrive
at an equation, describing the evolution of the number density of a species. First,
we will start with discussing thermodynamics of particles in equilibrium. We refer
the reader to [94] for a detailed derivation of the results presented in this chapter.

4.1 Equilibrium thermodynamics

In equilibrium, the phase space distribution functions (f ) of bosons and fermions
is described by Bose-Einstein and Fermi-Dirac statistics, respectively. For a par-
ticle at temperature T and momentum p, it is given by

f(p, T ) =
1

e(E�µ)/T ± 1
, (4.1)

where E =
p
p2 + m2 is the energy and m being the mass of the particle, µ is

the chemical potential and ± is for fermions and bosons, respectively.

The number and energy density of a particle in or out1 of equilibrium is ob-

1For particles not in equilibrium the phase space density is not given by equation 4.1.
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tained by integrating f over momenta

n(x, T ) = g

Z
d

3
p

(2⇡)3
f(x,p, T )

⇢(x, T ) = g

Z
d

3
p

(2⇡)3
E(p) f(x,p, T ) (4.2)

where g is the internal degrees of freedom of the particle. In equilibrium, using
the distribution functions from equation 4.1, we have

n
eq =

8
>><

>>:

g

⇡2 ⇣(3) T
3
, for relativistic bosons,

3g

4⇡2 ⇣(3) T
3
, for relativistic fermions,

g
�

mT

2⇡

�3/2
e
(µ�m)/T

, for non-relativistic bosons or fermions,

(4.3)

and

⇢
eq =

8
>><

>>:

g⇡
2

30 T
4
, for relativistic bosons,

7
8

g⇡
2

30 T
4
, for relativistic fermions,

n
eq(m + 3

2T ) , for non-relativistic bosons or fermions.

(4.4)

We will denote the equilibrium values of the quantities with a (sub-)superscript eq

in this thesis. Using equation 3.9, we can also see that for relativistic species we
have

T
eq
rel / a

�1
. (4.5)

The entropy density of a species with pressure P is given by

s =
⇢ � µn + P

T
. (4.6)

As the number density for non-relativistic particles is exponentially suppressed,
the total entropy of the universe is dominated by relativistic particles and is given
by

stot = g⇤s

2⇡2

45
T

3
, (4.7)

where

g⇤s ⌘
X

bosons

gi

✓
Ti

T

◆3

+
7

8

X

fermions

gi

✓
Ti

T

◆3

, (4.8)

where Ti is the temperature of the individual species and T is the temperature of

28



the thermal bath.

4.2 Relic density calculation

We now move on to the discussion of how particles fall out of equilibrium by dis-
cussing the Boltzmann equation. The Boltzmann equation governs the evolution
of the phase space density of a particle species and is described by two function-
als [94]

L[f ] = C[f ] , (4.9)

where L is known as the Liouville operator and C as the collision operator. The
Liouville operator gives the net rate of change in time of the phase space density.
For a flat FRW universe, L[f ] is given by

L[f ] = E(@t � Hp · @p)f(p) . (4.10)

The collision operator C[f ] gives the rate of change of f due to the presence of
interactions. For the case of annihilations to a two-body final state, i, j ! k, l,
C[fi] is given by2

C[fi] = � 1

2gi

Z
d

3
pj

(2⇡)32Ej

d
3
pk

(2⇡)32Ek

d
3
pl

(2⇡)32El

⇥(2⇡)4
�
4(pi + pj � pk � pl)

⇥
⇥
|Mi,j!k,l|2fifj(1 ± fk)(1 ± fl)

� Mk,l!i,j|2fkfl(1 ± fi)(1 ± fj)
⇤

, (4.11)

where ± refers to bosons and fermions, respectively, |M|2 is the invariant ampli-
tude squared of the process, summed over initial and final degrees of freedom.

We can get an equation for the evolution of the number density of species i by
integrating equation 4.9 over momenta pi. For doing so, we have to make some
reasonable assumptions—

• the phase space density functions can be approximated by the Maxwell-
Boltzmann distribution

2We have considered 2 body final state for simplicity. The final result for number density
evolution will be true for any number of final particles.
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• the final state particles k and l quickly go back into equilibrium with the
thermal bath after being produced

• the species i and j still remain in kinetic equilibrium, though not in chemical
equilibrium

• and the chemical potential of the particles is negligible.

The principle of detailed balance allows us to make the replacement f
eq
i

f
eq
j

=

f
eq
k

f
eq
l

. Using CP invariance (|Mi,j!k,l|2 = |Mk,l!i,j|2), we can integrate equa-
tion 4.9 over momenta pi to get a very simple equation for the evolution of the
number density ni (see [65, 94] for a detailed derivation)

1

a3

d(nia
3)

dt
= �h�vMøli

�
ninj � n

eq
i

n
eq
j

�
, (4.12)

where � is the total annihilation cross section summed over final and averaged
over initial degrees of freedom, vMøl is the Møller velocity defined by vMøl ⌘p

|vi � vj|2 � |vi ⇥ vj|2 and h�vMøli is the thermal average defined as

h�vMøli ⌘
R

d
3
pid

3
pj fifj �vMølR

d3pid
3pj fifj

. (4.13)

If the initial particles are identical (n = ni = nj), the equation becomes

1

a3

d(na
3)

dt
= �h�vMøli

�
n

2 � n
2
eq

�
. (4.14)

If the particle j is the anti-particle of i, then the total density is n = 2ni and thus
there is an extra factor of 1

2 . We will denote this factor as & , for Majorana fermions
we have & = 1 and for Dirac fermions & = 1

2 . Thus, we finally have

1

a3

d(na
3)

dt
= �&h�vMøli

�
n

2 � n
2
eq

�
. (4.15)

Note that j doesn’t have to be identical to or an anti-particle of i. It can also
represent a different particle species. Such a scenario is called co-annihilations
and we would discuss this in the next chapter (section 5.2).

Using entropy conservation, i.e., ds

dt
= �3Hs, the above equation can be cast
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to a more convenient form. Re-defining variables to Y ⌘ n/stot and x ⌘ m/T ,3

the above equation becomes

dY

dx
=

&

3H

ds

dx
h�vMøli(Y 2 � Y

2
eq) , (4.16)

where Yeq ⌘ neq

stot
.

We are finally at the stage when we can justify the statement that we made
earlier, i.e., why the particle species decouple around the time when their in-
teraction rate falls below the Hubble rate. The annihilation rate is defined as
�ann ⌘ neqh�vMøli. If in the very early universe we start with the species in
equilibrium, i.e. Y = Yeq and �ann � H , the solution of Y is forced to fol-
low the equilibrium value. One can also see that for �ann . H , Y changes very
slowly relative to Yeq. Thus, when �ann ⇠ H , the comoving number density of the
species becomes roughly constant and this epoch is known as chemical freeze out
or chemical decoupling.

For a particle with mass m, the energy density today can thus be calculated as

⇢
0
i

= min
0
i

= mis0Y0 , (4.17)

where we have defined the quantities with subscript or superscript ‘ 0’ as values
today. It is useful to study the relic densities of particles in terms of the density
parameter ⌦i (defined in equation 3.10)

⌦0
i

=
16⇡3

G

135H2
0

mig
0
⇤s

T
3
0 Y0 . (4.18)

In the next chapter, we will apply the formalism that we have developed, to
calculate relic densities of some of the DM freeze out scenarios.

3Note that we have used T as the temperature of the thermal bath, i.e., the photon temperature
for the standard cosmology.
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Chapter 5

Relic density of thermal dark matter

In the previous chapter, we discussed the mathematical framework for calculat-
ing relic density of a particle species. In this chapter, we will use equation 4.16
to study how thermal DM freezes out. We will begin by discussing the cases of
relativistic and non-relativistic chemical decoupling in section 5.1. In section 5.2,
we will discuss co-annihilations, a scenario when there are other dark sector par-
ticles nearly degenerate with the DM annihilating together to produce the relic
abundance.

5.1 Freeze out of thermal dark matter
In this thesis, we only consider thermally produced DM through what is known
as freeze out mechanism.1 For such class of DM, one assumes that at very early
times, DM was in local thermal equilibrium. DM can be kept in equilibrium with
the SM heat bath (or even a relativistic dark species) through the processes shown
in Fig. 5.1. The processes �� � SM SM ensure that DM remains in chemical
equilibrium and � SM ! � SM keeps DM in kinetic equilibrium with the thermal
bath. As the temperature drops, the average energy of particles decreases (see
equation 4.4). At some point in time the average energy of the SM particles will
become less than m�. The process SM SM! �� is now kinematically possible
only in the high-energy tail of the distribution, which is heavily suppressed and
thus the process becomes inefficient. DM then starts to deplete via �� ! SM
SM and in order to maintain equilibrium, n� starts falling exponentially (equation

1An alternative to freeze out scenario is freeze-in [95], where DM interacts very feebly with the
plasma. A detailed discussion of the mechanism is beyond the scope of this thesis and we refer the
interested reader to [95,96]. For other non-thermal production mechanisms, see for example [97].
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Figure 5.1: Left to right: Feynman diagrams for the processes SM SM! ��,
�� ! SM SM and � SM ! � SM. The blob in the diagrams indicates sum over
all possible processes.

4.3). The number density eventually becomes so small that the annihilation rate
of DM falls below the Hubble rate and the process �� ! SM SM also becomes
inefficient.2 DM density then freezes out.

First we consider the case where DM (while in equilibrium) has the same
temperature as the SM thermal bath through interactions with SM particles and
later generalize to include the possibility of DM having a different temperature
(via interactions with another dark relativistic species or SM neutrinos).

Thermally produced DM can be classified into three main categories depend-
ing on the value of xf ⌘ m�/T at chemical freeze out. If DM was highly rela-
tivistic during chemical decoupling, i.e. xf ⌧ 3, DM is referred to as Hot Dark
Matter (HDM). One of the most popular HDM candidates are the SM neutrinos. If
xf � 3, DM is called Cold Dark Matter (CDM). The intermediate regime xf ⇠ 3

is referred to as DM being Warm Dark Matter (WDM). The three different types
have distinct effects on cosmological structure formation. Observations strongly
suggest that most of the DM in the universe should be in the form of CDM [7, 8].
We will discuss the three types and the implications on structure formation in
more detail in the next chapter.

We first briefly discuss the decoupling of HDM and WDM (xf . 3). Assum-
ing the number of degrees of freedom to be roughly constant during freeze out,
for a relativistic particle in thermal equilibrium with the thermal bath, one can see
from equations 4.3 and 4.7 that Yeq is a constant. Thus, when the annihilation rate
falls below the Hubble rate and the particle is still relativistic, the value of Y today

2The process � SM ! � SM still keeps DM in kinetic equilibrium. Once this scattering
process becomes inefficient, DM completely decouples from the thermal bath and we will consider
this epoch in chapter 6.
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is just Yeq at freeze out-

Y0 = Yeq(xf ) =
45⇣(3)

2⇡4

g
e↵
�

g⇤s(xf )
, (5.1)

where g
e↵
�

= g� if DM is a boson and g
e↵
�

= 3g�/4 if DM is a fermion. The relic
density using equation 4.18 is then

⌦0
�

=
8G⇣(3)

3⇡H
2
0

g
0
⇤s

g⇤s(xf )
m�g

e↵
�

T
3
0 ⇠ 8 ⇥ 10�2 g

e↵
�

g⇤s(xf )

⇣
m�

1eV

⌘
. (5.2)

As the above expression is independent of the annihilation rate, one can put con-
straints on the masses of HDM. For example, in order to not overclose the universe
(⌦�  1), the sum of the SM neutrino masses should be . 45 eV [98].

Unlike the case of HDM and WDM, an exact analytic solution of equation 4.16
doesn’t exist for CDM and we have to numerically solve the differential equation.
In the non-relativistic limit, the Møller velocity becomes equivalent to the relative
velocity vrel and the thermally averaged cross section in this limit is [20, 94]

h�vrelieq '
✓

16x3

⇡

◆1/2 Z 1

0

dv� �vrel v
2
�
e

�v
2
�x

, (5.3)

where v� is the velocity of a DM particle in the Center of Mass frame. The
above integral can be simplified by expanding �vrel in powers of v�.3 If we as-
sume �vrel / v

2n

�
one can solve the above integral analytically to get h�vreli /

x
�n [20]. For �vrel = a0 + a1v

2
�

+ ... one gets

h�vreli ' a0 +
3a1

2x
+ ... . (5.4)

The above terms can be understood to arise from specific angular momentum
configurations of the initial state. By expanding the annihilation amplitude (writ-
ten in spherical basis) in DM velocity v�, one can see that the amplitude scales asP1

i,`=0 c`+2iv
`+2i

�
, with ` being the mulitploes and c’s being some process depen-

dent coefficients (see for example [99]). Thus the a0 term comes exclusively from
the s�wave (L = 0) state and both s� and p�wave (L = 1) contribute to a1. If

3With the expansion 5.4, one can indeed get an approximate analytic expression for relic den-
sity (see for example [65]).
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Figure 5.2: Evolution of Y (x): Numerical solution of the Boltzmann equation
4.16 for a DM of mass m� = 100 GeV. For the plot we have assumed the anni-
hilation process to be purely s�wave. The black line represents the equilibrium
evolution. After the annihilation rate drops below the Hubble rate, DM freezes
out and the number density roughly remains constant. The larger the annihilation
rate the longer DM stays in equilibrium and thus has smaller relic abundance.

a0 dominates, then the process is said to be dominantly s�wave annihilation and
if a1 dominates over a0, we then call it dominantly p�wave annihilation and so
on.

In Fig. 5.2, we show the numerical solution of Y (x) for a DM particle with
mass m� = 100 GeV for three different values of h�vreli. We see that at early
times (small x) Y tracks the equilibrium solution for all the three cases. We can
also see that a larger annihilation rate results in a smaller Y0. A larger annihilation
rate means that DM stays longer in equilibrium and thus depletes more. Using the
freeze out condition �ann ⇠ H , we can see an approximate dependence

Y0 ⇠ Yeq(xf ) ⇠ H

s(x)h�vreli

����
x=xf

/ x

m�h�vreli

����
x=xf

, (5.5)

where the last proportionality holds for the typical case of freeze out taking place
in radiation dominated era. Using equation 4.18, we can see that the relic density
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of CDM depends mainly on h�vreli. With a more careful analysis, the relic density
for m� & 10 GeV to a good approximation is given by [100]

⌦0
�
h

2 ⇡ 2.1 · 10�10 GeV�2

h�vreli
. (5.6)

For achieving the cosmologically observed relic density ⌦�h
2 ⇠ 0.12, one needs

h�vreli ⇠ 1.7 · 10�9 GeV�2 . A Weakly Interacting Massive Particle (WIMP), i.e.
a particle with weak-scale mass and charged under the weak force, will naturally
result in an annihilation cross section of the same magnitude-

(�v)WIMP ⇠ ↵W

64⇡(100 GeV)2
⇠ 5 · 10�10 GeV�2

. (5.7)

This coincidence is often referred to as the WIMP miracle in the literature. As
shown in Fig. 5.2, WIMPs typically have xf ⇠ 25. In chapter 7, we will calculate
the relic density of a very common DM candidate in Supersymmetry(SUSY), i.e.
the neutralino, which is O(100 GeV) and is charged under the weak force, thus
making it a WIMP.

Until now we considered DM to have the same temperature as the SM thermal
bath when in equilibrium. We will now consider the possibility that DM is kept
in equilibrium by scattering with a species (�̃) with a different temperature than
the SM thermal bath. The different DM temperature can be taken into account
by replacing x ! x/⇠ in the above equations, where ⇠ ⌘ T�̃/T . For example,
equation 5.3 becomes

h�vrelieq '
✓

16x3

⇡⇠3

◆1/2 Z 1

0

dv� �vrel v
2
�
e

�v
2
�x/⇠

. (5.8)

In chapter 8, we will work with the case of CDM interacting with a species like �̃.
For the case of relativistic decoupling, we refer the reader to [101] for a detailed
discussion.

5.2 Co-annihilations
In the previous chapter, we had mentioned that the annihilating particles don’t nec-
essarily have to be identical or anti-particle of each other. We can have a scenario
when there are many different dark-sector particles in equilibrium annihilating to
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standard model particles. Such a scenario is called co-annihilations in the litera-
ture and was first studied in [102]. The co-annihilation scenario can be realized in
particle physics models like SUSY [103].

Consider for example, we have N dark particles in thermal equilibrium with
the thermal bath. And out of them the N �1 heaviest particles ultimately decay to
the lightest dark particle. Assuming that the lightest particle is stable on cosmo-
logical time scales, the lightest dark particle can make the DM we are looking for.
For covering such a scenario we would have to modify equation 4.12 to evaluate
for the total dark sector number density, n ⌘

P
N

i=1 ni instead of ni. Summing the
equations for all i, one gets the following differential equation for n [104, 105]

d(na
3)

dt
= �h�effvi(n2 � n

2
eq) , (5.9)

where h�effvi is defined as

h�effvi ⌘
NX

i,j=1

h�ijviji
n

eq
i

neq

n
eq
j

neq , (5.10)

here �ij is the annihilation cross section and vij is the relative velocity of the
species i and j.

For simplicity, consider a dark sector with only two particles denoted by �

and �, with masses, m� and m� ⌘ (1 + �)m�, with � � 0. In addition to the
annihilation diagrams of � (Fig. 5.1), we have two additional diagrams involving
� that we show in Fig. 5.3. The effective cross-section for such a scenario will be

h�effvi = h���v��i
g

2
�

+ e
��x(1 + �)3/2

g�g� r�� + e
�2�x(1 + �)3

g
2
�

r��

(g� + (1 + �)3/2e��xg�)
2 , (5.11)

where g� and g� are the internal degrees of freedom of � and �, respectively,
r�� ⌘ h���v��i/h���v��i, r�� ⌘ h���v��i/h���v��i and x = m�/T .

The effective cross section for the simple model depends on four independent
parameters, �, r��, r�� and g�. In Fig. 5.4, we show the variation of the relative
enhancement h�effvi

h���v��i as a function of � for two different values of r��. The choice
of varying r�� instead of r�� is just for illustration purposes, varying r�� does not
change the following discussion qualitatively. We can see that for � ! 0, co-
annihilations can considerably modify the effective annihilation cross section. As
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Figure 5.4: h�effvi
h���v��i vs. �. For r��, r�� � 1, the effective cross section increases

with decreasing � until some value of � and then saturates. If r��, r�� < 1, it leads
to a suppression due to the parasitic degrees of freedom [106].

� increases, co-annihilation processes become irrelevant due to the exponential
suppression factors in equation 5.11 and we get h�effvi ! h���v��i. Thus, co-
annihilations are only important if the co-annihilating dark sector particles are
nearly degenerate with the lightest particle. In the degenerate limit (� ! 0),
the effective cross-section gets an enhancement or suppression depending on the
values of r�� (or r��) —

• Enhancement for r�� > 1 (or r�� > 1): The heavier particle (co-)annihilates
more efficiently and thus increases the effective annihilation cross section.
This scenario is encountered in a lot of SUSY models. For example, co-
annihilating sfermions with a Bino, chargino with a Wino or Higgsino and
two Higgsinos increases h�e↵vi [103, 107]. In chapter 7, we will consider
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one of these co-annihilation scenarios, squark co-annihilations with a Bino
and study its impact on the relic density.

• Suppression for r�� < 1 (or r�� < 1): The suppression is due to g� present
in the denominator of equation 5.11. The particle � remains in equilibrium
with the thermal bath but does not (co-)annihilate efficiently, thus decreas-
ing the effective cross section. Such a scenario is referred to as increase
in relic density due to parasitic degrees of freedom in the literature [106].
This suppression can be observed in sfermion co-annihilation for a Wino or
Higgsino DM in SUSY [103, 106]. Note that the suppression will be even
more pronounced for larger values of g�, as is the typical case in SUSY.
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Part III

Dynamics II: Full thermal
decoupling
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Chapter 6

Kinetic decoupling

In this chapter, we will consider kinetic decoupling of DM. In the previous chap-
ter, we discussed that after thermal DM freezes out, it (typically) still remains in
equilibrium via scattering with a relativistic partner.1 This is due to the fact that
the scattering rate is proportional to the number density of the scattering partner
(/ T

3) as opposed to DM number density (/ T
3/2

e
�m�T ) for the case of anni-

hilations. As the universe expands, the number density of the scattering partner
also decreases. Eventually, the scattering rate also falls behind the Hubble rate
and then DM decouples completely. This epoch is known as kinetic or thermal
decoupling.

While in equilibrium, DM will have the same temperature as its scattering
partner. Thus, the temperature of particles just redshifts, i.e., T / a

�1 before de-
coupling (see equation 4.5). One can see that this implies h|p|2i / T / a

�1. Af-
ter decoupling the momentum of a non-relativistic particle redshifts, i.e. h|p|2i /
a

�2. We thus see that h|p|2i is a good variable to quantify kinetic decoupling.
We can define kinetic decoupling as the time when the two asymptotes intersect
and the point of intersection to be the kinetic decoupling temperature (Tkd). An
equation for the temperature evolution can be obtained by integrating the second
moment of the Boltzmann equation [109–111]. In section 6.1, we will develop an
equation for the evolution of DM temperature and calculate Tkd.

1There can be scenarios where kinetic equilibrium during freeze out is not a good assumption
[20, 108]. In such a scenario, one has to solve a set of coupled differential equations to describe
chemical and kinetic decoupling. In this chapter, we will assume DM to be in kinetic equilibrium
during chemical decoupling and the comoving number density of DM to be constant during kinetic
decoupling.
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In equilibrium, DM along with its scattering partner(s) acts like a perfect fluid.
Inside the horizon, the pressure of the fluid leads to acoustic oscillations which do
not let DM perturbations grow. After decoupling, DM is free to fall in a gravita-
tional well and create DM halos (which serve as seeds for structure formation).
The mass inside the horizon at the time of decoupling corresponds to the min-
imum protohalo mass (Mcut). Like the observable related to freeze out is the
relic density, the observable related to kinetic decoupling is a cut-off in the matter
power spectrum. In section 6.2, we will discuss the impact of DM on structure
formation. Our discussion will be qualitative in nature and we refer the reader
to [109,112–114] for a mathematical treatment of perturbations to study structure
formation.

6.1 Kinetic decoupling temperature
Consider that DM is kept in equilibrium by scattering with a relativistic species
(�̃). The scattering partner �̃ might have no interactions with the SM particles and
thus also have a different temperature than the SM thermal bath. In this thesis,
we will quantify the difference by the parameter ⇠ ⌘ T�̃/T . We now define a
temperature parameter for DM

T� ⌘ g�

3m�n�

Z
d

3
p

(2⇡)3
p2

f(p) . (6.1)

With the above definition, one recovers T� = ⇠T while in equilibrium. We will
now develop an equation for T�, which we will use to quantify the time of kinetic
decoupling.

Like in the case of chemical decoupling, kinetic decoupling of DM can be
described by the Boltzmann equation L[f ] = C[f ] [109–111]. The Liouville
operator for DM is the same as in equation 4.10. The collision term for the process
�(p)�̃(k) ! �(p̃)�̃(k̃) is given by [110]

C[f ] =
1

2g�

Z
d

3
k

(2⇡)32!

Z
d

3
k̃

(2⇡)32!̃

Z
d

3
p̃

(2⇡)32Ẽ
(6.2)

⇥(2⇡)4
�
(4)(p̃ + k̃ � p � k) |M|2

��̃$��̃

⇥ [(1±fk)(1±fp) fk̃fp̃ � (1±fk̃)(1±fp̃) fkfp)] ,

where ! and !̃ denote the energies of the initial and final �̃ particles, respectively

44



and Ẽ denotes the energy of the final state DM particle. The invariant amplitude
squared |M|2 is summed over initial and final degrees of freedom and also con-
siders both particle and anti-particle scattering processes. Assuming DM to be
highly non-relativistic and the momentum transfer between � and �̃ to be small
during kinetic decoupling, one can calculate the evolution of T� by integrating the
second moment of the Boltzmann equation to get (see paper II [22])

d log y

d log x
=

✓
1 � 1

3

d log g⇤s

d log x

◆
�(T�̃)

H(T )

✓
yeq

y
� 1

◆
, (6.3)

where we have introduced the dimensionless parameter y ⌘ m�T�s
�2/3
tot and the

momentum transfer rate �(T�̃). The latter is given by

�(T�̃) =
1

48⇡3g�T�̃m
3
�

Z
d! k

4
fk(1 ± fk) h|M|2it , (6.4)

where we have defined k ⌘ |k| and h|M|2it ⌘ 1

8k4

Z 0

�4k2

dt (�t) |M|2 , where

t is the Mandelstam variable. Assuming constant relativistic degrees of freedom
during kinetic decoupling, we can simplify equation 6.3 to

dT�

dT
� 2

T�

T
=

�(T�̃)

H(T )

✓
T�

T
� ⇠(T )

◆
. (6.5)

We can see from the above equation that T� is forced to be equal to ⇠T for � � H

and for � ⌧ H , T� / T
2 / a

�2, which is what we expected.

Like in the case of chemical decoupling, one should solve equation 6.5 nu-
merically to find the evolution of T�. In the top panel of Fig. 6.1, we show the
numerical solution of equation 6.5 for a very simple model— two scalars � and �̃

scattering via a dimensionless quartic coupling �, i.e. �L =
�

4
�

2
�
�

2
�̃
. For illustra-

tion, we show the cases ⇠ = 0.5 , 1 for two values of � and fix m� = 100 GeV.2 In
the bottom panel of the figure, we show the ratio �(T�̃)/H(T ).

For � � H , DM is kept in equilibrium and T� = ⇠T . Around � ⇠ H , T�

starts to deviate from ⇠T and DM decouples. We see that DM decouples later for
2In this thesis, we will assume ⇠ to be a constant. In principle, the parameter ⇠ can be a function

of time (for a comprehensive discussion on the time dependence see [101]). For the figure, we have
also fixed m�̃ = 100 keV, but for the relevant range of temperatures shown in the figure, the mass
is not important and the results hold for any relativistic �̃.
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Figure 6.1: TOP: Evolution of T� for a scalar DM scattering with a scalar rel-
ativistic species via a quartic coupling �. We have shown two combinations of
the coupling � and temperature parameter ⇠. BOTTOM: The ratio of �(T�̃) and
the Hubble rate. For � � H , DM remains in equilibrium and T� follows the
equilibrium temperature. DM decouples from the scattering partner when � ⇠ H

and after that T� / a
�2. The decoupling temperature Tkd is defined as the inter-

section of these two asymptotes (which we explicitly show for the � = 10�3 &
⇠ = 1 case). For comparison, we also show the analytic solution Tkd obtained
from expression 6.7 as vertical lines in the top panel.

a larger scattering rate. After this time, T� decreases more rapidly, T� / a
�2.

We can now define the decoupling temperature Tkd as the intersection of the two
asymptotes (which we have shown for the solid blue line).

One can also find an approximate solution for Tkd by expanding h|M|2it in
powers of small energies (! ⌧ m�)

1
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⌦
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↵
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◆
, (6.6)
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to get (see paper II [22])
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where ge↵ is the effective relativistic energy degrees of freedom and �n = 1 for
bosonic �̃ and �n = 1 � 2�(n+3) for a fermionic �̃. The above solution holds
for n > �1 (even for non-integer values). For the simple model we considered
above, we have h|M|2it = �

2 and thus n = 0. In Fig. 6.1, we have also shown
this approximate solution for this model as vertical lines in the top panel. We can
see that the above approximation provides a very good estimate for Tkd.

6.2 Kinetic decoupling and structure formation
Before kinetic decoupling, the tight coupling between DM and the scattering
partner generates a pressure which does not let the perturbation �� grow. After
kinetic decoupling, DM perturbations grow and structure formation takes place.
There are two main effects of the epoch of kinetic decoupling on the halo forma-
tion [112–115]—

• The pressure in the DM-�̃ fluid results in oscillating DM density perturba-
tions. Analogous to the BAOs, we call the oscillatory behavior in the dark
sector as Dark Acoustic Oscillations (DAO). All the perturbation modes in-
side the horizon at the time of kinetic decoupling are thus suppressed.

• After the last scattering T < Tkd, the viscosity coefficients vanish and DM
free streams. If the distance traveled by the DM particles in time t is larger
than the wavelength of a perturbation mode at t, that mode gets damped.
DM can move from overdense regions to underdense regions, thus wiping
out all the structure less than this scale of free streaming. This is referred to
as free streaming or collision-less damping [112–114].

The length scales over which the two effects suppress the structure will depend
on the time of decoupling (or Tkd) [109, 113]. As all the perturbations are erased
below these scales, the relevant scale (lcut) for a DM model is the larger of the two.
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This damping scale can be seen as a sharp cutoff in the matter power spectrum (see
for example [116]). The mass contained in a sphere of radius lcut then corresponds
to the minimum halo mass and is called the cutoff mass (Mcut).

For HDM the dominant effect is free streaming andMcut will be of the order of
the size of typical galaxy clusters ⇠ 1014

M� [117]. Thus, in a universe consisting
of mainly HDM, the large structures will have to break down to form the structure
we see today. Observations strongly suggest that this is not the case with our
universe and most of the DM has to be non-relativistic [7, 8]. For non-relativistic
DM, the dominant suppression effect depends on the values of Tkd and m� [115].
For standard WIMPs, Mcut is typically very small due to the large Tkd and small
free streaming lengths [109, 115]. Thus for CDM, small structures form first and
then they cluster together to form the large scale structures. This is referred to as
the hierarchical structure formation in the literature.

Using N -body simulations and including non-linear perturbations, Vogels-
berger et al. [116] found the following relation to be a good fit for Mcut when
DAO is the dominant suppression mechanism

Mcut = 5 ⇥ 1010

✓
Tkd

100 eV

◆�3

h
�1

M� , (6.9)

and for the case of WDM when free-streaming effects are the dominant mecha-
nism it is [116]

M
WDM
cut = 1011

⇣
mWDM

keV

⌘�4

h
�1

M� . (6.10)
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Part IV

Discussion of results
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Chapter 7

Efficient treatment of QCD
corrections for Majorana dark
matter

7.1 Outline
In chapter 5, we calculated the effective annihilation cross section h�e↵vi for the
various chemical freeze out scenarios. Theoretically, processes up to all orders
in perturbation theory should be considered when computing h�e↵vi. The present
CMB experiments [4] predict the relic density of CDM to a percent level accu-
racy. Thus, the theoretical prediction of relic density for a particle physics model
should match the accurate measurement. Due to a large strong coupling constant
↵s, Quantum Chromodynamics (QCD) corrections can be very important for an
accurate relic density prediction [11, 118–126].

In this chapter, we will discuss an efficient way to estimate the dominant QCD
corrections in h�e↵vi for Majorana DM. A Majorana type DM particle can be
realized in many particle physics scenarios [47, 127–129]. Most commonly con-
sidered realization is the neutralino in Supersymmetry (SUSY) [130, 131]. In this
chapter, we will work in SUSY framework but our results can be generalized to
any Majorana type DM (see [132] for an application of this work).

A SUSY transformation transforms fermions into bosons and vice-versa. In
this thesis, we will only consider the Minimal Supersymmetric Standard Model
(MSSM), which is constructed by introducing the minimal required number of
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additional fields to the SM [133–136]. In the MSSM, there is an additional new
bosonic (fermionic) degree of freedom for every SM fermionic (bosonic) degree
of freedom and the new particles are collectively called sparticles.

The basic building blocks in a SUSY model are chiral and gauge supermuli-
plets. A chiral supermultiplet consists of a Weyl fermion and a complex scalar.
The left and right handed chirality states of standard model fermions being Weyl
spinors make up the fermionic part in the chiral supermultiplet. And there are two
supersymmetric scalar particles each for a left or right handed Standard model
fermion. Thus, in total we have four new scalar particles (or two new scalar
particle-antiparticle pairs). The new scalar particles are named by adding pre-
fix s� to the fermion name, for example, squarks (q̃) and stops (t̃1,2). A gauge
supermultiplet consists of a gauge boson and a supersymmetric fermionic part-
ner called gaugino. The name of a gaugino is constructed by appending -ino to the
boson’s name, for example, Bino ( eB), Winos (fW 0

, fW±) and Gluinos (g̃). Since a
massless vector boson has only two degrees of freedom, a gaugino is a Majorana
fermion.

Higgs being spin-0 are put in the chiral supermultiplets. The superpartners of
the Higgs are Majorana fermions called Higgsinos. Unlike in the standard model,
we require two complex Higgs doublets instead of one. The extra doublet is nec-
essary for the cancellation of anomalies which are introduced by Higgsinos, and
give masses to both up and down quarks [137–139]. Three out of eight degrees
of freedom are used as usual to make the standard model gauge bosons massive
and we are left with five physical Higgs, two of them are CP-even (h0, H

0 with
mh < mH), one is CP-odd (A0) and two are electrically charged (H±). The dis-
covered Higgs [140, 141] is believed to be the lighter CP-even supersymmetric
Higgs (h), satisfying all the properties of the standard model Higgs.1 As the neu-
tral Higgsinos ( eH0

1 and eH0
2 ) and the neutral gauginos ( eB and fW 0) have the same

quantum numbers, they mix to form four mass eigenstates known as neutralinos
(denoted by �̃i).

Unlike in SM, baryon and lepton violating terms arise inevitably in the SUSY
Lagrangian. For getting rid of such terms, a new multiplicative discrete symmetry
known as R�parity is introduced.2 All SM particles have even R�parity and all

1Note that the heavier state H being of mass 125 GeV is not yet dismissed [142, 143].
2Note that there exist models with R�parity volation that are not in conflict with the experi-

mental data (for a review see [144]).
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Figure 7.1: s-wave diagrams for Tree level Neutralino annihilation into quark pair
through Z boson, pseudo-scalar Higgs A and squark q̃ exchange. Figure taken
from paper I [21].

sparticles are odd under R�parity. Consequently, in any interaction, sparticles
can occur only in pairs. Thus in R�parity conserving SUSY models, the Lightest
Supersymmetric Particle (LSP) is stable and if neutral a viable DM candidate
[47, 145, 146]. In this thesis, we assume the lightest neutralino to be the LSP and
thus the DM candidate and we will refer to the lightest neutralino as simply the
neutralino, and denote it by �.

As the annihilating neutralinos are Majorana fermions, fermion pair produc-
tion is helicity suppressed (see for example [47, 147]). In section 7.2, we will
motivate a way to lift this suppression by considering higher order corrections.
Specifically, it is the emission of an extra boson along with the final state fermions
that can lift the suppression. Including the higher order diagrams increases the
number of diagrams exponentially, therefore it is a big obstacle for performing
global scans over a SUSY model’s parameter space [148–151]. In section 7.3,
we will motivate an efficient way to calculate higher order corrections. We will
finally conclude the chapter by discussing the impact of QCD corrections on relic
density of neutralino in section 7.4.

7.2 Lifting of helicity suppression
Neutralinos can (co-)annihilate into various SM final states. As was mentioned
above, for this thesis we are primarily interested in quark pair production. In
the non-relativistic limit, neutralinos can annihilate to a quark pair via Z, A and
squark exchange. We show the three Feynman diagrams in Fig. 7.1. In this limit,
the cross-section for the process �� ! qq̄ scales as �v / m

2
f
/m

2
�

[47,152]. Thus
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the process is heavily suppressed, as we typically have mq ⌧ m� . This suppres-
sion is known as helicity suppression in the literature. The dominant contribution
to h�e↵vi comes from the p�wave part, which is also suppressed by a factor of v

2

but is typically much larger than s�wave due to the m
2
q
/m

2
�

suppression.

We will now discuss the origin of this suppression and motivate how the sup-
pression can be lifted. Majorana fermions are their own anti-particles, therefore
an initial state comprising two Majorana fermions should be invariant under the
charge conjugation transformation. The general rule for charge conjugation is
C = (�)L+S , where L refers to the total orbital angular momentum and S refers
to the spin of the system. This implies that both L and S need to be either even or
odd for having C = +1. Thus for the case of s-wave (L = 0), the only possibility
for the two-Majorana initial state is S = 0. This, in turn, implies that the s-wave
two-Majorana initial state is odd under the combined charge conjugation and par-
ity symmetry CP = �1, because the parity transformation is P = (�1)L+1. Note
that the two-Majorana L = 0 state behaves like a pseudoscalar particle (S = 0

and P = �1) and we will make use of this property later in section 7.3 to simplify
neutralino annihilation calculations. For the p�wave annihilation (L = 1) we will
similarly have S = +1 and CP = +1.

Let us assume CP to be conserved in the process �� ! ff̄ . For the L = 0

case, the spins of the two fermion final state have to be aligned in the opposite
direction for getting S = 0. In the center of mass frame, the final state fermions
would be emitted back to back because of momentum conservation. For having
S = 0, we will therefore need the final state particles to have the same helic-
ity. If the process �� ! ff̄ conserves chirality, the final state fermions would
necessarily have the opposite chirality, i.e., �� ! fLf̄R. We also know that in
the ultra-relativistic limit, helicity and chirality are the same. We can now see
the problem, because of chirality conservation, the relativistic final state fermions
would have opposite helicity and hence S = +1. Hence for exactly massless
fermions, the annihilation cross section will be zero. The final state fermions are
not exactly massless, for example, for relativistic Dirac fermions the right handed
helicity state u", is related to chiral states uR,L as

u" '
✓

1 � mf

2m�

◆
uR +

mf

2m�

uL . (7.1)

Thus by having opposite chiralities but the same helicity of final state fermions
suppresses the cross section by a factor of m

2
f
/m

2
�
. For the p-wave annihilation,
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Figure 7.2: Gluon bremstrahlung diagrams. The left and the middle diagram cor-
respond to FSR off q and q̄ respectively and the diagram on the right corresponds
to gluon VIB. Figure taken from paper I [21].

we do not have this suppression because we need S = 1 for the final state. It is
worth noting that the same suppression is also seen in the well-known case of pion
decay because of the same reason.

The f̃ and Z exchange neutralino annihilation processes (Fig. 7.1) preserve
chirality and thus suffer from helicity suppression. On the other hand, A

0 ex-
change does not conserve chirality but because of Yukawa couplings contributes
a factor of m

2
f
/m

2
�

in the cross section anyway. Thus, the s�wave neutralino
annihilation into quarks is suppressed by m

2
q
/m

2
�
.

As was first noted in [153, 154], helicity suppression can be lifted by emitting
a boson along with the final state fermions. The emitted boson can help keep
the momentum and the total spin of the final system to zero. For example, if the
fermions are emitted in the same direction and a vector boson is emitted in the
opposite direction, we will have S = 0 for the final system and also have final
fermions with opposite chiralities. Thus, helicity suppression can be lifted with
the help of unavoidable higher order corrections.

In this thesis, we would only focus on gluon emission, for a recent exten-
sive discussion for other bosons, see [147]. For neutralino annihilation to quarks,
we can have two different types of gluon emission. Firstly, we can radiate a
gluon from one of the legs of the final state quarks, which is known as Final
state radiation (FSR) emission. Secondly, a gluon can be emitted from the virtual
squark mediating in the t-channel process, this is referred to as Virtual Internal
Bremsstrahlung (VIB) emission. We show the two types in Fig. 7.2.

The amplitude of the FSR diagram is dominated by infrared and collinear
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singularities [155]. Thus the final state fermions, one of which is on-shell and the
other which emits gluon is almost on-shell, would be emitted almost back to back.
Hence FSR cannot lift helicity suppression (for a detailed discussion see [156]).
Therefore it is only gluon VIB that can help in lifting the suppression.3

In the v ! 0 limit, the differential cross section for photon VIB has been
calculated in full generality [155]. The gluon VIB cross-section can be obtained
from the photon VIB cross section with the simple replacement ↵emQ

2 ! 4
3↵s ,

where Q is the electric charge of the quark. In the limit mq ⌧ m�,4 the gluon
VIB cross section

�
�

VIB
��!qq̄g

�
is [157, 158]

�
v�

VIB
��!qq̄g

�
v!0

' ↵s|g̃R|4
48⇡2m2

�

(µR + 1)

"
⇡

2

6
� ln2

✓
µR + 1

2µR

◆
� 2Li2

✓
µR + 1

2µR

◆

+
4µR + 3

(µR + 1)2
+

4µ2
R

� 3µR � 1

2µR(µR + 1)
ln

✓
µR � 1

µR + 1

◆ #

+ (R $ L)

⌘ ↵s|g̃R|4
48⇡2m2

�

⌥(µR) + (R $ L) , (7.2)

where the subscripts R and L denote the right handed and left handed squarks,
respectively, µR(L) ⌘ (mq̃R(L)

/m�)2, g̃RPL(g̃LPR) is the coupling of right handed
(left handed) squark, neutralino and the quark and lastly we have defined a func-
tion ⌥ that captures the dependence on the mass difference parameter µ.

One can see from the above expression that �
VIB
��!qq̄g

depends very strongly
on the mass difference of the mediating squark and neutralino. In Fig. 7.3, we
plot ⌥ as a function of µ. We can see that it is maximal for µR,L = 1 and away
from the degenerate limit, �

VIB
��!qq̄g

decreases very quickly with increasing µ. For
a reference, for µ = 4 it will be suppressed by a factor of ⇠ 0.004 relative to
the degenerate limit. Thus, we can see that VIB is only important when squark
masses are very close to the neutralino mass. In the limit mq̃ ⇠ m�, the cross
section scales as �

VIB
��!qq̄g

/�
s�wave
��!qq̄ ⇠ (↵s/⇡) m

2
�
/m

2
q

. We can thus see that though
�

VIB
��!qq̄g

is suppressed by the coupling constant, for quarks much lighter than the
3If the neutralino is not a pure Bino, we can also emit W

± and Z from one of the initial
neutralinos legs. This is known as Initial state radiation (ISR). ISR can also lift the helicity
suppression.

4For the full general expressions for VIB, see the DarkSUSY 6.0.0 code
(src_models/mssm/an_ib3/)
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Figure 7.3: Relative enhancement of VIB ⌥(µ)/⌥(1) (equation 7.2) as a function
of squared mass ratio µ = (mq̃/m�)2. The VIB enhancement decreases very
rapidly with increasing µ.

neutralino �
VIB
��!qq̄g

can be much larger than the s-wave tree-level cross-section
and thus be the dominant contribution to the total cross section.

7.3 Efficient treatment of QCD radiative corrections-
the pseudoscalar approximation

We had mentioned earlier that inclusion of higher order corrections increases the
computation time. This poses a great challenge when performing global scans
over a large parameter space, which is the case in SUSY [148–151]. We will
now discuss a very efficient way of including QCD corrections in computations
by making a very well motivated approximation which captures all the leading
effects.

In section 7.2, we discussed that the two non-relativistic Majorana fermion
state transforms as a pseudoscalar under Lorentz transformations. This implies
that the non-relativistic neutralino annihilation can be effectively treated as a pseu-
doscalar particle � with mass M = 2m� decaying at rest [159,160]. We show the
contributing NLO diagrams5 for such a decay in Fig. 7.4. In this chapter, we will

5 Note that the approximation works only for QCD or QED corrections, as neutralinos are
singlets under SU(3)c and U(1)em. The initial state neutralinos can emit virtual or on-shell elec-
troweak bosons and thus the initial state can no longer be approximated as a neutral pseudoscalar.
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Figure 7.4: Diagrams for a pseudoscalar(�) decay up to O(↵s). The diagrams
from left to right correspond to tree-level decay, FSR off q, FSR off q̄, vertex
correction and counterterm respectively.

use the (sub)superscripts simp and full to denote the calculations in the simplified
pseudoscalar approximation and the full neutralino annihilation, respectively. The
total one-loop decay rate (�simp

tot ) for the diagrams shown in Figure 7.4 is related to
the tree-level decay rate (�simp

0 ) as [21, 161, 162]

�simp
tot

�simp
0

= 1 +
4↵s

3⇡

"
1+�

2
0

�0

n
4Li2

⇣
1��0

1+�0

⌘
+ 2Li2

⇣
�1��0

1+�0

⌘
� log 8�

2
0

(1+�0)3
log 1+�0

1��0

o

� log 64�
4
0

(1��
2
0)3

+ 3
8(7 � �

2
0) + 19+2�

2
0+3�

4
0

16�0
log 1+�0

1��0

#
, (7.3)

where we have defined �0 ⌘
r

1 �
4m2

q

M2
.

At tree-level, one can see that the decay rate and the cross section for neu-
tralino annihilation are the same up to a constant of proportionality, i.e. �simp

0 /
m��

full
0 v. For relating �simp and �

full, we define a quantity analogous to the anni-
hilation cross section as

�
simp
0 v ⌘ �simp

0

A2m�

& �
simp
tot v ⌘ �simp

tot

A2m�

, (7.4)

with A being a proportionality constant defined by �
simp
0 v ⌘ �

full
0 v. In the limit

mq ⌧ m�, the result 7.3 simplifies to

�
simp
tot ' �

simp
0


1 +

↵s

⇡

✓
3 + 4 log

mq

4m�

◆�
. (7.5)

From the above expression, one can see that �simp
tot becomes negative for mq/m� !

0. This indicates that our O(↵s) calculation breaks down for m� � mq and higher
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order corrections are important. We can calculate the higher orders by re-summing
the leading logarithms to all orders in ↵s. The above result after re-summation
becomes (see [161, 162] for details)

�
simp
tot ' m

2(
p

s)

m
2(2mq)

�
simp
0


1 +

3↵s

⇡

�
, (7.6)

where m is the running quark masses defined in MS renormalization scheme.
Now the result is well behaved in the limit m� � mq and we show the ratio
�

simp
tot /�

simp
0 (eq. 7.6) for charm, bottom and top quark final states in Fig. 7.5. For

comparison, we also show the O(↵s) result (eq. 7.3) for top quark. As can be seen
from the figure, QCD corrections suppress the total cross-section over the tree
level result (except when m� & mq). Note that the resummed result is valid only
for mq ⌧ m� and the NLO result breaks down for mq ⌧ m�. The two lines cross
at m� ⇠ 1.85 mq , for paper I [21] we used the NLO result for m� < 1.85 mq and
the resummed result for m� > 1.85 mq.

For relating to �
full
tot , i.e. the full neutralino annihilation to quarks cross-

section, by the above approximation we are ignoring the contribution of the di-
agrams with gluino loops, squark self energy diagrams, supersymmetric correc-
tions to the quark self energy and VIB diagrams. Note that except VIB, the ignored
processes do not help in lifting the helicity suppression. As we saw earlier, VIB
can be very important in a scenario with squark close in mass to the annihilating
neutralino. Thus, in our computation, we add the full VIB cross-section (�VIB

��!qq̄g
)

to �
simp
tot and consider the sum to be the total cross-section.

In paper I [21], we compared our simplified approach to the full NLO calcu-
lation done by Herrmann et al. [11]. In Ref. [11], the prime focus was on models
with relatively light neutralino masses (m� & 200 GeV), which could produce
cosmologically interesting relic densities owing to unsuppressed top quark pro-
duction. It is worth noting that for the mass range considered, the VIB process
(tt̄g) is sub-dominant as compared to tt̄ production. We thus expect our simpli-
fied approach to be in worst agreement with the full NLO calculation for these
models. We saw that for models with neutralino annihilation dominated by A or
q̃ exchange we get an error of  1%. But for models with Z exchange, we saw
the errors to be larger (⇠ 15%). We thus see that our simplified approach gives a
very good agreement with the full NLO calculation even for the most pessimistic
scenario. We also saw for m� � mq, the NLO calculation fails and we need to
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Figure 7.5: Ratio of resummed cross section �
simp
tot and the tree level cross section

�0 for charm (red), bottom (blue) and top (black) final states. For top final states
we also show the NLO result in the simplified model. Figure taken from paper
I [21].

consider higher orders in ↵s. We thus expect our simple result (eq. 7.6) to provide
a more accurate estimate than the NLO result in the limit m� � mq.

7.4 Impact of QCD corrections on relic density

The impact of QCD corrections to neutralino annihilation on the relic density has
been previously studied by various authors [11, 118–126]. We now consider the
effect of QCD corrections on the relic density of neutralinos using our simplified
approach. As discussed in Chapters 4 and 5, for calculating the relic density one
needs to compute the thermally averaged cross section h�e↵vi. For including QCD
corrections, we include the sum of �

simp
tot v and �

VIB
��!qq̄g

v to h�e↵vi at zero velocity
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to the relic density routines of DarkSUSY [163].6

Fermionic final states are the main annihilation channels for a Bino like neu-
tralino and are thus very important for the relic density computation [138].
Whereas for a Wino or Higgsino like neutralino, the total annihilation rate is dom-
inated by chargino-neutralino co-annihilation [107] and fermionic final states are
not important. Also, the impact of QCD corrections for quark final states is max-
imal for a scenario when the total annihilation rate is dominated by �

VIB
��!qq̄g

v.
For showing the impact, we thus consider a scenario when the neutralino is a
pure Bino and all the sparticles except squarks are much heavier than the neu-
tralino. The two requirements ensure that the t-channel squark exchange dom-
inates the total annihilation rate. In Fig. 7.6, we show the relic density ⌦�h

2

as a function of the neutralino mass. For the plot, we have fixed the squark
masses to be mq̃ = 1.2m� , so that we get a sizable VIB contribution. The
brown band in the plot indicates the relic density inferred by CMB experiments,
⌦�h

2 = 0.1188 ± 0.0010 [4].

We first focus only on neutralino annihilation processes (dashed lines in the
figure). We denote the relic density which is computed by only considering the
tree level processes by �0 (dashed red line). The dashed blue line labeled as
�0+VIB denotes that VIB contribution is added to the tree level cross section.
Finally, �

full (dashed black line) denotes the QCD corrected cross-section. In
�

full, we include �
simp
tot +�

VIB
��!qq̄g

and also the O(↵2
s
) process of gluon pair produc-

tion, which is unsuppressed in the zero velocity limit. We see that in the region
m� < mt, VIB increases the total annihilation rate and there is a visible change
in the relic density. We also note that the gluon pair production further increases
the total annihilation rate and is thus important. For m� & mt, the dominant con-
tribution comes from top quark production, which is not helicity suppressed. In
this region, �

0
��!tt̄g

and �
0
��!gg

are sub-dominant contributions and a significant
decrease in relic density is brought by �

simp
tot (see Fig. 7.5).

We have seen that for m� ⇠ mq̃ , VIB enhances the total annihilation rate. But
in the same limit, neutralino co-annihilations with squarks can also significantly
increase the annihilation rate (see section 5.2). We now include co-annihilations
in the computation (depicted by solid lines in Fig. 7.6). In the figure, we see that
for a given m�, squark co-annihilations dominate the annihilation rate and have a

6The implementation is now available in public DarkSUSY 6.0.0.
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Figure 7.6: ⌦�h
2 vs m� for a pure Bino model with the squark masses fixed to be

1.2m�. The brown bands shows the 1� limits on CDM relic density [4]. Figure
taken from paper I [21].

much larger effect than VIB. Thus, co-annihilations inevitably wash out the VIB
enhancements and the latter are therefore not important for relic density calcu-
lations. Comparing the solid blue and black lines, we can also see that around
top-threshold, QCD loop corrections (�simp

tot ) are important and cannot be ignored
in relic density computations. Neutralino squark co-annihilations have been stud-
ied with a lot of interest in the literature (see for example [103,164–173]). As can
be seen in the figure, co-annihilations increase the upper limit of m� for which a
cosmologically interesting relic density is achievable, and are thus important for
evading the LHC constraints for a model.

Though VIB is not an important process in setting the relic density, it is very
important from the prospective of indirect detection. This is due to the fact that
at very low temperatures co-annihilations become ineffective (see equation 5.11).
Thus at present times due to the velocity suppressed p�wave and suppressed co-
annihilations, gluon VIB dominates the total annihilation cross section in a de-
generate squark scenario. In paper I [21], we also studied the impact of gluon

62



VIB on indirect detection. In addition to the two quarks, the final-state gluon also
fragments into lower-energy particles. Inclusion of q̄qg final states improves the
anti-proton and gamma-ray limits. Also, indirect detection of degenerate squark
scenario is complementary to direct searches. The jets produced in LHC for an al-
most degenerate squark scenario will be too soft to be detected and thus constitute
blind spots in direct searches. With the inclusion of q̄qg final states, we found that
the Binos with masses upto 92 GeV can be excluded by the PAMELA data [174].

63





Chapter 8

SIDM and small scale problems in
⇤CDM

8.1 Outline

The ⇤CDM paradigm which assumes DM to be cold and collisionless, provides
a very good description of our universe at scales & 1 Mpc. In section 3.3.1, we
discussed that there do exist some discrepancies between observations and ⇤CDM
predictions on sub-Mpc scales. Though astrophysical solutions for explaining
these discrepancies exist (see [14] for a recent review), it is interesting to note that
some of the small-scale problems can also be solved by lifting the assumption of
collisionless DM [15].

Self-interacting dark matter (SIDM) [15] can alleviate two of the long stand-
ing small scale discrepancies, namely the cusp vs. core and too big to fail (TBTF)
problems. SIDM is assumed to scatter via exchanging a light mediator, which
we will denote by �̃. The self scatterings (�� ! ��) help in transferring ki-
netic energy from the outer (hotter) regions to the inner (colder) regions, thus
reducing the central density. This helps in solving the cusp-core and TBTF prob-
lems [175–178]. The missing satellites problem can also be addressed by sup-
pressing structure at small scales or equivalently delaying the kinetic decoupling
to sub-keV temperatures [112, 179–183]. In a SIDM framework, late kinetic de-
coupling can be achieved if the mediator particle scatters very efficiently with the
DM (��̃ ! ��̃) and keeps it in kinetic equilibrium until sub-keV temperatures
(see [181, 184–188] and paper II [22]).
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For making an impact on cusp-core and TBTF problems, SIDM self scatter-
ings should have a very large cross-section ���!��/m� ⇠ 0.1 � 10 cm2

/g on
dwarf scales [176–178,189,190]. For a reference to how large this value is, a typ-
ical WIMP has �

WIMP
��!��

/m� ⇠ ↵
2
W

/m
3
�

⇠ 10�14 cm2
/g . We thus see that SIDM

cannot have standard WIMP-like interactions. As we will see later, the required
large cross sections can be achieved in the SIDM framework for a DM weakly
coupled (↵� ⇠ 0.01) to a light mediator (m�̃ ⇠ 100 MeV).

Very stringent constraints exist from various astrophysical observations on the
maximal allowed value of ���!��/m� (see [49] for a very recent review). There
is no consensus regarding the maximal allowed value of the cross section but a
value of ���!��/m� . 1 cm2

/g on cluster scales is largely consistent with the
data [190]. On dwarf scales, there is a much weaker bound of ���!��/m� .
10 cm2

/g [178, 189, 191]. Usually, a constant ���!�� is assumed for studying
the impact of SIDM on astrophysics. This however is not the usual case. For
example, a Yukawa coupling between DM and a light mediator results in a very
strong velocity dependence of the self-scattering cross section— yielding smaller
cross sections at cluster scales (large velocities) while having larger cross sections
at dwarf scales (smaller velocities). Thus, a Yukawa coupling can help evade
stringent constraints at large scales while at the same time alleviate the problems
on small scales [192].

The most stringent constraint on Mcut comes from the Lyman-↵ measure-
ments, which robustly excludes Mcut & 5.1 ⇥ 1010

M� [44, 45]. In this chapter,
we will neglect the free-streaming effects and assume the cutoff to be generated
solely by acoustic oscillations, which is typically the case for late kinetic decou-
pling of heavy DM.

In addition to solving the small scale problems, thermal production of DM
is also possible in the SIDM paradigm. In section 8.2, we will discuss the three
interactions describing the SIDM scenario: annihilation which sets the relic den-
sity, self-scattering which can solve cusp-core and TBTF problems and scattering
with the mediator which keeps DM in kinetic equilibrium and sets the cutoff mass
scale.

In paper II [22], we studied kinetic decoupling of simple SIDM models and
classified the models into categories depending on whether late kinetic decoupling
can occur or not. In paper III [23], we used CMB and other indirect detection

66



observations to constrain SIDM annihilation. In section 8.3, we will discuss the
results of our paper II [22] and III [23].

8.2 SIDM interactions
As we discussed above, a Yukawa potential results in a velocity dependent self-
scattering, a highly desirable quality in a model for evading constraints at large
scales and helping to alleviate the small scale problems. Thus, a Yukawa cou-
pling between DM and the mediator (L � �g����̃) has been a cornerstone in
most of the SIDM models. Exceptions to this do exist. For example, in the per-
turbative limit, an effective quartic interaction of the type �

4�
2
�̃

2 has a constant
self-scattering cross section (see paper II [22]). In this chapter, we will primar-
ily focus on the case of a Yukawa interaction between DM and the mediator and
briefly comment on the extensions and other possible scenarios. The Yukawa po-
tential is given by

V (r) = ±↵�

r
e

�m�̃r
, (8.1)

where ↵�(= g
2
�
/4⇡) is the coupling constant and +(�) denotes the repulsive

(attractive) nature of potential. If �̃ is a scalar, the potential is always attractive.
On the other hand, for a vector �̃ it is attractive for ��̄ scattering and repulsive for
�� or �̄�̄ scattering.

8.2.1 Annihilation: �� ! �̃�̃

SIDM can be thermally produced if DM annihilates to �̃ and the produced me-
diator particles subsequently decay to SM states [193]. Such a process is shown
in the left panel of Fig. 8.1. The coupling of mediator particles to SM brings the
dark and visible sector into thermal equilibrium and facilitates a decay which is
necessary to avoid overclosing of the universe [194, 195].1 The relic density can
be calculated in the standard way as described in chapter 5.

As for typical WIMPs, SIDM will freezeout at xf ⇠ 25, which corresponds
to relative velocities of ⇠ 0.3. With the expanding universe, the DM speed de-
creases, and at very small DM velocities, the wave-function of the annihilating
DM pair gets modified due to the exchange of light mediators (shown in the right

1The mediator particle can alternatively be coupled to a relativistic dark particle, for example,
the sterile neutrinos. We will discuss this scenario in section 8.3.
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Figure 8.1: Feynman diagrams for SIDM annihilation. Left: Early times. DM
annihilates to �̃ and then �̃ decays quickly to SM particles to avoid overclosing
of the universe. The cross section in this limit can be calculated perturbatively.
Right: Late times. At small relative velocities, the wave function of the annihi-
lating DM pair gets modified due to the exchange of �̃ particles. The cross section
in this limit has to be calculated non-perturbatively [196, 197].

panel of Fig. 8.1) and one needs to consider the non-perturbative effect known as
Sommerfeld effect [196,197]. Sommerfeld effect can lead to very strong enhance-
ments of the annihilation cross sections [197–200]. The enhancement is given by
a velocity dependent Sommerfeld factor S(vrel), defined as

���!�̃�̃vrel ⌘ S(vrel) �
pert
��!�̃�̃

vrel , (8.2)

where �
pert
��!�̃�̃

is the cross section in the perturbative limit.

The velocity dependence of the enhancement can be intuitively understood by
considering a classical point particle colliding with an object of mass M and ra-
dius R (the example taken from [197]). In the absence of any forces, the cross
section for the collision is � = ⇡R

2. Considering the gravitation potential gen-
erated by the target object will modify the cross section as � = ⇡R

2
�
1 + 2GM

Rv2

�
.

This behavior is expected as the test particles with large velocities can escape the
potential while the particles with smaller velocities will fall more easily into the
potential well. Thus the leading term for highly non-relativistic test particles has
h�vi / 1/v dependence.

In general, S has to be computed numerically by solving the Schrödinger equa-
tion [197]. For the Yukawa case, analytic expressions for S can be be found by ap-

proximating the Yukawa potential with a Hulthén potential, VHulthén = ± ↵�

�e
��r

1 � e��r

with � ⇠ 1.55m�̃ . The Sommerfeld factor for s�wave annihilation is given
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by [200]

Ss =
⇡

b

sinh(2⇡bd)

cosh(2⇡bd) � cos(2⇡
p

d � b2d2)
, (8.3)

where b ⌘ vrel

2↵�

and d ⌘ 6↵�m�

⇡2m�̃

. For the p�wave annihilation, it is [200]

Sp =
(d � 1)2 + 4b2

d
2

1 + 2b2d2
⇥ Ss . (8.4)

For this thesis there are three important points to note for the above expressions—

• Saturation: The Sommerfeld factors increase with decreasing vrel and sat-
urate when vrel . vsat ⌘ m�̃/2m� for both s� and p�wave processes. The
saturated values are

S
sat
s

⌘ ⇡
2
d

sin2[
p

⇡2d]
and S

sat
p

⌘ ⇡
2
d(d � 1)2

sin2[
p

⇡2d]
. (8.5)

The saturation occurs due to the finite range of the potential. Specifically,
it occurs when the deBroglie wavelength of the DM particle (m�v�)�1 be-
comes larger than the range of interaction m

�1
�̃

[197].

• Resonances: The above expressions diverge when m�̃ =
6↵�m�

⇡2n2
res

, where

nres is an integer.2 These resonances occur due to the potential developing
quasi-bound states for these specific values of m�̃ , thus leading to large
enhancements [197, 198].

• Scaling: Before saturation, the Sommerfeld factors increase as 1/v2
rel when

being very close to a resonance and as 1/vrel away from the resonances.

In Fig. 8.2, we show the Sommerfeld enhanced cross section for both s�wave
(black lines) and p�wave (gray lines) annihilation as a function of the relative
velocity. We have fixed m� = 1 TeV and take the value of ↵� required for thermal
production from [202].3 We use solid and dashed lines to show the off-resonance

2The resulting large cross sections can even violate unitarity at small velocities [201]. This
is due to the approximation of Yukawa potential as Hulthén potential. See [201] for a proper
treatment.

3In absence of non-perturbative effects, ↵� can be fixed analytically using the relation 5.6, by
requiring the abundance to be equal to the observed one. Sommerfeld effect slightly decreases the
required value of ↵� for m� & 1 TeV [202]. This roughly corresponds to an O(1) change in ↵�

for m� & 1 TeV [202].
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Figure 8.2: Sommerfeld enhanced s-wave and p-wave annihilation cross sections
as a function of the relative velocity of the DM pair. The solid and dashed lines
correspond to the fixed values of m�̃ = 1 MeV and m�̃ = 100 MeV, respectively.
The dotted lines show the resonant case with m�̃ tuned to 1.119 GeV (1.066 GeV)
for s-wave (p-wave) annihilation. For each line, the coupling ↵� is fixed such that
we get ⌦�h

2 ⇠ 0.12 [4]. We also show the typical velocity ranges of different
experimental probes as colored bars. Figure taken from paper III [23].

cases and thin dotted lines for the (almost) on-resonance case. On resonance,
before the saturation occurs, the cross sections scale as 1/v2

rel and v
0
rel for s� and

p� wave respectively. Away from a resonance condition, the Sommerfeld factors
increase as 1/vrel, as mentioned above. After saturation has occurred, the cross
section becomes constant for s�wave and starts decreasing as v

2
rel for p�wave.

We can see that the annihilation cross sections get an enhancemnt of many
orders of magnitude for the s�wave case. If at some point the annihilation rate
becomes comparable to the Hubble rate, we can also have a second period of
annihilations. Such large cross sections can be achieved for on-resonance scenar-
ios [20, 203–205]. For such a case, we can decrease the relic abundance by many
orders of magnitude. In this chapter, we do not consider such cases of being very
close to a resonance. We will get back to the resonance scenario in chapter 9, when
we discuss findings of our Paper IV [24]). We will also neglect bound state forma-
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tion, which typically becomes important close to the unitary bounds [206, 207].

As briefly discussed in section 8.1, DM relative velocities depend on the size
of the astrophysical structure. We will now consider how much the Sommerfeld
factor increases the annihilation cross section in typical astrophysical structures
of interest to this thesis. For doing so, we define an averaged cross section over a
Maxwellian distribution

h���!�̃�̃vrelivM ⌘
Z

d
3
v

e
�v

2
/2v

2
M

(
p

2⇡vM)3
���!�̃�̃vrel , (8.6)

where vM is the most probable speed of a single particle in a halo of mass M .
The typical most probable speeds encountered in dwarf galaxies, Milky Way size
galaxies and galaxy clusters are vM = 30, 220 and 1000 km/s, respectively.

In Fig.8.3, we show the ratio
h���!�̃�̃vrelivM

h�pert
��!�̃�̃

vrelivM

as a function of the mediator

mass for the three speeds of our interest. The peaks in the figure correspond to
the values of m�̃ when the resonance condition is met. The slight shift in peak
positions for s� and p�wave cases is due to the different value of ↵�, which
is fixed to get the observed relic density. The apparent larger enhancements for
p�wave relative to s�wave are due to the fact that the perturbative cross section
scales as v

2 for p�wave. As expected, for large values of m�̃ , we see that there
is no enhancement in the annihilation cross section at all scales. For very small
mediator masses (m�̃ ⌧ m�) the enhancement factor becomes independent of
the mediator mass. This is due to the fact that in the limit m�̃ ⌧ m�, we have
Ss ' 2⇡↵�/vrel.

We see that even away from resonances we will get significant enhancements
for thermal SIDM at all scales. Such enhanced production of SM particles should
thus be constrainable from indirect detection experiments. In paper III [23], we
used Planck CMB data [4], gamma-ray data from Fermi-LAT [208] and positron
data from AMS-02 [209, 210] to constrain annihilation in SIDM scenarios. We
will now describe how CMB puts a very strong bound on the above described
scenario.

Enhanced production of SM particles at late times necessarily alters the re-
combination history [211,212]. CMB data from Planck [4] set a very strong limit
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Figure 8.3: Velocity averaged Sommerfeld enhancements for the s� and p� wave
annihilation. The chosen values of vM are the typical most probable speeds of
DM particles on dwarf galaxy scales (vM = 30 km/s), Milky Way size galaxies
(vM = 220 km/s) and galaxy clusters (vM = 1000 km/s). The value of ↵� is
fixed for getting the observed relic density. See text for further details.

on the DM annihilation cross section

h�annvirec

N�

. 4 ⇥ 10�25 cm3 s
�1

✓
fe↵

0.1

◆�1 ⇣
m�

100 GeV

⌘
, (8.7)

where h�annvirec is the thermally averaged annihilation cross section at the epoch
of recombination, N� = 1 (N� = 2) for Majorana (Dirac) DM and fe↵ is the
efficiency factor which models the fraction of energy injected into the intergalactic
gas [213–215]. Other than neutrino final states, we have fe↵ & 0.1 [215]. For
a constant h���!�̃�̃vreli ⇠ 3 ⇥ 10�26cm3

/s, the above expression implies the
following upper bound on m�,

m� & 7.5

✓
fe↵

0.1

◆
GeV . (8.8)
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Let us now investigate what the above bound (equation 8.7) implies for Som-
merfeld enhanced annihilation. After kinetic decoupling, the DM velocity de-
creases as a

�2 and thus the speed at the time of recombination can be calculated
as

hv2
�
irec =

1

2
hv2

relirec =
3 Tkd

m�

✓
1 + zrec

1 + zkd

◆2

⇠ 3 T
2
rec

m�Tkd
. (8.9)

As we mentioned in section 8.1, there exists an upper bound on Tkd & 100 eV

from the Lyman-↵ measurements [44, 45]. Using the above expression, we can
thus see that the relative DM velocity at recombination has to be smaller than

v
rec
rel . 2 ⇥ 10�7

⇣
m�

100 GeV

⌘�1/2

. (8.10)

For models of our interest, the above value is much smaller than the velocities
at which Sommerfeld enhancement saturates, vsat = m�̃/2m�. We can now ob-
tain the maximal allowed value for the saturated enhancement factor for s�wave
annihilation (equation 8.5) using the above bound (equation 8.7),

1  S
sat
s

. 4

30

✓
fe↵

0.1

◆�1 ⇣
m�

1 GeV

⌘
. (8.11)

For ↵�m�/m�̃ ⌧ 1, we have S
sat ! 1, and we recover the above limit for

constant h�vi ⇠ 3 ⇥ 10�26cm3
/s, m� & 7.5

�
fe↵

0.1

�
GeV. For ↵�m�/m�̃ � 1,

the minimum value of a saturated Sommerfeld enhancement factor is S
sat,min
s

=

⇡
2
d = 6↵�m�

m�
. We can now obtain a lower bound on mediator mass in the limit

↵�m�/m�̃ � 1,

m�̃ & 0.16

✓
fe↵

0.1

◆ ⇣
m�

100 GeV

⌘
GeV . (8.12)

Note that this result holds for m� & 7.5
�

fe↵

0.1

�
GeV.

8.2.2 Self-scatterings: �� ! ��

As discussed in section 8.1, a large self-scattering cross section ���!��/m� ⇠
1 cm2

/g can help in alleviating the cusp vs. core and TBTF problems. We show
the Feynman diagram for self-scattering process in left panel of Fig. 8.4. In
N�body simulations, self scattering of DM is usually implemented in terms of
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Figure 8.4: Left: Representative Feynman diagram for SIDM self-scattering.
Right: Scattering of SIDM with the mediator �̃.

the transfer cross section �T , defined as [202]4

�T ⌘
Z

d⌦
d���!��

d⌦
(1 � cos ✓) , (8.13)

where ✓ is the scattering angle in the COM frame. Typically, �T is a velocity
dependent function. Like in the case of Sommerfeld effect, to study its effect on a
halo of mass M , we average �T over a Maxwellian velocity distribution [216],

h�T ivM ⌘
Z

d
3
v

e
�v

2
/2v

2
M

(
p

2⇡vM)3
�T (v) . (8.14)

As mentioned in section 8.1, a Yukawa interaction leads to a very strong ve-
locity dependence in �T . As was the case with annihilations, at small velocities
the perturbative calculation of �T breaks down. For a Yukawa potential, we can
get analytic expressions by dividing the parameter space into three regimes-

• Born-limit (↵�m� . m�̃): The parameter space ↵�m� . m�̃ corresponds
to a weak Yukawa potential and thus the Born approximation can be used
in this regime to calculate �T perturbatively as [217]

�
Born
T

=
8⇡↵

2
�

m2
�
v

4
rel

✓
ln


1 +

m
2
�
v

2
rel

m
2
�̃

�
�

m
2
�
v

2
rel

m
2
�̃

+ m2
�
v

2
rel

◆
. (8.15)

4Transfer cross section �T does not get any contribution from the forward-scatterings (cos ✓ !
1), which for our purpose are not relevant as they do not change the trajectories of scattering DM
particles.
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Note that the above expression is the same for both attractive and repulsive
potentials.

• Classical-limit (m�vrel & m�̃): This parameter space corresponds to the
region where the interaction range of the potential (m�1

�̃
) is larger than the

deBroglie wavelength of DM particles (m�v�)�1 and thus quantum effects
are sub-dominant. In this non-perturbative regime one can obtain paramet-
ric expressions for �T by studying classical particles moving in a Yukawa
potential (see for example [218]). For an attractive potential one gets [216]

�
�
T

=
⇡

m
2
�̃

⇥

8
>><

>>:

2 �
2 ln[1 + �

�2] � . 10�2
,

7�
1.8+1960(�/10)10.3

1+1.4�+0.006�4+160(�/10)10 10�2 . � . 102
,

0.81 (1 + ln � � (2 ln �)�1)2
� & 102

,

(8.16)

where � ⌘ 2↵�m�̃/(m�v
2
rel) . And for a repulsive potential we have [216]

�
+
T

=
⇡

m
2
�̃

⇥

8
>><

>>:

2�2 ln[1 + �
�2] � . 10�2

,

8�
1.8

1+5�0.9+0.85�1.6 10�2 . � . 104

(ln 2� � ln ln 2�)2
� & 104

. (8.17)

• Quantum resonant regime (m�vrel . m�̃ and m�̃ . ↵�m�): In this inter-
mediate regime there are both quantum and non-perturbative effects present
and we do not have an analytic result for �T for the Yukawa potential. Sim-
ilar to the annihilation case, by approximating the Yukawa potential by a
Hulthén potential we can get the following analytic expression for L = 0

state in this regime [202] —

�
Hulthén
T

=
16⇡

m�v
2
rel

sin2

✓
Arg


i�[i⇥vrel]

�[�+] �[��]

�◆
, (8.18)

where ⇥ ⌘ m�p
2⇣(3)m�̃

and �± ⌘ 1 + i⇥vrel/2 ±
p

↵�⇥ � ⇥2v2
rel/4 for

an attractive potential and �± ⌘ 1 + i⇥vrel/2 ± i
p

↵�⇥ + ⇥2v2
rel/4 for a

repulsive potential.

In Fig. 8.5, we show h�T ivM as a function of m�̃ for three characteristic values
of vM = 30 , 220 & 1000 km/s. In the plot, we can identify the Classical(Born)
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regime as the region of smaller(larger) mediator masses. The intermediate region
corresponds to the quantum-resonant regime. For an attractive potential, as in the
case of Sommerfeld enhancement, we see resonances at m�̃ ⇠ 6↵�m�

⇡2n2
res

. For the
repulsive case, we have a smooth increase with a decrease in mediator mass. The
blue band shows the region h�T i30/m� ⇠ 0.1–10 cm2 g�1 which can alleviate
the cusp-core and TBTF problems [177, 189]. We can see from the figure that
for a TeV scale DM particle we need the mediator mass to be in the range 1 �
10 MeV for solving the small scale problems and we are in the classical regime.
For smaller DM masses O(GeV), the required �T will be instead be achieved in
the Born regime. This is due to the steep m

�4
�̃

scaling of the Born cross section for
small velocities. For intermediate DM masses, we will find the resonant regime to
give the desired �T . In Fig. 8.7, we show the parameter region in the m� vs. m�̃

plane for getting �T /m� ⇠ 0.1 � 10 cm2
/g as blue bands.

8.2.3 Scattering with a relativistic partner: ��̃ ! ��̃

As discussed in chapter 6, the scattering of DM with �̃ (right panel of Fig. 8.4)
keeps DM in equilibrium at early times and produces a cutoff at small scales
in the matter power spectrum. For solving the Missing satellites problem, one
needs to have Mcut ⇠ 1010

M� [181, 219], which for the CDM/SIDM scenario
(using equation 6.9) corresponds to kinetic decoupling temperatures ⇠ 200 eV.
The required cutoff mass is many orders of magnitude larger than what one finds
in the standard WIMP paradigm, M

WIMP
cut = 10�11

M� � 10�3
M� [115]. We thus

need very efficient scatterings between DM and the relativistic partner to keep
DM in kinetic equilibrium until very small temperatures (⇠ sub-keV) to address
the missing satellites problem. We can find an analytic expression for Mcut by
using equations 6.7 and 6.9 to get

Mcut ⌘ Mn ⇠
3n+4
n+2

⇣
cn

0.001

⌘ 3
n+2

⇣
ge↵

3.36

⌘� 3
4+2n

⇣
m�

100 GeV

⌘�3n+3
n+2

, (8.19)

where Mn is a numerical constant (shown in Fig. 8.6) which depends only on n

and bosonic/fermionic nature of �̃.5 Note that the above analytic expression is
valid only for n > �1.

CMB observations put stringent constrains on an additional DR component,
with �Ne↵ > 1 robustly excluded. For �̃, this implies that ⇢�̃ < ⇢1⌫ or ⇠ <

5See the definition of �n used in equation 6.8.
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Figure 8.5: h�T ivM/m� as a function of m�̃ for the three speeds of our interest
30, 220 and 1000 km/s shown as blue, green and red lines, respectively. The cor-
responding solid(dashed) lines are for attractive(repulsive) Yukawa potential. We
have fixed m� = 1 TeV and the coupling ↵� such that we get ⌦�h

2 ⇠ 0.12. The
blue band shows the values of h�T i30/m� ⇠ 0.1 � 10 cm2

/g required to alleviate
cusp-core and Too big to fail (TBTF) problems [176–178,189,190]. The red band
shows the values of cross section h�T i30/m� > 10 cm2

/g that are excluded by
data [178, 189, 191]. See text for further details.

0.85(0.82)/g1/4
�̃

for a fermionic(bosonic) �̃. Thus, Mcut is further suppressed as
compared to the ⇠ = 1 case. An additional DR component also changes the
effective relativistic degrees of freedom ge↵ . For simplicity, we fix ⇠ = 1 and
ge↵ = 3.36 for the rest of this chapter.

The parameter cn will depend on m�, m�̃ and the couplings and thus is not an
independent parameter. We can put constraints on the maximal allowed values of
cn by using the inherently related annihilation and self-scattering processes. Let
us first see how DM annihilation can be used to constrain cn. Consider a simple
example of scalar � and �̃ scattering via a point-like interaction L � ��

4�
2
�̃

2. The
quartic interaction leads to a constant scattering amplitude (|M��̃!��̃|2 = �

2) and
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Figure 8.6: Mn as a function of n. We have fixed cn = 0.001, ge↵ = 3.36, ⇠ = 1
and m� = 100 GeV in the analytic expression 8.19 for Mcut to plot Mn. We have
also shown the region which is excluded by the Lyman-↵ data. Figure taken from
paper II [22].

hence we have n = 0. Using expression 8.19, we get the following result for Mcut

Mcut ' 8.4 ⇥ 1010
�

3
⇣

m�

10 GeV

⌘�9/2

M� . (8.20)

The above result implies that a GeV scale DM scattering via a quartic interac-
tion can indeed produce the desired large cutoff. Requiring that the annihilation
process (�� ! �̃�̃) produces the observed relic abundance, i.e. h���!�̃�̃vreli ⇠
3 ⇥ 10�26 cm3

/s, we get

M
4S

cut ⇠ 3 ⇥ 1010
⇣

m�

MeV

⌘�3/2

M� , (8.21)

where we have used equation 5.8 and ���!�̃�̃vrel = �
2
/(32⇡m

2
�
) to fix the value

of � as a function of m�. We see that a lighter DM (m� ⇠ MeV) is needed in
such a model to produce the desired cutoff. If �̃ decays only to SM particles, such
small DM masses are going to be ruled out by the CMB bound on DM annihilation
(equation 8.8). Unless �̃ is very light (. eV) to avoid overclosing of the universe
or it decays to even lighter dark species, such a simple model cannot have thermal
production and produce large cutoff for the same parameter values.

For models with efficient self-interactions, like for the Yukawa potential be-
tween � and �̃, a stronger constraint can be put on cn using h�T i30 . 10 cm2

/g.
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As we are interested in (sub-)keV scale m�̃ and GeV DM for getting late kinetic
decoupling, we can find a very simple scaling by averaging �T in the classical
regime for the case of Yukawa potential (� . 10�2 cases of equations 8.16 &
8.17),

h�T i30

m�

⇠ 5.3
⇣

↵�

10�5

⌘1.5 ⇣
m�

100 GeV

⌘�2.5 ⇣
m�̃

keV

⌘�0.5 cm2

g
, (8.22)

which we find to be a good fit for DM masses larger than

m� & m�̃

100 eV
max


1,

1

107↵�

�
GeV . (8.23)

Using the constraint on dwarf scales h�T i30 . 10 cm2
/g, we get

↵� . 4 ⇥ 10�3
⇣

m�̃

keV

⌘1/3 ⇣
m�

100 GeV

⌘5/3

. (8.24)

We can now get the maximal allowed value of the cutoff as

Mcut . Mn

✓
cn

105 ↵2
�

◆ 3
n+2 ⇣

m�

100 GeV

⌘ 1�3n
n+2

⇣
m�̃

keV

⌘ 2
n+2

. (8.25)

Let us now apply the above constraint for the Yukawa model we described above.
As we only have a ���̃ coupling in this model, scattering of � with �̃ will neces-
sarily proceed via s/u channel exchange of �. In terms of paper II’s [22] termi-
nology, such models fall under the exclusive s/u channel scattering in 2-particle
models described in the paper. For a (Dirac) fermionic DM and vector �̃, the
averaged scattering amplitude squared is

h|M��̃!��̃|2it =
1024⇡2

↵
2
�

3
. (8.26)

Using the self interaction constraint from equation 8.25, we find that the Mcut has
to be smaller than

Mcut . 2.5 ⇥ 10�6
⇣

m�̃

keV

⌘ ⇣
m�

100 GeV

⌘1/2

M� . (8.27)

Thus, we see that a large cutoff mass cannot be achieved in the simplest possible
setting of Yukawa mediated SIDM.
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8.3 Discussion

In paper II [22], we classified the simplest models that can have late kinetic decou-
pling of DM. We considered two classes of models. Firstly, the 2-particle models
involving only two particles in the dark sector � and �̃. Secondly, the 3-particle
models with an additional particle mediating interactions between � and �̃. For
DM to be stable, we assumed DM to be charged under a Z2 symmetry and we
considered only renormalizable interactions. We allowed our dark sector particles
to be scalars, Dirac fermions or vector particles. We assumed a vector particle to
be associated with a gauge symmetry.

In paper III [23], we considered CMB constraints on SIDM annihilation at
the epoch of recombination. We found that the CMB (and partially other indirect
detection) constraints on s�wave annihilation rule out the desired parameter space
to address cusp-core and TBTF problems.

We will now briefly summarize our findings of paper II [22] and III [23] by
working with a representative SIDM model with a Yukawa interaction between
DM and �̃. SIDM annihilation can proceed via s�wave or a p�wave. For exam-
ple, for a fermionic DM interacting with a scalar �̃ (L � �g

S

�
�̄�̃�), the annihi-

lation will be p�wave. On the other hand for a vector �̃ (L � �g
V

�
�̄�

µ
�̃µ�), it

will be s�wave annihilation. From Fig. 8.2, we can see that at the time of recom-
bination, Sp will be typically saturated and the p�wave cross section will start
decreasing as 1/v2

rel. Thus, it is only the s�wave annihilation that can be con-
strained by the CMB bound (equation 8.7) and we will now focus on the case of a
vector mediator. The mediator can interact with the SM particles, for example, via
kinetic mixing with the hypercharge field strength B

µ⌫ or via mass mixing with Z

boson [220–222]—

L � �g
V
�
�̃

µ
�̄�µ� � 1

2
sin ✏ Bµ⌫ �̃

µ⌫ � �m
2
�̃

µ
Zµ . (8.28)

where ✏ and �m are the mixing parameters. In paper III [23], we covered three
cases. Firstly, the coupling of mediator to SM sector is mainly via kinetic mixing,
i.e. �m ⌧ m�̃ . Secondly, the coupling is mainly via mass mixing, i.e. �m/mZ �
✏ and lastly for a mediator having a different temperature than the SM heat bath,
i.e. ⇠ 6= 1. In this thesis, we will mainly focus on the first case and comment on
our findings for the other two cases.
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In addition to the CMB bound, we also used gamma-ray data from Fermi-
LAT [208] and positron from AMS-02 [209, 210]. For simplicity, we considered
only leptonic decay modes �̃ ! ``, as the inclusion of other decay modes will
lead to even more stringent constraints. For implementing AMS data, we used
the bounds derived by Elor et al. [223] on one-step cascade annihilations, with
the mediator particle decaying to e

+
e

� and µ
+
µ

�. The bounds extend down to
masses of m� > 10 GeV and for the parameter space of our interest (m� � m�̃)
are independent of the mediator mass.

In Fig. 8.7, we show the preferred region in the m� and m�̃ plane for having
�T /m� ⇠ 0.1 � 10 cm2

/g as blue bands. We see that the region required to
address cusp-core and TBTF problem is ruled out primarily by CMB data. For
each point in the plot, we calculated the Sommerfeld enhanced annihilation cross
section with the DM relative velocity set to the conservative maximal allowed
value of v

rec
rel (equation 8.10). The values of fe↵ for each decay mode were taken

from [215].

The region m�̃ < 2me is excluded as it will either overclose the universe or
the only active decay mode �̃ ! 3� will be in conflict with the gamma ray ob-
servations [224]. The constraints on this region of parameter space can be relaxed
if the mediator particles couple to neutrinos or some other very light dark species
(for example sterile neutrinos). Coupling to neutrinos is possible in the case of
mass-mixing and thus the region m�̃ < 2me will be allowed for �m/mZ � ✏.

For the figure, we assumed DM to have thermal contact with SM sector at
high temperatures. In the scenario when dark and visible sector starts to evolve
differently at later times, i.e. ⇠ < 1, we found the bounds to be slightly less
stringent, but the desired parameter space to achieve h�T i30/m� ⇠ 0.1�10 cm2

/g

is still strongly ruled out.

In subsection 8.2.3, we saw that a model with just the Yukawa coupling can-
not result in a large cutoff mass (equation 8.27). This was due to the strong self
interaction constraints. We will now discuss some basic extensions of this model
that we considered in paper II [22]. An addition to the simple scenario is to allow
for a cubic interaction of �̃. The new coupling results in a new t�channel diagram
with �̃ as the mediator. This results in an enhanced scattering rate, as the t chan-
nel propagator is almost on-shell. For such models, we found n < �1, thus our
analytic solution for Mcut (equation 8.19) is not applicable and we have to numer-
ically solve equation 6.5 for Tkd. We found that Mcut = 1010

M� can be achieved
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Figure 8.7: Constraints on SIDM annihilation to vector mediators from CMB [4],
Fermi-LAT [208] and AMS-02 [209, 210] in the DM mass vs. mediator mass
plane. The blue shaded area shows the region where we have 0.1 cm2 g�1 
h�T i30/m�  10 cm2 g�1. We see that the parameter space for solving cusp-core
and too big to fail problems is ruled out by the three experiments. Figure taken
from paper III [23].

even for TeV scale DM with m�̃ ⇠ keV. However, due to self-interaction con-
straints, the maximal allowed value of ↵�/m� is too small to account for the
observed relic density.

We can get around this problem by adding a new particle to the model. We
denote the new particle by � and has the mass hierarchy m� � m� � m�̃ . Let us
take the example of �, � and �̃ being fermion, vector and fermion, respectively.
And the interactions are given by L � �g��µ�̄�

µ
� � g�̃�µ

¯̃��
µ
�̃. The scattering

of � and �̃ now proceeds via the t�channel exchange of � and the scattering
amplitude for the model is

h|M��̃!��̃|2it =
256g2

�
g

2
�̃
m

4
�

3m4
�

!
2

m2
�

. (8.29)
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We see that it is a n = 2 case and the scattering amplitude is enhanced by the
factor m

4
�
/m

4
�
. Using equation 8.19, we get

Mcut ' 112 ⇡
3/2

↵
3/4
�̃

⇣
m�

MeV

⌘�3
✓

↵�

m�/TeV

◆3/4

1010
M� . (8.30)

The desired Mcut = 1010
M� can indeed be achieved in this scenario due to

the additional particle. Let us now see what such models predict for �T and
⌦�h

2. We can fix ↵� by requiring the process �� ! �� to produce the ob-
served relic density. Neglecting the Sommerfeld enhancement for simplicity, we
have h���!��vreli = ⇡↵

2
�
/m

2
�

⇠ 3 ⇥ 10�26 cm3
/s. We can see that with this re-

quirement, the cutoff in the model is not dependent on ↵� and m�,6 and the above
expression becomes

Mcut ⇠ 66 ↵
3/4
�̃

⇣
m�

MeV

⌘�3

1010
M� . (8.31)

We can now achieve Mcut = 1010
M� for various parameter combinations of m�

and ↵�̃ and produce the observed relic abundance. The self-interactions in this
model are mediated by �. We have already seen in Fig. 8.7 that for MeV scale
mediators, h�T i30/m� ⇠ 0.1 � 10 cm2

/g can be achieved for wide ranges of DM
masses. The coupling ↵�̃ can thus be tuned for a given m� to get Mcut = 1010

M�

and solve the other small scale problems simultaneously. In such a model, we can
also evade the CMB constraints on DM annihilation, if our scattering partner �̃ is
very light . eV.

The model we just discussed has been studied before to address the small scale
problems [184,185,187,188,225]. In paper II [22], we discussed that such models
belong to a more general class of models that can address all the small scale issues.
DM scattering with a very light particle (m�̃ ⌧ MeV) via t�channel exchange
of a MeV-scale particle with n = 2, results in Mcut ⇠ 1010

M�, h�T /m�i30 ⇠
1 cm2

/g and ⌦�h
2 ⇠ 0.12 . The other models that we found to fall in this category

are with � � � � �̃ as, scalar-vector-scalar, scalar-scalar-fermion, scalar-vector-
fermion, fermion-scalar-fermion and fermion-vector-scalar.

In addition to the above described class of models, we also discussed a co-
annihilation-like scenario, when there is an additional particle (�0) slightly heavier

6Equation 8.30 will have a very weak dependence on m� through xf . See paper II [22] for
details.
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than the DM, i.e. m�0�m�

m�
⌧ 1. Such models could also achieve Mcut ⇠ 1010

M�

and ⌦�h
2 ⇠ 0.12 for m� ⇠ O(GeV). However, as the mediator particle is heavy,

strong self-interactions could not be achieved for such models.

For studying the effect of cutoff and self-interactions on astrophysics, one has
to perform N -body simulations for specific models. This is computationally quite
expensive to do on a model to model basis. In addition to the above described
classification, we also computed ETHOS parameters [116,216] for all the models
we discussed in our paper. Models with the same set of values of the parameters
have an identical effect on cutoff mass scale and non-linear structure formation.
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Chapter 9

Cosmological constraints on
non-standard dark matter evolution

9.1 Outline
In chapter 5, we saw that after the chemical freeze out, the rate of change of the
DM comoving number density is negligible. For s�wave annihilation, the anni-
hilation rate scales as n

eq
�

h�vreli / a
�3 and for p�wave it decreases even faster

as a
�5. The small relative change of a

3
n� is due to the fact that the Hubble rate

decreases much more slowly than the DM annihilation rate, i.e. as a
�2(a�3/2)

in the radiation (matter) dominated universe. As long as there is no other active
mechanism that can deplete DM faster than the Hubble rate, it is a good approxi-
mation to assume n�a

3 to be constant in the universe. We will now briefly discuss
two scenarios where the comoving DM density can indeed decrease.

Decaying DM: In chapter 2, we discussed that DM should be stable on cos-
mological timescales. If DM consists of only one kind of particle, DM’s lifetime
needs to be more than the current age of the universe. An alternative to this is to
consider that the total DM content of the universe is formed by multiple dark parti-
cles and some of these dark particles are stable and others decay [16–19]. Assum-
ing that the (co-)annihilation processes have become inefficient for the decaying
components (denoted collectively by subscript dDM) due to the reasons mentioned
above, the number density of the decaying component follows the equation [19]

d⇢�

da
= �3

a
⇢� � 1

aH

X

i

�i

decay⇢
i

dDM , (9.1)
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where �i

decay and ⇢dDM is the decay rate and the energy density of the ith decaying
component, respectively and ⇢� is the total DM density. One can see from the
above equation that the comoving number density is roughly constant as long as
H � �decay. Once the expansion rate of the universe falls below the decay rate
of the species, the decays will result in a rapid decrease in the comoving number
density.

Consider a scenario where the dark sector is composed of two kinds of par-
ticles, one is stable and the other decays with the decay rate �decay = 0.2Heq,
where Heq is the Hubble rate at matter-radiation equality, i.e. at zeq ⇠ 3400 [4].
In Fig. 9.1, we show the density evolution of such a model as a function of the
scale factor (solid black line). For illustration, we have assumed the unstable
component to form about 13% of the total dark content. We see that the number
density of the dark sector drops very quickly as compared to cosmological scales
when the decay rate becomes comparable to the Hubble rate, which for our fixed
value of �decay corresponds to a ⇠ 10�3. After the unstable component has de-
cayed completely, the dark sector again has a constant comoving number density.
We thus see that for a multi-component dark sector comprising of some stable
components and some unstable components, the total number density will have
step-like transitions. For multiple decaying dark particles, there will be multiple
steps.

On-resonance Sommerfeld enhanced DM annihilation: After kinetic decou-
pling the momenta of a DM particle will redshift, implying v / a

�1. In the previ-
ous chapter, we saw that from the onset of Sommerfeld enhancement and before
its saturation, the s�wave annihilation scales as 1/v for the off-resonance case and
as 1/v2 for the on-resonance scenario. After kinetic decoupling this corresponds
to the annihilation rate scaling as a

�1 (a�2) for on(off)-resonance scenario. We
thus see that the annihilation rate can catch up with the Hubble rate for the on-
resonance scenario. For such a scenario, we can thus have a period of second
annihilations [20, 203–205].

In Fig. 9.1, we show the numerical solution of equation 4.15 for Sommerfeld
enhanced s�wave annihilation for an (almost-)resonant scenario as the dashed
black line.1 We have used the following model parameter values- Tkd = 1 keV,
↵� = 0.01, m� = 200 GeV and the mass of the mediator to be ⇠ 15.2 MeV,

1In paper IV [24], we calculated the thermal average of the annihilation cross section by as-
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Figure 9.1: Evolution of DM comoving energy density as a function of scale factor
for two illustrative examples of DM decay (solid black line) and resonant Som-
merfeld annihilation (dashed black line). In addition to the two physics models,
we have shown our parametrization (defined in equation 9.2) for four values of 

with ⇣ and at fixed for comparison with the shown decay and annihilation cases.
We see that our simple parametrization provides a good approximation for the two
physics models.

which corresponds to nres = 10. For solving the differential equation, we have
used the boundary condition ⌦zrec

�
h

2 = 0.1198, where zrec ⌘ 1100 is the redshift
at recombination. We see that the on-resonant annihilation also results in a step-
like transition in the DM comoving density. The parameter values for the decay
case (solid black) and the on-resonance annihilation model (dashed black) were
chosen such that the transition is centered at a similar time a ⇠ 10�3 and the same
amount of DM decreases ⇠13%.

CMB probes the universe from very early to very late times and is very sen-
sitive to the changes in the expansion rate. At times later than matter-radiation
equality, CMB is also very sensitive to the amount of DM in the universe (for
example through lensing effects). Thus, CMB can be used to probe the above
mentioned scenarios. Unlike the case of the vanilla ⇤CDM model, we do not
have a simple evolution like ⇢� / a

�3 etc. For getting the constraints from CMB,
one needs to solve the evolution of the dark sector on a model to model basis.

suming a Maxwellian velocity distribution. For the case of resonant annihilation, there is also a
large enhancement in DM-self interactions. Thus, DM can indeed have a Maxwellian velocity
distribution [20].
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This means solving the coupled set of equations of particle number densities and
the Hubble rate. For constraining the vanilla ⇤CDM model, one has to scan over
the six ⇤CDM parameters (described in section 3.3). Like in the above mentioned
cases of a modified cosmology, the parameter space increases even further. This
becomes computationally very challenging owing to the large parameter space
and solving the cosmic evolution on a model to model basis.

In paper IV [24], we proposed a parametric expression for the step-like tran-
sition, which covers the scenarios mentioned above and can be extended to even
more general models. In section 9.2, we will describe our background parametriza-
tion and the resulting modified evolution of the perturbed quantities. The final
products resulting from the above discussed depletions can be SM particles or
some relativistic dark species. In the previous chapter we discussed that the pro-
duction of SM particles at late times is strongly constrained by the CMB (see
also [226]). To avoid these constraints, in paper IV [24] we assumed that DM
depletes into some form of dark radiation. In section 9.3, we will describe our
scanning setup and the datasets used in paper IV [24]. In section 9.4, we will
summarize the findings of our paper IV [24] and discuss some of the subtleties
involved in the analysis.

9.2 Phenomenological approach to varying comov-
ing DM density

Background evolution

For modelling a step-like transition, we used the following parametrization for ⇢�

⇢�(a) =
⇢

0
�

a3


1 + ⇣

1 � a


1 + (a/at)

�
, (9.2)

where ⇢
0
�

⌘ ⇢�(1) is the DM density today and we have introduced three param-
eters at,  and ⇣ describing when is, how fast is and the height of the transition,
respectively. Concretely, at is the scale factor at which the transition of ⇢�a

3 from
(1+ ⇣)⇢0

�
to ⇢

0
�

is centered and the steepness of the transition is determined by the
parameter . In Fig. 9.1, we show the evolution of ⇢� for four different values of
 as the four colored lines. The values of ⇣ and at shown in the plot are chosen for
a direct comparison with the decay and Sommerfeld enhanced annihilation cases
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we discussed above. We see that the Sommerfeld case is very well described by
the  = 1 line and decay can be modeled with  = 2.

In the case when DM is converted to DR (denoted by �), the energy densities
of � and � follow the relation

a
d⇢�

da
+ 3⇢� = �a

d⇢�

da
� 4⇢� ⌘ �Q

H
(9.3)

where Q > 0 is the momentum integrated collision term, for the case of annihila-
tion it is Q = h�vreli⇢2

�
/m� and for decay it is Q = �decay⇢� . One can see that

with our proposed parametrization, one does not need the explicit form of Q and
H to solve equation 9.3 for ⇢�. Using the boundary condition ⇢�a

4 a!0��! 0 , we
find

⇢�(a) =
⇣⇢

0
�

a3

(1 + a


t
)

(a + a


t )

✓
(a + a



t
) 2F1


1,

1


; 1 +

1


; �

✓
a

at

◆�
� a



t

◆
. (9.4)

The ordinary Hypergeometric function 2F1 can be expressed in terms of simple
analytic functions for 

�1 = 1
2 , 1, 2, 3... . The existence of analytic expressions is

highly desirable for a fast computation of such a model.

Unlike in the ⇤CDM model, ⇢� is a naturally varying quantity in our model.
In order to facilitate a comparison with the literature we define a time-dependent
quantity analogous to the constant �Neff,

�Ñeff(a) ⌘ ⇢�(a)

⇢1⌫(a)
. (9.5)

Using expression 9.4, one can see that for  > 1, the comoving energy density
⇢�a

4 will approach a constant value for a � at. Thus, the above definition be-
comes equivalent to the conventionally used �Ne↵ for  > 1 & a � at.

In the top panel of Fig. 9.2, we show the evolution of the DR density as a
function of the scale factor for the same values of at, ⇣ and  we used in Fig. 9.1.
We have also shown the corresponding values of Ñe↵ on the second y�axis. We
see that most of the DR is produced after a � at. In the bottom panel of the
figure, we show the resulting change in the Hubble rate. For the figure, we have
fixed ⌦0

�
h

2 = 0.1198 and the remaining five ⇤CDM parameters to their best fit
values from [4] (see equation 3.23). We see that a smaller value of  results in
a longer period of non-standard evolution of the Hubble rate. Thus, we expect
smaller values of  to be much more constrained as compared to the larger values.
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Figure 9.2: Top: Evolution of dark radiation energy density according to equation
9.4. Bottom: The resulting modification to the Hubble rate.

Perturbations

Let us now see how the density and velocity perturbation equations get modified
in our scenario. The DM and DR energy momentum tensors are given by

T
�

µ⌫
= ⇢�u

�

µ
u

�

⌫
, (9.6)

T
�

µ⌫
=

4

3
⇢�u

�

µ
u

�

⌫
+

⇢�

3
gµ⌫ + ⇧�

µ⌫
. (9.7)
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In our scenario, the combined energy momentum tensors of � and � are conserved,
i.e. r⌫

�
T

�

µ⌫
+ T

�

µ⌫

�
= 0 and are related to Q as

r⌫
T

�

µ⌫
= �r⌫

T
�

µ⌫
⌘ �Qu

�

µ
. (9.8)

Using our derived results 3.18 and 3.19, we have at the lowest order

⇢
0
�

+ 3H⇢� = �(⇢0
�

+ 4H⇢�) = �aQ , (9.9)

which is the same as the equation 9.3. At first order in perturbations, we then find

�
0
�

+ ✓� +
1

2
h

0 =
a

⇢�

(Q�� � �Q) , (9.10)

✓
0
�

+ H✓� = 0 , (9.11)

�
0
�

+
4

3
✓� +

2

3
h

0 = � a

⇢�

(Q�� � �Q) , (9.12)

✓
0
�

+
1

4
r2

�� +
1

2⇢�

r4⇧� = � 3a

4⇢�

Q
✓

4

3
✓� � ✓�

◆
, (9.13)

where we have introduced the perturbation to the collision term as �Q. The equa-
tion 9.11 admits the solution ✓� = 0 and we can use the one residual degree of
freedom to set ✓� = 0 in the above equations. The synchronous gauge after this
choice of gauge fixing is often referred as the comoving synchronous gauge in
the literature and is widely used for numerical implementations of cosmological
perturbations (see for example [227]). We can also write the above equations in
Fourier space by replacing @i ! iki to get

�
0
�

+
1

2
h

0 =
a

⇢�

(Q�� � �Q) , (9.14)

�
0
�

+
4

3
✓� +

2

3
h

0 = � a

⇢�

(Q�� � �Q) , (9.15)

✓
0
�

� 1

4
k

2
�� +

1

2⇢�

k
4⇧� = � a

⇢�

Q✓� . (9.16)

We see that unlike the background equations for ⇢� and ⇢� (expression 9.9),
the perturbation equations are necessarily model dependent. For example, for the
case of decays we have �Q = �(�decay⇢�) = Q��, whereas for an annihilation we
will have �Q = �

⇣
h�vi⇢2�

m�

⌘
=

⇣
�h�vi
h�vi + 2��

⌘
Q .
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In paper IV [24], our goal was to provide model independent constraints on
DM depletion scenarios. For doing so we implemented a minimalistic prescription
for describing �Q. We assumed that the perturbations only affect the volume
expansion and not the DM comoving density itself, which is equivalent to setting
�Q = Q�� in equation 9.14. Note that our chosen prescription holds exactly
for the case of DM decay. We will later discuss the impact of using the correct
expression for �Q for the case of Sommerfeld enhanced annihilation in section
9.4.

9.3 Method and data
In paper IV [24], we constrained the above mentioned scenario using temperature
and polarization data from Planck [228] (denoted as CMB in this chapter) and
three post-CMB measurements (which we will collectively denote as LSS) —

• Lensing: Planck’s lensing power spectrum reconstruction [71]

• HST: The direct measurement of the Hubble rate by the Hubble space tele-
scope, i.e. H0 = 73.24 ± 1.74 km/sec/Mpc [90]

• PC: Constraints on the matter power spectrum normalization from Planck
cluster, i.e. �8(⌦m/0.27)0.30 = 0.782 ± 0.010 [93].

We modified the publicly available Boltzmann code CAMB2 [227, 229] to im-
plement the different background and perturbation evolution of our model (equa-
tions 9.2, 9.4, 9.14–9.16). We assumed that the anisotropic stress generated by �

will evolve in the same way as that for an extra neutrino species.

In addition to the six ⇤CDM parameters, for a fixed value of , we have two
degrees of freedom in our model— at and ⇣ (or �N

today
e↵ , see below). For scan-

ning over the 8-dimensional parameter space, we used CosmoMC3 [230, 231], a
publicly available Fortran based Markov Chain Monte-Carlo sampler. We used
a conservative (stopping) convergence criteria of R � 1 < 0.01, where R is the
Gelman-Rubin criterion [232]. We used GetDist4 [233] to analyze the chains and
compute the Bayesian statistics. We provided the Bayesian exclusion limits on
log10 ⇣ as a function of log10 at for four different values of  = 0.5, 1, 2 and 4. As

2https://camb.info/
3http://cosmologist.info/cosmomc/
4https://github.com/cmbant/getdist
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the Bayesian limits are always dependent on the chosen priors, we complemented
our Bayesian results with the frequentist estimates for the maximum allowed val-
ues of ⇣ as a function of at. For scanning, we used the following flat uniform
priors for the ⇤CDM parameters—

⌦bh
2 2 (0.01, 0.10), ⌦0

�
h

2 2 (0.01, 0.50)

100✓MC 2 (0.8, 2.0), ⌧ 2 (0.01, 0.20)

ln(1010
As) 2 (2.0, 4.0), ns 2 (0.8, 1.2) . (9.17)

For our model parameters we used a more complex choice of priors. We wanted
to probe transitions centered deep in the radiation dominated era (at � 10�7) to
very late times (at  0.1). We thus adopted a flat prior on log10 at to scan over the
parameter space. For each fixed value of  and the considered dataset, we divided
the parameter space into two scans. For large at, 10�4  at  10�1, we used
⇣ as our scanning parameter and for small at, 10�7  at  10�4, we scanned
�Ñ

today
e↵ (and ⇣ was a derived parameter in these scans). We used the following

prior choices for our model parameters—

for log10 at 2 (�7, �4) �Ñ
today
e↵ 2 (0.0, 1000.0)

and for log10 at 2 (�4, �1) ⇣ 2 (0.0, 1000.0) . (9.18)

We refer the reader to our paper IV [24] for a detailed discussion of our results.
In this thesis, we will discuss some of the subtleties involved in the analysis and
elaborate on our particular parameter and prior choice below.

9.4 Discussion

Choice of parameters

The latest CMB measurements from Planck [4] constrain the amount of constant
comoving DR density at recombination to be �Ne↵ . 0.4 at 95% C.L. . Using
the expressions 9.4 and 9.5, we can see that this corresponds to a large value
(& O(10)) of ⇣ for very small at. On the other hand for transitions in matter
dominated regime, i.e. larger at, we will expect the changes in the Hubble rate to
be very constrained and thus expect ⇣ ⌧ 1. We can thus see that a choice of using
⇣ as the scanned parameter is not a good one for all the points in our log10 at space,
as it will lead to an extremely large range of scanned values and thus resulting in
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long run times of the scans. A solution to this is to use log10 ⇣ as the scanning
parameter. With this choice, we will be scanning logarithm of the values, which
will be of similar O(1) magnitude.

Alternatively, one can also scan �Ñ
today
e↵ instead of ⇣ .5 The equation 9.4 can

be inverted to get ⇣ as a function of �Ñ
today
e↵ . The scanned values of �Ñ

today
e↵

for small at < arec will now be of similar magnitude due to the �Ne↵ . 0.4

constraint at recombination. As ⇢� is an increasing function of at, we will again
have much larger allowed values of �Ñ

today
e↵ for at > arec. In order to optimize

the scanning efficiency, it is thus favorable to divide our scan and use ⇣ to scan the
parameter space for large at and �Ñ

today
e↵ for small at. This choice will make the

scanner scan values of similar magnitude, thus decreasing the computation time.

In Fig. 9.3, we show the 95% Bayesian C.L. on log10 ⇣ as a function of log10 at

using only the CMB dataset for the three different choice of scanning parameter
we just described above. For the plot, we have set  = 2 and fixed ⌦rec

�
h

2 =

0.1198 and the other five ⇤CDM parameters to their best-fit values [4]. Thus, it
is a two-parameter scan and is meant just for the illustration of the difference in
the limits from the use of different scanning parameters. The shaded green area
indicates the allowed region using log10 ⇣ as the fundamental scanning parameter.
The blue area indicates the allowed region using ⇣ as the scanning parameter and
restricting 10�3  at  10�1. Lastly, the orange region is for the scan with
10�7  at  10�3 and �Ñ

today
e↵ as the scanning parameter.

We see that the limits are different by using logarithmic and linear parameters
as fundamental scanning parameters. The limits using logarithmic scanning pa-
rameter are more stringent than the linear parameters. This is due to the fact that
a uniform prior on log ⇣ implies that we are using the prior probability 1/⇣ for the
parameter ⇣ .6 Thus, a scan with log10 ⇣ generates a bias for smaller values of ⇣

and does not scan over the larger values well. Log priors are often useful when
the order of magnitude of the parameter is unknown. In our model we know the
maximum amount of DR allowed at recombination very precisely in the ⇤CDM
framework, i.e �Ne↵ . 0.4, and we thus need to use linear priors for an accurate
comparison to the constant �Ne↵ case. We refer the interested reader to [234] for

5We have fixed the reference point of the parameter to a = 1 to get a simple expression for ⇣.
One can fix the reference scale factor to any arbitrary value.

6The probability distribution function (pdf) of a function of a random variable can be calculated
as the derivative of the cumulative distribution function of the random variable. For our case, we
have d log x/dx = 1/x.
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Ne� parametrization 10�7  at  10�3

Figure 9.3: Comparison of Bayesian 95% C.L. on log10 ⇣ for different choices
of scanning parameters. For the plot we have fixed the ⇤CDM parameters and
varied our model parameters. The green, blue and orange areas correspond to
scans with log10 ⇣ , ⇣ and Ñ

today
e↵ as scanning parameters, respectively. We see

that a logarithmic scanning parameters will not efficiently scan the tails of the
distribution.

a similar discussion on the use of log vs. linear priors for constraining neutrino
masses.

Note that these illustrative limits are derived by fixing the ⇤CDM parameters.
By allowing the six ⇤CDM parameters to vary, the shown limits will become less
stringent due to the extra degrees of freedom available to fit the data. In the rest
of this chapter, we will also vary the ⇤CDM parameters (as was done in paper
IV [24]).

Low-redshift observables
We will now discuss the constraints on the two low-redshift cosmological observ-
ables �8 and H0 in our model framework. In Fig. 9.4, we show in the left panels
the 1D-marginalized posteriors of �8 and in the right panels the 2D-marginalized
posteriors of the parameters �8(⌦m/0.27)0.3 & H0 in our model with  = 1 and
two fixed values of at = 10�7

, 10�2.5 shown as red and green, respectively. The
top panels are results from using only the CMB dataset and the bottom panels
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Figure 9.4: 1 and 2 sigma contours [PW: Normalized]

(MPS) should be suppressed at sub-Mpc scales due to the free streaming of DR.

To understand this conundrum, we should note that the CMB spectrum and
MPS are also dependent on the ⇤CDM parameters, which are free parameters in
the scans shown in the figure. The ⇤CDM parameters become highly correlated
with each other when fit to the cosmological data. For instance, slightly increasing
the value of ⌦bh

2 increases the height of the odd peaks and decreases the height
of the even peaks of the CMB spectrum. For countering this effect, we can for
example change the parameters As, ⌦�h

2 and ns in a way to produce a similar
spectrum as for smaller ⌦bh

2.

Thus, fitting our model (or the constant Ne↵ extension) to the data changes the
preferred values of the ⇤CDM parameters such that we get a larger amplitude of
the MPS resulting in larger �8. An analysis to single out the parameters respon-
sible for increasing �8 is hard due to the large parameter space and high degree

88

Figure 9.4: Bayesian constraints on �8, �8(⌦m/0.27)0.3 and H0 for our  = 1
model using CMB only (top panels) and CMB + LSS (bottom panels) datasets.
Left panels: 1D-marginalized posterior of �8 normalized to the maximum pos-
terior probability. Right panels: 1� and 2� contours of the 2D-marginalized
posterior in �8(⌦m/0.27)0.3 vs. H0 plane. For comparison, we have also shown
the results in the ⇤CDM model, shown as black lines/contours. The cyan and
orange bands in the right panels indicate the measurements from HST and PC,
respectively.

are with CMB + LSS. For comparison, we have also shown the constraints in the
⇤CDM framework as black lines or contours. In the figure, we have also indicated
the direct measurements of HST and PC as cyan and orange bands, respectively.

In the left panels of the figure, we see that our model prefers larger values of
�8 than in the ⇤CDM model. Even in the ⇤CDM + constant Ne↵ scan of Ref. [4],
the preferred value of �8 is larger than the vanilla ⇤CDM model. This is contrary
to what one will naively expect, as the Matter Power Spectrum (MPS) should be
suppressed at sub-Mpc scales due to the free streaming of DR.
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To understand this conundrum, we should note that the CMB spectrum and
MPS are also dependent on the ⇤CDM parameters, which are free parameters in
our scans shown in the figure and are highly correlated with each other. Fitting
our model (or the constant Ne↵ extension of ⇤CDM) to the data changes the pre-
ferred values of the ⇤CDM parameters such that we get a larger amplitude of the
MPS resulting in larger �8. An analysis to single out the parameters responsible
for increasing �8 is hard due to the large parameter space and high degree of cor-
relation among the parameters and is thus beyond the scope of this thesis. We
should however note that we did not find any region of parameter space (for all
considered ) where the preferred value of �8 is smaller than the best-fit vanilla
⇤CDM value.7

As we discussed in subsection 3.3.2, the tension between CMB and the low
redshift experiments is actually in the �8 vs. ⌦m plane (and not directly in �8). The
different experiments probing low-redshift regimes [91–93] actually measure the
combination �8⌦↵

m
(with 1 > ↵ > 0 and ↵ varies for different experiments). CMB

experiments predict a larger value of �8⌦↵

m
than the ones probing low redshifts.

In our model, even though the preferred value of �8 is larger, for the case of late
transitions we can have a significantly smaller value of ⌦m than the ⇤CDM. We
can thus decrease the quantity �8⌦↵

m
in our model and reduce the tension between

CMB and low redshift experiments.

In the right panel of Fig. 9.4, we see that the preferred value of �8(⌦m/0.27)0.3

does indeed decrease for the green curves as compared to the ⇤CDM due to the
decrease in ⌦m. For the case of small at, ⌦m cannot decrease much as the amount
of matter at recombination is strongly constrained by the CMB and we thus see
an increase in �8(⌦m/0.27)0.3 due to the larger value of �8 (shown in left panel).

We also see that the Hubble rate today does generically increase in our model
as compared to ⇤CDM, for both small and large at. This behavior of our model
can be qualitatively understood. For the case of large at, this is due to the fact that
CMB strongly constrains the amount of DM, i.e. ⇢� / ⌦�h

2. A decrease in the
the DM density parameter after recombination implies that we need to increase
the late time Hubble rate to have the same amount of DM at recombination. The
case of small at is similar to the constant Ne↵ extension, in which the extra DR

7We should note that we did not consider DM-DR scatterings in our model. Such interac-
tions can significantly lower the value of �8 and can in principle change our conclusions (see for
example [235]).
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prior to recombination increases the size of the sound horizon at the surface of
last scattering. In order to achieve the same angular size of sound horizon, which
is measured very accurately by the CMB, a larger value of late time Hubble rate
is required to increase the distance to the last scattering surface.

Thus, our model with late DM depletions can help alleviate the discrepancies
between low-redshift data and the CMB. In the bottom panels, with combined
CMB and LSS datasets, we see that the corresponding contours have moved down
and towards right, i.e. towards the direct measurements. The displacement of
the large at contour is the largest as it can help reconcile CMB, HST and PC
measurements. In our results with CMB + LSS, we saw a preference for large at

over small at, which we will next discuss.

Choice of at for dividing the parameter space
In Fig. 9.5, we show the results for our scans with the prior choices 10�7  at 
10�3 (left panels) and 10�7  at  10�4 (right panels). In the top panels we
have used CMB only data and in the bottom panels we have used CMB + LSS.
The solid white lines in each of the panels represents the 95% Bayesian C.L. on
�Ñ

today
e↵ . We see that the the limits in the top panels are almost independent of

the prior choice, whereas the limits in the bottom panels are strongly dependent
on the prior choice.

To understand the limits in the figure, let us first see how the limits in the
Bayesian framework are usually calculated. For example, for constructing the
limits on two parameters x & y, one first marginalizes (integrates) over all other
model parameters to calculate the marginalized posterior p(x, y) in x vs. y plane.
Then one draws contours of equal posterior probability around the point of max-
imum posterior probability (xbest, ybest) and integrates over the posterior proba-
bility in the enclosed area. The 95% (99%) contours are calculated such that the
value of the integral inside the contour equals 0.95 (0.99). In all the four panels of
the figure we show these contours of equal posterior probabilities, with the scaling
shown in the color-map on the right.

In the top panels, the position of the maximum posterior in 10�7  at  10�3

case is also contained in the other case 10�7  at  10�4.8 Thus the limits are
8It is interesting to note that Ref. [19] also found a bump in their constraints on the fraction of

unstable DM decaying before recombination, which we see around at ⇠ 10�4 in our model using
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valueoftheintegralinsidethecontourequals0.95(0.99).Inallthefourpanelsof
thefigureweshowthesecontoursofequalposteriorprobabilities,withthepos-
teriorvaluesnormalizedtothemaximumposterior(thescalingisshowninthe
color-mapontheright).

Inthetoppanels,thepositionofthemaximumposteriorin10�7
at10�3

caseisalsocontainedintheothercase10�7
at10�4

.Thusthelimitsare
quitesimilarinthetoppanels,withaverysmalldecrease(hardlyvisibleatthe
resolutionofthefigures)intheleftpanelduetothelargerareacontainedinthe
enclosingcontours.Whereas,inthebottompanelsduetothehigherpreference
forlargeatinourmodelwithLSSdata,positionofthemaximumposteriorin
leftpanelisatat⇠10�3

,whichisnotcontainedintherightpanel.Thelimits
inthebottom-leftpanelarethusmorestringentasmostofthecontributiontothe
integralforlimitcalculationcomesfromtheat⇠10�3

region.
Bayesianlimitsarealwaysdependentonthepriorchoice.Sincethe⇤CDM

parametersaretightlyconstrained,achoiceofawidepriorisagoodoneanddoes
notaffecttheresultinglimitsinthe⇤CDMmodelinasignificantway.Thisisnot
thecasewithourmodelparameterat.Forexploringthesmallatregionwell,we
thusdividedourscansintotwopartsatat=10�4

toavoidthelargepreference
forlargeatusingLSSdata.Forconsistency,wealsousedthesamedivisionwhen
weusedonlytheCMBdataset.

Toavoidthepriordependenceoflimits,wealsopresentedthefrequentistes-
timateofthelimitsinthepaper.Wecalculatedthelimitsbyconsideringthetest
statistic
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Figure 9.5: [PW: mention kappa, legend labels and datasets. ]

surements. In our results with CMB + LSS, we saw a preference for large at over
small at, which we will next discuss.

9.3.3 Choice of at for dividing the parameter space
In Fig. 9.5, we show the results for our scans with the prior choices 10�7  at 
10�3 (left panels) and 10�7  at  10�4 (right panels). In the top panels we
have used CMB only data and in the bottom panels we have used CMB + LSS.
The solid white lines in each of the panels represents the 95% Bayesian C.L. on
�Ñ

today
e↵ . We see that the the limits in the top panels are almost independent of

the prior choice. Whereas, the limits in the bottom panels are strongly dependent
on the prior choice.

To understand the limits in the figure, let us first see how the limits in the
Bayesian framework are usually calculated. For constructing the limits on, for
example, two parameters x & y, one first marginalizes (integrates) over all other
model parameters to calculate the marginalized posterior p(x, y) in x vs. y plane.
Then one draws contours of equal posterior probability around the point of max-
imum posterior probability (xbest, ybest) and integrates over the posterior proba-
bility in the enclosed area. The 95% (99%) contours are calculated such that the
value of the integral inside the contour equals 0.95 (0.99). In all the four panels of

90

Figure 9.5: Comparison of Bayesian and Frequentist estimates of 95% limits on
our  = 2 model using CMB only (top panels) and CMB + LSS (bottom panels)
datasets for two different choice of priors for log10 at. The different contours of
equal posterior probability are also shown in the panels, with the color scheme
indicated on the right. See text for further details.

quite similar in the top panels, with a very small decrease (hardly visible at the
resolution of the figures) in the left panel due to the larger area contained in the
enclosing contours. Whereas, in the bottom panels due to the higher preference
for large at in our model with LSS data position of the maximum posterior in the
left panel is at at ⇠ 10�3, which is not contained in the right panel. The limits
in the bottom-left panel are thus more stringent as most of the contribution to the
integral for limit calculation comes from the at ⇠ 10�3 region.

Bayesian limits are always dependent on the prior choice. Since the ⇤CDM
parameters are tightly constrained, a choice of a wide prior is a good one and does
not affect the resulting limits in the ⇤CDM model in a significant way. This is not
the case with our model parameter at. For exploring the small at region well, we
thus divided our scans into two parts at at = 10�4 to avoid the large preference

CMB data only. Note that our  = 2 model gives a close agreement with the decaying DM model
(see Fig. 9.1).
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for large at using LSS data. For consistency, we also used the same division when
we used only the CMB dataset.

To avoid the dependence of limits on the prior choice, we also presented the
frequentist estimate of the limits in the paper. We calculated the limits by consid-
ering the test statistic

t = �2 � log L ⇡ �2 log

"
p(�N

today
e↵ , at)

pmax

#
, (9.19)

where we have denoted p
max as the point of maximum marginalized posterior

in the plane. We assumed that t follows a �
2 distribution with two degrees of

freedom, and thus the 95% limits are given by t = 5.99, which corresponds to
p(�N

today
e↵ , at) ' 0.05 p

max. We show the frequentist estimate of 95% limits by
the dotted white lines in the figure.

The frequentist and Bayesian limits are quite similar except the bottom right
panel. The Bayesian limits in the bottom right panel are more stringent due to the
fact that the contours for the equal posterior values are quite wide as compared to
the other cases, thus the integral over the posterior values gains a larger amount
for smaller values of �Ñe↵ .

Concluding remarks
In paper IV [24], to the best of our knowledge, we presented for the first time
model independent cosmological constraints on DM depletion scenarios. The
constraints cannot only be applied to the often studied particle physics scenar-
ios like DM decay (equivalent to our  ⇠ 2 model) and Sommerfeld annihilation
(equivalent to our  ⇠ 1 model) but also to more general scenarios, for example,
emission of gravitation waves from primordial black hole mergers [236, 237].

We explicitly examined the model dependence that enters at the perturbation
level due to �Q for the on-resonance Sommerfeld annihilation scenario. For
the case of on-resonance Sommerfeld annihilation before saturation, we have
h�vi / v

�2. Following the prescription in Ref. [238], we should have used
�Q = Q(2�� + h/3) instead of our minimalistic prescription �Q = Q�� . Noting
that the perturbation �Q is proportional to Q, we found that a different treatment
of �Q results in a negligible difference on the limits as the quantity Q is very
strongly constrained by the data.
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Finally, we comment on the alleviation of the small-scale problems in the con-
text of our results presented in this chapter. In the previous chapter, we found
that for a scenario where DM interacts with a MeV-mass mediator via a Yukawa
interaction, can help alleviate the small scale problems of ⇤CDM. Such a model
also results in an enhanced annihilation rate due to Sommerfeld enhancement.
As we showed in this chapter, an on-resonance Sommerfeld annihilation of DM
can also help reduce the discrepancy between CMB and low-redshift observa-
tions (see Fig. 9.4). Thus, we can have a DM model which can simultaneously
solve the small-scale problems and also reduce the discrepancy between CMB
and low-redshift measurements. Such a solution has been qualitatively discussed
before [177, 181, 184, 185, 192, 239, 240]. In paper IV [24], we for the first time
did a detailed analysis with the use of Boltzmann code to confirm these claims.
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Chapter 10

Summary

In this thesis, we covered a wide range of topics in DM physics. In paper I [21],
we estimated the leading QCD corrections for neutralino annihilation to quark
final states. The initial Majorana pair’s J = 0 state effectively behaves as a pseu-
doscalar under Lorentz transformations. We used this property to approximate the
annihilation process as a pseudoscalar decay. The presented calculation is com-
putationally faster and can be generalized to any scenario with a Majorana DM
candidate (see [132]). The O(↵s) QCD corrections (equation 7.3) are very impor-
tant for DM masses near the top-quark threshold and should be taken into account
for such small DM masses. The O(↵s) calculation breaks down for m� � mq

and our resummed result (equation 7.6) provides a better treatment of the QCD
corrections. We found that the gluon VIB contribution to DM annihilation is a sub-
dominant contribution from the perspective of the relic density calculation but it
can have significant effects on indirect detection prospects for degenerate squark
scenarios. The work done is now a part of the public DarkSUSY code [163].

The rest of the thesis focused more on the discrepancies between observations
and ⇤CDM predictions. In paper II [22], we classified models with minimal par-
ticle content that can allow for late kinetic decoupling of DM (see equation 6.9),
thus aiding to alleviate the missing satellites problem. We also computed ETHOS
parameters for relating specific particle physics models to the N�body simula-
tions. We found that models with DM scattering with DR through a t�channel
exchange of a MeV scale mediator cannot only produce a large cutoff in the matter
power spectrum but also help alleviate the other two small scale problems, cusp
vs. core and TBTF due to efficient self interactions.

DM interacting with a MeV scale mediator via a Yukawa coupling can natu-
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rally result in large self-scattering cross sections and thus solve the cusp vs. core
and TBTF problems. In this most common setting, SIDM annihilation process
also gets a large enhancement at small DM velocities through Sommerfeld en-
hancement. The annihilation products are the mediator particles which subse-
quently decay to lighter states to avoid over-closing of the universe. In paper
III [23], we showed that the desirable parameter space of SIDM models for ad-
dressing the cusp vs. core and TBTF problems is strongly constrained if the me-
diator particles decay to SM final states. We used CMB and indirect detection
experiment data to constrain SIDM annihilation. The injection of highly ener-
getic SM particles into the plasma alters recombination or reionization history
and thus have a significant effect on CMB. The indirect detection experiments
also independently exclude most of the parameter space for quantum resonant
self scattering.

In paper IV [24], we used a very general parametrization for describing a sce-
nario in which the comoving number density of DM decreases with time. Due
to strong constraints on SM final states (paper III [23]), we assumed that the de-
pleted DM gets converted to some form of non-interacting DR. Decaying DM and
on-resonance Sommerfeld enhanced annihilation are two of the many possible re-
alizations for such a kind of conversion process. We used CMB [4] and other
low-redshift measurements [71, 90, 93] to constrain the scenario. We found that
conversions during the matter-radiation equality are strongly constrained. Con-
versions at times later than recombination can help mitigate the discrepancies
between CMB data and direct measurements of �8 and H0. Lastly, for the first
time it was shown using a Boltzmann code that models with a Yukawa interac-
tion can simultaneously solve the small scale problems and also the �8 and H0

discrepancies.

The searches for standard DM have only returned null results. This reiterates
the need to look for alternative observables. The work done in this thesis is a step
in this direction.
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