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Abstract
With increased adoption of supervised deep learning methods for work with cosmological survey
data, the assessment of data perturbation effects (that can naturally occur in the data processing
and analysis pipelines) and the development of methods that increase model robustness are
increasingly important. In the context of morphological classification of galaxies, we study the
effects of perturbations in imaging data. In particular, we examine the consequences of using neural
networks when training on baseline data and testing on perturbed data. We consider perturbations
associated with two primary sources: (a) increased observational noise as represented by higher
levels of Poisson noise and (b) data processing noise incurred by steps such as image compression
or telescope errors as represented by one-pixel adversarial attacks. We also test the efficacy of
domain adaptation techniques in mitigating the perturbation-driven errors. We use classification
accuracy, latent space visualizations, and latent space distance to assess model robustness in the
face of these perturbations. For deep learning models without domain adaptation, we find that
processing pixel-level errors easily flip the classification into an incorrect class and that higher
observational noise makes the model trained on low-noise data unable to classify galaxy
morphologies. On the other hand, we show that training with domain adaptation improves model
robustness and mitigates the effects of these perturbations, improving the classification accuracy
up to 23% on data with higher observational noise. Domain adaptation also increases up to a
factor of≈2.3 the latent space distance between the baseline and the incorrectly classified one-pixel
perturbed image, making the model more robust to inadvertent perturbations. Successful
development and implementation of methods that increase model robustness in astronomical
survey pipelines will help pave the way for many more uses of deep learning for astronomy.

1. Introduction

The success of deep learning models across a broad range of science applications is in part driven by their
inherent flexibility. For example, deep neural networks can be trained to use features that represent a
wide variety of patterns in the data. However, the features these neural networks contain are often
incomprehensible by humans, and the models they produce can be brittle, especially when applied outside
the intended circumstances. One such change in circumstances happens when trained models are applied to
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data that contain perturbations, which can be intentional or accidental in origin. The effective use of deep
learning tools requires a detailed exploration and accounting of failure modes amidst possible data
perturbations.

Adversarial attacks are inputs specifically crafted to confuse susceptible neural networks (Szegedy et al
2013, Yuan et al 2019). Often, adversarial examples are thought to arise from non-robust features that can
easily be learned by overly-parameterized models (Ilyas et al 2019). Some attacks rely on access to network
information, such as network architecture, trained weights, and internal gradients (Szegedy et al 2013,
Goodfellow et al 2014). One of the most well-known examples of this type of attack is a correctly classified
image of a panda that is flipped to the class ‘gibbon’, with very high probability, after the addition of
imperceptible but well-crafted noise, produced by the ‘fast gradient sign method’ (Goodfellow et al 2014).
Alternatively, black-box attacks do not require information about the trained model (Chen et al 2017,
Nitin Bhagoji et al 2017). For example, analysis of the widely used benchmark datasets CIFAR-10 (Krizhevsky
et al 2009) and ImageNet (Deng et al 2009) shows that≈68% and≈16% of images, respectively, can be
flipped to an incorrect class by changing or ‘attacking’ just one pixel of the image (Su et al 2019).
Furthermore, perturbations of real-world objects can cause significant problems; for example, well-placed
stickers on traffic signs have caused autonomous vehicles to misclassify stop signs (Eykholt et al 2017).

Beyond the extreme of adversarial attacks, readily occurring or accidental data perturbations—including
image compression, blurring (via the point spread function), and the addition of observational (often simple
Gaussian or Poisson) noise, instrument readout errors, dead camera pixels—can significantly degrade or
imperil model performance (Dodge and Karam 2016, 2017, Gide et al 2016, Ford et al 2019) in astronomy
applications. In the sciences, adversarial attacks can be used as a proxy for some of these naturally occurring
perturbations to obtain a deeper understanding of model performance and robustness. This is crucial for
successful implementation of deep learning in astronomy experiments, in particular for real-time data
acquisition and processing.

Deep learning is used with increasing frequency for a variety of tasks in cosmology, from science analysis
to data processing. For example, convolutional neural networks (CNNs) and more complex residual neural
networks have been used to classify/identify a variety of objects and patterns, such as: low surface brightness
galaxies (Tanoglidis et al 2021a), merging galaxies (Ćiprijanovíc et al 2020b), galaxy-galaxy strong
lenses (Lanusse et al 2018) or Sunyaev–Zel’dovich galaxy clusters (Lin et al 2021). Furthermore, deep
learning has often been used for regression tasks such as measuring galaxy properties from 21cm
maps (Prelogovíc et al 2022), or constraining cosmological parameters from weak lensing maps (Fluri et al
2019). Finally, deep learning can also be used to automate multiple tasks in large astronomical surveys,
including telescope survey scheduling (Alba Hernandez 2019, Naghib et al 2019), cleaning astronomical data
sets of ghosts and scattered-light artifacts (Tanoglidis et al 2021b), image denoising (Gheller and Vazza
2022), and data processing and storing (La Plante et al 2021). The use of deep learning is likely to grow
commensurately with the size and complexity of modern and next-generation cosmic surveys, such as the
Dark Energy Survey (DES; Abbott et al 2016), the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP;
Aihara et al 2018), the Rubin Observatory Legacy Survey of Space and Time (LSST; Ivezíc et al 2019),
Euclid6, the Nancy Grace Roman Space Telescope7, the Subaru Prime Focus Spectrograph (PSF; Sugai et al
2015), and the Dark Energy Spectroscopic Instrument (DESI; Aghamousa et al 2016a, 2016b).

Most approaches to defend from adversarial attacks (Hendrycks and Dietterich 2019) can be divided
into: (1) reactive measures, which focus on detecting the attack after the model is built (Feinman et al 2017,
Lu et al 2017, Metzen et al 2017), cleaning the attacked image (Gu and Rigazio 2014), or verifying the
network properties (Katz et al 2017); and (2) proactive measures, which aim to increase model robustness
before adversarial attacks are produced (Yuan et al 2019). In the sciences, where adversarial attacks are not
targeted but can accrue as a natural part of the data acquisition and storage process, the second group of the
defense strategies is more relevant. Some of the methods in this group include network distillation (Papernot
et al 2016), adversarial (re)training (Goodfellow et al 2014, Madry et al 2018, Deng et al 2020), and
probabilistic modeling to provide uncertainty quantification (Abbasi and Gagné 2017, Bradshaw et al 2017,
Wicker et al 2021). More recently, it has also been shown that viewing a neural architecture as a dynamical
system (referred to as implicit neural networks) and incorporating higher-order numerical schemes can
improve robustness to adversarial attacks (Li et al 2020).

Domain adaptation (Csurka 2017, Wang and Deng 2018, Wilson and Cook 2020) comprises another
group of methods that could prove useful to increase the robustness of deep learning models against these

6 www.cosmos.esa.int/web/euclid.
7 https://roman.gsfc.nasa.gov.
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naturally occurring image perturbations. These techniques are useful when training models that need to
perform well on multiple datasets at the same time. In contrast with the previously mentioned approaches,
domain adaptation enables the model to learn domain-invariant features, which are present in multiple
datasets and therefore more generalizable, thus improving models’ robustness to inadvertent perturbations.
Domain adaptation techniques can be categorized into: (a) distance-based methods such as maximum mean
discrepancy (MMD) (Gretton et al 2007, 2012), deep correlation alignment (CORAL) (Sun and Saenko
2016), central moment discrepancy (CMD) (Zellinger et al 2019); and (b) adversarial-based methods such as
domain adversarial neural networks (DANN) (Ganin et al 2016) and conditional domain adversarial
networks (CDAN) (Long et al 2017).

In the context of astronomical observations, the different domains may be simulated and observed data,
or data from multiple telescopes. With domain adaptation, the model can be guided to ignore discrepancies
across datasets, including different signal-to-noise levels, noise models, and PSFs. In Ćiprijanovíc et al
(2020b), the authors show that a simple algorithm trained to distinguish merging and non-merging galaxies
is rendered useless after the inclusion of observational noise. In Ćiprijanovíc et al (2020a, 2021a) the authors
study domain adaptation as a way to draw discrepant astronomical data distributions closer together, thereby
increasing model robustness. Using domain adaptation, the authors were able to create a model trained on
simulated images of merging galaxies from the Illustris-1 cosmological simulation (Vogelsberger et al 2014),
which also performs well on simulated data that includes observational noise. Furthermore, by using domain
adaptation the authors were able to bridge the gap between simulated and observed data and create a model
trained on simulated Illustris-1 data that performs well on the real Sloan Digital Sky Survey images (SDSS;
Lintott et al 2008, 2010, Darg et al 2010).

We posit this robustness is also directly applicable to combating inadvertent pixel-level perturbations
coming from image compression or telescope errors. Domain adaptation methods are well suited for
astronomy applications since they allow one to utilize previous observations or simulated data to increase the
robustness of the model for new datasets. More importantly, domain adaptation methods can even be used
when one of the datasets does not include labels. Several relevant cases include working with newly observed
unlabeled data, which cannot directly be used to train a model, or fine tuning the weights (via transfer
learning) of a model previously trained on old observations or simulations (Tuccillo et al 2018, Domínguez
Sánchez et al 2019, Tanoglidis et al 2021a).

In this work, we use simulated data to explore the effects of inadvertent image perturbations that can
arise in complex scientific data processing pipelines, including those that will be used by the Vera C. Rubin
Observatory’s LSST (Ivezíc et al 2019). As the context for our tests, we use the problem of galaxy morphology
classification (spiral, elliptical, and merging galaxies), using images and catalog data of galaxy morphology
from the large-volume cosmological magneto-hydrodynamical simulation IllustrisTNG100 (Nelson et al
2019). We emulate LSST processing and observations in our images: our baseline dataset representing
low-noise observations is generated by applying an exposure time equivalent to ten years of observing. For
the first perturbation to the data, we explore the effects of larger observational noise by creating the
high-noise observations, which correspond to one year of observing. We also explore pixel-level
perturbations—representing effects such as data compression, instrument readout errors, cosmic rays, and
dead camera pixels—which are produced through optimized one-pixel attacks (Su et al 2017). We train our
networks—a simple few-layer CNN we call ConvNet and a more complex ResNet18 (He et al 2016)—on
baseline data and then test on noisy and one-pixel attacked data. During model training, we employ domain
adaptation, to investigate the potential benefits of these methods for increasing model robustness to image
perturbations, compared to regular training without domain adaptation. Furthermore, we analyze the
network latent spaces to assess the robustness of our models due to these data perturbations and training
procedures.

In section 2, we describe the simulation and how we create our datasets, as well as details about the image
perturbations we explore. In section 3, we describe the deep learning models we use, and in section 3.2, we
introduce domain adaptation and how it is implemented in our experiments. In section 4, we introduce
visualization methods that are used to explore the latent space of our models. We present our results in
section 5, with a discussion and conclusion in section 6.

2. Data

When creating our dataset (Ćiprijanovíc et al 2021b), we use IllustrisTNG100 (Marinacci et al 2018, Naiman
et al 2018, Pillepich et al 2018, Springel et al 2018, Nelson et al 2019)—a state-of-the-art cosmological
magneto-hydrodynamical simulation that includes gas, stars, dark matter, supermassive black holes, and
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Figure 1. The G-M20 ‘bulge statistic’ plot for our entire dataset made from the two IllustrisTNG100 snapshots. The solid gray line
distinguishes between merging (dark blue stars) and non-merging systems. The latter includes spiral (orange circles) and elliptical
(violet plus signs) galaxies, which are separated by a dashed gray line.

magnetic fields. We extract galaxy images in (g, r, i) filters8 from snapshots at two redshifts: 95 (z= 0.05) and
99 (z= 0). Finally, we convert all data to an effective redshift of z= 0.05, to create a larger single-redshift
dataset.

2.1. Labeling classes
To produce the labels for our experiments, we use the IllustrisTNG100 morphology catalogs
(Rodriguez-Gomez et al 2019), which include non-parametric morphological diagnostics, such as the relative
distribution of the galaxy pixel flux values (Gini coefficient G; Glasser 1962), the second-order moment of the
brightest 20% percent of the galaxy’s fluxM20 (Lotz et al 2004), the concentration–asymmetry–smoothness
(CAS) statistics (Conselice et al 2003, Lotz et al 2004), and 2D Sérsic fits (Sérsic 1963).

We follow Lotz et al (2004) and Snyder et al (2015), and use the G-M20 ‘bulge statistic’ to label spiral,
elliptical, and merging galaxies. Figure 1 presents the G-M20 diagram of our dataset, with the intersecting
lines representing the boundaries between the three classes. Merging galaxies are those where
G>−0.14M20 + 0.33, while non-mergers (including spirals and ellipticals) satisfy G> 0.14M20 + 0.80.
Elliptical (spiral) galaxies have a Gini coefficient greater (lesser) than (0.693M20 + 3.96)/4.95. The
intersection of boundaries between the three classes lies at (G0,M20,0) = (0.565,−1.679).

From two IllustrisTNG100 snapshots (95 and 99), we extract 14312 spiral, 8151 elliptical, and 2542
merging galaxies. To generate more data and to increase parity amongst the classes, we augment mergers
with horizontal and vertical flips and with 90-deg and 180-deg rotations, producing 12 710 merger images.
We then divide these≈35 000 images into training, validation, and test datasets with proportions 70:10:20
(by randomly selecting images from the full dataset). For example images, see figure 2.

2.2. Perturbation: noise
To create our data, which emulates LSST observations, we use the GalSim package (Rowe et al 2015) and
follow the same procedure as in Sanchez et al (2021).

We create two sets of survey-emulating images—a high-noise one-year survey (‘Y1’) and a low-noise
ten-year survey (‘Y10’)—by applying an exposure time corresponding to one year or ten years of
observations directly to the raw images (552s per year for r and i filters and 240s for g filter). This procedure
simplifies data handling and obtains similar results to co-adding, where multiple single-epoch (30 s)
exposures are combined to yield the final results9. Furthermore, we incur PSF blurring for both atmospheric
and optical PSF models. The images are simulated using a constant sky-background corresponding to the
median sky level tabulated in Ivezíc et al (2019). This background signal is subtracted from the final images
containing the simulated Illustris sources, following the typical procedure used for real astronomical images.

8 We use database filter keys psi_g, psi_r, and psi_i.
9 Typical co-adding strategies consist of adding images using inverse variance weighting; in our case where the variance follows a perfectly
known Poisson distribution, co-adding and simulating the full exposure are equivalent procedures.
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Figure 2. Example images from our datasets. The left, middle, and right column show examples of spiral, elliptical, and merging
galaxies, respectively, with emulations of ten-year observational noise (Y10, top row), and one-year observational noise (Y1,
bottom row).

Thus, for the empty regions (without the simulated Illustris galaxy) on these images, we expect that the pixel
levels follow a Poisson distribution centered at 0 and a variance equal to the original mean background level.

We then also process the images to make the details of galaxies more apparent, by clipping the pixel
values to 0.1 and 99.9 percentiles, which removes a very small number of outlying pixels. We then perform
arcsinh stretching to make fainter objects more apparent while preserving the original color ratios in each
pixel, by scaling each of the three filters with arcsinh(cx), where c= 0.85 is a constant used to scale the
outputs to the range [0,1].

2.3. Perturbation: one-pixel attacks
Multiple processes in astronomy data pipelines can change small number of pixels, including image
(de)compression, errors in charge-coupled device (CCD) detectors, detector readout, and cosmic rays. We
use the one-pixel attack as a proxy for these pixel-level perturbations.

To model one-pixel attacks, we represent the original image as a tensor x and its classification score as
p(x). An attack is optimized to find the additive perturbation vector e(x) that maximizes the score
ppert(x+ e(x)) of the image for an incorrect class. The length of the perturbation vector must be less than a
prescribed maximum: ∥e(x)∥0 ⩽ L, where L= 1 for a one-pixel attack (Su et al 2017).

Creating an optimal attack is typically performed through differential evolution (Storn and Price 1997,
Das and Suganthan 2011, Su et al 2017), a population-based optimization algorithm. In each iteration of the
algorithm, a set of candidate pixels (children) is generated according to the current population (parents)
during each iteration. To maintain population diversity, children are only compared to their corresponding
parent and are kept if they possess a higher fitness value. For adversarial attacks, fitness is measured by the
increase of the classification score for the desired incorrect class. The number of iterations required to find
the optimal pixel-level perturbation corresponds to the susceptibility of a model to an attack.

3. Networks and experiments

We study the effects of perturbations in astronomical images in the context of two neural networks, that
represent distinct levels of network complexity and sophistication (for code see Ćiprijanovíc and Kafkes
(2021)). These networks are trained using labeled images to perform a supervised learning classification task
of distinguishing between spiral, elliptical and merging galaxies. Furthermore, we also explore the efficacy of
domain adaptation for improving the performance and robustness of each of these networks.

3.1. Network architectures
For a relatively simple model, we use a CNN that has three convolutional layers (with each layer followed by
ReLU activation, batch normalization, and max pooling) and two dense layers; hereafter we refer to this
model as ConvNet. Details of the ConvNet architecture are shown in table 1. For a more complex model, we
use one of the smallest standard off-the-shelf residual neural networks, ResNet18, which has four residual
blocks (each containing convolutional layers), followed by two dense layers (He et al 2016). Both networks
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Table 1. The architecture of the ConvNet CNN used in this paper.

Layers Properties Stride Padding Output shape Parameters

Input 3× 100× 100a (3, 100, 100) 0
Convolution (2D) Filters: 8 1 2 (8, 100, 100) 608

Kernel: 5× 5
Activation: ReLU

Batch normalization (8, 100, 100) 16
MaxPooling Kernel: 2× 2 2 0 (8, 50, 50) 0
Convolution (2D) Filters: 16 1 1 (16, 50, 50) 1168

Kernel: 3× 3
Activation: ReLU

Batch normalization (16, 50, 50) 32
MaxPooling Kernel: 2× 2 2 0 (16, 25, 25) 0
Convolution (2D) Filters: 32 1 1 (32, 25, 25) 4640

Kernel: 3× 3
Activation: ReLU

Batch normalization (32, 25, 25) 64
MaxPooling Kernel: 2× 2 2 0 (32, 12, 12) 0
Flatten (4608)
Bottleneck (256) 1179 904
Fully connected Activation:

Softmax
(3) 771

Total number of trainable parameters: 1186 432
a We use the ‘channel first’ image data format.

have a latent space (layer immediately following the last convolution layer) of dimension 256, followed by an
output layer with three neurons, one neuron corresponding to each of three classes: spiral, elliptical, and
merging galaxies. ConvNet (ResNet18) has≈1.2M (≈11.2M) trainable parameters. Training is performed by
minimizing the weighted cross-entropy (CE) loss

LCE =

−
M∑

m=1
wmym log ŷm

M∑
m=1

wm

, (1)

where the weight (distinct from the network weight parameters) for each class is calculated as wm = N
Mnm

,
where nm is the number of images in classm, M= 3 is the total number of classes, and N is the total number
of images in the training dataset.

3.2. Domain adaptation
Domain adaptation (DA) techniques help align the latent data distributions, allowing a model to learn the
features shared between the two data domains and to perform well in both (Csurka 2017, Wang and Deng
2018, Wilson and Cook 2020). To align latent data distributions, we use maximum mean discrepancy
(MMD), which is a distance-based DA method that minimizes the non-parametric distance between mean
embeddings of two probability distributions (Smola et al 2007, Gretton et al 2012, Ćiprijanovíc et al 2021a).
Generally, it is difficult to compare two probability distributions that are not completely known, but only
sampled. To address this, in practice, kernel methods are used to map probability distributions into the
higher-dimensional reproducing kernel Hilbert space. This preserves the statistical features of the original
probability distributions, while allowing one to compare and manipulate distributions using Hilbert space
operations, such as the inner product.

We follow Zhang et al (2020) and implement MMD as in Ćiprijanovíc et al (2021a), by using a

combination of multiple Gaussian radial basis function kernels, k(θ,θ ′) = exp−∥θ−θ ′∥2
2σ2 , where ∥θ− θ ′∥ is

the Euclidean distance norm, θ and θ ′ are samples from any of the two latent data distributions, and σ is the
free parameter that determines the width of the kernel k, which measures similarity between two arguments
θ and θ ′. In this work, we minimize the MMD distance between the Y10 and Y1 latent data distributions. We
express the MMD loss as:

LMMD =
1

N(N− 1)

N∑
i̸=j

[k(θ10(i),θ10( j))− k(θ10(i),θ1( j))− k(θ1(i),θ10( j))+ k(θ1(i),θ1( j))], (2)
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where N is the total number of training samples θ10 from the Y10 or θ1 from the Y1 latent data distribution
(in our dataset, both distributions have the same number of samples N). For more details about the MMD
distance calculation, see (Smola et al 2007, Gretton et al 2012, Ćiprijanovíc et al 2021a).

When using DA, the total loss LTOT is composed of the MMD and the CE loss:

LTOT = LCE +λLMMD, (3)

where λ⩾ 0 controls the relative contribution of the MMD loss. The MMD performs domain adaptation
and alignment of the two latent data distributions by calculating kernel values for all possible combinations
of the latent space embeddings (for objects from the same dataset, as well as cross-dataset). The
minimization of the MMD loss requires the maximization of the kernels k(θ10,θ1) and k(θ1,θ10) that
describe cross-similarities between the two data distributions. This results in the model being forced to find
domain-invariant features, which make cross-similarities large.

During training, the CE loss requires labeled images. In our experiments (both regular training without
domain adaptation and with domain adaptation), networks are trained using our baseline low-noise Y10
images and corresponding labels (spiral, elliptical or merger). On the other hand, the MMD loss uses only
latent space image embeddings from both Y10 and Y1 datasets and does not require labels. This feature of
the MMD loss is particularly valuable in cases when one of the datasets is unlabeled.

3.3. Hyperparameters and training
We use the Adam optimizer (Kingma and Ba 2014) with beta values of (β1,β2) = (0.7,0.8) and a weight
decay (L2 penalty) of 0.001 for regular training and 0.0001 for domain adaptation training. The initial
learning rate in all our experiments is 0.00001. We use fixed batch sizes of 128 during training and 64 during
validation and testing. The training length is set to 100 epochs, but we use early stopping to prevent
overfitting. When using domain adaptation, through experimentation with various values, we set λ= 0.05
for the MMD loss term. When shuffling images and initializing network weights for training, we ensured
consistency of results by setting one fixed random seed (0) for all experiments. Training was performed on an
Nvidia Tesla V100 GPU in Google Cloud.

4. Assessing model robustness

We assess the robustness of trained neural networks when they are presented with data that has been
perturbed. First, we employ the simple network classification accuracy and other standard performance
metrics. Next, we study the distributions of the distances between original and perturbed data in the latent
space. Then, we visualize the trained latent space using two techniques: church window plots that show specific
directions in the latent space; and isomaps that show lower-dimensional projections of the latent space.

4.1. Distance metrics
Perturbations to images move their positions within the network’s trained latent space, which can cause an
object to cross a decision boundary from the region corresponding to the correct class to a region
corresponding to the incorrect class. If a method increases the model robustness to perturbations, crossing
the decision boundary and entering the wrong class region will require the image to move further from its
origin. In other words, the region of the wrong class will become further away from correctly classified
images.

We randomly select a 150-image sub-sample of our test dataset on which to apply one-pixel
perturbations. This sample is large enough for statistically significant characterization of distances between
the perturbed and unperturbed data distributions, and it is small enough to generate a one-pixel attack and
run visual inspection on all the images. We then choose the images that were successfully flipped for both
regular and domain adaptation training, which amounts to 136 for ResNet18.

We use two distance metrics to quantify the sensitivity of our models to perturbations and compare
latent spaces of models trained without (regular training) and with domain adaptation. First, for each image
in the baseline dataset and its perturbed counterparts, we calculate the Euclidean distance dE between the
latent space positions of the baseline and the perturbed images. Next, we calculate the Jensen–Shannon (JS)
distance (Lin 1991) between the distributions of Euclidean distances dE, for models trained using regular
training and training with domain adaptation. The JS distance is the square root of the JS divergence, which
is a measure of similarity between two probability distributions (Lin 1991). The JS divergence is a
symmetrized and smoothed version of the well-known Kullback–Leibler divergence DKL(P ∥ Q) (Kullback
and Leibler 1951) and can be calculated as:
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JS(P ∥ Q) = 1

2
DKL(P ∥ R)+ 1

2
DKL(Q ∥ R), (4)

where R= 1
2 (P+Q) and P and Q are the two probability distributions.

4.2. Perturbation direction: church window plots
We also seek to investigate how a perturbation in an image affects its latent space representation and thus
classification. Church window plots, named after the often-colorful stained glass windows, visualize the
latent space regions for classes in the proximity of a given image (Goodfellow et al 2014, Warde-Farley and
Goodfellow 2017, Ford et al 2019).

First, in a plot, we place the latent space embedding of the unperturbed baseline image at the origin.
Then, we subtract the unperturbed image’s latent embedding from that of the perturbed image, yielding the
latent space representation of the perturbation vector. We chose to orient the plane such that the horizontal
axis lies along the one-pixel perturbation direction, and the vertical axis lies along the noisy direction; in
principle any perturbation direction can be chosen. In our plots, we take a slice of the entire latent space,
motivated by the desire to visualize the model behavior in the direction of perturbations we chose for basis
vectors.

Next, the perturbation vectors are discretized into small steps in each direction. All possible
combinations of these perturbations are added to the baseline image to create new perturbed image
embeddings. These new embeddings are then passed into a truncated network consisting of only the dense
layers of our original trained model: a 256-dimensional layer and an output layer with three neurons. This
truncated network necessarily shares the same weights as the flattened layers of the original network, and
outputs the classification result of the given perturbed image embedding. This classification determines the
color of that pixel on the plot.

A church window plot shows relative distance; each axis is normalized to [−1,1] based on the latent space
representation for that image. Therefore, it is difficult to use such plots to compare church window
representations for different images. We deviate slightly from traditional church window plot applications,
e.g. Warde-Farley and Goodfellow (2017), wherein the authors oriented the horizontal axis with the
adversarial (perturbation) direction, while the other axis is calculated to be orthonormal; we instead have
two perturbation directions. Also, traditionally, the color white is used to designate the correct class.

4.3. Low-dimensional projections with isomaps
Next, we project our high-dimensional latent spaces to two and three dimensions, which is nontrivial. Linear
projections, such as those generated by Principal Component Analysis (PCA; Pearson 1901), often miss
important non-linear structures in the data. Alternatively, manifold learning respects non-linear data
patterns; some example algorithms are t-distributed stochastic neighbor embedding (tSNE; van der Maaten
and Hinton 2008), locally linear embedding (Roweis and Saul 2000), and the isomap (Tenenbaum et al 2000).

In this work, we use the isomap, which is a lower-dimensional embedding of a network latent space, such
that geodesic distances in the original higher-dimensional space are also respected in the lower-dimensional
space. The isomap-generation algorithm has three major stages. First, a weighted neighborhood graph G
over all data points is constructed, either by connecting all neighboring points that are within some chosen
radius ϵ or by selecting data points among the K nearest neighbors. We used the scikit implementation of
isomaps, which has an option for auto that instructs the algorithm to select the optimal method for graph
construction (Pedregosa et al 2011). Within graph G, the edge weight values are assigned the distances
between neighboring points. Next, the geodesic distances between all pairs of points on the manifold are
estimated as their shortest-path distances in the graph G. Finally, the lower d-dimensional embedding that
best preserves the manifold’s estimated intrinsic geometry (low-dimensional representation of the data in
which the distances respect well the distances in the original high-dimensional space) is produced by
applying classical Metric Multidimensional Scaling (MDS; Borg and Groenen 2005) to the matrix of the
shortest-graph distances. Most commonly, d is 2 or 3, to facilitate visualization.

5. Results

We assess the performance and robustness of the two deep learning models, each trained without (regular
training) and with domain adaptation. We train on data in one domain (Y10) and test on data that has been
perturbed in one of two ways: with a one-pixel attack (1P) representing data processing errors, or with
inclusion of higher observational noise (Y1).

5.1. Classification accuracy and other network performance metrics
We focus first on the more complex ResNet18 network, which achieved higher classification accuracy. The
setup, results, and slight differences in behavior for the simpler ConvNet model are discussed in section 5.4.
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Table 2. Performance metrics for ResNet18 on Y10 and Y1 test data for regular training (top row) and training with domain adaptation
(bottom row). The table shows the accuracy and weighted precision, recall, and F1 scores. Domain adaptation increases performance in
all metrics for both Y10 and Y1 data.

Training Metric Y10 Y1

Reg Accuracy 0.72 0.43
Precision 0.76 0.61
Recall 0.72 0.43
F1 Score 0.72 0.36

DA Accuracy 0.82 0.66
Precision 0.82 0.67
Recall 0.82 0.66
F1 Score 0.82 0.67

Overall, we find that both models respond similarly to image perturbations and exhibit improved
performance when domain adaptation is used during training.

Without domain adaptation, the ResNet18model achieves an accuracy of 72% (43%) when tested on Y10
(Y1) images. When we use domain adaptation, the accuracy is 82% (66%) when tested on Y10 (Y1) images.
Using domain adaptation prevented the more complex model from overfitting, which helps increase the
accuracy in the final epoch on the baseline Y10 images; this was also observed in Ćiprijanovíc et al (2021a).
Domain adaptation also helped increase the accuracy on noisy Y1 data by 23%. In table 2, we report the
accuracy, as well as weighted precision, recall, and F1 score for ResNet18 regular training and training with
domain adaptation. Weighted metrics are calculated for each of the three class labels, and then their average
is found and weighted by the number of true instances for each label.

5.2. Case studies: latent space visualizations of perturbed data
Next, we investigate the classification of a single spiral galaxy image in three forms—the baseline and the two
perturbations—by visualizing the network latent space representation of each form. Figure 3 presents church
window plots and 2D isomaps of latent space representations given a ResNet18 network with regular training
(top) and with DA training (bottom). The church window panel shows that with regular training, the
one-pixel attack moved the latent space representation into the elliptical region, while the noise moved the
representation to the merger region.

The isomap panel shows a 2D projection of the latent space representation for 250 randomly selected
objects in our test dataset, as well as the three forms of our single example galaxy: Y10 (‘×’), Y1 (star), 1P
(triangle). The filled (empty) circles show the Y10 (Y1) latent representation of the randomly selected
galaxies (we pick the same galaxies from both Y10 and Y1 data). For the baseline Y10 dataset, which the
model was trained on, examples are clearly separated into three classes—spiral (orange), elliptical (violet),
and merger (navy blue)—for both regular and domain adaptation training.

With the regular training, 88% of the Y1 data shown on the isomap are incorrectly classified as mergers
(empty navy blue circles). Using domain adaptation training produces a clear class separation in the Y1 data
as well (with the accuracy on the Y1 test set increasing by 23%), leading to good overlap between the Y1 and
Y10 classes and a common decision boundary, as we can see on the isomap in the bottom row. Both the
church window plot and the corresponding isomap show that with domain adaptation the example Y1 image
from the triplet is correctly classified as a spiral galaxy. The one-pixel attack still manages to flip the Y10
image to elliptical, but because the incorrect class region is now further away, more iterations of differential
evolution were needed (see section 5.3 for details).

To understand how the data moves in the latent space after domain adaptation is employed, figure 4
shows illustrative 3D isomaps of Y10 and Y1 test data10. Here, we can clearly see that without domain
adaptation (top row), the noisy Y1 data is not overlapping with the Y10 data. In fact, Y1 data is concentrated
in a small region of the plot. On the other hand, with the inclusion of domain adaptation (bottom row), both
the Y10 and Y1 data distributions follow the same trend and data distributions overlapping quite well.

Figure 5 shows additional ResNet18 church window plots for several examples from the 150-image test
sub-sample, for which we performed the one-pixel attack. The top and bottom rows show the same triplet
examples for regular and domain adaptation training, respectively. The first row shows examples of baseline
Y10 images that were correctly classified (spiral, elliptical, merger) and then successfully flipped to a different
class with a one-pixel attack. As shown in the top row of images, when regular training is used, the one-pixel

10 To further illustrate the differences between Y10 and Y1 latent data distributions, we show videos of rotating 3D isomaps (made from
50 randomly chosen test set images, due to memory constraints) as supplementary online material, as well as on our GitHub page.
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Figure 3. Church window plots (left) and isomaps (right) of an example triplet of a baseline Y10 image (‘×’) with each of the two
perturbations: noisy Y1 (star) and one-pixel attack (triangle)a. The top row of images corresponds to the model trained without
domain adaptation (regular training), while the bottom row shows the same triplet of images for a model trained with domain
adaptation. In all plots, classification into spiral galaxies is shown in orange, elliptical in violet, and merger in navy blue. Isomaps
are constructed from 250 randomly selected images from our test set, with Y10 images shown as filled circles, and Y1 as empty
circles. Each church window plot is labeled with the true class of the Y10 image and the class targeted by the one-pixel attack: ‘true
class→ targeted class’. Most noisy Y1 images are incorrectly classified as mergers when training without domain adaptation, and
thus most Y1 points in the top isomap are navy blue. Adding domain adaptation improves the overlap between the Y10 and Y1
data distributions, which leads to correct classification of all three classes in both the Y10 and Y1 datasets. The one-pixel attacked
image is incorrectly classified by both the regular training and domain adaptation models, but more differential evolution
iterations were needed to find such a pixel for the domain adaptation model.
aOn the top isomap, the star symbol is plotted with a cyan border to make it more visible, since it is located in the region with
many other navy blue points.

Figure 4. 3D isomap projections of the 256-dimensional latent space, derived from 200 randomly sampled data points from test
sets, in four camera orientations (regular training in top row, domain adaptation in bottom row). The baseline Y10 images are
connected with an orange plane, while the noisy Y1 images are connected with a blue plane. Domain adaptation helps increase
the overlap of the Y10 and Y1 distributions.
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Figure 5. Example church window plots for ResNet18. Each plot shows an example triplet of a baseline Y10 image (‘×’) with each
of the two perturbations: noisy Y1 (star) and one-pixel attack (triangle). The top (bottom) row shows the same three examples
classified by the model trained using regular (domain adaptation) training. We selected examples for which the Y10 image was
correctly classified after training, and for which the one-pixel attack is successful. Each church window plot title includes the true
class of the baseline Y10 image and the targeted incorrect class for the pixel-attacked image: ‘true class→ targeted class.’ We
emphasize that church window plot shows relative distances, based on the latent space representation for a particular image with
each axis normalized to [−1,1], so distances should not be compared between different plots. While the model trained with
regular training incorrectly classifies both noisy Y1 and one-pixel attacked images, the model trained with domain adaptation is
correct for both Y10 and Y1 data. The one-pixel attack was still successful with domain adaptation, but more differential
evolution iterations were needed to find such a pixel.

perturbed, the noisy Y1, and the baseline Y10 image can each belong to three different classes. On the other
hand, when domain adaptation is used (bottom row), both Y10 and Y1 examples are correctly classified; the
church window plots often only show two of the three possible class regions. Domain adaptation leads to
more robustness and higher output probabilities, which also means that the one-pixel attack needs to move
the image further in the latent space in order to reach the region of the wrong class, so more iterations of
differential evolution are needed to find such a pixel. We limit the differential evolution procedure, which
seeks the adversarial pixel, to 80 iterations. Within the maximum number of iterations only 136 images (out
of the 150-image test set sub-sample) were successfully flipped to the wrong class after the inclusion of
domain adaptation. We emphasize that the church window plot shows relative distance: each axis is
normalized to [−1,1] based on the latent space representation for that image. Hence, distances should not be
compared between different church window plots. Section 5.3 includes quantitative comparisons of distance
metrics.

5.3. Distances metrics: characterizing network robustness with latent space distances
We use Euclidean distances dE between baseline Y10 images and their perturbed counterparts in the network
latent space to assess model robustness. First, we estimate the median, the mean and standard errors of the
distribution of distances between baseline Y10 images and their perturbed counterparts in the latent space of
the ResNet18model in table 3. For both types of perturbations (noisy and one-pixel attack), we observe that
domain adaptation increases the distance dE between the baseline and perturbed images.

For Y10–Y1 distances, this happens because domain adaptation allows the Y1 data to align with all three
classes and to be correctly classified, instead of being concentrated in one region with no class distinction. In
top row of figure 3, the isomap shows that regular training places all Y1 data very close to the Y10 merger
class region. When domain adaptation is used all three classes from both datasets are correctly aligned, which
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Figure 6. Distributions of Euclidean distances between Y10 and noisier Y1 images (left), and between Y10 and one-pixel (1P)
perturbed images (right), for the ConvNet (top) and ResNet18 (bottom) models. Distances (given in tables 3 and 5) for the regular
training are plotted in navy blue, with mean (violet) and median (blue) values plotted as dashed lines. Distances for the model
trained with domain adaptation are plotted in orange, with mean (violet) and median (blue) plotted as solid lines. On each plot
we also report the JS distance as a measure of the difference between the two distributions. In our experiments, domain
adaptation increases the distances to all types of perturbations. In particular, the increase in the JS distance between the regular
and the successfully flipped one-pixel perturbed images (right column) is a good indicator of the increased model robustness.

Table 3.Medians, means and standard errors of Euclidean distances in the latent space of ResNet18 for the 136-image sub-sample of our
test set of images. Domain adaptation increases median and mean distance to the one-pixel perturbed image, making the model more
robust against this kind of attack (we also plot histograms of all distances in the bottom row of figure 6).

dE

Perturb. Training Median Mean St. Err.

Y10–Y1 Reg 18.1 20.2 ±1.0
DA 26.4 29.7 ±1.5

Y10–1P Reg 16.0 16.8 ±0.4
DA 35.8 38.1 ±1.3

ultimately leads to the increase in the mean Euclidean distance between Y10 and Y1 data. However, caution
should be applied, because an increase in this distance will not necessarily happen for all datasets and neural
network models. The change in this distance depends strongly on the location of the unknown dataset in the
latent space of the model trained with regular training (which can be very unpredictable). If the unknown
dataset is placed far away from the known data, including domain adaptation will reduce the distance
between latent elements from the two domains.

More importantly, when domain adaptation is included, the mean distance between Y10 and the
one-pixel perturbed images that were incorrectly classified also increases (see figure 6 and table 3). This
means that with domain adaptation, images that were successfully flipped to the wrong class needed to move
farther to cross the class boundary and end up in the wrong class. For the better performing ResNet18model,
mean dE increases by a factor of≈2.3, and median by≈2.2, which means that the inadvertent data
perturbations are less likely to successfully move the image to the wrong class. In this case, dE is the distance
between correctly classified images and incorrect class regions: therefore, when dE increases, so does the
model robustness.

We also study the distributions of Euclidean distances between the baseline and the perturbed images
under our two scenarios—regular training and domain adaptation training. We normalize these distributions
to sum to 1.We then calculate the JS distance between the dE distributions obtained with regular training and
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Table 4. Performance metrics for ConvNet on Y10 and Y1 test data for regular training (top row) and training with domain adaptation
(bottom row). The table shows the accuracy and weighted precision, recall, and F1 scores.

Training Metric Y10 Y1

Reg Accuracy 0.70 0.48
Precision 0.72 0.67
Recall 0.70 0.48
F1 score 0.70 0.42

DA Accuracy 0.69 0.57
Precision 0.70 0.62
Recall 0.69 0.57
F1 score 0.69 0.58

those obtained through training with domain adaptation. We illustrate the ResNet18 distributions in the
bottom row of figure 6. As with the dE distribution means, the success of domain adaptation in increasing the
distance to the one-pixel perturbed images for ResNet18 results in the larger JS distance of 0.64.

We emphasize here that this study was done using only 136 images (134 for ConvNet) that were
successfully flipped by the one-pixel attack (due to computational constraints). For more precise
quantification of the model behavior, a larger sample is needed. Still, even this small sub-sample shows
trends in the model behavior and the potential benefit of using domain adaptation.

5.4. ConvNet results
Our simpler ConvNet model architecture is presented in table 1.

ConvNet reaches slightly lower accuracies compared to ResNet18, but exhibits similar behavior when
trained with and without domain adaptation. With the regular training, the one-pixel attack more easily flips
the image to an incorrect class, and most of the noisy Y1 images are incorrectly classified. When domain
adaptation is employed, classification accuracy on noisy images increases by 9%, and successful one-pixel
attacks are harder to find (more iterations of differential evolution are needed and the successfully attacked
images are further away from the baseline Y10 image).

Table 4 provides detailed metrics for the performance of ConvNet on the Y10 and Y1 test data. One
notable difference, compared to the more complex ResNet18, is the slight drop in performance in the source
domain when domain adaptation training is used (accuracy is lower by 1%). With domain adaptation, the
model is forced to use only domain-invariant features, which makes the classification slightly harder in the
source domain. Still, this is acceptable because these domain-invariant features allow the model to classify
the target domain, which was not possible with regular training. On the other hand, more complex models
like ResNet18 need to be trained more carefully, often with early stopping in order to prevent overfitting on
the training dataset during the regular training. When domain adaptation is employed, it acts as a regularizer
and allows the model to train for longer and improve its performance even in the source domain.

Furthermore, in table 5 we give means and standard errors of Euclidean distances dE between baseline
Y10 images and noisy Y1 or one-pixel perturbed (1P) images, calculated for the 134-image sub-sample of the
test set of images (images that were successfully flipped for both regular and domain adaptation training). In
the top row of figure 6, we plot distributions of these Euclidean distances and give the JS distance as a
measure of the difference between the regular and domain adaptation distributions. Similar to ResNet18, the
simpler ConvNet also exhibits improved robustness when trained with domain adaptation, which is reflected
in≈1.3 times larger mean and median Euclidean distance between baseline Y10 images and their perturbed
counterparts and the increased classification accuracy on noisy Y1 data.

To compare distances in spaces with different dimensions (objects becoming more distant as the
dimensionality grows), we require that both the ResNet18 and simpler ConvNet have the same
256-dimensional latent space. Therefore, any different behavior of data points in this space can be attributed
to different features the two networks find as important and exploit to build their latent spaces. It is
important to keep in mind that these differences are a consequence of the vastly different model sizes
(number of tunable parameters), as well as the type of the model (one a regular CNN and the other
containing residual blocks). Because the latent spaces of the two networks are different, we cannot directly
compare the distance metrics for the ConvNet and ResNet18models. For this reason, we look at the overall
behavior and the changes introduced by domain adaptation, in combination with church window plots and
isomaps, to get a better understanding of the effects of image perturbations on the model performance.
These results show the power of domain adaptation as a tool for increasing model robustness.
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Table 5.Medians, means and standard errors of Euclidean distances in the ConvNet latent space. Values are calculated for the 134-image
sub-sample of our test set of images. Domain adaptation increases median and mean distance to the one-pixel perturbed image, making
the model more robust against this kind of attacks (the top row of figure 6 shows histograms of all distances).

dE

Perturb. Training Median Mean St. Err.

Y10 – Y1 Reg 6.3 6.7 ±0.2
DA 6.9 8.3 ±0.3

Y10–1P Reg 2.8 3.1 ±0.1
DA 3.6 4.1 ±0.2

6. Discussion and conclusion

In this paper, we explored how data perturbations that arise from astronomical processing and analysis
pipelines can degrade the capacity of deep learning models to classify objects. We then explored the efficacy
of particular visualization techniques (church window plots and isomaps) in assessing model behavior and
robustness in these classification tasks. Finally, we tested the use of domain adaptation for mitigating model
performance degradation.

Our work focuses on the effects of two types of perturbations: observational noise and image processing
error (represented by the one-pixel attack). We demonstrated that the performance of standard deep learning
models can be significantly degraded by changing a single pixel in the image. Additionally, images with
different noise levels (even if the noise model is the same) are also incorrectly classified if the model is only
trained on one of the noise realizations. Even larger discrepancies between data distributions can arise if the
two datasets include noise that cannot be described with the same model.

We illustrated how training on multiple datasets with the inclusion of domain adaptation leads to
extraction of more robust features that can substantially improve performance on both datasets (Y1 and
Y10). In other words, older high-noise (Y1) data can be used in combination with domain adaptation during
training to increase performance and robustness of models intended to work with newer low-noise data
(Y10). Furthermore, the added benefit of this type of training is increased robustness to inadvertent
one-pixel (1P) perturbations that can arise in astronomical data pipelines. We showed that the inclusion of
domain adaptation during the training of ResNet18 increases the classification accuracy for Y10 data by 10%
(domain adaptation acts as a regularizer, allowing the model to train for longer and improve even in the
source domain), while the accuracy in the noisy Y1 domain (which could not be classified at all without
domain adaptation) increases by 23%. Furthermore, to successfully flip an image to the wrong class using the
one-pixel attack, the image needs to move≈2.3 times further in the neural network’s latent space after the
inclusion of domain adaptation. In case of the simpler ConvNet, inclusion of domain adaptation reduced the
accuracy in the source domain by 1%, but allowed the model to perform with 9% better accuracy in the target
domain. It also increased the distance to successfully flipped one-pixel perturbed images by a factor of≈1.3.

Domain adaptation methods can help bring discrepant data distributions closer together even if the
differences between the datasets are quite large. Still, the best results are achieved when the datasets are
preprocessed to be as similar as possible and include a large number of images for training. This is
particularly important when one of the datasets contains simulated images, since one can work to make the
simulations as realistic as possible, closer to the real data that that the model is intended to be used on.

Even though MMD has proven to be very successful in bridging the gap between astronomical datasets, it
should not be used for very complex problems. MMD is a method that is not class-aware and hence tries to
align entire data distributions. This property can be problematic when the two data distributions are very
different from each other or when one of the datasets contains a new or unknown class that should not be
aligned with the other domain. Our future work will focus on leveraging more sophisticated class-aware DA
methods such as contrastive adaptation networks (CAN; Kang et al 2019), or domain adaptive neighborhood
clustering via entropy optimization (DANCE; Saito et al 2020), which can successfully perform domain
alignment in more complex experiments. Note that even these more sophisticated methods work better if the
similarity between datasets is greater or when the two datasets include more overlapping classes.

Although we adopted a generic ResNet18 to carry out our experiments with domain adaptation for
robustness, other adversarial robustness approaches, such as those based on architecture improvement, data
augmentation, and probabilistic modeling, can be used alongside domain adaptation. This is a future
direction we will pursue.

In astronomy, new insights about astrophysical objects often come from our ability to simultaneously
learn from multiple datasets: simulated and observed, observations from different telescopes and at different
wavelengths, or using the same observations but with different observing times. Domain adaptation
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techniques are ideally suited in cases where deep learning models need to work in multiple domains and can
even work when one of the domains is unlabeled.

In many astrophysics applications, it is very difficult to precisely simulate the objects we are studying, and
the observations themselves can be very noisy and include artifacts and detector errors. Our ability to build
models that can overcome these difficulties is paramount, especially in cases where machine learning can be
employed to help with rare or difficult to detect events. For example, machine learning has already been
shown to help in detecting gravitational waves (George and Huerta 2018, Antelis et al 2022, Mishra et al
2022). Both precise simulations and dealing with very noisy observations makes detection challenging:
gravitational wave detectors are very sensitive to noise from the physical environment, seismic activity, and
complications in the detector itself (the data stream can contain sharp lines in its noise spectrum and
non-Gaussian transients, or ‘glitches’ (Colgan et al 2020), that are not astrophysical in origin). Low-surface
brightness galaxies are another type of difficult object that has been shown to be detectable by machine
learning methods (Tanoglidis et al 2021a). When dealing with very faint objects, small data perturbations or
other faint artifacts (Tanoglidis et al 2021b) can reduce our ability to find and characterize them in new
survey data, so development of robust machine learning methods is important.

In scientific applications, where data perturbations are typically not targeted, but rather occur naturally,
using domain adaptation can simultaneously help (a) increase robustness to these small perturbations and
(b) realize the gains when information comes from multiple datasets. Future developments and
implementations of adversarial robustness and domain adaptation methods in astronomical pipelines will
open doors for many more uses of deep learning models.
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Ćiprijanovíc A, Snyder G and Sánchez F J 2021b DeepAdversaries: Examining the Robustness of Deep Learning Models for Galaxy

Morphology Classification (Data) (https://doi.org/10.5281/zenodo.5514180)
Colgan R E, Corley K R, Lau Y, Bartos I, Wright J N, Márka Z and Márka S 2020 Efficient gravitational-wave glitch identification from

environmental data through machine learning Phys. Rev. D 101 102003
Conselice C J, Bershady M A, Dickinson M and Papovich C 2003 A direct measurement of major galaxy mergers at z ≲ 3 Astrophys. J.

126 1183–207
Csurka G 2017 A comprehensive survey on domain adaptation for visual applications Domain Adaptation in Computer Vision

Applications (Cham: Springer International Publishing) pp 1–35
Darg DW et al 2010 Galaxy zoo: the fraction of merging galaxies in the SDSS and their morphologiesMon. Not. R. Astron. Soc.

401 1043–56
Das S and Suganthan P N 2011 Differential evolution: a survey of the state-of-the-art IEEE Trans. Evol. Comput. 15 4–31
Deng J, Dong W, Socher R, Li L-J, Li K and Fei-Fei L 2009 ImageNet: a large-scale hierarchical image database 2009 IEEE Conf. on

Computer Vision and Pattern Recognition (IEEE) pp 248–55
Deng Z, Dwork C, Wang J and Zhang L 2020 Interpreting robust optimization via adversarial influence functions Int. Conf. on Machine

Learning (PMLR) pp 2464–73
Dodge S and Karam L 2016 Understanding how image quality affects deep neural networks (arXiv:1604.04004)
Dodge S and Karam L 2017 A study and comparison of human and deep learning recognition performance under visual distortions

(arXiv:1705.02498)
Domínguez Sánchez H et al 2019 Transfer learning for galaxy morphology from one survey to anotherMon. Not. R. Astron. Soc.

484 93–100
Eykholt K, Evtimov I, Fernandes E, Li B, Rahmati A, Xiao C, Prakash A, Kohno T and Song D 2017 Robust physical-world attacks on

deep learning models (arXiv:1707.08945)
Feinman R, Curtin R R, Shintre S and Gardner A B 2017 Detecting adversarial samples from artifacts (arXiv:1703.00410)
Fluri J, Kacprzak T, Lucchi A, Refregier A, Amara A, Hofmann T and Schneider A 2019 Cosmological constraints with deep learning

from KiDS-450 weak lensing maps Phys. Rev. D 100 063514
Ford N, Gilmer J, Carlini N and Cubuk D 2019 Adversarial examples are a natural consequence of test error in noise (arXiv:1901.10513)
Ganin Y, Ustinova E, Ajakan H, Germain P, Larochelle H, Laviolette F, March M and Lempitsky V 2016 Domain-adversarial training of

neural networks J. Mach. Learn. Res. 17 1–35
George D and Huerta E A 2018 Deep learning for real-time gravitational wave detection and parameter estimation: results with

advanced LIGO data Phys. Lett. B 778 64–70
Gheller C and Vazza F 2022 Convolutional deep denoising autoencoders for radio astronomical imagesMon. Not. R. Astron. Soc.

509 990–1009
Gide M S, Dodge S F and Karam L J 2016 The effect of distortions on the prediction of visual attention (arXiv:1604.03882)
Glasser G J 1962 Variance formulas for the mean difference and coefficient of concentration J. Am. Stat. Assoc. 57 648–54

16

https://orcid.org/0000-0003-1281-7192
https://orcid.org/0000-0003-1281-7192
https://orcid.org/0000-0002-1716-463X
https://orcid.org/0000-0002-1716-463X
https://orcid.org/0000-0002-4226-304X
https://orcid.org/0000-0002-4226-304X
https://orcid.org/0000-0003-3136-9532
https://orcid.org/0000-0003-3136-9532
https://orcid.org/0000-0001-6785-8720
https://orcid.org/0000-0001-6785-8720
https://orcid.org/0000-0003-2260-9151
https://orcid.org/0000-0003-2260-9151
https://orcid.org/0000-0001-6706-8972
https://orcid.org/0000-0001-6706-8972
https://orcid.org/0000-0002-0437-8655
https://orcid.org/0000-0002-0437-8655
https://orcid.org/0000-0002-6099-2772
https://orcid.org/0000-0002-6099-2772
https://arxiv.org/abs/1702.06856
https://doi.org/10.1093/mnras/stw641
https://doi.org/10.1093/mnras/stw641
https://arxiv.org/abs/1611.00036
https://arxiv.org/abs/1611.00037
https://doi.org/10.1093/pasj/psx066
https://doi.org/10.1093/pasj/psx066
https://doi.org/10.1103/PhysRevD.105.084054
https://doi.org/10.1103/PhysRevD.105.084054
https://arxiv.org/abs/1707.02476
https://arxiv.org/abs/1708.03999
https://github.com/AleksCipri/DeepAdversaries
https://doi.org/10.1093/mnras/stab1677
https://doi.org/10.1093/mnras/stab1677
https://arxiv.org/abs/2011.03591
https://doi.org/10.1016/j.ascom.2020.100390
https://doi.org/10.1016/j.ascom.2020.100390
https://doi.org/10.5281/zenodo.5514180
https://doi.org/10.1103/PhysRevD.101.102003
https://doi.org/10.1103/PhysRevD.101.102003
https://doi.org/10.1086/377318
https://doi.org/10.1086/377318
https://doi.org/10.1111/j.1365-2966.2009.15686.x
https://doi.org/10.1111/j.1365-2966.2009.15686.x
https://doi.org/10.1109/TEVC.2010.2059031
https://doi.org/10.1109/TEVC.2010.2059031
https://doi.org/10.1109/CVPR.2009.5206848
https://arxiv.org/abs/1604.04004
https://arxiv.org/abs/1705.02498
https://doi.org/10.1093/mnras/sty3497
https://doi.org/10.1093/mnras/sty3497
https://arxiv.org/abs/1707.08945
https://arxiv.org/abs/1703.00410
https://doi.org/10.1103/PhysRevD.100.063514
https://doi.org/10.1103/PhysRevD.100.063514
https://arxiv.org/abs/1901.10513
https://doi.org/10.1016/j.physletb.2017.12.053
https://doi.org/10.1016/j.physletb.2017.12.053
https://doi.org/10.1093/mnras/stab3044
https://doi.org/10.1093/mnras/stab3044
https://arxiv.org/abs/1604.03882
https://doi.org/10.1080/01621459.1962.10500553
https://doi.org/10.1080/01621459.1962.10500553


Mach. Learn.: Sci. Technol. 3 (2022) 035007 A Ćiprijanovíc et al
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