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C H E M I S T R Y

Chemistry beyond the scale of exact diagonalization on 
a quantum-centric supercomputer
Javier Robledo-Moreno1*, Mario Motta1*, Holger Haas1, Ali Javadi-Abhari1, Petar Jurcevic1, 
William Kirby2, Simon Martiel3, Kunal Sharma1, Sandeep Sharma4, Tomonori Shirakawa5,6,7, 
Iskandar Sitdikov1, Rong-Yang Sun5,6,7, Kevin J. Sung1, Maika Takita1, Minh C. Tran2,  
Seiji Yunoki5,6,7,8, Antonio Mezzacapo1*

A universal quantum computer can simulate diverse quantum systems, with electronic structure for chemistry 
offering challenging problems for practical use cases around the hundred-qubit mark. Although current quantum 
processors have reached this size, deep circuits and a large number of measurements lead to prohibitive runtimes 
for quantum computers in isolation. Here, we demonstrate the use of classical distributed computing to offload all 
but an intrinsically quantum component of a workflow for electronic structure simulations. Using a Heron super-
conducting processor and the supercomputer Fugaku, we simulate the ground-state dissociation of N2 and the 
ground state properties of [2Fe-2S] and [4Fe-4S] clusters, with circuits up to 77 qubits and 10,570 gates. The 
proposed algorithm processes quantum samples to produce upper bounds for the ground-state energy and 
sparse approximations to the ground-state wave functions. Our results suggest that, for current error rates, a 
quantum-centric supercomputing architecture can tackle challenging chemistry problems beyond sizes amena-
ble to exact diagonalization.

INTRODUCTION
The most common task in theoretical quantum chemistry is the 
computation of ground-state energies by solving the Schrödinger 
equation H ∣Ψ⟩ = E ∣Ψ⟩ in the Born-Oppenheimer approxima-
tion. Exact numerical solutions in a finite basis set have a cost 
growing combinatorially in the number of electrons and orbitals. 
This limits exact diagonalization in the full configuration inter-
action (FCI) to system sizes close to 22 electrons in 22 orbitals 
(22e,22o) (1) and (26e,23o) (2). For system sizes beyond the reach 
of FCI, one must rely on approximate methods, e.g., diagram-
matic techniques, wave function ansatzes, and Monte Carlo inte-
gration (3, 4).

Progress in quantum computing has triggered a flurry of theo-
retical proposals for computational chemistry over the past decade 
[e.g., (5–7)]. At the same time, attempts have been made at imple-
mentations on prefault-tolerant quantum processors (8–14), but these 
have so far been limited to small systems for two main reasons. 
First, despite numerous efforts to improve on the measurement 
problem [e.g., (15–17)], runtime for energy expectation value esti-
mation on interesting systems remains out of any reasonable times-
cale. Second, the depths of chemically motivated quantum circuits 
for computations of chemistry are very high. For unitary coupled 
cluster (18) and a single step of time evolution, these quantities scale 
as M4 (19) on a system with M spin-orbitals. Although this scaling 

can be improved with various techniques (20), on prefault-tolerant 
devices, the signal emerging from circuits of such size is weakened 
by the accumulation of gate errors and qubit decoherence.

Here, we show that a quantum-centric supercomputing archi-
tecture and workflow—which we call sample-based quantum diago-
nalization (SQD)—allow us to tackle realistic electronic structure 
problems on system sizes beyond the reach of exact diagonalization on 
prefault-tolerant quantum processors. We conduct quantum experi-
ments to study the ground-state properties of the N2 molecule and the 
[2Fe-2S] and [4Fe-4S] clusters using 58, 45, and 77 qubits, respectively, 
and a maximum number of 3.5 K two-qubit gates.

The manuscript is structured as follows. In the Results section, we 
provide a brief description of the problem statement, the concerted 
quantum-classical workflow, and the configuration recovery tech-
nique, as well as the quantum circuits run in the experiments. This 
section ends with the presentation of the experiment results on the 
ground-state properties of the N2 molecule in a correlation-consistent 
basis set and the active spaces of the [2Fe-2S] and [4Fe-4S] clusters. 
The Discussion section summarizes our findings and examines some 
conditions for the advantage with SQD or variations thereof. The Ma-
terials and Methods section provides detailed explanations on the 
subspace projection and diagonalization and approximate total spin 
symmetry restoration, the configuration recovery technique, and ex-
perimental details including the construction of the quantum circuits 
and the mapping into quantum processors.

RESULTS
We set up the discussion of our results by considering the quantum-
centric supercomputing architecture (21) schematized in Fig. 1. The 
architecture enables scaling of computational capacity by leveraging 
quantum processors for their natural task: executing a limited num-
ber of large quantum circuits. We follow the workflow in Fig. 1 to 
summarize our methods.
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Our main goal is to find the ground state of chemistry Hamiltonians

expanded over a discrete basis set. Here, we have defined the fermi-
onic creation/annihilation operator â†

pσ
∕ âpσ associated to the p-th 

basis set element and the spin σ , whereas hpr and 
(
pr∣qs

)
 are the one- 

and two-body electronic integrals, obtained from standard chemis-
try software (22). Throughout this manuscript, we use molecular 
orbitals as basis set elements. We map the degrees of freedom of 
Eq. 1 to qubits with a Jordan-Wigner (JW) transformation (23). We 
then construct a quantum circuit to be executed on quantum hard-
ware, preparing a state ∣Ψ⟩ on M qubits, which represents a molecu-
lar wave function on M molecular spin-orbitals. In the JW mapping, 
the single-qubit basis states ∣0⟩∕∣1⟩ represent empty/occupied spin-
orbitals. These mapping and optimization steps are performed on 
classical nodes (see Fig. 1). We execute the circuit on a quantum com-
puter and measure ∣Ψ⟩ in the computational basis. Repeating this 
produces a set of measurement outcomes

in the form of bitstrings x ∈ {0, 1}M distributed according to some 
P̃Ψ ; the bitstrings represent electronic configurations, also referred 
to as Slater determinants (SDs).

Configuration recovery
On a prefault-tolerant quantum computer, the action of noise alters 
the distribution from its ideal form PΨ =∣⟨x∣Ψ⟩∣2 to some other 
P̃Ψ , which generates the noisy set of configurations ̃ , accessible to 
us via quantum measurement. Noise in the quantum system broad-
ens the distribution PΨ over configurations that do not contribute to 
low-energy states, so-called deadwood (24). As a result, only a frac-
tion of ̃ contains a meaningful quantum signal. To improve this 
scenario, we introduce a self-consistent configuration recovery tech-
nique, which allows a probabilistic partial recovery of noiseless con-
figuration samples from ̃.

The configuration recovery scheme is inspired by the structure of 
chemistry problems. The Hamiltonian in Eq. 1 conserves the num-
ber of particles separately for each spin species. The recovery routine 
targets configurations x that have the wrong particle number N

x
≠ N 

due to the accumulation of errors in the execution of the quantum 
circuit.

Repeated rounds of recovery can be carried out self-consistently. 
The first step of each recovery round is to iterate through the set 
̃ and find configurations x with N

x
≠ N particles. If N

x
> N (or 

N
x
< N ), ∣Nx

− N ∣ bits are sampled to be flipped from the set of oc-
cupied (or empty) spin-orbitals, according to a distribution propor-
tional to a monotonically increasing function (see Materials and 
Methods section for further information) of ∣xpσ − npσ∣ , the dis-
tance from the current value of the bit to the average occupancy of 
the spin-orbital pσ , obtained from the previous recovery round. 
This generates a new set of recovered configurations R.

Following the next step of Fig. 1, we build K  batches of d con-
figurations  (1) … , (K) using samples from the set R , according 

Ĥ =
∑

pr

σ

hpr â†
pσ
ârσ +

∑

prqs

στ

(
pr ∣qs

)

2
â†
pσ
â†
qτ
âsτârσ

(1)

̃ = {x∣x ∼ P̃Ψ(x)} (2)

Fig. 1. Quantum-centric supercomputing architecture and SQD workflow diagram. (Left) We illustrate a simplified architecture used to execute our workflow. The 
architecture has a cluster with a quantum system alongside classical runtime nodes within an isolated environment. A workload management system controls hybrid 
quantum-classical jobs through middleware. Our workflow is distributed on a set of classical nodes. It includes standard quantum chemistry application routines such as 
computing electronic integrals, mapping to qubits, and preparing circuits to be executed. (Right) Details of the classical postprocessing step. The input is a set of noisy 
samples ̃ from the quantum execution that are processed with our configuration recovery step, using information from a vector n of reference orbital occupancies. The 
green inset shows an example where a configuration with N

x
< N is corrected. The set of recovered configurations R is subsampled and distributed for projection and 

diagonalization on parallel classical nodes. A new average reference occupancy vector n is computed from the results, and the configuration recovery loop is repeated 
self-consistently until convergence.

D
ow

nloaded from
 https://w

w
w

.science.org on June 29, 2025



Robledo-Moreno et al., Sci. Adv. 11, eadu9991 (2025)     18 June 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

3 of 14

to a distribution proportional to the empirical frequencies of each 
x in R . We project and diagonalize the Hamiltonian over each 
 (k): k = 1, … ,K , as proposed recently in the quantum selected 
configuration interaction (SCI) method (25, 26), which draws inspi-
ration from the classical SCI framework (27–33).

Each batch of sampled configurations spans a subspace  (k) in 
which the many-body Hamiltonian is projected

The ground states and energies of Ĥ (k) , which we label ∣ψ(k) ⟩ and 
E(k) , are then computed using the iterative Davidson method on 
multiple classical nodes. The computational cost—both quantum 
and classical—to produce ∣ψ(k)⟩ is polynomial in d , the dimension of 
the subspace.

The ground states are then used to obtain new occupancies

for each spin-orbital tuple 
(
pσ

)
 , averaged on the K batches. These 

occupancies are sent back to the configuration recovery step, and 
this entire self-consistent iteration is repeated until convergence, re-
alizing an SQD of the target Hamiltonian. The initial guess for n 
used for the first round of recovery comes from running SQD us-
ing the raw quantum samples in the correct particle sector. The 
configuration recovery routine can be seen effectively as a problem-
informed clustering of a noisy signal around the occupations n . In 
general, the convergence of the configuration recovery procedure 
depends on the error rates and the physical properties of the system 
under consideration. With current error rates, and for the systems 
in this study, we have observed its convergence within three itera-
tion steps in all systems. We always chose a maximum number of 
five recovery iterations. We foresee that the lowering of error rates in 
future quantum hardware will result in faster convergence. Addi-
tional details are provided in the Materials and Methods section.

To test the noise robustness, we perform numerical simulations 
that confirm the improvements of applying the configuration recovery 
routine to the dissociation of N2 (6-31G basis set). In this test, we 
sample from the exact ground state PΨG

(x) =∣⟨x∣ψ
G
⟩∣2 and we set a 

subspace dimension of d = 106 . We use a global depolarizing noise 
channel to model the effect of noise, P̃ΨG

(x) = αPΨG
(x) + (1−α)

1

2M
 , 

with α ∈ [0, 1] the parameter that controls the amount of noiseless 
quantum signal. Figure 2 shows the error in the ground-state energy 
relative to the noiseless case ( α = 1 ), as a function of the amount of 
signal α , for the estimator both with and without configuration re-
covery. On the N2 model, errors below 10mEh can be obtained from 
~20% signal using the raw noisy samples. However, by using con-
figuration recovery, we can tolerate an ~2% signal to reach the same 
error. This numerical experiment hints that the use of configuration 
recovery will be crucial for large-scale experiments.

Quantum circuits
Before presenting our experimental results, we discuss the circuits 
∣Ψ⟩ used to produce the candidate ground states. We use a trun-
cated version of the local unitary cluster Jastrow (LUCJ) ansatz (34), 
shown in Fig. 3A

Here, K̂μ =
∑

pr,σK
μ
pr â†

pσ
ârσ are generic one-body operators, Ĵμ = 

∑
pr,στJ

μ
pσ,rτ n̂pσn̂rτ are density-density operators restricted to spin-

orbitals that are mapped onto adjacent qubits (34), and xRHF is the 
bitstring representing the restricted Hartree-Fock (RHF) state in the 
JW mapping. Through this local approximation, the LUCJ ansatz 
allows for moderate circuit depths. Its accuracy derives from the 
connection with unitary coupled cluster theory and adiabatic state 
preparation (34–36). The moderate depths of LUCJ are due to the 
use of exponentials of one-body operators, implementable in linear 
depth and a quadratic number of two-qubit gates, and density-
density operators, implementable in constant depth and a linear 
number of ZZ rotations (due to the locality approximation) (34). 
The LUCJ circuit, compiled into one- and two-qubit gates, is shown 
in Fig. 3B.

In Fig. 3C, we show a numerical experiment comparing the po-
tential energy curve of N2 (6-31G basis) obtained by restricted cou-
pled cluster with singles and doubles (CCSD) to one obtained from 
the LUCJ ansatz, numerically optimized using the subspace energy 
as the objective function (see Supplementary Materials for further 
information). The dimension of the diagonalization subspace for 
different bond lengths ranging from d = 209764 to d = 1340964 , 
with a median of d = 563250 . Because of the presence of strong 
static correlation, CCSD fails in the description of the dissociation 
curve, whereas the optimized LUCJ ansatz produces a qualitatively 
correct dissociation curve. We simulated the LUCJ ansatz using the 
ffsim library (37).

Throughout our experiments, we use the truncated LUCJ circuit 
∣Ψ⟩ = e−K̂2eK̂1eîJ1e−K̂1 ∣xRHF ⟩ , which is the result of considering the 
L = 2 circuit and removing the last orbital rotation and Jastrow op-
erations. We parameterize the LUCJ circuits converting the CCSD 
wave function in Jastrow form and imposing a locality approxima-
tion to the resulting Jμ tensors, i.e., zeroing out the components Jμpσ,rτ 
not corresponding to adjacent qubits (34). For systems where the 
J
μ
pσ,rτ parameters obtained from CCSD have small amplitude, the 
e−K̂1 and eK̂1 terms in the ansatz approximately cancel: In such a situ-
ation, without eK̂2 , the resulting wave function is overconcentrated 
around the Hartree-Fock configuration (see the Materials and Meth-
ods section for additional information). Although we initialize the 

Ĥ (k) = P̂ (k)ĤP̂ (k) , with P̂ (k) =
�

x∈ (k)

∣x⟩⟨x∣ (3)

npσ =
1

K

�

1≤ k≤K

⟨ψ(k)∣n̂pσ∣ψ
(k)⟩ (4)

∣Ψ⟩ =
L�

μ=1

eK̂μeîJμe−K̂μ ∣xRHF ⟩ (5)

Fig. 2. Self-consistent configuration recovery. Energy error (mean and SD) in the 
dissociation of N2 (6-31g), averaged over 24 bond lengths equally spaced between 
R = 0.7 Å and R = 3.0 Å , as a function of quantum signal to noise ratio, parameter-
ized by α . The point at α = 0 corresponds to sampling from the uniform distribution 
(no signal). The energies are obtained via projection and diagonalization of d = 106 
raw noisy samples against a subspace of the same size obtained by the configura-
tion recovery routine.
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LUCJ circuit with CCSD parameters, the nature of these two meth-
ods is very different. In particular, CCSD theory is nonvariational while 
SQD is. This adds an additional difficulty in the understanding 
of the relative performance of CCSD and SQD with LUCJ initial-
ized from CCSD parameters. We have performed optimization-free 
experiments, exploiting the connection between LUCJ and classical 
coupled cluster theory, yet closing a quantum-classical optimization 
could further improve the quality of the solutions.

Implementation on a quantum-centric 
supercomputing platform 
In the following, we present the experimental results obtained using 
the methods discussed so far, on Heron quantum processors and the 
Fugaku supercomputer. The largest experiment is run on a subset of 
77 qubits of a 133-qubit Heron quantum processor. The median fi-
delities for this subset are 99.77% for two-qubits gates, 99.97% for 
single-qubit, and readout fidelity of 98.37%, with median coherence 
times T1 = 180μs and T2 = 150μs . In SQD calculations, it is particu-
larly important to have as many measurement outcomes with cor-
rect particle number as possible. However, qubits may be initialized 
imperfectly, i.e., not in the ∣000 … 000⟩ state, resulting in more mea-
surement outcomes with incorrect particle number. To mitigate this 
source of error, we use a reset-mitigation scheme by adding an ad-
ditional measurement instruction before the circuit execution and 
postselecting outcomes based on this first measurement returning 
the initial state ∣000 … 000⟩ . This postselection results in ~1/3 re-
tention rate of all the executions, i.e., qubits collapse initialized in 
the desired state upon the additional measurement with proba-
bility ~ 1/3.

The classical projection and diagonalizations are obtained with 
the Davidson method implemented in the library PySCF (22) on a 
single node, or DICE (30, 33) for distributed computing on multiple 
nodes. Convergence to the most accurate solution can be obtained 
in two ways: increasing the accuracy per diagonalization with the 
subspace size d , and increasing the number of batches K , which will 
reduce statistical errors in the analysis. For our largest experiment 
on the [4Fe-4S] cluster, we use up to d = 100M , distributing a single 
projection and diagonalization to 64 nodes of Fugaku, and K = 100 
batches, for a total of 6400 nodes. We analyze runtime performance 
as a function of d and K versus the number of nodes used in the 

Supplementary Materials. At 64 nodes per diagonalization on the 
largest experiments, classical runtimes are about 1.5 hours. The larg-
est heat-bath configuration interaction (HCI) calculation that we 
performed on 16 nodes at d = 2.3M took about 16 min.

We perform two classes of experiments: the breaking of the triple 
bond of N2 (cc-pVDZ basis), in the top panel in Fig. 4A, and the 
ground states of [2Fe-2S] and [4Fe-4S] clusters (active spaces of the 
TZP-DKH basis), shown in the top panels in Fig. 4 (B and C). We 
study the ground-state properties of these molecular systems in the 
Sz = 0 and S2 = 0 subspace, where Sz is the total ẑ  component of 
the spin and S2 = S2

x
+ S2

y
+ S2

z
 . In this work, we used SDs to define 

the subspaces, which in general are not eigenfunctions of S2 un-
like configuration state functions (CSFs). In the closed-shell sys-
tems studied here, a source of spin contamination is the fact that 
sampled determinants are not closed under the spin inversion op-
eration. Therefore, we achieved an approximate restoration of the 
S2 symmetry by extending the set of sampled determinants to 
ensure closure under spin inversion, as detailed in the Materials 
and Methods section.
Triple bond breaking in N2
The breaking of the N2 bond is a well-known test of the accuracy of 
electronic structure methods in the presence of static electronic cor-
relation (38, 39). Restricted CCSD theory, a dominant paradigm for 
the accurate description of weakly correlated systems in quantum 
chemistry, fails in the description of N2 dissociation due to static 
correlation effects: As correlations become stronger, RHF be-
comes unstable toward a symmetry-broken unrestricted Hartree-Fock 
(UHF) state. CCSD built from RHF predicts an artificial barrier to 
binding and overcorrelates at dissociation, whereas CCSD built 
from a UHF reference dissociates correctly at the cost of spin con-
tamination, a manifestation of Löwdin’s symmetry dilemma. We use 
a correlation-consistent cc-pVDZ basis set, to place emphasis on a 
theory’s ability to treat both dynamic and static correlation in an ac-
curate and balanced manner. We map the N2 molecule onto a Heron 
processor as shown in the middle panel of Fig. 4A. We project and 
diagonalize a Hamiltonian using d = 16 × 106 configurations. We 
consider K = 10 batches of configurations, and each point in the 
dissociation curve has ∣̃ ∣ = 100 × 10

3 measurement outcomes 
and 10 iterations of recovery. The combined quantum runtime for 
all points in the dissociation curve is ~45 min. The experimental 

A B C

Fig. 3. Quantum circuits for chemistry: LUCJ. (A) Schematic representation of the truncated LUCJ circuit used to generate the set of samples. The circuit is composed of 
orbital rotation unitaries exp

(
−Kμσ

)
 , same-spin cluster operators exp

[
i
(
Jμαα + Jμββ

)]
 , and opposite-spin cluster operators exp

(
iJμαβ

)
 , with α/β denoting spin-up/down. 

(B) Single unit of the heavy-hex lattice with a compilation of the LUCJ circuit into single- and two-qubit gates, with the nn gate defined as Unn(φ) = exp
[
iφ
(
1−Z0

)(
1−Z1

)
∕4

]
 . 

(C) Comparison of the potential energy surface of N2 (with a 6-31G basis) obtained from a noiseless subspace simulation of the LUCJ circuit in (A) with L = 1 , and optimized 
parameters, against restricted CCSD. RHF, CISD, and exact energies are shown for reference.
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data are reported in the bottom panel of Fig. 4A, showing the po-
tential energy surface of N2 compared to classical approximate 
methods. The data from our experiments are consistent with other 
classical methods except for CCSD, which fails in the description 
of the dissociation as seen for the smaller basis set considered 
in Fig. 4B. Among the classical SCI methods, HCI (30) obtains the 
best results for N2 and will be our reference classical method in all 
the other experiments. The difference between our method and HCI 
energies is everywhere within tens of mEh. We further analyze the 
accuracy of our experiments as a function of d and the effect of or-
bital optimizations in the accuracy of the predictions in the Supple-
mentary Materials. This first test demonstrates that we are capable of 
addressing multireference ground states and builds confidence 
for the next set of experiments, which will focus on assessing the 
ability of the quantum-classical architecture to do precision many-
body physics.
[2Fe-2S] cluster: Precision many-body physics
Iron-sulfur (FeS) clusters are molecular ensembles of sulfide-linked 
1- to 8-iron centers in variable oxidation states. They are important 

cofactors in biological processes ranging from nitrogen fixation to 
photosynthesis and respiration (40). Their electronic structure, 
with multiple low-lying states of differing electronic and magnet-
ic character, is responsible for their rich chemistry. At the same 
time, they pose considerable challenges for experimental studies 
and numerical tools. For our experiments, we consider the synthetic 
[Fe2S2(SCH3)4]−2 cluster (41), abbreviated [2Fe-2S] and used in nu-
merical studies to mimic the oxidized dimers prominently found in 
ferredoxins (42).

The qubit mapping of the LUCJ circuit on the Heron processor 
for [2Fe-2S] is shown in the middle panel of Fig. 4B. We consider 
K = 10 batches of configurations and ∣̃ ∣ = 2.4576 × 10

6 measure-
ment outcomes. The quantum runtime for this system is ~45 min. 
For the [2Fe-2S] cluster, we perform an energy-variance analysis 
of the low-energy spectrum of the molecule. The energy-variance 
analysis is a tool routinely used in classical computational elec-
tronic structure to capture the convergence of the approximate 
eigenstate energy for different levels of accuracy of a computation-
al method (43). Here, we use energy-variance analysis to assess the 

A

B C

Fig. 4. Experiments: Chemistry on large basis sets. (A) 58 qubits are used to model the N2 dissociation (cc-pVDZ basis set). (B) 45 qubits are used for the [2Fe-2S] cluster 
(TZP-DKH basis set) and (C) 77 qubits for the [4Fe-4S] cluster (TZP-DKH basis set). The top panels show a three-dimensional representation of the geometry of each mol-
ecule. The middle panels show the qubits selected on a Heron quantum processor layout, following the same color convention as (B) in Fig. 3. The bottom panel in (A) 
shows the potential energy surface comparison, as well as the energy difference ΔE between the HCI energy and the energies obtained from different methods. The 
brown scatterplot shows the value of E(k) for all batches of configurations, and the connected dots show mink

(
E(k)

)
 . The bottom panel in (B) shows the energy-variance 

analysis for three different eigenstates that both HCI and our method find upon increasing the value of d, as labeled by the color bar. For each approximate eigenstate 
∣ψ(k)⟩ , the horizontal axis ΔH = ⟨ψ(k)∣Ĥ2∣ψ(k)⟩ − ⟨ψ(k)∣Ĥ∣ψ(k)⟩2 . The bottom panel in (C) shows a comparison of the energy-variance analysis applied to quantum measure-
ment outcomes and bitstrings (with the correct particle number) sampled from the uniform distribution. The DMRG energy in (B) and (C) is from (60).
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convergence as a function of d , which is directly related to quan-
tum and classical accuracy, runtimes, and costs. If one can statisti-
cally sample from a good approximation of an eigenstate, points at 
finite number of samples will be distributed linearly in the energy-
variance plane (43). This gives us a tool to detect eigenstates for both 
quantum and classical methods.

The bottom panel in Fig. 4B shows an energy-variance compari-
son of HCI and SQD run for different subspace dimensions. As the 
subspace dimension is increased, three eigenstates can be identified, 
which we label A, B and, C. The extrapolation of the quantum data 
to the zero-variance limit is in good agreement with the HCI ex-
trapolations for the same eigenstates. The extrapolated value of the 
energy for eigenstate C is in good agreement with the density matrix 
renormalization group (DMRG) calculation from (44).
[4Fe-4S] cluster: A stress test for methodology and quantum 
processors
The circuits considered for the N2 experiments and [2Fe-2S] reached 
sizes of ~1 to 1.5k two-qubit gates. We now test the quality of the 
signal in noisy circuits that test the limits of Heron processors, using 
up to 6400 nodes of Fugaku for the classical processing. We consider 
the synthetic [Fe4S4(SCH3)4]−2 cluster (41), abbreviated [4Fe-4S], a 
representative of nature’s cubanes, whose ground-state deduction 
from experimental measurements was an early success of inorganic 
spectroscopy (45). The LUCJ circuit used for this molecular species 
contains ~3.5k two-qubit gates. The qubit mapping on the Heron 
processor for [4Fe-4S] is shown in the middle panel of Fig. 4C. As 
in the previous experiment, we consider K = 10 batches of con-
figurations and ∣̃ ∣ = 2.4576 × 10

6 measurement outcomes. The 
quantum runtime for this system is ~45 min. For d > 250 × 103 , 
configuration recovery is warm started with the n obtained from the 
method at d = 250 × 103 , and only two iterations are then performed.

This last set of experiments sheds light on the quality of the 
quantum signal that is passed to the configuration recovery at 
these large circuit sizes. The bottom right panel in Fig. 4C shows a 
comparison of the energy-variance analysis from measurement out-
comes obtained from the Heron processor and configurations sam-
pled from the uniform distribution. We see that, even if the quantum 
solutions produced are worse than other classical methods, the en-
ergy and variance obtained from quantum data are notably lower 
than those obtained from uniformly distributed configurations (i.e., 
pure noise), on subspaces of the same size. This confirms that there 
is a valuable signal at circuit sizes of ~3.5k two-qubit gates.

DISCUSSION
Significance for quantum computing
Current quantum computers in isolation can perform calculations 
on systems sufficiently large that exact brute-force classical solu-
tions are not available (46, 47). However, these studies have tar-
geted spin systems, leading to circuits that match the connectivity 
and the measurement and coherence budgets of the quantum de-
vices. In this work, we present electronic structure calculations 
on active spaces beyond the scale where FCIs are available. Key to 
achieve this result is the use of classical and quantum computers in 
concert to implement the SQD method.

SQD makes economical use of quantum computing resources by 
drawing samples from a single quantum circuit. Although, in prin-
ciple, other estimators, such as the standard ones used in varia-
tional quantum eigensolvers, have bounded variance for any wave 

function, the dire scaling of a number of measurements to estimate 
energies makes them impractical for the molecules targeted in this 
work (48). It is also more robust against quantum noise because 
reconstructing the exact ground-state probability distribution on a 
quantum computer is not required to get accurate energy approxi-
mations, as long as one is sampling relevant configurations (i.e., in 
the ground-state support).

We have used an LUCJ class of quantum circuits that can repro-
duce a low-rank decomposition and sparsification of the quantum 
unitary CCSD (qUCCSD), which allowed us to keep circuit depths 
manageable (34). Lower error rates on quantum operations will 
allow us to access deeper quantum circuits with higher connec-
tivity, giving access to more general probability distributions. We 
have performed optimization-free experiments exploiting the con-
nection between LUCJ and classical coupled cluster theory, for the 
purpose of assessing accuracy and scalability, yet closing a quantum-
classical optimization in future work will further improve the qual-
ity of our samples.

Generalization
The SQD method can be applied to simulation tasks other than 
quantum chemistry, if the target ground-state wave function can be 
accurately approximated by a sparse vector. Developing quantum 
circuits with polynomially sized support in the computational basis 
will be an important element of the generalization of SQD as these 
circuits are the sources of samples processed by classical computers.

To counter wave function broadening on current quantum hard-
ware, we have used a self-consistent configuration recovery method, 
exploiting a problem-inspired clustering that leverages the average 
occupation numbers of the molecular orbitals. We foresee general-
izations of our configuration recovery technique to problems other 
than quantum chemistry that are not informed by the physics of the 
problem. Conversely, for specific applications, one could use even 
more information about the problem.

Implications in the search for quantum advantage
Computations can be ranked against three parameters: runtime, en-
ergy or cost, and accuracy. Although the first two are often easy to 
measure, ranking by accuracy is in general not straightforward. For 
methods that produce upper bounds to the ground-state energy, in-
cluding SQD, the expectation value of the Hamiltonian defines an 
unconditional accuracy metric: A lower energy is ranked as a higher 
quality, all other conditions (e.g., total spin) being equal. Comparing 
SQD energies, for example, allowed us to benchmark our results 
against SCI and uniform configuration sampling on a 77-qubit ex-
periment, without access to exact solutions. In addition, the ap-
proximate wave functions produced here can be stored in classical 
memory, which permits a classical prover to certify them, and al-
lows their manipulation by further classical processing.

Using the expectation value of the Hamiltonian as an accuracy 
metric, one can easily and naturally rank SQD results along with 
those of variational classical methods, giving the search for this spe-
cific form of quantum advantage a quantitative meaning. Because 
every variational classical method has a specific domain of ap-
plicability (49), identifying areas where SQD may offer an accuracy 
advantage is a delicate problem. For example, variational quantum 
Monte Carlo methods (50,  51), of paramount importance in 
many-body physics, are sensitive to the structures of the probability 
distributions they are modeling, not just to their supports. Similarly, 
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methods based on tensor networks (52, 53) are successfully used to 
tackle strongly correlated problems in chemistry, granted the ability 
to converge their energies with bond dimensions, but convergence 
can be challenging in some cases (54, 55) because of its computa-
tional cost and its sensitivity to the nature and ordering of the basis-
set orbitals. Developing an in-depth understanding of SQD through 
extensive numeric and methodological investigations is necessary to 
establish or rule out advantage in strictly variational ground-state 
simulations.

SQD shares with SCI the assumption that the ground state may 
be approximated by a sparse linear combination of determinants, 
i.e., with a number of determinants much smaller than the Hilbert 
space dimension. Note that this assumption does not necessarily 
underline variational Monte Carlo or tensor networks. Therefore, 
it is natural to look for conditions to improve over SCI. One such 

condition is the existence of a quantum circuit that produces sub-
spaces of better quality, and more efficiently, than classical heuristic 
selection methods. In the search for ground states, the quality of a 
subspace can be determined by a lower variational energy. We con-
duct numerical experiments that suggest that there exist LUCJ cir-
cuits whose samples produce subspaces of better quality than the 
HCI classical selection heuristic. The LUCJ circuit under consider-
ation shares the same depth and connectivity as the circuits used in 
the experiments. In this study, we consider a particular flavor of SCI, 
HCI (29), and the [2Fe-2S] cluster (20 orbitals → 40+ qubits).

We first perform HCI calculations with different values of the 
selection cutoff ϵ1 [see (56) for details on the definition of ϵ1 ], as 
shown in Fig. 5. We observe that the larger and more restrictive val-
ues of ϵ1 do not allow HCI to reach the DMRG energy reference. 
Instead, it converges to the first excited state (S1) energy. Decreasing 

Fig. 5. Comparison of the quality of subspaces generated by HCI and an optimized LUCJ circuit in for the description of the ground state of [2Fe-2S]. Different 
panels show the energy as a function of subspace dimension of the corresponding diagonalization. The dots connected by arrows show the trajectory of HCI in the 
energy-subspace dimension plane. Each dot is labeled by the iteration it corresponds to. Different panels correspond to HCI calculations carried out with different values 
of the selection cutoff ϵ1 , as indicated in the legend. Brown triangles show energies and subspace dimensions obtained after truncating the most accurate HCI wave func-
tion by repeatedly removing the electronic configurations corresponding to the lowest wave function amplitudes. The green triangles show the energies for different 
subspace dimensions obtained from the optimized LUCJ circuit. The green arrows show the subspace dimension that the circuit was optimized for (see main text). The 
horizontal solid and dashed lines indicate the DMRG estimates for the S0 and S1 eigenstates.
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the value of ϵ1 allows the subspace dimension to become larger and 
improve the energy beyond that first excited state, at the cost of a 
notable increase in subspace dimension, which results in a higher 
computational cost. From the largest HCI wave function (last point 
for ϵ1 = 5 × 10−5 ), we repeatedly remove the electronic configura-
tions whose wave function amplitude is below a given threshold and 
compute the energy in the resulting subspace, providing a collection 
of energy-subspace dimension pairs that we label as “upper bound 
to optimal” in Fig. 5. The removal of tens of millions of configura-
tions (resulting in substantially smaller subspace dimensions) does 
not substantially deteriorate the quality of the ground-state approxi-
mation. These results indicate that HCI does not perform an opti-
mal search of the relevant electronic configurations. Consequently, 
smaller subspaces exist that yield comparable energy values. In this 
particular molecule, HCI needs to explore and perform diagonaliza-
tions in subspaces larger than the optimal search.

We optimize an LUCJ circuit to produce samples in the identified 
optimal subspaces with high probability. The optimal parameters 
are found in a two-step optimization workflow. First, we optimize 
the Kullback-Leibler divergence between samples drawn from the 
LUCJ circuit and the amplitudes of 58 M-dimensional ground-state 
wave function estimation (green arrow in Fig. 5). Then, the circuit 
parameters are further fine-tuned to minimize the SQD energy us-
ing a differential-evolution strategy.

With the samples produced by the optimized LUCJ circuit, we 
proceed to evaluate the energy of resulting subspaces of varying 
dimensionality, including the 58 M-dimensional subspace that 
the circuit was optimized for. We observe good agreement be-
tween the LUCJ subspaces and those that are an upper bound to 
the optimal ones. It is worth noting that, despite being optimized 
for a 58 M-dimensional subspace, the resulting circuit produces 
subspaces of outstanding quality of dimensionalities both smaller 
and larger.

The active space considered for the [2Fe-2S] cluster is small enough 
for HCI to be able to find the relevant bitstrings by exploring and 
performing diagonalizations in subspaces notably larger than the 
optimal ones. This shows that, in some problem instances, the di-
agonalization itself is not the runtime bottleneck. Instead, the run-
time bottleneck is a suboptimal proposal of electronic configurations. 
Larger and more strongly correlated systems will pose challenges for 
the classical heuristics. It is for these systems that one can look for a 
quantum advantage in sampling.

Characterizing the domain of applicability of different classical 
and quantum heuristics facilitates combining them in quantum-
centric supercomputing environments, shifting the search for quan-
tum advantage toward practical problems.

MATERIALS AND METHODS
Conventions and notation
Hamiltonian
Our starting point is the Born-Oppenheimer Hamiltonian, written 
in second quantization using a basis of NMO orthonormal orbitals 
{φp}

NMO

p=1
 , as shown in Eq. 1. We define the number operator ̂npσ = â†

pσ
âpσ , 

which describes the number of electrons with spin σ on orbital p . 
For nonrelativistic all-electron calculations, the quantities

describe the internuclear electrostatic interaction energy and the 
one-electron and two-electron parts of the Hamiltonian, respec-
tively [atomic units are used throughout, i.e., lengths and energies 
are measured in Bohr and Hartree units aB = ℏ2 ∕

(
mee

2
)
 and 

Eh = e2 ∕aB , respectively, where − e and me are the electron charge 
and mass]. The symbols Nnuc , Ra , and Za denote the total number of 
nuclei and their positions and atomic numbers, respectively.

For relativistic and/or active-space calculations, the indices p, r, q, s 
label active-space orbitals, and the quantities E0 , hpr , and 

(
pr ∣qs

)
 are 

modified to account for relativistic effects and/or the potential gen-
erated by the inactive-electron density.

In this work, we use orbitals from a restricted closed-shell 
Hartree-Fock calculation (also called molecular orbitals and de-
noted MOs) as the basis functions φp . Furthermore, we denote 
Nσ the number of spin-σ electrons in the exact ground state. Fur-
thermore N↑ + N↓ = N  , the total number of electrons in the exact 
ground state.
Molecular species and active spaces
The molecules simulated in this work are listed in Table 1. For N2, 
we studied all non-core electrons and orbitals on quantum hardware. 
We computed the potential energy curve using (i) RHF at 6-31G, and 
cc-pVDZ level (57–59) using PySCF (22, 60) and enforcing D∞h sym-
metry and, after projecting the nonrelativistic Born-Oppenheimer 
Hamiltonian in the space spanned by all non-core RHF orbitals with 
standard functionalities, with (ii) restricted and symmetry-preserving 
Moller-Plesset second-order perturbation theory (MP2), CCSD, 

E
0

=

Nnuc∑

a<b

ZaZb

∥Ra−Rb ∥

hpr =∫ dr φ∗
p
(r)

[
−
1

2

𝜕
2

𝜕r2
−

Nnuc∑

a=1

Za

∥ r−Ra ∥

]
φr(r)

(
pr ∣qs

)
=∫ dr

1 ∫ dr
2

φ∗
p

(
r
1

)
φr

(
r
1

)
φ∗
q

(
r
2

)
φs

(
r
2

)

∥ r
1
−r

2
∥

(6)

Table 1. Molecules studied in this work. For each molecule, we list the number of electrons and orbitals ( N and NMO , respectively) studied on quantum 

hardware, along with the underlying basis set and the dimension D =

(
NMO

N∕2

)2

 of the Hilbert space of N↑ = N↓ = N ∕2 electrons in NMO spatial orbitals (not 
considering molecular point-group symmetries).

Molecule Basis
(

N,NMO

)

D

N2﻿  6- 31G  (10e,16o)   1.91 × 107   

N2﻿  cc- pVDZ  (10e,26o)   4.32 × 109   

 [2Fe- 2S] TZP-DKH  (30e,20o)   2.40 × 108   

 [4Fe- 4S] TZP-DKH  (54e,36o)   8.86 × 1015   
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complete active-space configuration interaction (CASCI), for 6-31G 
and SCI, in its heat-bath flavor (HCI), for cc-pVDZ.

For [2Fe-2S] and [4Fe-4S], we used active spaces (41, 61), spanned 
by Fe[3d] and S[3p] orbitals, derived from a localized density func-
tional theory calculation with BP86 functional (44, 62), TZP-DKH 
basis (63), and sf-X2C (spin-free exact two-component) Hamilto-
nian (64, 65) to include scalar relativistic effects. We computed ap-
proximations to the ground-state energy with restricted RHF, MP2, 
CCSD, and HCI. The RHF, MP2, CCSD, configuration interaction 
singles and doubles (CISD), CASCI, and HCI calculations were car-
ried out with the PySCF library (22).
Electron configurations and qubit mapping
In this work, we represent many-electron states using qubit states 
with the JW transformation, which maps an electronic configura-
tion, i.e., an SD of the form

where ∣ � ⟩ is the vacuum state (i.e., the state with zero electrons) and 
xpσ ∈ {0, 1} , onto an element of the computational basis

labeled by a bitstring x =
(
xNMO−1↓

… x0↓xNMO−1↑
… x0↑

)
 . The first 

half of the bitstring is denoted by x↓ =
(
xNMO−1↓

… x0↓
)
 and the sec-

ond half of the bitstring is denoted by x↑ =
(
xNMO−1↑

… x0↑
)
 . The JW 

mapping uses M = 2NMO qubits and allows computing the number 
of spin-σ electrons for a given configuration x as Nxσ =

∑
pxpσ . The 

total number of electrons, N
x
=

∑
σNxσ , is the Hamming weight of 

x . At the single-configuration level, any x in the right particle sector 
must satisfy: N

xσ = Nσ . An important example is the RHF bitstring

which, by construction, has N
xRHFσ

= Nσ.
The Fock space is the vector space containing all possible elec-

tronic configurations for NMO orbitals with all possible filling factors 
for each spin sector. The terms determinant and electronic configu-
ration are used interchangeably in the manuscript.

Sample-based quantum diagonalization
This section provides a detailed description of the SQD procedure. 
We describe the subspace projection and diagonalization and the 
self-consistent configuration recovery scheme. We also motivate the 
energy-variance analysis presented in Fig. 4.

In what follows, we use  and ̃ to denote a set of configura-
tions sampled from probability distributions PΨ(x) =∣ ⟨x ∣Ψ⟩ ∣2 and 
P̃Ψ(x) = ⟨x ∣ ρ̃ ∣x⟩ , where ρ̃ is a density operator corresponding to a 
noisy counterpart of ∣Ψ⟩ ⟨Ψ∣ . We denote N ⊂ ̃ the subset of con-
figurations with the right particle number. The set of configurations 
recovered by the configuration recovery procedure is denoted by 
→N and R = N ∪ →N the set of configurations output by self-
consistent configuration recovery, and  (k) ⊂ R with k = 1 … K a 
set of approximately d configurations sampled from R . The wave 
function ∣ψ(k) ⟩ in obtained by projection and diagonalization of Ĥ 
in the subspace spanned by the configurations in  (k).

Eigenstate solver
Given a set of d electronic configurations, the many-electron Ham-
iltonian is projected and diagonalized in the subspace spanned by 
the single-particle states defined by the electronic configurations, as 
proposed recently in (25). We begin by considering a set of configu-
rations  = {x(i)} , all with the right-particle number for each spin 
sector. Subindices between parenthesis label configurations in a set 
and not configuration components. We use the generic label  for a 
set of configurations with the right particle number. In practice, the 
configuration recovery procedure will execute the eigenstate solver 
on the sets N and R.

Conservation of spin. In this study, we perform an approximate 
restoration of the total spin symmetry labeled by the Ŝ2 quantum 
number. In particular, we are interested on wave functions ∣ψ(k)⟩ 
that are as close as possible to singlet states, i.e., eigenfunctions of 
total spin with eigenvalue 0, Ŝ2 ∣ψ(k)⟩ = 0 . Conservation of symme-
tries is notoriously important because molecular eigenstates are joint 
eigenfunctions of Ĥ and its symmetries, including Ŝz , N̂ , molecular 
point-group symmetries (if any), and Ŝ2 . Conservation of Ŝz and N̂ 
(and molecular point-group symmetries that are isomorphic to ℤ×n

2
 ) 

can be achieved in a relatively easy way because the eigenfunctions 
of these operators are SDs ∣x⟩ , e.g.

Therefore, in this work, we ensure that the configurations used to 
span the subspace all have the desired eigenvalue of Ŝz and N̂ as part 
of the configuration recovery procedure in the presence of noise. 
Conservation of Ŝ2 is more difficult to achieve in CI methods be-
cause the eigenfunctions of Ŝ2 are not SDs. The proper way of ensur-
ing conservation of Ŝ2 is expanding ∣ψ(k)⟩ on a set of CSFs, i.e., spin 
symmetry–adapted linear combinations of SDs. The use of CSFs was 
common in early CI codes because, in addition to the obvious ben-
efits of reducing the memory footprint of the CI vector, automatic 
conservation of total spin enhanced the stability of the CI iterations. 
Modern CI codes tend to use SDs as opposed to CSFs because the 
formation of the σ vector (the most memory- and rate-limiting step 
of CI algorithms) is considerably more efficient and easily parallel-
ized in SD-based algorithms and in part because system memory 
and disk are more plentiful than in previous machines. However, in 
SD-based CI codes, the conservation of total spin is no longer guar-
anteed. In the case of SQD, sampling from a quantum computer may 
return sets of SDs that do not allow constructing eigenfunctions of 
total spin. For example, in a (2e,2o) system, one may sample the 
configuration ∣1001⟩ (having a single spin-down excitation over the 
RHF state ∣0101⟩ ), which is a linear combination of the open-shell 
singlet and triplet states, respectively ( ∣1001⟩±∣0110⟩)∕

√
2 . If the 

configuration ∣0110⟩ is not sampled, one can construct neither ei-
genfunction of total spin, leading to spin contamination or redun-
dancy (i.e., the configuration ∣1001⟩ is involved in a CI calculation 
but has coefficient 0 in the CI vector). In this work, to facilitate 
conservation of total spin, we relied on the following procedure: 
Instead of collecting directly d independent and identically distrib-
uted (i.i.d.) samples from  to make the batch  (k) , we collect 

√
d∕2 

samples and identify all unique configurations xu (u for unique) of 
length M ∕2 obtained from x↑(i) and x↓(i) for 1 ≤ i ≤√

d∕2 , forming 

∣x⟩ =
�

pσ

�
â†
pσ

�xpσ
∣�⟩ (7)

∣x⟩ = ⊗
pσ

∣xpσ⟩ (8)

∣x
RHF

⟩=

���������

0… 0
⏟⏟⏟
NMO−N↓

1… 1
⏟⏟⏟

N↓

0… 0
⏟⏟⏟
NMO−N↑

1… 1
⏟⏟⏟

N↑

�
(9)

N̂ ∣x⟩=
�
Nαx+Nβx

�
∣x⟩ , Ŝz ∣x⟩=

�
Nαx−Nβx

�
∣x⟩ (10)
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the set  (k) = {xu} . The size of the set is upper bounded by ∣ (k)∣ ≤ √
d . From  (k) , we obtain the batch set  (k) as

The size of the set above is upper bounded by ∣ (k) ∣ ≤ d . This pro-
cedure facilitates total spin conservation (for example, from the configu-
ration ∣1001⟩ , one can build the set {∣1001⟩ , ∣1010⟩ , ∣0101⟩ , ∣0110⟩} , 
which contains two closed-shell configurations and allows con-
structing an open-shell singlet state) but does not enforce it. There-
fore, in combination with the sampling strategy mentioned above, 
we achieve the conservation of total spin by a soft constraint in 
the eigenstate solver, i.e., by adding a penalty term to mitigate spin 
contamination

where λ can be understood as a Lagrange multiplier that penalizes 
contributions from S2 ≠ s(s+1) . In this work, we used a soft con-
straint with λ = 0.2.

Projection and diagonalization. For each subsampled set  (k) , the 
Hamiltonian is projected into the corresponding subspace spanned 
by the configurations in  (k) in Eq. 3.

We then diagonalize this projected Hamiltonian (solving 
Ĥ (k) ∣ψ(k)⟩ = E(k)∣ψ(k)⟩ ), and its ground state forms an approxima-
tion to the ground state of Ĥ . The approximate ground state ∣ψ(k) ⟩ is 
defined by its amplitudes in the subspace

The kth estimate of the ground-state energy is given by

Self-consistent configuration recovery
After a quantum state ρ̂ , corresponding to a noiseless state ∣Ψ⟩ , is 
prepared in our prefault-tolerant quantum processor, we measure it 
in the computational basis, obtaining the set of measurements

The class of noiseless states ∣Ψ⟩ considered in this work are eigen-
states to the total particle number operator and the total number 
operator for each spin species

From the measurements on the quantum processors, we observe 
that there are a number of configurations in ̃ whose N

x↑ and N
x↓ do 

not match the N↑ and N↓ of the ground state. In table S1, we report 
typical values of the fraction of sampled configurations with the 
wrong particle number. Because the circuits we use to produce ∣Ψ⟩ 
are particle-number preserving, we are certain that configurations 
with wrong particle numbers have been corrupted by noise. It is this 
subset of configurations that the configuration recovery scheme is 
applied to. The configurations in ̃ whose N

x↑ = N↑ and N
x↓ = N↓ 

are not subject to the configuration recovery subroutine.
We then probabilistically flip bits and restore the correct particle 

number using information obtained from observables of the system. 

We use the spin-orbital occupancy averaged over all collected batch-
es of subsamples n , whose components are defined in Eq. 4.

Consider a configuration x with N
x↑ spin-up electrons, where 

N
x↑ > N↑ . From the set of occupied spin-orbitals in the first half of 

x , ∣N
x↑ − N↑∣ bits are sampled to be flipped. If instead N

x↑ < N↑ , the 
bits to be flipped are instead sampled from the unoccupied spin-
orbitals. The same procedure applies to the spin-down orbitals.

The probability of flipping bit xpσ depends on the distance be-
tween the value of the bit and the reference orbital occupancy npσ . 
The simplest approach would be to define the distribution propor-
tional to ∣xpσ − npσ∣ . However, this introduces an undesirable effect: 
If for some spin-orbital pσ , npσ ≈ 0.5 , then ∣xpσ − npσ∣ ≈ 0.5 as well, 
i.e., we assign roughly 50% probability weight to flip the bit, regard-
less of its initial value. On the other hand, the initial value xpσ will, in 
general, retain some correlation with the other values in the bit-
string, even in the presence of noise. Hence, a better approach is to 
deweight the probability of flipping when ∣xpσ − npσ∣ is small by us-
ing a modified rectified linear unit (ReLU) function w

(
∣xpσ −npσ∣

)
 , 

defined as

The parameter h ∈ (0, 1) defines the location of the “corner” of the 
ReLU function, whereas the parameter δ ∈ [0, c] defines the value of 
the ReLU function at the corner. w becomes a true ReLU function 
when δ = 0 , and for values of δ > 0 , the ReLU is modified so that it 
is not identically zero except at y = 0 In the specific cases in this 
work, we chose the values δ = 0.01 and h = N ∕M (the filling factor) 
in all experiments.

We do not assume that we know n a priori, and instead, we com-
pute it and improve it self-consistently, following the procedure:

1) Setup phase: (i) Find the subset of configurations of ̃ that live 
in the correct particle sector for both spin species, which we denote 
by N  : N ⊂ ̃ . (ii) Obtain batches of samples 

( (1), … , (K)
)
 

from N as described in the previous section. (iii) Run the eigen-
state solver on the batches and obtain approximate eigenstates 
∣ψ(1)⟩ , … , ∣ψ(K)⟩ (Eqs. 3 and 13). (iv) From the approximate eigen-
states construct the first guess for n , according to Eq. 4.

2) Self-consistent iterations (repeat until stopping criterion is met): 
(i) n is used to correct the configurations with the wrong particle 
number in ̃ (we give this subset the label ∕N ). The resulting set of 
recovered configurations is labeled →N. (ii) From R = N ∪ →N , 
batches of samples 

( (1), … , (K)
)
 are obtained as described in 

Discussion. (iii) Run the eigenstate solver on the batches and ob-
tain approximate eigenstates ∣ψ(1)⟩ , … , ∣ψ(K)⟩ (Eqs. 3 and 13). (iv) 
From the approximate eigenstates construct refined guess for n , ac-
cording to Eq. 4. (v) If the stopping criterion is not met, go back to 
step 2a.

We direct the reader to Fig. 2 in the main text for a numerical 
emulation of the effect of the configuration recovery on the accuracy 
of SQD in the presence of noise. This method is implemented in the 
package (66).
Energy-variance extrapolation
It is guaranteed that the accuracy of SQD (with or without configu-
ration recovery) increases as the number of configurations used for 
the subspace expansion d is increased. However, the convergence of 

 (k) =
{
x ∣x=x

u
(i)
⊕x

u

(j)
for allxu

(i)
, xu
(j)

∈ (k)
}

(11)

�
H+λ

�
S2− s(s+1)

�2�
∣ψ ⟩ = E ∣ψ ⟩ (12)

∣ψ(k)⟩ =
�

x∈ (k)

c(k)
x

∣x⟩ (13)

E(k) = ⟨ψ(k)∣Ĥ (k) ∣ψ(k)⟩ (14)

̃ = {x∣x ∼ P̃Ψ} (15)

NMO�

p=1

�

σ

n̂pσ ∣Ψ⟩=N ∣Ψ⟩,
NMO�

p=1

n̂p↑ ∣Ψ⟩=N↑ ∣Ψ⟩,
NMO�

p=1

n̂p↓ ∣Ψ⟩=N↓∣Ψ⟩ (16)

w
�
y
�
=

⎧
⎪
⎨
⎪⎩

δ
y

h
if y≤h

δ+(1−δ)
y−h

1−h
if y>h

(17)
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the ground-state properties with d is not expected to follow any 
specific functional relation. Therefore, attempting to analyze the 
convergence as a function of d is not well motivated. Instead, the 
different eigenstate approximations obtained for different values of d 
and different batches of samples  (k) are used for an energy-variance 
extrapolation (43, 67–71). Consider the approximate eigenstate ∣ψ⟩ , 
whose energy is given by E = ⟨ψ ∣ Ĥ ∣ψ ⟩ , and consider the exact 
eigenstate energy ET . The difference between the approximate 
energy and ET

vanishes linearly with the Hamiltonian variance divided by the 
square of the variational energy (43)

This linear relation is satisfied as long as ∣ψ⟩ is sufficiently close to 
an eigenstate of the Hamiltonian, as measured by the state fidelity. 
The least-squares fit of a collection of energy-variance points yields 
an estimate of ET , as the intersect of the fit with the ordinates. This 
point is the extrapolation of the estimate of the energy to the limit 
where ∣ψ⟩ coincides with the exact eigenstate. Besides the energy 
extrapolation, the energy-variance analysis may also reveal the exis-
tence of multiple eigenstates close in energy to the ground state.

In the main text and in the Supplementary Materials, we apply the 
energy-variance analysis to two different sets of energy-variance 
pairs. The first one is the energy-variance pairs obtained by the HCI 
procedure where different energies and variances are obtained by 
changing the cutoff parameter that indirectly controls the number of 
determinants in the subspace projection and diagonalization, result-
ing in different levels of accuracy. The second set of energy-variance 
pairs are those obtained from SQD for different numbers of configu-
rations d as well as for different batches of sampled configurations  (k).

Experimental details
In this section, we describe the quantum circuits that are used to 
produce the configurations to which we apply the eigenstate solver. 
In addition, we provide details on the setting of circuit parameters 
from an efficient classical CCSD calculation and the mapping of the 
circuits to quantum processors with heavy-hex connectivity.
Quantum circuits
In this work, we used the LUCJ ansatz (34) to sample randomly dis-
tributed electronic configurations. LUCJ derives from the UCJ an-
satz, which has the form (35) of a product of L layers, as defined 
in Eq. 5. We recall that

In  Eq.  21, p, q = 0 … NMO − 1 label molecular spatial orbitals 
and σ, τ label spin polarizations ( α, β for spin-up and spin-down 
electrons, respectively). Kμ

pq ∕ J
μ
pq,στ has complex/real matrix elements 

and is anti-Hermitian/symmetric. The UCJ ansatz can be derived 
from a twice-factorized low-rank decomposition of the qUCCD an-
satz (35, 72), and the L-product form is such that the exact FCI wave 
function can be obtained via Eq. 5 (35, 36).

The local UCJ or LUCJ (34) introduces a “local” approximation 
of the UCJ ansatz, which makes the following modifications for 
opposite-spin and same-spin number-number terms

where σ = α, β and the sets S, S′ are such that the quantum circuit 
implementing eîJμ has depth O(1) and only comprises O

(
∣S∣+ ∣S�∣

)
 

number-number “nn gates,” i.e., two-qubit unitaries of the form 
Unn(φ) = e−i

φ

4
(Zp+Zq−ZpZq) , acting on adjacent qubits p, q in the topol-

ogy of a certain processor. For example, on a heavy-hex processor, 
S = {4k , k = 0 …

(
N

MO
−1

)
∕4} and  S� = {

(
p, p+1

)
, p = 0 … 

N − 2} (34). The circuits e±K̂μ , on the other hand, can be implement-
ed by a Bogolyubov circuit acting on NMO qubits and comprising 
O
[
Nα

(
N

MO
−Nα

)]
 gates and depth O

(
NMO

)
 (73–75). Through the 

local approximation, the LUCJ Ansatz balances hardware friendli-
ness and accuracy, the latter ultimately deriving from its connection 
to coupled cluster theory and adiabatic state preparation (34).

Unless otherwise specified, we use the truncated LUCJ circuit 
∣Ψ⟩ = eK̂2e−K̂1eîJ1eK̂1 ∣x

RHF
⟩ , which is the result of considering the 

two-layer LUCJ circuit and removing the last orbital rotation and 
last Jastrow operations. The resulting state is implemented by a cir-
cuit whose depth is identical to the single-layer LUCJ circuit. The 
addition of the eK̂2 operation to the circuit can have a large impact on 
the configurations generated by the circuit when the parameters are 
set from the t2 tensor from a classical restricted closed-shell CCSD 
calculation (as described in the next section). For dynamically cor-
related species, the Jμpσ,qτ parameters obtained from t2 can have a 
small amplitude, resulting in the approximate cancellation of the 
exp

(
− K̂1

)
 and exp

(
K̂1

)
 terms in the ansatz. Without exp

(
K̂2

)
 , the 

resulting wave function can be overconcentrated around the Hartree-
Fock configuration. Therefore, for dynamically correlated species, the 
action of exp

(
K̂2

)
 is to remove some of the excessive concentration 

of the ∣Ψ⟩ wave function, when parameters are set from a restricted 
closed-shell CCSD calculation.
Initialization of LUCJ parameters
In our experiments, we parameterize the LUCJ circuits using the 
following procedure:

1) First, we carry out a classical restricted closed-shell CCSD cal-
culation, yielding amplitudes t1,ai and t2,aibj , where ij∕ab labels oc-
cupied/unoccupied orbitals in the RHF state.

2) We reshape the t2 tensor into the matrix 
(
t2
)
ai,bj

 and diagonal-
ize it, 

�
t2
�
ai,bj

=
∑

yτyUai,yUbj,y , where the eigenvectors τy are sorted 
in decreasing order of absolute value.

3) We extend the unitaries to the following matrices

i.e., matrices where only the occupied/unoccupied block is nonzero.
4) We define the Hermitian operators

and their eigenpairs

δE = ⟨Ĥ⟩ − ET (18)

ΔH

E2
=

⟨ψ∣Ĥ2∣ψ ⟩ − ⟨ψ ∣Ĥ∣ψ⟩2
E2

(19)

K̂μ =
∑

pq,σ

K
μ
pq â†

pσ
âqσ , Ĵμ =

∑

pr,στ

Jμ
pσ,qτ

n̂pσn̂qτ (20)

∑

pq

Jpα,qβn̂pαn̂qβ →
∑

p∈S

Jpα,pβn̂pαn̂pβ

∑

pq

Jpσ,qσn̂pσn̂qσ →
∑

pq∈S�

Jpσ,qσn̂pσn̂qσ
(21)

Ũy,pr = δpaδriUai,y (22)

X±,y =
1 ∓ i

2

(
Ũy± iŨ

T

y

)
(23)

X±,yV±,y = g±,yV±,y (24)
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5) We define the operators

6) We retain the first L matrices J , K . This allows us to refine a 
nonlocal UCJ wave function (35, 72).

7) We zero out the entries of the J matrices leading to quantum 
gates acting on nonadjacent qubits. For a heavy-hex lattice, we re-
tain the following elements

The final sparsification allows us to construct an LUCJ wave 
function. In a conventional LUCJ calculation, these parameters are 
the starting point of a variational optimization. For the hardware 
experiments reported in this study, we used these parameters, with-
out further optimization, to define an LUCJ circuit, which we used 
to sample randomly distributed configurations.
Mapping to heavy-hex processors
The choice of retaining the elements 

(
Jμ
)αβ
p,p

 with p = 0 … N
MO

− 
1 , p%4 = 0 when implementing LUCJ on a heavy-hex processor 
has an important technical motivation: On such devices, assuming a 
number of qubits greatly exceeding NMO , spin-up and spin-down 
orbitals can be mapped on two segments of adjacent qubits forming 
a “zigzag” pattern and connected through an auxiliary qubit for 
p = 0,4,8, … as shown in the three rightmost panels of Fig. 4. Such 
a qubit layout allows implementing LUCJ with a minimal overhead 
of SWAP gates (two per auxiliary qubit and layer of LUCJ). Howev-
er, on current processors with up to 133 qubits, for NMO > 21 one 
cannot couple NMO ∕4 spin-orbitals with opposite spins through 
auxiliary qubits without incurring a substantial overhead of SWAP 
gates, for the simple reason that a chain of 22 or more qubits is longer 
than the “diagonal” of the processor. In such a situation, as shown in 
the rightmost panel of Fig. 4, the segments on which spin-up and 
spin-down qubits are mapped form two “tails” that are not connect-
ed by auxiliary qubits. This fact has two implications: (i) no more 
than six spin-orbitals with opposite spins can be coupled through 
auxiliary qubits, and (ii) if one retains the elements 

(
Jμ
)αβ
p,p

 with 
p = 0 … NMO − 1 , p%4 = 0 and p ≤ 16 , the largest elements of Jμ 
may be discarded, yielding a lower-accuracy wave function. The first 
problem is a fundamental one, which can only be resolved with a 
substantially different mapping of fermionic degrees of freedom 
onto qubits and/or through the availability of larger processors. The 
second problem, on the other hand, has a simple solution, which we 
now describe. First, for any pair of spatial orbitals p, r = 0 … NMO − 1 , 
the orbital rotation

implements the permutation Spr ∈ SNMO
 exchanging orbitals p and r , 

in the sense that

Three immediate implications of this fact are as follows:
1) Ŝ†prn̂qτŜpr = n̂Spr(q)τ

2) for any density-density operator ̂Jμ =
∑

qs,στ

�
Jμ
�στ
q,s
n̂qσn̂sτ , one has

3) that for any permutation S ∈ SNMO
 there exists an orbital rotation 

eK̂S implementing the permutation S (this is true because permu-
tations can be written as products of exchange permutations, an 
exchange permutation can be implemented by an orbital rota-
tion, and orbital rotations are closed under multiplication).

Consider now the tensor 
(
Jμ
)στ
q,s

 resulting from the low-rank de-
composition of the CCSD operator described in the previous sub-
section. Let p0 … p

�
 be the � elements of 

(
Jμ
)αβ
q,s

 with the largest absolute 
values, and let S ∈ SNMO

 be the permutation such that S
(
p
0

)
= 

S
(
p0
)
= 0 … S

(
p
�

)
= 4 � . Then

where the elements of 
(
J �
μ

)αβ

q,s
 with the largest absolute values are at 

positions 0, … , 4 � . Before sparsifying the tensor J̃μ , one can use 
the identity

to obtain a UCJ operator with transformed orbital rotations e−�K̂μ 
and an opposite-spin density-density interaction whose largest ele-
ments in absolute value act on spatial orbitals p = 0,4,8, … , 4 � . 
Sparsification of 

(
J �
μ

)αβ

q,s
 then leads to retaining the l dominant 

opposite-spin density-density interaction terms (as many as allowed 
by the size and topology of the available heavy-hex processor) with 
a minimal overhead of SWAP gates.

In this work, we retained the elements 
(
Jμ
)αβ
p,p

 with p = 0 … 
N

MO
− 1 , p%4 = 0 and p ≤ 16 . In future work, the procedure de-

scribed here could be used to modify the LUCJ wave function and 
the resulting probability distribution for electronic configurations.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S20
Table S1
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â†
pσ
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âsτ

)
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�
μe−K̂S e−K̂μ = eK̂

�
μeîJ
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