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offering challenging problems for practical use cases around the hundred-qubit mark. Although current quantum
processors have reached this size, deep circuits and a large number of measurements lead to prohibitive runtimes
for quantum computers in isolation. Here, we demonstrate the use of classical distributed computing to offload all
but an intrinsically quantum component of a workflow for electronic structure simulations. Using a Heron super-
conducting processor and the supercomputer Fugaku, we simulate the ground-state dissociation of N, and the
ground state properties of [2Fe-2S] and [4Fe-4S] clusters, with circuits up to 77 qubits and 10,570 gates. The
proposed algorithm processes quantum samples to produce upper bounds for the ground-state energy and
sparse approximations to the ground-state wave functions. Our results suggest that, for current error rates, a
quantum-centric supercomputing architecture can tackle challenging chemistry problems beyond sizes amena-

ble to exact diagonalization.

INTRODUCTION

The most common task in theoretical quantum chemistry is the
computation of ground-state energies by solving the Schrédinger
equation H|¥) = E|¥) in the Born-Oppenheimer approxima-
tion. Exact numerical solutions in a finite basis set have a cost
growing combinatorially in the number of electrons and orbitals.
This limits exact diagonalization in the full configuration inter-
action (FCI) to system sizes close to 22 electrons in 22 orbitals
(22e,220) (I) and (26€,230) (2). For system sizes beyond the reach
of FCI, one must rely on approximate methods, e.g., diagram-
matic techniques, wave function ansatzes, and Monte Carlo inte-
gration (3, 4).

Progress in quantum computing has triggered a flurry of theo-
retical proposals for computational chemistry over the past decade
[e.g., (5-7)]. At the same time, attempts have been made at imple-
mentations on prefault-tolerant quantum processors (8-14), but these
have so far been limited to small systems for two main reasons.
First, despite numerous efforts to improve on the measurement
problem [e.g., (15-17)], runtime for energy expectation value esti-
mation on interesting systems remains out of any reasonable times-
cale. Second, the depths of chemically motivated quantum circuits
for computations of chemistry are very high. For unitary coupled
cluster (18) and a single step of time evolution, these quantities scale
as M* (19) on a system with M spin-orbitals. Although this scaling
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can be improved with various techniques (20), on prefault-tolerant
devices, the signal emerging from circuits of such size is weakened
by the accumulation of gate errors and qubit decoherence.

Here, we show that a quantum-centric supercomputing archi-
tecture and workflow—which we call sample-based quantum diago-
nalization (SQD)—allow us to tackle realistic electronic structure
problems on system sizes beyond the reach of exact diagonalization on
prefault-tolerant quantum processors. We conduct quantum experi-
ments to study the ground-state properties of the N, molecule and the
[2Fe-2S] and [4Fe-4S] clusters using 58, 45, and 77 qubits, respectively,
and a maximum number of 3.5 K two-qubit gates.

The manuscript is structured as follows. In the Results section, we
provide a brief description of the problem statement, the concerted
quantum-classical workflow, and the configuration recovery tech-
nique, as well as the quantum circuits run in the experiments. This
section ends with the presentation of the experiment results on the
ground-state properties of the N, molecule in a correlation-consistent
basis set and the active spaces of the [2Fe-2S] and [4Fe-4S] clusters.
The Discussion section summarizes our findings and examines some
conditions for the advantage with SQD or variations thereof. The Ma-
terials and Methods section provides detailed explanations on the
subspace projection and diagonalization and approximate total spin
symmetry restoration, the configuration recovery technique, and ex-
perimental details including the construction of the quantum circuits
and the mapping into quantum processors.

RESULTS

We set up the discussion of our results by considering the quantum-
centric supercomputing architecture (21) schematized in Fig. 1. The
architecture enables scaling of computational capacity by leveraging
quantum processors for their natural task: executing a limited num-
ber of large quantum circuits. We follow the workflow in Fig. 1 to
summarize our methods.
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Fig. 1. Quantum-centric supercomputing architecture and SQD workflow diagram. (Left) We illustrate a simplified architecture used to execute our workflow. The
architecture has a cluster with a quantum system alongside classical runtime nodes within an isolated environment. A workload management system controls hybrid
quantum-classical jobs through middleware. Our workflow is distributed on a set of classical nodes. It includes standard quantum chemistry application routines such as
computing electronic integrals, mapping to qubits, and preparing circuits to be executed. (Right) Details of the classical postprocessing step. The input is a set of noisy
samples X from the quantum execution that are processed with our configuration recovery step, using information from a vector n of reference orbital occupancies. The
green inset shows an example where a configuration with N, < N is corrected. The set of recovered configurations Xy is subsampled and distributed for projection and
diagonalization on parallel classical nodes. A new average reference occupancy vector n is computed from the results, and the configuration recovery loop is repeated
self-consistently until convergence.

Our main goal is to find the ground state of chemistry Hamiltonians ~ Configuration recovery
On a prefault-tolerant quantum computer, the action of noise alters

= Zh e+ Z (prl qs) st as the distribution from its ideal form Py =|(x|¥)|?> to some other
= PT po o 2 po qt STI6 P h h h . f ﬁ . X"’ bl

(1) p, which generates the noisy set of configurations &, accessipble to

pr prgs us via quantum measurement. Noise in the quantum system broad-

c cT ens the distribution Py over configurations that do not contribute to

expanded over a discrete basis set. Here, we have defined the fermi- low-energy states, so-called deadwood (24). As a result, only a frac-

onic creation/annihilation operator @’ _/ @, associated to the p-th tion of X' contains a meaningful quantum signal. To improve this
P scenario, we introduce a self-consistent configuration recovery tech-

nique, which allows a probabilistic partial recovery of noiseless con-
figuration samples from X.

The configuration recovery scheme is inspired by the structure of
chemistry problems. The Hamiltonian in Eq. 1 conserves the num-
ber of particles separately for each spin species. The recovery routine
targets configurations x that have the wrong particle number N, # N
due to the accumulation of errors in the execution of the quantum

basis set element and the spin 6, whereas h,,, and (prlgs) are the one-
and two-body electronic integrals, obtained from standard chemis-
try software (22). Throughout this manuscript, we use molecular
orbitals as basis set elements. We map the degrees of freedom of
Eq. 1 to qubits with a Jordan-Wigner (JW) transformation (23). We
then construct a quantum circuit to be executed on quantum hard-
ware, preparing a state| ¥ ) on M qubits, which represents a molecu-
lar wave function on M molecular spin-orbitals. In the JW mapping, i cuit.

the single-qubit basis states |0) /1) represent empty/occupied spin- Repeated rounds of recovery can be carried out self-consistently.
orbitals. These mapping and optimization steps are performed on  The first step of each recovery round is to iterate through the set
classical nodes (see Fig. 1). We execute the circuit on a quantum com- % and find configurations x with N # N particles. If N, > N (or
puter and measure | ') in the computational basis. Repeating this N < N),|N, — N|bits are sampled to be flipped from the set of oc-
produces a set of measurement outcomes cupied (or empty) spin-orbitals, according to a distribution propor-
tional to a monotonically increasing function (see Materials and
Methods section for further information) of |X,, — M), the dis-
tance from the current value of the bit to the average occupancy of
the spin-orbital po, obtained from the previous recovery round.
i~n the form of bitstrings x € {0, 1} distributed according to some  This generates a new set of recovered configurations Xp.

Py; the bitstrings represent electronic configurations, also referred Following the next step of Fig. 1, we build K batches of d con-
to as Slater determinants (SDs). figurations SW ..., S® using samples from the set Xy, according

X = {x]x ~ Py(x)) 2)
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to a distribution proportional to the empirical frequencies of each
x in Xy. We project and diagonalize the Hamiltonian over each
S®:k=1, ...,K, as proposed recently in the quantum selected
configuration interaction (SCI) method (25, 26), which draws inspi-
ration from the classical SCI framework (27-33).

Each batch of sampled configurations spans a subspace S® in
which the many-body Hamiltonian is projected

Hs(k) =P5(k)HPS(k), Wlth PS'(") = Z |X><X| (3)
xeS®

The ground states and energies of 3| sk, which we label | w®Yand
E®, are then computed using the iterative Davidson method on
multiple classical nodes. The computational cost—both quantum
and classical—to produce |y is polynomial in d, the dimension of

the subspace.
The ground states are then used to obtain new occupancies

M= 2 WOl ®)
1<k<K

(4)

for each spin-orbital tuple (po), averaged on the K batches. These
occupancies are sent back to the configuration recovery step, and
this entire self-consistent iteration is repeated until convergence, re-
alizing an SQD of the target Hamiltonian. The initial guess for n
used for the first round of recovery comes from running SQD us-
ing the raw quantum samples in the correct particle sector. The
configuration recovery routine can be seen effectively as a problem-
informed clustering of a noisy signal around the occupations n. In
general, the convergence of the configuration recovery procedure
depends on the error rates and the physical properties of the system
under consideration. With current error rates, and for the systems
in this study, we have observed its convergence within three itera-
tion steps in all systems. We always chose a maximum number of
five recovery iterations. We foresee that the lowering of error rates in
future quantum hardware will result in faster convergence. Addi-
tional details are provided in the Materials and Methods section.
To test the noise robustness, we perform numerical simulations
that confirm the improvements of applying the configuration recovery
routine to the dissociation of N, (6-31G basis set). In this test, we
sample from the exact ground state Py_(x) =|(x|yg)|* and we set a

subspace dimension of d = 10°. We use a global depolarizing noise
channel to model the effect of noise, P‘I’G (x) = aPy_(x) + (1-) !

oM’
with o € [0, 1] the parameter that controls the amount of noiseless
quantum signal. Figure 2 shows the error in the ground-state energy
relative to the noiseless case (o = 1), as a function of the amount of
signal a, for the estimator both with and without configuration re-
covery. On the N, model, errors below 10mEj, can be obtained from
~20% signal using the raw noisy samples. However, by using con-
figuration recovery, we can tolerate an ~2% signal to reach the same
error. This numerical experiment hints that the use of configuration
recovery will be crucial for large-scale experiments.

Quantum circuits

Before presenting our experimental results, we discuss the circuits
|'¥) used to produce the candidate ground states. We use a trun-
cated version of the local unitary cluster Jastrow (LUCJ) ansatz (34),
shown in Fig. 3A

L
|¥) = H efvelle™w | xppp ) (5)
p=1
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Fig. 2. Self-consistent configuration recovery. Energy error (mean and SD) in the
dissociation of N, (6-31g), averaged over 24 bond lengths equally spaced between
R=07 AandR =30 A, as a function of quantum signal to noise ratio, parameter-
ized by a. The point ata = 0 corresponds to sampling from the uniform distribution
(no signal). The energies are obtained via projection and diagonalization of d = 10°
raw noisy samples against a subspace of the same size obtained by the configura-
tion recovery routine.

~

Here, K, = ¥, K;, @' @, are generic one-body operators, J, =

po 1o
Zp,m]g(,,rr ’n\pclﬁm are density-density operators restricted to spin-
orbitals that are mapped onto adjacent qubits (34), and xgy is the
bitstring representing the restricted Hartree-Fock (RHF) state in the
JW mapping. Through this local approximation, the LUC]J ansatz
allows for moderate circuit depths. Its accuracy derives from the
connection with unitary coupled cluster theory and adiabatic state
preparation (34-36). The moderate depths of LUC] are due to the
use of exponentials of one-body operators, implementable in linear
depth and a quadratic number of two-qubit gates, and density-
density operators, implementable in constant depth and a linear
number of ZZ rotations (due to the locality approximation) (34).
The LUC]J circuit, compiled into one- and two-qubit gates, is shown
in Fig. 3B.

In Fig. 3C, we show a numerical experiment comparing the po-
tential energy curve of N (6-31G basis) obtained by restricted cou-
pled cluster with singles and doubles (CCSD) to one obtained from
the LUCJ ansatz, numerically optimized using the subspace energy
as the objective function (see Supplementary Materials for further
information). The dimension of the diagonalization subspace for
different bond lengths ranging from d = 209764 to d = 1340964,
with a median of d = 563250. Because of the presence of strong
static correlation, CCSD fails in the description of the dissociation
curve, whereas the optimized LUCJ ansatz produces a qualitatively
correct dissociation curve. We simulated the LUC]J ansatz using the
ftsim library (37).

Throughout our experiments, we use the truncated LUCJ circuit
|¥) = e Ko gKigih =K | Xggr )» which is the result of considering the
L = 2 circuit and removing the last orbital rotation and Jastrow op-
erations. We parameterize the LUC]J circuits converting the CCSD
wave function in Jastrow form and imposing a locality approxima-
tion to the resulting J* tensors, i.e., zeroing out the components ]gc,r‘r
not corresponding to adjacent qubits (34). For systems where the
]gwr parameters obtained from CCSD have small amplitude, the

e~%iand X terms in the ansatz approximately cancel: In such a situ-

ation, without ez, the resulting wave function is overconcentrated
around the Hartree-Fock configuration (see the Materials and Meth-
ods section for additional information). Although we initialize the

3o0f14

G202 ‘62 8unr uo 610°80us 105" MMM//:SANY LWOoJ) pepeojumod



SCIENCE ADVANCES | RESEARCH ARTICLE

A B
T e T
3
laq M 1 I ~ g < _
4 3 ‘g T T 5 o
V| [ | 4l a = % o
LTS o = SYUB-Z< |
o I B I Pl N~ ©
, @ @ 2 €\ ] &
°G—:'4'(3 1 ) Hg2l.5
o H E@ U g [ N S
(o8
IR =~ P p
alg el 1NmY LAEE [
o ERSS g
38 H= H =0
o] © & ° @

C 710910 .
—— Exact
—r— RHF
Z meas nn gate 0.6 —r— CISD
(aB +— CCSD et
| — ° o4 LUCJ — subspace
XX+YY qubit | 5 X"
gate (o) o
o—0 .b : 0.2
nn gate qubit
(ac)  (B)
O====0 [ ] 0.0
nn gate qubit
(#5)° ()

Fig. 3. Quantum circuits for chemistry: LUCJ. (A) Schematic representation of the truncated LUCJ circuit used to generate the set of samples. The circuit is composed of
orbital rotation unitaries exp( =K, ), same-spin cluster operators exp i (J,qq )|, and opposite-spin cluster operators exp(iJ,,; ), with a/B denoting spin-up/down.

oo

(B) Single unit of the heavy-hex lattice with acompilation of the LUC] circuitinto single-and two-qubit gates, with the nn gate defined asU,,,(¢) = exp [i(p(1 —Zo) (1 -z, )/4].
(C) Comparison of the potential energy surface of N, (with a 6-31G basis) obtained from a noiseless subspace simulation of the LUCJ circuit in (A) with L = 1, and optimized
parameters, against restricted CCSD. RHF, CISD, and exact energies are shown for reference.

LUC]J circuit with CCSD parameters, the nature of these two meth-
ods is very different. In particular, CCSD theory is nonvariational while
SQD is. This adds an additional difficulty in the understanding
of the relative performance of CCSD and SQD with LUC]J initial-
ized from CCSD parameters. We have performed optimization-free
experiments, exploiting the connection between LUC] and classical
coupled cluster theory, yet closing a quantum-classical optimization
could further improve the quality of the solutions.

Implementation on a quantum-centric

supercomputing platform

In the following, we present the experimental results obtained using
the methods discussed so far, on Heron quantum processors and the
Fugaku supercomputer. The largest experiment is run on a subset of
77 qubits of a 133-qubit Heron quantum processor. The median fi-
delities for this subset are 99.77% for two-qubits gates, 99.97% for
single-qubit, and readout fidelity of 98.37%, with median coherence
times T; = 180ps and T, = 150 ps. In SQD calculations, it is particu-
larly important to have as many measurement outcomes with cor-
rect particle number as possible. However, qubits may be initialized
imperfectly, i.e., not in the| 000 ... 000 ) state, resulting in more mea-
surement outcomes with incorrect particle number. To mitigate this
source of error, we use a reset-mitigation scheme by adding an ad-
ditional measurement instruction before the circuit execution and
postselecting outcomes based on this first measurement returning
the initial state | 000 ... 000). This postselection results in ~1/3 re-
tention rate of all the executions, i.e., qubits collapse initialized in
the desired state upon the additional measurement with proba-
bility ~ 1/3.

The classical projection and diagonalizations are obtained with
the Davidson method implemented in the library PySCF (22) on a
single node, or DICE (30, 33) for distributed computing on multiple
nodes. Convergence to the most accurate solution can be obtained
in two ways: increasing the accuracy per diagonalization with the
subspace size d, and increasing the number of batches K, which will
reduce statistical errors in the analysis. For our largest experiment
on the [4Fe-4S] cluster, we use up to d = 100M, distributing a single
projection and diagonalization to 64 nodes of Fugaku, and K = 100
batches, for a total of 6400 nodes. We analyze runtime performance
as a function of d and K versus the number of nodes used in the
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Supplementary Materials. At 64 nodes per diagonalization on the
largest experiments, classical runtimes are about 1.5 hours. The larg-
est heat-bath configuration interaction (HCI) calculation that we
performed on 16 nodes at d = 2.3M took about 16 min.

We perform two classes of experiments: the breaking of the triple
bond of N, (cc-pVDZ basis), in the top panel in Fig. 4A, and the
ground states of [2Fe-2S] and [4Fe-4S] clusters (active spaces of the
TZP-DKH basis), shown in the top panels in Fig. 4 (B and C). We
study the ground-state properties of these molecular systems in the
S, =0 and $? = 0 subspace, where S, is the total Z component of
the spin and §* = §2 4 §? + §2. In this work, we used SDs to define
the subspaces, which in general are not eigenfunctions of $* un-
like configuration state functions (CSFs). In the closed-shell sys-
tems studied here, a source of spin contamination is the fact that
sampled determinants are not closed under the spin inversion op-
eration. Therefore, we achieved an approximate restoration of the
$? symmetry by extending the set of sampled determinants to
ensure closure under spin inversion, as detailed in the Materials
and Methods section.

Triple bond breaking in N,

The breaking of the N, bond is a well-known test of the accuracy of
electronic structure methods in the presence of static electronic cor-
relation (38, 39). Restricted CCSD theory, a dominant paradigm for
the accurate description of weakly correlated systems in quantum
chemistry, fails in the description of N, dissociation due to static
correlation effects: As correlations become stronger, RHF be-
comes unstable toward a symmetry-broken unrestricted Hartree-Fock
(UHF) state. CCSD built from RHF predicts an artificial barrier to
binding and overcorrelates at dissociation, whereas CCSD built
from a UHF reference dissociates correctly at the cost of spin con-
tamination, a manifestation of Léwdin’s symmetry dilemma. We use
a correlation-consistent cc-pVDZ basis set, to place emphasis on a
theory’s ability to treat both dynamic and static correlation in an ac-
curate and balanced manner. We map the N, molecule onto a Heron
processor as shown in the middle panel of Fig. 4A. We project and
diagonalize a Hamiltonian using d = 16 x 10° configurations. We
consider K = 10 batches of configurations, and each point in the
dissociation curve has |¥| = 100 x 10> measurement outcomes
and 10 iterations of recovery. The combined quantum runtime for
all points in the dissociation curve is ~45 min. The experimental
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Fig. 4. Experiments: Chemistry on large basis sets. (A) 58 qubits are used to model the N, dissociation (cc-pVDZ basis set). (B) 45 qubits are used for the [2Fe-2S] cluster
(TZP-DKH basis set) and (C) 77 qubits for the [4Fe-4S] cluster (TZP-DKH basis set). The top panels show a three-dimensional representation of the geometry of each mol-
ecule. The middle panels show the qubits selected on a Heron quantum processor layout, following the same color convention as (B) in Fig. 3. The bottom panel in (A)
shows the potential energy surface comparison, as well as the energy difference AE between the HCI energy and the energies obtained from different methods. The
brown scatterplot shows the value of E® for all batches of configurations, and the connected dots show min, (E(")). The bottom panel in (B) shows the energy-variance
analysis for three different eigenstates that both HCl and our method find upon increasing the value of d, as labeled by the color bar. For each approximate eigenstate
[w®), the horizontal axis AH = (y®[H2[y®) — ®|Hy®)2 The bottom panel in (C) shows a comparison of the energy-variance analysis applied to quantum measure-

ment outcomes and bitstrings (with the correct particle number) sampled from the uniform distribution. The DMRG energy in (B) and (C) is from (60).

data are reported in the bottom panel of Fig. 4A, showing the po-
tential energy surface of N, compared to classical approximate
methods. The data from our experiments are consistent with other
classical methods except for CCSD, which fails in the description
of the dissociation as seen for the smaller basis set considered
in Fig. 4B. Among the classical SCI methods, HCI (30) obtains the
best results for N, and will be our reference classical method in all
the other experiments. The difference between our method and HCI
energies is everywhere within tens of mE;,. We further analyze the
accuracy of our experiments as a function of d and the effect of or-
bital optimizations in the accuracy of the predictions in the Supple-
mentary Materials. This first test demonstrates that we are capable of
addressing multireference ground states and builds confidence
for the next set of experiments, which will focus on assessing the
ability of the quantum-classical architecture to do precision many-
body physics.

[2Fe-2S] cluster: Precision many-body physics

Iron-sulfur (FeS) clusters are molecular ensembles of sulfide-linked
1- to 8-iron centers in variable oxidation states. They are important

Robledo-Moreno et al., Sci. Adv. 11, eadu9991 (2025) 18 June 2025

cofactors in biological processes ranging from nitrogen fixation to
photosynthesis and respiration (40). Their electronic structure,
with multiple low-lying states of differing electronic and magnet-
ic character, is responsible for their rich chemistry. At the same
time, they pose considerable challenges for experimental studies
and numerical tools. For our experiments, we consider the synthetic
[Fe;S,(SCH3)4] 72 cluster (41), abbreviated [2Fe-2S] and used in nu-
merical studies to mimic the oxidized dimers prominently found in
ferredoxins (42).

The qubit mapping of the LUC]J circuit on the Heron processor
for [2Fe-2S] is shown in the middle panel of Fig. 4B. We consider
K = 10 batches of configurations and |¥| = 2.4576 x 10°® measure-
ment outcomes. The quantum runtime for this system is ~45 min.
For the [2Fe-2S] cluster, we perform an energy-variance analysis
of the low-energy spectrum of the molecule. The energy-variance
analysis is a tool routinely used in classical computational elec-
tronic structure to capture the convergence of the approximate
eigenstate energy for different levels of accuracy of a computation-
al method (43). Here, we use energy-variance analysis to assess the
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convergence as a function of d, which is directly related to quan-
tum and classical accuracy, runtimes, and costs. If one can statisti-
cally sample from a good approximation of an eigenstate, points at
finite number of samples will be distributed linearly in the energy-
variance plane (43). This gives us a tool to detect eigenstates for both
quantum and classical methods.

The bottom panel in Fig. 4B shows an energy-variance compari-
son of HCI and SQD run for different subspace dimensions. As the
subspace dimension is increased, three eigenstates can be identified,
which we label A, B and, C. The extrapolation of the quantum data
to the zero-variance limit is in good agreement with the HCI ex-
trapolations for the same eigenstates. The extrapolated value of the
energy for eigenstate C is in good agreement with the density matrix
renormalization group (DMRG) calculation from (44).

[4Fe-4S] cluster: A stress test for methodology and quantum
processors

The circuits considered for the N, experiments and [2Fe-2S] reached
sizes of ~1 to 1.5k two-qubit gates. We now test the quality of the
signal in noisy circuits that test the limits of Heron processors, using
up to 6400 nodes of Fugaku for the classical processing. We consider
the synthetic [FesS4(SCH3)4] 72 cluster (41), abbreviated [4Fe-4S], a
representative of nature’s cubanes, whose ground-state deduction
from experimental measurements was an early success of inorganic
spectroscopy (45). The LUCJ circuit used for this molecular species
contains ~3.5k two-qubit gates. The qubit mapping on the Heron
processor for [4Fe-4S] is shown in the middle panel of Fig. 4C. As
in the previous experiment, we consider K = 10 batches of con-
figurations and |®| =2.4576 X 10° measurement outcomes. The
quantum runtime for this system is ~45 min. For d > 250 x 10%,
configuration recovery is warm started with the n obtained from the
method atd = 250 X 10%, and only two iterations are then performed.

This last set of experiments sheds light on the quality of the
quantum signal that is passed to the configuration recovery at
these large circuit sizes. The bottom right panel in Fig. 4C shows a
comparison of the energy-variance analysis from measurement out-
comes obtained from the Heron processor and configurations sam-
pled from the uniform distribution. We see that, even if the quantum
solutions produced are worse than other classical methods, the en-
ergy and variance obtained from quantum data are notably lower
than those obtained from uniformly distributed configurations (i.e.,
pure noise), on subspaces of the same size. This confirms that there
is a valuable signal at circuit sizes of ~3.5k two-qubit gates.

DISCUSSION

Significance for quantum computing

Current quantum computers in isolation can perform calculations
on systems sufficiently large that exact brute-force classical solu-
tions are not available (46, 47). However, these studies have tar-
geted spin systems, leading to circuits that match the connectivity
and the measurement and coherence budgets of the quantum de-
vices. In this work, we present electronic structure calculations
on active spaces beyond the scale where FCIs are available. Key to
achieve this result is the use of classical and quantum computers in
concert to implement the SQD method.

SQD makes economical use of quantum computing resources by
drawing samples from a single quantum circuit. Although, in prin-
ciple, other estimators, such as the standard ones used in varia-
tional quantum eigensolvers, have bounded variance for any wave
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function, the dire scaling of a number of measurements to estimate
energies makes them impractical for the molecules targeted in this
work (48). It is also more robust against quantum noise because
reconstructing the exact ground-state probability distribution on a
quantum computer is not required to get accurate energy approxi-
mations, as long as one is sampling relevant configurations (i.e., in
the ground-state support).

We have used an LUC]J class of quantum circuits that can repro-
duce a low-rank decomposition and sparsification of the quantum
unitary CCSD (qUCCSD), which allowed us to keep circuit depths
manageable (34). Lower error rates on quantum operations will
allow us to access deeper quantum circuits with higher connec-
tivity, giving access to more general probability distributions. We
have performed optimization-free experiments exploiting the con-
nection between LUC]J and classical coupled cluster theory, for the
purpose of assessing accuracy and scalability, yet closing a quantum-
classical optimization in future work will further improve the qual-
ity of our samples.

Generalization
The SQD method can be applied to simulation tasks other than
quantum chemistry, if the target ground-state wave function can be
accurately approximated by a sparse vector. Developing quantum
circuits with polynomially sized support in the computational basis
will be an important element of the generalization of SQD as these
circuits are the sources of samples processed by classical computers.
To counter wave function broadening on current quantum hard-
ware, we have used a self-consistent configuration recovery method,
exploiting a problem-inspired clustering that leverages the average
occupation numbers of the molecular orbitals. We foresee general-
izations of our configuration recovery technique to problems other
than quantum chemistry that are not informed by the physics of the
problem. Conversely, for specific applications, one could use even
more information about the problem.

Implications in the search for quantum advantage
Computations can be ranked against three parameters: runtime, en-
ergy or cost, and accuracy. Although the first two are often easy to
measure, ranking by accuracy is in general not straightforward. For
methods that produce upper bounds to the ground-state energy, in-
cluding SQD, the expectation value of the Hamiltonian defines an
unconditional accuracy metric: A lower energy is ranked as a higher
quality, all other conditions (e.g., total spin) being equal. Comparing
SQD energies, for example, allowed us to benchmark our results
against SCI and uniform configuration sampling on a 77-qubit ex-
periment, without access to exact solutions. In addition, the ap-
proximate wave functions produced here can be stored in classical
memory, which permits a classical prover to certify them, and al-
lows their manipulation by further classical processing.

Using the expectation value of the Hamiltonian as an accuracy
metric, one can easily and naturally rank SQD results along with
those of variational classical methods, giving the search for this spe-
cific form of quantum advantage a quantitative meaning. Because
every variational classical method has a specific domain of ap-
plicability (49), identifying areas where SQD may offer an accuracy
advantage is a delicate problem. For example, variational quantum
Monte Carlo methods (50, 51), of paramount importance in
many-body physics, are sensitive to the structures of the probability
distributions they are modeling, not just to their supports. Similarly,
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methods based on tensor networks (52, 53) are successfully used to
tackle strongly correlated problems in chemistry, granted the ability
to converge their energies with bond dimensions, but convergence
can be challenging in some cases (54, 55) because of its computa-
tional cost and its sensitivity to the nature and ordering of the basis-
set orbitals. Developing an in-depth understanding of SQD through
extensive numeric and methodological investigations is necessary to
establish or rule out advantage in strictly variational ground-state
simulations.

SQD shares with SCI the assumption that the ground state may
be approximated by a sparse linear combination of determinants,
i.e., with a number of determinants much smaller than the Hilbert
space dimension. Note that this assumption does not necessarily
underline variational Monte Carlo or tensor networks. Therefore,
it is natural to look for conditions to improve over SCI. One such

condition is the existence of a quantum circuit that produces sub-
spaces of better quality, and more efficiently, than classical heuristic
selection methods. In the search for ground states, the quality of a
subspace can be determined by a lower variational energy. We con-
duct numerical experiments that suggest that there exist LUCJ cir-
cuits whose samples produce subspaces of better quality than the
HCI classical selection heuristic. The LUC]J circuit under consider-
ation shares the same depth and connectivity as the circuits used in
the experiments. In this study, we consider a particular flavor of SCI,
HCI (29), and the [2Fe-2S] cluster (20 orbitals — 40+ qubits).

We first perform HCI calculations with different values of the
selection cutoff €, [see (56) for details on the definition of €, ], as
shown in Fig. 5. We observe that the larger and more restrictive val-
ues of €; do not allow HCI to reach the DMRG energy reference.
Instead, it converges to the first excited state (S;) energy. Decreasing
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Fig. 5. Comparison of the quality of subspaces generated by HCl and an optimized LUCJ circuit in for the description of the ground state of [2Fe-2S]. Different
panels show the energy as a function of subspace dimension of the corresponding diagonalization. The dots connected by arrows show the trajectory of HCl in the
energy-subspace dimension plane. Each dot is labeled by the iteration it corresponds to. Different panels correspond to HCl calculations carried out with different values
of the selection cutoff e, as indicated in the legend. Brown triangles show energies and subspace dimensions obtained after truncating the most accurate HCl wave func-
tion by repeatedly removing the electronic configurations corresponding to the lowest wave function amplitudes. The green triangles show the energies for different
subspace dimensions obtained from the optimized LUCJ circuit. The green arrows show the subspace dimension that the circuit was optimized for (see main text). The
horizontal solid and dashed lines indicate the DMRG estimates for the Sg and S; eigenstates.
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the value of €, allows the subspace dimension to become larger and
improve the energy beyond that first excited state, at the cost of a
notable increase in subspace dimension, which results in a higher
computational cost. From the largest HCI wave function (last point
for e, = 5 107°), we repeatedly remove the electronic configura-
tions whose wave function amplitude is below a given threshold and
compute the energy in the resulting subspace, providing a collection
of energy-subspace dimension pairs that we label as “upper bound
to optimal” in Fig. 5. The removal of tens of millions of configura-
tions (resulting in substantially smaller subspace dimensions) does
not substantially deteriorate the quality of the ground-state approxi-
mation. These results indicate that HCI does not perform an opti-
mal search of the relevant electronic configurations. Consequently,
smaller subspaces exist that yield comparable energy values. In this
particular molecule, HCI needs to explore and perform diagonaliza-
tions in subspaces larger than the optimal search.

We optimize an LUC] circuit to produce samples in the identified
optimal subspaces with high probability. The optimal parameters
are found in a two-step optimization workflow. First, we optimize
the Kullback-Leibler divergence between samples drawn from the
LUC]J circuit and the amplitudes of 58 M-dimensional ground-state
wave function estimation (green arrow in Fig. 5). Then, the circuit
parameters are further fine-tuned to minimize the SQD energy us-
ing a differential-evolution strategy.

With the samples produced by the optimized LUC] circuit, we
proceed to evaluate the energy of resulting subspaces of varying
dimensionality, including the 58 M-dimensional subspace that
the circuit was optimized for. We observe good agreement be-
tween the LUC]J subspaces and those that are an upper bound to
the optimal ones. It is worth noting that, despite being optimized
for a 58 M-dimensional subspace, the resulting circuit produces
subspaces of outstanding quality of dimensionalities both smaller
and larger.

The active space considered for the [2Fe-2S] cluster is small enough
for HCI to be able to find the relevant bitstrings by exploring and
performing diagonalizations in subspaces notably larger than the
optimal ones. This shows that, in some problem instances, the di-
agonalization itself is not the runtime bottleneck. Instead, the run-
time bottleneckis a suboptimal proposal of electronic configurations.
Larger and more strongly correlated systems will pose challenges for
the classical heuristics. It is for these systems that one can look for a
quantum advantage in sampling.

Characterizing the domain of applicability of different classical
and quantum heuristics facilitates combining them in quantum-
centric supercomputing environments, shifting the search for quan-
tum advantage toward practical problems.

MATERIALS AND METHODS

Conventions and notation

Hamiltonian

Our starting point is the Born-Oppenheimer Hamiltonian, written
in second quantization using a basis of Ny;y orthonormal orbitals

po‘tpo’
which describes the number of electrons with spin ¢ on orbital p.
For nonrelativistic all-electron calculations, the quantities

{9, P "9, as shown in Eq. 1. We define the number operator 74 (7. =al

nuc ZZb
E —
’ Zb IR, R,
N,
1 a2 nuc Zu
h, =|dr ¢’ D Y — — 6
or J rom (-5 oo Z} | e® ©

@5 (1)@, (11) @ (r2)0,(r2)

lr;—x, |

(prlgs) =I dr, J dr,

describe the internuclear electrostatic interaction energy and the
one-electron and two-electron parts of the Hamiltonian, respec-
tively [atomic units are used throughout, i.e., lengths and energies
are measured in Bohr and Hartree units ay =/ (meez) and
E,, = €% / ag, respectively, where — e and m, are the electron charge
and mass]. The symbols N, R, and Z, denote the total number of

nuclei and their positions and atomic numbers, respectively.
For relativistic and/or active-space calculations, the indices p, 7, g, s

label active-space orbitals, and the quantities Ey, h,,,, and ( pri qs) are

modified to account for relativistic effects and/or the potential gen-
erated by the inactive-electron density.

In this work, we use orbitals from a restricted closed-shell
Hartree-Fock calculation (also called molecular orbitals and de-
noted MOs) as the basis functions @,. Furthermore, we denote
N, the number of spin-c electrons in the exact ground state. Fur-
thermore Ny + N| = N, the total number of electrons in the exact
ground state.

Molecular species and active spaces

The molecules simulated in this work are listed in Table 1. For N,
we studied all non-core electrons and orbitals on quantum hardware.
We computed the potential energy curve using (i) RHF at 6-31G, and
cc-pVDZ level (57-59) using PySCF (22, 60) and enforcing D, sym-
metry and, after projecting the nonrelativistic Born-Oppenheimer
Hamiltonian in the space spanned by all non-core RHF orbitals with
standard functionalities, with (ii) restricted and symmetry-preserving
Moller-Plesset second-order perturbation theory (MP2), CCSD,

Table 1. Molecules studied in this work. For each molecule, we list the numbezr of electrons and orbitals (N and Ny, respectively) studied on quantum

hardware, along with the underlying basis set and the dimension D = Nuo of the Hilbert space of N; = N| = N /2 electrons in Ny, spatial orbitals (not
considering molecular point-group symmetries). N/2
Molecule Basis (N, No) D
N, (10e,160) 191 x 10
N, (10e,260) 432x10°
[2Fe-25] (30e,200) 240 x 10°
[4Fe-45] TZP-DKH (54€,360) 886 x 10"
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complete active-space configuration interaction (CASCI), for 6-31G
and SCI, in its heat-bath flavor (HCI), for cc-pVDZ.

For [2Fe-2S] and [4Fe-4S], we used active spaces (41, 61), spanned
by Fe[3d] and S[3p] orbitals, derived from a localized density func-
tional theory calculation with BP86 functional (44, 62), TZP-DKH
basis (63), and sf-X2C (spin-free exact two-component) Hamilto-
nian (64, 65) to include scalar relativistic effects. We computed ap-
proximations to the ground-state energy with restricted RHE, MP2,
CCSD, and HCI. The RHE, MP2, CCSD, configuration interaction
singles and doubles (CISD), CASCI, and HCI calculations were car-
ried out with the PySCEF library (22).

Electron configurations and qubit mapping

In this work, we represent many-electron states using qubit states
with the JW transformation, which maps an electronic configura-
tion, i.e., an SD of the form

ko = TT(a,) 19
=

where| @ ) is the vacuum state (i.e., the state with zero electrons) and
Xps € {0,1}, onto an element of the computational basis

™)

(8)

labeled by a bitstring x = (xNMo—ll ce Xy XN Z1p e xm)- The first
half of the bitstring is denoted by x| = (xNMO_1 L X L) and the sec-
ond half of the bitstring is denoted by x; = (xNMo—lT ... X1 ). The JW
mapping uses M = 2Ny qubits and allows computing the number
of spin-c electrons for a given configuration x as N,; = Y, pXpo- The
total number of electrons, Ny = Y. N, is the Hamming weight of
x. At the single-configuration level, any x in the right particle sector
must satisfy: Ny, = N,. An important example is the RHF bitstring

X) = Q® |x,5
) = © ;o)

[Xgp= | 0...0 1...1 0...0 1...1 )
N~ N
Nuyo-N, N, Nyo-N; N,
which, by construction, has NxRHl:G =N,.

The Fock space is the vector space containing all possible elec-
tronic configurations for Ny orbitals with all possible filling factors
for each spin sector. The terms determinant and electronic configu-
ration are used interchangeably in the manuscript.

Sample-based quantum diagonalization

This section provides a detailed description of the SQD procedure.
We describe the subspace projection and diagonalization and the
self-consistent configuration recovery scheme. We also motivate the
energy-variance analysis presented in Fig. 4.

In what follows, we use X and X to denote a set of configura-
tions sampled from probability distributions Py (x) =| (x| ¥) |> and
Py(x) = (x| p|x), where j is a density operator corresponding to a
noisy counterpart of |¥) (¥|. We denote X, C X the subset of con-
figurations with the right particle number. The set of configurations
recovered by the configuration recovery procedure is denoted by
X_y and Xy = Xy U X the set of configurations output by self-
consistent configuration recovery, and S® C Xy withk=1... K a
set of approximately d configurations sampled from Xy. The wave
function | y® ) in obtained by projection and diagonalization of A
in the subspace spanned by the configurations in S®.

Robledo-Moreno et al., Sci. Adv. 11, eadu9991 (2025) 18 June 2025

Eigenstate solver

Given a set of d electronic configurations, the many-electron Ham-
iltonian is projected and diagonalized in the subspace spanned by
the single-particle states defined by the electronic configurations, as
proposed recently in (25). We begin by considering a set of configu-
rations X = {x;}, all with the right-particle number for each spin
sector. Subindices between parenthesis label configurations in a set
and not configuration components. We use the generic label X for a
set of configurations with the right particle number. In practice, the
configuration recovery procedure will execute the eigenstate solver
on the sets Xy and Xp.

Conservation of spin. In this study, we perform an approximate
restoration of the total spin symmetry labeled by the $2 quantum
number. In particular, we are interested on wave functions [y®))
that are as close as possible to singlet states, i.e., eigenfunctions of
total spin with eigenvalue 0, 82 |y®) = 0. Conservation of symme-
tries is notoriously important because molecular eigenstates are joint
eigenfunctions of A and its symmetries, including §Z, N, molecular
point-group symmetries (if any), and $2. Conservation of §Z and N
(and molecular point-group symmetries that are isomorphic to Z")
can be achieved in a relatively easy way because the eigenfunctions
of these operators are SDs|x), e.g.

Nix)= (N +Ngg) 19 5 S, %) = (Nye — N, ) %) (10)

Therefore, in this work, we ensure that the configurations used to
span the subspace all have the desired eigenvalue of §Z and N as part
of the configuration recovery procedure in the presence of noise.
Conservation of $2 is more difficult to achieve in CI methods be-
cause the eigenfunctions of S2are not SDs. The proper way of ensur-
ing conservation of is expanding [y®) on a set of CSFs, i.e., spin
symmetry-adapted linear combinations of SDs. The use of CSFs was
common in early CI codes because, in addition to the obvious ben-
efits of reducing the memory footprint of the CI vector, automatic
conservation of total spin enhanced the stability of the CI iterations.
Modern CI codes tend to use SDs as opposed to CSFs because the
formation of the 6 vector (the most memory- and rate-limiting step
of CI algorithms) is considerably more efficient and easily parallel-
ized in SD-based algorithms and in part because system memory
and disk are more plentiful than in previous machines. However, in
SD-based CI codes, the conservation of total spin is no longer guar-
anteed. In the case of SQD, sampling from a quantum computer may
return sets of SDs that do not allow constructing eigenfunctions of
total spin. For example, in a (2e,20) system, one may sample the
configuration [1001) (having a single spin-down excitation over the
RHEF state |0101)), which is a linear combination of the open-shell
singlet and triplet states, respectively (|1001)+|0110)) / \/E If the
configuration |0110) is not sampled, one can construct neither ei-
genfunction of total spin, leading to spin contamination or redun-
dancy (i.e., the configuration |1001) is involved in a CI calculation
but has coeflicient 0 in the CI vector). In this work, to facilitate
conservation of total spin, we relied on the following procedure:
Instead of collecting directly d independent and identically distrib-
uted (i.i.d.) samples from X to make the batch S®), we collect v/d /2
samples and identify all unique configurations x" (u for unique) of
length M /2 obtained from x;; and x;) for1 <i < \/E /2, forming
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the set '® = {x"}. The size of the set is upper bounded by |[U'®| <
\/E . From U'®, we obtain the batch set S® as

Sk = {x |x= x?i) GBX‘(lj)for allxz.), x‘(lj) IS 'U'(k)}
The size of the set above is upper bounded by | S® | < d. This pro-
cedure facilitates total spin conservation (for example, from the configu-
ration| 1001 ), one can build the set {|1001),]1010),]0101),]0110) },
which contains two closed-shell configurations and allows con-
structing an open-shell singlet state) but does not enforce it. There-
fore, in combination with the sampling strategy mentioned above,
we achieve the conservation of total spin by a soft constraint in
the eigenstate solver, i.e., by adding a penalty term to mitigate spin
contamination

(11)

{H42[$ s+ D] Hlw) =Elw) (12)
where A can be understood as a Lagrange multiplier that penalizes
contributions from S$? # s(s+1). In this work, we used a soft con-
straint with A = 0.2.

Projection and diagonalization. For each subsampled set S®, the
Hamiltonian is projected into the corresponding subspace spanned
by the configurations in S® in Eq. 3.

We then diagonalize this projected Hamiltonian (solving
Hgw lw®) = E®y®)), and its ground state forms an approxima-
tion to the ground state of H. The approximate ground state| y® ) is
defined by its amplitudes in the subspace

@ = 3 P

xeS® ( ! 3)
The kth estimate of the ground-state energy is given by
E® = (W(k)lﬁsmhl!(k)) (14)

Self-consistent configuration recovery

After a quantum state P, corresponding to a noiseless state |¥), is
prepared in our prefault-tolerant quantum processor, we measure it
in the computational basis, obtaining the set of measurements

X = {x|x ~ Py} (15)

The class of noiseless states |¥) considered in this work are eigen-
states to the total particle number operator and the total number
operator for each spin species

Numo Nymo Numo
D Do )=NIW), Y Ty [¥) =N, [¥), Y 7y [¥)=N, %) (16)
p=1l © p=1 p=1

From the measurements on the quantum processors, we observe
that there are a number of configurations in X whose N,y and Ny, do
not match the N; and N, of the ground state. In table S1, we report
typical values of the fraction of sampled configurations with the
wrong particle number. Because the circuits we use to produce [¥)
are particle-number preserving, we are certain that configurations
with wrong particle numbers have been corrupted by noise. It is this
subset of configurations that the configuration recovery scheme is
applied to. The configurations in X whose Ny =N;and N, =N,
are not subject to the configuration recovery subroutine.

We then probabilistically flip bits and restore the correct particle
number using information obtained from observables of the system.

Robledo-Moreno et al., Sci. Adv. 11, eadu9991 (2025) 18 June 2025

We use the spin-orbital occupancy averaged over all collected batch-
es of subsamples n, whose components are defined in Eq. 4.

Consider a configuration x with Ny, spin-up electrons, where
N,y > N;. From the set of occupied spin-orbitals in the first half of
X, |Ny; — N | bits are sampled to be flipped. If instead Ny; < Nj, the
bits to be flipped are instead sampled from the unoccupied spin-
orbitals. The same procedure applies to the spin-down orbitals.

The probability of flipping bit x,; depends on the distance be-
tween the value of the bit and the reference orbital occupancy n,,,.
The simplest approach would be to define the distribution propor-
tional to |x,, — n,|. However, this introduces an undesirable effect:
If for some spin-orbital po, n,; ~ 0.5, then |x,; — 15| & 0.5 as well,
i.e., we assign roughly 50% probability weight to flip the bit, regard-
less of its initial value. On the other hand, the initial value x,, will, in
general, retain some correlation with the other values in the bit-
string, even in the presence of noise. Hence, a better approach is to
deweight the probability of flipping when |x,; — 1,,,| is small by us-
ing a modified rectified linear unit (ReLU) function w( [Xps = Mo )
defined as

6% ify<h
w(y) = h (17)
2= ify>h

1—n"

The parameter h € (0, 1) defines the location of the “corner” of the
ReLU function, whereas the parameter d € [0, c] defines the value of
the ReLU function at the corner. w becomes a true ReLU function
when 8 = 0, and for values of 8 > 0, the ReLU is modified so that it
is not identically zero except at y =0 In the specific cases in this
work, we chose the values = 0.01and h = N / M (the filling factor)
in all experiments.

We do not assume that we know n a priori, and instead, we com-
pute it and improve it self-consistently, following the procedure:

1) Setup phase: (i) Find the subset of configurations of X that live
in the correct particle sector for both spin species, which we denote
by Xy: Xy C X. (ii) Obtain batches of samples (SO, ..., S®)
from &) as described in the previous section. (iii) Run the eigen-
state solver on the batches and obtain approximate eigenstates
[w®Y, ..., W) (Egs. 3 and 13). (iv) From the approximate eigen-
states construct the first guess for n, according to Eq. 4.

2) Self-consistent iterations (repeat until stopping criterion is met):
(i) n is used to correct the configurations with the wrong particle
number in X (we give this subset the label X /n)- The resulting set of
recovered configurations is labeled X'_, . (ii) From Xy = Xy U X_,
batches of samples (S®, ..., S®)) are obtained as described in
Discussion. (iii) Run the eigenstate solver on the batches and ob-
tain approximate eigenstates [y, ..., [y®)) (Egs. 3 and 13). (iv)
From the approximate eigenstates construct refined guess for n, ac-
cording to Eq. 4. (v) If the stopping criterion is not met, go back to
step 2a.

We direct the reader to Fig. 2 in the main text for a numerical
emulation of the effect of the configuration recovery on the accuracy
of SQD in the presence of noise. This method is implemented in the
package (66).

Energy-variance extrapolation

It is guaranteed that the accuracy of SQD (with or without configu-
ration recovery) increases as the number of configurations used for
the subspace expansion d is increased. However, the convergence of

§+(1-5)
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the ground-state properties with d is not expected to follow any
specific functional relation. Therefore, attempting to analyze the
convergence as a function of d is not well motivated. Instead, the
different eigenstate approximations obtained for different values of d
and different batches of samples S® are used for an energy-variance
extrapolation (43, 67-71). Consider the approximate eigenstate [W),
whose energy is given by E = (| H|y), and consider the exact
eigenstate energy E;. The difference between the approximate
energy and Ep

= (H) - (18)

vanishes linearly with the Hamiltonian variance divided by the
square of the variational energy (43)

AH _ (wlH2ly) — (y|Hly)?

E? E?
This linear relation is satisfied as long as |y) is sufficiently close to
an eigenstate of the Hamiltonian, as measured by the state fidelity.
The least-squares fit of a collection of energy-variance points yields
an estimate of Ey, as the intersect of the fit with the ordinates. This
point is the extrapolation of the estimate of the energy to the limit
where |y) coincides with the exact eigenstate. Besides the energy
extrapolation, the energy-variance analysis may also reveal the exis-
tence of multiple eigenstates close in energy to the ground state.

In the main text and in the Supplementary Materials, we apply the
energy-variance analysis to two different sets of energy-variance
pairs. The first one is the energy-variance pairs obtained by the HCI
procedure where different energies and variances are obtained by
changing the cutoff parameter that indirectly controls the number of
determinants in the subspace projection and diagonalization, result-
ing in different levels of accuracy. The second set of energy-variance
pairs are those obtained from SQD for different numbers of configu-
rationsd as well as for different batches of sampled configurations S®.

(19)

Experimental details

In this section, we describe the quantum circuits that are used to
produce the configurations to which we apply the eigenstate solver.
In addition, we provide details on the setting of circuit parameters
from an efficient classical CCSD calculation and the mapping of the
circuits to quantum processors with heavy-hex connectivity.
Quantum circuits

In this work, we used the LUC] ansatz (34) to sample randomly dis-
tributed electronic configurations. LUC] derives from the UC]J an-
satz, which has the form (35) of a product of L layers, as defined
in Eq. 5. We recall that

K - ZKP A; ch i ] = Z po,qT P"ﬁqT

g6 pr,oT

(20)

In Eq. 21, p,q=0... Nyo — 1 label molecular spatial orbitals
and o, 7 label spin polarizations (o, f for spin-up and spin-down
electrons, respectively). K;q / ];qm has complex/real matrix elements
and is anti-Hermitian/symmetric. The UCJ ansatz can be derived
from a twice-factorized low-rank decomposition of the qUCCD an-
satz (35, 72), and the L-product form is such that the exact FCI wave
function can be obtained via Eq. 5 (35, 36).

The local UCJ or LUCJ (34) introduces a “local” approximation
of the UCJ ansatz, which makes the following modifications for
opposite-spin and same-spin number-number terms

Robledo-Moreno et al., Sci. Adv. 11, eadu9991 (2025) 18 June 2025

Z]paqﬁ"pa”qﬁ - szapﬁnpa”pﬁ

Z]P"qc P" qcs Z]P"q(’ PU qc

pqes’

(21)

where 6 = a, p and the sets S, § are such that the quantum circuit
implementing e’» has depth O(1) and only comprises O( |S|+S'| )
number-number “nn gates,” ie., two-qubit unitaries of the form
U,.(¢) = eii (G2 t2y), acting on adjacent qubits p, g in the topol-
ogy of a certain processor. For example, on a heavy-hex processor,
S={4k , k=0..(Nyo—1)/4}and &' = {(p,p+1) , p=0...
N — 2} (34). The circuits e**4, on the other hand, can be implement-
ed by a Bogolyubov circuit acting on Ny, qubits and comprising
O[Na (NMO—N(X)] gates and depth O(NMO) (73-75). Through the
local approximation, the LUC] Ansatz balances hardware friendli-
ness and accuracy, the latter ultimately deriving from its connection
to coupled cluster theory and adiabatic state preparation (34).
Unless otherwise specified, we use the truncated LUC]J circuit
¥y = efeKiglh oK [Xrpp), which is the result of considering the
two-layer LUCJ circuit and removing the last orbital rotation and
last Jastrow operations. The resulting state is implemented by a cir-
cuit whose depth is identical to the single-layer LUCJ circuit. The
addition of the X2 operation to the circuit can have a large impact on
the configurations generated by the circuit when the parameters are
set from the ¢, tensor from a classical restricted closed-shell CCSD
calculation (as described in the next section). For dynamically cor-
related species, the ]Ec,qt parameters obtained from ¢, can have a
small amplitude, resulting in the approximate cancellation of the

exp( - 1?1 ) and exp (I’(\'l ) terms in the ansatz. Without exp (1?2 ), the

resulting wave function can be overconcentrated around the Hartree-
Fock configuration. Therefore, for dynamically correlated species, the

~
action of exp<K2> is to remove some of the excessive concentration

of the |¥) wave function, when parameters are set from a restricted
closed-shell CCSD calculation.

Initialization of LUCJ parameters

In our experiments, we parameterize the LUC] circuits using the
following procedure:

1) First, we carry out a classical restricted closed-shell CCSD cal-
culation, yielding amplitudes t, ,; and t, 5, where ij / ab labels oc-
cupied/unoccupied orbitals in the RHF state.

2) We reshape the t, tensor into the matrix (tz)m-,

?Ze 1t, ( )al bj
in decreasing order of absolute value.
3) We extend the unitaries to the following matrices

b and diagonal-

Zyr}, aiy Upj,» Where the eigenvectors 7, are sorted

pr = 0pa0, Uy

pariYaiy (22)

i.e., matrices where only the occupied/unoccupied block is nonzero.
4) We define the Hermitian operators

1Fi/~ T
Xey =75 (U y) (23)
and their eigenpairs
XeyV. iy Viy (24)
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5) We define the operators

(]2)/)CFT =1 (g+y) (g+y)
()7, =log(V.,),
(}2y+1) -7,(g y)p( )

(K2y+l)P —log( y)p,

(25)

6) We retain the first L matrices J, K. This allows us to refine a
nonlocal UCJ wave function (35, 72).

7) We zero out the entries of the ] matrices leading to quantum
gates acting on nonadjacent qubits. For a heavy-hex lattice, we re-
tain the following elements

(Tu)pgr » =0 Nyo =2

pp
(]”)P>P+1 » p=0...Nyo— (26)
(]p);‘i , p=0...Nyo—1, p%4=0

The final sparsification allows us to construct an LUC] wave
function. In a conventional LUC]J calculation, these parameters are
the starting point of a variational optimization. For the hardware
experiments reported in this study, we used these parameters, with-
out further optimization, to define an LUC]J circuit, which we used
to sample randomly distributed configurations.

Mapping to heavy-hex processors

with p=0... Nyo—
1, p%4 =0 when implementing LUC]J on a heavy-hex processor
has an important technical motivation: On such devices, assuming a
number of qubits greatly exceeding Ny, spin-up and spin-down
orbitals can be mapped on two segments of adjacent qubits forming
a “zigzag” pattern and connected through an auxiliary qubit for
p =0,4,8, ...as shown in the three rightmost panels of Fig. 4. Such
a qubit layout allows implementing LUCJ with a minimal overhead
of SWAP gates (two per auxiliary qubit and layer of LUC]J). Howev-
er, on current processors with up to 133 qubits, for Ny;5 > 21 one
cannot couple Ny, /4 spin-orbitals with opposite spins through
auxiliary qubits without incurring a substantial overhead of SWAP
gates, for the simple reason that a chain of 22 or more qubits is longer
than the “diagonal” of the processor. In such a situation, as shown in
the rightmost panel of Fig. 4, the segments on which spin-up and
spin-down qubits are mapped form two “tails” that are not connect-
ed by auxiliary qubits. This fact has two implications: (i) no more
than six spin-orbitals with opposite spins can be coupled through
auxiliary qubits, and (ii) if one retains the elements (]p);[i7 with
p=0..Nyo—1, p%4=0and p <16, the largest elements of ],
may be discarded, yielding a lower-accuracy wave function. The first
problem is a fundamental one, which can only be resolved with a
substantially different mapping of fermionic degrees of freedom
onto qubits and/or through the availability of larger processors. The
second problem, on the other hand, has a simple solution, which we

The choice of retaining the elements ( ]“):i

now describe. First, for any pair of spatial orbitals p,7 =0 ... Ny;g — 1,
the orbital rotation

~ —ir il

WEPDICENCEY o
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implements the permutation S, € S
in the sense that

G ~t s 19 ata —
spr< ZquaqraST>S Y M ala,, M, =M

Spr(2):Sp(®) (28)
qs,t qs,t

Ny €Xchanging orbitals pand r,

Three immediate implications of this fact are as follows:
) S n ”sp,( q)‘r
. . -~ OTA A
2) for any density-density operator J, = Xy (1,) gosTlao s, one has

U5 S0 5T (1)

gs,T 9

qr SP r

( u)::,(q),sp,(s) (29)

3) that for any permutation S € Sy,  there exists an orbital rotation
efs implementing the permutation S (th1s is true because permu-
tations can be written as products of exchange permutations, an
exchange permutation can be implemented by an orbital rota-
tion, and orbital rotations are closed under multiplication).

Consider now the tensor ( ]p):: resulting from the low-rank de-

composition of the CCSD operator described in the previous sub-
P be the § elements of ( ]u)(;i with the largest absolute
be the permutation such that S(p,) =
.. $(py) = 44. Then

section. Let p, ...
values, and let S € Sy
MO

S(py) =0

RS =], (30)
of
where the elements of <] /) with the largest absolute values are at

positions 0, .
the identity

., 4{. Before sparmfymg the tensor ] one can use

R, i, -K

/ /
etvelie T eRsg K i

w=ekuekselie w=elielie™™ (31)

to obtain a UC] operator with transformed orbital rotations e~ Ky

and an opposite-spin density-density interaction whose largest ele-

ments in absolute Valuée act on spatial orbitals p=0,4,8, ... ,4{.
a

Sparsification of (];,1 then leads to retaining the I dominant
q,S

opposite-spin density-density interaction terms (as many as allowed
by the size and topology of the available heavy-hex processor) with
a minimal overhead of SWAP gates.

In this work, we retained the elements (]p):i with P=0...

Nyo =1, p%4=0and p < 16. In future work, the procedure de-
scribed here could be used to modify the LUC] wave function and
the resulting probability distribution for electronic configurations.

Supplementary Materials
This PDF file includes:
Supplementary Text

Figs. S1to S20

Table S1
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