
3.62.9

Epicyclic Oscillations and Circular
Orbits in Hairy Black Holes: Testing
by High-Frequency Quasi-Periodic
Oscillations Observed in
Microquasars

Jaroslav Vrba

Article

https://doi.org/10.3390/universe10010009

https://www.mdpi.com/journal/universe
https://www.scopus.com/sourceid/21100903488
https://www.mdpi.com/journal/universe/stats
https://www.mdpi.com
https://doi.org/10.3390/universe10010009


Citation: Vrba, J. Epicyclic

Oscillations and Circular Orbits in

Hairy Black Holes: Testing by

High-Frequency Quasi-Periodic

Oscillations Observed in

Microquasars. Universe 2024, 10, 9.

https://doi.org/10.3390/

universe10010009

Academic Editor: Lorenzo Iorio

Received: 7 November 2023

Revised: 7 December 2023

Accepted: 15 December 2023

Published: 25 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

universe

Article
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Abstract: Recently, Ovalle and his collaborators proposed an exact solution to Einstein’s equations. In

this study, we investigate the main characteristics of the spherically symmetric spacetime determined

by the hair parameter l, with a specific focus on circular orbits, particularly the innermost circular

orbits (ISCOs), and the epicyclic oscillatory motion along these orbits. To assess the validity of this

novel geometry, we employ the frequencies derived from the epicyclic resonance model of high-

frequency quasi-periodic oscillations (HF QPOs) observed in microquasars, as well as the ISCOs.

By analyzing the observed data from three selected microquasars, we establish constraints on the

parameter l. Our findings suggest that this geometric framework can encompass the phenomena

associated with HF QPOs and offer a partial explanation for the observed shift in the ISCOs, which is

commonly attributed to the rotation of the black hole.

Keywords: hairy spacetime; high-frequency quasi-periodic oscillations; microquasars

1. Introduction

Recently, a novel solution of Einstein’s equations has been presented by J. Ovalle and
his colleagues [1]. It gives us an excellent opportunity to explain unsolved problems and
phenomena. However, such new geometry also has to fit on already known and explained
phenomena. This leads us to the main goal of this paper which is to map this new geometry,
compared to the already known Schwarzchild one, and to compare predictions based on
this background with observational data.

Ovalle introduced the so-called minimal geometric deformation method developed by
himself [2,3]. This method is the first simple, systematic and direct method of decoupling
gravitational sources in general relativity. Initially, it was proposed [4] in the context of the
Randall–Sundrum braneworld model [5,6]. The notable feature of the minimal geometric
deformation method is that it preserves the spherical symmetry, as well as the physical
acceptability, and thus opens up a new window to study physically plausible anisotropic
solutions. It is important to mention that this procedure does not use action formalism to
produce the new solution to Einstein’s equations. This solution describes how spherically
symmetric fluid modifies the Schwarzschild vacuum solution when there is no exchange of
energy-momentum between the fluid and the central source of the Schwarzschild metric.

The phenomena observed in the X-ray spectrum, the so-called quasi-periodic oscil-
lations [7] coming from the vicinity of compact objects, are not yet a completely clarified
question. These phenomena are attributed to resonances in the motion of particles in the
accretion disk and described by a geodesic model of twin high-frequency quasiperiodic
oscillations [8,9]. However, observations and theoretical predictions are consistent only
for microquasars [10]; for supermassive active galactic nuclei [11], an explanation is still
pending, and the influence of external factors such as magnetic field [12], the presence
of dark matter [13] or the presence of a wormhole [14] is assumed. Therefore, for the
assumption of microquasars, we can use these phenomena as a test of new geometry.
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The structure of this paper is as follows. The second section describes the new black
hole solution and its horizon. In the third section, the motion of massive test particles, as
well as their effective potentials and circular orbits including the innermost stable circular
orbit (ISCO), are examined. The fourth and fifth sections are focused on the astrophysical
application of mimicking the rotation of a Kerr black hole and HF QPOs observed in
microquasars, respectively. The last section summarizes the results of our research.

Throughout this paper, we use a space-like signature (−,+,+,+), a system of units
in which G = c = 1, and we restore them when we need to compare our results with
observational data. Greek indices run from 0 to 3, and Latin indices from 1 to 3.

2. Hairy Spherically Symmetric Spacetime and Horizon

Here, we briefly introduce this new solution and examine its horizon.

2.1. Hairy Spherically Symmetric Spacetime

The metric for the hairy spherically symmetric spacetime in standard Schwarzschild
coordinates is given by [1]

ds2 = − f (r)dt2 + f (r)−1dr2 + r2dθ2 + r2 sin2 θdφ2, (1)

where

f (r) =

(

1 − 2M

r
+ αe

− r

M− αl
2

)

, (2)

and M is the mass of the central object. The parameter α represents the power of the new
effect. We will treat it through our paper as a switcher, which means that we merely activate
the hairy effect or deactivate it, without altering it in any way by parameter α. If α = 0,
this corresponds to the effect being switched off—the metric transitions to the standard
Schwarzschild metric for any value of l. If α = 1, this corresponds to the effect being
switched on and we deal with a hairy metric (note that α must be positive, as indicated
in [1]). From now on, whenever we discuss a hairy spacetime, we will assume α = 1.

The new effect is determined by the parameter l (proportional to α) with dimensions
of length. The upper limit for this parameter is given by l ≤ 2M

α , and when l = 2M
α , the

metric recovers the Schwarzschild solution (the extra term in (2) disappears). However, the
lower limit is minus infinity [1]. The value corresponding to minus infinity serves as the
lower bound for physical solutions. Solutions for l = −∞ represent the first non-physical
solutions. Despite being the first non-physical solution (lower bound), we can still use it to
illustrate the constraint on the employed functions, where the lower bounding function is
no longer physical (the example is given in Figure 1). Here, we present the limiting case for
the hairy metric coefficient gtt (α = 1):

lim
l→−∞

gtt = −
(

2 − 2M

r

)

. (3)

Figure 1 indicates that the function gtt can vary only between the curve gtt(r; l = 2)
(Schwarzschild case) and the curve gtt(r; l = −∞)—the shaded region—where the curve
gtt(r; l = −∞) represents the first non-physical solution.

Due to the potentially infinite range of the parameter l, we will focus exclusively on
examining l in the order of units around l = 0 with an upper limit of l = 2M

α , unless
stated otherwise.

For simplification, we introduce a dimensionless hairy parameter and radial coordinate
by the transformations

l → l

M
and r → r

M
. (4)
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Figure 1. The restricting functions (blue and orange curves) of gtt metric function. The shaded area

gives a place for all physical gtt with l ∈ (−∞, 2⟩. Here, we set α = M = 1.

2.2. Hairy Black Hole Horizon

Now we explore the behavior of the horizon of the hairy black hole (α = 1). The
horizon is defined by gtt = 0, which yields

e
2r

l−2 + 1 =
2

r
. (5)

The limiting case hairy rhl (α = 1) when l → −∞ is

lim
l→−∞

rh = rhl = 1. (6)

The position of the horizon decreases as the parameter l decreases, reaching the limit
given by (6). For α = 1, the limiting case is rhl = 1, as shown in Figure 2.

α=1

α=0

-6 -4 -2 0 2

1.2

1.4

1.6

1.8

2.0

l

r
h

Figure 2. The location of the horizon in the hairy black hole spacetime as a function of the parameter

l for α = 0 (Schwarzschild) and α = 1.

3. Test Particle Motion in Hairy Spherically Symmetric Spacetime

Circular orbits around black holes are the most important in the astrophysical context;
therefore, we will investigate here the effective potentials leading to finding the circular
orbits, with a primary focus on the location of the nearest stable circular orbit from the
center of the black hole, which holds significant specific importance in the observations.

3.1. Effective Potential of Massive Test Particles

The effective potential governing the motion of a test particle can be obtained by
employing the following normalization condition:

gµνuµuν = −m2, (7)
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where m denotes the mass of the test particle. By exploiting the symmetries of the spacetime,
we introduce the conserved quantities, specifically the particle’s energy (E) and angular
momentum (L), which are measured at infinity

E = −gttu
t and L = gφφuφ. (8)

Hereafter, we focus on circular geodesics, which can be studied by examining the
effective potential. The motion is confined to the central plane, which can be chosen as the
equatorial plane (θ = π/2). The radial motion is determined by

(

dr

dτ

)2

= − 1

grrgtt

[

E2 − Veff

]

, (9)

where τ represents the particle’s proper time. The effective potential corresponds to
the square of the energy, and we will define it this way. This choice does not affect the
qualitative properties of the function (the position of the maximum, minimum, or inflection
point). The effective potential is a function of r and the angular momentum L and can be
expressed as

Veff(r, L) = −gtt(r)

(

L2

r2
+ m2

)

. (10)

To simplify the problem, we introduce the transformations L/m → L and E/m → E,
leading to the effective potential

Veff =

(

L2 + r2
)

(

αe
2r

αl−2 + 1 − 2/r
)

2r2
. (11)

In the limiting case l → −∞, the hairy effective potential (α = 1) becomes

lim
l→−∞

Veff = Veffl =

(

L2 + r2
)

(1 + r − 2/r)

2r2
. (12)

In the context of our study, it is important to note that the Schwarzschild effective
potential possesses an inflection point for L = 2

√
3 located at r = 6. This critical point

plays a pivotal role in our analysis and corresponds to the ISCO. It is used in Figure 3 to
illustrate the hairy effective potentials for various values of the parameter l in comparison
with the Schwarzschild effective potential (represented by the thin black line) for the same
value L = 2

√
3.

l=-7

l=-4

l=-1

l=2

α=0

2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

r

V
e
f
f

α=1

L=2 3

Figure 3. The effective potentials for various parameter l and angular momentum L = 2
√

3 compared

to the Schwarzschild effective potential (thin black line).

Figure 4 shows the effective potentials for different values of angular momentum L
and the parameter l. As observed, a lower value of l emphasizes the maxima and minima
of the effective potential (or conversely, the effective potential becomes more flattened for
higher values of l). The parameter l exhibits a similar effect on the effective potential as the
angular momentum L (see Figure 3).
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Figure 4. The effective potential for various parameter l and angular momentum L.

The manifestations of the parameter l on the behavior of the effective potential are
globally intricate and lack uniform rules. Decreasing the parameter l below the value of
l

.
=−5.39 (explained below), the effective potential always possesses a maximum and a

minimum, even for L = 0 (see Figure 5), which leads to the disappearance of the ISCO
position as conventionally known. This characteristic vanishes around the value of l ≈ −80
(explained below).

5 10 15 20 25 30 35 40

0.89

0.90

0.91

0.92

0.93

0.94

0.95

r

V
e
f
f

l=-7, L=0

Figure 5. The effective potential for l = −7 and L = 0 demonstrating the existence of two extremes in

effective potential function.

3.2. Photon Sphere

Although the primary goal of this work is the study of the motion of massive particles
in a hairy spacetime, we will here examine a fundamental property describing the motion
of massless particles, focusing in particular on the location of unstable circular photon orbit
(photon sphere—rph) and how they are influenced by the parameter l.

To determine the position of the photon sphere of hairy spacetime, we can utilize the
effective potential (10), substituting m = 0,

VPeff =
L2

(

re
2r

l−2 + r − 2
)

r3
. (13)

The limiting function of the effective potential for massless particles as l goes to
infinity is

lim
l→−∞

VPeff = VPeffl =
2L2(r − 1)

r3
. (14)

The derivative dVPeff/dr of this photon effective potential yields

dVPeff =
2L2

r4

[

re
2r

l−2 (l − r − 2)

2 − l
− (r − 3)

]

. (15)
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The limit of the derivative of the photon effective potential as l approaches infinity yields

lim
l→−∞

dVPeff = dVPeffl =
[

2L2(3 − 2r)
]

/r4. (16)

Now, we will find general circular orbits by solving the equation dVPeff/dr = 0
given by

re
2r

l−2 (l − r − 2)

2 − l
− (r − 3) = 0. (17)

In Figure 6, one can see the results of the numerical solution of Equation (17). It is
evident that as the parameter l decreases, the photon sphere approaches its limiting value
of rphl = 3/2.

α=1

α=0

-6 -4 -2 0 2

1.5

2.0

2.5

3.0

l

r
p
h

Figure 6. The location of the photon sphere in the hairy black hole spacetime as a function of the

parameter l.

3.3. Circular Orbits of Massive Test Particles

Since some physically interesting phenomena occur only at very low values of the
parameter l, this chapter will address them as well.

Circular orbits are determined by local extrema of the effective potential, coming from
solution dVeff/dr = 0

L2
[

3αl + αr2e
2r

αl−2 − r(αl − 2)
(

αe
2r

αl−2 + 1
)

− 6
]

= r2
[

2 − α
(

r2e
2r

αl−2 + l
)]

. (18)

The dependence of the circular orbit rc on Lc for various values of parameter l is
illustrated in Figure 7. It is noteworthy that the curve corresponding to l = −10 lacks a
minimum, signifying the absence of ISCO. In contrast, the curve associated with l = −200
exhibits the presence of two extremes (as commented later).

0 2 4 6 8 10

0

1

2

3

4

rc

L
c

0 2 4 6 8 10

-4

-2

0

2

4

rc

L
c

l=-200

l=-10

l=-1

l=2

α=0
Figure 7. The location of the circular orbit rc (both stable or unstable) for various l. Schwarzschild

case is depicted by the black thin curve (coinciding with l = 2 curve).
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Due to the fact that the situation regarding the nearest stable circular orbit to the center
in a hairy spacetime is slightly more complex, we will first define the terms that we will
subsequently use:

IPEP: Inflex point of effective potential, given by simultaneous satisfying dVeff/dr = 0
and d2Veff/dr2 = 0 (or alternatively in the minimum of the function L(rc)). It is possible to
have more such points.

ISCO: The specific situation, when only one IPEP exists.
LSCO: Last stable circular orbit given in a situation when the effective potential is not

monotonic (has a maximum and a minimum) even for L = 0, i.e., it gives the location of
such minimum.

The condition d2Veff/dr2 = 0 can be written in the form

αre
2r

αl−2
{

L2
[

3(αl − 2)2 + r(8 − 4αl) + 2r2
]

+ 2r4
}

(αl − 2)2
+ 3L2(r − 4)− 2r2 = 0. (19)

We can observe from Figure 7 that, for a certain range of the parameter l, there are
no minima in the function Lc(r) (ISCO); for values of l = 2,−1, a minimum exists, for
l = −10 it does not exist, and for l = −200, there is both a minimum and a maximum. Let
us denote the interval where is no minimum of Lc(r) as ⟨lt, lc⟩ and notice that the standard
ISCO (known, for example, from Schwarzschid spacetime) does not exist there because
there is no real solution of Equations (18) and (19). These boundary values can be calculated
numerically: lc

.
= −5.39 and lt

.
= −78.55. We therefore have three distinct families of

behavior dependent on parameter l:
Case I. (lc < l < 2): The standard behavior known, for example, from Schwarzschid

spacetime, in which the effective potential can be monotonically increasing (for sufficiently
small positive L, no circular orbit), it can have a maximum and minimum (for sufficiently
large positive L, stable circular orbits at a minimum and unstable circular orbit at maxi-
mum), and for one specific value of L that separates these cases, the effective potential has
an inflection point at the ISCO (stable circular orbit).

Case II. (lt < l < lc): The effective potential always poses a maximum and minimum
(even for L = 0). Therefore, there is no chance of finding an inflection point, but we will
always find a stable circular orbit in the minimum of the hairy effective potential.

Case III. (l < lt): The behavior of the effective potential is more complex, and one
can find two inflection points for two different values of L where stable circular orbits
are located. Additional stable circular orbits are found in the minimum of the effective
potential. All three cases and their specifics connected to the nearest stable circular orbit to
the center or inflex points are presented in Figure 8.

L=2.445

2 3 4 5 6 7 8
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0.76

0.78

0.80

0.82

r

V
e
f
f

l=-1

CASE I.

L=0.0

5 10 15 20 25 30

0.85

0.90

0.95

1.00

r

V
e
f
f

CASE II.

l=-10

L=1.674

L=1.696

2 3 4 5 6 7 8

1.665

1.670

1.675

1.680

1.685

r

V
e
f
f

CASE III.

l=-100

Figure 8. Overview of three possible cases of behavior of effective potential of hairy spacetime.
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The dependence of ISCO on the parameter l (l > lc) is not monotonic and is presented
in the central panel of Figure 9. On the left panel are plotted all IPEPs as a functions of
the parameter l. Notice that the squeezed curve in the right part of the left (IPEP) panel is
enlarged in the central (ISCO) panel. On the right, we observe a monotonically increasing
distance of the LSCO. The LSCO curve continues from the end of the ISCO, as seen in
Figure 10. Practically, this means that, as the parameter l is reduced approaching lc,
the angular momentum L required to reach the inflection point of the effective potential
gradually approaches zero. The last inflection point of the effective potential arises at l

.
= lc

and L = 0. Further reduction in the parameter l then leads to the creation of a maximum
and minimum from the inflection point. This characteristic persists until l > lt.
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-5 -4 -3 -2 -1 0 1 2
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l

L
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Figure 9. In the left panel one sees the position of IPEP dependent on parameter l. In the middle

panel is standard ISCO (also corresponding to IPEP, enlarged right part of the left panel) dependent

on parameter l and Schwarzschild ISCO at r = 6 (black line). In the right panel is presented LSCO

dependent on the parameter l.

Figure 10. The standard ISCO dependent on parameter l (blue curve) and LSCO dependent on

parameter l (orange curve) presented at the location of the transition of both curves. Black line

indicates Schwarzschild ISCO.

4. Hairy Black Holes as a Mimicker of the Kerr Black Hole

Many astrophysical observations aimed at estimating the spin of black holes rely on
investigating the edge of the accretion disk and identifying the ISCO [15,16]. If the ISCO
of hairy black holes varies with the parameter “l”, this raises the question of whether and
to what extent hairy black holes can mimic Kerr black holes. It should be noted that the
shift in the ISCO could be caused by the presence of a magnetic or electric field [17,18],
alternative tidal charge [19] or other black hole parameters.

For most values of the parameter l where the standard ISCO exists (l ∈ ⟨lc, 2⟩), it
places the ISCO below r = 6, which is the ISCO in Schwarzschild spacetime.
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In Kerr geometry [20], the ISCO is affected by the rotation of the black hole, and it
monotonically decreases with the increasing rotation parameter a for co-rotating matter [21].

We introduce a new parameter lp(l) defined as

lp =
l − 2

lc − 2
, (20)

which transforms the parameter l such that the interval (lc, 2) is squeezed into (0, 1), where
lp = 0 corresponds to l = 2 (i.e., the Schwarzschild case), and lp = 1 corresponds to l = lc.
The reason for this transformation is to have both parameters (l and rotating a) in the same
range. The comparison of the effects of l and a on the ISCO is presented in the left panel of
Figure 11. The right panel of the same figure suggests that the mimicry can occur only for l
in the range approximately l ∈ (−4.44, 1).

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

7

lP,a

I
S
C
O

a≐0.66

ISCO≐3.56

-5 -4 -3 -2 -1 0 1 2
3

4

5

6

7

l

I
S
C
O

l≐-4.44

l≐-1.34

l≐1

Figure 11. Comparison of the effect of the parameter lp(l) of Ovalle spacetime and the parameter a of

Kerr spacetime on the position of ISCO (left panel). Dependence of ISCO on the original parameter l

with the marked range where l can mimic Kerr’s spin parameter a (right panel).

As seen in Figure 11, the minimum ISCO in our hairy spacetime is located at approxi-
mately r

.
= 3.56. This leads to potential mimicry of the spin parameter a of the Kerr black

hole up to a
.
= 0.66. The mimicry of the highest rotation (a

.
= 0.66) occurs at l

.
= −1.34 (see

the right panel of Figure 11).

5. Epicyclic Frequencies and HF QPOs in the Field of Ovalle Spacetime Applied to
Microquasars Observation

This section investigates the epicyclic motion of massive test particles that orbit stable
circular orbits (discussed in Section 3) and explores the phenomenon of high-frequency
quasi-periodic oscillations observed in several microquasars.

HF QPOs are predominantly explained by models that rely on the resonance between
orbital and epicyclic frequencies, or combinations thereof, with a ratio of the Upper fre-
quency to the Lower frequency given by fU : fL = 3 : 2. In this study, we specifically focus
on the epicyclic resonance model, where fU = ωθ and fL = ωr.

5.1. Frequencies of Epicyclic Motion

If the particle is displaced from its equilibrium position at the stable circular orbit, it
initiates an epicyclic motion around this position. The displacement coordinates (for small
perturbations) r = rc + δr and θ = π/2 + δθ are governed by equations for linear harmonic
oscillations in the radial and latitudinal directions:
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δ̈r + ω2
r δr = 0, δ̈θ + ω2

θ δθ = 0, (21)

where the dot denotes the derivative with respect to the proper time of the particle τ, and
ωr and ωθ are the frequencies of the epicyclic oscillation measured by a local observer.
The last frequency, ωφ, corresponds to the frequency of the orbital motion and is obtained
from (8).

The dynamics are described by the Hamiltonian formalism [12] with the Hamiltonian
H in the form1:

H =
1

2
gαβ pα pβ +

1

2
. (22)

Here, pα represents the four-momentum of the test particle. The Hamiltonian (22) can
be split into a potential and a dynamical part:

H = Hdyn + Hpot, (23)

where

Hdyn =
1

2

(

grr p2
r + gθθ p2

θ

)

, (24)

Hpot =
m2

2

(

gttE2 + gφφL2 + 1
)

. (25)

The relations for the epicyclic frequencies are given by

ω2
r =

1

grr

∂2Hpot

∂r2
, ω2

θ =
1

gθθ

∂2Hpot

∂θ2
, (26)

ωφ =
L

gφφ
,

By using (25) in (26), we obtain

ωφ = ωθ =
L

r2
, (27)

ωr =

√

√

√

√

√

√

3L2(αl − 2)2
(

αre
2r

αl−2 + r − 2
)3

r5(αl − 2)2
(

αre
2r

αl−2 + r − 2
)2

(28)

+

√

√

√

√

√

√

2e2
{

α2r3
(

−e
4r

αl−2

)

+ αe
2r

αl−2 [r(8 − 4αl) + r3 − 2r2 − (αl − 2)2]− (αl − 2)2
}

r(αl − 2)2
(

αre
2r

αl−2 + r − 2
)2

.

To obtain the epicyclic frequencies that can be measured by a distant observer (at
infinity) and in standard unit (Hz), one must rescale (27) by the factor −c3/2πGMgttE.

The frequencies (27) and (29), with an emphasis on the position of the ratio fU : fL = 3 : 2,
compared with those in Schwarzschild spacetime, are presented in Figure 12. The epicyclic
frequencies do not change significantly from their Schwarzschild frequencies if the hair
parameter l is positive. However, as the parameter l becomes negative and decreases further,
all frequencies decrease, but not evenly. The latitudinal (orbital) frequency decreases much
faster with l than the radial frequency, as seen in Figure 12.
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Figure 12. The epicyclic frequencies of a hairy black hole ωr (dashed blue), ωθ , and ωφ (the same

orange curves) and for the Schwarzschild case ωr (dashed black), ωθ , and ωφ (the same solid black

curves) for a central object with M = 10 M⊙. Vertical lines indicate 3:2 frequency ratios.

5.2. Hairy Black Hole Test by HF QPOs Observed in Microquasars

In this study, we utilize the HF QPOs observed in three selected microquasars [22,23] as
a means to test the Ovalle hairy spacetime. Our objective is to investigate the applicability
of this spacetime to explain the phenomenon of HF QPOs and to determine potential
constraints on the parameter l that would best fit these observed signals. We employ an
epicyclic resonant model of HF QPOs for this purpose. The obtained results are presented
in the form of the upper frequency–mass relation for the epicyclic resonance model. These
theoretical curves, corresponding to different values of the parameter l, are compared with
the observed data from selected microquasars.

Figure 13 shows the observational data of three microquasars along with the theoretical
curves based on the epicyclic resonance model, considering a hairy black hole as the central
object, for various values of the parameter l.

It is noteworthy that the shifting of the curves is not monotonous with an increasing
parameter l. For instance, in the left panel of Figure 13, the curve with l = 1 lies below the
curves with l = −1 and l = −3, but above the curve with l = −5 simultaneously. A rough
estimation of the constraints on the parameter l for our selected microquasars, based on
fitting within the framework of Ovalle spacetime, yields l = ⟨−3,−0.7⟩.

Table 1 presents the list of selected microquasars, their spin values, and the constraints
on the parameter l obtained from QPO fits; lQPO comes from comparing astrophysical data
with presented results, as seen in Figure 13, and the position of the innermost stable circular
orbit (ISCO); lISCO comes from comparing astrophysical data with presented results, as seen
in Figure 11. However, despite the promising results, none of the three selected sources
match both restrictions for the parameter l.
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Figure 13. The upper frequency–mass relations (resonance 3:2 of fU: fL) for various values of the

parameter l.

Table 1. Selected microquasars with spin [22] and constraints on the hairy parameter l from ISCO

position (lISCO) and QPO fitting (lQPO) given by numerical comparison of astrophysical data and

presented results.

Source Spin a lISCO lQPO

GRS 1915+105 >0.98 - ⟨−3,−0.7⟩
GRO J1655–40 0.70 ± 0.05 ⟨−1.93,−0.85⟩ -

XTE J1550–564 0.34+0.20
−0.28 ⟨−4.3,−2.73⟩ ∪ ⟨−0.35, 0.57⟩ ⟨−1.8,−0.7⟩

6. Conclusions

We conducted a study on the motion of massive particles in the gravitational field of
spherically symmetric hairy black holes [1]. This metric has two free parameters, l and α;
however, α can only be considered as an amplification of the effect caused by the parameter
l, whose effects are being studied here, and we set α = 1 during the investigation (if α = 0,
the metric transitions to Schwarzschild). Our investigation primarily focused on circular
orbits, particularly the innermost stable circular orbit (ISCO), as well as the frequencies
associated with orbital and related epicyclic oscillations around stable circular orbits. The
ISCO served as a means to assess the possibility of the hairy black hole mimicking the
rotation of a Kerr black hole, while the epicyclic frequencies were employed to analyze the
twin high-frequency quasi-periodic oscillations [24] observed in microquasars.

Our findings indicate that, through appropriate scaling of the parameter l, hairy black
holes could potentially emulate rotating Kerr black holes for spin parameters up to a

.
= 0.66.

Furthermore, we demonstrated that hairy black holes have the potential to explain the
observed HF QPOs in microquasars using a simple epicyclic resonance model. Additionally,
our results yielded constraints on the parameter l based on observational data from three
selected microquasars. The resulting constraints derived from QPO fits and the ISCO are
presented in Table 1.

However, it is noteworthy that the constraints obtained from both QPO fits and the
ISCO position did not overlap for any of the selected sources when assuming the hairy
parameter l as the only factor modifying the ISCO. There are a few possible explanations:

I. The chosen sources do not exhibit the characteristics of hairy black holes.
II. The chosen epicyclic resonant model is not suitable for the description of these HF

QPOs.
III. The inclusion of rotation in our simple spherically symmetric model of hairy black

holes should be considered.
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IV. Other effects play a significant role (electric or magnetic fields, dark matter. . . ).
All this has to be investigated in the future.
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Note

1 Do not forget that we set the mass of the test particle as m = 1, which leads to the rescaling of constants E → E/m and L → L/m.
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