Downloaded from https://royal societypublishing.org/ on 16 January 2024

PHILOSOPHICAL
TRANSACTIONS A

royalsocietypublishing.org/journal/rsta

[@)oy | 1)
Introduction

updates

Cite this article: Taujanskas G, Valiente
Kroon JA. 2024 At the interface of asymptotics,
conformal methods and analysis in general
relativity. Phil. Trans. R. Soc. A 382: 20230048.
https://doi.org/10.1098/rsta.2023.0048

Received: 11 December 2023
Accepted: 11 December 2023

One contribution of 13 to a discussion meeting
issue ‘At the interface of asymptotics,
conformal methods and analysis in general
relativity’.

Subject Areas:
relativity

Keywords:

null infinity, conformal compactification,
general relativity, gravitational radiation,
asymptotic structure of spacetime

Author for correspondence:
G. Taujanskas
e-mail: taujanskas@dpmms.cam.ac.uk

THE ROYAL SOCIETY

PUBLISHING

At the interface of asymptotics,
conformal methods and
analysis in general relativity

G. Taujanskas' and J. A. Valiente Kroon?

1Department of Pure Mathematics and Mathematical Statistics,
University of Cambridge, CB3 OWB, UK

2School of Mathematical Sciences, Queen Mary University of
London, Mile End Road, London ET4NS, UK

@GT, 0000-0002-7115-714X

This is an introductory article for the proceedings
associated with the Royal Society Hooke discussion
meeting of the same title which took place in
London in May 2023. We review the history of
Penrose’s conformal compactification, null infinity
and a number of related fundamental developments
in mathematical general relativity from the last 60
years.

This article is part of a discussion meeting issue ‘At
the interface of asymptotics, conformal methods and
analysis in general relativity’.

1. Introduction

Roger Penrose’s seminal idea [1,2] of using techniques
from conformal geometry to study global questions
in general relativity has been vastly influential. Today,
these ideas permeate a number of current research
programmes in mathematical physics, partial differential
equations and analysis, and have contributed much to
the basic language of general relativity from null infinity
to Penrose diagrams. This article is an introductory
article for the proceedings of a workshop of the
same title, which took place 9-10th May 2023 at the
Royal Society in London, aimed at providing a survey
of the field 60 years after Penrose’s original work.
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2. Penrose’s conformal compactification

Robert Geroch’s description in the proceedings [3] of the 1976 Cincinnati Symposium on
Asymptotic Structure of Space-Time captures well an essential reason why general relativity
(henceforth GR) is distinct from many other physical theories: it is that in GR, the notion of
an ‘isolated system’ becomes much harder to define than in other theories. This makes GR
significantly more difficult to study. For example, Newtonian gravitation is described by a
potential ¢ evolving on fixed Euclidean 3-space, and a system may be said to be ‘isolated’ if the
mass density vanishes outside some compact subset of this space, and ¢ decays to zero away from
the compact set. In GR, however, such a separation of the fields into ‘background” and ‘physical’
fields is much more difficult, as the spacetime metric g, is both; here one has to construct the
evolving field and its background at the same time. A natural attempt to define an isolated system
in general relativity might be via an appropriate notion of ‘asymptotic flatness’ (at least in the
case of zero cosmological constant A): as one recedes ‘to infinity’, the spacetime geometry should
approach Minkowski space in a suitable sense, for example that the Riemann tensor of ,, should
approach zero. However, this is mathematically awkward and somewhat non-geometric, since
one is then faced with taking limits of tensor fields on manifolds, which is in general not well
defined, as well as having to describe limits of differentiable structures.

(@) Nullinfinity

Penrose’s idea of using a conformal compactification to address the problem described in the
previous paragraph is particularly elegant since it in one stroke takes care of both of these
difficulties. Consider the physical metric g,;, and rescale it, g, = .ngah, using a conformal factor
£2, a smooth positive scalar field which approaches zero at infinity with respect to g, at an
appropriate rate. Penrose called g, the unphysical or rescaled metric. If §2 is chosen correctly, the
limit points of all inextendible null geodesics are then brought to a finite distance, and form a
submanifold called null infinity, denoted .#. Asymptotic considerations with respect to g, are
then replaced with local differential geometry in terms of 2 and g, in a neighbourhood of .7,
and decay rates in null directions with respect to g, may be reinterpreted in terms of regularity
at .# with respect to g,p.

The massless fields in the physical spacetime, appropriately rescaled, then imbue .# with
information which may be thought of as a summary of the asymptotics of the processes in
the physical spacetime. Conceptually, if one then detaches .# from the rescaled spacetime and
considers it, together with this summary of asymptotics, an object in its own right, the fields
on .# are found to split into two distinct classes, the geometrical, or universal fields, and the
physical fields. The universal fields turn out to be, at least locally, the same no matter the original
spacetime, and therefore deserve to be called universal. The physical fields, on the other hand,
depend on the physical processes in the original spacetime. Penrose’s proposal therefore elegantly
decouples the geometry from the physics, at least asymptotically, and for massless fields provides
a way of defining an isolated system by requiring that a suitable compactification with £2 as
described above exists.

(b) Geroch conjectures from Cincinnati symposium

In [3] Geroch made three conjectures, numbered Conjecture 1, Conjecture 10 and Conjecture
13 (they were interspersed with Theorems). We mention them in reverse order. Conjecture
13 concerned the uniqueness of conformal completions of initial data sets for GR. That is,
consider an asymptotically Euclidean 3-manifold T (for simplicity, with just one asymptotic
end) with a smooth positive definite metric §,, and a smooth symmetric tensor field p,, the
extrinsic curvature. Consider a conformal completion of (T, Gab, Pap) by a point S, (T, qap, Pap) =
(TUS, 225, 2 pp), where at S one has £ =0, V,2 =0 and V,V;£2 = 24,. Geroch called such
a pair (T, 2) an asymptote of T. Conjecture 13 asked whether any two asymptotes (T, £2) and
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(T', 2) were equivalent in the sense that there exists a conformal rescaling w such that w =1 at S
and (T, w§2’) = (T, £2). This conjecture has been essentially understood through an adaptation of
the method of punctures to solve the constraint equations in GR [4-6], however, a proof does not
appear to be explicitly present in the literature. We mention here also the earlier work of Ashtekar—
Hansen, and their notion of AEFANSI (asymptotically empty and flat at null and spatial infinity)
spacetimes [7], and the resulting notion of the Spi (spatial infinity) 4-manifold.

The second of Geroch’s conjectures, Conjecture 10, asked whether in a spacetime admitting
a regular null .# the vanishing of the (massless) Klein-Gordon or Maxwell radiation field at .#
implies that the solution should vanish in the interior of the spacetime. This is now known to
be true in some generality as a consequence of the scattering theories constructed in [8-11] and
elsewhere.

Finally, Conjecture 1 asked roughly whether, in a vacuum spacetime with a null .#, linear
perturbations of Einstein’s equations with compactly supported data (on a spacelike, perhaps
hyperboloidal, hypersurface T) preserve .# in the domain of dependence of T. In essence, this
amounts to the question of the stability of spacetimes to linear gravitational perturbations (which,
as posed by Geroch, should have compactly supported initial data). When the background is
Minkowski space, this was answered affirmatively, in the full nonlinear regime, by Friedrich [12].
The celebrated work of Christodoulou & Klainerman [13] later proved the stability of Minkowski
space for data on a uniformly spacelike Cauchy surface, doing away with Friedrich’s requirement
that the data be prescribed on a hyperboloid (see also [14]); they obtained spacetimes with
asymptotic behaviour which in general does not permit a smooth conformal compactification (see
§2c for more on this). Even more general decay rates were later handled by Bieri [15] and more
recently by Shen [16]. Back in the linear regime, recent work of Masaood [17,18] has handled the
construction of a scattering theory for linear gravitational perturbations to a Schwarzschild black
hole. A result of this kind for more general spacetimes possessing an appropriately regular null
% appears to still be open. Related to this is the fact that the spacetimes admitting a regular null
infinity are not fully characterized, although infinite-dimensional families of such spacetimes are
known [19-22].

(c) Peeling

The question of what ‘appropriate” regularity of .# should mean now arises naturally. In the late
1950s and early 1960s, Sachs [23,24] discovered (see also [25,26]) that in smooth asymptotically
flat spacetimes a so-called peeling property was satisfied by the Weyl tensor. In essence, Sachs
found that the different components of the Weyl tensor ‘peel off’ at decreasing, integer rate
powers of the luminosity parameter r, ¥; ~ =5, 0 <i <4 as one approaches null infinity along
null directions. Peeling and the history of its discovery is described beautifully in the article of
Penrose in these proceedings [27], and we refer the interested reader there. The important point,
however, was the observation that the peeling property of the Weyl tensor is nothing more than
a consequence of the smoothness of the Weyl tensor in the conformally compactified spacetime.
This was a neat correspondence. However, for reasons that will be mentioned shortly, while the
picture of an isolated system defined through a conformal compactification was appealing, it
was not universally accepted by all workers in the field as appropriate. In particular, questions
of generality, definability of relevant physical quantities, and the applicability of the model to
physical situations of interest, remained—and still do. Calculations based on the equations of
motion and the radiation escaping an isolated system to infinity did not always appear to verify
the Sachs peeling property, which raised doubts as to the suitability of the smoothness of the
compactified picture [28,29]. Indeed, there were concerns that the conformal picture did not admit
any solutions to Einstein’s equations which contained gravitational radiation. This was put to
rest by a series of results due to Corvino, Chrusciel-Delay and Corvino-Schoen [19-22,30] (see
also [31]), who showed that initial data for the Einstein equations could be deformed in more
flexible ways than previously thought, e.g. by gluing essentially arbitrary small data in a compact
region to Schwarzschildean asymptotics near spatial infinity. Friedrich’s semi-global stability
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result [12] with these data then produces an infinite-dimensional family of non-trivial solutions to
the Einstein vacuum equations with complete and smooth conformal infinity .# and regular past
and future timelike infinities i*. A more complete account of the history of peeling is given well
by Friedrich in the review [32]. In general, if the decay of initial data is weaker than is required
for peeling, even if the data is smooth towards spatial infinity i, Friedrich [33] has shown that
the resulting evolution will in general be polyhomogeneous at .#, a result of the degeneracy of
Einstein’s equations at the points where spatial infinity meets null infinity. That quite generally
the situation is no worse was recently confirmed by Hintz & Vasy [34]. Work to understand
these issues sharply is ongoing, and the detailed structure of the polyhomogeneities exhibited
by massless scalar fields on Minkowski space is reviewed in Gasperin’s [35] contribution to this
issue.

The worry of mathematical genericity of peeling spacetimes being somewhat settled, the
question of applicability to relevant physical situations nevertheless remains. At the time of
writing, the general consensus appears to be that the smoothness assumptions in the classical
definition of asymptotic simplicity are in some instances too restrictive to describe realistic
physical scenarios. Kehrberger [36-38] has argued strongly that many systems of physical interest,
e.g. the problem of N gravitating bodies coming in from infinity, violate not only peeling, but also
the weaker decay assumptions and conclusions of Christodoulou—Klainerman [13,39]. There is
some suggestion, however, that the weak assumptions of Bieri [15] are sufficient to capture these
situations: see the chapter by Kehrberger [40] in this issue.

3. The BMS group

One of the main motivations behind Penrose’s approach to characterizing isolated systems in
GR through conformal compactifications may have been that of identifying universal structures
which, in turn, could be used as tools to study the physical processes taking place in the system.
One of these universal structures is asymptotic symmetries. Generic spacetimes cannot be expected
to be endowed with symmetries. In the case of an isolated system in GR, however, intuition
suggests that as one recedes from the sources the geometry should become more and more
Minkowski-like. This intuition, in turn, makes the notion of asymptotic symmetries plausible.
The big surprise is that, in GR, the asymptotic symmetry group does not coincide with the
10-dimensional Poincaré group, but turns out to be an infinite-dimensional group, now called
the Bondi-Metzner—Sachs (BMS) group, containing the Lorentz group and a distorted infinite-
dimensional group of translations. As pointed out in Penrose’s [27] contribution to this volume,
the BMS group first arose from considering the group of transformations which preserve the
form of the line elements used in the work of Bondi and collaborators [23,24]. More geometric
descriptions were found in subsequent analyses [3,41]. In this spirit, Borthwick & Herfray’s
[42] contribution to this volume extends the classical analysis of asymptotic symmetries in
asymptotically flat spacetimes to more general classes of spacetimes. This work makes use of
promising geometric notions and techniques (projective compactifications and tractor calculus)
which are yet to permeate and make an impact in the analytic study of Einstein’s equations, as
the conformal technique has done.

In recent years, the study of the BMS group has acquired renewed interest. This has to do,
to some extent, with the work by e.g. Hawking, Perry and Strominger on soft hair for black
holes and its implications for the information loss paradox [43]. The asymptotic symmetries
defined by the BMS group allow the construction of an infinite number of asymptotic charges—
not all of these conserved but nevertheless satisfying balance laws between cuts of null infinity.
These charges can be constructed at both past and future null infinity. A question of particular
relevance in the analysis of Hawking et al. [43] is the way the past and future asymptotic charges
are related: the past and future asymptotic charges can be identified if an antipodal matching at
spatial infinity is assumed. Friedrich’s framework of spatial infinity (see §4) provides a powerful
tool to analyse the genericity of the antipodal identification of past and future null infinity and to
characterize the associated class of Cauchy initial data for linear and full nonlinear GR in which
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this occurs. An overview of this research programme is given in Mohamed’s [44] contribution
to this volume. A key outcome of this analysis is that the BMS charges are generically not well-
defined unless certain regularity conditions on the initial data are assumed. When they are well
defined, however, by writing the charges at the endpoints of null infinity in terms of Cauchy initial
data it is possible to recover the identification of past and future charges without the need for an
a priori assumption of antipodal matching. This analysis suggests that the antipodal identification
condition is, at its core, an assumption about the regularity of spatial infinity.

4. Friedrich’s conformal Einstein equations and spatial infinity

The Einstein field equations are not conformally invariant. In fact, a naive rewriting of the
equations in terms of an unphysical metric g, conformally related to a physical metric gy, yields
equations which are formally singular at the conformal boundary. Nevertheless, it was shown by
Friedrich [45,46] that there exists a larger system of PDEs, the so-called conformal Einstein field
equations, which admit Einstein’s equations as a subsystem and for which standard methods of
the theory of partial differential equations are applicable even at the conformal boundary. This
observation opened the door to the first proofs of the global existence and nonlinear stability of
de Sitter-like and Minkowski-like solutions to the Einstein field equations mentioned earlier [12].
The main idea behind these proofs is that Penrose’s compactification procedure allows one to
reformulate an infinite-time existence problem as one where existence only needs to be shown
for a finite amount of conformal time. In many relevant problems, it is possible to find a gauge in
which the conformal Einstein field equations admit a reduction to a symmetric hyperbolic system.
When this is the case, the required existence results follow from the property of Cauchy stability.!

Friedrich’s original analysis of the stability of the de Sitter spacetime has been generalized
in many directions. In particular, it has allowed the investigation of the global existence of
cosmological solutions with spatial sections of constant negative (in the conventions of Friedrich)
curvature, see e.g. Minucci’s [48] contribution to this volume. Further, while Friedrich’s analysis
was restricted to the vacuum case, there exist now extensions of this strategy to settings involving
non-vanishing mass with trace-free energy momentum tensor, as explained in the chapter of Tod
[49]. Finally, extensions to the more challenging case where the trace of the energy-momentum is
non-vanishing are explored in Friedrich’s [50] article in this volume.

A peculiarity of Penrose’s notion of asymptotic simplicity is that it makes no reference to
spatial infinity. In the original paper [2] introducing the conformal method, Penrose himself
observed that the presence of a non-vanishing ADM mass in the spacetime gives rise to a
singularity of the conformal structure at the point representing spatial infinity. In the following
decades, a significant amount of effort was put into trying to understand the relationship between
this singular behaviour at spatial infinity and the properties of null infinity (e.g. [3]). These efforts
led to the identification by Ashtekar and Hansen of minimal regularity assumptions which allow
a matching between spatial and null infinity [7]. As in the case of Penrose’s asymptotically simple
spacetimes, the complete classification of Ashtekar and Hansen'’s class of AEFANSI spacetimes
remains an open question.

As mentioned in §2¢, Hintz and Vasy’s proof of the nonlinear stability of Minkowski space,
which uses Melrose’s techniques of geometric scattering (see §5), establishes the generic presence
of polyhomogeneous asymptotics. There are clear connections between the set-up of Hintz—Vasy
and that of Friedrich, and bringing these to the fore, perhaps in application to a full classification
of asymptotics of spacetimes, would seem to be a promising area of research.

5. Scattering theory

The functional analytic framework of the Lax—Phillips scattering theory [51] for hyperbolic
differential equations, developed in the 1960s, provides a point of departure for scattering in

1A similar strategy was used by Y. Choquet-Bruhat and D. Christodoulou to show the global existence of solutions to the
Yang-Mills equations [47].
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general relativity. Lax and Phillips deal with systems described by a group of unitary operators
{U(t)}: acting on a Hilbert space H which possesses distinguished subspaces D_ and D [52].
These subspaces, to be interpreted as spaces of scattering data in the past and future, have the
property that 2(t)D_ increases monotonically from the zero subspace to the whole space H as ¢
varies from —oo to oo, and analogously for U(t)D, which decreases from H to zero as t varies
from —oo to co. With each of D4, there is associated a particular spectral representation of {t/(t)}t,
and the future and past representations are related by a unitary operator .7, the scattering matrix.

Each spectral representer of the solution can be understood as a so-called asymptotic profile
(i.e. the leading-order behaviour of the solution near null infinity) in the past and the future.
In the early 1980s, Friedlander [53] reinterpreted the Lax-Phillips asymptotic profiles as his
radiation fields [54-56], i.e. limits along null geodesics of the scattered fields multiplied by
a radial coordinate r. The radiation fields had been known to be simply the restrictions of
the conformally rescaled fields to .# in Penrose’s conformal compactification. Friedlander was
therefore able to give the first construction of a ‘conformal’ scattering theory for the free
wave equation. In Friedlander’s picture, the property that the Lax—Phillips asymptotic profiles
completely determine the solution in the interior of the spacetime became the problem of solving a
characteristic Cauchy problem from .#. It is here that Friedlander opened the way for a geometric
formulation of scattering: while the Lax-Phillips theory, being based on the use of spectral
methods, was not applicable on time-dependent backgrounds, Friedlander’s picture clarified that
this ought to be understood as a technical shortcoming, the relevant information for scattering
being contained in the asymptotics of the physical fields. Moreover, for massless fields these
asymptotics were elegantly accessible via Penrose’s conformal compactification. The combination
of these ideas has become known as conformal scattering [8]. A detailed comparison of the
spectral and conformal approaches to scattering, and the difficulties and advantages typically
seen in each approach, is given in Nicolas’s [57] contribution to this volume.

A related major development in the field of mathematical relativity has been the realization of
the close connections between the ideas behind Penrose’s compactification and Melrose’s school
of microlocal analysis, often called geometric scattering [58]. Very briefly, geometric scattering
attempts to develop a Fredholm theory for hyperbolic operators on appropriately (but not
necessarily conformally) compactified manifolds. The methods of geometric scattering have
proven a powerful tool to analyse the nonlinear stability and asymptotics of solutions to the
Einstein field equations, including black hole solutions [59,60]. Applications of the techniques
of geometric scattering to the study of asymptotics in general relativity are discussed in Hintz’s
[61] contribution to this volume, where asymptotically de Sitter-like spacetimes are constructed
from asymptotic data (prescribed at the conformal boundary). This result generalizes the classical
proof by Friedrich [12] (which is restricted to four dimensions) and that of Anderson [62] (which
only applies to Lorentzian manifolds with odd spatial dimensions).

6. Black holes

The development of a complete and satisfactory mathematical theory of black holes has long been
one of the main aims of mathematical relativity. This subject has been made even more relevant by
the direct experimental observation in 2015 of gravitational waves produced by the coalescence
of a binary system of black holes [63]. From the mathematical side, a gargantuan effort has been
poured into developing a proof of the nonlinear stability of the Kerr spacetime [64-66].

The notion of null infinity as describing an idealized far away observer is central to the
classical definition of a black hole in the asymptotically flat setting [67,68]. While there are very
precise conjectures (and proofs under certain not entirely satisfactory assumptions) regarding the
uniqueness of stationary black holes, the question of the uniqueness in the cosmological setting is
not well understood [69]. Conformal methods allow the study of the uniqueness of black holes in
spacetimes with a positive cosmological constant by means of an asymptotic initial value problem
in which initial data are prescribed at the (spacelike) conformal boundary. The contribution of
Mars & Peén-Nieto [70] to this volume describes an ongoing research programme to understand,
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from the point of view of asymptotic initial data, the sense in which the Kerr—de Sitter family of
solutions is special. This programme should provide important insights into the question of the
uniqueness of stationary black holes in the cosmological setting.

One of the most promising sources of gravitational waves for the future generation of space-
based detectors (LISA) are the so-called extreme mass-ratio inspirals (EMRI) [71]. These are black
hole binary systems in which one of the components can be treated as a point source and the
gravitational waves produced can be adequately treated by means of perturbation theory [72].
As EMRIs produce a gravitational wave signal over extended periods of time, the production of
wave templates to be used in their detection require very precise numerical simulations. The use
of hyperboloidal foliations to numerically construct the solutions to the equations of perturbation
theory provides a way of constructing the signal templates which avoids the use of problematic
boundary conditions. The key idea is that null infinity provides a natural outflow boundary on
which no boundary conditions need to be prescribed. This promising application of conformal
methods to the study of gravitational waves is described in Panosso Macedo’s [73] contribution
to this volume.

7. Future directions

We hope that the contributions to the present volume convey to the reader the influence in
current research of Penrose’s idea of studying the asymptotics of fields in general relativity using
conformal geometry. To conclude, we would like to point out two directions of research which
appear to us to be quite promising.

The first is to further explore and develop the connections between the methods of geometric
scattering and the perhaps more traditional uses of conformal methods in general relativity, e.g.
using Friedrich’s conformal Einstein field equations. It is possible that a combination of the two
perspectives could yield a fruitful approach to a sharp classification of decay rates of initial data
and the asymptotic properties of the resulting spacetimes. In a similar vein, it would be interesting
to investigate if questions of nonlinear stability of black holes might be addressed using the
conformal Einstein field equations, probably in some conjunction with the ideas that are already
well established within the black hole stability community.

The second direction is to continue the development of numerical schemes to construct
solutions to the Einstein field equations in a conformal setting: see e.g. the work by Hiibner
on the numerical implementation of the hyperboloidal initial value problem [74]. The value of
these numerical simulations should not be underestimated and can provide valuable insights for
further analytical studies. In particular, the use of conformal methods should pave the way to the
numerical construction of complete scattering spacetimes which are prescribed through initial
data on the whole of past null infinity—this numerical endeavour will require input from the
analytic side, as described in the previous paragraph.
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