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We consider the gauge/gravity correspondence between maximally supersymmetric Yang—
Mills theory in (p + 1) dimensions and superstring theory on the near-horizon limit of the
Dp-brane solution. The string-frame metric is AdS, ;> x S8 =7 times a Weyl factor, and
there is no conformal symmetry except for p = 3. In a previous paper by one of the present
authors, the free-field result of gauge theory has been reproduced from string theory for a
particular operator that has angular momentum along S® ~7. In this paper, we extend this
result to operators that have angular momenta along AdS, ;. Our approach is based on
a Euclidean formulation proposed by Dobashi et al. [Nucl. Phys. B 665, 94 (2003)] and on
the “string bit” picture. We first show that the spinning string solution in Lorentzian AdS,
found by Gubser et al. [Nucl. Phys. B 636, 99 (2002)], can be recast in a form that connects
two points on the boundary of Euclidean AdS. The transition amplitudes of such strings
can be interpreted as gauge theory correlators. We study the case of zero gauge coupling by
ignoring interactions among string bits (massless particles in 10D spacetime that constitute
a string), and show that the free-field results of gauge theory are reproduced.

Subject Index B21

1. Introduction

Gauge/gravity correspondence provides concrete realizations of the holographic principle[1,2],
a highly non-trivial proposal that states that quantum gravity should be described by degrees
of freedom localized on the spatial boundary. Since Maldacena’s original proposal of the
anti-de Sitter/conformal field theory (AdS/CFT) correspondence [3], numerous examples of
gauge/gravity correspondence have been proposed. This has led to exciting developments in
quantum gravity and in strongly coupled quantum systems. An example of the former would be
the discovery of the chaos bound [4]; this was found through clever use of the Ryu-Takayanagi
formula for entanglement entropy [5,6] in a two-sided black hole spacetime that is holographi-
cally dual to the thermofield double state [7]. Examples of the latter include the Sakai-Sugimoto
models for quantum chromodynamics (QCD) [8,9], which have provided new viewpoints in
terms of strings and branes for problems in quantum field theory.

In spite of such developments, gauge/gravity correspondence has not been proven. In our
opinion, there are unclear issues associated with the cases without conformal symmetry and/or
at weak gauge coupling; clarification of these issues could show us a way towards proving
gauge/gravity correspondence.
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Conformal symmetry has been extremely helpful in formulating and testing gauge/gravity
correspondence. Although the holographic principle should be a concept independent of the
conformal symmetry, the cases without conformal symmetry are much less understood than
those with it. By correctly formulating the correspondence without conformal symmetry, we
would be able to gather important data suggesting how gauge/gravity correspondence works.

Gauge/gravity correspondence at weak gauge (or 't Hooft) coupling is poorly understood
at present. Some people even doubt whether a correspondence exists in this region, but it is
inconceivable that a proof of gauge/gravity correspondence is possible without a clear under-
standing of this region. Weak gauge coupling is supposed to correspond to weak string tension.
In this region, the energy levels of string excited states are smaller than the mass scales for the
supergravity modes (the lowest modes of strings). Thus, the supergravity approximation is not
sufficient, and we will need the string worldsheet theory.

The purpose of this paper is twofold. One purpose is to establish a formalism for computing
gauge-theory correlators using string worldsheet theory in the cases without conformal sym-
metry. The other purpose is to apply this formalism to the case of zero gauge coupling, with
an additional assumption of the “string bit”. We will reproduce the free-field result of gauge
theory correlators from string theory, extending the result obtained in a previous paper by one
of the present authors [10] for a particular operator to the general class of operators.

In Sect. 1.1 below, we will remind the reader of basic facts about gauge/gravity correspon-
dence. This part can be skipped if it is not necessary for the reader. In Sect. 1.2, we will introduce
the concrete example studied in this paper, namely the gauge/gravity correspondence associated
with Dp-branes. This part is a review of old work, but may contain subjects that are not widely
known. Then, in Sect. 1.3, we will describe the aim of the present work.

1.1 Conformal and non-conformal
Conformal symmetry has played important roles in formulating and testing gauge/gravity cor-
respondence, such as the following: (1) The first hint of the equivalence of two completely
different theories was that the symmetries on both sides match [3]: The isometry group of (d +
1)-dimensional anti-de Sitter (AdS) space and the conformal group in d dimensions are isomor-
phic. (2) The dictionary between the bulk fields and the boundary operators, namely, the cou-
pling between them in the Gubser—Klebanov-Polyakov—Witten (GKPW) prescription [11,12],
is determined from the requirement that they should belong to the same representations of
the (super)conformal group (see, e.g., Ref. [13]). (3) In theories with superconformal symme-
try, there are powerful non-renormalization theorems. For instance, the scaling dimensions of
the so-called BPS operators, which correspond to supergravity (SUGR A) modes, are not renor-
malized from their free-field values. The fact that the gauge-theory correlators calculated by the
GKPW prescription using the tree-level SUGR A have the free-field scaling dimensions provides
an important consistency check of AdS/CFT correspondence. (4) There have been highly non-
trivial tests of AdS/CFT correspondence from calculations of quantities interpolating between
weak and strong couplings. In such analyses, conformal symmetry played essential technical
roles. Examples include the calculation of the expectation values of Wilson loops by using
conformal transformations of the shape of the loops (see, e.g., Ref. [14]) and the calculation of
cusp anomalous dimensions using integrability (see, e.g., Ref. [15]).

In theories without conformal symmetry, we do not have these (at least not obviously), and
it is not straightforward to study gauge/gravity correspondence.
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In fact, there have been many examples of gauge/gravity correspondence without confor-
mal symmetry. However, most of them are associated with theories with conformal symmetry
(though they involve highly non-trivial and interesting ideas), in the sense that they are con-
tinuous deformations of theories with conformal symmetry, and the symmetry is restored in
some limit. Examples of such interesting theories include: (a) attempts at holographic duals of
QCD-like theories, starting from the work by Witten [16], by compactifying spatial directions
in the conformally invariant 6D theory; (b) studies of RG flows by constructing geometries
that interpolate between two AdS regions [17-19]; and (c) applications of gauge/gravity corre-
spondence to nuclear or condensed matter physics (see, e.g., Refs. [20,21] for reviews), in which
attention is focused on the vicinity of the quantum phase transition points at which conformal
symmetry is realized.

There are very few examples of gauge/gravity correspondence that do not have conformal
symmetry from the outset. One such example is described below. Through the study of such a
theory, we hope to develop the formalism and techniques applicable to non-conformal cases in
general.

1.2 Gaugelgravity correspondence for Dp-branes

In this paper, we will study the gauge/gravity correspondence between maximally supersym-
metric SU(N) Yang—Mills theories in (p+1) dimensions and superstring theories on the near-
horizon limit of the Dp-brane solutions, proposed by Itzhaki et al. [22]. The former theory is
an open-string description on the worldvolume of Dp-branes, and the latter is a closed-string
description treating the Dp-branes as classical solutions in supergravity. The p = 3 case is con-
formally invariant, and is the most typical example of AdS/CFT correspondence [3]. For p #
3, the gauge coupling has non-zero dimension, and the theory is not conformally invariant.
Without conformal symmetry, the analysis for p # 3 is not easy, but the correspondence is
as well-motivated as in the p = 3 case. We expect the p # 3 cases to yield useful data about
the mechanism of gauge/gravity correspondence. In this paper, we will study this example of
gauge/gravity correspondence.

Supergravity analysis based on the GKPW prescription has been performed on the near-
horizon Dp-brane background [23-25], and it has been found that the operators in the maxi-
mally supersymmetric Yang—Mills theories in (p 4+ 1) dimensions that correspond to SUGRA
modes have power-law correlators, even though there is no conformal symmetry for p # 3.
This is the result supposed to be valid at strong 't Hooft coupling. The power is in general a
fractional number, different from the free-field value. This power law has not been understood
analytically in gauge theory, but for some operators in p = 0, it has been confirmed to a high
precision by the Monte Carlo simulation in gauge theory [26,27].

A problem with the cases without conformal symmetry has been that it is not clear how to
perform bulk analysis based on the string worldsheet. For theories with conformal symmetry,
one can identify the energy with respect to the global time in AdS with the scaling dimension
of the corresponding operator in gauge theory. This identification is based on the isomorphism
of the symmetry groups, and cannot be applied to the case without conformal symmetry. Al-
though the superstring action on AdS has complicated non-linear interactions and is difficult
to solve, there has been significant progress based on semi-classical approximations, especially’

!Also, in other cases such as AdS3;/CFT, [28-30] and the D1-D5 system (see, e.g., Ref. [31]), detailed
worldsheet analyses have been performed.
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in the case of AdSs x S°: (a) In the limit of large angular momenta along S°, Berenstein, Mal-
dacena, and Nastase (BMN) found the spectrum of quadratic fluctuations around a pointlike
classical configuration of the string moving along S°, and obtained the scaling dimensions of
the corresponding operators (the so-called BMN operators). This includes higher string exci-
tations, not only the supergravity modes [32]. (b) In the limit of large angular momenta along
AdSs, Gubser, Klebanov, and Polyakov (GKP) identified classical solutions of strings with such
momenta, which are folded and spinning in AdS, and obtained the scaling dimensions of the
corresponding operators in gauge theories. This result is expected to capture the properties of
non-supersymmetric theory as well [33].

To the best of our knowledge, the only formalism for the worldsheet analysis applicable to
the non-conformal cases are the one proposed by Dobashi, Shimada, and Yoneya (DSY) [34].
In the original paper of DSY, the BMN operators in the conformally invariant p = 3 case were
studied. They consider Euclidean AdS in order to make contact with the GKPW prescription,
which is formulated in the Euclidean background. There is a geodesic in Euclidean AdS that
connects two points on the boundary. By performing a semi-classical approximation (similar
to the one performed by BMN) of a superstring along this geodesic, one can compute the
transition amplitudes of the Euclidean string. The amplitude is interpreted as the correlation
function of the corresponding BMN operator. The results thus obtained are consistent with the
ones obtained by BMN [32]; furthermore, some puzzles have been solved (see Refs. [34-36]).
This formalism does not use conformal symmetry and is based on an intuitively clear rela-
tion between the bulk and boundary; thus it is applicable to the non-conformal cases. Asano,
Yoneya, and one of the present authors have applied this to the study of the BMN operators
for general p (0 < p < 4)[37,38]. When applied to the SUGRA modes, this method gives a re-
sult consistent with the one obtained by the GKPW prescription. The bulk analyses described
above are supposed to give results for gauge theory in the large-N limit with strong ’t Hooft
coupling.

1.3 Aim of the present work

As reviewed above, it is essentially understood how to compute correlation functions at strong
’t Hooft coupling from the bulk (using supergravity or string theory), including the cases of p
# 3 that are not conformally invariant. On the other hand, it was not known how to obtain
the free-field results of gauge theory from string theory except for the BPS operators for p = 3,
whose scaling dimensions are protected.

In a previous paper by one of the present authors [10], the BMN operators in the (p + 1)-
dimensional super-Yang—Mills theory have been studied at zero gauge coupling in string theory.
This is based on the “string bit” picture, summarized as follows: Consider single trace operators,
Tr(Z’), where Z is a complex combination of two of the (9 — p) scalar fields in gauge theory,
say, Z = ¢g + iy, defined in a manner similar to the p = 3 case, following BMN. We will call this
a BMN operator. (It might be common to use this terminology only when J is large, but here
we will continue using it when J is not necessarily large.) This operator corresponds to a string
state with J units of angular momentum along S® 7. We assume that the spatial direction of
the worldsheet is discretized into J bits, each of which has a single unit of angular momentum.

The reasons for considering the string bits are twofold: First, on the gauge-theory side, if one
wants to represent the string worldsheet by the cyclic sequence of the fields inside the trace, one
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can only represent J sites. The string bit picture is mentioned in the original paper by BMN [32].
It also appears in recent papers such as Refs. [39] and [40] in contexts related to but somewhat
different from ours?.

In our opinion, there is another reason for considering string bits, on the string theory side:
To represent a state with non-zero angular momentum, one usually inserts one or more creation
operators that have appropriate angular momentum. Those operators are the Fourier modes
with respect to the spatial direction on the worldsheet. In other words, they are obtained by
smearing local operators on the worldsheet. Before smearing, each operator inserted on the
worldsheet can be regarded as a particle (bit) with a unit angular momentum, interacting with
other bits via strings connecting them. At the weak gauge coupling limit, the unit of angular
momentum is large?, and the interactions among the bits are weak. Thus, it would be appro-
priate to treat these bits as discrete objects.

In the previous paper [10], the case of zero coupling was studied by ignoring the interactions
among the bits. Then, following the DSY formalism [34,37] mentioned in the last subsection,
the amplitude for the collection of bits was computed, and interpreted as a gauge-theory cor-
relator. By properly taking into account the zero-point energies due to the fluctuations, the
free-field result of the (p + 1)-dimensional field theory was reproduced.

The result of Ref. [10] was obtained for one particular operator. In this paper we would like
to show that the free-field result can be obtained for general operators. We consider operators
that have angular momentum along AdS, typically of the form Y ;Tr(¢;D5¢;), where ¢; are
scalar fields in the (p + 1)-dimensional gauge theory, and D denotes a complex combination
of gauge covariant derivatives in two directions, say, D = D; + iD,. This type of operator is
called a Gubser, Klebanov, and Polyakov (GKP) operator [33]. (It might be common to use this
terminology only when S is large and angular momentum along the S® ~7 directions is zero, but
we will use it loosely whenever an operator has non-zero angular momentum along AdS, ; ».)
At strong 't Hooft coupling for p = 3, the GKP operators are described by strings that are
folded and spinning in AdS, as found in a seminal paper by GKP [33]. In the present paper
we first clarify how to describe such operators in the bulk for p # 3 (in which we cannot rely
on the identification between the energy in terms of global time and the scaling dimension).
Our approach is an extension of the Euclidean formulation of DSY, in which an angle along
which the string is moving is taken to be imaginary, in order to keep the angular momentum
real in the Euclidean setting. In DSY, only one angle was imaginary, but in our work, two of the
angles are taken to be imaginary. In this formulation, we will find a solution in which a string
worldsheet connects two points on the boundary; the center of the string follows a trajectory
in AdS similar to the one for the BMN operators.

Then, we consider zero gauge coupling in this framework. As in the previous paper [10], we
assume that a bit has a unit angular momentum along S® ~7. Calculating the amplitudes by
ignoring the interactions among the bits, we will find the free-field results both for p = 3 and
for p # 3. (For p = 3, we will also present an analysis for zero gauge coupling in the Lorentzian
formulation.) We regard these results to be indications of the validity of the approach initiated
in Ref. [10].

2We thank Yasuaki Hikida for pointing out the former reference to us.

3In this limit in which the string length is much larger than the AdS radius, stretched strings within a
patch with the AdS size cannot be ignored. The string bit picture may provide one approach for under-
standing “sub-AdS locality”, known to be a difficult problem in gauge/gravity correspondence [41].
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We should mention that our result is based on two assumptions that have not been proven at
present. One is that we assume that the near-horizon Dp-brane background does not receive
o corrections for general p. The p = 3 case is believed to be o exact [42,43], but for p # 3 it
is not known, to the best of our knowledge. The other assumption is that when we compute
the zero-point energy of a single bit, we take into account the fluctuations up to the quadratic
order around the classical trajectory. For p = 3, contributions from the bosonic and fermionic
fluctuations cancel each other because there is effectively a worldsheet supersymmetry [38,44—
46]. But for p # 3, we do not have a clear explanation why it is enough to stop at the quadratic
order. Since we are not considering large angular momenta (because we are considering a single
bit), there is no small parameter, so higher-order terms could in principle contribute. One way
to estimate the order would be as follows: a bit can be regarded as a massive particle in AdS,, 1 »;
its mass is given by the angular momentum on S® ~7 and is of the order of m ~ 1/L, where L
is the radius of AdS, ;> and S® ~7. Thus, there is an expansion parameter 1/m ~ L, but each
order is associated with the corresponding factor of 1/L, since the expansion along the geodesic
in AdS,, ; » is essentially an expansion in curvature. In this counting, each term is of the order
of unity. (This is also clear from the fact that the action, m [ dt/g,,X*X", of a massive particle
on AdS, . » has no dependence on L, since m ~ 1/L, and ,/g,,,X*x" ~ L.)

1.4 Organization of this paper

This paper is organized as follows. In Sect. 2, we will briefly review the gauge/gravity correspon-
dence for Dp-branes. The basic features of the near-horizon limit of the Dp-brane solution will
be described. In Sect. 3, as preparation, we will consider the case of strong gauge coupling. We
will first review the Lorentzian solution found by Gubser, Klebanov, and Polyakov, then rotate
some coordinates to the imaginary directions, and obtain a string configuration that connects
two points on the boundary. We will show that the string amplitude can be interpreted as the
gauge-theory correlator. Our analysis here is based on the p = 3 case, but this formalism is ap-
plicable to the cases without conformal symmetry. In Sect. 4, we consider weak gauge coupling.
We study the zero coupling case by considering the string bits without interactions among them.
We first describe the analysis for p = 3 using global time in Lorentzian AdS. From the energy
of the rotating particle, we obtain the free-field result in gauge theory. We then study the case
of general p. We compute the amplitude for particles moving along a trajectory connecting two
points on the boundary, and show that this reproduces the free-field result in gauge theory. In
Sect. 5, we conclude, and mention directions for future research.

2. Gaugelgravity correspondence

A gauge/gravity correspondence associated with the Dp-branes has been proposed by Itzhaki
et al. [22]. We will assume 0 < p < 4. Here we will review only the basic facts, and refer the
readers to the original papers for details*: for the supergravity analysis based on the GKPW
prescription, see Refs. [23-25]; for the worldsheet analysis, see Refs. [37,38,50]; for the tests by
Monte Carlo simulations in gauge theory, see Refs. [26,27]; for the correspondence at weak
gauge coupling, see Ref. [10].

4See also Refs. [47-49] for “generalized conformal symmetry”, which motivated the following analyses.
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The metric and the dilaton for the zero-temperature Dp-brane solution in the string frame is
given by’
ds* = H™'? (—di* + dxﬁ) + H'? (dr2 + rdeé_p) ,
q

® 3-p
e:gsH4, H:1+r7__P (1)

wherea =1, ..., pand g = &,g,Nt, ” with &, = 2027 5=2/2T (7 — p)/2. The integer N denotes
the number of Dp-branes, £, is the string length, and g; is related to the Yang—Mills coupling by
S = (27)P"2g? > We consider the near-horizon limit r < ¢"7 =7, and take H — g7 ~7.

For p = 3, the near-horizon geometry is AdSs x S°. For p # 3, it is related to AdS, ; » x S8 7
by a Weyl transformation®:

2\’ (d?+dx2+d2?
ds® = H'/*? [(5 ) ( Tax, + ez >+ds2§_,, . )
—p -
The radial variable z in the Poincaré coordinates for AdS, , , is defined by
s L (@ N2 2 i, 3)
S—p : S—p

For p = 3, the Weyl factor H"?#? is constant. For p # 3, there is no AdS isometry, since the
Weyl factor, dilaton, and the gauge fields do not have such symmetry. The radius of AdS, ;> is
5%1) times the radius of S® ~7, as we see from the relative factor between the first and the second
terms in Eq. (2).

To the best of our knowledge, it is not known whether there are o’ corrections to the back-
ground (2) for general p. We assume that there are no corrections, and continue using this
background when the curvature is strong.

The string coupling ¢? and the curvature of the background depend on the position for p #
3. String coupling is weak, ¢? < 1, away from the center /¢, > N®=n (g,N)/3=P) for p < 3,
and away from the boundary r/¢, < N9 (g,N)~/?=3 for p > 3. To study the curvature,
it would be helpful to consider an effective curvature radius L(r) given by the Weyl factor in
Eq. (2), which can be written as

X L [0\ B2

LA (r) = H'*r? o (g,N¢E3) (7) . 4)
The curvature is weak relative to the string scale, L(r) > £, away from the boundary r/¢, <
(gsN)/C =P for p < 3, and away from the center /£, > (g,N)~/? = for p > 3. If one wants to
use the tree-level supergravity approximation, we will need these conditions to be satisfied in a
large portion of the near-horizon region. This is achieved if we take N — oo with g;N (i.e., the
’t Hooft coupling g%{MN ) fixed but large [23]’. In this paper, we will always ignore string loops.
This corresponds to taking N — oo in gauge theory. In Sect. 4, we will consider weak gauge
coupling g, — 0 (or weak ’t Hooft coupling ggN — 0), which corresponds to strong curvature
L(r)/t; — 0. We will study this region using string theory based on the string bit picture, not
relying on the supergravity approximation. When gauge coupling is zero, the effective string
tension, which is of the order of L*(r)/¢2, is zero.

>The time coordinate ¢ in this equation corresponds to time in the Poincaré coordinates, which will be
denoted as 7p in Sect. 3. The time for global coordinates will be denoted as ¢ there.

®For p = 5, the background is Weyl equivalent to a linear dilaton background.

"The singularity at the center r = 0 causes no problem in the GKPW prescription, since we take the
wave functions that decay exponentially at the center [12].
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The gauge theory that corresponds to superstring theory on the above background is the
maximally supersymmetric SU(N) Yang-Mills theory in (p + 1) dimensions. This theory is
obtained by dimensional reduction from the super-Yang—Mills theory in (941) dimensions,
and has (9 — p) scalar fields, ¢, ; 1, ..., ¢, in addition to the gauge field in (p 4 1) dimensions.
There is SO(9 — p) global symmetry that rotates the scalar fields among themselves. We will
consider a complex combination of two scalar fields, say, Z = ¢g + i¢y, and also a complex
combination of gauge covariant derivatives in two directions, say, D = D| + iD;.

3. Spinning strings (strong gauge coupling)

The purpose of this section is to establish a method for calculating the correlators of operators
that have angular momentum along AdS, . » from string theory that is applicable to the p #
3 cases that are not conformally invariant. Our method is an extension of the prescription
proposed by Dobashi et al. which has so far been formulated only for the BMN operators
(those with angular momenta along S® ~7). In this formulation, we will consider Euclidean
AdS. In the limit of strong ’t Hooft coupling, correlation functions of operators of the form
3" Tr(¢p;D5¢;) can be calculated by evaluating the action of classical string solutions. For p =
3, the string solution is given from the one obtained by GKP [33] by rotating some coordinates
to imaginary values. This connects two points on the boundary. We will defer the study of
classical solutions for p # 3 to future work, but this formalism is applicable to the cases without
conformal symmetry.

In Sect. 3.1, we review GKP’s analysis performed in Lorentzian AdS for p = 3. Then, in
Sect. 3.2, we obtain a solution that connects two points on the boundary in the Euclidean
formulation. We will see that the Euclidean amplitude for this string can be written in the form
of gauge-theory correlator.

3.1 Lorentzian signature
We write the AdSs x S° using the global coordinates for AdS?,

ds*> = L* {— cosh® p dt* + dp* + sinh® p (0032 0 dy* + do* + sin’ 9d¢2)
+ cos” 0 dyr® + d6? + sin? édQ%} , (5

since the symmetry is manifest in this coordinate system.
The bosonic part of the string action is given by

1 2ma’
f dt f do—hh*P 3, X" 35X " g, (6)
0

4o’
In addition to the equation of motion for X*, there is a constraint obtained by varying the
action with respect to the worldsheet metric 4%8:

I =

1
~5hapd” X" 3, X gy + 0. X" 05X g0 = 0. (7

In this section we will take the conformal gauge, v/—hh*? = n*#_ in which the above constraint
becomes

XtXVg = —XMX""g,,, (8)

$The time coordinate ¢ without a subscript denotes time in global coordinates in this section and
Sect. 4.1.
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XtXVg,, = 0. )

On the background (5), the momenta corresponding to the translations in ¢, ¥, and v are
conserved. We will call them E, S, and J, respectively:

5$S L2 2o )
E=P=— = f do cosh? p i, (10)
ot 2o’ 0
S=P o5 L fzﬂa/ do sinh? p cos® 6y (11)
= = - = (e} .
VS T8y 2 )y P
5S LZ 2o’ s
J=Pj=——= / do cos* . (12)
Sw 2ro 0

Following GKP [33] (also allowing the motion along S° [51-53]), we take the following ansatz
for classical solutions (with 8 = 6 = 0):

t=1, Yv=owt, p=pl), ¥ =oar. (13)
Since ¢ and ¥ are functions of 7 only, and p is a function of o only, the constraint (9) is satisfied.

The other constraint (8) gives the relation
dp

\/ cosh? p — @2 — w? sinh? p
which implicitly determines p as a function of o. The string is folded and stretched: the points
o =0and o = o on the worldsheet are at the center of the string, p = 0; the points o = 7o' /2
and o = 37« /2 are at the end, p = py.

From Eqgs. (10), (11), and (12), one can find the relations among E, S, J. For example, as
described in Ref. [33] (for J = 0), for small S one has E> ~ S; for large S one has E — S~ In S.
By identifying the energy with the scaling dimension, A ~ E, strong-coupling results of gauge
theory have been obtained [33].

do — , (14)

3.2 Euclidean signature

We would like to relate GKP’s string solution [33] with the GKPW prescription [11,12] based
on supergravity. Since the latter is defined on Euclidean AdS, we replace t — itg in Eq. (5). To
study strings (or particles) on this background, we will take the worldsheet (or worldline) time
imaginary also, T — itg. In this Euclidean calculation, the angular momenta J and .S should
be kept real, since these are quantum numbers that specify the representation of the symmetry
group and have direct meanings in gauge theory. Accordingly, as we see from Egs. (11) and (12),
the angular variables ¥ and v/ should be taken imaginary®, since  is now imaginary. This is
a straightforward extension of the prescription of Dobashi et al. [34], in which one angle was
taken to be imaginary, to the case of two angles. The Euclidean solution takes the form

tg=1g, VY =iwtg, p=pl0), V=id, (15)
with w and @ being real; these are the same as the angular velocities for the Lorentzian solution.
By solving the constraint (8), which now becomes

arEXuarEngﬂv == XM/Xng,v’ (16)

we obtain the relation between p and o. It is of the same form as Eq. (14).

9We regard the momentum representation as fundamental for some variables such as v and v here.
Thus, we do not particularly pursue physical meanings for the imaginary values of v and .
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The Euclidean version of E, which we will call H, is

2 [ dtg 21> [ h’
H = // do costh—E = // dp il , (17)
2ral J drg  wd ) \/coshz p — @2 — o2 sinh? o

and the angular momentum along v is

L2 2ra’ ) d 2L2 0 . h2
S=-—i / do smth—w = w/ dp il . (18)
0 d o Jo \/

2ma’ T T N .
E cosh® p — @2 — w2 sinh? p

3.2.1  Poincaré coordinates. We now rewrite the above solution in Poincaré coordinates, so
that the correspondence with gauge theory becomes clear. For clarity, we present the coordi-
nate transformations using the embedding coordinates explicitly. We will write the formulas for
general p in this subsection.
The Euclidean AdS,, . » is represented as a hyperboloid,
Pl
—XJ+ XG4 Y X =L (19)

a=1
in the p + 3-dimensional flat space, ds* = —d X}, + dXg + SP*1dX?2. The hyperboloid is
parametrized by the global coordinates as

X, 4> = Lcosh p cosh g,
Xo = Lcosh psinh tg,
X, = Lsinh p$2,, (20)
where Y771 Q2 = 1.
The solution (15) effectively has angular variable v imaginary. If we choose i to parametrize
the rotation in the X;-X; plane as follows:

X| = Lsinh pcos@cosy, X, = Lsinhpcos6sin, (21)
the coordinate X, effectively becomes imaginary if v is imaginary. In the following, X5, and

also x, defined below, are understood to be imaginary'”.
The Poincaré coordinates are defined as

z L+ Y . x2+13
XP+2 = E (1 + ZZ ) )
! i
Xo=1%,  x=r%
z z
z —L*+ Y, x7+ 13
Xpi1 = 3 (1 + ?2 P) . (22)
Equating Egs. (20) and (22), we obtain
tp = ¢ tanh g, (23)
l
=—) 24
g cosh p cosh g 24)
% tanh?
32 = Psinh?p = ——L P (25)
; cosh” g

19Tf we define a real variable £, by x, = if,, the expression )_; x? below means x7 — £3 + x3 + - - -
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where £ is an arbitrary constant, and we have used 7 = tg from Eq. (16).

From Eq. (25), we see that the spatial extent of the string reduces to a point in terms of the
coordinate x;, as the string approaches the boundary z — 0 (or t — =£00), in the following
sense: the string occupies 0 < p < po (with py being a finite constant), and the center of the
string, p =0, is at x; = 0; Eq. (25) shows that the value of ), x? corresponding to the endpoint
of the string, p = po, goes to zero!!
that we represent this state as a local operator in gauge theory.

as z — 0 (or |t] = o0). This fact is in comfort with the fact

3.2.2  Gauge-theory correlator. By substituting tg = 00 in Eq. (23), we see that the coor-
dinate distance between the two points, ¢ and #; (both with x; = 0), on the boundary is given
by

Ity — 1| = 20. (26)

In fact, Eq. (25) shows that the center of mass of the string follows the same trajectory as the
trajectory of a particle that has an angular momentum along S® =7 (and not along AdS, ; »).
The latter was first studied for p = 3 by Dobashi et al. [34], and then generalized to p # 3 by
Asano et al. [37]. This will be also described in Sect. 4 of this paper.

The Euclidean amplitude for a string that propagates from a point on the boundary to an-
other point on the boundary is interpreted as the two-point function of gauge theory. In the
classical approximation, the bulk amplitude is

e Sd — o~ I dTEH(fE)’ 27)

where H(tg) is the Hamiltonian at Euclidean worldsheet time tg. This is just the Euclidean
version of the global energy given in Eq. (17), since the worldsheet time is equal to the global
time, in our classical solution (15).

We introduce a cutoff 7 for the worldsheet time, — 7' < 7 < T. We also introduce a cutoff for
the radial coordinate, z > 1/A. This IR cutoff in the bulk is interpreted as a UV cutoff in gauge
theory [41]. The relation between the two cutoffs can be read off from Egs. (23) and (24) in the
|T| — oo limit as

20A = et (28)

For the solution (15), the Hamiltonian is independent of the worldsheet time. Therefore, it
can be taken out of the integral, and the amplitude can be written as
—JT dwH () _ ,—2HT _ 1
‘ T G-y 2
The worldsheet Hamiltonian gives the scaling dimension, and we have recovered the result of
GKP.

This formalism should be applicable to the p # 3 case without conformal symmetry. In that
case, the worldsheet Hamiltonian will not be time independent in general; thus the above inte-
gral has to be evaluated explicitly. In addition, finding the string solution is more challenging
than p = 3, since the AdS isometry is not the symmetry of the string due to the position-

Tf x; were all real, this would really mean that the string reduces to a single point at the boundary. In
our case where x, = iX, is imaginary, the string is really stretched in the “lightlike” direction in the x;-
X, plane. However, as mentioned in a previous footnote, we do not attach a particular physical meaning
to imaginary values of the coordinates. Thus, if the invariant distance Y, x7 is zero, we interpret it as a
single point.
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dependent Weyl factor. One approach would be to study the limit of a short string by using an
approximate form of the geometry near the center of the string. This subject is under study [54]
and will be reported elsewhere.

4. Rotating particles (weak gauge coupling)

Let us now consider weak gauge coupling. In this paper, we will concentrate on the case where
the gauge coupling is strictly zero. On the string theory side, this corresponds to the case where
the string tension is zero. If the spatial direction of the worldsheet is discretized into bits, the
interactions among the bits can be ignored in this limit. The previous paper [10] considered
a state that has angular momentum only along S® ~7, but here we will extend the analysis to
those that also have angular momentum along AdS, ; . As in Ref. [10], we assume that one bit

12 a single unit of angular momentum along S® = 7.

carries
We first study the p = 3 case using the Lorentzian formulation, by identifying the AdS energy
in terms of the global time with the scaling dimension. We then study the case of general p

using the Euclidean formulation that does not rely on conformal symmetry.

41 p=3

A bit is a massless particle in 10D spacetime [10], namely, AdSs x S° in this case. We will fix
the angular momentum in the S° direction. Then, we can perform a Kaluza—Klein reduction
and treat a bit as a massive particle on AdSs. More precisely, by considering the Routh func-
tion (in which a Legendre transformation is performed for an angle in the S° direction) in 10
dimensions, we obtain the action of a massive particle on AdSs (see Sect. 2.2 of Ref. [37]). The
mass is given by m = J/L, where J is an integer and L is the radius of S°, which is equal to the
radius of AdSs. One bit has J = 1 [10], but we will keep m in the formulas below for the time

being.
The action for a single bit is given by
¥ = 5 [ | g (R @4 () - e . (30)
and the corresponding equations of motion are
oo XP X7 = —n’m?, (31)
XP3, X" = —TH,, X X, (32)

For AdSs in the global coordinates (5), the single-bit action becomes
1 L? . ,
Ly [X*] = 3 / dt [— (— cosh? p i> + p* + sinh? p 4> + (remaining angular part)) — nm2i| .
n

The following canonical momenta are conserved, corresponding to the isometry of the back-

ground:
L? .
E=—p = 7cosh2,o t, (33)
)
S=py,= 751nh o v. (34)

2Here, we are considering the orbital angular momentum, since a bit (particle) is pointlike. This is in
contrast to the stretched string spinning around its center of mass, studied in the previous section.
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Let us take p = const. as an ansatz for a classical solution. Setting ¢ = 0 in the constraint (31),

we find
E? s?
-+ —5— =-—m’L". (35)
cosh®p  sinh”p
In addition, in order to have p = 0, the equation of motion for p,

p = cosh psinh p [—i* + %]

. 2 E2 S2
— cosh psinh p % [— o p} : (36)
indicates
— E24 _ 524 =0. (37)
cosh™p  sinh™ p
Equations (35) and (37) lead to'3
E*> = m*L?cosh* p, S = m*L*sinh?*p
< E =mLcosh? p, |S| =mLsinh® p. (38)
Thus,
E =S|+ mL. (39)
One bit has a single unit of angular momentum on S°, and m = 1/L, so its energy is
Evii = |S|+ 1. (40)

n
Now consider a collection of 7 non-interacting bits. Its total energy £ = Z E; can be written

i=1
as

E=Y |Sil+n, (41)
i=1

where |S;| is the magnitude of the angular momentum along AdSs (which is integer in our
convention) carried by the ith bit. The n bits can have different directions of angular momenta.
One bit has a single unit of angular momentum along S°, and contributes 1 to the energy;
summing this over the n bits, we obtain 7 in the last term of Eq. (41). In the special case where all
the bits have angular momenta in the same direction both for AdSs and S°, which corresponds
to an operator'#such as Tr(Z’ ~*DSZF), the total energy is

E =S+, (42)

where |S| and J are the magnitudes of the total angular momenta along AdSs and S°, respec-
tively.

The above results for the non-interacting bits correctly reproduce the free-field results in gauge
theory, if we identify the global energy E with the scaling dimension A of the corresponding
operator. A single bit is assumed to correspond to a single scalar field inside the trace, which
contributes 1 to the scaling dimension in the free theory in (341) dimensions. The ith bit with
angular momentum S; along AdSs can be realized by applying |S;| gauge covariant derivatives

3The energy takes only positive values E > 0, but the angular momentum S could be positive or neg-
ative.

“Here we only mean that the number of the Z field in the trace is J, and the number of the covariant
derivative D is S. At the strictly zero gauge coupling considered in this paper, it would be difficult to
distinguish different operators within this class.
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on the ith scalar field. In the free theory, the covariant derivative is just a partial derivative,
which contributes 1 to the scaling dimension. Thus, Eq. (41) (or Eq. (42) for a special case)
gives the correct free-field result under the identification A = E.

4.2  General p

Let us now consider the case of general p. We assume p > 2, so that we have two spatial direc-
tions in gauge theory in which the string (or particle) can rotate.

The background geometry is conformal to the AdS, ;> x S8 =7 spacetime!’,

S 2\ 1 :
ds* = L5~ 7 |:(5Tp) = {—di* +dz* +dx2} + <d92 + cos? 0dy® + sin® QdQé_p>i| :
(43)

where a = 1, ..., p. For general p, there is no conformal symmetry (or AdS isometry), and we
cannot use the identification A = E, so we follow the DSY prescription [34,37,38]. As explained
in Sect. 3, gauge-theory correlators are obtained by calculating the transition amplitude from
the path integral in the multiply Wick-rotated background:

(E,J,0/tE, J,0;) = (it;, J, O /lit;, J, ©;) = | DX e UH/Vy=/¥i+SO0;=50) 44
7 L 1 /

The role of the term Jy — Jyr; (or SOy — §O;) on the exponent on the right-hand side is to fix
the angular momentum in the ¥ (or ®) direction to J. This term can be equivalently represented
by using the Routh function defined by I + [ d(J Y + SO)instead of the action 7. See Sect. 2.2
of Ref. [37].

As in the last subsection, we will study the case of zero gauge coupling by ignoring interac-
tions among the bits. The action for a single bit on the background (43) is

TG 2 \*1 . . : . .
r 2 5—-p) 22

(45)

The factor & is a constant to be determined later. The coordinates R and ® are the radius and
angle defined from two of the coordinates x,.

Here we have absorbed the Weyl factor in the metric (43) by a choice of the einbein (which is
an overall factor in the action, since we are considering massless particles in 10D) [37,38]. As
a result, the action (45) is formally the same as the one in AdS, ;» x S® 7. In string theory
this amounts to taking the worldsheet metric so that +/AA™ = Pt (with 4™ = 0), to absorb
the overall factor 72" in the metric. Then, vAh"® = 1 J(Vhh) = 72", and the coefficient of
(8,x")* in the worldsheet action gets a time-dependent factor #~G~7) [37,38]'. Thus, the effect
of the Weyl factor appears for excited states of the string (for which 9,x’ # 0). In the string bit
picture, coefficients of the interaction terms among the bits will have time dependence for p #
3.

3Up to now we have put tildes on the angles in S® ~7, but in this subsection we will omit the tildes and
denote them as 6, ¥ to simplify the notations.

161 one takes the conformal gauge ~/2h*f = §¢ both (9,x')* and (3,x’)* have time-dependent coeffi-
cients, but the final result of the calculation is of course independent of the gauge choice [37,38].
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The equations of motion are

d (i d [z 1. : . d (R R.
—(—2):0, —<32>=——3{z2+z'2+R2—R2®2+---}, —(—):—-@2,
VA z Z

dt dt dr \ 22 72
d (R*. d . , Hod
- <?®> =0, EQ = —sinf cosOy-, Ew =0, (46)
and the constraint is
2\’ 1, : : ~ ;
(—5 ) S{P+ 2+ R —RO* + -} +(6° —cos’ 09> +--) = 0. (47)

4.2.1 The S =0 case. The solution for S = 0 has been obtained by Asano et al. [37,38];

14

{ =ftanht, z= , R=0=0,
cosht
2
0=0, y =_—-mrt, (48)
S—p
where ¢ parametrizes the separation between ¢, and #;, i.e.,
It; — 1] = 24. (49)

The solution (48) is represented as a half circle 12 + z2 = ¢2 in the coordinate space (7, z).
As in the last section, we introduce the IR cutoff at z = %, which is related to the worldsheet
cutoft T as

20A =T (50)

The transition amplitude at the zero-loop level on the worldsheet becomes

(ty, J,0lt;, J, 0) o e~ IH/Wr=vi) — e T
1 1
A Ity — 1|5
where we have used Egs. (49) and (50) in the last line to rewrite the amplitude in terms of
the variables in gauge theory. We have the factor J on the exponent, because there are J non-
interacting bits, each giving the contribution described above. The expression (51) could be
regarded as the leading part in the large-J limit of the correlator of Tr(Z’) at strong gauge
coupling [37,38].

Let us consider the one-loop contribution on the worldsheet, following Ref. [10]. The action

of a single bit at the quadratic level of the bosonic fluctuations around the classical trajec-
tory (48) is [37,38]

(at zero loop) (51)

~ T
1% = % /T dt {xf, +mixZ 4+ 97 + miy?} : (52)
We have (p + 1) fields x, with mass m, = 1 that comes from fluctuations along AdS, >, and
(7 — p) fields y; with mass m, = %’ that come from fluctuations along S® ~7. There are also

(7-p)
2(5-p)°

eight fermionic fluctuations with mass m, =
fluctuations, see Ref. [38].

In Ref. [10], the modification to the correlator (51) for Tr(Z”) due to the one-loop contribu-
tion on the worldsheet has been obtained by an operator method, by including the zero-point
energies of the bosonic and fermionic fluctuations (which are harmonic oscillators) for each bit.

For the quadratic action of the fermionic
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For p = 3, the contributions from the bosonic and fermionic fluctuations cancel each other [3§],

since there is effectively worldsheet supersymmetry.

Here we will derive the same result as Ref. [10] from the Euclidean path integral of harmonic
oscillators with the boundary condition x(7) = x( — 7) = 0. Since the complete set of bases

may be given by
{cos "0k + 1)z, sin — (212)7}
2T s i
the eigenvalues of the operator (—j—:z + m2> are given by
2
v

M= g

kK +m? (k € Z-).
Therefore, the path integral is
70 / D o= T de{mi?)

= 1_[/dA/dBe‘AZ(szz(2’5+1)2+m2)Te—32(4’;22(212)2+m2)r
k&
T

1 :
logZ®» = ) Z log A + (divergent part).
k

1.e.,

Here, we apply the zeta function regularization method. Redefine Z® by

1 de(s)
logz® = - 227
8 2 ds

where the generalized zeta function is given by
c(s)= Z A
k

Now make k continuous by considering large 7, i.e.,

7 2\ 2T 2 2\~
(6 = Y (7)== Y (K ) AR
k

K

s=0

_>2—T/ dK (K> +m?)”
T Jo

where we have changed the variable K = 5%k and AK = 5%. Then,

2T (= s r(s—1
C(S)=7T/O dK (K* +m?) =%m12s (lf(s)z)

~ —2mTs+4mT (-1 + log2 + logm)s® + - - - .
Eventually,

1 d¢(s)
Z(z) — ei ds

=0 = efmT‘

(33)

(54)

(55)

(56)

(57)

(58)

(39)

(60)

(61)

(62)

Note that this is independent of the overall factor of the harmonic oscillator action. Therefore,

the one-loop contribution of the bosonic part for J bits is

_p? 9
7 — oAt (T=pym)T _ =522
J bit(boson) — - :

16/26

(63)

220z Ae|\ Gz uo sasn AS3(Q uooIyoukg usuoipie|g seyosineq Aq §891159/€09€10/v/2Z0z/e1o1e/deid/woo dnoolwepede//:sdiy woly papeojumoq



PTEP 2022, 043B03 PTEP 2022, 0000-000-00

Similarly, the one-loop contribution of the fermionic part is

(2) _ Jsm,T _ Aty
ZJbit(fermion) =M =eEnT. (64)
Then
@ _ 5 @) _ ey
Z7vit = Z I bit(boson) L bit(fermion) = €~ - (65)

Combining the zero- and one-loop contributions on the worldsheet, the amplitude becomes
~ ,— I+ - (2)
(tr, J,0t;, J, 0) = eI Wr=v Z00
— (=T
1 1

~ AT |1, = gD (66)

This reproduces the free-field result for the two-point function of Tr(Z”) in the (p + 1)-
dimensional gauge theory [10]: from dimensional analysis, a scalar field has dimension (p —
1)/2 in the free theory, and the operator consists of J scalar fields.

4.2.2 The S # 0 case. In this case, the solution is
22— B B

{ = ftanht, z=— """ = ,
cosht cosht

2
0=0, v =—or. (67)
S=p
Like the solution (48) for S = 0, this is represented as a half circle, now given by 1> + z> + R?> =
2 in the coordinate space (¢, z, R). Since J and S are given by

: 2
J=al*y = &Lzs—, (68)
2 \*R. 2\ B
S=al’|— ) =06 =alL’ _ , (69)
S-p) 2 5—-p) 2-B
the constants & and B are related to J, S, and ¢ via
S—pJ
§ = ———— 70
T (70)

| SG5=-p -

We introduce the IR cutoff at z = % The relation between A and 7 can be read off from
Eq. (67) in the | 7| — oo limit, and becomes

A 2J
WA |2 T 7
2W+SG-p ¢ (72)

At the zero-loop level on the worldsheet, the transition amplitude is given by
{tr, J, S|t J, S) ~ o UHI W =¥)+S(0,-0)))

4
— o (IS

B (2J+S(5—p))53p”5 1 1

= 27 Aﬁnzs Ity — t,-lﬁjﬂs
The amplitude including the one-loop contribution can be obtained by expanding the coordi-
nates of the particle to the quadratic order in fluctuations around the classical solution (67)

(at zero loop). (73)
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by doing an analysis similar to the one for S = 0 [38]. As described in Appendix A, we find
the following spectrum of the bosonic fluctuations: there are (p — 1) fields with mass 1 (from
the fluctuations along S” within AdS, ; »), one field with mass 2 (from the one along the radial
direction p in AdS, ; »), and (7 — p) fields with mass ﬁ (from the ones along S® ~7). We have
2(751’; 5 This spectrum is in contrast to the S = 0 case!’, as
described below Eq. (52). Here, we have two fewer fields with mass 1 than in the S = 0 case, but
have one extra field with mass 2. These compensate each other, making the zero-point energy
(the one-loop contribution) for S # 0 equal to the one for S = 0.

By including the one-loop contribution, the amplitude becomes

eight fermionic fluctuations with mass

— — s D) — Q) 2
(7, J, Slti, J, S) ~ e~ UH hr—v0+8(©0,-00) 7).

— o~ (=129

(Y ASG-p\T 1
B 2J AP=DIH2S |t — ;| (p=DI+28”

(74)

This agrees with the free-field result of the correlator for the operator of the form
Tr(Z/ ~kDSZF): At zero coupling, the covariant derivative D is just a partial derivative. In-
serting one derivative in the operator increases two powers of the coordinate distance in the
two-point function.

5. Conclusions

In this paper, we have considered the gauge/gravity correspondence between maximally super-
symmetry Yang—Mills theories in (p + 1) dimensions and superstrings on the near-horizon
limit of the Dp-brane solutions. We computed two-point functions of operators with angular
momentum along the AdS directions from the string worldsheet theory.

First, we considered the conventional continuum string theory, which should correspond to
the strongly coupled gauge theory. We considered the conformally invariant case of p = 3, and
first considered the folded and spinning string solution found by Gubser et al. [33]. We rotated
some coordinates to imaginary, and obtained a string configuration that connects two points
on the boundary. We explained that gauge-theory correlators can be obtained as transition am-
plitudes for the Euclidean string. This formalism is not based on the identification of the energy
with the global time, and can be applied to theories without conformal symmetry. We will de-
fer the analysis of p # 3 for future study. This is an interesting technical challenge, since the
isometry of AdS, ;> x S® =7 is not a symmetry of string action due to the position-dependent
Weyl factor.

Then, we considered the limit of zero gauge coupling. As in the previous paper [10], we as-
sumed that the string is made of bits, each of which has a single unit of angular momentum
along S® 7. In the limit of weak gauge coupling, the string tension is small compared with
the scale of angular momenta. At zero coupling, we computed the amplitude by ignoring the
interactions among bits. We obtained the free-field correlator of gauge theory, extending the
result of Ref. [10] to general operators. We regard this result as an indication of the validity of
the approach for weak gauge coupling initiated in Ref. [10].

"The reason that we have one less (seven) bosonic fluctuation than in the S = 0 case (eight) is that we
are fixing one more angular momentum here, introducing one more constraint among the fluctuations.
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As mentioned at the end of the introduction, our result is based on two unproven assump-
tions. It is important to clarify whether these assumptions are true. One assumption is that
the near-horizon Dp-brane background does not receive @' corrections for general p. This does
not seem very unrealistic, since the geometry for p # 3 has a tensor structure similar to p =
3, which is believed to be o exact [42,43]. Another assumption is that taking into account the
quantum effect of fluctuations up to the quadratic order gives the correct answer (when com-
puting the amplitude for a string bit). At the moment, we do not have a clear justification for
this. By performing exact quantization of a superparticle in AdS, ;> (without the Weyl fac-
tor since this does not contribute to the single-bit action, as explained in Sect. 4), we should
be able to clarify this point. Alternatively we could compute the next order in the expansion.
Since the contributions from the bosonic and fermionic fluctuations cancel each other at all
orders for p = 3, it might be possible that there is only contribution at the quadratic order for
p#3.

There are two main directions for future research. One direction is towards understand-
ing the weak-coupling limit of gauge/gravity correspondence [54]. We will be able to in-
corporate the interactions among the string bits perturbatively. It is highly important
whether the perturbative expansion in string tension agrees with the perturbative expan-
sion in gauge theory. If they agree, this can be regarded as a proof of the gauge/gravity
correspondence.

Another direction is towards the understanding of gauge theory without conformal symme-
try at strong gauge coupling. The string solution along the lines of Sect. 3 for p # 3 is under
study [54]. It is important to study the large-S behavior of that solution. For p = 3 there is a
characteristic large-S behavior in the scaling dimensions of the form log S. In gauge theory,
this comes from gauge fields propagating in the internal lines. Large-S behavior for p # 3 will
give new information for the structure of these gauge theories.

Apart from the above two problems, it would be interesting to extend the analysis in this paper
to more general backgrounds. Our formalism of computing the gauge-theory correlator from
the string amplitude, described in Sect. 3, would be applicable to general backgrounds without
conformal symmetry. Also, the approach to weakly coupled gauge theories based on the string
bit picture, described in Sect. 4 and in Ref. [10], will be applicable for backgrounds in which the
two assumptions mentioned above are satisfied.
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Appendix A. Fluctuations around classical solution of a particle

In this appendix, we will obtain the massless particle action at the quadratic order in the fluc-
tuations around a classical solution on the near-horizon limit of the Dp-brane solution. We are
really interested in the background with Euclidean time and imaginary angular coordinates, but
here we will do the analysis in the usual Lorentzian background, since the fluctuations around
the former can be obtained simply by rotating the time and two angles to imaginary values.
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The bosonic part of the massless particle action in the 10D spacetime is
? . _ U :
I, = = / drn~ ' £2(r) [cz {— cosh? p i + p% +sinh? p (0052 04> + 6 +sin’6 Qifz)}

-+m§§$2+§?+mﬁé§;J, (A1)

where
2

c= 5,
As in the main text, the coordinates without tildes are for AdS, ; > and those with tildes are for
S8 =7 In this appendix, we take the coordinates to be dimensionless, assuming that they are
measured in units of L = (g,N)""7 ~”¢,. We will use global coordinates for AdS, ; », since the
classical solution is simple in this coordinate system. The symbol Q;_z is a shorthand for the
kinetic term along the (p — 2)-dimensional sphere. Though we will not need its explicit form in

the present analysis, it is given by, e.g.,
Q2 ) =7+ (sin’ ¢1)p3 + -+ + (sin’ ¢y -+ sin’ ¢p_3)d_,.
if we use a standard metric on S” ~ 2 using angular coordinates ¢1, ..., ¢, — ». The quantity Q%f »
is defined similarly.
The equations of motion for ¢, ¥, ¥ tell us that the global energy E and angular momenta S

and J, defined as follows, are conserved:
oL

E=P = —o7 = L7 f2(r) cosh? p i, (A2)
oL .
SE[@:5J:L%%4ﬂ0mmﬁpw§9w, (A3)
oL 2. -1 g2 257
JEP&=£=LH fA(r)cos” 6 . (A4)

There is a massless constraint obtained by varying the action with respect to 7:

e {— cosh? p % + p* + sinh? p (0052 64> + 6 + sin’ 6 Q§_2>}

+ (0052 9% + 6% + sin és;zgfp) = 0. (A3)
The equation of motion for p is
—/p 4 cosh p sinh p {_[-2 +cos? 0 Y2 + 6% + sin’ 0 Q?)—Z} =0. (A6)
We will consider the following classical solution, which represents a particle rotating in AdS
with a fixed radius po, and also rotating along S® ~7:
t=t, p=p, Y=1, 6=0,
v =ct, 6=0. (A7)
The worldline metric is chosen as follows:
=12 =77, (A8)
where 7 is a function of t, which is given by inserting the classical solution (A7) into the coordi-
nate transformations (given in the main text) from the global coordinates on AdS to the radial
coordinate r. With this choice of 1, the Weyl factor f(¥) disappears from the action. One can

see that this solution (A7) satisfies the constraint (A5) and the equation of motion (A6), and
that the momenta E, S, J are conserved.
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When we Wick-rotate the spacetime coordinates ¢, ¥, ¥, and also the worldline time 7, the
classical solution (A7) remains a solution. This solution can be expressed in Poincaré coordi-
nates by performing the coordinate transformations (20), (22) and is given by Egs. (23), (24),
(25) with p = po (or equivalently, as Eq. (67) with B = £ tanh py). This trajectory starts from
a point on the boundary and returns to another point on the boundary, unlike the Lorentzian
solution that rotates near the center of AdS. Therefore, the singularity at the center for the p #
3 case causes no problem.

Al Bosonic fluctuations
We now expand the fields (coordinates) of the particle in powers of 1/L:

1 1
xﬁot) = xﬁ)) + zx" + Exé) 4+ (A9)

The fields without any subscripts above are really the “total” field. They will be denoted with
the subscript (tot) hereafter. For notational simplicity, we will omit the subscript (1) on the first-
order fluctuations, which will be used most often in the following. xﬁ)) represents the classical
solution (A7).

Before expanding the action, let us first study the constraints that should be satisfied by the
fluctuations. The massless constraint (A5) at the first order in 1/L becomes

c {—(cosh2 00)i + (sinh? ,oo)w'} + 1/7 =0. (A10)
Now, we assume that the values of the angular momenta S and J are fixed at the zeroth order,
and will not change at higher orders, since these are the quantities that we are interested in. (On

the other hand, we do not fix the value of E.) By expanding S in Eq. (A3) to the first order and
setting it to zero, we get

(sinh pg) {(2 cosh pg)p + (sinh po)yr} = 0. (A11)
Also, by expanding J in Eq. (A4) to the first order and setting it to zero, we get
W =0. (A12)

From Egs. (A10), (A11), and (A12), assuming po # 0, we obtain

{ = —2(tanh py)p, (A13)
. 1

When S =0 (i.e., pg =0), we get f = Y = 0 from Egs. (A10) and (A12). (In that case, Eq. (A11)
is trivially satisfied since sinh py = 0.)
We will now expand the action as

I, = Lzlb(o) + le(l) + Ib(2) =+
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The action at the first order /(;) vanishes due to the massless constraint described above. The
terms relevant for the calculation of the second-order action are as follows!®

122 0 0> i\2
== [dc|- {cosh2 po + (2cosh py sinh py) = + (2 cosh? py — D+ } (1 + Z)

o p o*
+ = 4+ {sinh2 00 + (2 cosh py sinh po)z + (2 cosh? py — 1)§ 4+ }

12
62 A A .
X{(l—ﬁ+"-)(l+z> +E+(E+“-)Qp2
1 5 AN L
+ 5 (1—L2+ ><C+Z> +ﬁ+<ﬁ+--->fzé_p : (A15)

Taking the quadratic part (the order-L° terms), we get
2
c . ) .
Iy = > / dt [—(cosh2 00)i2 + p* + 4(cosh pg sinh po)p(—i + ¥)

+ (sinh2 00) {11/2 +6%+ 025'212,72 — 92}

1 ~ ~ ~y A~ ~

+5 {¢2+92+9292p—c292}]. (A16)

Using the relations (A13)— (A12) to eliminate 7, ¥, 1;, it becomes

Ib(2) = — / d‘l,’ 4,02 + (Sinh2 00) <92 + 929?)_2 - 92>
{92 +6°07 c252}] . (A17)
I
By defining the fields (Cartesian coordinates) x, and y; as

X, = c(sinh py)0<2, (a=1,....,p—1), (A18)
=00 (I=1,...,7-p), (A19)

where Q, (2;) denotes a vector with unit length Z‘” ! Q=1 (26 ’ 522 = 1), representing a
point on S? ~2 (8% ~7), and by making a suitable redeﬁmtlon of ﬁelds by constant factors, the
action becomes

o) = = /dr|:,0 — 4p? +Zx—x +Z —cyl:| (A20)

When S = 0, there are (p + 1) fields with mass 1, coming from the fluctuations in the AdS, ; »
directions [38]'°. By contrast, we have (p — 1) fields (x,) with mass 1 from the angular directions

""We do not assign any factors of L on €2, and SLZ%fp, which are (squares of the t-derivative of)
angles whose corresponding radius is classically zero (6) = 6y = 0). We will assign a factor of 1/L to
the Cartesian coordinates x, and y; (Whose origin corresponds to 6 = 0 and 6 = 0) defined in Eqs. (A18)
and (A19). Since 6 and 6 already have a factor of 1/L, we do not put any fact_or of L on ©, and ;.

9The result for S = 0 is obtained as follows. We have po = 0 and 7 = ¢/ = 0, as explained above.
We assign no factors of L on the fluctuations of the angles on S” whose corresponding radius is zero
classically p() = 0, for the same reason as mentioned in the previous footnote. The factor in the curly
bracket in the third line of Eq. (A15) is now replaced with Qi (without any factor of L). Then, from the
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along $” in AdS, ; » and one field (from the radial direction p) with mass 2 (mass-squared =4).
The mass of the fluctuations in the S® ~ 7 directions is the same as in the S = 0 case; we have (7
— p) fields with mass ¢ = 5%}).

The fact that there is one less physical degree of freedom (seven in total) of fluctuations than
in the S = 0 case (eight) is that we are fixing one more angular momentum S now, introducing
an extra constraint (A11). The one-loop quantum contribution to the amplitude (the contri-
bution from the zero-point energy of fluctuations) is the same as in the S = 0 case, since the
contribution from the field p compensate for the one less degree of freedom.

The quadratic action for the fluctuations around the tunneling null geodesic with Euclidean
time and imaginary angular directions is given simply by changing the signs of the mass-

squared terms in Eq. (A20).

A2 Fermionic fluctuations
We will find that the mass of the fermionic fluctuations for S # 0 is the same as in the S = 0
case obtained in Ref. [38]. Here we will summarize only the main points, and refer the reader
to Ref. [38] for more details.

We will consider the Green—Schwarz type action for the fermionic particle, obtained from the
Green—Schwarz superstring action at the quadratic order in the fermions [46] by ignoring the
worldsheet spatial derivative. For type IIA theories, the fermionic part of the particle action is

Iy = _%/dr@)TFon‘lafx"FMDr@- (A21)
T

We will take the vielbein n = f2(r) as in the bosonic case. ® is a 32-component spinor in 10D
spacetime. We take a real representation, ®* = ©. The part D, O is defined as
D.® = V.0 + Qo x'T", 0. (A22)
The first term is the covariant derivative defined in the usual manner,
1 i
Ve® =80 + 03", Ty (A23)

where the indices with hats (i, D, ...) are those for the local Lorentz frame. The (p + 2)-form
field strength (sourced by the Dp-brane with even p for type IIA; for p = 4, we consider the dual
of the 6-form, which is a 4-form) enters the action through

1 1
Q= _1_6€¢ (FHFMMF/M/M - EFMIM2M3M4FM1M2M3M4> . (A24)

We write the vielbein as
e, =Lf(e,”, (A25)
where the vielbein with the tilde é,” is the one for AdS, ; » x S® =7, represented as
¢ = ccosh pdt, & = cdp, ¢’ = csinh odo, oV = = ¢sinh p cos6dyr,
¢t = csinh psin0dQ,, ¢V =cosddy, & =df, & =sindds. (A26)

first three lines in Eq. (A15), we obtain the part of I,5) containing the fluctuations from the AdS,  »
directions as follows:

p+1
—/dtp—p+p2§22 /dr (¥ —x},

where x, = cpQ,, with Q, (¢ = 1, ..., p + 1) being a unit vector that parametrizes a point on S”. The
part of I containing the fluctuations from the S® ~7 directions is the same as in the S # 0 case.
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For the vielbein of the form (A25), the spin connection is written as
0, = (3, log f) (évi’éﬂd - évﬁéﬂi’> + i, (A27)

where the spin connection c?)u‘}i’ with the hat denotes the one for the vielbein (A26) for AdS, ;>
x S8,

Since the action (A21) is already quadratic in the fermions, we just have to substitute the

n

classical solution (A7), which will be called X (0

bination often appears in the action:

0:Xlgy T = cf (7) (cosh ol +sinh poTy + T3 ) = ef (7) (7 + 1) (A28)

into the bosonic fields x*. The following com-

In the last expression, we have defined the gamma matrix I'; by the following transformation

fromI'; and I ;-
I _ coshpy sinhpy\ (T} (A29)
r; sinhpg  coshpy J\T'; )

This is a Lorentz boost in the 7~ plane, and the gamma matrices with the hat satisfy the same
anti-commutation relations as the original ones. The difference to the S = 0 case studied in Ref.
[38] is that we have I'; in place of T';. R

We take the following representation of the 10D gamma matrices. For the 7 and v directions,

. 0 1 0 1

where each block is a 16 x 16 matrix. For gamma matrices in the remaining eight directions
collectively denoted by I'; (with the one for the Y direction taken to be f‘lﬁ defined in Eq. (A29)),

we take
I = (”" 0 ) (A31)
0 -y

m:(” 0) (A32)
0 —»

with y9 = ]_[f:1 v;. We decompose © as
0= (Z) (A33)

The action contains the following factor, which is proportional to a projection operator I'y =
Fg(ﬁ; + FI;)/Z:

we take

In this representation,

Lod,x(g) [y = —2¢L f(Fy = =2¢Lf(F) (8 ?) (A34)

This projects ® on to the lower component, so only half the degrees of freedom 6 appear in

the action. The other half § is unphysical, and can be gauged away by the k-symmetry of the
Green—Schwarz action [38,46].
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To rewrite the kinetic term (which depends on the covariant derivative V), we use the fol-
lowing field redefinition:

ol )
Q) _ (LJ; (F )> : o §0eX(0) @ Ty @y (new) (A35)
c

We chose the first factor on the right-hand side so that the f(¥)-dependent factor in the action
disappears. At the same time, the t-derivative of this factor cancels the first term in the spin
connection (A27). (This corresponds to the fact that the massless spinor is Weyl invariant.) We
chose the second factor so that the contribution to the covariant derivative that depends on
the spin connection &)M&i’ (which is constant when evaluated with the classical solution (A7)) is
canceled. In terms of the redefined (new) field, the kinetic term becomes

T in = +2i / dz0TT, 9,0. (A36)
T
The mass term of the fermion comes from the (p 4 2)-form field strength. We first note [38]
7_
@=—L L7, (A37)
where
Tipoy = DT, [(pogy = -850 0y =~ D85, (A38)

Then, the Q2-dependent term of the action becomes

Lo = +é / dr Oy (Todexty 1 ) @I (Tode iy Ty ) 0

_ +é f drO7T, (ﬁ) Lol ©, (A39)
where the field © in the last line is the new field defined in Eq. (A35). The (p + 2)-form field
strength enters in the action through f(¥)S2. Since this is a constant, it is not affected by the
classical solution of the bosonic field, and I; ¢ takes the same value as in the S = 0 case obtained
in Ref. [38].

Finally, by combining the kinetic and mass terms, and writing the action in terms of the
16-component field 6, we get

i

Ir=—5 / 0™ (3:0 + myp)y()0) (A40)

where

T—p
o = 1P (A41)
(») 2(5 — P)
and

Yp=0) = YoV, V(p=2) = V123,  V(p=4) = —YOV12345- (442

The Euclidean action is obtained from Eq. (A41) by the standard procedure t — itg, and
multiplying the action by —i. The quantization of fermion described by this action is straight-
forward (see Ref. [38]). The action for the type I1IB theory can be obtained in exactly the same
manner as above, and we find that the mass is also given by Eq. (A41) (with odd p) [38].
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