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Abstract

This thesis summarises the search for a rare process involving the Higgs boson, where the Higgs
boson is produced in association with a top quark pair. This analysis was carried out using data
from proton-proton collisions in the Large Hadron Collider (LHC), collected by the Compact Muon
Solenoid (CMS) detector during the 2016 data taking period. In 2015, the LHC was restarted at
an unprecedented centre-of-mass energy of

√
s = 13 TeV, significantly increasing the discovery po-

tential of the experiments. The discovery of the top quark pair associated Higgs (tt̄H) production
process would be a direct confirmation of the standard model (SM) mechanism of mass generation
for the most massive known quark. Deviations from the SM expectation would signal the presence
of beyond the standard model (BSM) physics affecting the recently-discovered Higgs boson. The
tt̄H process has a production cross-section that is about two orders of magnitude below the Higgs
production via gluon fusion, which was the channel where this particle was discovered in 2012.
Due to the extremely low production rate, all detectable decay modes of the Higgs need to be
considered. We concentrated on the dominant decay mode for the Higgs boson, where it decays
to bottom quarks which further hadronise to jets. In order to reduce the contribution of multi-jet
processes not involving top quarks, we additionally require the presence of charged leptons, which
can arise from the leptonic decays of the W bosons from top quark decays. This search, which is
made challenging by the presence of an overwhelming background arising from QCD production of
tt̄+jets, necessitated the use of sophisticated particle reconstruction and identification algorithms
in the detector. We contributed to the development of a new method for identifying and tag-
ging jets arising from the hadronisation of bottom quarks, which are a feature of both the signal
and background processes, by combining information across different detector subsystems using
machine learning. This combined b tagging algorithm improved over the state of the art by reduc-
ing the rate of erroneously tagged jets by approximately 10-20% and was employed in the CMS
analysis that saw first evidence for the H → bb̄ decay. For the identification of the tt̄H process,
we implemented an algorithm that directly uses predictions from quantum field theory via the
evaluation of matrix elements to disentangle the signal process from the tt̄+jets background. We
employed this matrix element method in an analysis of CMS data to determine an upper limit on
the tt̄H production cross-section at the level of µ = σ/σSM < 1.52 at a 95% confidence level, with
an upper limit of 1.57 expected in the case of no signal. This method is now available to the CMS
collaboration and plays a central role in the Run 2 analysis of tt̄H(→ bb̄) in the Higgs group.

Advanced data mining techniques based on artificial intelligence have recently made significant
progress on problems in various fields such as machine vision and translation that were previously
thought to be intractable using computers. During an internship at the private company Lingvist
Technologies, we investigated the use of these adaptive algorithms based on deep learning for a
problem where accurate predictions based on theory are not available. We developed a data-
driven method based on neural networks that significantly improved the accuracy of the estimated
vocabulary size for people learning a second language. The use of such adaptive techniques based
on machine learning also shows promise in the field of natural sciences, particularly in experimental
high-energy physics, where the discovery potential can be enhanced by making maximal use of the
information recorded by the detector, but also in effectively reducing, filtering and modelling the
large amounts of data that are foreseen in the coming decades.





Zusammenfassung

Die vorliegende Dissertationsarbeit beschreibt die Suche nach der Produktion eines Higgs-Bosons
in Assoziation mit einem Top-Quark-Paar. Durchgeführt wurde die Analyse mit Daten aus Proton-
Proton-Kollisionen am Large Hadron Collider (LHC), die während des Jahres 2016 mit dem Com-
pact Muon Solenoid (CMS) Detektor aufgenommen wurden. Seit 2015 operiert LHC mit einer
bislang unerreichten Schwerpunktsenergie von

√
s = 13 TeV, welche das Potential neuer Entdeck-

ungen durch die Experimente massgeblich erhöht. Die Entdeckung der assoziierten Produktion
eines Higgs-Bosons mit einem Top-Quark-Antiquark-Paar (tt̄H) wäre eine direkte Bestätigung für
den Mechanismus des Standardmodells (SM), der den Ursprung der Masse des Top-Quarks erk-
lärt, welches das schwerste Teilchen im SM darstellt. Abweichungen von Vorhersagungen des
SM würden die Existenz bislang unbekannter physikalischer Prozesse beweisen, die auch das Ver-
ständnis über das vor kurzem entdeckte Higgs-Boson verändern könnten. Der tt̄H-Prozess hat
einen Wirkungsquerschnitt, der um etwa zwei Grössenordnungen kleiner ist als der des Higgs-
Produktionsmechanismus durch die Fusion von Gluonen, durch welchen das Higgs-Boson 2012
entdeckt wurde. Wegen dieser äußerst kleinen Produktionsrate des tt̄H-Prozesses ist es notwendig,
alle möglichen Zerfallsprozesse des Higgs-Bosons zu betrachten. Diese Arbeit beschäftigt sich
mit dem wahrscheinlichsten Zerfallsprozess des Higgs-Bosons, im Rahmen dessen es in Bottom-
Quarks, die desweiteren in Jets hadronisieren, zerfällt. Um den Beitrag von Ereignissen mit
mehreren Jets ohne Top-Quarks zu verringern, werden nur solche Ereignisse betrachtet, in de-
nen geladene Leptonen vorhanden sind. Leptonen entstehen beim Zerfall von W-Bosonen, die
wiederum aus dem Zerfall von Top-Quarks stammen. Ausgeklügelte Techniken zur Teilchenrekon-
struktion und Identifizierungsalgorithmen sind für diese Suche notwendig, um den Signalprozess
von dem dominierenden Untergrund, der hauptsächlich aus QCD-Produktion von tt̄+jets besteht,
unterscheiden zu können. Im Rahmen dieser Arbeit wurde zur Entwicklung einer neuen Meth-
ode beigetragen, die Jets, die aus der Hadronisierung von Bottom-Quarks sowohl im Signal- als
auch im Untergrundprozess entstehen, identifiziert. Die Methode stützt sich auf das Kombinieren
von Informationen aus verschiedenen Detektorkomponenten mithilfe von maschinellem Lernen.
Dieser kombinierte Algorithmus für die Identifizierung von Bottom-Quarks führt zu einer 10-20%
Verringerung der Anzahl an Jets, die fälschlicherweise als b-Jets identifiziert werden und wurde
bereits in der CMS Analyse verwendet, die als Erste den Zerfall von Higgs-Bosonen zu zwei Bottom-
Quarks nachgewiesen hat. Zusätzlich wurde für die Identifizierung des tt̄HProzesses ein weiterer
Algorithmus verwendet, der Vorhersagungen der Quantenfeldtheorie nutzt, um Matrixelemente zu
berechnen. Diese ermöglichen es, Signal- von Untergrundprozessen zu unterscheiden. Die Matrix-
Element-Methode wurde in einer Analyse von CMS-Daten verwendet, um eine obere Grenze für
den tt̄H-Produktionswirkungsquerschnitt zu berechnen. Die Messdaten lieferten eine Grenze von
µ = σ/σSM < 1.52 bei einem 95% Konfidenzniveau, wobei eine Grenze von 1.57 ohne Signal er-
wartet worden wäre. Die Matrix-Element-Methode ist nun für die gesammte CMS-Kollaboration
zugänglich und spielt eine zentrale Rolle in der Run 2 Analyse des tt̄H(→ bb̄)-Prozesses in der
Higgs-Gruppe.

Fortgeschrittene, auf künstlicher Intelligenz basierende Data-Mining-Techniken, haben in letzter
Zeit bemerkenswerte Fortschritte bei Problemen erreicht, die lange als unlösbar galten. Dies gilt
zum Beispiel für Aufgaben wie der Bearbeitung von Bildern und für die Übersetzung. Während
eines Praktikums im Unternehmen Lingvist wurde die Anwendung solcher adaptiven, auf tief-
neuronalen Netzwerken basierenden Algorithmen auf Aufgaben, von denen es keine präzisen theo-
retischen Vorhersagungen gibt, untersucht. Ein adaptives neuronales Netzwerk wurde entwickelt,
welches mit höherer Genauigkeit den Wortschatzes einer Person, die eine Fremdsprache erlernt,
schätzt. Die Anwendung solcher auf maschinellem Lernen basierender Techniken ist ebenfalls
vielversprechend für die Naturwissenschaften, wie zum Beispiel für die experimentelle Hochen-
ergiephysik. Das Entdeckungspotential kann durch eine optimale Verwendung der vom Detektor
gemessenen Informationen verbessert werden, aber auch durch eine effiziente Selektierung, Fil-
terung und Modellierung der grossen Datenmenge, die in den nächsten Jahrzehnten erwartet wird.
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Introduction

The aim of particle physics is to describe and understand the fundamental laws of nature. The
Universe has been found to consist of particles, the quarks and leptons, and the interactions between
these particles, mediated by weak, strong and electromagnetic forces. The standard model (SM)
of particle physics is the achievement of more than a century of experimental and theoretical work
by the physics community, starting from the discovery of the electron by J. J. Thomson in the end
of the 19th century and the discovery of the atomic nucleus by E. Rutherford in the early 20th
century. Crucially, it is a mathematical theory that can be used to describe high-energy processes in
physics with a high degree of accuracy, as has been verified by collider experiments. The discovery
of the Higgs boson in 2012 confirmed the basic mechanism of mass generation through electroweak
symmetry breaking, but many open questions remain.

Several observed phenomena do not find an explanation, or at least a sufficient one, in present-
day particle physics. In particular, the existence of non-luminous gravitating matter or dark
matter (DM) is necessary to explain features on the astrophysical and cosmological scales, such
as the rotation curves of galaxies and the energy spectrum of the cosmic microwave background
radiation. It is plausible that this gravitational effect results from weakly interacting particles
that are distinct from quarks or leptons. It is possible these DM particles could be detected (I) in
collider searches, (II) by directly observing the nuclear recoil from the DM halo in our galaxy due
to weak interactions, or (III) indirectly through the detection of cosmic rays resulting from DM
annihilations.

Furthermore, the non-zero neutrino masses and mixings necessary to explain the observed
neutrino flavour oscillations currently do not have an explanation in the SM. It is possible that
neutrinos, which have masses between six to ten orders of magnitude below other fermions, acquire
mass by a different mechanism than Yukawa interactions with the Higgs field. Thus, research in
neutrino physics is expected to shed light on the nature, the mass generation mechanism and
hierarchy and the mixing properties of the neutrinos. There is considerable asymmetry between
matter and anti-matter in the Universe, but the sources of charge-parity (CP) violation that would
allow this to happen are not sufficient in the SM. The experimental study of the flavour sector of
high-energy physics complements direct searches for new physics at the energy frontier.

The Higgs field is the first observed fundamental scalar field, therefore, it is interesting to study
the properties of the observed Higgs boson more deeply. It is possible that the Higgs boson is a
composite particle, a hypothesis which can be tested by precisely measuring the couplings of the
Higgs boson to SM particles.

There are other aspects of the SM that cannot yet be explained satisfactorily. In particular,
fermions are found to fall into three generations, but there seems to be no underlying reason for
this. Furthermore, many of the parameters of the SM, such as the masses and mixing properties of
the fermions, cannot be deduced from theory alone and have to be determined experimentally. All
of the aforementioned questions motivate a further study of the physics of high-energy processes
with the hope of arriving at a more complete mathematical understanding of the Universe. The
Large Hadron Collider (LHC) experiments, which in the last years have collected a few percent
of the data foreseen over their lifetimes and have experimentally confirmed the foundations of the
SM, are essential for progress on these questions.

In this thesis, we focus on improving our understanding of the Higgs sector by developing a
measurement for the Higgs production cross-section in a rare production mode, where the Higgs
boson is produced in association with a top quark pair. The experimental confirmation of the
tt̄H process would be a direct verification of the mechanism for mass generation for the most
massive known quark. It is expected that using Run 2 data, the presence of this production mode
can be determined with a significance exceeding five Gaussian standard deviations (σ) and thus the
Yukawa coupling of the top quark can be measured with a precision of ' 10%. This requires effort
in reducing the effect of experimental uncertainties and of the background contribution arising from

1
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QCD production of top quark pairs, which is the overall focus of this thesis. We have developed a
data analysis method based on the direct computation of matrix elements on observed events that
does not rely on the simulation and subsequent fitting of millions of complex multi-jet events using
Monte Carlo. This method is applied in the tt̄H(→ bb̄) search using 35.9 fb−1 of data collected
during 2016 by the CMS experiment to extract upper limits on the tt̄H production cross-section.

The accurate reconstruction and identification of jets is essential for this search. We have
improved upon the algorithms used for the identification of jets from the hadronisation of bottom
quarks at CMS by developing a classifier based on machine learning that combines information
from various subsystems of the detector. This improved algorithm was used during data-taking at
CMS during the 2016 data taking period.

The LHC experiments will face unprecedented data rates in the coming decades during the
high-luminosity LHC (HL-LHC) project, where the total amount of collected data will increase
by two orders of magnitude. This presents an opportunity for physics as well as a challenge
in terms of the reduction, analysis and storage of these data. Recent advances in the field of
machine learning have made it possible to use algorithms that directly learn from and adapt to data
instead of being constructed by human experts. Using these techniques based on mathematical
optimisation, human-level performance has been achieved or exceeded in many areas where an
algorithmic solution was previously thought to be many decades away, such as computer vision or
the game of Go. During an internship at the private company Lingvist Technologies we applied
these machine learning methods to model language learning behaviour in humans, where theoretical
models are less predictive than in physics. The use of such data-driven techniques shows great
promise in fields where the underlying model is not known, but can also benefit physics in cases
where theoretical models are not yet predictive enough, such as the reconstruction and identification
of complex signals spanning the detector.

This thesis is structured as follows. In chapter 1, we introduce the Standard Model of particle
physics and the theoretical background for Higgs physics. We discuss the experimental setup of
the LHC machine and the CMS experiment in chapter 2. The method used at CMS for identifying
jets from bottom quarks is introduced in chapter 3, where we also discuss our contribution to the
CMS state of the art. We introduce the matrix element method used for the tt̄H(→ bb̄) search in
chapter 4 and discuss the implementation, improvements and validation studies that we carried out.
This method is applied in a search for tt̄H(→ bb̄) using CMS data, which is described in chapter 5.
We describe the data and simulation samples, the reconstruction of the signal, the systematic
uncertainties affecting the measurement and the procedure used to extract the signal strength
parameter and the upper limit on tt̄H production. We also compare our results to the latest
analysis from the ATLAS collaboration. Finally, in chapter 6 we discuss our work on modelling
language learning using data-driven machine learning techniques. We conclude with a summary
and outlook in chapter 7.
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1 Theoretical background

In this chapter, we give an overview of the theoretical background necessary for Higgs boson
searches at the LHC. We start with an overview of the standard model (SM) of particle physics,
followed by a description of the phenomenology of proton-proton collisions and Higgs boson pro-
duction. We conclude with a discussion on the relevance of the search for the associated production
of the Higgs boson with top quarks.

1.1 The Standard Model
The fundamental building blocks of the SM are complex quantum fields φ(x) that depend on the
space-time coordinates x. The interaction of these fields is governed by Quantum Field Theory
(QFT). These fields can be classified according to their transformation properties under various
symmetry groups, in particular the Lorentz group, and thus associated to particle states. The prin-
ciple of gauge invariance allows us to use these transformation properties to describe fundamental
interactions via particle exchange. Much of particle physics is concerned with the measurement of
decay rates and scattering cross sections, which are computed using perturbation series in QFT.

The particle content of the SM is summarised in fig. 1.1, where we see that the fundamental
particle states can be grouped into bosons with integer spin and fermions with spin 1/2. The
fermions are divided into quarks that carry colour charge, fractional electric charge and weak
isospin, and leptons which are divided into charged leptons and neutrinos and carry no colour
charge. In the following, we describe the types of fields in the QFT description of particle physics.

1.1.1 The Lorentz group and particle states
The Lorentz group consists of coordinate transformations xµ = Λµνx

ν that preserves the space-
time interval ds2 = dxµηµνdxν defined through the metric tensor ηµν . The Lorentz transformation
satisfies Λµρη

ρσΛνσ = ηµν , such that det Λ = +1 and sign Λ0
0 = +1. The transformations form a

group SO+(3, 1), which can be decomposed SO+(3, 1) ' SU(2)L×SU(2)R. This allows the angular
momenta (j1, j2) of the decomposition to be used to group the fields as scalars (j1 = 0, j2 = 0), left
and right handed spinors ( 1

2 , 0), (0, 1
2 ) and vectors (1, 1) based on their transformation properties

under the Lorentz group. For example, a scalar field φ(x) transforms as φ(x)→ φ(Λ−1x), a vector
field as Aµ(x) → ΛµνA

ν(Λ−1x) and a spinor field as φα(x) = S[Λ]αβφ
β(x), where S[Λ] is a spinor

built from 4× 4 Dirac γ matrices in the chiral representation.
These fields can be identified with particle states, which have a definite mass m and spin s [2].

According to the spin-statistics theorem, particles with integer spin (bosons) follow Bose-Einstein
statistics, whereas particles with half-integer spin (fermions) follow Fermi-Dirac statistics [3].

1.1.2 Relativistic quantum mechanics
After having identified quantum fields with definite Lorentz transformation properties as the central
objects in QFT, the next step is to derive dynamical relations for the free fields in order to describe
the propagation of free particles.

The Klein-Gordon wave equation,

(∂µ∂µ +m2)ψ = 0 (1.1)

which can be derived from Einstein’s energy-momentum relation E2 = p2 +m2 by replacing energy
and momentum with operators acting on the wavefunction ψ, is a manifestly Lorentz-invariant
relation between energy and momentum for the quantum mechanical wavefunction. However, it
admits solutions with negative energy and negative probability densities, which are unphysical.
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1 Theoretical background

Figure 1.1: The particle content of the Standard Model. Figure adapted from [1].

These negative-probability states led Dirac to search for a relation linear in p̂ and E, which
resulted in the Dirac equation:

(iγµ∂µ −m)ψ = 0 (1.2)

where γµ are the 4 × 4 Dirac γ-matrices which satisfy the Clifford algebra anti-commutation
relation {γµ, γν} = γµγν + γνγµ = 2gµνI and ψ is a four-component spinor. Using eq. (1.2), we
can describe the dynamics, spin and magnetic moment of free spin-half fermions. The probability
densities predicted by Dirac’s equation are positive, but it still admits solutions with negative
energy. In the Feynman-Stückelberg interpretation, these E < 0 solutions can be interpreted
as negative-energy particles moving backwards in time or equivalently as anti-particles moving
forwards in time. The predictions by Dirac’s equation were spectacularly confirmed by the discovery
of the positron in 1932 [4].

Both of these equations of motion can be derived from a Lagrangian using the principle of least
action:

S =

∫
d4x Lfree, δS = 0, (1.3)

where Lfree is the Lagrangian density for non-interacting fields for the Klein-Gordon or Dirac case
respectively and the integral is taken over all possible path variations of the fields. The Dirac
action for a single free spinor field can be written as

LDirac = ψ̄iγµ∂µψ −mψ̄ψ, ψ̄ = ψ†γ0 (1.4)

and varied with respect to ψ to derive the Dirac equation.

1.1.3 Interactions via gauge theory

The concept of interactions mediated by fields is central to QFT. In order to encode the ob-
served particle interactions in the theory, we require the Lagrangian to have additional symme-
tries. In particular, if we require the laws of physics to be invariant under local transforma-
tions ψ(x) → U(x)ψ(x), where the continuous and differentiable transformations U(x) form Lie
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1.1 The Standard Model

groups, then the principle of gauge symmetry allows additional degrees of freedom corresponding
to the mediator fields or gauge bosons to be naturally incorporated in the Lagrangian. First, we
show how quantum electrodynamics, the relativistic quantum theory of electron-photon interaction
and thus electromagnetism, arises from the gauge principle.

1.1.4 Quantum Electrodynamics

For the U(1) symmetry, which corresponds to the transformation ψ(x)→ eiqϕ(x)ψ(x), in order for
the Lagrangian to be invariant under this symmetry, the derivative in the momentum operator
in eq. (1.4) needs to be changed to

∂µ → Dµ = ∂µ + iqAµ(x). (1.5)

This ensures that the covariant derivative Dµψ transforms as the field ψ itself under the gauge
transformation U . The field Aµ corresponds to a massless gauge boson with spin 1 that is coupled
to the fermion field ψ via a coupling constant q in the term qψ̄γµAµψ. The formulation of quantum
electrodynamics (QED) as a gauge theory generated by the Abelian group U(1)EM was first done
by Tomonaga, Feynman and Schwinger [5, 6, 7]. In QED, the spinor ψ is associated to the electron,
the vector Aµ to the photon and q is the electric charge of the fermion.

In order to compute observable decay rates or scattering cross sections under an interaction
Hamiltonian V , we use Fermi’s golden rule, which relates the scattering rate Γfi to the transition
matrix element between the initial and final state derived using perturbation theory:

Γfi ∝ |Mfi|2ρ, Mfi = 〈ψf |V |ψi〉 (1.6)

where ρ is the density of final states which generally depends on the final state energy Ef .
The matrix element in eq. (1.6) is a Lorentz scalar and can be explicitly computed from the

Lagrangian using Feynman rules [8], where we represent each term in the perturbation expansion
of eq. (1.6) as a graphical diagram with the ingoing and outgoing lines. The vertices and the prop-
agators are associated with quantities that are specified by the form of the interaction Lagrangian.
The basic QED interaction vertex thus allows us to construct diagrams corresponding to any QED
interaction and calculate scattering cross sections for processes such as electron-electron scattering,
as depicted in fig. 1.2.

It is remarkable that the gauge theory formulation of QED allows us to both recover Maxwell’s
equations of electromagnetism and predict the anomalous electric dipole moment of the electron,
which has been confirmed to be accurate to about one part per billion [10]. This underscores the
predictive power of symmetries in the SM.

1.1.5 Quantum Chromodynamics

The interaction of quarks and gluons can be described by the theory of quantum chromodynamics
(QCD), which arises from the invariance of the Lagrangian under a local SU(3)C symmetry, where
C stands for a colour charge that is Nc-valent, with Nc = 3 in the SM. The spinor field transforms
under this group as

ψ(x)→ ψ′(x) = exp
[
igsα

a(x)T a
]
ψ(x) (1.7)

where T a are the generators of the group represented by the 3× 3 Gell-Mann matrices λa as T a =
1
2λ

a, gs is the gauge coupling and αa(x) are the local gauge transformations corresponding to the
eight generators. The covariant derivative can then be written as

∂µ → Dµ = ∂µ + igsG
a
µT

a (1.8)

where Gaµ must transform as Gaµ → Gaµ − ∂µαa − gsfbcaαbGcµ. The last term arises from the non-
Abelian nature of QCD, which means that the generators T a do not commute, but are instead
related through the structure constants: [T a, T b] = T aT b − T bT a = ifabcT

c. The Lagrangian for a
single quark field can then be written as
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γ

Figure 1.2: The basic QED vertex (top), a representative leading order diagram for e+e− annihilation
and subsequent pair production (left) and for Compton scattering (right). Time flows left to right. These
figures were created using the tikz-feynman package [9].

Lquark = Ψ̄(iγµ∂µ −m− gsγµGaµT a)Ψ (1.9)

and we can associate Gaµ to the gluons. We note that Ψ = (ψi) has three components corresponding
to colour states, each of which is a 4-component Dirac spinor. The QCD quark-gluon interaction
vertex is then

− gsΨ̄γµGaµT aΨ. (1.10)

At this stage,Gaµ is simply a field associated with external sources, which can be made dynamical
by adding a gauge-invariant term

Lgauge = −1

2
Tr [FµνFµν ] (1.11)

to the QCD Lagrangian, where Fµν = ∂µGν − ∂νGµ + igs[Gµ, Gν ], with Gµ = GaµT
a, is the

QCD gluon field strength tensor. The non-vanishing structure constants fabc imply that gluons
carry colour charge and thus interact with each other, giving rise to a triple-gluon vertex (ggg)
proportional to gs and a 4-gluon vertex (gggg) proportional to g2

s .
The SU(3)C symmetry of QCD thus implies the existence of a conserved trivalent colour charge,

which is exchanged between quarks by eight gluons carrying colour-anticolour in QCD vertices. As
free quarks have not been experimentally detected, the colour charge is hypothesized to be confined,
such that quarks are only observed bound to colourless hadrons - mesons (qq̄) and baryons (qqq).
Furthermore, this means that hadrons have to be colour singlets, which for baryons, composed
of three quarks, implies that the colour wavefunction must be totally antisymmetric under the
exchange of any two quarks, since the colour singlet ψc = 1√

6
(rgb−rbg+gbr−grb+brg−bgr) from

the decomposition 3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1 is totally antisymmetric.
The success of QCD in describing the phenomenology of high-energy interactions of protons

relies on a model for building hadrons out of the elementary constituents of QCD - the quarks and
gluons.
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1.1 The Standard Model

1.1.6 Hadrons

The known quarks of the SM come in six different flavours, grouped into three generations: up
and down (I), charm and strange (II), top and bottom (III). The underlying reason for the SM
having exactly three generations is unknown, but an approximate symmetry between flavours
allows us to predict allowable hadronic states that can be formed from quarks. Strong interaction
is approximately invariant under u↔ d exchange, which implies an SU(2) flavour symmetry. This
group has three generators T̂i that can be represented as 2×2 Pauli spin matrices. This means that
for a given flavour state ψ, the quantised isospin I3 ↔ T̂3 and the total isospin I ↔ T̂ 2 are conserved
in analogy to spin, and can therefore be used to label composite states of quarks as φ(I, I3).

We can construct the flavour wavefunction proton, which contains three valence quarks (uud),
by combining three isospin doublets 2⊗ 2⊗ 2 = 4⊕ 2, which results in a spin I = 3/2 quadruplet
and two spin I = 1/2 doublets φA = 1√

2
(udu − duu) and φS = 1√

6
(2uud − duu − udu), that

are (anti)symmetric under the exchange of the first two quarks. The proton wavefunction is
then a superposition of the two flavour doublets, multiplied by the corresponding (anti)symmetric
wavefunctions for the spin states, such that the flavour-spin wavefunction is completely symmetric
under the exchange of any two quarks. This, combined with the completely antisymmetric colour
wavefunction described in section 1.1.5, guarantees that the proton wavefunction is completely
antisymmetric under the exchange of any two quarks.

The SU(2) isospin symmetry of flavour allows us to write down the wavefunction of the proton
in the ground state and predict the existence and approximate masses of the excited states such
as the ∆-baryons. It is not an exact symmetry, as illustrated by the difference in the proton
and neutron masses, which should vanish under precise SU(2) isospin symmetry, but nevertheless
underscores the role of symmetries in describing hadronic states. Further hadronic states can be
described by the SU(3) model, where the u, d and c quarks are grouped into a triplet

1.1.7 Weak interaction

The weak force is responsible for radioactive β-decay and the leptonic decay of mesons. It is the only
fundamental interaction known to violate parity [11]. The weak interaction couples neutrinos to
charged leptons and up-type quarks to down-type quarks via the exchange of massive vector bosons,
the charged W-boson and the neutral Z-boson. At low energy (q � mW ) and before the observation
of parity violations, the weak force was modelled as a Fermi theory with a matrix element M =
GF gµν [ψ̄3γ

µψ1][ψ̄4γ
µψ2] corresponding to a point interaction of four fermions proportional to the

Fermi constant GF . After the observation of parity violation, the weak interaction vertex needed
to be modified to include axial vector coupling in addition to vector coupling, such that it is
proportional to gγµ(1− γ5). The γ5 operator serves to project out the left (right) handed (anti)-
particle chiral states, such that only these states interact via weak boson exchange.

The weak interaction can be described in the SM as a SU(2)L gauge symmetry. The left-handed
fermions form doublets (νL, `L) for leptons and (qL, q

′
L) for quarks, whereas right-handed fermions

`R, qR are singlets under weak isospin. The generators Ti of SU(2)L are related to the three
Pauli matrices Ti = 1

2σi, which can then be associated to two charged vector boson fields that
mediate the weak force: W±µ = 1√

2
(W 1

µ ∓ iW 2
µ). The gauge structure predicts the existence of a

massive electrically neutral vector boson W 3
µ , which can be associated to the SM Z boson through

electroweak unification, described in the following section.

1.1.8 Electroweak unification

The weak and electromagnetic forces both suggest an electrically neutral boson, so the physically
observed states of the photon and the Z-boson must be superpositions of the two, implying a
connection between the weak and electromagnetic forces. The mixing between the neutral gauge
boson states can be expressed as A = B cos θW + W 3 sin θW and is characterised by the weak
mixing angle θW = tan−1 g′/g between a new U(1)Y gauge field B with a coupling g′ and the
neutral component of the weak force W 3. In the Glashow-Weinberg-Salam theory of electroweak
unification [12, 13, 14], the Lagrangian is symmetric under the group SU(2)L × U(1)Y , whereas
the vacuum state is symmetric only under the QED gauge symmetry U(1)EM. In the unified
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1 Theoretical background

theory, it is necessary to introduce a new quantum number Y , the hypercharge, which is equal
for both components of the SU(2)L doublets, so that the left-handed doublets would be invariant
under both SU(2)L and U(1)Y symmetries. The observed electric charges of the fermions are then
related to the weak hypercharge Y and weak isospin I3 by Q = I3 + Y/2.

The theory of electroweak unification was confirmed by the observation of weak neutral cur-
rents in the Gargamelle detector [15] and the following discovery of the W and Z-boson by the
UA1 and UA2 experiments at the SPS collider [16], which couples to both left-handed and right-
handed fermions. This has allowed the weak mixing angle θW between the neutral vector boson
states to be measured. The principle of local gauge invariance has great predictive power for the
overall structure of the observed interactions, but it does not account for the mechanism by which
electroweak symmetry breaking (EWSB) is realised nor the mass of the W± and Z bosons, which
would violate gauge invariance. In order to incorporate these phenomena, we turn to the Higgs
mechanism. The decay Z→ νν̄ can be used to determine the number of light neutrino generations
by measuring the total width of the Z-boson ΓZ and the decay widths to visible fermions - the
charged leptons e±, µ±, τ± and quarks [17].

1.1.9 Higgs mechanism

We can introduce mass terms for the heavy gauge bosons by coupling them to two complex scalar
fields arranged in a weak isospin doublet φ = 1√

2
(φ+, φ0)T [18, 19, 20, 21]. The Lagrangian density

for this scalar field is Lφ = (∂µφ)†(∂µφ) − V (φ), where the Higgs potential V (φ) = µ2(φ†φ) +
λ(φ†φ)2 has degenerate minima φ†φ = v2/2 = −µ2/2λ for µ2 < 0. If the physical vacuum state
does not have the same symmetries as the Lagrangian, then it is possible to introduce gauge-
invariant mass terms for gauge bosons and fermions.

The Higgs field couples to the gauge fields through the kinetic term (∂µφ)†(∂µφ), which is
made gauge invariant by ∂µ → Dµ = ∂µ + igT aW a

µ + ig′Y Bµ/2. The vacuum state is then cho-
sen to be 〈0|φ|0〉 = 1√

2
(0, v)T , so the Higgs field can be expanded around the vacuum, resulting

in a massive scalar field η and three massless Goldstone fields φ1, φ2, φ3. The Goldstone bosons
can be removed from the Lagrangian by fixing the gauge, such that they correspond to the de-
grees of freedom of longitudinal polarisation states of the Z and W± bosons. The masses of the
gauge bosons can then be written as MW = 1

2gv and mZ = 1
2gv/ cos θW . The theory of EWSB

predicts mW /mZ = cos θW , which has been confirmed experimentally [22].
The explicit mass terms for fermions in the form of mψ̄ψ are not gauge invariant. By arranging

the left-handed fermions in SU(2) doublets L and the right-handed fermions in singlets R, the mass
terms for Dirac fermions can be introduced through spontaneous symmetry breaking through the
terms yf L̄φR+ yf (L̄φR)† for down-type leptons e±, µ±, τ± and quarks d, s and b. The constant
yf =

√
2mf/v is the Yukawa coupling of the fermions, which has to be fixed from the experimental

determination of the masses. A conjugate Higgs doublet φc = −iσ2φ
∗ is used to give the mass

terms for the up-type quarks. From this mechanism, the Yukawa coupling of the top quark is found
to be compatible with unity, a scale very different from the rest of the quarks.

To summarise, the Higgs mechanism can accommodate the observed masses of heavy gauge
bosons and fermions in a unified electroweak theory. It predicts the existence of a massive scalar
boson, which can decay to fermions through H→ f f̄ or bosons through H→W+W− and H→ ZZ,
and through higher-order processes to H→ γγ.

1.1.10 Top quark physics

The top quark is the most massive particle in the SM, withmt = 173.34±0.27(stat)±0.71(syst) GeV
[23], such that it is kinematically allowed to decay through weak interaction t→ bW+. This is the
primary decay mode, since |Vtb| � |Vts|, |Vtd| from the Cabibbo-Kobayashi-Maskawa mass matrix,
which parametrises the strength of the Yukawa interaction between the quarks and the Higgs
field [24, 25], and the hadronisation timescale Λ−1

QCD ' 3 × 10−24 s is much larger than the top
quark lifetime τ = 1/Γt ' 5× 10−25 s [26]. This means that the top quark mass can be measured
accurately from a relatively small number of decay products, among which the mesons containing
a b quark have a distinctive experimental signature due to their large lifetime.
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1.2 The Standard Model at colliders

The top quark was discovered in 1995 at the CDF experiment at Tevatron [27] and is now
ubiquitous at the LHC, where it is produced primarily through gluon-gluon fusion in the form of
top quark pairs [28].

1.2 The Standard Model at colliders

1.2.1 The parton model

Through the study of deep inelastic scattering (DIS) experiments, where an electron transfers
sufficient four-momentum Q2 to a proton for it to break up in the process e−p → e−X, with X
being a proton remnant, it was possible to establish that the electrons scatter elastically off point-
like spin-half constituents of the proton, the partons [29]. This can be seen as an analogy to the
Rutherford experiment, where α-particles were scattered off the nucleus of an atom to reveal the
point-like structure of the nucleus within. By identifying the partons as the quarks from QCD,
electron-proton interactions can thus be described in terms of the more fundamental electron-quark
interactions.

Furthermore, by measuring the Q2-dependence of the QCD coupling constant αs(Q2) = g2
s/4π

experimentally and from theoretical considerations of QCD [30, 31], it has been possible to estab-
lish that at high Q2, the coupling constant αS(Q2) becomes small (αs ' 0.1), such that quarks can
be treated as free particles in the asymptotic limit. The Q2-dependence of αs can be seen in fig. 1.3,
confirming the QCD prediction of asymptotic freedom. Only when the coupling αS(Q2) is suffi-
ciently small can perturbative QCD (pQCD) be used to compute cross-sections of the underlying
processes. However, it is important to note that the magnitude of the strong coupling constant
in the perturbative, high Q2 regime is still significantly larger than the electromagnetic coupling
constant, which means that higher-order loop processes are important in QCD.

The other feature of the running of αs is that at a momentum scale comparable to typical hadron
sizes ΛQCD = 0.1, . . . 0.3 GeV, the coupling constant becomes very large, implying the breakdown
of perturbative QCD at Q < ΛQCD. This means that in processes with low energy scales such as
the production or interaction of hadrons, non-perturbative dynamics of QCD become important.

In order to model a proton-proton interaction with a hard scattering, such as the Drell-Yan
process qq̄ → `+`− at high Q2, we describe the protons in terms of parton distribution func-
tions (PDFs) fp

a (x), which follows from the factorisation theorem in QCD [34]. These specify the
fraction of proton momentum x carried by a quasi-free constituent quark or gluon a, b and fac-
torise the proton-proton interaction to a hard interaction between quarks and gluons, as depicted
in fig. 1.4. This allows us to write the factorised cross-section for the process pp→ cd as

dσ(pp→ cd) =

∫ 1

0

dx1dx2

∑
a,b

fp
a (x1, µ

2
F )fp

b (x2, µ
2
F ) dσ̂ab→cd(Q2, µ2

f ), (1.12)

which is evaluated at the factorisation scale µ2
F . In a qualitative sense, emissions with a transverse

momentum above µF are accounted in the cross-section, otherwise, they are contained in the PDF.
As it is not possible to describe the structure of hadrons and the PDFs perturbatively, they have
to be determined from experimental data in terms of x and µ2

F [35, 36]. The proton is a dynamical
system of bound quarks that interact strongly via virtual gluon exchange, so the protons are found
to contain a sea of gluons and quarks and anti-quarks from the vacuum fluctuations of g→ qq̄ in
addition to the up and down valence quarks expected from flavour symmetry. The PDFs at different
scales µF are related through the DGLAP [37, 38, 39]∗ evolution equations, which result from QCD
corrections and involve splitting kernels that arise from the basic QCD vertices. This allows us to
deduce the PDFs at a certain scale from measurements at a different scale, making it possible to
use data from various collider experiments in combined PDF fits and for making predictions at the
LHC. The PDFs for protons at different factorisation scales are shown in fig. 1.5.

∗Dokshitzer, Gribov, Lipatov, Altarelli and Parisi
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QCD αs(Mz) = 0.1181 ± 0.0011
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Figure 1.3: The measured values of the strong coupling αS(Q2), compared to the prediction from pertur-
bative QCD with five-loop corrections [32]. We see that αS decreases as the momentum scale Q2 increases,
reflecting the asymptotically free nature of QCD. Figure from [33].
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Figure 1.4: An illustration of the factorisation of a proton-proton interaction to a hard parton-parton
interaction.
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Figure 1.5: The parton distribution functions for protons at µ2
F = 10 GeV2 (left) and µ2

F = 104 GeV2.
We see that at higher momenta µF and low x, the proton consists almost entirely out of gluons. Figure
from [33].

1.2.2 Jet physics

In a process where QCD partons (quarks or gluons) are created, we cannot observe them directly,
since colour confinement forbids the existence of isolated coloured states. Events with quarks
and gluons in the final state can be observed experimentally as collimated jets of hadrons. This
feature, which emerges from the short to long distance evolution of QCD, makes it possible to
make measurements on macroscopic distance scales and connect them to otherwise inaccessible
microscopic quantities such as the parton momenta or quantum numbers [40].

Jets are formed through the creation of a parton with high virtuality Q2, which undergoes
showering until it reaches a soft hadronisation scale, where non-perturbative processes create stable
particles, mainly charged pions and protons (' 60%), neutral pions decaying to γγ (' 30%) and
other neutral particles (' 10%). Due to the soft and collinear divergences in the QCD splitting
functions, the jets are collimated along the direction of the original parton momentum.

In order to compare QCD predictions to experimental data, jet-related observables must be
defined in such a way that they exhibit infrared safety, i.e. stability with respect to the addition
of low-pT particles, and collinear safety, such that the momentum of a single particle can be split
up between collinear daughters. Furthermore, they must also be practical to compute for events
with very high jet multiplicities that are expected in hadron colliders. This can be done using
sequential recombination, where energy clusters with momenta kt,i and corresponding distances
dij = min(k2p

t,i, k
2p
t, )∆ij/R

2 are recombined until stable jets can be formed. These jet algorithms
are characterised by the jet radius parameter R and the parameter p, where p = −1 corresponds
to the anti-kT algorithm [41].

1.2.3 Monte Carlo event generators

In order to compute experimental observables such as differential distributions from the underlying
theory of the SM, we typically use Monte Carlo (MC) simulators. Although inclusive observables
and in some cases differential distributions can be calculated analytically, it is in general not possible
to apply experimental cuts, therefore the observable phase space is sampled probabilistically to
generate simulated events, which can be compared to the measurement [42].

The MC simulators generally have several stages, starting with importance sampling the phase
space of the hard scattering process, such that events occur with probability proportional to |M|2.
This is simple at leading order, but in higher orders, the cancellations between real and virtual
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1 Theoretical background

contributions need to be accounted for and the procedure becomes more complicated [43]. The
hard process defines the overall energy flow in the event.

The hard process is followed by the simulation of the parton shower, which evolves down
from the hard scale by gluon emission or g → qq̄ splittings. Showering is generally process-
independent, but may depend on the inherent momentum scales in the process. At a scale of around
1 GeV, hadronisation takes over, which is usually treated using phenomenological models [44] for
the non-perturbative dynamics. The overall multiplicity of final state particles is defined by the
hadronisation models.

Additional radiation from gluon emission and splitting can be generated either at the level of
the hard matrix element or in the parton shower in initial (ISR) or final state radiation (FSR).
The matching between these two stages is therefore crucially important in accurately predicting the
differential distributions, especially for events with high jet multiplicities. Furthermore, all MC
implementations contain a number of free parameters, which need to be tuned to experimental
data [45].

1.3 Higgs phenomenology

1.3.1 Higgs at the LHC
The discovery of the Higgs boson with mH ' 125 GeV in 2012 at the LHC by the CMS [46] and
ATLAS [47] collaborations confirmed the basic mechanism of EWSB and mass generation and
completed the particle spectrum of the SM. Following this, a new experimental and theoretical
program has opened in experimentally verifying the properties of the Higgs boson. In particular,
it should be established whether the Higgs boson couples to SM gauge bosons and fermions as
expected by observing these processes directly. In Run 1 of the LHC, the coupling of the Higgs
boson to gauge bosons has been established at a relative precision of ' 10%, however, to be able
to determine the couplings to fermions, Run 2 data of the LHC are necessary [48].

Beyond establishing the existence of the predicted production and decay channels, a crucial
test of the Higgs mechanism is determining the coupling strengths of the new scalar field to SM
fields and comparing them to the SM predictions. The top quark Yukawa coupling yt , which is
O(105) times larger than that of the first-generation quarks, determines the evolution of the Higgs
self coupling λ under renormalisation and is currently only known indirectly, as will be discussed
further in section 1.3.5. Next, we discuss how the Higgs boson can be produced at the LHC.

1.3.2 Production modes
The main production modes of the Higgs boson at the LHC, shown in fig. 1.7, are through gluon-
gluon fusion (ggF), with a cross-section at

√
s = 13 TeV of σggF = 48.6 ± 5% pb, weak or vector

boson fusion (VBF) with a cross-section σVBF = 3.78± 2% pb, associated production with vector
bosons (VH) with σWH = 1.37±2% pb, σZH = 0.88±5% pb and through the associated production
with top quark pairs (tt̄H) with σtt̄H = 0.50+9%

−13% pb or with a single top quark (tH) [33]. We note
that the difference between the cross sections for the ggF and tt̄H production modes is roughly
two orders of magnitude.

The ggF production proceeds predominantly via the top quark loop and is known to N3LO [49].
This was the main production mode for the initial observation with the H→ γγ, H→W+W− →
eνµν and H → ZZ → 4` signatures, which are important for the measurement of the production
cross-section, JP and mass of the Higgs boson. It also serves as an indirect constraint on the top-
Higgs Yukawa coupling, due to the presence of the top quark loop in ggF. For the direct decay of the
Higgs boson to fermions, which has a higher branching ratio than H→ γγ, additional production
modes with a lower cross-section can be used. The VBF mode, where two (anti)quarks scatter
by exchanging a weak boson in qq → qqH is important both for discovery and determination of
the couplings, as it can be distinguished from QCD background through the presence of two jets
in the opposite forward regions of the detector originating from the scattered quarks. The VH
mode allows the use of leptonic decays of the W/Z bosons to reduce the multijet background, such
that this mode has recently been used to establish the H → bb̄ decay [50]. While inclusive Higgs
cross section measurements in the ggF channel are indirectly sensitive to the top quark Yukawa
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Figure 1.6: The generic tree-level Feynman diagrams for Higgs boson production: the gluon fusion process
(ggF) (a), vector boson fusion (b), associated production with vector bosons (VH) (c) and associated
production with top quarks (tt̄H) (d). Figure from the PDG [33].
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Figure 1.8: The branching ratios of the SM Higgs boson aroundmH = 125 GeV along with the theoretical
uncertainties. Figure from the PDG [33].

coupling yt, the tt̄H and tH channels can be used to probe yt directly, such that they provide an
important independent verification of the mass generation mechanism for the top quark.

1.3.3 Decay channels

The Higgs boson decays to SM particles with decay widths Γ that are proportional to the mass
of the daughter particles. For mH ' 125 GeV, the dominant decay channels are the decay to
bottom quarks H → bb̄ with a branching ratio BR = Γ/ΓH = 0.584 ± 0.019, the decay to an
on-shell and an off-shell W-boson H → WW∗ (BR = 0.214 ± 0.009), the decay to Z bosons
H→ ZZ (BR = 0.026± 0.001) and the decay to tau leptons H→ τ+τ− (BR = 0.063± 0.004) [33].
Through loop-induced processes, which are enhanced by the large top quark mass, the Higgs boson
can also decay to massless particles in the channels H → gg, γγ with non-negligible branching
fractions. The branching ratios for a SM Higgs boson as a function of mH can be seen in fig. 1.8.

1.3.4 Experimental characterisation

Accurate predictions for the Higgs boson production cross sections and branching ratios for decays
allow the interpretation of experimental data and measuring the properties of the Higgs boson in
various channels. The mass mH has been measured most accurately in the H→ γγ and H→ ZZ→
4` channels, with a combined value of mH = 125.09± 0.21 (stat.)± 0.11 (syst) GeV, dominated by
statistical uncertainties, with the photon momentum scale uncertainties being the most significant
systematic uncertainty [51]. This has been confirmed in a recent measurement of the Higgs boson
properties in the H → ZZ → 4` channel, where the Higgs boson mass has been determined to be
mH = 125.26±0.2 (stat.)±0.08 (syst.), with the systematic uncertainties dominated by the lepton
momentum scale [52]. The spin and parity JP of the Higgs boson are probed independently of the
mass and total cross section and are found to be compatible with the SM 0+ hypothesis, excluding
the pseudo-scalar hypothesis at a 98− 99% confidence level [53, 54]. The width of the Higgs boson
cannot be measured directly at the LHC, since the mass resolution in the diphoton and 4` channels
is 1−2 GeV, three orders of magnitude larger than the expected SM line width ΓH = 4.2 MeV [33].
However, it can be constrained by comparing the on-shell and off-shell H → VV cross sections,
thus setting upper limits on ΓH that are around 5-6 times the SM value [55].

It is important to experimentally confirm that the coupling strengths of the Higgs boson to SM
particles correspond to those predicted by the SM. Any deviation from the values predicted by
the SM Higgs mechanism could thus signal physics beyond the SM (BSM). The simplest way to
experimentally characterise discrepancies in the couplings is the so-called κ-framework [56], where
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Figure 1.9: The combined signal strength modified factors κ from the CMS and ATLAS collaborations
with Run 1 data. Figure from [48].

the couplings to SM particles are rescaled by factors κi for i ∈ {Z,W, f, g, γ,Zγ} which can be
determined from signal strength (µ = σ/σSM) measurements, without modifying the SM structure
of the theory. In this formalism, the tt̄H signal strength modifier is given by µtt̄H = κ2

t . The
CMS and ATLAS collaborations have extracted these signal modifier values from Run 1 data in
a combined fit, with the results shown in fig. 1.9. The couplings, while compatible with the SM,
have significant uncertainties, in particular for the Higgs-top quark coupling κt, thus paving the
way for Run 2 measurements with improved sensitivity.

While the κ-framework is relatively simple to apply for small deviations in signal strength, the
clear shortcoming of this approach is that any BSM physics would necessarily change the structure
of the theory, rendering the results potentially invalid. In particular, the above approach assumes
that the loop contributions in ggF and H → γγ are not modified by new physics. However,
contributions with a different Lorentz structure from the SM cannot be captured in the κ frame-
work. Therefore, it has been suggested to use either Higgs pseudo-observables [57] or effective field
theories (EFT) to further parametrise any possible deviations from the SM [58, 59].

1.3.5 Top-Higgs coupling

In the SM, the coupling between the top quark and the Higgs boson is predicted to be yt =
√

2mt/v,
which can be verified by measuring the cross sections of top quark pair associated Higgs production.
This implies that the direct determination of the top-Higgs coupling in tt̄H is a test of the EWSB
model at a natural scale where y ' 1.

Vacuum stability

The top-Higgs coupling plays an important role in vacuum stability, since it controls the evolution
of the self-coupling λ of the Higgs potential through renormalisation evolution dλ

d lnµ , where it
gives a quartic negative contribution. In particular, if yt is sufficiently large but well within the
bounds set by experimental uncertainties, the self-coupling λ becomes negative at a renormalisation
scale µ below the Planck scale MPl =

√
h̄c/G ' 1019 GeV, where gravitation becomes important.

This means that the Higgs potential develops an additional minimum, which would possibly make
the SM vacuum state unstable or metastable, depending on the exact values of mH and mt [60].
Given that we have not observed a transition between the vacuum states, this would imply the
existence of new physics that would prevent this. Since the scale where the scalar self coupling
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becomes negative depends strongly on yt, an accurate determination of yt can help to pinpoint the
scale of new physics in the absence of clear BSM signals [61] and establish whether the vacuum is
stable on cosmological timescales.

Anomalous couplings

Furthermore, the top-Higgs coupling, which is purely scalar in the SM, can be extended quite gen-
erally to contain scalar and pseudoscalar interactions, making it possible to use results from tt̄H for
setting direct constraints on anomalous top-Higgs couplings [62]. Such anomalous couplings can
arise from a two-Higgs doublet model [63, 64] that appears in several BSM scenarios, such as su-
persymmetry [65], axions [66] or from models with a composite Higgs [67]. Measurements of the
tt̄H cross-section can help to constrain such anomalous couplings.

1.3.6 Current results on tt̄H

Both the CMS and ATLAS collaborations have searched for tt̄H in Run 1 and Run 2 of the LHC
by measuring µ = σtt̄H/σSM in a tt̄H-enriched region using different Higgs decay channels, with
the H → WW∗,ZZ∗ → multilepton, H → bb̄ and H → ττ decay channels providing the highest
sensitivity in Run 2, followed by tt̄H-tagged H→ γγ decay in the diphoton analysis. The results are
summarised in table 1.1. The analyses are systematically dominated and quite involved in terms of
statistical methods. A recent combination by ATLAS while this work was in preparation has been
able to measure a cross-section of σtt̄H = 590+160

−150 fb, compared to the SM value of σSM
tt̄H = 507+35

−50 fb,
with the equivalent measurement from CMS in the H → bb̄ channel being a major part of this
thesis.

decay channel CMS ATLAS

H→ bb̄

µ = −0.19± 0.45 (stat)± 0.68 (syst) µ = 0.84± 0.29 (stat)± 0.57 (syst)

µ < 1.5 (1.7) obs (exp) @ 95% CL µ < 2.0 (1.2) obs (exp) @ 95% CL

12.9 fb−1 [68] 36.1 fb−1 [69]

multi-lepton

µ = 1.5± 0.5 µ = 1.6+0.5
−0.4

µ < 2.0 (2.2) @ 95% CL 4.1σ obs (2.8σ exp.)

35.9 fb−1 (WW∗,ZZ∗, τ`τ`) [70] 35.9 fb−1 [71]

H→ ττ

µ = 0.72+0.62
−0.53

µ < 1.3 (1.4) @ 95% CL included in multi-lepton

35.9 fb−1 (τhτl) [72]

H→ γγ

µ = 2.2+0.9
−0.8 µ = 0.5± 0.6

3.3σ obs (1.5σ exp.) µ < 1.7 (2.3) @ 95% CL

35.9 fb−1, tt̄H tag [73] 36.1 fb−1, tt̄H tag [74]

Table 1.1: Current results on tt̄H production from Run 2 of the LHC.

1.4 Summary

The discovery of the Higgs boson in 2012 has opened up a new field of research in experimentally
probing the properties of this fundamental scalar field. Measurements of the Higgs boson are
entering the precision era with an increase of attention on rare production and decay modes,
which allow the nature of the EWSB mechanism to be verified experimentally. In Run 2 of the
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LHC, several rare production modes have confirmed the coupling of the Higgs boson to quarks
and leptons. Many BSM theories predict changes to the EWSB sector, with the determination
of the top quark Yukawa coupling being an important test of the mechanism of mass generation.
The LHC experiments are already probing this coupling, but work remains to be done on both the
experimental side in reducing measurement uncertainties and on the side of theoretical predictions.
The current dataset collected by the CMS and ATLAS experiments is approximately 1% of the
total foreseen over the lifetime of the LHC project; therefore considerable progress can be made in
precision measurements of the Higgs boson and thus the SM.
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2 Experimental setup

In this section, we give an overview of the experimental setup of the Large Hadron Collider (LHC)
and the Compact Muon Solenoid (CMS) experiment as it pertains to the tt̄H search during Run 2 of
the LHC. First, we summarise the essential details of the LHC machine and the main experiments
on the LHC ring. At the time of writing, the LHC, which is located at CERN nearby Geneva, is
the highest-energy hadron collider in the world and the only experimental apparatus where Higgs
bosons can be produced and studied directly. Next, we discuss the CMS experiment, which is one
of the two general-purpose detectors on the LHC ring. In particular, we describe the subsystems
and reconstruction algorithms of the detector that are crucial to the tt̄H(→ bb̄) search.

2.1 The Large Hadron Collider

The LHC is a hadron collider situated in the 26.7-km tunnel of the former Large Electron Positron
(LEP) machine. The hadrons, either protons or heavy ions, are accelerated in several stages by a
pre-accelerator complex, shown in fig. 2.1. In the description that follows, we consider only proton-
proton collisions for concreteness. The protons are accelerated by the linear accelerator LINAC
to 50 MeV, the proton synchrotron booster (PSB) to 1.4 GeV, the proton synchrotron (PS) to
26 GeV and by the super proton synchrotron to 450 GeV. The protons are injected in bunches
of Nb ' 1011 protons per bunch into the main rings with a frequency of 40 MHz, such that the
nominal bunch spacing is 25 ns and there are approximately nb ' 2500 bunches per beam.

2.1.1 The accelerator complex

The protons are accelerated to the centre-of-mass energy
√
s = 13 TeV in the main accelerator

system consisting of two concentric counter-rotating rings, where superconducting magnets with
a nominal B-field B = 8.33 T are used to bend and focus the beams. Dipole magnets, depicted
in fig. 2.2, are used to bend the beam and multipole magnets to focus it. Both beams are located in
beam pipes with an inner diameter of 48 mm within the same vacuum chamber in a so-called twin-
bore design, dictated by the size of the tunnel. The magnets are kept at an operating temperature
below 2K using superfluid He-4. These proton bunches are collided at four interaction points and
the beams can be sustained for up to 24 hours. The machine is characterised by the nominal
instantaneous luminosity of L = 1034 cm−2s−1, which has been exceeded in 2017 by a factor of
2.06 [76].

The proton-proton collisions at the LHC interaction points result in a number of events per
second given by Ni = Lσi for a process that has a cross-section σi at a given instantaneous
luminosity L. For the LHC, the machine luminosity is given by

L =
N2
b nbfrevγr
4πεnβ∗

F (2.1)

where frev is the number of revolutions per second and γr is the relativistic Lorentz factor. The
beam is further described by the normalised transverse emittance εn and the beta function β∗ of the
beam at the interaction point, which are related to the transverse beam size at a location s along
the beam through σ(s) =

√
εnβ(s). The transverse emittance characterises the spread of particles

in the position-momentum phase space throughout their orbits. The beams cross at the interaction
points at an angle θc, which results in luminosity reduction by a factor

F =

[
1+
(θcσz

2σ∗
)2]−1/2

(2.2)
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Figure 2.1: The LHC accelerator complex, where the protons are accelerated by LINAC 2, the PS and
the SPS before being injected into the main LHC ring, where they are collided in the four interaction
points. Figure from [75].

MECHANICAL BEHAVIOUR OF THE LHC CRYODIPOLES

A. Buenaventura, C. Hauviller, B. Skoczen, CERN, Geneva, Switzerland

Abstract
The LHC cryodipoles are slender and heavy objects

more than 15-m long. The major components of the
cryodipole assembly are the 28-tonne cold mass,
supported on its three Glass-Fibre-Reinforced-Epoxy
support posts and the 4-tonne vacuum vessel. The
performance of the LHC depends very much upon the
accurate positioning of the dipoles and the beam tubes, in
particular to maximise the useful beam apertures. The
cryodipoles will be conditioned and measured in surface
assembly buildings, then handled and transported to their
positions in the tunnel and, finally, aligned.

This paper presents the static and dynamic studies of
the cryodipole in different configurations. The tests and
analyses carried out have led to a thorough understanding
of the mechanical behaviour of the cryodipoles.

From the static analysis, an hyperstatic supporting
system is proposed in order to minimise the systematic
deflections and the effects due to changing temperature
conditions in the tunnel.

The dynamic analysis has shown that the cryodipole
resonates at a series of very low natural frequencies and,
moreover, shows a low damping value. Since the
dynamic loads during transport and handling are in the
low frequency range, the cryodipole components are
potentially susceptible to damage. Simulations have
included the truck suspension for road transport and the
lifting device for handling with a crane. Solutions coping
with the transport and handling conditions are presented.

1  INTRODUCTION
An LHC cryodipole is a superconducting dipole

magnet (“dipole cold mass”) housed inside a cryostat.
The dipole cold mass consists of two dipole coils, a
common non-magnetic, force-retaining laminated
structure made up of stainless steel, a laminated iron
yoke, all surrounded by a shrinking cylinder, made up of
two stainless steel half-cylinders welded together. The
cryostat of the dipole magnet consists of three Glass-
Fibre-Reinforced-Epoxy (GFRE) support posts to
position the cold mass, a multilayer radiation screen and
an aluminium thermal shield with its multilayer super-
insulation, all situated inside a low carbon steel vacuum
vessel [1] (Figure 1).

A three-dimensional (3D) finite element model
(Figure 2) of the cryodipole assembly was developed
using ANSYS™ and validated with experimental data.

ALIGNMENT TARGET

SUPERCONDUCTING
 MAGNET

SUPPORT POST

VACUUM VESSEL

IRON YOKE

NON-MAGNETIC
COLLARS

SUPERCONDUCTING
COILS

SHRINKING CYLINDER

SUPERINSULATION

THERMAL SHIELD

Figure 1: Cross-section of the LHC cryodipole

The finite element model included the dipole cold mass
(3D elements), the GFRE support posts (shell elements)
and the vacuum vessel (shell elements). An equivalent
material concept was used to model the stiffness and
weight of the cold mass collars and yoke laminations.

Figure 2: Finite element model of the LHC cryodipole

2  STATIC ANALYSIS
This analysis concerns the supporting system of the

LHC cryodipoles in the tunnel. They will be situated on
top of mechanical jacks that will allow the alignment of
the LHC machine with respect to targets situated on the
vacuum vessel outer wall. The accuracy and long-term
stability of the positioning of dipoles and the beam tubes
depends on the supporting system of the cryodipoles.
Three different configurations have been studied and are
presented schematically in Figure 3.

2133Proceedings of EPAC 2000, Vienna, Austria

Figure 2.2: Cross-section of the LHC dipole magnet. Figure from [77].
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2.1 The Large Hadron Collider

where σz is the bunch length and σ∗ the transverse bunch size. The β∗ parameter dictates the
size of the beam at the interaction point, which is tuned to the luminosity requirements of the
experiment and in turn limited by the aperture of the focusing magnets. The maximum beam
size in the transverse direction is σ = 1.2 mm, limited by the dimensions of the beam screen.
The instantaneous luminosity decays over time during a physics run due to beam loss from the
collisions, such that the luminosity decreases by 1/e during approximately 15 hours.

The total number of collisions in a given unit of time is characterised by the integrated luminos-
ity L =

∫
L dt and is limited to around 80− 120 fb−1 per year under perfect conditions, assuming

around 200 days of operation and on average seven hours of turn-around time between runs for
filling the beams and accelerating to data-taking energies [77].

During the 2016 data taking period considered in this thesis, the LHC operated at a centre-of-
mass energy of

√
s = 13 TeV, β∗ = 40 cm and delivered around L = 40 fb−1 of proton-proton data

to the ATLAS and CMS experiments. With an inelastic pp cross-section of σpp ' 77 mb [78], this
corresponds to about 1015 inelastic pp interactions per year.

2.1.2 Experiments at the LHC
The collision data from the LHC are recorded by two general purpose detectors, CMS and ATLAS
(A Toroidal LHC ApparatuS), and two experiments with a more specialised physics program,
LHCb and ALICE (A Large Ion Collider Experiment), located at the four interaction points. The
general properties and physics goals of the main experiments are described in the following section.

CMS

The main characteristic of CMS is the superconducting solenoid, which provides a magnetic field
of 3.8T that enables the momentum of charged particles to be measured with high accuracy. Inside
the solenoid volume are silicon pixel and strip trackers, an electromagnetic calorimeter (ECAL)
comprised of PbWO4 crystals and a brass-scintillator hadronic calorimeter (HCAL). Outside the
solenoid volume is the steel return yoke for the magnetic field, which contains gas-ionisation cham-
bers used to measure muons. The CMS detector was designed to meet a dimuon, diphoton and
dielectron mass resolution of ' 1% at 100 GeV [79].

ATLAS

The overall layout of the ATLAS detector differs from CMS mainly with respect to the configuration
of the magnetic fields, where a central superconducting solenoid with B=2 T houses the semicon-
ductor trackers, with the lead-liquid argon (LAr) electromagnetic calorimeter and the hadronic
calorimeters outside the solenoid volume. The muon systems are embedded in an outer air-core
toroidal system that minimises multiple scattering [80].

LHCb

The primary goal of the LHCb experiment is to study heavy flavour physics, in particular rare
decays of beauty and charm hadrons and searching for indirect evidence for new physics in CP-
violation, exploiting the large rate of B-meson production at the LHC. The LHCb detector is
a single-arm spectrometer with a forward angular coverage of 10 to 250-300 mrad, featuring a
beryllium beampipe that is highly transparent to particle fluxes and an accurate vertexing system.
LHCb operates at an instantaneous luminosity that is two orders of magnitude lower than CMS
and ATLAS in order to minimise multiple pp interactions per bunch crossing [81].

ALICE

The ALICE detector is designed to study heavy ion collisions, focusing on QCD measurements, in
particular the study of strongly interacting matter at the high temperatures and densities achievable
in nucleon-nucleon collisions. It features a barrel region embedded in a solenoid which measures
hadrons, electrons and photons, and muon spectrometers in the forward direction. The ALICE
detector is specifically optimised to study global event observables such as particle multiplicity and
energy flow [82].

23



2 Experimental setup

2008 JINST 3 S08004

C ompac t Muon S olenoid

Pixel Detector

Silicon Tracker

Very-forward
Calorimeter

Electromagnetic
Calorimeter

Hadron
Calorimeter

Preshower

Muon
Detectors

Superconducting Solenoid

Figure 1.1: A perspective view of the CMS detector.

to measure precisely the momentum of high-energy charged particles. This forces a choice of
superconducting technology for the magnets.

The overall layout of CMS [1] is shown in figure 1.1. At the heart of CMS sits a 13-m-
long, 6-m-inner-diameter, 4-T superconducting solenoid providing a large bending power (12 Tm)
before the muon bending angle is measured by the muon system. The return field is large enough
to saturate 1.5 m of iron, allowing 4 muon stations to be integrated to ensure robustness and full
geometric coverage. Each muon station consists of several layers of aluminium drift tubes (DT)
in the barrel region and cathode strip chambers (CSC) in the endcap region, complemented by
resistive plate chambers (RPC).

The bore of the magnet coil is large enough to accommodate the inner tracker and the
calorimetry inside. The tracking volume is given by a cylinder of 5.8-m length and 2.6-m di-
ameter. In order to deal with high track multiplicities, CMS employs 10 layers of silicon microstrip
detectors, which provide the required granularity and precision. In addition, 3 layers of silicon
pixel detectors are placed close to the interaction region to improve the measurement of the impact
parameter of charged-particle tracks, as well as the position of secondary vertices. The expected
muon momentum resolution using only the muon system, using only the inner tracker, and using
both sub-detectors is shown in figure 1.2.

The electromagnetic calorimeter (ECAL) uses lead tungstate (PbWO4) crystals with cov-
erage in pseudorapidity up to |h | < 3.0. The scintillation light is detected by silicon avalanche
photodiodes (APDs) in the barrel region and vacuum phototriodes (VPTs) in the endcap region. A
preshower system is installed in front of the endcap ECAL for p0 rejection. The energy resolution
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Figure 2.3: The cross-section of the CMS experiment. Figure from [79].

Purpose

Both the CMS and ATLAS experiments have the broad physics goal of discovering the Higgs
boson, studying its properties and searching for any new resonances or other new phenomena at
high energies. The discovery of the Higgs boson was realised during Run I of the LHC, with both
experiments reporting a significant excess in 2012 that is compatible with a SM Higgs boson [47,
46]. In the following section, we discuss the essential aspects of the CMS experiment in more detail.

2.2 The CMS detector

The coordinate system adopted by CMS is centred at the collision point, with the x-axis pointing
inward towards the LHC ring, the y-axis vertically upward and the z-axis along the beamline
towards east in the direction of the Jura mountains. The azimuthal angle φ is measured from
the x-axis in the plane transverse to the beam. The polar angle is measured from the z-axis
and it defines the pseudorapidity η = − ln tan θ/2. The CMS detector follows a layered design
that encapsulates the interaction region completely in the azimuthal direction and provides good
coverage in the polar direction. In order to achieve this, the detector is divided into a barrel
component and two endcaps, as can be seen in fig. 2.3. A transverse slice of the experiment can
be seen in fig. 2.4, where the overall layout of the sub-detectors is depicted along with example
particle trajectories for muons, electrons, charged and neutral hadrons and photons.

2.2.1 The superconducting magnet

The 3.8T magnetic field, which is essential for measuring the momenta and charge of charged
particles, is created by the 220 ton superconducting solenoid, which has a diameter of 6 m and a
length of 12.5 m. The energy stored in the relatively thin NbTi conductor reaches up to 2.6 GJ
and mechanical deformations in the magnet during energising can be significant (' 0.15%). The
iron return yoke of the magnetic field consists of sections which house the muon chambers and
thus guarantees a sufficient field strength in the muon spectrometer region [79].
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Figure 2.4: A view of a transverse slice of the CMS detector with the subsystems.

2.2.2 Inner tracking system

The inner tracking system measures the momenta, trajectories and charge of charged particles
from the primary vertex in the interaction point and any secondary vertices associated to the
decay of long-lived particles such as b hadrons. The magnetic field is homogeneous within the
tracker volume, which has a length of 5.8 m and a diameter of 2.5 m. The number of simultaneous
inelastic collision (pileup) events per bunch crossing in pp collisions can be significant at the LHC,
with nominal values around NPV = 20− 50. Therefore, the tracking system has to cope with high
particle fluxes of up to 103 particles per bunch crossing every 25 ns and be able to associate signals
to the correct bunch crossing.

Pixel detector

In order to keep the hit occupancy around 1%, pixel detectors have to be used in the inner region
of the tracker. The inner tracker consists of a three-layer silicon pixel detector with layers at
4.4 cm, 7.3 cm and 10.2 cm and a silicon strip detector with ten layers extending out to radii of
1.1 m. The pixels in the inner layer measure 100 × 150 µm2 in the r − φ and z directions, which
is driven by the secondary vertex and impact parameter resolution necessary for the detection of
heavy flavour states. The pixel detector covers the range |η| < 2.5 and consists of the barrel layers
(BPix) and two endcap discs (FPix), located in such a way as to guarantee at least three pixel hits
over almost the full range, as seen in fig. 2.5. By reading out the analog pulse height using charge
sharing which results from the B field, a hit resolution of 15-20 µm can be achieved. During Run
1 of the LHC and the 2015-2016 data taking period, the Phase-0 version pixel detector, covering
an area of 1 m2 and consisting of around 66 million pixels was in operation. The pixel detector
was upgraded during the 2016-2017 winter shut-down procedure as part of the Phase-1 upgrade,
moving the inner layer from r = 4.4 cm to r = 2.9 cm, adding a new outer layer at r = 16 cm
and new disks in the forward directions. The capabilities of the readout chip (ROC) have been
improved to cope with an instantaneous luminosity of L = 2× 1034 cm−2s−1 [83].

Silicon strip tracker

At larger radii, the occupancy decreases, such that silicon strips with a typical size of 10cm ×
80µm are used in the silicon strip tracker. The tracker consists of several layered subsystems as
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Figure 3.6: Geometrical layout of the pixel detector and hit coverage as a function of
pseudorapidity.

size of 100⇥150 µm2 emphasis has been put on achieving similar track resolution in both r-f and
z directions. Through this a 3D vertex reconstruction in space is possible, which will be important
for secondary vertices with low track multiplicity. The pixel system has a zero-suppressed read
out scheme with analog pulse height read-out. This improves the position resolution due to charge
sharing and helps to separate signal and noise hits as well as to identify large hit clusters from
overlapping tracks.

The pixel detector covers a pseudorapidity range �2.5< h <2.5, matching the acceptance
of the central tracker. The pixel detector is essential for the reconstruction of secondary vertices
from b and tau decays, and forming seed tracks for the outer track reconstruction and high level
triggering. It consists of three barrel layers (BPix) with two endcap disks (FPix). The 53-cm-long
BPix layers will be located at mean radii of 4.4, 7.3 and 10.2 cm. The FPix disks extending from
⇡6 to 15 cm in radius, will be placed on each side at z=±34.5 and z=±46.5 cm. BPix (FPix)
contain 48 million (18 million) pixels covering a total area of 0.78 (0.28) m2. The arrangement
of the 3 barrel layers and the forward pixel disks on each side gives 3 tracking points over almost
the full h-range. Figure 3.6 shows the geometric arrangement and the hit coverage as a function
of pseudorapidity h . In the high h region the 2 disk points are combined with the lowest possible
radius point from the 4.4 cm barrel layer.

The vicinity to the interaction region also implies a very high track rate and particle fluences
that require a radiation tolerant design. For the sensor this led to an n+ pixel on n-substrate detector
design that allows partial depleted operation even at very high particle fluences. For the barrel
layers the drift of the electrons to the collecting pixel implant is perpendicular to the 4 T magnetic
field of CMS. The resulting Lorentz drift leads to charge spreading of the collected signal charge
over more than one pixel. With the analog pulse height being read out a charge interpolation allows
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Figure 2.5: A schematic overview of the geometrical layout of the Phase-0 CMS pixel tracker, showing
the three BPix layers at mean radii of 4.4, 7.3 and 10.2 cm and the two FPix disks at z = ±34.5 cm and
±46.5 cm. Figure from [79].

shown in fig. 2.6, in particular, the tracker inner barrel and discs (TIB/TID), the outer barrel
(TOB) and the tracker endcaps (TEC). The TIB/TID delivers four measurements of a track in
the r − φ direction, the TOB six measurements, and the TEC nine measurements per particle
trajectory. The strip pitch increases at larger radii to compensate for the reduction in particle
flux.

Overall, the tracking system has to maximise the number of measurement points for each
particle trajectory while keeping the material budget at a minimum. The amount of interacting
material can be measured in terms of a radiation length X0, which corresponds to the distance
over which the energy of a high-energy charged particle is reduced by a factor e, mainly due to
Bremsstrahlung. Over the whole functional η range, the tracking system contributes between 0.4
and 1.8 radiation lengths, with the largest radiation losses in the region around |η| ' 1.5 due to
the TIB/TID transition. The transverse impact parameter resolution is around 10 µm for high
momentum tracks. The tracking system contributes significantly to muon reconstruction, resulting
in a transverse momentum resolution of around 1−2% up to |η| ≤ 1.6 and a reconstruction efficiency
of around 99% over most of the η range for muons with pT ' 100 GeV [79, 84].

2.2.3 Electromagnetic calorimeter

The primary function of the electromagnetic calorimeter is to measure the energy of electrons
and photons through the production of scintillation light from electromagnetic cascades produced
by high-energy electrons or photons. The ECAL is situated within the solenoid volume in order
to minimise energy losses from radiative processes, pair creation and hadronic interactions and
consists of around 76 000 lead-tungstate (PbWO4) crystals arranged in the barrel and endcaps, as
seen in fig. 2.7. This material is characterised by a high density (ρ = 8.28 g/cm3), a short radiation
length (X0 = 0.89 cm) and a small Molière radius (RM = 2.19 cm) [33], which determines the
transverse size of the electromagnetic shower. Furthermore, the scintillation decay time is short,
such that 80% of the light is emitted during the 25 ns bunch spacing. The light is emitted with a
broad maximum in the 420-430 nm range [79].

In the barrel (endcaps), the crystals are coupled to avalanche photodiodes (vacuum phototri-
odes) for light collection, with a 1 MeV particle producing a yield of about 4.5 photoelectrons. Due
to the high radiation damage expected throughout the lifetime of the ECAL, the light transmission
properties of the crystals are monitored using injected laser light at λ = 440 nm. A two-layer lead
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Figure 3.1: Schematic cross section through the CMS tracker. Each line represents a detector
module. Double lines indicate back-to-back modules which deliver stereo hits.

layers 5 and 6. It provides another 6 r-f measurements with single point resolution of 53 µm and
35 µm, respectively. The TOB extends in z between ±118cm. Beyond this z range the Tracker
EndCaps (TEC+ and TEC- where the sign indicates the location along the z axis) cover the region
124cm < |z| < 282cm and 22.5cm < |r| < 113.5cm. Each TEC is composed of 9 disks, carrying
up to 7 rings of silicon micro-strip detectors (320 µm thick on the inner 4 rings, 500 µm thick
on rings 5-7) with radial strips of 97 µm to 184 µm average pitch. Thus, they provide up to 9 f
measurements per trajectory.

In addition, the modules in the first two layers and rings, respectively, of TIB, TID, and
TOB as well as rings 1, 2, and 5 of the TECs carry a second micro-strip detector module which is
mounted back-to-back with a stereo angle of 100 mrad in order to provide a measurement of the
second co-ordinate (z in the barrel and r on the disks). The achieved single point resolution of this
measurement is 230 µm and 530 µm in TIB and TOB, respectively, and varies with pitch in TID
and TEC. This tracker layout ensures at least ⇡ 9 hits in the silicon strip tracker in the full range of
|h | < 2.4 with at least ⇡ 4 of them being two-dimensional measurements (figure 3.2). The ultimate
acceptance of the tracker ends at |h | ⇡ 2.5. The CMS silicon strip tracker has a total of 9.3 million
strips and 198 m2 of active silicon area.

Figure 3.3 shows the material budget of the CMS tracker in units of radiation length. It
increases from 0.4 X0 at h ⇡ 0 to about 1.8 X0 at |h | ⇡ 1.4, beyond which it falls to about 1 X0 at
|h | ⇡ 2.5.

3.1.3 Expected performance of the CMS tracker

For single muons of transverse momenta of 1, 10 and 100 GeV figure 3.4 shows the expected reso-
lution of transverse momentum, transverse impact parameter and longitudinal impact parameter, as
a function of pseudorapidity [17]. For high momentum tracks (100GeV) the transverse momentum
resolution is around 1�2% up to |h |⇡ 1.6, beyond which it degrades due to the reduced lever arm.
At a transverse momentum of 100GeV multiple scattering in the tracker material accounts for 20 to
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Figure 2.6: The schematic overview of the CMS strip tracking system. Figure from [79].

absorber and silicon strip sensor preshower detector is located between the endcaps and the inter-
action point, covering 1.65 < |η| < 2.6, in order to improve the discrimination between photons
and neutral pions.

The ECAL barrel region extends to |η| < 1.479, with a 360-fold (190-fold) granularity in the
azimuthal (polar) direction. The endcaps cover the range between 1.479 < |η| < 3.0. Since
the photon emission in scintillation and subsequent amplification are temperature-dependent, the
ECAL has to be maintained at a constant temperature within 0.05◦ C. In order to reconstruct the
signal pulse from the photodetectors, a new technique is used in Run 2, where the signal amplitude
templates from up to nine bunch crossings around the in-time signal are fitted to the observed
ten-sample signal, in order to determine the signal amplitude in the presence of both in-time and
out-of-time pileup [85]. The energy resolution of the ECAL has been measured in electron test
beams, arranging the crystals in a 3 × 3 matrix to minimise energy leakage, and found to be
described by

σE
E

=
a√
E
⊕ b

E
⊕ c (2.3)

with a = 2.8% being the stochastic term, b = 12% the noise term and c = 0.3% the irreducible
term from non-uniformities for the barrel [86].

Since there is about 1−2 radiation lengths of material in front of the ECAL and the crystals are
about one Moliere radius in the lateral dimension, the energy from a single electromagnetic shower
is spread over multiple crystals. In order to reconstruct the energy of incident particles, the energy
that is spread over multiple ECAL crystals is clustered by merging crystals into superclusters.
The ECAL has an excellent energy resolution, with photons from the decay of a 125-GeV Higgs
boson being reconstructed in the barrel with an energy resolution between 1-3% [87] and a similar
resolution for electrons [88].

2.2.4 Hadronic calorimeter

The purpose of the HCAL is to measure the energies of hadron jets and to have a hermetic
energy coverage of the detector, such that the missing transverse energy resulting from neutrinos
or hypothetical weakly interacting massive particles which may arise from BSM theories [89] could
be determined. The HCAL consists of a barrel and endcaps extending to |η| < 3.0, with a forward
calorimeter covering the range up to |η| < 5.0, as seen in fig. 2.8.

The HCAL barrel is situated between the ECAL and the superconducting coil in the re-
gion 1.77 m < R < 2.95 m. As this constrains the volume and thus the amount of material,
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Figure 1. Schematic view of the CMS electromagnetic calorimeter. Green: barrel supermodule; blue:
endcaps; red: preshower.

2 ECAL signal pulse reconstruction

The electrical signal coming from the photodetectors is amplified and shaped using a multigain
preamplifier, which uses three parallel amplification stages. The output is digitized by a 12 bit ADC
running at 40 MHz, which records a set of 10 consecutive samples that are used to reconstruct the
signal amplitude.

During LHC Run I a digital filtering algorithm was used, where the signal amplitude was
estimated as the linear combination of the N = 10 samples Si:

A =
NX

i=1
wi ⇥ Si (2.1)

where the weights, wi, were calculated by minimizing the variance of A [2]. This method
provides an optimal filtering of the electronics noise, which is estimated event-by-event by using the
average of the first three digitized pedestal-only samples. At the beginning of Run II, LHC started
to run with di�erent conditions. The number of inelastic collisions per bunch crossing (pileup)
has increased with respect to Run I, with an average of 40 collisions per bunch crossing during the
highest intensity collisions in 2015. Furthermore, the spacing between two consecutive colliding
bunches has been reduced from 50 to 25 ns, increasing the level of out-of-time pileup. These new
conditions required a di�erent approach for the ECAL pulse reconstruction. A new method, called
“multi-fit”, has been developed and used. This algorithm estimates the in-time signal amplitude
and up to 9 out-of-time amplitudes by minimization of a �2:

�2 =

NX

i=1

⇣PM
j=1 Ajpi j � Si

⌘2

�2
Si

(2.2)

where Aj are the amplitudes of up to M = 10 interactions. ~pj , the pulse templates of each bunch
crossing j, have the same shape but are shifted in time by multiples of 25 ns within a range of �5 and
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Figure 2.7: The CMS electromagnetic calorimeter, with the barrel crystals in green, the endcaps in blue
and the pre-shower in red. Figure from [79].
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Figure 5.1: Longitudinal view of the CMS detector showing the locations of the hadron barrel
(HB), endcap (HE), outer (HO) and forward (HF) calorimeters.

Table 5.1: Physical properties of the HB brass absorber, known as C26000/cartridge brass.

chemical composition 70% Cu, 30% Zn
density 8.53 g/cm3

radiation length 1.49 cm
interaction length 16.42 cm

(Dh ,Df) = (0.087,0.087). The wedges are themselves bolted together, in such a fashion as to
minimize the crack between the wedges to less than 2 mm.

The absorber (table 5.2) consists of a 40-mm-thick front steel plate, followed by eight 50.5-
mm-thick brass plates, six 56.5-mm-thick brass plates, and a 75-mm-thick steel back plate. The
total absorber thickness at 90� is 5.82 interaction lengths (lI). The HB effective thickness increases
with polar angle (q ) as 1/sinq , resulting in 10.6 lI at |h | = 1.3. The electromagnetic crystal
calorimeter [69] in front of HB adds about 1.1 lI of material.

Scintillator

The active medium uses the well known tile and wavelength shifting fibre concept to bring out the
light. The CMS hadron calorimeter consists of about 70 000 tiles. In order to limit the number of
individual elements to be handled, the tiles of a given f layer are grouped into a single mechanical
scintillator tray unit. Figure 5.5 shows a typical tray. The tray geometry has allowed for construc-
tion and testing of the scintillators remote from the experimental installation area. Furthermore,
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Figure 2.8: The cross-section of the CMS hadronic calorimeter, showing the barrel region (HB), the
endcap (HB), the outer calorimeter (HO) and the forward calorimeter (HF). Figure from [79].
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an outer hadron calorimeter is installed outside the solenoid in the barrel region, such that the
material amounts to around 11 hadronic radiation lengths. The HCAL barrel regions extends
to |η| < 1.3 and consists of an absorber made from brass sandwiched between steel plates with
embedded scintillator tiles. The scintillation light is read out by bringing the light to photodiodes
in readout towers using wavelength shifting fibres. Hybrid photodiodes are used due to their low
sensitivity to the magnetic field and their large dynamic range.

The HCAL endcaps cover the pseudorapidity range 1.3 < |η| < 3, thus they need to handle high
counting rates and to be radiation hard. They follow a similar construction as the barrel, with an
absorber/scintillator design with a segmentation granularity of ∆η×∆φ = 0.087× 0.087 for |η| <
1.6 and ∆η ×∆φ ' 0.17× 0.17 for the rest of the endcap [79].

The forward calorimeter (HF) located at ±11 m from the interaction point, covering the range
3.0 < |η| < 5.2, is situated in an extreme radiation environment of up to 100 Mrad/year, thus
radiation hardness has been the primary design criterion. It is based on the collection of Cherenkov
light collected in quartz fibres embedded in steel absorber plates, read out by photomultiplier tubes.
The HF is mostly sensitive to the electromagnetic component of showers [90]. The HF can also
be used for luminosity monitoring at CMS to infer the mean number of interactions per bunch
crossing and thus an accurate determination of the normalisation for physics analyses.

The energy resolution of the HCAL has been determined in test beams using single pions and
found to be approximately σ/E = 110%/

√
E⊕9% [91] with a typical readout noise of 200 MeV per

tower. The particle flow algorithm is further used to build a global representation of the event based
on the detector signals from other subsystems [92], as described in more detail in section 2.2.7.

2.2.5 The muon systems

Muon detection is of central importance to CMS, as muons can be detected relatively easily and
are produced in several interesting decays, such as H → ZZ∗ → 4µ. The muon systems at CMS
are used to identify muons over a wide angular range up to |η| < 2.4, to measure their charge
and momentum and for triggering purposes. The punch-through of hadronic particles to the muon
systems is negligible (' 0.2%) due to the large amount of material preceding the muon systems
(' 16 radiation lengths). The muon reconstruction efficiency can be factorised to the tracking
efficiency εtrack ' 0.99 [93], reconstruction and identification efficiency εrec+id ' 0.96 − 0.98,
isolation efficiency εiso and trigger efficiency εtrig [94]. The overall muon efficiency is around 95-
99% and the pT -resolution between 15% in the barrel and 25% in the endcap at the trigger level.
Since the muon systems cover a large area around the detector in the form of a barrel and endcaps,
they have to be inexpensive and robust.

In the barrel region, drift tubes are organised into four stations arranged in concentric cylinders
within the return yoke. The drift tubes use a mixture of Ar/CO2 gas and each chamber consists of
four layers arranged into a superlayer. This provides a timing resolution of a few nanoseconds and
allows the muon system readout to be assigned to a bunch crossing [79]. The spatial resolution
of the drift chambers has been measured in test beams to be around 300 µm, determined by the
dispersion of the drift time and distortions of the drift caused by magnetic field [95]. The bunch
crossing identification efficiency, which is important for triggering, is better than 90%, driven by
the timing resolution and muons producing electromagnetic showers [79].

In the endcaps, the muon system consists of cathode strip chambers (CSC), which have the
advantage that they can operate at the high rates and at the non-uniform magnetic field present
in the forward region. The spatial resolution of a hit is around ∼ 80 µm in the combined six-plane
CSC chamber and the bunch tagging efficiency is around 98-99% [79].

In order to complement the time resolution of the drift tubes and the CSC, a trigger system
based on resistive plate chambers (RPC) exists in the barrel and endcaps. The RPC operates
on the principle of an avalanche generated in a gas gap between two resin plates, such that the
bunch crossing assignment is possible with rates up to 1 kHz/cm2. The timing resolution of a few
nanoseconds provided by the RPC improves the trigger efficiency [79].

Due to manufacturing tolerances, the intense magnetic field and thermal stress can cause the
geometry of the muon system to change at the level of up to a few centimetres, which is monitored
using an optical alignment system [96].
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2.2.6 Trigger, data acquisition and computing

The data from the 40 MHz LHC collisions needs to be reduced by a factor of 106 for storage and
analysis. This means that highly efficient trigger logic needs to be applied in order to select the
most interesting physics events containing high-energy particles. The CMS experiment employs a
two-level trigger system, where the Level-1 (L1) trigger is implemented in custom programmable
electronics and operates on the level of the calorimeters and the muon systems, whereas the high-
level trigger (HLT) has access to the complete event readout and is implemented on a conventional
CPU farm.

The L1 trigger is composed of the trigger primitive generators, which operate on the level of
calorimeter trigger towers, track segments and hit patterns on muon chambers. This information
is combined using regional triggers to determine trigger objects in limited spatial regions of the
detector. These objects are then compared by the global calorimeter and muon triggers, which
determine if sufficient good-quality muon or calorimeter objects are present to accept the event.
The processing is pipelined such that the deadtime is minimised [79].

The global calorimeter trigger works on the basis of calorimeter jets, total transverse energy,
missing transverse energy and HT , the scalar transverse energy sum of calorimeter jets. Further-
more, it provides isolated and non-isolated e/γ candidates. The muon system trigger works on
the basis of reconstructing track candidates from hits in the drift tubes, the CSCs and the RPCs.
In the global muon trigger, the muon candidates are identified by pT , charge, η, φ and quality
parameters, as well as isolation information from the global calorimeter trigger primitive [79].

In case the event passes the L1 trigger, the full detector is read out. This produces data with
a maximal output rate of 100 kHz, further fed into the HLT, which reduces the recorded events
to a rate of about 1000 Hz. The data are divided to luminosity sections of 220 LHC orbits (93 s),
during which trigger thresholds and trigger prescale factors, which sample the trigger acceptance,
are not changed. The total amount of zero-suppressed data recorded for a bunch crossing is on the
order of 1 MB [79].

If an event is accepted by the HLT, it is transferred to the CMS offline computing infrastructure,
which consists of computer farms linked with high-speed networks, with the bulk of the computing
resource located in computing centres around the globe. The computing resources are divided
into Tiers according to function and expected reliability. The Tier 0 centre at CERN performs
the immediate reconstruction of the data and transfers it to several Tier 1 centres for storage,
where late-stage reconstruction with improved calibrations can take place. Data analysis and MC
simulation happens primarily at Tier 2 centres, which are associated to Tier 1 sites and divide the
resources between the CMS collaboration and the local physics community. A typical Tier 2 site
hosts 1-2 PB of data and O(5000) CPUs [79].

2.2.7 Particle flow reconstruction

In case a collision event passes the HLT, it is recorded as signals from different subsystems of the
detector, such as energies deposited in the calorimeter cells and particle hits in the muon system.
At CMS, the reconstruction algorithm creates physics objects such as jets, leptons and missing
transverse energy by linking the signals across different sub-detectors using the particle flow (PF)
algorithm to arrive at a global event description. This algorithm relies on high-granularity sub-
detectors, which allow signals from various subsystems to be correlated.

The PF algorithm associates charged tracks from the silicon tracker to calorimeter clusters
based on geometrical proximity and proceeds by “subtracting” objects from the event in order
of decreasing reconstruction accuracy, starting from muons, followed by electrons and isolated
photons, such that neutral hadrons and non-isolated photons are built from calorimeter clusters
that are not associated to any tracks. The PF algorithm improves the response and resolution
of the detector, parametrised by the jet response R = pT /pT,ref , the ratio between the transverse
momentum of a reconstructed jet and the transverse momentum of the generator-level jet, and
the jet resolution, defined as the Gaussian spread of the response distribution. The mean jet
response is corrected from around 60% at pT ' 100 GeV for calorimeter jets to around R = 95%
for particle flow jets, additionally reducing the momentum dependence. The jet energy resolution
is similarly improved, corrected from 15% for calorimeter jets to about 10% for particle-flow jets
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with pT ' 100 GeV [92]. This allows to achieve an uncertainty in the jet energy scale of < 3%
over the region covering most analyses (pT < 30 GeV, |η| < 5.0) [97].

2.3 Summary
Overall, the LHC is uniquely suited to studying the Higgs boson and thus the mechanism of
electroweak symmetry breaking in high-energy processes. The accelerator has been operating close
to or above design capabilities with around 35− 40 fb−1 of integrated luminosity in proton-proton
collisions delivered per year at the centre-of-mass energy of 13 TeV. The CMS experiment has
excellent characteristics for detecting and studying the SM particles produced in the tt̄H process
and in the subsequent decay, thus making it possible to experimentally clarify the nature of the
recently-discovered Higgs boson by determining the coupling of the scalar field to fermions. In the
next chapter, we discuss how the tracking and vertexing capabilities of the CMS detector can be
used to distinguish between jets arising from the hadronisation of bottom quarks and light quarks.
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3 Identification of jets from bottom
quarks

Accurately identifying jets from bottom quarks is a crucial part of the physics program involving
top quarks, which decay before hadronisation to bottom quarks and W-bosons, and Higgs bosons,
which decay primarily to bottom quarks. Since we cannot directly access the quantum numbers
of a parton that gave rise to a jet, we instead measure a number of jet-related observables such
as hadron lifetime and multiplicity of charged tracks that are correlated to the flavour of the
underlying parton and thus allow us to obtain a statistical indication of the flavour.

The hadronisation properties of the bottom quark and the relatively large lifetime and possible
semileptonic decays of b hadrons allow us to experimentally identify the jets that arise from bottom
quarks through the technique of b tagging, or more generally identify the flavour of the jet through
flavour tagging. A b hadron has a relatively long lifetime of 10−12 seconds and a large Lorentz boost
factor, resulting in jet production with a secondary vertex that is displaced by several millimetres
with respect to the primary interaction point.

The idea of b tagging is to use a combination of discriminating variables to distinguish between
jets from bottom, charm and light quarks on a statistical basis by assigning a discriminator value
for jets that is on average higher for jets arising from bottom quarks than for the ones arising
from light quarks. Jets that are associated to discriminator values above certain pre-determined
thresholds are taken to be tagged as a certain flavour. This technique based on the presence of a
secondary vertex was used extensively at Tevatron in the analyses that led to the discovery of the
top quark [98, 27].

In this chapter, we give an overview of b tagging at CMS, with a specific focus on the devel-
opment and re-optimisation of the Combined Multivariate (cMVAv2) b tagging algorithm for Run
2 at the LHC. We start with an overview of the discriminating variables important for b tagging,
followed by a description of the existing b tagging algorithms at CMS. We then introduce the cM-
VAv2 algorithm and describe the optimisation and performance of the retrained version for Run 2
analyses. We conclude with an outlook on b tagging.

3.1 Discriminating variables
The most important discriminating variables for flavour tagging are the kinematic properties of jets
and the associated leptons, as well as the existence and properties of tracks from charged particles
and vertices associated to either the primary hard interaction in the proton-proton collision or the
secondary vertices from the decay of b or c hadrons. B hadrons in the ground state, where the
bottom quark is accompanied by a light quark (down, up, strange), decay through weak interaction
and the decay modes are well described by the decay of the bottom quark in b → cW∗, followed
by a leptonic or hadronic decay of the off-shell W-boson. The secondary vertex associated with
the b hadron decay, which is displaced with respect to the primary vertex due to the long life time
of b hadrons, is a salient feature of b hadron decays that the b tagging algorithms seek to exploit
through accurate track and vertex reconstruction. Therefore, the selection of good tracks and the
reconstruction of secondary vertices is necessary for efficient b tagging.

3.1.1 Track selection

The tracks reconstructed by the inner tracking detector and associated to jets are used for b tagging
only in case they are of sufficient quality, i.e. they pass the track selection, detailed below. They
must have a transverse momentum of at least 1 GeV, a high-quality track fit∗ and at least eight hits
∗Normalised χ2 quality parameter for the track fit to hits below 5.
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Figure 3.1: An illustration of the decay of a b quark, along with the definition of the secondary vertex
and the impact parameter.

in the tracker with at least two in the inner pixel detector. Furthermore, the impact parameter (IP),
defined as the distance of closest approach between the primary vertex and the track trajectory,
shown on fig. 3.1, is required to be less than 0.2 (17) cm in the transverse (longitudinal) direction.
This ensures that the tracks are sufficiently close to the primary vertex and thus reduces the
contribution from pileup. The distance of closest approach between the jet axis and the track must
be smaller than 0.07 cm, and the decay length, defined as the distance between the primary vertex
and the point of closest approach between the track and the jet must be less than 5 cm. Jets with
pT ' 100 GeV are estimated to have around seven associated tracks, with the track multiplicity
rising to about ten at pT ' 200 GeV. [99].

3.1.2 Vertex reconstruction

Tracks passing the pileup-suppressing selection are used for vertex reconstruction in the adaptive
vertex reconstruction (AVR) algorithm [100]. Vertices reconstructed by AVR must pass further
selection criteria designed to suppress vertices that are unlikely to originate from b hadron decay.
These selection criteria require a vertex to have a sufficient number of tracks, a high-significance
flight distance, a mass of less than 6.5 GeV and incompatible with the K0

S hadron mass. Upon
fulfilling these criteria, a jet is assigned to contain an AVR vertex [99].

An alternative to AVR, where tracks are required to be associated to jets and therefore vertex
reconstruction is seeded by jets, is the inclusive vertex finder (IVF) algorithm [101]. As the name
implies, the IVF algorithm starts with the set of all tracks in the event that pass looser selection
criteria than those used for AVR. Vertices are reconstructed by fitting all tracks simultaneously
using an adaptive fitting algorithm looking for clusters of tracks. A further arbitration step assigns
tracks to either the primary or secondary vertex based on compatibility and pixel hits, or removes
secondary vertices of low quality. The IVF algorithm reconstructs about 10% (15%) more often
the vertices from bottom (charm) hadrons, but also increases the fraction of vertices reconstructed
for light jets by about 8%. The overlap between the two algorithms is about 60%, meaning that
the two fitters provide some independent information on the event [99].

3.2 Multivariate b taggers

Using machine learning, signals from various regions of the detector can be combined effectively to
develop a discriminator between jet that arise from the hadronisation of bottom quarks (b jets) and
from uds quarks or gluons (light jets). Such techniques are especially suited to exploit sources of
information that are partially correlated, such as the AVR and IVF vertices. The cMVAv2 b tagging
algorithm combines the output of different low and high level b tagging algorithms, developed
independently and using partially correlated variables, into a single high level discriminator. Before
we can describe the cMVAv2 in detail, we must therefore discuss the different b tagging algorithms
used at CMS.
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Figure 3.2: The jet probability b taggers in dileptonic (eµ) tt̄+jets events. Figures from [99].
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Figure 3.3: The discriminator distributions of the soft lepton b taggers in dileptonic (eµ) tt̄+jets events.
The large fraction of jets with a soft muon discriminator value around zero arises from cases where no
muon was associated to the jet. Figures from [99].

Jet probability taggers

The CMS Jet Probability (JP) tagger was developed during Run 1 of the LHC and is a simple
multivariate likelihood discriminator based on track properties. In JP, the likelihood for a jet to
originate from the primary vertex, as opposed to a secondary vertex, is computed by multiplying
the per-track likelihoods, based on the track impact parameter and detector resolution. In a version
of the JP tagger, the four tracks that have the highest IP significance (IP/σIP) are given a higher
weight such that the new tagger, denoted Jet B-Probability (JBP) is more efficient in selecting b
jets from light jets [102]. The discriminator distributions for the JP and JBP b taggers are shown
in fig. 3.2.

Soft lepton taggers

The semileptonic decays of the b hadron to muons through b → µ−ν̄µc, which happen with a
branching fraction of about ' 11% [103], make it possible to exploit the presence of a reconstructed
muon in a jet for b tagging. The Soft Muon (SM) algorithm at CMS relies on the presence of a
muon in the jet constituents, but not on the presence of a secondary vertex. Similarly, the decay of
a b hadron to an electron is exploited through the Soft Electron (SE) tagger [99]. The discriminator
distributions are shown in fig. 3.3.
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Figure 3.4: The discriminator distributions of the CSVv2 b taggers in dileptonic (eµ) tt̄+jets events.
Figures from [99].

The CSVv2 b tagger

The Combined Secondary Vertex algorithm V2 (CSVv2) is based on the original CSV implemen-
tation introduced in Run 1 [102] and uses machine learning to combine track and secondary vertex
information such as vertex mass or flight distance. Based on the presence and quality of the
secondary vertex, the CSVv2 is optimised independently in several categories:

• presence of a good secondary vertex, in which case the flight distance and other vertex related
variables are defined

• the pseudo-vertex category with two good tracks but no vertex fit, in which case the track
parameters are used

• a no vertex category that uses information only from displaced tracks.

The final CSVv2 discriminant is a likelihood combination of binary classifiers based on independent
artificial neural networks with a single hidden layer in each of the three categories. The CSVv2
algorithm has been deployed on both the AVR vertices as CSVv2 (AVR) and the IVF vertices,
denoted CSVv2 (IVF). The CSVv2 (IVF) has an efficiency of about 66% for b jets at a mistag rate
for light jets (udsg-associated) of about 1% based on tt̄ simulation at the CSVv2 medium working
point [99]. The CSVv2 b discriminator is the primary b tagging algorithm used in the end of Run
1 and the beginning of Run 2 at CMS. The discriminator distributions are shown in fig. 3.4.

3.3 The combined multivariate b tagger
For Run 2, we have developed an improved b tagger algorithm for CMS that combines the aforemen-
tioned individual b taggers, relying on various sources of information, into a single discriminator
using boosted decision trees (BDTs) via the scikit-learn package [104]. This combined discrimi-
nator, denoted cMVAv2, can make use of both the AVR and IVF vertex reconstruction algorithms,
the track-based jet probability taggers and the presence or lack of soft leptons and secondary vertex
information simultaneously. The tagger is optimised on tt̄+jets simulation, with cross-validation
on a multi-jet simulation sample. At a similar b-jet efficiency to the CSVv2 medium working point
(εb ' 70%), the cMVAv2 b tagger algorithm reduces the mistag rate for light jets from 1% to
about 0.5%, as seen in fig. 3.5.

3.3.1 Implementation

The cMVAv2 b discriminator is optimised as a binary classifier in a supervised training mode on
jets derived from tt̄+jets simulation. Simulated jets are assigned a flavour using ghost clustering
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Figure 3.5: The performance of the CMS b taggers in Run 2. On (a), the efficiency to correctly tag
b jets is shown with respect to the misclassification probability for light jets (udsg-associated, solid line)
and charm jets (dashed line), based on tt̄+jets simulation. The medium working point corresponds to a
light jet efficiency of εl = 1% and we see that the cMVAv2 b discriminator has εb ' 72%, compared to the
CSVv2 b-efficiency εb ' 66%. On (b), we show the comparison of the cMVAv2 discriminator between data
and simulation, where data-driven scale factors are applied. Figures from [99].

by re-clustering the stable jet constituents alongside generator-level hadrons. In order to prevent
the generator-level hadrons from changing the momentum of the jet, the modulus of the hadron
four momentum is set to a small number. Based on the clustered hadrons, a jet is assigned to
be a b jet, a c jet or a light jet in decreasing priority [105]. We use particle flow jets with pT >
20 GeV, |η| < 2.5 and enhance the selected jet sample at high pT and |η| by limiting the amount
of jets in the binned 2D distribution of pT ∈ [20, 620], |η| ∈ [0, 2.5] with 100 bins per dimension
to Nmax = 10000 per bin. This sub-sampling technique effectively gives higher weight to the
tails of the momentum and pseudorapidity distribution and reduces the simulated data to an
amount that fits in the random access memory of a conventional personal computer. We use
an inclusive tt̄+jets sample generated with POWHEG and Pythia 8 and an independent multi-jet
sample generated with Pythia 8 for cross-validation. We list the details of the simulated samples
in table 3.1.

MC sample events b jets c jets light jets
tt̄+jets 28M 9.5M 3.7M 11M

multi-jet (QCD) 29M 1.2M 2.3M 17M

Table 3.1: The simulated samples used for optimising and validating the cMVAv2 b tagger. The jets
are filtered with a pT , |η|-dependent selection that restricts the amount of jets in the high-statistics,
low pT and |η| part of the distribution.

Kinematic reweighting

Since the kinematic distributions in pT and |η| of bottom, charm and light jets are different due
to their different production modes, we need to ensure that the b tagger algorithm distinguishes
between jets of different flavour based on quantities that are mostly independent of kinematics,
such that features beyond jet kinematics are used to discriminate between jets of different flavour.
In addition to the subsampling technique mentioned above, we reweight the jet sample used in the
training of the binary classifier such that the distributions are roughly uniform in pT and |η| using
a weight w(pT , |η|,flavor) derived on simulation, as shown in fig. 3.6. This reweighting does not
have a significant effect on the overall final b tagging performance of the discriminator, however,
it helps to make the optimisation less sample-dependent.
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Figure 3.6: Comparison of jet kinematics by associated MC flavour before and after the kinematic
reweighting. On (a), we compare the jet pT distributions for bottom, charm and light jets. We see that
b jets have a momentum distribution that is narrower and peaks around 100 GeV. On (b), we show the
jet pT distribution before and after applying the kinematic reweighting w(pT , |η|, flavor). We see that the
reweighted distribution is roughly uniform, with small differences caused by simulation statistics in the
derivation of the weight. These distributions are derived using tt̄+jets simulation.

Input variables

We have used the b tagger algorithms described earlier as inputs to the cMVAv2 algorithm. In
particular, we use the following six b discriminators: CSV (AVR), CSV (IVF), JP, JBP, SoftMuon
and SoftElectron. We have studied the correlation between CSV (AVR) and CSV (IVF), as shown
in fig. 3.7. Although the linear correlation coefficient is around C ' 0.9 for all flavours, we
see a non-negligible contribution from jets which have different vertices from the two vertexing
algorithms and thus different CSV discriminator values. Therefore, we expect that a combined
discriminator will outperform either of the two. Furthermore, the information provided by the JP
and JBP discriminators can complement the CSV in cases no vertices could be found. To verify
whether adding the additional input b discriminators provides useful information for b tagging, we
optimise a set of BDT classifiers iteratively by including the six input discriminators one by one.

3.3.2 Optimisation and validation

The BDT is optimised using gradient boosting [106] to distinguish between two classes: b flavoured
and non-b (charm, udsg) flavoured jets, minimising the deviance between the true value yi = 1 for
b jets (yi = 0 for non-b jets) and the predicted value f(xi), defined as

∑
i ln [1 + e−yif(xi)], based on

the inputs xi. We use 200 decision trees with a maximum depth of three, such that the contribution
of each successive tree is reduced by a factor of 0.1, requiring at least 100 entries per split and
per leaf in order not to be sensitive to statistical fluctuations in simulation. This specific choice of
model parameters (hyper-parameters) guarantees a convergence in approximately 1.5 hours with
a single CPU on the given dataset. We have carried out an optimisation of the parameters using
a grid scan, however, we did not find statistically significant improvements. The optimisation and
validation of the BDTs is carried out on statistically independent subsets of the tt̄ +jets simulation
sample and the statistical over-training is negligible after 200 boosting iterations, as can be seen
in fig. 3.8. This is due to the large amount (O(107) jets) of available simulation statistics, combined
with the input variable space being relatively low-dimensional (N = 6). We have further validated
the training using k-fold cross-validation, where the training is repeated k times on sub-samples of
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Figure 3.7: The correlation between the CSV b discriminator value using AVR and IVF vertices. Despite
the high linear correlation coefficient C, we see a significant fraction f of jets with non-equal values of the
two discriminators, visible as the non-diagonal elements in the 2D distribution. These distributions are
derived using the tt̄+jets simulation.

the data, and found the statistical uncertainty between sub-samples to be negligible.

We analyse the performance of the optimised b discriminator in terms of the efficiency for
selecting b jets (signal) with respect to charm and light jets (background). On fig. 3.9, we show
the receiver operating characteristic (ROC) area-under-curve (AUC) performance metric, which
is lower for better discrimination, of the various stages of cMVAv2 optimisation. In general, we
see that the BDTs are able to take advantage of all the input taggers, with the inclusion of each
input improving the overall discrimination power. The optimisation is carried out on the tt̄ +jets
simulation sample and we cross-checked the results on the multi-jet simulation, where we see an
equivalent improvement.

The performance of the optimised cMVAv2 b discriminator is validated by comparing the ef-
ficiency of selecting light jets or charm jets as b tagged at a fixed b tagging efficiency for b jets
as a function of jet kinematics. We see that the cMVAv2 b discriminator has somewhat more
stable performance with respect to jet kinematics than the CSV b discriminators and an improved
discrimination power in the forward region |η| > 1.5. The cMVAv2 b discriminator uniformly out-
performs the CSV algorithm over the studied jet momentum range 20 < pT < 320, 0 < |η| < 2.5.
Overall, the cMVAv2 algorithm has a mistagging efficiency lower by at least 20% (10%) for light
jets (charm jets) over the full range, as shown in fig. 3.10.

The final validation and calibration of the cMVAv2 algorithm was carried out using the tag
counting method, where the b tagging efficiency and the corresponding scale factor between data
and simulation is determined from tt̄+jets dilepton events relying on the t→ bW decay and thus
the presence of two true b jets. The correction for the light jet mistagging efficiency is extracted
from multi-jet events based on the discriminator distribution using jets with only negative impact
parameters and thus enriched in light jets. The cMVAv2 discriminator corrections have indepen-
dently been determined with the differential reweighting method described further in section 5.2.3
and the results are compatible with scale factors derived from tag counting [99].

The evaluation of the cMVAv2 b tagger has been implemented in the CMS software environment
(CMSSW) independently of the BDT optimisation. As such, the cMVAv2 was one of the two default
b discriminators of CMS during the 2016 data-taking period. In order to interface the decision
trees optimised using scikit-learn to the CMS online software, we have developed a stand-alone
library [107] to convert between BDT implementations from several commonly used open source
machine learning toolkits, namely scikit-learn [104], xgboost [108] and TMVA [109]. The set of
decision trees was then exported to the CMS software, such that the cMVAv2 b discriminator could
be deployed through standard reconstruction software by simply evaluating the decision trees.
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Figure 3.8: Validation of the cMVAv2 against over-training by comparing the loss function between
the training set and the statistically independent validation set as a function of the boosting iteration
on (a). We see good convergence after N = 200 boosting steps, with a negligible difference between the
loss functions. Furthermore, on (b) we compare the discriminator distributions on the training and test
sets, with the ratio being compatible with unity within statistical uncertainties.
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Figure 3.9: The performance characteristic ROC AUC as a function of the number of variables included
in the BDT training, where lower values correspond to better discrimination. We use the ROC AUC
as opposed to an efficiency measure at a specific b discriminator working point value, as this metric
describes the performance over the full efficiency range inclusively. The baseline CSV b discriminators
with IVF and AVR vertices are compared to the cMVAv2, which is optimised by successively including
the IVF, SoftLepton, JP, AVR, JBP taggers with partial training statistics. We see that the inclusion of
the Soft Muon and Soft Electron b taggers provides a significant improvement to the b jet vs. light jet
discrimination (a), as well as b jet vs. charm jet (b). The best discrimination against light jets is reached by
using the full simulation sample. We have performed the optimisation on the tt̄ +jets simulation sample,
and cross-checked the results on the multi-jet sample. Statistical uncertainties on the performance are
verified using cross-validation and are negligible. We observe a slightly reduced discrimination for the full
training sample compared to the limited sample in terms of charm jet rejection. This can be understood as
an absolute shift in the performance characteristic caused by selecting an equal number (50 000) of light,
charm and b jets for the limited-statistics training, whereas in the case of full statistics, the b : c : l ratios
are determined from simulation. Thus, in the limited-statistics case, the cMVAv2 is slightly more optimal
against charm jets than in the full statistics case. This is not expected to change the overall conclusions
of the optimisation.
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Figure 3.10: The pT and |η|-dependent mistagging efficiency εlight, εc at a fixed b-jet efficiency εb
in tt̄ +jets simulation. We compare the cMVAv2 discriminator to the CSV IVF and AVR discriminators in
terms of the light jet and charm jet efficiency (mistagging) at the working point with 50% b jet efficiency.
We see that the cMVAv2 discriminator performs well over a wide pT and |η| range, with εlight in the forward
region being around 40% lower than for the CSV algorithm. While the efficiency of the discriminator overall
still depends on jet kinematics due to the inherent correlation between the kinematics and the underlying
variables sensitive to b tagging, the dependence is somewhat lower for cMVAv2 than for CSV.
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3.4 Summary and outlook
Identifying jets that arise from the hadronisation of bottom quarks is crucial for analyses involving
top quarks or Higgs bosons in the final state, such as the search for tt̄H(→ bb̄). We have developed
an improved b tagging algorithm, the cMVAv2, for Run 2 which combines the discrimination power
of several independently optimised b discriminators that use different vertexing algorithms and
information from different subsystems of the detector. The cMVAv2 b discriminator outperforms
the present state of the art at CMS by around 10-20% in terms of reduced rate of erroneously
tagging jets from light or charm quarks. This method was deployed during the 2016 data-taking
period as one of the standard b tagging algorithms at CMS. This algorithm has been used in several
CMS analyses, such as in the analysis that reported evidence for the decay of the Higgs boson to
bottom quark-antiquark pairs [110]. We demonstrated that using state of the art machine learning
methods developed outside the experimental physics community is a viable way to make progress
on object classification and identification tasks in high energy physics. However, extensive reliance
on simulation in these b tagging algorithms means that a careful evaluation of the systematic
uncertainties is necessary. Such multivariate b discriminators need to be calibrated with respect to
data. With the increasingly large data samples available in Run 2, these calibrations can be carried
out differentially with respect to jet kinematics, thereby increasing their accuracy. Advances in
algorithm development have allowed the techniques of b tagging to be extended, such that it has
recently become possible to separate charm jets from b jets and carry out b tagging in the regime
with boosted jets [111].
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In the search for tt̄H(→ bb̄), the irreducible tt̄+bb̄ background presents an experimental challenge,
as no single observable clearly distinguishes between the signal and background processes. There-
fore, the information in multiple observables needs to be combined using multivariate analysis
techniques (MVA), where the joint distribution of the observables is used to construct a classifier
between the signal and background process hypotheses.

In the following chapter, we describe the implementation of a multivariate technique that is
based on the direct computation of theory-motivated ab initio likelihoods for the observations
using the underlying matrix element for the hard scattering process. The matrix element method
(MEM) thus allows to connect the observable quantities at the detector level, such as the momenta
of jets and charged leptons, to the dynamics of the scattering process. We show that the MEM
provides a suitable framework for interpreting data from multi-parton final states and can be used
to construct a discriminator between irreducible processes that is both theoretically motivated and
practical for analysis.

We motivate the MEM approach from a statistical point of view and describe the implemen-
tation of the MEM likelihood. Furthermore, we discuss in detail the improvements made to the
MEM as applied to the tt̄H(→ bb̄) analysis in Run 2, where we have extended the method to
incorporate effects from mis-reconstructed jets and additional QCD radiation. This considerably
extended the phase space which can be analysed using the MEM. Finally, we study the expected
performance of the MEM in simulation and propose an analysis strategy for the tt̄H(→ bb̄) search
based on the method.

4.1 Hypothesis testing

We can formulate the problem of deciding whether an event arose from a signal or background pro-
cess as performing a hypothesis test. We distinguish between the background hypothesis (H0) and
the signal hypothesis (H1) on an event-by-event basis based on the event-level observables y, the
momenta of the final state particles. We classify an event as signal by rejecting the hypothesis H0

in favour of H1. In the framework of statistical hypothesis testing, we define the test statistic λ(y)
as a scalar function of the observables, such that the sampling distributions under the hypotheses
can be estimated using MC simulation. Based on the observed value of λ(y) for an event, we
decide if it should be interpreted as signal or background. In practice, we use the continuous value
of the test statistic in a template fit, as described further in section 5.3.9. The choice of the test
statistic is determined by the desired size of the test α, i.e. the probability of falsely rejecting H0

if it is true (Type I error), and the power of the test 1− β, where β is the probability of accepting
the null hypothesis in case it is false (Type II error).

In the case of two simple hypotheses that do not depend on additional parameters, the Neyman-
Pearson lemma [112] states that the likelihood ratio

λ(y) =
L(y|H1)

L(y|H0)
(4.1)

is the most powerful test statistic, meaning that the probability of Type II errors is minimised.
Therefore, the task of computing the likelihood L(y|Hi) of an observation characterised by y under
a given hypothesis is central to a simple hypothesis test. Naively, this could be achieved using MC
simulation to estimate the multidimensional probability density f(y|Hi) and using it as the likeli-
hood, however, this quickly becomes intractable as the dimensionality of y increases. Fortunately,
the underlying theory of particle physics provides a way to compute probability densities in the
form of differential cross sections for processes involving scattering and interactions. In the next
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section, we discuss how we can construct a useful likelihood function L(y|H) using the theoretical
framework provided by QFT.

4.2 Description of MEM
The use of MVA techniques has a long history in HEP data analysis, starting with multivariate
discriminators in the analysis of bubble chamber data [113] and investigations of artificial neural
networks (ANN) for tracking [114]. Classical likelihood methods are based on likelihood ratios
constructed from 1-dimensional distributions estimated from simulation, which do not properly
account for the correlations between variables, or machine learning (ML) techniques such as BDTs
or ANNs, as introduced for b tagging in chapter 3. An advantage of the ML based methods is that
they can faithfully approximate complex functions and take into account correlations between the
input variables, however, they suffer from several important drawbacks:

• in HEP, such ML methods are typically optimised completely on simulation, making the pre-
diction susceptible to over-fitting∗ in case the simulation does not represent data accurately,

• they require extensive MC simulation to be optimised effectively, such that O(108) MC events
are routinely simulated with full detector simulation to have sufficient statistics in high jet
multiplicity categories,

• the predictions are often opaque, combining dozens of variables in complex ways, such that it
is not generally possible to understand why an event was classified as signal or background.

Therefore, we seek an alternative that would be less susceptible to the aforementioned issues. The
MEM belongs to a class of MVA methods in which we directly compute the per-event probability
density that depends on model parameters θ from first principles via

Pθ(y) =
1

σ

dσθ(y)

dy
(4.2)

and use it in hypothesis testing as component of the test statistic. Through the differential cross
section dσθ, the MEM explicitly depends on y = (p̃i∈jets, p̃i∈leptons, . . . ), the vector containing
the detector-level 4-momenta of the reconstructed particles, in particular, jets and leptons. The
differential cross-section of eq. (4.3) depends on the squared matrix element |Mθ|2 that we use to
take into account the dynamics of the relevant underlying processes. The kinematics of the 2→ n
scattering process are encoded in the n-body phase space element (eq. (4.4)), where the delta
function enforces the conservation of momentum between the initial and final state particles.

dσθ =
|Mθ(q1, q2; p1, . . . , pn)|2

4
√
q1 · q2 −m2

1m
2
2

× dΦn(q1 + q2; p1, . . . , pn) (4.3)

dΦn = (2π)4δ4(q1 + q2 −
n∑
i=1

pi)

n∏
i=1

d3pi
(2π)32Ei

(4.4)

We have to consider several additional effects to be able to compute the MEM probability
Pθ(y):

• we cannot directly observe the momenta of the initial state partons q1 and q2 in a proton-
proton collision,

• we do not measure the momenta of the neutrinos or jets that do not pass a transverse
momentum threshold,

• the detector has a finite energy resolution,

• we do not know which of the observed jets are matched to which final state partons,
∗to be distinguished from over-training in the sense of being sensitive to statistical fluctuations on a simulation

sample
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• the presence of non-zero final transverse momentum caused by large-angle initial state radi-
ation, spoiling the momentum balance in eq. (4.4).

To address the first issue, we need to use parton density functions g(x1,2) to weight the differ-
ential cross-section, integrating over the momentum fractions x1,2 = Eq1,2/Ebeam. In order to take
into account detector effects, we integrate over unmeasured or poorly measured quantities using
a transfer function W (y,p). The transfer function relates final state parton-level quantities p to
measurable quantities on the detector level y and encodes our knowledge about detector resolution
and reconstruction efficiencies.

Jet-to-parton matching is addressed by summing over the Na possible combinations of jet-to-
parton matching, which depends on assumptions about the process and the number of observed
final state particles and is encoded in the exact form of the transfer function W (y,p), further
described in section 4.3.1.

The modelling of the non-zero transverse recoil ρT = −∑n
i=1 pi,T is treated empirically using

a transfer function R(ρ̃T ,ρT ) determined on simulation that relates the parton-level transverse
momentum of the system ρT to the observed recoil ρ̃T .

The evaluation of the scattering amplitude |Mθ(p)|2 requires full knowledge of the initial and
final state momenta p, as well as the parameters of the model, summarised in θ. In particular,
the parameters of the model consist of the hypothesis H ∈ {tt̄H, tt̄ + bb̄} about the underlying
process and the assumptions about which of the partons formed reconstructed jets C, such that θ =
(. . . ,H, C). In the case of tt̄H with the top quark pair decaying semileptonically (SL) as tt̄H →
(`−ν̄`b) (qq′b̄) (bb̄), we may consider the fully reconstructed category where all six of the final
state partons are reconstructed as jets, denoted as 2W 2H2t, the case where one of the quarks
from the hadronic decay W → qq′ is out of acceptance, denoted as 1W 2H2t and so forth, such
that CSL ∈ {2W 2H2t, 1W 2H2t, . . . }. The number of unknown quantities to be integrated over
depends on the reconstruction category C, as described in detail in the next section. Thus, the
per-event probability density takes the form

P (y,θ) =

Na∑
k=1

∫
dx1dx2

2x1x2s

∫ n∏
i=1

d3pi
(2π)32Ei

(4.5)

× δ4(q1 + q2 −
n∑
i=1

pi) (4.6)

× g(x1)g(x2) (4.7)
×R(ρ̃T ,ρT ) (4.8)

× |Mθ(q1, q2, p1, . . . , pn)|2 (4.9)
×W (y,p). (4.10)

After having been first proposed for reconstructing events with missing momentum [115], the
MEM has been used in Tevatron for Higgs boson searches [116, 117], in a precise measurement
of the top quark mass [118] and in the analysis that saw evidence for single top quarks [119] at
D∅. After first phenomenological studies showed that MEM could be used effectively for tt̄H in a
multi-parton final state [120], it has been used in searches for tt̄H(→ bb̄) by the CMS and ATLAS
experiments at the LHC [121, 122]. The MEM approach is closely related to the matrix element
likelihood approach (MELA) [123] that has been extensively used in H → ZZ → 4` searches
and JP measurements, however, in MELA, unreconstructed particles and transfer functions are
not considered and the matrix elements generally have simple analytical forms. In the following
sections, we discuss in detail the implementation and improvements that were made to the MEM
in the search for tt̄H(→ bb̄) during Run 2.

4.3 Implementation
In the case of the semileptonic or dileptonic tt̄H final state, the observables y consist of the
energies (or equivalently transverse momenta) and the directions of the jets, the momenta of the
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charged leptons and the measured recoil of the system ρ̃T . As eq. (4.5) needs to be integrated
numerically, we first need to define the phase space volume element explicitly in terms of variables
that are convenient and suitable for integration, namely energies, solid angles and combinations
of invariant masses. The Jacobian transformations can be carried out analytically for all particles
and are of the form shown in Equations (4.11) to (4.15) for the H→ bb̄ decay, the unassociated bb̄
from tt̄ + bb̄ and the top decay with qq′ corresponding to the quarks or leptons from the W boson
decay:

H→ bb̄ :

2∏
i=1

d3pi
(2π)32Ei

=

(
1

16π3

)2

× pbpb̄
8|Eb − pb · eb̄βb̄ |

× (4.11)

× dEb dm2
bb̄ dΩb dΩb̄ (4.12)

bb̄ :

2∏
i=1

d3pi
(2π)32Ei

=

(
1

16π3

)2

×pbpb̄
4

dEb dEb̄ dΩb dΩb̄ (4.13)

t→ bqq′ :

3∏
i=1

d3pi
(2π)32Ei

=

(
1

16π3

)3

× pqpq′pbEq′

16m2
qq′ |(Eq + Eq′)− (pq + pq′) · ebβb |

× (4.14)

× dEq dm2
qq′ dm2

qq′b dΩq dΩq′ dΩb, (4.15)

where we have expressed the Lorentz-invariant phase space in terms of particle energies, solid
angles (dΩ = sin θ dθdφ) and invariant masses mqq′ = (q + q′)2, mqq′b = (q + q′ + b)2. The
scattering amplitude written as |Mθ(p)|2 depends only on particle momenta, hence it is implied
to be summed over spin and colour states. Furthermore, we treat the production and decay of the
top quarks, W and Higgs bosons in the narrow-width approximation (NWA), meaning we factorise
the production and decay of these particles, as seen in eq. (4.16).

|Mtt̄H→(qq′b)(qq′b̄)(bb̄)|2 = |Mgg→ tt̄H(g1, g2, pt, pt̄, ph)|2 (4.16)

×
∏
r=t,t̄

[ π

mtΓt
δ(p2

t −m2
t )|Mt(pq, pq̄, pb)|2

]
r

(4.17)

× π

mHΓH
δ(p2

h −m2
H)|MH(pb, pb̄)|2 (4.18)

The decay amplitude of the top quark assuming the NWA for the W-boson is

|Mt(pq, pq′ , pb)|2 =
64πm2

t g
4

mWΓW

(pq · pt)
1

(1− m2
b

m2
t

− 2pq · pt
m2
t

)× δ((pq + pq′)
2 −m2

W ) (4.19)

and for the H→ bb̄ decay

|MH(pb, pb̄)|2 = 2
√

2m2
bm

2
H(1− 4m2

b

m2
H

). (4.20)

4.3.1 Transfer functions
The transfer function W (y|p) maps a point p ∈ Ω in the phase space of the hard scattering
process to a point y ∈ A in the space of detector-level reconstructed variables and it is ensured to
be normalised to unity using eq. (4.21),∫

A
dy W (y|p) = 1, (4.21)

which means that in an observable fiducial region A∗ ⊂ A, a phase space point has an effi-
ciency ε(p) ≤ 1 to be reconstructed. We note that since the same transfer functions are applied
for all hypotheses, the choice of transfer functions ultimately affects the model sensitivity, but not
the correctness, that is, we are not introducing any bias into the analysis with assumptions on
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the transfer functions. This would not be the case if we were determining a parameter such as
the Higgs boson mass by maximising the MEM probability of eq. (4.5). Furthermore, the MEM
is validated on MC simulation in order to make sure that the assumptions do not degrade the
sensitivity significantly.

We can make further progress by factorising the transfer function in terms of individual recon-
structed objects, the jets and leptons:

W (y|p) =
∏
i∈jets

W (Ei, ei|Eqi , eqi)
∏
i∈`±

W (Ei, ei|E`i , e`i) =
∏
i∈jets

Wi,j

∏
i∈`±

Wi,`, (4.22)

where qi (`i) is shorthand for the quark (charged lepton) assumed to give rise to the i-th measured
jet (charged lepton). If we are dealing with indistinguishable objects such as jets, for which it is
generally not possible to determine the charge or flavour of the originating parton, we have to sum
over all possible ways of matching the detector-level and parton-level objects, such that

Wi,j ∝
∑

qi∈quarks

W (Ei, ei|Eqi , eqi). (4.23)

Although the techniques of b tagging can be extended to determine if a jet arose from a b or anti-b
quark based on a statistical combination of the charge properties of the secondary vertex, the
purity of the charge determination is still relatively low, at a level of b quark efficiency εb ' 20%
for anti-b efficiency of εb̄ ' 50%, such that in an event with multiple jets arising from b quarks,
the probability of mis-reconstructing the charge of a single b jet is significant [124].

Therefore we make no assumption on jet charge to assign out of four reconstructed b-jets two
to the quarks from H→ bb̄, we have 4!/2!2! = 6 combinations. Without distinguishing between b
and b̄, we have a further 2!/1!1! = 2 ways of assigning the b tagged jets to bottom quarks from
the top or antitop quarks, such that assigning the fully reconstructed tt̄H(→ bb̄) hypothesis with
four b quarks and two light quarks among six jets amounts to twelve combinations. We describe
the approach taken to reducing the number of required combinations further in section 4.3.4.

Lepton energies and directions are measured with an order of magnitude higher resolution than
jet energies [92], therefore we assume those to be perfectly reconstructed such that their transfer
functions are Dirac delta functions. Furthermore, we assume that the jet energy and angular
transfer functions can be factorised such that

W (Ei, ei|Eqi , eqi) = W (Ei|Eqi)×W (ei|eqi). (4.24)

With these assumptions, the transfer function for observed particles reduces to a product ofW (Ei|Eqi)
over the jets.

We use a double Gaussian function, shown in eq. (4.25),

W (pT,j |pT,gen) = N

[
0.7 exp

(
pT,gen − pT,j − α1

α2

)2

+ 0.3 exp

(
pT,gen − pT,j − α3

α2 + α4

)2]
, (4.25)

to model the parton-to-jet transfer function for both light jets and b jets. This functional form
arises from a Gaussian detector response, which forms the core, and the modelling of parton
fragmentation outside the jet cone, described by a non-Gaussian tail.

The parameters of these transfer functions are derived from MC simulation, assuming that they
depend on quark energy, direction and flavour. We extract the transfer functions from a tt̄ MC sam-
ple by matching the generator-level partons geometrically to jets using ∆R(q, j) < 0.3 and fitting
the functional form W (pT,j |pT,q) of the distributions in eq. (4.25). We fit the parameters α1 . . . α4

of eq. (4.25) in bins of pT,q, |ηq| and flavour f ∈ l,b, shown in fig. 4.1. Additionally, in order to
have a smooth dependence of the transfer functions on the generated transverse momentum pT,gen,
we fit polynominals to the per-bin parameters αn(pT,gen|ηq, f), shown in fig. 4.2 for b jets in the
central detector region 0 < |η| ≤ 1.0. Thus, we are able to evaluate the probability density for a
quark with pT,gen, η to hadronise into a jet continuously over the full range of pT,gen.

As we are considering both semileptonic and dileptonic tt̄H decays that contain neutrinos in
the final state, the reconstruction resolution of MET has to be taken into account via a transfer
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Figure 4.1: The double Gaussian (eq. (4.25)) fit (red) to the simulated transfer function (light blue)
for b jets (a) and light jets (b) in the central detector region (0 < |η| ≤ 1) in a pT,gen ' 100 GeV
region. In general, we see that the double Gaussian function is sufficiently flexible to describe the transfer
functions for both light jets and b jets. Furthermore, the interpolated double Gaussian using the fitted
parameters α1 . . . α4 (black) reproduces the exact double Gaussian fit reasonably well. The plots are
derived using tt̄+jets simulation.

function. We model it via a Gaussian with a resolution σ2
MET = 30 GeV, which is of similar

magnitude to detector resolution and does not affect the results significantly. It is possible to
evaluate the covariance matrix of MET on an event-by-event basis and thus take into account
the correlation between the METx and METy components in the MEM [125]. This leads to the
full MET transfer function in the form of a multivariate Gaussian

WMET(ρT |
∑
k

pk) =
1

2π|Σ|1/2 exp

[
−1

2
(ρT −

∑
k

pk)TΣ−1(ρT −
∑
k

pk)

]
, (4.26)

where we currently have assumed Σ = σMETI as a simplification.

4.3.2 Lost quarks
We have extended the MEM to deal with scenarios where one (or more) of the quarks labelled by
q from the underlying pp → tt̄H(→ bb̄), tt̄ + bb̄ processes are not reconstructed due to either
being out of the geometrical detector acceptance |ηj | > ηcut or due to hadronising into jets that
are below an experimental energy threshold Ej < Ecut. To achieve this, we formally extend the
space of observables y → y′ = (y, (Eq, eq)q∈lost) and the per-event MEM probability

P (y)→ P ′(y′) =
1

σ′
dσi

dy
∏
q∈lost dEqdeq

(4.27)

and integrate out the unobserved quantities:

P (y) =

∫
A′

[ ∏
q∈lost

dEqdeq
]
P ′(y′). (4.28)

As the quark can be out of acceptance either due to failing the geometrical acceptance in η or
falling below the energy threshold, the integral over the lost quarks simplifies to

P (y) =

∫
· · · ×

∏
q∈lost

[∫
|ηq|≤ηcut

dΩqε(Eq, ηq) · · ·+
∫
|ηq|>ηcut

dΩq . . .

]
× . . . (4.29)

where ε(Eq, ηq) is the probability for a quark of energy Eq at a pseudo-rapidity ηq to hadronise to
a jet below the energy threshold Ecut(ηq) and thus fails to be reconstructed:
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Figure 4.2: The fitted parameters of the function eq. (4.25) in the form of αn(pT,gen|ηq,flavour). Overall,
we see a sufficiently flexible description of the parameters derived in the individual fits (blue) by the
polynomial fit (red). The bias in α4 near pT,gen ' 50 GeV is due to the underlying double Gaussian fit
not being able to accommodate the jets that fall below the pT threshold when reconstructed with the
experimental resolution and does not affect the MEM significantly. The fits are derived using tt̄+jets
simulation.
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ε(Eq, ηq) =

∫ Ecut(ηq)

0

dEjW (Ej |Eq). (4.30)

This means that for every lost quark, we add two integration variables through dΩq, as well as an
extra combination for choosing which of the quarks did not produce a jet. The flexibility afforded
by this technique, which makes the MEM applicable for cases where we may not always recon-
struct the exact multi-particle final state, thus comes at a computational cost which is evaluated
in section 4.3.7.

4.3.3 Treatment of QCD radiation

The MEM as formulated above does not account for QCD radiation, which at the LHC can be
substantial [126]. In particular, we estimate using simulation that the ratio between seven and six
reconstructed jets is N7jet/N6jet ' 0.5 for tt̄H(→ bb̄), whereas the hard interaction produces only
six partons at LO. Therefore there is a substantial fraction of events with more jets than is naively
required for the MEM and we need to either define a selection among those jets or describe them
via a model in the MEM probability of eq. (4.5). Additionally, ISR that is not reconstructed as
jets also affects the kinematics of the event with an unknown component in the final momentum
balance. We have implemented and compared several alternative techniques that extend the MEM
to final states with additional jets arising from radiation.

First, to deal with unreconstructed ISR, we note that momentum balance can be restored
by performing a Lorentz boost with β(pk) = (

∑
k pk,x,

∑
k pk,y, βz) in the transverse plane, such

that a Born-like configuration with a null transverse momentum is achieved. The longitudinal
component βz of the boost is in principle unknown and should be integrated out. However, we
find that it can be ignored by setting βz = 0, since it corresponds to different values for gluon
fractions x1,2 which are found not to affect the performance of the matrix element significantly.
This simple treatment of ISR kinematics is necessary to evaluate the LO matrix element with
proper momentum balance, but it does not take into account the dynamics of ISR production nor
the properties of QCD radiation in general.

A possible step forward would be to use additional matrix elements with more final state
partons to take into account extra jets. In particular, for events with one extra jet, we can use
the pp→ tt̄H(→ bb̄) + g matrix element with an additional gluon [127]. For a semileptonic top
decay, we would thus have seven final state partons that need to be matched to seven jets. This
approach has the advantage of not making the assumption that the extra jet arises necessarily from
ISR, but is instead a full treatment of the 2→ 7 scattering with perturbation theory. However, the
additional computational complexity is significant, especially if (anti)quark diagrams are included
in addition to the gluon. We study this approach further in section 4.4.

Sudakov reweighting allows us to approximate the effects of ISR in the scattering amplitude
in terms of splitting functions derived from QCD [126]. At detector level, the Sudakov factor is
approximated by a log-normal transfer function of the form

W (pT ) =
1√

2πσpT
exp

[−(ln [pT /1 GeV]− µ)2

2σ2

]
(4.31)

that approximates the probability of the parton-level transverse momentum pT resulting in an
observed recoil ρT below an experimental threshold ρT,0 < 30 GeV, taking into account the detector
resolution from simulations. Here the values µ = 4.1 and σ = 1.35 are estimated from MC
simulation and the unknown ISR momentum pT is integrated out. We have implemented this
empirical factor and compared it with the nominal LO MEM, however, we have seen that the
changes are very small and compatible with MC statistical uncertainties.

In case a significant missing transverse momentum is observed in the event, a separate double-
Gaussian transfer function would be appropriate in the Sudakov factor. However, since we in-
dependently have to consider a transfer function for the MET due to the presence of neutrinos,
the modelling of ISR recoil can be absorbed in the MET recoil transfer function, as explained
in section 4.3.1.
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4.3.4 Event interpretations
The scattering amplitude |Mθ| depends on the assumed process H and the interpretation of the
event C. Various interpretations are possible, depending on the observed multiplicity of charged
leptons and jets. First, the number of charged leptons fixes the choice of the top decay amplitudes
between the semileptonic, dileptonic or all-hadronic. This in turn determines the number of quarks
in the final state. Depending on the nature and number of the observed jets, we consider four classes
of event interpretations:

• Fully reconstructed events: In this caseNjets = Nquarks, such that each quark is associated
with a jet. This is the standard case.

• Over-reconstructed events: If Njets > Nquarks, we may choose up to Nquarks jets out of
the set of reconstructed jets, such that each quark is associated with a jet and the left-over
jets are ignored. In doing this, we sum over the possible choice of jets using the combinatorial
treatment of the MEM.

• Over-reconstructed events with an ISR interpretation: If Njets = Nquarks +1, we may
act as above, but choose to interpret the extra jet as arising from gluon radiation in the initial
state using the LO diagrams tt̄H + g and tt̄ + bb̄ + g in a full MEM approach by extending
the reconstructed phase space y. Due to the larger complexity of the involved diagrams, this
approach is computationally more costly than the above, but includes information on the
dynamics and kinematics of the additional jet.

• Partially-reconstructed events: In case Njets < Nquarks, we treat a number of quarks as
lost and integrate over their directions as described in section 4.3.2. This allows the MEM to
be used as a discriminator on a larger set of events, but we may also apply this hypothesis in
case we suspect some jets may be mismeasured and not correspond to the underlying hard
interaction, thus integrating them out despite a measurement.

In the most general case, we could evaluate all possible event interpretations and use them as
a combined event discriminator that makes maximal use of kinematics and the prior probabili-
ties for each hypothesis. However, this is computationally prohibitive, requiring many numerical
integrals per event, with the evaluation of each hypothesis taking O(101) . . .O(103) seconds on
a modern CPU. Therefore, it is necessary to restrict the interpretation space using assumptions
that are tested on MC simulation, comparing the expected performance of various interpretation
strategies and choosing one providing an acceptable trade-off between discriminator performance
and computational cost. We list the interpretations that were considered in table 4.1.

interpretation bottom quarks light quarks description
SL 2W2h2t 4 2 fully-reconstructed semileptonic
SL 1W2h2t 4 1 (lν′lb)t(�qq′b̄)t̄(bb̄)h

SL 0W2h2t 4 0 (lν′lb)t(�q��q
′b̄)t̄(bb̄)h

SL 2W2h2t + 1g 4 3 fully-reconstructed, additional ISR gluon
DL 2h2t 4 0 fully-reconstructed dileptonic

Table 4.1: The detailed event interpretations for semileptonic and dileptonic tt̄H (signal) and tt̄ +
bb̄ (background) events. In the semileptonic channel, we consider cases where up to two light quarks may
be lost. The minimum number of jets required for a hypothesis is the sum of the number of quarks. For
the SL 1W2h2t hypothesis the direction and energy of one of the light quarks is integrated out, denoted
by �q. For the fully-reconstructed semileptonic case with seven jets, we also consider the ISR-modified
interpretation.

We use a number of strategies to restrict the number of combinations that need to be considered
in the transfer functions of eq. (4.23).

• As we are dealing with up to two oppositely-charged leptons, we can neglect the small effect
of charge confusion and assume the leptons are identified perfectly in case of a dileptonic
event.
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• We assume that the efficiency of correctly b tagging jets arising from bottom quarks (mistag-
ging light jets) is sufficiently high (low) that we find bottom quark (light quark) candidates
only among jets that are likely to arise from bottom quarks (light quarks) according to their
b discriminator properties.

• If we have more than three candidates for the light quarks, we select the three that are most
compatible with a W→ qq′ decay according to invariant mass.

• The scattering amplitude |M|2 is symmetric under charge exchange for W→ qq′, therefore,
we compute the scattering amplitude with only one combination corresponding to a particular
charge assignment of quarks.

We choose the set of jets to be interpreted as b quarks in the MEM that is most compatible
with arising from four b quarks by using a likelihood ratio based on jet b discriminators, as will
be explained further in section 5.2.3. Overall, the number of transfer function combinations that
are required for each hypothesis in the categories we use is shown in table 4.2. These assumptions
are found not to reduce the performance of the MEM significantly, but they decrease the num-
ber of combinations (and thus the computational burden) by an order of magnitude, as seen on
figure fig. 4.3. In fact, we find that being more strict with the assumptions can increase the dis-
criminating power of the MEM, since the likelihood is only an approximation, therefore discarding
some unlikely permutations in eq. (4.23) is an optimisation in both CPU time and performance.

interpretation 8+ jets 7 jets 6 jets 5 jets 4 jets
SL 2W2h2t 72/36 36 12 - -
SL 1W2h2t - - - 12 -
SL 0W2h2t - - - - 12

SL 2W2h2t + 1g 72/36 36 - - -
DL 2h2t 12 12 12 12 12

Table 4.2: The number of MEM combinations in associating quarks to jet for various MEM categories.
In SL events with seven or more jets, we choose up to four candidates based on invariant mass among the
light jets for the W-boson reconstruction, in order to prevent a combinatorial explosion for events with a
very high jet multiplicity. In DL events, we always choose exactly four candidates for the b quarks.

4.3.5 Integration

The MEM is implemented as a dedicated code in C++, relying on the OpenLoops library [127]
interfaced via C++ for the evaluation of the hard scattering amplitude. The ROOT package [128]
is used for numerical Lorentz algebra and CLING [129] for interfacing the code to Python and
the rest of the tt̄H(→ bb̄) analysis. The PDFs are evaluated using the CTEQ6.6 [130] set via
the LHAPDF package [131]. The numerical integration routines rely on the VEGAS algorithm [132]
that uses multiple passes to refine the integration grid, with the maximal number of evaluations
tuned for approximately ∆I/I < 2.5 . . . 5% relative numerical accuracy on the integral, suitable
for use in a discriminator. We use the CUBA package [133] for numerical integration, as it supports
vector-valued integrands. The distribution of expected numerical accuracy is shown in fig. 4.5
and illustrates the convergence of the numerical integration. We see that the computational cost
is around 1-2 CPU minutes per event including both the signal and background hypotheses and
that the numerical integration is accurate to within 5% on average. Transfer functions can be
provided in a flexible parametrisation using ROOT, however, as described in section 4.3.6, we have
also provided faster, optimised versions of the Gaussian transfer functions.

In section 4.3 we have expressed the integral of eq. (4.5) in terms of variables which are aligned
with the peaks of the integrand. In general, we could integrate over the full range of these variables,
however, to improve convergence, we restrict the integration over energies to a symmetric confidence
region around the reconstructed energy based on the transfer functions. In particular, we derive
the lower (EL(Ej , α)) and upper (EH(Ej , α)) integration boundaries for a jet with energy Ej from
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Figure 4.3: The effect of combination assumptions in the MEM discriminator based on tt̄H(→ bb̄) simu-
lation. We compare the nominal case (red), where the combinations are restricted according to b tagging
and assuming a single charge assignment, with the case where the charge assignment restriction is removed
(green, 48 combinations) and the case where the b tagging restriction is removed (blue, 180 combinations).
We see that the charge assignment has negligible effect on the overall discriminator shape, whereas the
lack of b tagging significantly increases the number of permutations and thus reduces the discriminating
power of the MEM.

∫ EH(Ej ,α)

EL(Ej ,α)

dEqW (Ej |Eq) = α (4.32)

with α = 0.95 and choose the integration variable xq for the quark energy such that Eq(xq) =
EL+xq(EH−EL), to restrict the integration into the range x ∈ [0, 1]. The integration with respect
to the angular variables is performed over the ranges φ ∈ [−π,+π] and cos θ ∈ [−1,+1].

VEGAS algorithm

In computing the full ME scattering amplitude and transfer function convolution of eq. (4.5), we
rely on numerical Monte Carlo (MC) integration in the VEGAS approach [132]. The integral is
approximated by a weighted sum over points xi sampled from p(x) such that

I =

∫
V

f(x) dx ' Ĩ =
V

N

N∑
i

f(xi)

p(xi)
. (4.33)

The variance in the estimation Ĩ is given by

σ2
Ĩ
' 1

N − 1

(
V 2

N

∑
i

[
f2(xi)

p(xi)

]2

− Ĩ2

)
.

Choosing the sampling distribution p(x) appropriately allows the variance to be reduced, such
that the variance is optimal for p(x) = |f(xi)|∫

|f(x)|dx , however, this is not possible without knowing the
integral I that we seek. The VEGAS algorithm relies on importance sampling, which increases the
amount of points where |f | is large, by constructing the sampling distribution p(x) as a piecewise
constant function in the integration hypercube, refined by iteratively increasing the number of
integration samples. We use between O(103) and O(5 × 104) integration points in five successive
stages. An example of the final VEGAS integration grid is shown on figure fig. 4.4, where we see
that the integration points are clustered around α = 0.5, which corresponds to an on-peak quark
reconstruction Eq = Ej and somewhat more spread out in the neutrino polar angle. We can see
that the peak dimensions are aligned with the integration axes by the construction of the Jacobian,
which is necessary for efficient integral evaluation via VEGAS.

55



4 Matrix Element Method

0.0 0.2 0.4 0.6 0.8 1.0

= Eq1 El

Eh El

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

co
s(

q2
)

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

we
ig

ht
 d

en
sit

y 
(a

.u
.)

Figure 4.4: An example of the VEGAS integration weights in the plane defined by the light quark energy
fraction and neutrino polar angle.
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(a) Integration time of the MEM.
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(b) Numerical uncertainty of the MEM

Figure 4.5: The integration time (a) and uncertainty resulting from numerical integration (b) of the
MEM discriminator for the fully reconstructed hypothesis. In general, we see that the average time to
compute the MEM discriminator is below a minute for both the signal and background hypotheses, with
a significant spread due to the varying number of jets in events and thus the number of combinations
that need to be considered. The background hypothesis is significantly more computationally expensive,
due to the complexity of the tt̄ + bb̄ diagrams compared to tt̄H(→ bb̄). The uncertainty from numerical
integration is below 5% on average for both the signal and background hypotheses, with a larger spread
for the background hypothesis.

For the SL 2W2h2t signal hypothesis, the integration is carried out over four variables: the
top-associated light quark energy Eqt , the neutrino directions cos θν and cosφν and the energy
of the Higgs-associated b quark EbH . An additional integration axis is introduced for the tt̄ +
bb̄ hypothesis, integrating over the energy of the second b quark not associated to top quark
decay (Eb̄H ). The addition of each lost quark adds a further energy integration, such that for
the SL 0W2h2t hypothesis, we have six integration dimensions for the tt̄H(→ bb̄) hypothesis and
seven for the tt̄ + bb̄ hypothesis. In the dileptonic channel, the DL 2h2t signal hypothesis has
five integration variables: two angles per neutrino, plus the energy of one of the Higgs-associated
b-quarks EbH .

4.3.6 Profiling and optimisation
In order to deploy the MEM on the large data samples and the corresponding simulation expected
in Run 2 of the LHC, we have optimised the code by studying the computational cost of various
parts in a profiling study. We have used the igprof sampling profiler [134, 135] to analyse the
computational budget spent in various subroutines of the program, which uses a random sampling
technique to estimate the computational cost of various subroutines. In general, we find that the
overwhelming majority of time is spent within the integrand, out of which about 40% is spent com-
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puting the transfer functions, largely in the tails of the transfer functions, 35% is spent evaluating
the scattering amplitude of the hard process, 10% on computing the PDFs and about 10% on ma-
nipulating the phase space volume. The evaluation of the transfer functions at a single phase space
point is about an order of magnitude faster than the scattering amplitude. In order to achieve
this ratio, we implemented the transfer functions explicitly as optimised C++ functions, instead
of relying on a more generic approach using symbolic functions supported in ROOT. Additionally,
as a large fraction of time in optimising the VEGAS integration grid is spent in evaluating the
exponential tails of the transfer function, we have used a piecewise exponential function that is
suppressed far in the tails.

Currently, the MEM algorithm as implemented here can only be run on standard x86 CPU
architectures. Although it has been shown that GPUs may offer strong parallelisation benefits
in evaluating the integral, it would be necessary to completely port and optimise the OpenLoops
toolset, or another matrix element library, on the GPU in a significant engineering effort [136],
furthermore, GPU clusters are currently not commonplace in the Worldwide LHC Grid (WLCG),
limiting the applicability of the code. However, in the future, as massively parallelised resources
and automatic code translation tools become more widely available, the phase space integration
could benefit significantly from parallel resources.

4.3.7 Computational budget
In this section, we present a feasibility estimation on using the MEM in a Run 2 analysis. This
is necessary in order to predict the amount of computing resources that will be required. The
computing time depends strongly on the number of combinations and integration variables needed
for a given interpretation and event topology, as well as the total number of simulated events that
are needed for the analysis. In section 4.3.7, we show the required CPU budget for evaluating the
MEM on various event topologies. Based on this, we identify the MEM interpretations to apply on
a given event topology. In particular, we see that the treatment of the additional gluon radiation
in the scattering amplitude increases the computational cost by about a factor of five, mainly due
to the tt̄ + bb̄ amplitude. Furthermore, we find that computing the MEM with a hypothesis that
considers all the reconstructed jets provides the best trade-off between performance and computing
cost.

method time tt̄H (s) time tt̄ + bb̄ (s) ROC AUC εbkg total (h) / 1k
SL, ≥ 7jet, 2W2h2t 45.8± 18.9 69.4± 26.1 0.315 0.232 32.00
SL, ≥ 7jet, 2W2h2t1g 71.7± 27.1 471.7± 50.6 0.317 0.233 150.94
SL, ≥ 6jet, 2W2h2t 30.2± 21.0 45.4± 30.9 0.321 0.233 21.00
SL, ≥ 6jet, 1W2h2t 64.8± 22.7 101.1± 33.0 0.307 0.210 46.07
SL, ≥ 6jet, 0W2h2t 83.9± 20.4 136.3± 28.9 0.294 0.218 61.16
SL, 5jet, 1W2h2t 25.4± 7.1 39.9± 9.6 0.293 0.198 18.13
SL, 5jet, 0W2h2t 84.7± 20.3 136.9± 28.9 0.291 0.217 61.56
SL, 4jet, 0W2h2t 84.3± 20.7 136.0± 29.2 0.333 0.275 61.21

DL, ≥ 4jet, 0W2h2t 55.7± 13.7 90.4± 19.3 0.223 0.124 40.58

Table 4.3: The CPU budget and separation power of the MEM in the SL channel using various event
interpretations. We show the time required to evaluate the signal and background hypotheses, the receiver
operating characteristic (ROC) area under curve (AUC), the efficiency of selecting background events at
a signal selection efficiency of 50% (εbkg) and the total time required to compute the MEM discriminator
for 1000 events.

4.3.8 Propagating uncertainties
When using the MEM in a realistic experimental analysis, we need to evaluate the effect of sys-
tematic uncertainties on the MEM discriminant. In general, uncertainties modify the observ-
ables y → y∗, for example the jet energies may be modified by uncertainties in the jet energy
scale calibration. The naive approach to estimate the sensitivity of the discriminator would be
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to recompute the MEM discriminator probabilities Pθ(y) → P (y∗). However, this turns out to
be impractical, since the number of individual variations that need to be considered can easily
reach O(102) and it is not realistic or practical to expend two orders of magnitude more computa-
tional resources.

In order to reduce the computing time, we have developed an approximation for the effect
of jet energy scale uncertainties using the analytical form of the MEM. We first note that the
variations are generally small, such that y∗ ' y+δy. Therefore, the numerical integration described
in section 4.3 would be performed on almost the same phase space, with an equivalent VEGAS
integration grid.

Furthermore, we see from eq. (4.5) that the observables enter the definition of the MEM prob-
ability primarily through the transfer functions W (y|p) and affect the integration volume only
secondarily. The most computationally costly part in the integrand is the evaluation of the LO
scattering amplitudes for the hard process. Therefore, if we can promote the integrand to a vector-
valued quantity, such that

|M(p)|2W (y|p)→ |M(p)|2


W (y|p)

W (y + δy1|p)
. . .

W (y + δyn|p)

 , (4.34)

then the integration of the nominal and varied weight can be performed in a single pass using a
grid optimised for the whole integration. We have tested this approach by comparing the varia-
tion evaluated using vector integration to the full computation with shifted inputs, showing the
comparison of the full variation and the approximation in fig. 4.6. As we only wish to estimate
the sensitivity of the analysis to such sources of uncertainty, it is sufficient if the approximated
variation has the same magnitude and direction as the true variation.
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Figure 4.6: The effect of JES up and down variations on the MEM signal probability Ptt̄H(→bb̄) for the
signal hypothesis with the full computation (blue) and with the vector integration approximation method.
We see that both the up and down shifts have the correct direction and magnitude. This estimation is done
on tt̄H(→ bb̄) simulation with exactly six jets and exactly four b tags, requiring that the jet variations do
not change the jet multiplicity in the final state.

Additional complexity is introduced due to variations in the uncertainties possibly changing the
topology of the reconstructed final state, as scaling jet energies down (up) may cause jets to migrate
under (above) the experimental threshold pT cut. In order to account for this, in case a particular
variation y + δyn changes the reconstructed final state, the MEM is still recomputed using the
new topology. On fig. 4.7, we compare the fully varied MEM discriminator to the approximation,
taking into account these jet multiplicity migrations.
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Figure 4.7: The effect of JES up and down variations on the MEM discriminator (likelihood ratio) with
the full computation (blue) and with the vector integration approximation method (red). As before, we
see that both the up and down shifts have the correct direction and magnitude. The differences are not
significant compared to the MC statistical uncertainty. This estimation is done on tt̄H(→ bb̄) simulation
with at least six jets and at least four b tags, taking into account possible bin-to-bin migrations due to
JEC uncertainties.

4.3.9 MEM on the WLCG

From the computational cost of the MEM shown in section 4.3.7 it is apparent that it is necessary
to use distributed computing systems in order to have a reasonable turn-around time for the
analysis. Therefore, we have parallelised the workflow both on the level of a computing cluster
using grid-control and the WLCG using CRAB. On the WLCG, we have thus been able to take
advantage of CMS computing resources opportunistically and have demonstrated that the MEM as
implemented here is able to run on a wide range of data centres on a planetary scale. For this, we
relied on CMSSW to provide a consistent environment along with user-provided external dependencies
such as OpenLOOPS. We integrated the MEM into a multi-step workflow that produced the final
analysis data sets directly from the CMS MiniAOD data stage in a single pass on the WLCG.
This way, we were able to benefit from load balancing using data locality at CMS and reduced the
number of manual intermediate steps and data management, which can be error prone. Overall,
we were able to iterate with the full analysis from MiniAOD to the final limits in a matter of a
few days under optimal conditions.

4.4 Expected performance

We study the expected performance of the MEM on a MC simulation sample of tt̄H(→ bb̄) and
tt̄+jets. First, in fig. 4.9, we verify that the signal and background probabilities indeed behave
as expected on their respective MC simulations. In particular, we see that the signal probability
Ptt̄H(→bb̄) is on average higher on the tt̄H(→ bb̄) sample and vice versa, as we would expect. This
allows us to construct an efficient likelihood ratio discriminator in the form

Ps/b(y) =
Ptt̄H(y)

Ptt̄H(y) + κ · Ptt̄+bb̄(y)
(4.35)

The scale factor κ is optimised to adjust the relative normalisation of the signal and background
probabilities and is introduced to allow the dynamic range of Ps/b to be uniform in the range Ps/b ∈
[0, 1]. Adjusting this coefficient does not change the signal-to-background discrimination power of
the discriminant as it is a monotonic rescaling, but allows us to discretise the distribution into
a small number of bins without losing sensitivity. We find that the value κ = 0.1 results in the
optimal signal-to-background discrimination in all categories, as can be verified in fig. 4.8.
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Figure 4.8: The MEM discriminator performance as a function of the signal-to-background scale factor
κ. We compute the ROC AUC from histograms of the MEM discriminant with six bins uniformly in the
range [0, 1] and find that within statistical uncertainties, the optimal discrimination is achieved for κ = 0.1.
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(a) MEM probability for the tt̄H hypothesis.
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(b) MEM probability for the tt̄ + bb̄ hypothesis

Figure 4.9: The expected distribution of the signal probability Ptt̄H(→bb̄) and the background probabil-
ity Ptt̄+bb̄ on MC simulation. We see that for the signal sample, the signal probability is on average higher
than the background probability, and vice versa for the background. Here, we have selected events with
exactly one isolated lepton, at least six jets, out of which four must be b tagged. Furthermore, the jets are
required to be matched to quarks from the corresponding hard interaction on generator level.

The performance of the MEM depends crucially on whether the jets in the observed final
state can be correctly associated to the particles from the hard interaction. For the following
comparisons, we define the full tt̄H(→ bb̄) selection, corresponding to all the events that pass the
detector-level selection criteria; and the matched selection, where the full selection is augmented
by further requiring that all the jets in the event can be matched to the generator-level partons of
the corresponding hypothesis. This matching is done geometrically using a cone size of ∆R = 0.3.

For example, for the signal hypothesis in the 2W2h2t interpretation, we require that the two light
jets can be matched to the quarks from the hadronic W decay, two b jets can be matched to bottom
quarks from the Higgs and two b jets to bottom quarks from the top quark decay. This is done using
generator-level information with the full decay chain. For the 1W2h2t hypothesis, we require only
one of the light jets to be matched to a quark from the W boson, and for the 0W2h2t hypothesis, the
only the b jets are required to be matched to b quarks. We show the estimated matching fractions
in section 4.4. We find that in the semileptonic ≥ 6j ≥ 4b category, the jets can be fully matched
to the quarks in approximately 20% of the cases, whereas in the dileptonic ≥ 4j ≥ 4b category, the
fraction is 59%, allowing the MEM computation to be more effective.
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4.4 Expected performance

category hypothesis full final state Higgs and top Higgs only
SL ≥6j≥4b SL 2W2h2t 0.20 0.51 0.69
SL ≥6j3b SL 2W2h2t 0.09 0.24 0.52
SL 5j≥4b SL 1W2h2t 0.36 0.59 0.74
SL 5j3b SL 1W2h2t 0.14 0.23 0.51
SL 4j4b SL 0W2h2t 0.61 0.61 0.75
SL 4j3b SL 0W2h2t 0.18 0.18 0.47

DL ≥4j≥4b DL 2h2t 0.59 0.59 0.74
DL ≥4j3b DL 2h2t 0.30 0.30 0.55

Table 4.4: The fraction of events where the jets could be matched to partons from the hard interaction
under the full hypothesis consisting of all the quarks from the W-boson, top and Higgs decay; matching
only the b quarks from the Higgs and top decay and finally only the quarks from the Higgs decay. We see
that for the SL ≥ 6j ≥ 4b category, 20% of events could be matched to the full final state, whereas in the
DL ≥ 4j ≥ 4b category, the equivalent fraction is 59%. This stark difference arises due to the difficulty of
reconstructing light quarks from the hadronic W-boson decay. Furthermore, we see that in the categories
with three b tags, the fraction of events with full matching is significantly lower, especially in terms of
matching for the top quark decay products. The estimation is made using tt̄H(→ bb̄) simulation.

4.4.1 Semileptonic categories

We compare the MEM distributions and expected performance on events with four jets, five jets
and ≥ 6 jets in the single-lepton channel. Using these three broad categories, we can see the effect
of adding additional information about jet kinematics to the MEM discriminator. We further split
the events into two subcategories requiring at least four b tagged jets, corresponding to a high-
purity selection, and exactly three b tagged jets, corresponding to a lower-purity MEM control
region. This allows us to evaluate the effect of incorrect hypotheses on the MEM performance, as
the lower-purity category will have a large fraction of events which cannot be matched according
to the above prescription.

4-jet final state

On the SL categories with only four jets using only the kinematics of the b jets, we are able to
achieve a background efficiency of ' 30% at a signal efficiency of 50% by selecting a sample where
the four jets are likely to arise from bottom quarks using b tagging, as seen in fig. 4.10. Extending
the MEM to the three b tag category shows the importance of having selected the right candidates
for the b quarks, as can be seen in fig. 4.11, where the lower matching fraction in signal results
in a lower discriminator performance. Therefore, we conclude that it is feasible to use the newly-
introduced 0W2h2t-hypothesis in the 4-jet category, in case the four jets are likely to arise from
the hadronisation of b quarks from the decay of the Higgs boson and the top quark.

5-jet final state

By adding the information of an additional jet in the four jet categories, the background efficiency
decreases to 20% at the benchmark point of 50% signal efficiency in the four tag category in fig. 4.13.
Thus we see that the additional information provided by the kinematics of the extra jet helps to
constrain the MEM integration significantly. The category with three b tags performs slightly
worse, with the main effect coming from the additional light jet not being associated to the W-
boson, as can be seen from fig. 4.12.

6-jet final state

In the categories with six or more jets, we verify that the MEM is able to exploit the information
in the fully-reconstructed category, with a ' 10% background efficiency in the case where the jets
could be fully matched to the partons of the underlying hypothesis, as shown in fig. 4.15 for events
with at least four b tagged jets. On the extended events with three b tagged jets, the MEM still
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Figure 4.10: The MEM discriminator with the interpretation 0W2h2t, with the momenta of the two
light quarks from the W-boson integrated over, in the single-leptonic category with four jets, four b tags.
Compared to fig. 4.11, we see an improvement in performance, as the requirement of four b tags enhances
the fraction of events where the jets can be matched to quarks, thereby increasing the fraction of events
where the correct MEM hypothesis is computed.

shows relatively good discrimination (fig. 4.14), with the most significant reduction coming from
the fraction of events where one of the light jets assumed to arise from W → qq′ was instead
spurious. We also verify the performance of the MEM discriminator against different tt̄+jets sub-
processes in fig. 4.16, where we see the best classification efficiency against tt̄ + bb̄, as would be
expected.

Mis-reconstructed events in the 6-jet categories

Motivated by the significant effect on the MEM from the unmatched jets, we investigate a possibility
to mitigate the loss in discriminator performance by integrating over the jet momenta in case we
are unsure if they correspond to the correct quarks on the level of the hard scattering. In particular,
since we have seen that a significant fraction of the light jets in the fully-reconstructed category
are not matched to the quarks from the W-boson decay, we consider relaxing the assumption that
all the light quarks are reconstructed as jets.

This amounts to applying an interpretation such as 1W2h2t that only uses the kinematics of
five jets on an event with six or more jets. In general, we see that for realistic detector-level
events without generator-level matching, this strategy results in a slightly improved performance,
as it is less sensitive to the mis-reconstruction of the light jets, as can be seen comparing fig. 4.17
and fig. 4.15. In particular, the ROC AUC performance characteristic for the unmatched events
decreases from AUC = 0.32 to AUC = 0.31 and the difference between the tt̄H(→ bb̄) MEM
distribution between the matched and unmatched event samples decreases.

However, the computational cost , elaborated in section 4.3.7, would increase by about a factor
of two with this choice, therefore, we do not use this approach in the tt̄H(→ bb̄) analysis at this
stage. In the future, it may be interesting to explore complex hypothesis tests, which effectively
combine the probabilities under various jet reconstruction hypotheses in a uniform way, smoothly
interpolating between a fully-reconstructed and a partially reconstructed hypothesis based on some
event-level observables.

7-jet categories

Furthermore, we have studied the effect of including diagrams containing additional QCD radiation,
as outlined in section 4.3.3. These additional diagrams are only valid on events with at least
seven jets. We have compared the standard fully reconstructed hypothesis in fig. 4.18 to the one
with additional gluon radiation in fig. 4.19 in this category. We see that using the diagram for
additional radiation has a very small effect on the final discrimination, since the effect of spurious
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Figure 4.11: The MEM discriminator with the interpretation 0W2h2t, with the momenta of the two light
quarks from the W-boson integrated over, in the single-leptonic category with four jets, three b tags. On
the left, we show the discriminator distributions, on the right, the expected performance as characterised
by the ROC for all events (black) and the events for which the jets could be matched to the partons
from the hard process (green). Based on the kinematics of the fourth b jet, the MEM is already able to
achieve a degree of separation (AUC = 0.41) in this category. The distributions are derived using the
full tt̄H(→ bb̄) and tt̄+jets simulations, including detector effects.

jets incorrectly assigned to the hadronic W-boson decay is significantly larger than that of the better
description provided by the accurate treatment of the additional radiation. From this, we conclude
that the most straightforward way to improve the performance of the MEM discriminator is to
ensure that the hypothesis corresponds to the particles reconstructed in the final state. Therefore,
we consider this as a cross-check of the MEM and do not investigate it further in the tt̄H(→ bb̄)
analysis, concluding that improved object reconstruction and identification is more important than
an accurate matrix-element level description at this stage.

4.4.2 Dileptonic categories

We have also evaluated the MEM discriminator in the dileptonic categories, where the W-bosons
from both top quarks decay leptonically. At the level of the hard interaction, we expect four
b quarks: two from the H → bb̄ decay and two from the top quark decay. In order to associate
the jets to the quarks, we select the set of four jets that are most compatible with b quarks. Thus,
we have twelve combinations to assign the four quarks to the four b tagged jets. In general, we
see excellent performance of the MEM in the dilepton categories with both ≥ 4 and three b tags,
since in around 60% of the cases, the jets in the event can be matched to the b quarks from the
underlying hard process, as seen in fig. 4.20 and fig. 4.21. This means that the MEM can be used as
a powerful signal-to-background discriminator in the dilepton final states, despite the complexity
of the integration that is required to account for the momenta of the two neutrinos.

4.5 Summary

To summarise, we have implemented the MEM discriminator for the tt̄H(→ bb̄) analysis in Run 2
with significant improvements over the approach used in Run I. The MEM can now be computed in
all relevant final states in the tt̄H(→ bb̄) analysis, and we have studied the expected performance
on MC simulation. The performance studies are carried out in several categories with a varying
number of jets, corresponding to the gradual increase of information available to the MEM in a
multi-particle final state. We have seen that in case all the partons from the hard scattering process
are present in the final state, the MEM is able to distinguish between the signal and background
hypotheses with a background efficiency of ' 10% for a signal efficiency of 50% based only on high-
level event kinematic properties. The effect of the quark jets being outside the acceptance region
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Figure 4.12: The MEM discriminator with the interpretation 1W2h2t, with the momentum of one of the
light quarks from the W-boson integrated over, in the single-leptonic category with five jets, three b tags.
Compared to fig. 4.11, we have added the information about one of the quarks from the hadronic W-boson
decay, thus constraining the integration. From the ROC on the right plot, we see that for the matched case
(green), the MEM performs significantly better than the corresponding discriminator in fig. 4.11, thanks
to the additional information available. However, the low fraction of matched events (< 10% for signal)
significantly degrades the observed performance (black). Most of the mismatched events come from the
additional light quark not corresponding to the hadronic W-boson decay. Thus, we see the importance of
deploying the MEM on final states where the relevant particles are reconstructed.

degrades the performance of the discriminator, as the spurious jets that are instead associated
to the quarks do not provide any constraining power in the integrand. Therefore, an accurate
reconstruction of the final state is very important for the MEM discriminator, especially in the
signal sample.

Nevertheless, the expected realistic performance of the MEM, based on full detector simulation,
is excellent in the high jet and b tag multiplicity categories. In the best semileptonic category,
the tt̄+jets efficiency is around 20% at a reference signal efficiency of 50%, whereas in dilepton,
the background rejection is even higher. We have further studied the resilience of the MEM to
QCD radiation and found that the performance does not change markedly by introducing effective
Sudakov reweighting or diagrams with additional jets. In conclusion, we find that the MEM is a
suitable discriminator in the tt̄H(→ bb̄) search, given the performance and the solid theoretical
foundation on which it is based.
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Figure 4.13: The MEM discriminator with the interpretation 1W2h2t, with the momentum of one of the
light quarks from the W-boson integrated over, in the single-leptonic category with five jets, four b tags.
By requiring four b tagged jets, the jets in the final state correspond to the partons from the underlying
hypothesis in about 35% of cases for signal. We also see that the performance of the MEM discriminator
is thus increased compared to fig. 4.12.
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Figure 4.14: The MEM discriminator with the interpretation 2W2h2t, i.e. the fully reconstructed hypoth-
esis, in the single-leptonic category with at least six jets, three b tags. We see that while the performance
on the events that can be matched to the quarks from the underlying hard process is excellent, the fraction
of matched events is below 10%, degrading the performance on realistic events.
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Figure 4.15: The MEM discriminator with the interpretation 2W2h2t, i.e. the fully reconstructed hy-
pothesis, in the single-leptonic category with at least six jets, at least four of which must be b tagged. This
is the category with the highest signal to background ratio and with a full reconstruction of the two light
quark, four bottom quark final state corresponding to tt̄H(→ bb̄). We see that in case all the jets were
matched to the quarks, the signal to background separation provided by the MEM is significant, with a
background efficiency of around 10% at a median signal efficiency. After relaxing the matching criterion,
the separation decreases by about a factor of two at the expense of the signal distribution becoming more
background-like.
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Figure 4.16: The performance of the MEM for different tt̄+jets subprocesses, introduced in section 5.1.1,
in the semileptonic ≥6-jet, ≥4-b tag category. In general, we see that the discrimination is best against
tt̄+bb̄ and tt̄+2b, followed by tt̄+b. This arises from the use of the tt̄+bb̄ diagram as the representative
diagram for the computation of the background amplitude.
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Figure 4.17: The MEM discriminator with the interpretation 1W2h2t in the single-leptonic category with
at least six jets, at least four of which must be b tagged. In comparison to fig. 4.15 , we have integrated over
the momentum of one of the light jets, assuming that only one of the two light jets corresponds to a quark
from the W-boson decay. We see a slightly improved performance compared to the fully reconstructed
hypothesis in the case of all events (black), and a slight decrease for events that are fully matched. This
is consistent with the performance of the MEM being strongly dependent on whether the objects in the
final state correspond to the hard scattering process.
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Figure 4.18: The MEM discriminator with the interpretation 2W2h2t, i.e. the fully reconstructed inter-
pretation, in the single-leptonic category with at least seven jets, at least four of which must be b tagged.
In order to interpret the light jets as quarks, we sum over all possibilities of choosing two light quarks
from the three light jets most compatible with a W-boson decay according to invariant mass. We see that
in the presence of an additional jet, the fully-reconstructed MEM interpretation is still able to distinguish
between signal and background at an acceptable level.
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Figure 4.19: The MEM discriminator with the interpretation 2W2h2t1g, where we include the gluon
radiation in the signal and background hypotheses, in the single-leptonic category with at least seven jets,
at least four of which must be b tagged. Compared to the hypothesis without gluon radiation in fig. 4.18 ,
we do not see an improved discrimination from including this more complex hypothesis.
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Figure 4.20: The MEM discriminator with the interpretation 2h2t in the dileptonic category with at least
four jets, all of which must be b tagged. We see that at 50% signal efficiency, the inclusive tt̄ efficiency is
around 17% as estimated on simulation.
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Figure 4.21: The MEM discriminator with the interpretation 2h2t in the dileptonic category with at
least four jets, out of which three are b tagged. Compared to fig. 4.20, the expected performance decreases
somewhat, with a background efficiency of 20% at the reference signal efficiency. Nevertheless, it is possible
to use the DL MEM in the three b tag category as an efficient tt+bb discriminator.
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5 Search for top-quark pair associated
Higgs production

In this chapter, we describe the search for tt̄H(→ bb̄) using the matrix element method at the CMS
experiment (MEM) in Run 2 of the LHC. This is based on preliminary results from CMS [137, 68]
and ongoing work. We concentrate on the semileptonic (SL) and dileptonic (DL) decay channels of
the top quark pair and the application of the MEM in this search, where the primary background
arises from QCD production of tt̄+jets. We are showing results with the 2016 dataset of CMS
data, the use of which for this thesis has been endorsed by the CMS Higgs group.

Briefly, the analysis proceeds as follows. Throughout the analysis, we use the MC simulation
and data samples described in section 5.1. The detailed identification criteria for the physics objects
(jets and leptons) are motivated by established top quark analyses and are described in section 5.2.
The selection is motivated by the semileptonic and dileptonic decays of the top quark pair, which
results in a final state containing several jets, charged leptons and MET. We select events with
at least one (two) charged lepton(s) in the semileptonic (dileptonic) channel and at least four jets,
out of which three must be b tagged.

The statistical analysis is described in section 5.3. We further divide the events into inde-
pendent categories based on the jet and b tag multiplicity, as described in section 5.3.1. These
categories are introduced in order to constrain the various sub-processes of tt̄+jets, described fur-
ther in section 5.1.1, together with the tt̄H signal cross-section. In order to extract the signal
strength modifier µ = σ/σSM for the tt̄H process, we perform a combined template fit in all the
categories, relying on the discriminating power provided by the MEM in categories with a high
signal-to-background ratio and on other multivariate techniques in background-enhanced control
regions. The fit is described in section 5.3.9.

An important component in the fit is the handling of systematic uncertainties, which drives
the determination of the confidence interval of the estimated signal strength and is described
in section 5.3.3. We study the fit model with respect to the systematic uncertainties in section 5.3.10
before determining the compatibility of the model with data. Finally, we present the results of
the analysis in section 5.4, followed by a discussion in section 5.5 and a summary and outlook
in section 5.6.

5.1 Data and simulation

We use proton-proton collision data collected by the CMS experiment at a center-of-mass energy
of
√
s = 13 TeV, corresponding to a total integrated luminosity of 35.9 fb−1 in the semileptonic
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Figure 5.1: Representative leading-order Feynman diagrams for the tt̄H(→ bb̄) process in the gluon-
fusion production channel. On the left, we show the dileptonic (DL) decay of the top quark pair, whereas
on the left, we show the semileptonic (SL) decay channel.
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5 Search for top-quark pair associated Higgs production

(SL) and dileptonic (DL) channels. We have used the complete dataset of 2016 as an update over
the analysis finalised in the middle of 2016, which used roughly 12.9 fb−1 of data [68].

We use MC simulation to model the signal and background processes, interfaced to a parton
shower and hadronisation as appropriate. In order to model the detector effects, we use a detailed
simulation of the detector based on GEANT4 [138]. For the tt̄H signal, tt̄+jets and single-top
backgrounds, we use the NLO generator POWHEG [139, 140]. The use of an NLO model for the signal
and the primary background processes is a significant advancement over Run I tt̄H analyses at the
LHC, where only a LO model was available. Besides tt̄+jets, we need to model the production of W
or Z/γ∗ bosons with additional jets (denoted W/Z+jets or commonly V+jets), which is simulated
using MG5_aMCNLO(v. 2.2.2) [141] and diboson production (WW, WZ, ZZ), simulated using Pythia
8 [142]. Throughout, we assume the value of the top quark mass to be mt ' 172.5 GeV/c2 and of
the Higgs boson to be mH ' 125 GeV/c2. In order to describe the substructure of the protons via
the parton density functions, we use the PDF parametrisation provided by NNPDF3.0 and Pythia
8 for showering and hadronisation.

In order to model the production of hadrons, the parameters in the Pythia 8 model have
been tuned to Tevatron, LEP and LHC data [143, 144]. It has been observed that the default
tune in Pythia 8 does not reproduce the observed number of jets in data in the tt̄+jets domi-
nated region [145]. Therefore, CMS has created a custom tune where the αISR parameter, which
controls the amount of initial-state radiation, and hdamp parameter, which suppresses real emis-
sions in POWHEG, have been adapted to reproduce the spectrum of the number of jets observed at
CMS [145]. This MC tuning has been carried out on

√
s = 8 TeV data and significantly improves

the modelling of the jet multiplicity.

sample generator events cross-section
tt̄H(→ bb̄) POWHEG 3 845 992 0.293 pb [146]

tt̄H(→ non bb̄) POWHEG 3 981 250 0.215 pb [146]
tt̄+jets (SL) POWHEG 152 720 952 365.45 pb [147]
tt̄+jets (DL) POWHEG 79 092 400 88.34 pb [147]
tt̄+W(→ `ν) MG5_aMCNLO 5 280 565 0.2043 pb [148]
tt̄+W(→ qq′) MG5_aMCNLO 833 298 0.4062 pb [148]

tt̄+Z(→ ``, νν) MG5_aMCNLO 13 908 701 0.2529 pb [148]
tt̄+Z(→ qq′) MG5_aMCNLO 749 400 0.5297 pb [148]

WW Pythia 8 7 981 136 118.7 pb [149]
WZ Pythia 8 1 988 098 47.13 pb [150]
ZZ Pythia 8 3 995 828 16.523 pb [150]

single top (tW) POWHEG, 4FS 992 024 35.85 pb [151]
single (anti)top (tW) POWHEG, 4FS 998 276 35.85 pb [152]

single top (t) POWHEG, 5FS 5 993 676 136.02 pb [152]
single (anti)top (t) POWHEG, 5FS 3 928 063 80.95 pb [152]

single top (s), (W→ `ν) MG5_aMCNLO, 4FS 3 928 063 3.70 pb [152]
W+jets (W→ `ν) MG5_aMCNLO 29 705 748 61526.7 pb [153]

Z→ ``+ jets,m`` < 50 GeV MG5_aMCNLO 35 291 566 18610 pb [154]
Z→ ``+ jets,m`` ≥ 50 GeV MG5_aMCNLO 145 803 217 5765.4 pb [154]

Table 5.1: The MC samples used in the tt̄H(→ bb̄) analysis. For the simulation of the parton shower
and subsequent hadronisation, Pythia 8 is used for all samples, whereas POWHEG or MG5_aMCNLO are used
for the hard process. The single top tW-channel process is simulated in the four flavour scheme (4FS),
whereas other processes use the five flavour scheme (5FS) with a massless b quark being present in the
proton.

We list the details of the MC samples in table 5.1 and of data in table 5.2. In order to compare
simulation to data, the simulated events are weighted according to the integrated luminosity and
the predicted cross sections, which are taken from the best available inclusive calculations. In
particular, the tt̄H cross section is known at NLO accuracy [155, 156, 157, 158, 159]. The Higgs
boson branching fraction for H → bb̄ is affected by radiative corrections that are known up to
N4LO (QCD) and NLO (electroweak), resulting in an uncertainty of about 1-2% [160, 161, 146].
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5.1 Data and simulation

dataset trigger threshold data taking period integrated luminosity
single muon 24 GeV Run B-H, 2016 35.9 fb−1

single electron 27 GeV Run B-H, 2016 35.9 fb−1

dimuon 17 (8) GeV Run B-H, 2016 35.9 fb−1

dielectron 23 (12) GeV Run B-H, 2016 35.9 fb−1

muon, electron 23µ (12e), 23e (8µ) GeV Run B-H, 2016 35.9 fb−1

Table 5.2: The data samples used in this analysis. We list the transverse momentum thresholds in the
trigger for the leading (subleading) charged leptons.

The inclusive cross section for tt̄+jets production is known at NNLO accuracy and includes soft
gluon resummation to next-to-next leading log (NNLL) [147]. The cross-sections of the minor
backgrounds are known to at least NLO, as summarised in table 5.1.

In addition to the hard interaction and the subsequent showering and hadronisation, events
from additional pp interactions within the same bunch crossing (pileup) are superimposed on the
simulated event for all processes. The multiplicity distribution of these additional pileup events
is reweighted to match the observed number of interactions in data. Furthermore, we correct the
MC simulation with additional data-driven correction factors for b tagging and lepton efficiencies
as described in section 5.3.3.

5.1.1 Modelling of tt̄+jets
The main background in the tt̄H(→ bb̄) search is the QCD production of tt̄+jets, for which we are
using an NLO model based on POWHEG. This process is affected by considerable scale uncertainties
at the level of 70-80% at LO and reduced to about 20-30% at NLO [162]. Furthermore, there are
multiple scales present in the tt̄+bb̄ process, with a large hierarchy between the scale set by the top
quark mass and the mass of the bottom quark pair. Despite the available NLO QCD corrections,
at high jet multiplicities, the differential distributions are modelled only at LO or parton shower
accuracy, depending on the momenta and multiplicity of jets. Therefore, the residual uncertainties
in tt̄+heavy flavour production are significant in terms of the differential distributions, with the
differences of up to 100% between the POWHEG and MG5_aMCNLO MC models in variables sensitive
to parton shower and quark mass effects [146]. In general, to have an effective treatment of high-
multiplicity events in a precise tt̄H(→ bb̄) measurement, an improved theoretical understanding of
the underlying QCD process for pp→ tt̄bb̄, along with possible interference effects with the signal
process is necessary [163].

In the absence of an experimentally verified model that accurately describes these high-multiplicity
and heavy flavour processes, we account for these modelling uncertainties by assigning conservative
uncertainties on the theoretical modelling. We subdivide the tt̄+jets sample based on the generator-
level flavour of additional jets, as the underlying processes that give rise to these different flavour
categories are different. In particular, it has been shown that tt̄ + bb̄ can be significantly affected
by the modelling of gluon splitting to collinear bottom quarks [164]. We distinguish between the
following tt̄+jets sub-processes:

• tt̄ + bb̄, where two additional bottom jets are created from one or more b hadrons,

• tt̄ + b, with only one additional bottom jet, which can arise from a process with two b
hadrons, with one b hadron being out of acceptance,

• tt̄ + 2b, where jets from two b hadrons merge to produce one resolved bottom jet, which can
arise from collinear gluon splitting,

• tt̄ + cc̄, if there are no additional bottom jets but at least one charm flavoured jet,

• tt̄ + LF(light flavour), in case there are no bottom or charm flavoured jets.

The jet flavour is assigned using so-called ghost clustering, where simple geometrical matching
between partons and jets is superseded by clustering the generator-level partons and hadrons
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Figure 5.2: The modelling of the leading jet transverse momentum (a) and the invariant mass of the
closest b jet pair (b) for the various tt̄+jets sub-processes based on the tt̄+jets POWHEG simulation from
events with at least two jets with pT > 30 GeV, |η| < 2.5.

along with the detector-level jet constituents using standard jet algorithms. Information from
the generator-level decay chain is used to assign the flavour of the jet according to the parton
that gave rise to that jet [165], such that only hadrons that did not arise from the decay chain
of a top quark are used in this categorisation. The aim of this splitting is to have experimental
constraints on the uncertainties of the various tt̄ sub-processes separately, effectively relaxing some
of the modelling assumptions. We illustrate the differences in the modelling of these processes
in fig. 5.2 by comparing the distributions of leading jet transverse momentum (pT ) and the mass of
the geometrically closest b jet pair mbb̄, with significant differences between distributions visible
for these processes.

5.2 Event reconstruction and object identification

We use particle flow to reconstruct events from particle candidates based on signals from all sub-
detectors, as described in section 2.2.7. This allows us to perform the analysis at the level of
physics objects, namely, jets, charged leptons and MET from neutrinos, which arise from the
decay of the top quark pair. A top quark decays almost exclusively through t→W+b, such that
the leptonic or hadronic decay of the W-boson, which happen with a branching ratio of 33% or 67%
respectively, determines the final state. In the case of the semileptonic decay, which happens with a
total branching ratio of 44%, we expect one charged lepton (e±, µ±), MET from the corresponding
neutrino, at least six jets, out of which four arise from bottom quarks and two from light quarks from
the W-boson decay. In the dileptonic decay of the top quark pair, which happens with a branching
ratio of ' 11%, we expect two charged leptons of opposite sign, MET from neutrinos and at least
four jets, all of which arise from bottom quarks. The fully hadronic decay of the top quark pair
is treated in a separate analysis at CMS, as the background processes and required triggers are
significantly different between the leptonic and hadronic channels. The hadronic analysis [166]
makes use of a discriminator based on matrix elements between the tt̄H signal and the multi-jet
background that is similar to the method developed for the leptonic channel. The possible final
state configurations are shown in fig. 5.3.

5.2.1 Charged leptons

The leptonic decay of at least one of the W-bosons from top decay is required in order to trigger
the event at the HLT. In order to suppress leptons from the multi-jet QCD background, the
charged leptons are required to be sufficiently isolated from hadronic activity using an isolation
variable, which is computed within a cone of radius ∆R around the lepton direction (defined by
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Figure 5.3: The semileptonic (left) and dileptonic (right) final states of tt̄H(→ bb̄).

the track) from the primary vertex as shown in eq. (5.1) for muons and eq. (5.2) for electrons.
In order to compute the isolation, we sum over the transverse momenta of all particle candidates
(pc.h.T for charged hadrons, En.h.T for neutral hadrons, EγT for photons) excluding the lepton itself and
subtracting the neutral component from pileup events based on either the average pile-up energy
(ρ) and effective area (A) for electrons or pile-up associated charged hadrons for muons [105].
The pre-factor 1/2 for the pile-up component for muons is used to account for the approximate
charged-to-neutral fraction in the hadronisation of pile-up interactions [167].

Furthermore, in order to suppress leptons from non-prompt decays, we apply identification
(ID) criteria based on various reconstruction parameters for the leptons. For muons, we apply the
tight ID, which is a cut-based selection that suppresses decays in flight and is based on properties
of the global track fit, number of hits in the pixel detector, tracker and muon chambers and
sufficient proximity to the primary vertex [94, 168]. For electrons, the ID is based on a multivariate
discriminator combining track-to-cluster matching observables, super cluster structure and cluster
shapes [88, 169].

We summarise the lepton selection criteria in all the considered channels in section 5.2.1 and
describe the event selection in terms of leptons further in section 5.3.1.

Isoµ =
∑

∆R<0.4

pc.h.T + max

(
0,

∑
∆R<0.4

[En.h.T + EγT −
1

2
pPU
T ]

)
(5.1)

Isoe =
∑

∆R<0.3

pc.h.T + max

(
0,

∑
∆R<0.3

[En.h.T + EγT − ρA(η)]

)
(5.2)

channel trigger offline pT |η| isolation
µ± pT > 24 GeV pT > 25 GeV |η| < 2.1 Iso/pT < 0.15
e± pT > 27 GeV pT > 30 GeV |η| < 2.1 Iso/pT < 0.15

e±e∓ pT > 23(12) GeV pT > 25(15) GeV |η| < 2.1 Iso/pT < 0.15
e±µ∓ pT > 23e(8µ) GeV pT > 25(15) GeV |η| < 2.4 Iso/pT < 0.25µ(0.15e)
µ±e∓ pT, > 23µ(12e) GeV pT > 25(15) GeV |η| < 2.4 Iso/pT < 0.25µ(0.15e)
µ±µ∓ pT > 17(8) GeV pT > 25(15) GeV |η| < 2.4 Iso/pT < 0.25

Table 5.3: The selection and ID criteria for the charged leptons.

5.2.2 Jets

As the signal process is expected to produce between four to six jets in the leading order description
and additional jets due to QCD radiation and pileup, an accurate reconstruction of jets is critical
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5 Search for top-quark pair associated Higgs production

for this analysis. We use the anti-kT clustering algorithm [41] in the FASTJET implementation [170]
with a distance parameter ∆R = 0.4 to reconstruct jets from particle flow candidates [171, 172,
173] and use the CMS particle flow (PF) jet ID algorithm, described in section 2.2.7, to reject
reconstruction failures and noise. The noise rejection works on the basis of cuts on jet energy
fractions from various types of PF candidates, namely muons, electrons, photons, charged hadron
and neutral hadron candidates and has a noise rejection of around 99% [174].

Charged hadron subtraction

Charged particles from pileup interactions are removed from clustering via the process of charged
hadron subtraction (CHS). As CHS relies on the reconstruction of tracks and the association
of charged hadrons to tracks, the procedure is applied within the tracker volume (|η| < 2.5).
We choose the leading primary vertex (PV) as the one that has the highest magnitude of total
track transverse momentum squared (

∑ |ptrack
T |2), with the rest of the PVs passing certain quality

criteria as subleading PVs. Charged hadrons that are associated to tracks that are compatible with
subleading PVs are removed. The subtraction procedure reduces the amount of jets arising from
pileup from about 20% to 5% in the tracker region and also improves the momentum resolution
and angular resolution (∆R ' 0.01) of jets [175].

Jet energy scale calibration

The experimentally measured energies of the jets have to be calibrated in terms of jet energy scale
(JES) and resolution (JER) in both data and simulation. This is done using jet energy corrections
(JEC), which correct for offset energy from pileup, the detector response based on simulation, the
residual differences between data and simulation based on well-understood channels such as di-jet
production, and the detector response to jet flavour.

The presence of pileup interactions generates a diffuse energy component that results in an
energy offset in the jets. This offset correction is estimated using simulation by comparing jets in
a MC sample without pileup events to the same simulation overlayed with pileup, geometrically
matching them to the same underlying jet on the generator level [97]. An additional scale factor
between data and simulation is extracted from zero-bias data using the random cone method [176].

The detector response is defined as the ratio between the reconstructed jet and a geometrically
matched particle-level jet, averaged over a sample of jets: R = 〈pT 〉/〈pT,particle〉. It is estimated
using a detailed model of the detector geometry, alignment and calibration, implemented in GEANT4
and evaluated in bins of particle-level jet momentum and reconstructed jet η. The corrections bring
the response to a deviation of approximately 1% from unity based on simulations. A residual data
to simulation correction scale factor is applied on data based on transverse momentum balance from
dijet, Z/γ∗+jets and multi-jet events, with the momentum projection fraction (MPF) with respect
to the missing transverse momentum being used as an alternative derivation for the corrections.
These relative corrections rely on comparing the jet under calibration (probe) to a reference object
(tag) and are of the order of a few percent in the central region considered in this analysis [176,
97].

The jet flavour response is estimated using simulation by taking the difference between the jet
response for quark and gluon jets as predicted by Pythia 8 and HERWIG++. The magnitude of the
flavour response is generally within a few percent, with differences between the flavours arising from
fragmentation, where gluons fragment the most into soft particles that may remain unreconstructed
and thus have the lowest response, and particle composition, with the neutral hadronic component
having the largest effect. The flavour corrections are validated in Z+b jet data and the residual
correction between data and simulation is found to be consistent with unity [176].

Jet energy resolution

In contrast to jet energy scale, which is known with a total uncertainty better than 3% over the
relevant phase space, the jet energy resolution is known to around 10 − 20%. The resolution
can be determined using pT balance as for JES, but measuring the width instead of the mean
of the response distribution. Both Z/γ∗+jet and dijet events are used to determine the JER
response [176]. In the implementation of the MEM, we also use approximate jet resolution functions
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derived from simulation in order to account for detector effects in the phase space integral as
explained in section 4.3.1.

5.2.3 B tagging

Since the tt̄H(→ bb̄) signal is characterised by the presence of four bottom quarks in the final
state, with two arising from the top quarks and two from the Higgs boson decay, an accurate
identification of b jets arising is important in this analysis. We rely on the combined secondary
vertex algorithm (CSVv2) [102] to identify b jets. The CSVv2 algorithm uses secondary vertex
properties such as the impact parameter along with track-based lifetime information to create a
robust combined discriminator ξ optimised to distinguish between jets arising from bottom quarks
and light quarks using supervised learning. In Run 2 of the LHC, the CSVv2 algorithm has been
improved with a new vertex reconstruction algorithm, as well as using artificial neural networks
instead of a likelihood method to combine the input variables, such that correlations between the
inputs are taken into account, as described in chapter 3.

The threshold value of the b tagging discriminant, above which a jet is considered to be b tagged
is chosen such that the efficiency of misidentifying jets arising from light quarks (u,d,s) or gluons as
b jets would be around ' 1%. This corresponds to an efficiency of ' 70% of correctly identifying
bottom quarks and of around ' 20% for mis-identifying charm quarks. This threshold value is
denoted the CSVv2 medium working point (CSVM) and an event where N jets pass this threshold
contains N b tags.

B tagging likelihood

We further use the values of the per-jet b tagging discriminants ξ = [ξ1, ξ2, . . . , ξNj ] with Nj
being the number of jets to construct a per-event likelihood discriminator BLR(ξ) between the
hypotheses that the event contained four bottom quarks (“4b”) or two bottom quarks (“2b”).

First, we use the probability density that the k-th jet has a discriminator value ξk assuming
that it originated from a bottom quark (light quark), f(ξk|b) [f(ξk|l)], to define a likelihood for
the given observed discriminator values ξ to result from M bottom quarks BL(ξ|Mb), as shown
in eq. (5.3).

BL(ξ|Mb) =
∑

i∈CM,N

[∏
k∈bi

f(ξk|b)
∏
k∈li

f(ξk|l)
]

(5.3)

The sum in eq. (5.3) is performed over all the combinations CM,N of associating M jets out
of N to bottom quarks and the rest to light quarks, such that bi (li) refers to the M (N −M) jets
associated to bottom quarks (light quarks) in the i-th combination. There are N !

(N−M)!M ! unique
combinations to choose M jets to be b tagged out of N jets. For example, for M = 4 and N = 6,
the combinations CM,N are formed by dividing up the jet indices k = 1 . . . 6 between the b quark
and light quark hypotheses, with one combination out of 15 being bi = {1, 2, 3, 4}, li = {5, 6}.

The likelihoods for hypotheses with a particular number of bottom quarks are then used to
construct a likelihood ratio discriminator BLR(ξ) (eq. (5.4)) that is optimised to suppress the tt̄+
LF background with two bottom quarks in favour of the tt̄H(→ bb̄) signal with four bottom quarks.

BLR(ξ) =
BL(ξ|4b)

BL(ξ|4b) + BL(ξ|2b)
(5.4)

We assess the performance of this discriminator in terms of tt̄H(→ bb̄) vs. tt̄+LF discrimination
using simulation. In fig. 5.4, we see that the BLR discriminant improves over a fixed cut of ≥ 4 jets
passing the CSVv2 medium working point (NCSVM ≥ 4) by about 50% (εtt̄+LF = 0.04%→ 0.022%)
in terms of background rejection at the same signal efficiency (εtt̄H(→bb̄) ' 7%).

Furthermore, we have studied the efficiency of the BLR in correctly reducing the number of
permutations in the MEM by assigning jets to be b tagged or untagged. For this, we evaluated the
fraction of events where the final jets can be correctly matched to quarks from the hard interaction
as a function of BLR. We see in fig. 5.5 that the likelihood discriminator is positively correlated
with the probability that all the quarks have been matched to jets, where around 50% of bottom

77



5 Search for top-quark pair associated Higgs production

0.0 0.2 0.4 0.6 0.8 1.0
 (CSV)

10 3

10 2

10 1

100

fra
ct

io
n 

of
 e

ve
nt

s
SL, Nj 4

tt+h(bb)
tt+b
tt+cc
tt+ll

(a) Simulated shape of the discriminant.

0.0 0.1 0.2 0.3 0.4 0.5
tt+H(bb) efficiency

10 4

10 3

10 2

10 1

100

tt+
je

ts
 (l

ig
ht

) e
ffi

cie
nc

y

SL, Nj 4
 CSVv2
 cMVAv2

4x CSVM
3x CSVM
4x cMVAM

(b) Expected performance of the discriminant.

Figure 5.4: Simulated distribution and expected performance of BLR discriminant in the SL channel,
requiring at least four good jets. On (a), we show the simulated shapes of the discriminant for signal (tt̄H(→
bb̄)) and the various tt̄+jets backgrounds. On (b), we compare the efficiency to select tt̄H(→ bb̄) and tt̄ +
LF events. We see that the BLR discriminant compares favourably to a fixed cut on number of b tags.
The BLR discriminator defined with the cMVAv2 b tagger algorithm further improves the performance
over the full range.

quarks from top decay, 40% of bottom quarks from Higgs decay and around 20% of the light
quarks from the W boson decay have been reconstructed as jets at BLR ' 0.8. Furthermore, we
see a positive correlation between the likelihood discriminator and the probability that the highest-
probability permutation in the sum in eq. (5.3) with the 4 bottom quark hypothesis corresponds to
the bottom quarks from top or Higgs decay. In other words, the likelihood discriminator successfully
tags the bottom quarks on an event-by-event basis.

The likelihood ratio as defined here ignores the differences in f(ξk|b) and f(ξk|c), meaning that
in the case of W→ cs̄(d̄) decays, the discriminator is suboptimal. We have investigated extending
this likelihood to also account for the possibility of such decays by a straightforward extension to
BL(ξ|Mb 1c). However, we have found that the additional combinatorial complexity suppresses
any increased discrimination power and further progress would likely require methods that are
better able to deal with the combinatorial problem using additional information, for example jet
kinematics. We use this b tagging likelihood ratio as a discriminator between the various tt̄+jets
sub-processes, as well as to select the bottom quark candidates in the application of the MEM, as
described in section 5.3.2. We have additionally studied whether switching to the new combined
multivariate b tagging algorithm (cMVAv2) introduced in chapter 3 would improve the analysis.
Since the irreducible tt̄ + bb̄ background contains the same number of b jets as the tt̄H(→ bb̄)
signal, improved b tagging can only reduce contribution from the background components with
light or charm quarks, which are inherently less problematic than tt̄ + bb̄. We find that although
there is a small increase in the signal rate by switching the b discriminator, it is not sufficient to
motivate a re-optimisation of the analysis at this stage.

B discriminator shape calibration

As we have used the detailed b discriminator shape information in constructing the b tagging
likelihood ratio, we must experimentally calibrate the full range of this observable using data.
This is accomplished by deriving a reweighting factor between data and simulation that depends
on the jet b discriminator value, jet kinematics and flavour using a tag-and-probe method. In this
approach, the tag jet is required to pass the medium operating point that has been described earlier
and the discriminator distribution of the probe jet is corrected by reweighting the MC simulation.
In order to extract the weight for the b jets, the procedure relies on dilepton tt̄+jets events with
the contribution from light jets and backgrounds subtracted using simulation, whereas for the scale
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Figure 5.5: Estimation of the fraction of events where the bottom quarks from the top quark, the Higgs
boson and the light quarks from the W boson are reconstructed as jets in the final state on (a). We study
the event-level b tagging efficiency on (b), where we plot the fraction of events where the highest-likelihood
permutation correctly assigned the bottom quarks to jets with respect to all events where the quarks were
reconstructed as jets without considering tagging.

factor for light jets, Z+jets events are used. The procedure is iterative, as the scale factor for light
jets is required for the extraction of the b jet scale factor and vice versa [177, 99]. The systematic
uncertainties from this reweighting method are described in section 5.3.3.

Missing transverse energy

The leptonic decays of the W boson produce neutrinos, which are only partially reconstructed by
the detector as MET, defined as the negative sum of all the momenta of the reconstructed particles
in the transverse plane. In the SL channel, we can directly associate the MET with the transverse
momentum of the neutrino through the modelling of the recoil as described in section 4.3.1 whereas
in the DL channel, only the total momentum of both neutrinos is constrained by the MET.

5.3 Analysis

5.3.1 Event selection and categorisation

First, the large multi-jet QCD background is reduced to negligible levels by requiring that at least
one of the top quarks in the tt̄H(→ bb̄) process decays leptonically. We divide events into two
exclusive lepton categories: SL and DL, based on the multiplicity of the reconstructed charged
leptons passing the quality cuts described in section 5.2.1. This is achieved by vetoing events with
any additional leptons passing loosened quality criteria. We further suppress the γ∗ background
by requiring m`` > 20 GeV and Z+jets in the DL categories and reject events around the resonant
Z boson peak with 76 GeV < m`` < 106 GeV, where m`` is the invariant mass of the dilepton
system. Furthermore, the leptons are required to have opposite charge. In the DL same-flavour
categories, we require MET > 40 GeV. We do not explicitly distinguish between cases where the
top quark decays to τ leptons, although these events can still pass the selection in case the τ lepton
decays leptonically and are considered as signal.

Events from tt̄H(→ bb̄) have a large number of jets and b tags compared to the V+jets back-
grounds. Therefore, we require the presence of at least four jets passing the quality criteria (sec-
tion 5.2.2), out of which at least three must be b tagged according to the medium working point
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Figure 5.6: The expected signal and background yields in the semileptonic (SL) and dileptonic (DL)
analysis categories. We also show the expected signal over background ratio S/

√
B. As can be seen, the

expected signal yield is quite low compared to the predicted background, even in the most high-purity
categories of SL ≥ 6 jets (j), ≥ 4 b tags (t) and DL ≥ 4 jets, ≥ 4 b tags.

(section 5.2.3). This brings us to the tt̄+jets dominated region, where we further distinguish
between six categories in the SL channel

• ≥6 jets, ≥4 b tags; 5 jets, ≥4 b tags and 4 jets, 4 b tags, that are the most signal-enriched
categories,

• ≥6 jets, 3 b tags; 5 jets, 3 b tags and 4 jets, 3 b tags, that contain a significant amount of
tt̄ + cc̄ and tt̄ + bb̄,

and two categories in the DL channel

• ≥ 4 jets, ≥ 4 b tags,

• ≥ 4 jets, 3 b tags,

resulting in a total of eight exclusive categories, as shown in fig. 5.6.
We use the MEM as a tt̄H(→ bb̄) to tt̄ + bb̄ discriminator in the categories with ≥ 4 b tags

as these categories are enhanced in the signal fraction and have been shown to have an excellent
discriminator performance for the MEM. The categories with three b tags are retained as con-
trol regions where we determine the tt̄+jets background rates by fitting the b tagging likelihood
discriminator. We now turn to the description of the signal extraction using a template fit.
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Figure 5.7: An illustration of the maximum likelihood template fit. On the left, we show a fictitious case
of a signal and background model of a sensitive discriminator compared with data. The normalisations
of the signal and background components are adjusted separately so as to maximise the likelihood of
the combined signal plus background model giving rise to the data. On the right, we show a realistic
but simplified case, where the MEM discriminator distribution is compared between the total signal and
background processes, along with the data, in the most signal-rich semileptonic ≥ 6 jets, ≥ 4 b tags
category. In the latter case, the overall signal and background yields are as predicted by MC simulation,
hence the signal to background ratio is realistic and the discrimination between the background only
model and the signal plus background model is much more difficult. We also show the approximate total
systematic uncertainty on the signal and background distributions, neglecting the sources of uncertainty
that do not change the discriminator shape. In practice, the fit is carried out simultaneously over all the
analysis categories.

5.3.2 Signal extraction

The likelihood discriminant based on b tagging enhances the tt̄+heavy flavour component, but the
cross-section of tt̄+bb̄ is still an order of magnitude larger than that of tt̄H(→ bb̄). Thus, a simple
determination of the signal cross-section or the upper limit on the signal strength modifier µ from
the comparison of predicted and observed event counts does not result in significant sensitivity.
Furthermore, we cannot directly reconstruct the resonant peak of the H→ bb̄ decay as a natural
discriminant between the signal and non-resonant background. Even though the width of the
SM Higgs boson is relatively small compared to detector resolution (ΓSM = 4.07 × 10−3 GeV),
the presence of multiple additional bottom quarks due to top decay in the final state creates a
combinatorial self-background in the form of an ambiguity in choosing the candidate jets for the
H→ bb̄ decay. An estimator for the Higgs candidate invariant mass built from randomly selected
jet pairs results in a much broader distribution compared to experimental resolution, whereas
choosing the pair of jets that would give a mass closest to mH would cause also the background
to exhibit a signal-like peak.

In order to determine the signal strength modifier, we thus carry out a maximum likelihood
template fit, where we rely on differences between the signal and background processes in sensitive
differential cross-sections which are predicted using MC simulation in the form of one-dimensional
histogram templates. As illustrated on fig. 5.7, we determine the normalisation scale factors for the
signal and background processes such that the likelihood of the signal plus background model to
give rise to the observed data distribution is maximised. Therefore, the sensitivity of the analysis
is directly driven by the expected signal to background separation in these sensitive variables, as
well as the susceptibility of these predictions to systematic uncertainties. The details of the fit are
further described in section 5.3.9.

We use the MEM discriminant, introduced in chapter 4, to compute theory-motivated weights
Ptt̄H(→bb̄) and Ptt̄+bb̄ for each candidate event. We construct a signal-to-background discriminant
Ps/b based on the likelihood ratio of these weights, as described in section 4.4, which based on the
Neyman-Pearson lemma, described in section 4.1, is the optimal test statistic between the signal
and background hypotheses. As an improvement over the search for tt̄H(→ bb̄) performed by the
CMS experiment in Run I [122], we use the MEM discriminant also in categories which are not fully
reconstructed, but still contain a large amount of signal, namely five-jet and four-jet categories in
the SL channel. The details of the additional MEM hypotheses are described in section 4.3.4. We

81
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list the discriminants that have been used in the different categories in table 5.4.

Table 5.4: The analysis categories and the discriminators used in those categories.
category discriminant

SL ≥ 6 jets, ≥ 4 tags MEM SL 2W2h2t

SL ≥ 6 jets, 3 tags The b tagging likelihood ratio
SL 5 jets, ≥ 4 tags MEM SL 1W2h2t

SL 5 jets, 3 tags The b tagging likelihood ratio
SL 4 jets, ≥ 4 tags MEM SL 0W2h2t

SL 4 jets, 3 tags The b tagging likelihood ratio
DL 4 jets, ≥ 4 tags MEM DL 2h2t

DL 4 jets, 3 tags The b tagging likelihood ratio

We use the tt̄+bb̄ matrix element as a representative background diagram in all categories. This
gives the best separation in the most signal-rich categories against tt̄+bb̄ and is further motivated
by simulation, where we see that using this process as background still achieves a high rate of
separation in categories enriched in other tt̄+jets sub-processes. As an optimisation, considering
additional background hypotheses in different categories in the future is expected to improve the
signal-to-background discrimination at the cost of computational complexity.

As the b tagging likelihood ratio method is optimised to identify the set of jets that are most
compatible with arising from four bottom quarks, we further augment the MEM by assuming that
the bottom quarks need to be considered only among those four jets, as explained in section 4.3.4.
This means that we have exactly four candidates for the bottom quarks from H → bb̄ and t →
Wb decay, whereas the remaining jets are assumed to arise from W → qq′ or from unspecified
sources.

Both of these discriminators are complex multivariate functions based on quantities which have
significant modelling uncertainties affecting the shapes of the distributions. Therefore, a realistic
description and propagation of the systematic uncertainties is crucial in the interpretation of data.

5.3.3 Systematic uncertainties

Among the experimental uncertainties, the dominant ones are uncertainties on the jet energy
scale and resolution corrections (section 5.3.4) and the reweighting of the b tagging discriminant
(section 5.3.5). Both of these can affect the predicted yields of all the processes, since they change
the selection efficiency, as well as the shapes of the final discriminants. In case the source of
an uncertainty is the same across several categories, the nuisance parameters associated with the
uncertainties are treated as fully correlated, otherwise, the uncertainties are treated as uncorrelated
in the fit.

Concerning theory systematics, the uncertainties on the modelling of the tt̄+jets background are
the ones with the largest impact on the measurement. As introduced in section 5.1.1, the tt̄+jets
POWHEG model we currently use in the analysis treats the tt̄ + bb̄ process only at leading order
accuracy, where the bb̄ pair is generated from gluon splittings using a parton shower, such that
we have considerable additional theoretical uncertainties on the modelling of tt̄ + bb̄, as will be
described in section 5.3.7.

We give a detailed overview of the most important experimental and theoretical uncertainties
along with their estimation in the next sections. The full list of systematic uncertainties along
with the assumed priors is shown in table 5.5.

5.3.4 Jet energy correction uncertainties

We apply jet energy scale (JES) and resolution (JER) corrections between data and simulation,
as described in section 5.2.2. Thus, we need to understand the effect of the uncertainties on these
corrections. In Run 2, we consider various uncorrelated sources of jet energy scale correction
uncertainties with their corresponding correlations, as opposed to a single bulk JES uncertainty as
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uncertainty normalisation shape processes prior
JES (26 sources) yes yes all Gaussian, < 5%

JER yes yes all Gaussian, < 1%
b tagging (9 sources) yes yes all Gaussian, 0− 20%

pileup yes yes all Gaussian, 0− 5%
lepton ID yes yes all Gaussian, ' 1%

lepton isolation yes yes all Gaussian, ' 1%
luminosity yes no all log-normal, 2.4%

limited MC statistics no yes all bin-by-bin Poisson
tt̄+jets ISR, FSR yes partly tt̄+jets log-normal, 0-15%

tt̄+jets tune, hdamp yes partly tt̄+jets log-normal, 0-15%
tt̄ + bb̄ norm. yes no tt̄+jets log-normal, 50%
tt̄ + b norm. yes no tt̄+jets log-normal, 50%
tt̄ + 2b norm. yes no tt̄+jets log-normal, 50%
tt̄ + cc̄ norm. yes no tt̄+jets log-normal, 50%
PDF (gg) yes no tt̄H, tt̄+jets log-normal, 4%
PDF (qq’) yes no W+jets log-normal, 2%
PDF (qg) yes no single top log-normal, 3%
µR, µF scale yes yes tt̄+jets Gaussian

scale uncertainties in norm. yes no primarily tt̄H log-normal

Table 5.5: Systematic uncertainties in the tt̄H(→ bb̄) analysis. We list whether a particular source of un-
certainty changes the predicted normalisation of processes and whether it has an effect on the discriminator
distributions, i.e. the shapes. For each uncertainty, we also show for illustrative purposes the size of the
prior uncertainty in a relevant variable, e.g. jet momentum spectrum for JES, and the distributions used
to model the nuisance parameters associated to each uncertainty. We further distinguish between experi-
mental uncertainties, which affect all processes, and theoretical uncertainties that are specific to particular
processes. Although the tt̄+jets ISR, FSR, MC tune and hdamp modelling uncertainties affect also the
discriminator distributions, due to limited MC simulation statistics, we only account for the normalisation
effect as a function of jet multiplicity, as further described in section 5.3.7, therefore these uncertainties
are listed as having a partial effect on the shape.

was done for this analysis in Run I. This significant advancement has resulted from an improved
modelling of the detector performance and better calibration techniques developed with more data.
By treating the various sources of JES uncertainties independently, the assumptions that allow the
profile likelihood fit to constrain the combined JES uncertainty significantly in Run I are thus
relaxed and the final uncertainty is a more realistic estimate of the true uncertainty.

The magnitude and correlation of the uncertainties on JES and JER are determined in a
dedicated CMS analysis and are provided as a vector of per-jet corrections with pT and η dependent
correlations [97]. The most important groups of correction uncertainties are the following:

• Pileup offset, which results from extra energy deposited in jets from additional pp interactions
within the same bunch crossing (in-time pileup) or due to the finite signal decay time in
the calorimeters (out-of-time pileup). The uncertainty for this source results from the η-
dependent scale factor used to correct the offset distribution measured in simulation.

• Relative η-dependent corrections, which calibrate the forward regions of the detector with
respect to the central region. Uncertainties of this type arise from jet energy resolution and
from the modelling of initial and final state radiation (ISR+FSR).

• Uncertainties on the absolute energy scale, which are derived using Z/γ+jet and multijet
data. The energy scale uncertainties are driven by the muon momentum scale and the single
pion response in the HCAL. Furthermore, the uncertainties in fragmentation are assessed in
a comparison of the PYTHIA and HERWIG++ MC models.

• Uncertainties in the modelling of the detector response for jet flavour, which are assessed
using simulation and are largest for gluon jets.
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• Finally, due to radiation damage, there is a residual time-dependent uncertainty in the scale
corrections, which is estimated using dijet events in different run periods.

These five broad groups factorise into approximately 26 independent sources. In order to
account for the JES scale uncertainties in the analysis, we propagate the uncertainties in jet
energy scale and resolution corrections to the jet momenta and all the event-level observables
that are derived from them, such as the jet and b tag multiplicities, by changing the jet energy
scales and resolutions by one standard deviation up and down from the nominal values. This is
done separately for all the sources so that we can fully account for the correlations between the
various sources. Thus, we are able to account for both the changes in efficiency (normalisation)
and discriminator shape in the final analysis categories. We find that the normalisation effects are
of the order of 0-4% for all JES and JER sources for the SL channel and around 0-1% in the DL
channel, with the largest variations resulting from the jet flavour response modelling.

In order to propagate the uncertainty to high-level multivariate observables such as the MEM
discriminator, they need to be recomputed using the varied jets. We use the approximate MEM
vector integration technique for this as described in section 4.3.8. In addition to uncertainties in the
jet energy scale corrections, we also consider uncertainties on the jet energy resolution corrections.
In the tracker acceptance region, the relative JER uncertainty is around 2-4%, depending on the
jet pseudorapidity |η|. The JER uncertainty is propagated by shifting the JER scale factor up and
down by one standard deviation corresponding to the uncertainty, thus it is fully deterministic.
The overall effect of the JES and JER uncertainties on the leading jet transverse momentum
distribution is shown in fig. 5.8. These uncertainties will mostly affect the predicted yields in our
final analysis categories.

5.3.5 b tagging systematic uncertainties
Due to the high expected number (≥ 4 in the signal regions) of b tagged jets in the tt̄H(→ bb̄) final
state, this analysis is sensitive to uncertainties in b tagging, which arise from the MC modelling
of the input variables used in the construction of the multivariate b tagging discriminator. As we
have described in section 5.2.3, we correct for mis-modelling in the b tagging discriminator shape
using a tag and probe method, such that the detailed b discriminator shape can be used in further
template fitting. The effect of this shape correction is shown in fig. 5.9, where we see that the
correction improves the description by the MC, with the corrected distribution agreeing with data
within the systematic uncertainties.

The uncertainties of this correction include the propagation of jet energy scale uncertainty,
which affects the determination of the correction through changes in efficiency and the discriminator
value. Furthermore, simulation is used to subtract the non-relevant jet flavour components in
determining the scale factor for bottom (light) jets. For the scale factor for light jets, the fraction
of bottom (charm) jets is varied within 20% of the MC prediction in the Z+jets simulation used to
determine the scale factors. Similarly, for the extraction of the b jet scale factor, the light flavour
component in the tt̄+jets dileptonic sample arises from additional radiation and is estimated to be
' 20% [99].

As the b discriminator scale factor is determined in bins of the discriminator value, statistical
fluctuations in bins with a low number of data and simulated events introduce an uncertainty on
the final scale factor. This uncertainty is only significant in case the size of the fluctuations varies
systematically over the b discriminant range. Since the discriminator has a roughly monotonous
increasing (decreasing) shape for b jets (light jets), this condition is fulfilled. The statistical
uncertainties are accounted for by a sum of polynomials of first and second order, where the
nuisance parameter is the overall scale of the distortion.

There is currently no dedicated b discriminator scale factor for charm jets, therefore, the un-
certainties on the charm flavour scale factor are assumed to be twice as large as for the b jet scale
factor, with the scale factor being unity. We propagate the uncertainties from b tagging in the
form of a set of per-event weights, which are determined from the individual per-jet weights that
are used to correct the jet b discriminator distributions. The uncertainties on the b discriminator
scale factor result in both normalisation effects due to acceptance changes, which can be up to
20% in some cases, and shape effects on the templates. An example of the effect of b discriminator
uncertainties is shown in fig. 5.10.
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Figure 5.8: The effect of jet energy corrections on the leading jet transverse momentum distribution.
In the top row, we show the distribution under variations of the flavour composition (left), jet energy
resolution (middle) and the statistical uncertainties in the absolute scale determination (right). In the
middle row, we show the overall uncertainty from the absolute scale variation (left), the uncertainty
arising from the corrections derived using the missing momentum projection fraction (MPF, middle) and
the time-dependent momentum scale variation (right). On the bottom row, we show the uncertainties
in the single pion response in the ECAL (left), HCAL (middle) and the fragmentation model (right). In
general, we see that the variations are within a few percent of the nominal, with the largest effect from
the uncertainties on the flavour response (top left).
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Figure 5.9: The effect of the b tag reweighting on the MC modelling (left). We see that the b tag
reweighting technique improves the modelling from the nominal case (red) to the corrected case (blue),
with the total uncertainties (pink) over-covering the difference. On the right plot, we see that the overall
uncertainty band consists mainly of the light flavour (blue), charm flavour (green) and heavy flavour
(orange) uncertainty components.

5.3.6 Other experimental systematic uncertainties

We also assess the effect of uncertainties in the lepton identification, isolation and trigger selection,
which may have different efficiencies in data and simulation and are thus corrected using scale
factors. For muons, we assign a 1% normalisation uncertainty for the lepton ID, 1% for isolation
and 0.5% for the effect of highly-ionising particles, on top of the statistical uncertainties on the
muon scale factor [178]. For electrons, we use pT and ECAL supercluster η-dependent scale factor
uncertainties derived using a tag-and-probe method, which are generally below 1% [179].

As the pileup profile in simulation is corrected to data using a pileup-dependent scale factor,
we estimate the uncertainty in the pileup correction by varying the minimum bias cross section
from σ = 69.2 mb by 4.6%, corresponding to the uncertainty in the number of interactions in
minimum bias events from luminosity and cross section[180]. This results in both a normalisation
and shape effect in the predicted templates.

Furthermore, the uncertainty on the total integrated luminosity is estimated to be 2.4% using
cluster counting in the pixel detector and affects the normalisation of all processes in a correlated
way [181, 182].

5.3.7 Theoretical uncertainties

The most important theoretical uncertainties arise from the modelling of the tt̄+heavy flavour
processes, namely tt̄ + bb̄, tt̄ + 2b, tt̄ + b and tt̄ + cc̄. Currently, it is not possible to isolate
a pure tt̄ + bb̄ control region which would not contain a significant amount of tt̄H(→ bb̄) and
thus this background cannot be determined directly from data. Although inclusive measurements
of the tt̄ + bb̄ cross-section have been carried out in CMS [183] with σtt̄+bb̄ determined with a
' 35% relative accuracy, these analyses treat tt̄H(→ bb̄) as an irreducible background and thus
cannot directly be used to set the prior uncertainties in our analysis. On the other hand, NLO
estimates for the inclusive cross-section of σtt̄+bb̄ have residual theoretical uncertainties at the
level of ' 20% [184], with important differences between alternative models in the differential
predictions. Therefore, we heuristically assign a conservative 50% normalisation uncertainty on
all the tt̄+heavy flavour processes, which is assumed to be uncorrelated across the aforementioned
sub-processes. Correlating these uncertainties would reduce their overall impact. Effectively, this
allows us to use the data in the control regions to determine the best fit values of the cross-sections
for the tt̄+heavy flavour processes in a consistent way with the extraction of the signal strength
modifier. We do not use additional extrapolation uncertainties for the tt̄+jets processes between
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Figure 5.10: The effect of b tagging uncertainties on the b tagging likelihood ratio distribution for
the tt̄H(→ bb̄) sample. In the top row, we show the effect of the heavy flavour (left), light flavour (center)
and the linear heavy flavour distortion from statistical uncertainties (right). In the middle row, we show
the effect of the quadratic distortion on the heavy flavour scale factor from statistical uncertainties (left)
and the linear and quadratic uncertainties on the light flavour scale factor (middle, right). In the bottom
row, we show the uncertainties for the charm flavour jets (left, middle) and the uncertainty on the scale
factor arising from the propagation of JES uncertainties. These templates are derived in the SL ≥ 6 jet,
three b tag category on tt̄H simulation.
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Figure 5.11: The effect of the renormalisation and factorisation scale variations (µr and µf ) on the
modelling of the jet multiplicity (left) in the SL ≥ 4 jet, ≥ 2 b tag inclusive region and the MEM
discriminator (right) in the SL ≥ 6 jet, ≥ 4 b tag signal region. While the effect of the scale changes is
normalised to be shape-changing in the inclusive region, it can introduce migrations between jet-tag bins
among the final categories. These distributions are derived using tt̄ + LF simulation. We also show the
relative change in normalisation in the particular category resulting from the up and down variations.

the control and signal regions, as the combined fit provides a consistent framework for determining
the best-fit estimates given the data.

The inclusive cross sections of all involved signal and background processes are known to at
least NLO accuracy, with a 4% renormalisation and factorisation scale uncertainty and a 4% PDF
uncertainty on the gluon-gluon dominated production of tt̄ +jets. Shape uncertainties from PDF
variations are found to be negligible and thus not considered further in the analysis. We use MC
simulation to estimate the shape effect of the renormalisation and factorisation scale (µR and µF )
on the final discriminant shape by changing the nominal values of µR and µF by 0.5 (2.0) for the
down (up) variation. This is achieved using the embedded matrix-element dependent weights in
the MC simulation. The effect of these variations is illustrated in fig. 5.11 and is generally small on
the final observables, but has a significant effect on the jet multiplicity and transverse momentum
distributions.

For the parton shower uncertainties, in particular the effects of ISR and FSR, we have limited
MC simulation samples that can only be used to determine the overall effect on normalisation,
whereas the shape distortions on the distributions are generally consistent with no change. These
background modelling uncertainties primarily affect jet kinematics and thus the number of recon-
structed jets in the final state. Therefore, we model these uncertainties through per-subprocess
normalisation factors that depends on the jet multiplicity, with the magnitude of the uncertainties
generally between 5-15%, as seen in fig. 5.12. The overall normalisation and shape effect of the
most important shape changing uncertainties is shown in fig. 5.13.

5.3.8 Control regions

We validate the MC simulation in the inclusive semileptonic and dileptonic control regions with at
least four jets, out of which at least two must be b tagged by comparing the simulated distributions
of jet and lepton kinematic variables to data. The distributions in the semileptonic control region
can be seen in fig. 5.14 and for the dileptonic in fig. 5.15. In general, we see that both the inclu-
sive yields and differential distributions for the kinematic variables are well-described within the
systematic uncertainties. We observe a residual mismodelling in the jet multiplicity distribution,
which we attribute to uncertainties in the modelling of the parton shower and the tt̄+jets MC
tuning.
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Figure 5.12: The tt̄+jets ISR, FSR, hdamp and MC tune uncertainties in terms of a scale factor that
depends on jet multiplicity. We extract this scale factor by comparing the yield predicted by the MC sim-
ulation with varied parameter values to the nominal, adding the statistical uncertainty on this prediction.
Generally, these scale factors are symmetric around the nominal and change the yield by < 15%, with the
most significant effects on the tt̄ + LF process.
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Figure 5.13: The normalisation and shape effect of the most important shape-changing uncertainties.
In the top figure, we show the effect on the normalisation in terms of the ratio between the varied and
nominal predictions. In the figure in the bottom, we show the estimated effect on the shape of the template
by computing the p-value from the χ2 test between the two histograms. We see that generally the effect of
shape variations is symmetric, with a yield change that is under 20%. Most shape changes are consistent
with no change, apart from the JES flavour uncertainty and the b tagging heavy flavour uncertainty.
The ISR, FSR, hdamp and MC tune uncertainties do not have enough simulation statistics to determine
the presence of shape changes. These uncertainties are verified using MC simulation in the semileptonic
category with at least six jets, out of which four must be b tagged.
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Figure 5.14: The modelling of the most important analysis variables in the semileptonic control region
with at least four jets, out of which two must be b tagged.
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Figure 5.15: The modelling of the most important analysis variables in the dileptonic control region with
at least four jets, out of which two must be b tagged.
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5.3.9 Statistical method
In order to interpret the data, we use the same statistical framework as has been used for other
Higgs boson searches in the CMS collaboration [46, 185, 186]. We wish to measure the signal
strength modifier µ = σtt̄H/σ

SM
tt̄H and in the absence of an observed signal, exclude µ ≥ µCL at

a certain confidence level. The null hypothesis (H0) is therefore the presence of a signal with a
given µ, whereas the alternative hypothesis is no signal (H1, µ = 0 ). Based on the data, we seek
to exclude the null hypothesis above a certain µ.

The predicted distributions for both signal (denoted as s) and background (denoted as b) are
subject to uncertainties introduced in section 5.3.3 such that the expectations are functions of the
nuisance parameters θ through s(θ) and b(θ). The uncertainties are assumed to be either fully
correlated or uncorrelated, as is more appropriate and conservative, which allows the likelihood
function to be written in a factorised form.

To determine confidence intervals on the Higgs boson production cross section and thus quantify
the presence or absence of a signal, we use the CLs method [187, 188], which defines the likelihood
function L(data|µ, θ) as

L(data|µ, θ) =Poisson[data|µ · s(θ) + b(θ)] · p(θ̃|θ) (5.5)

=
∏
i∈bins

(µsi + bi)
ni

ni!
exp [−(µsi + bi)] · p(θ̃|θ). (5.6)

We have used Poisson probabilities to model the observation of ni events in the bin i of a discretised
distribution, given an expectation µsi+ bi. The distribution p(θ̃|θ) encodes the prior knowledge on
the nuisance parameters, which have default values θ̃. This likelihood function can be computed
both with observed data and with “pseudo-data”, which is constructed from simulation under a
specific hypothesis.

We use the test statistic q̃µ, based on the profile likelihood ratio [189], to assess the compatibility
of the data with either the background-only or signal+background hypotheses:

q̃µ = −2 ln
L(data|µ, θ̂µ)

L(data|µ̂, θ̂)
= −2 lnλ(µ), 0 ≤ µ̂ ≤ µ. (5.7)

This test statistic is constructed such that it considers only models with µ ≥ 0, furthermore it
is constrained to be one-sided by µ̂ ≤ µ such that data with µ̂ > µ are not used as part of the
rejection region for the test on the upper limit of µ.

Here θ̂µ is the conditional maximum likelihood estimator of θ given a fixed value µ, whereas
µ̂ and θ̂ refer to the overall maximum likelihood estimators of both quantities. For a given signal
strength modifier µ that we test, we first find the observed value of q̃obs

µ and the nuisance parame-
ters θ̂0 (background hypothesis) and θ̂µ (signal hypothesis). Then, in order to compute the CLs(µ),
we compute the p-values of the signal and background hypotheses using

pµ =

∫ ∞
q̃µobs

f(q̃µ|µ, θ̂µ) dq̃µ (5.8)

and

1− pb =

∫ ∞
q̃obs
µ

f(q̃µ|0, θ̂0) dq̃µ. (5.9)

The p-values are the probabilities of observing results as extreme or more given the under-
lying hypothesis and are derived from the probability densities of q̃µ under a given hypothe-
sis: f(q̃µ|µ, θ̂obs

µ ). We find the 95% confidence level on the upper limit of µ by adjusting µ until

CLs(µ) =
pµ

1− pb
< 0.05. (5.10)

Equivalently, if CLs < α at a given µ, then the Higgs boson is excluded at a production rate of µ or
higher with a confidence level 1− α.
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In order to compute the upper limit on µ given the observed data, we need the PDFs f(q̃µ|µ, θ̂obs
µ ),

which can be derived using a Monte Carlo method by generating pseudo-data assuming the given
signal strength µ and fitting the observed data to evaluate the test statistic. As the MC proce-
dure for generating the PDFs can be very time consuming, we use an approximate asymptotic
distribution [189] for the PDF q̃µ, which results from the Wald approximation for the profile like-
lihood [190]:

− 2 lnλ(µ) =
(µ− µ̂)2

σ2
+O(1/

√
N) (5.11)

where σ is the standard deviation of µ̂ derived from the full covariance matrix of the likelihood
function.

Using the asymptotic distribution for f(q̃µ|µ, θ̂obs
µ ), we find the upper limit for µ at a confidence

level of 1− α to be

µ = µ̂+ σΦ−1(1− α) (5.12)

where Φ−1 is the inverse of the cumulative distribution of the Gaussian PDF. The standard devi-
ation of µ can be computed from the likelihood function eq. (5.5) using the so-called Asimov data
set, where the SM prediction is used for si and bi.

We will also quote the expected sensitivity of the measurement, which is derived from simulation,
assuming µ = 1 and computing the median expected upper limit on µ using the asymptotic
formulae.

Uncertainties in the statistical model

Our prior knowledge of the systematic uncertainties is encoded in p(θ̃|θ), where the values of the
nuisance parameters θ are determined by minimising the likelihood function in a frequentist sense.
We use θ̃ to represent our best pre-fit estimate of the nuisance parameters, which can be

• Gaussian, used for shape variations,

• log-normal used for nuisance parameters for which negative values are unphysical,

• flat, in case we cannot assign a prior uncertainty.

In order to account for limited MC statistics, we create nuisance parameters for each process
and bin in the template distributions, corresponding to the Poisson uncertainties from the limited
number of simulation events.

5.3.10 Analysis of the statistical model

In this section, we will study the expected sensitivity as predicted by the statistical model. We
have used pseudo-data constructed from MC simulation with the SM expectation (µ = 1) and
a no-signal model (µ = 0) as representative datasets. The nuisance parameters are set to the
priors, with central values at 0 and relative variances at 1, compared to the pre-fit expectation.
This is the Asimov principle, where an ensemble of datasets is replaced by a single representative
dataset [189].

First, in order to validate the fit model, we study the effect of systematic uncertainties in
the form of pulls and constraints on the nuisance parameters after the fit to pseudo-data derived
from MC. We compute the pulls and constraints, defined as the central value and the width
of the distribution (θ̂ − θ0)/∆θ with respect to the pre-fit values θ0, with the uncertainty ∆θ
determined around the minimum of the likelihood function. By fitting the signal+background
and background-only models on the background-only dataset, we verify that both models result in
equivalent constraints and no pulls, as can be seen in fig. 5.17.

We further determine that in the fit to the µ = 1 Asimov dataset, some of the nuisances in
the background-only model will be shifted with respect to their pre-fit values to compensate the
mismatch between the background-only model and the signal+background dataset. In particular,
we observe a negative pull in the heavy flavour modelling of the b discriminator and positive pulls
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Figure 5.16: On the left, the distribution of the best-fit values µ̂ for toy experiments sampled from the
post-fit µ = 0 dataset (top row) and from the µ = 1 dataset (bottom row). On the right, we show µ̂ with
respect to θ̂tt̄+bb̄. We see that the expected anti-correlation between these parameters is reproduced by
the model.

for the tt̄ + bb̄ normalisation and tt̄+jets ISR modelling, showing that these nuisance parameters
are (anti)-correlated to the signal strength parameter µ. When fitting the signal+background
model on the µ = 1 dataset, we observe constraints at the level of Var[(θ̂− θ0)/∆θ] ' 0.5 for these
nuisances, from which we surmise that the model has sensitivity for these nuisance parameters
with respect to the prior uncertainties. This is expected, as the prior uncertainties on some of
the nuisance parameters are assumed to be quite large in the absence of a detailed description by
MC. We can see that the correlation between the best-fit values of the signal strength µ and the
nuisance parameters is significant, by determining the best-fit values as a function of the tt̄ + bb̄
background normalisation nuisance parameter θtt̄+bb̄, as shown in fig. 5.18.

Furthermore, we study the post-fit distribution of the signal strength parameter µ̂ and the
nuisance parameters θ̂ by MC sampling. We see in fig. 5.16 that the mean of the best-fit signal
strength parameter 〈µ̂〉 reproduces the prior value to within ∆µ ' 0.01.

5.4 Results
After having validated the statistical model on simulation using the Asimov dataset, we carry out
the analysis on the observed data by using the real dataset instead of the Asimov dataset from
the MC expectation. A combined fit across all categories is used to extract the signal strength
parameter µ. We show the pre-fit and post-fit distributions in the final categories in figs. 5.21
to 5.24. The uncertainty is reduced by the fit and the post-fit description of the data is generally
good, with p-values for the goodness of fit test at the level of p = 0.8 − 0.99 for the individual
categories. We observe a downward fluctuation in the MEM distribution in the DL ≥ 4 jets, ≥ 4
tags category, which is compatible with the MC expectation within one standard deviation. The
post-fit p-value in this category is p ' 0.87.

We compare the post-fit distributions of the nuisance parameters in fig. 5.19 to the expected
distributions in fig. 5.17. In general, we see that the data admit strongest constraints, at the level of
Var[(θ̂− θ0)/∆θ] ' 25% for the nuisance parameters of the tt̄+jets parton shower modelling. The
most significant pull is for the CSV heavy flavour modelling nuisance parameter, at 〈(θ̂−θ0)/∆θ〉 '
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Figure 5.17: The pulls and constraints on the nuisance parameters of the background-only model (blue)
and the signal+background model (red) on the µ = 0 Asimov dataset (left) and the µ = 1 Asimov dataset
(right). The nuisances are ordered by ascending constraint size (width of the pull distribution), shown as
the error bar around the pull θ̂/θ. We only show the first 60 nuisance parameters that experience the most
significant constraints, out of the full list of O(600). For the µ = 1 Asimov dataset, we observe the strongest
constraints at around σ̂θ ' 0.5 for the CSV b discriminator heavy flavour modelling (CMS_ttH_CSVhf), the
tt̄ + bb̄ normalisation (bgnorm_ttbarPlusBBbar), the tt̄+jets FSR modelling (CMS_ttjetsfsr) and the
b discriminator charm flavour modelling (CMS_ttH_CSVcferr1).
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Figure 5.18: The best-fit estimations of the signal strength parameter µ and other significant nuisance
parameters as a function of the tt̄ + bb̄ normalisation uncertainty (θtt̄+bb̄) nuisance parameter. We see
that the best-fit value of the signal strength parameter is anti-correlated to θtt̄+bb̄, and other nuisance
parameters have a non-trivial dependence on the chosen value of θtt̄+bb̄.

−0.8. This can be understood as the model compensating for the shape mismodelling of the
b tagging likelihood discriminator.

In order to test the compatibility of the results between the semileptonic and dileptonic cate-
gories, we carry out additional fits in the semileptonic and dileptonic categories separately. In the
semileptonic channel, we find µ = 0.71± 0.88, whereas in the dileptonic channel, the best-fit value
for the signal strength parameter is µ = −1.61+1.25

−1.20. This is understood to be the effect of the
downward fluctuation in data in the dileptonic discriminator distribution. We also find the upper
limit on the signal strength at a 95% confidence level in the combined case and for the SL and DL
categories. The results of these fits are shown in fig. 5.26. Furthermore, the post-fit agreement
between the model and the data can be visualised by sorting all the bins of the fitted templates
according to the expected signal over background ratio, as shown in fig. 5.27. Overall, we find the
best fit value and the upper limit for the signal strength parameter to be

µ̂ = −0.07+0.28
−0.27 stat+0.73

−0.74 syst (5.13)

= −0.07+0.78
−0.79 (5.14)

µ95%CL = 1.52 obs. (1.57 exp.). (5.15)

The compatibility of the data with the SM hypothesis is at the level of Z = 1.4σ, as shown
in fig. 5.20. The data are also compatible with the background only hypothesis. In order to study
the compatibility of the combined fit with the individual categories and to understand the contri-
butions of the various categories, we have carried out individual fits in all the categories separately,
eight in total. The results are shown in fig. 5.28 and in table 5.6. In general, we see that the fit in
the semileptonic categories prefers a positive signal strength, whereas in the dileptonic categories,
a negative signal strength is preferred. This is consistent with the pre-fit distributions and the
observed downward fluctuation in the dilepton channel. For these individual fits, the nuisance
parameters obtain different and possibly inconsistent values for each fit. Therefore, we have also
carried out a multidimensional fit with an individual µ for each category, but the same nuisance
parameters across the categories. The results from this multidimensional fit are compatible with
the combined fit with a p-value of p ' 0.56, estimated using toy experiments drawn from MC
distributions.
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Figure 5.19: The constraints and pulls on the nuisance parameters, fitting the model to data. We see the
strongest constraints for the tt̄+jets modelling, the JES flavour modelling and the CSV b discriminator
heavy flavour modelling.
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Figure 5.20: The likelihood as a function of µ on the background only (µ = 0) Asimov dataset (blue)
and the signal+background (µ = 1) Asimov dataset. We also see that the uncertainty in µ is reduced when
removing the systematic uncertainties from the model.

category best fit µ
95% upper limit on µ

expected observed injected

DL ≥4j 3t −1.93+5.87
−7.24 10.9115.21

7.90 9.91 12.28

DL ≥4j ≥4t −1.51+1.26
−1.23 3.014.53

2.06 2.03 3.97

DL −1.61+1.25
−1.20 3.044.55

2.09 1.96 3.94

SL 4j3t 9.21+10.79
−15.86 31.1243.41

22.57 39.04 28.52

SL 4j4t 0.34+6.05
−5.89 12.0917.35

8.56 12.43 12.51

SL 5j3t 7.94+8.32
−9.83 17.8124.84

12.90 22.79 16.14

SL 5j ≥ 4t 1.73+2.56
−2.47 5.117.41

3.59 6.53 5.64

SL ≥6j 3t 0.53+5.78
−7.32 11.0015.12

8.12 11.32 11.07

SL ≥6j ≥4t 1.25+1.34
−1.36 2.633.80

1.85 3.66 3.46

SL 0.71+0.88
−0.88 1.802.57

1.29 2.33 2.61

comb. −0.07+0.78
−0.79 1.572.24

1.11 1.52 2.37

Table 5.6: The best-fit values on the signal strength parameter µ, along with the median expected limit,
the 68% confidence interval on the limit and the observed upper limits on µ at a 95% CL. For comparison,
we also list the expected limit when injecting a signal with µ = 1.
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Figure 5.21: The pre-fit (left column) and post-fit (right column) distributions in the semileptonic 4 jet,
3 b tag category (top row) and the 4 jet, 4 b tag category (bottom row).
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Figure 5.22: The pre-fit (left column) and post-fit (right column) distributions in the semileptonic 5 jet
3 b tag category (top row) and the 5 jet, ≥ 4 b tag category (bottom row).
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Figure 5.23: The pre-fit (left column) and post-fit (right column) distributions in the semileptonic ≥ 6
jet, 3 b tag category (top row) and the ≥ 6 jet, ≥ 4 b tag category (bottom row).
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Figure 5.24: The pre-fit (left column) and post-fit (right column) discriminator distributions in the
dileptonic categories, with the ≥ 4 jet, 3 b tag category in the top row and the ≥ 4 jet, ≥ 4 b tag category
in the bottom row.
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Figure 5.25: The post-fit correlation coefficient between the signal strength parameter µ and the nuisance
parameters. We see an anti-correlation at the level of 30% between the signal strength modifier and the
tt̄ + bb̄ normalisation. Furthermore, we find that there is non-negligible residual correlation between the
uncertainties.
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Figure 5.26: The best-fit values (left) and the 95% upper limits (right) on the signal strength parameter
in the semileptonic and dileptonic categories and the combined fit.
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Figure 5.27: The best-fit signal and background distributions in the bins of the final discriminant,
arranged by S/B, along with the measured data. We show the combination of the semileptonic and
dileptonic channels on the top, with the individual channels shown on the bottom. In determining the
uncertainty of the background prediction, we have neglected correlations between the uncertainties of the
bins. We show the expected SM tt̄H process in red and the measured value, scaled up by a factor of 10,
in blue.
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Figure 5.28: The expected and observed upper limits on the signal strength parameter at a 95% confidence
limit in the analysis categories. We show the 95% and 68% range of expected limit under no signal, along
with the median of the distribution. This can be compared to the expected limit when a nominal SM
signal is injected. We also show the observed limit. The numerical values can be found in table 5.6.
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uncertainty source −∆µ +∆µ
bkg. norm. −0.32 +0.25
ISR, FSR −0.14 +0.15
pdf norm. −0.03 +0.04
Q2 scale −0.14 +0.12

MC tune, hdamp −0.05 +0.05
theory −0.53 +0.49

MC stats −0.24 +0.24
JES, JER −0.11 +0.09
b tagging −0.24 +0.16

PU, lumi, lepton −0.09 +0.08
experimental −0.35 +0.30
systematic −0.72 +0.71
statistical −0.31 +0.31

total −0.79 +0.78

Table 5.7: The post-fit uncertainties on the signal strength parameter µ in the tt̄H(→ bb̄) analysis. The
uncertainties are estimated by freezing sets of nuisance parameters in the fit and evaluating the change
in post-fit uncertainty with respect to the nominal case. Due to correlations, the uncertainties of the
experimental and theory groups cannot be added in quadrature.

5.4.1 Systematic uncertainties

After fitting the model to data, we determine the impacts of the major uncertainties on the signal
strength parameter, with the results shown in table 5.7. These are found by freezing a particular
set of nuisance parameters and determining the change in the post-fit uncertainty on µ, under the
assumption that the uncertainties are uncorrelated. This assumption holds only approximately,
as can be seen from the correlation matrix in fig. 5.25, thus the individual uncertainty compo-
nents cannot be treated as independent and Gaussian-distributed, i.e. they cannot be added in
quadrature.

Overall, we see from table 5.7 that this analysis is dominated by systematic uncertainties
(∆µ ' ±0.73) in the theoretical modelling (∆µ ' ±0.53) of the background processes (∆µ '
±0.32). The considerable normalisation uncertainties assigned to the various tt̄+heavy flavour
processes, specifically the tt̄ + bb̄ process, have a significant effect on the analysis. The second
largest source of theoretical uncertainty is the parton shower modelling of the initial state radiation
with ∆µ ' ±0.15, which affects the predicted yield of the tt̄+jets background. This is followed by
uncertainties on the ME scale with ∆µ ' ±0.13, resulting in distortions to the final discriminant
shapes.

We have studied the sources of uncertainty in more detail by evaluating the shift in the best-
fit value of the signal strength parameter when the nuisance parameters are shifted around their
post-fit values by one standard deviation. These results are shown in fig. 5.29, where we see that
the tt̄ + bb̄ normalisation uncertainty and the modelling of the ISR have the largest impacts on
the signal strength.

Out of the experimental factors, the major sources of uncertainty are MC simulation statistics
with ∆µ ' ±0.25, which remains a challenge in the high-multiplicity final state, followed by the
detailed modelling of the experimental observables related to b tagging with ∆µ ' ±0.23 and jet
energy corrections with ∆µ ' ±0.11. In general, all these sources of uncertainty have considerable
effects on the predicted number of events and the distributions of the final discriminators in the
analysis categories, such that the final nuisance parameters have non-negligible correlations, for
example the nuisance parameters for the CSV heavy flavour and charm flavour modelling are
anti-correlated with ρ ' −0.4, as seen in fig. 5.25.
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Figure 5.29: The impact of nuisance parameters on the signal strength. The impacts are derived by
shifting the nuisance parameter under question by one standard deviation up or down around the post-fit
value θ̂ and computing the change in the best-fit signal strength value. We see the most significant impacts
from the tt̄ + bb̄ uncertainty, followed by the heavy flavour b tagging uncertainty and the parton shower
modelling uncertainties. The impact of some nuisance parameters, such as the JES modelling in the CSV
b discriminator, may be one-sided, i.e. always positive or negative. This happens when the other nuisance
parameters are able to compensate for the shift in this particular nuisance parameter. In comparison to
the data in table 5.7, we list the impacts of individual nuisance parameters, instead of logical groups of
nuisances. We omit the uncertainties from the limited MC statistics from this list.
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5.5 Discussion

This result has been derived using the 2016 dataset from CMS at
√
s = 13 TeV corresponding

to an integrated luminosity of 35.9 fb−1. We can compare it to the equivalent CMS analysis at√
s = 8 TeV [122] with 19.5 fb−1 of data, where a similar analysis strategy with the MEM was

employed, and to the latest result on tt̄H(→ bb̄) from the ATLAS collaboration [69] with 36.1 fb−1

of data.
We see from the comparison in table 5.8 that this work improves by about a factor of 2 in

sensitivity over the equivalent search of CMS at 8 TeV. This can be attributed partly to the in-
creased dataset, but also to the favourable centre-of-mass scaling of the cross-section ratio for signal
σ13 TeV

tt̄H /σ8 TeV
tt̄H ' 3.9 and background σ13 TeV

tt̄+jets /σ
8 TeV
tt̄+jets ' 3.3 and the improved reconstruction and

background rejection, with the signal-over-background fraction improving from 3.4% in the highest
purity category at 8 TeV to 4.2% at 13 TeV. The main sources of systematic uncertainties affecting
this analysis have not changed with respect to the 8 TeV analysis. In particular, the dominant
source of uncertainty in both cases is the 50% normalisation uncertainty on the tt̄+bb̄ background.
Although recent analyses from CMS have determined the tt̄ + bb̄ cross-section to a relative pre-
cision of about ' 30%, it is compatible with the post-fit constraints that we observe in this work
and thus a more precise measurement would be needed to significantly reduce the effect of this
uncertainty. Furthermore, in the aforementioned analysis, the tt̄H(→ bb̄) process is considered as
a background for the tt̄ + bb̄ measurement, thus, any tt̄H(→ bb̄) signal would be absorbed into
the tt̄ + bb̄ normalisation. A possible direction of future research would be the consistent and
simultaneous measurement of tt̄H(→ bb̄) and tt̄ + bb̄ in a multidimensional fit.

It is interesting to compare the work presented in this thesis to the latest results from ATLAS,
where an equivalent dataset is used. First, we see that the sensitivity of the ATLAS analysis is
about ' 20% higher than that reported in this work. This is likely due to the significantly more
complex statistical analysis techniques employed in the ATLAS analysis, in particular a staged
approach with a BDT that is responsible for choosing the optimal reconstruction hypothesis for
the observed jets, followed by another classification BDT optimised to distinguish between signal
and background. These algorithms are optimised on simulation on an event-by-event basis and rely
heavily on the detailed modelling of b tagging discriminators. For comparison, only the MEM and
the b tagging likelihood ratio classifiers are used in this work, neither of which require significant
MC simulation to be evaluated on a new dataset. Furthermore, ATLAS is already making use
of improved vertexing and b-tagging in the detector through the Insertable B-Layer [191]. A
similarly-upgraded pixel detector is available at CMS since the beginning of 2017 [192].

In terms of uncertainties, the ATLAS analysis has a slightly different treatment of the tt̄+jets
modelling and the corresponding uncertainty, where the subcomponents of the default POWHEG MC
sample are scaled to an NLO tt̄ + bb̄ sample generated using SHERPA+OpenLoops in the 4-flavour
scheme. This scaling is most significant for events with more than one jet containing multiple b
hadrons, which make up between 1-2% of the full tt̄ + bb̄ cross-section [69]. In our analysis, all
events with at least one jet containing multiple b hadrons are grouped under the tt̄ + 2b process.
In the ATLAS analysis, the systematic uncertainties on the NLO modelling are derived by com-
paring the nominal POWHEG model to a 5-flavour SHERPA+OpenLoops model and independently a
4-flavour model. The normalisation of the various tt̄+jets subprocesses is left freely floating in the
fit, described by k-factors. Overall, the CMS and ATLAS procedures for the tt̄+jets modelling un-
certainties are different, but in both cases, the background modelling uncertainties have the largest
impacts. The ATLAS analysis observes a post-fit scale factor of k(tt̄+ ≥ 1b) = 1.24± 0.1 for the
tt̄+bb̄ process, whereas in the analysis presented in this thesis, the post-fit k-factor for this process
is consistent with unity. The parton shower modelling uncertainties are estimated by comparing
HERWIG++ and Pythia 8, whereas for this analysis, it is obtained by varying the parameters in the
nominal POWHEG+Pythia 8 model, as explained in section 5.3.7. Both the ATLAS analysis and
the analysis presented in this thesis are mainly impacted by similar systematic uncertainties: the
tt̄+jets modelling, limited MC statistics, b-tagging and JES. It is also clear that it is necessary for
the experiments to adopt an improved theoretical model of the tt̄ + bb̄ process in a way that is
consistent and comparable between the experiments.

During 2017, the CMS experiment has recorded approximately 45 fb−1 of proton-proton collision
data at

√
s = 13 TeV. Furthermore, the upgrade of the pixel detector and the commissioning of
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category quantity CMS (8 TeV) ATLAS (13 TeV) this work

SL

best-fit µ 1.7+2.0
−1.8 0.95+0.65

−0.62 0.71+0.88
−0.88

exp. UL 4.26.2
2.9 1.41.99

1.01 1.802.57
1.29

obs. UL 5.5 1.95 2.33

DL

best-fit µ 1.0+3.3
−3.0 −0.24+1.02

−1.05 −1.61+1.25
−1.20

exp. UL 6.915.8
3.4 2.743.86

1.98 3.044.55
2.09

obs. UL 7.7 2.64 1.96

combined

best-fit µ 1.2+1.6
−1.5 0.84+0.64

−0.61 −0.07+0.78
−0.79

exp. UL 3.34.9
2.3 1.241.77

0.89 1.572.24
1.11

obs. UL 4.2 1.96 1.52

Table 5.8: A comparison of the CMS [122] and ATLAS [69] results on tt̄H(→ bb̄) and the results obtained
in this work. We compare the best-fit µ, the expected 95% upper limit (UL) under the no signal hypothesis
with ±1σ uncertainties and the observed upper limit.

improved b tagging algorithms promises to improve the sensitivity of this analysis. On the other
hand, progress will need to be made in incorporating the latest improvements in the theoretical
modelling, in particular, the NLO 4-flavour models for tt̄ + bb̄ properly matched to an accurate
parton shower.

5.6 Summary

We have presented a search for the tt̄H process in the data collected by the CMS experiment
during the 2016 run period, in the channels where the Higgs boson decays to b quarks and at least
one of the top quarks decays leptonically. The observation of this process, where the Higgs boson
is produced in association with top quarks, would make it possible to directly study the process
of mass generation for up-type quarks and to confirm the mechanism of electroweak symmetry
breaking for the heaviest known quark. The analysis is challenging due to the presence of a
significant background arising from the QCD production of tt̄+jets. Specifically, the tt̄ + bb̄
process, where two additional b quarks are produced in the final state in association with the top
quark pair, is irreducible with respect to the particles in the final state, as we expect between
four to six jets, out of which four arise from b quarks from both the tt̄ + bb̄ background and the
tt̄H(→ bb̄) signal. Furthermore, the analysis is complicated by the presence of a combinatorial
self-background, as we cannot directly reconstruct the Higgs boson candidate invariant mass peak
due to the presence of several additional b quark candidates arising from the top decay.

We have shown that it is possible to construct a discriminator based on the direct computation of
matrix elements from the kinematic properties of the observed jets and leptons in the event, without
relying on large amounts of MC simulation for the tt̄+bb̄ process, which is affected by considerable
theoretical uncertainties. The observed data are compatible with both the SM signal hypothesis
and the background-only hypothesis. We have been able to establish an upper limit on the signal
strength modifier at the level of µ < 1.52 at a confidence level of 95%, with µ < 1.57 expected under
the SM hypothesis. The best fit signal strength value is µ = −0.07+0.28

−0.27 (stat.)
+0.73
−0.74 (syst.), with

the total combined uncertainty being ∆µ ' ±0.79. The largest components in the final uncertainty
are of systematic origin, arising from the modelling of the tt̄+heavy flavour background and the
overall theoretical uncertainties in the modelling of the tt̄+jets background.

Additionally, we find simulation statistics and experimental uncertainties in the detailed cal-
ibration of the b discriminator shape to have a sub-leading but significant effect on the final
measurement. This means that in addition to an improved theoretical treatment of the tt̄+jets
background, which is crucial for this analysis, improving the MC simulation in terms of a more
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efficient use of the generated events and an improved modelling of the quantities related to b tag-
ging can improve this analysis. Both of these problems are well-suited to be solved with the matrix
element method discriminator, which does not rely on the precise modelling of various low-level
experimental observables such as b discriminator distributions or extensive simulation statistics.

It is expected that the dataset from the 2017 run period will allow us to further improve our
understanding of the tt̄H process, where the H→ bb̄ decay channel benefits from a high branching
ratio. The discovery of the tt̄H production mode at a 5σ significance level is feasible within 2018
through a combination of multiple channels and datasets. However, a focused experimental and
theoretical effort is needed to fully make use of these additional data, as this analysis is affected
by significant systematic uncertainties.
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6 Modelling memory in language
acquisition

In this chapter, we describe the work that we∗ carried out in the context of an internship at the
private company Lingvist Technologies† during May-July 2017. The main product of the company
is a computerised language learning tool that allows users to practice vocabulary in a foreign
language using spaced repetition [193]. Spaced repetition is a technique to improve retention
of new information by spreading out the amount of time allocated to studying, first described
quantitatively by H. Ebbinghaus in the late 19th century [194].

The product has over 106 users learning several languages, thereby presenting a rich dataset
where techniques of computer-assisted education can be tested and improved. Taking into account
the population of users, statistical learning can be used to optimise the contents of the course by
modelling the learning process and prior knowledge of users.

Our main contribution to this project was developing a data-driven model based on machine
learning (ML) that estimates the prior vocabulary knowledge of users based on a small set of probe
questions and the overall statistical properties of the user population.

In this chapter, we will describe the problem of vocabulary prediction, give an overview of the
model and validate it with respect to data. We discuss also the reference model that we formalized
and the metrics we developed to compare the improved model to the reference. We found that
the ML-based model improved over the existing prediction algorithm by about 40% in terms of
prediction efficiency, such that this algorithm was put into use in the user-facing product in a test
phase.

6.1 Introduction

It has been shown that individual tutoring can improve the results of average students by up
to two standard deviations [195]. However, access to high-quality individual tutoring is limited,
therefore using computerised assistants presents an opportunity to make learning more effective
and accessible.

In a computerised learning course, tailoring the course contents to the specific pre-existing
knowledge of an individual learner allows the learning material to be covered more efficiently by
focussing on subjects that are not yet well understood, dedicating less resources to subjects that
the learner (user) is likely to know well or that are too advanced for the learner. Knowledge
estimation deals with the question of parametrising and modelling the knowledge of various topics
or items on a per-user basis.

Furthermore, if the individual knowledge of users can be modelled as a function of time, then
these predictions can be used to test the learner on topics that are at the threshold of their existing
knowledge, such that learning speed would be maximised. This is one of the main goals of the
learning system at Lingvist.

We describe a computational method to estimate the overall second-language vocabulary of
users, based on answers to a small set of trial words on which the users are tested. Effectively,
users entering the learning environment are presented with words in their target language, for which
they provide their best answer as free-form text. After this attempt, the user is presented with
the correct answer. These exercises are repeated after some time in order to improve vocabulary
acquisition and test the users’ knowledge. An example is shown in fig. 6.1. Such user-word-answer
tuples form the basic unit of data in the learning environment and a basis for the modelling.

∗In this chapter, “we” refers to J. Pata
†http://lingvist.io
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6 Modelling memory in language acquisition

Figure 6.1: An example of an exercise in the Lingvist environment, where the user is learning French
based on English.

By implementing a simplified version of Deep Knowledge Tracing (DKT) [196], we show that
by predicting the knowledge of individual items on a per-user basis using a sequence of previous
guesses, we can develop an accurate estimation procedure for the overall vocabulary knowledge of
the user. We achieve this by compressing the sparse and variable-length guess sequences into a
fixed-size representation using a recurrent neural network (RNN) and furthermore mapping this
small fixed-size representation into a set of numbers that can be interpreted as distinct per-item
knowledge likelihoods‡.

This chapter is organised as follows: first, in section 6.2, we review the mathematical background
of the problem of knowledge estimation and present an overview of the data. In section 6.3, we
discuss the details of the RNN model that was used to estimate the user knowledge and compare it
with other models. In section 6.4, we analyse the results and finally in section 6.5, we summarise
the studies that were made to optimise the RNN model and discuss possible improvements that
could be made to the model.

6.2 Problem statement and data description

In the following section, we describe the problem of estimating the users’ vocabulary knowledge
in terms of guess likelihoods for basic language items and describe the dataset based on which we
will construct the prediction model.

6.2.1 Knowledge estimation

The problem of knowledge estimation can formally be stated as follows. We have a set of items,
indexed by n = 1, 2, . . . , N , for which users, indexed by m = 1, 2, . . . ,M provide guesses that can
be correct or incorrect, denoted by gnm ∈ {1, 0}, with gnm = 1 (gnm = 0) corresponding to the
n-th item being answered correctly (incorrectly) by the m-th user. Therefore for each user, the
guess data form a sequence

Sm = [(n1, g1), . . . , (ni, gi), . . . , (nT , gT )]

where T is the number of guesses a user has made. The individual knowledge of a specific userm can
then be written as gm = (g1, g2, . . . , gN ). Note that we have no control over the order in which
items are presented to the user nor the set of items which are presented, such that the vector gm is
sparsely filled. This arises from the nature of the function that generates the sequence of questions
Sm, which is randomized on a per-user basis. For example, user m = 1 can answer items in the

‡To be distinguished from a probabilistic interpretation, where the predicted knowledge values are required to sum
to unity over a population.
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order (n = 1, n = 17, n = 3, . . . ), whereas another user m = 2 may instead have answers for
(n = 2, n = 1, n = 10, . . . ).

Lexical unit The items in the guess sequence themselves may be arbitrary, but in our case, they
always represent word pairs, asking the user to guess a word in their target language based on an
explanation in their source language. We use the term lexical unit (LU) to denote such word pairs.
An example LU would be the pair news - la nouvelle in the English-French language pair, embedded
as a completion in a sentence such as: Cette une bonne . . . (news), as illustrated in fig. 6.1.

These data can be represented as a (N × M) matrix G = (gnm), with N being the total
number of users and M the total number of items. In general, users may answer questions from a
randomized LU sequence, thus, this matrix is sparsely filled, as can be seen in fig. 6.2, where we
have shown the guess data for a small subset of users and LUs. We explicitly distinguish between
the case where a user doesn’t know an item gnm = 0 and where no answer has been provided
by storing the matrix G′ = (g′nm), g′nm ∈ {available,not available}, that records whether a given
user has provided an answer to a given question. We use this matrix to mask out the unknown
questions in the optimization phase, as explained further in section 6.3.2.
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Figure 6.2: Guess data for the first 100 users and the first 100 LUs, a small subset of the full user
population and LU space. Correct guess attempts are shown as a yellow pixel, incorrect attempts where
the users guess did not correspond to the correct answer with a dark purple pixel. Cases where data were
not available are shown as white pixels. The relative sparsity of data results from the question algorithm
sampling the LU space in a pseudo-random fashion.

Prediction task The task of knowledge estimation is then to predict the guess probabilities gm for
all items for an individual user m, given a short (∼ 5% of the total or about 10-50 guesses)
subsequence of that user’s guesses. This can further be seen in the context of knowledge tracing,
where given a sequence of observations about a user x0 . . .xt over time steps t, the task is to
predict properties of the interaction xt+1. Here, the interaction is formally a pair xt = {nt, gt} of
the knowledge item and the guess. Time-dependent prediction is important for modelling the
memory and learning capacity of users. In the studies that follow, we decoupled the study of time-
dependent properties of learning from the initial knowledge, focusing on optimising the method
for predicting the pre-existing vocabulary.

The guess probabilities of different items may be related to each other, such that knowing a
difficult word would be a good predictor for knowing other words of similar difficulty. Therefore,
the task is to model the full probability distribution p(gm|gobs

m ), given the observed data gobs
m for

a user. However, we do not have an explicit labelling of which items are related and we hope to
capture the essential properties of the knowledge probability by directly using the data.
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Figure 6.3: On the left, we show the distribution of users by number of answered LUs. We have required
that a user has answered at least 100 LUs. On the right, we show the corresponding distribution of LUs
by number of answers from users. At this stage, LUs have not been filtered, hence the whole course is
considered. The slight peak in the tail of the user answer distribution represents very enthusiastic language
learners who have progressed through the complete course.

6.2.2 Data

We use guess data for about six months between January - June 2017 from roughly 15 000 users
from the English to French course at Lingvist, requiring that users have answered at least 100
LUs. This corresponds to about 10 million user - guess pairs. The course consists of roughly
5400 individual LUs. Overall, an average (mean) user has answered about 590 LUs and an average
(mean) LU has about 1600 answers, with the distributions following a rough power law form, as can
be seen in fig. 6.3. Although we used the English-French language pair for the primary studies, we
also validated the model on several other language pairs with less data, namely Russian-French,
English-Standard Chinese (Mandarin) and English-German, and confirmed that the results are
broadly replicable.

The problem of predicting the properties of the guess matrix G as stated above is well known in
literature as matrix completion [197], where the task is to discover hidden or latent variables that
would allow the unspecified elements of a matrix to be estimated based on assumptions about rows
or columns being sampled from a common distribution. Such problems are typically solved with
some combination of collaborative filtering and matrix factorization. However, as in the future we
may also want to model time-dependent behaviour of the estimated knowledge, we seek a more
generic solution to the problem that would make it possible to add arbitrary information about
users and guesses and derive the appropriate model without much expert knowledge. Furthermore,
in the future, the definition of a lexical unit (LU) may be expanded to encompass more general
exercises beyond word pair guesses, for which a simple matrix representation may not be sufficiently
flexible.

6.3 Model description

6.3.1 Reference models

In this section we describe the baseline models that will be used as reference implementations to
estimate the improved performance from the proposed approach. The simplest model for predicting
the prior knowledge rate of words would simply be to assume that any user is an average user and
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each word with index n = 1 . . . N has a probability pn of being known by any user, where the
probability is simply estimated by computing the ratio of correct to all guesses of this word by all
users. Clearly this does not allow the learning experience to be tailored, but it is a reasonable first
guess about the user in the absence of other data.

As the user proceeds through the course, their guesses will allow us to update our estimation
of their knowledge in a Bayesian framework. In general, Bayesian Knowledge Tracing [198], where
the skill-specific performance is modelled using transition probabilities from an unlearned to a
learned state based on evidence, has been shown to perform at least as well as the best machine-
learning based models, however, such models require considerable domain knowledge and manual
item labelling to be used successfully [199], thus we investigate supervised neural networks as a
possible solution.

In order to measure how well a model is able to predict user knowledge, we need to establish a
set of metrics. In particular we use the number of correctly predicted items that the user actually
knows (true positives) and the number of items incorrectly predicted to be known (false positives).
Thus, we effectively treat the problem as binary classification with each guess attempt being an
independent trial of equal weight.

We use these true and false positive rates to construct the receiver operating characteristic
area-under curve (ROC AUC) metric as an overall average performance indicator. Such a metric
considers all trials as equal, meaning it is tuned to measure the performance of the model on the
same distribution of LUs that is used in the optimisation. This is referred to as the trial-weighted
case. An alternative would be to treat each LU, regardless of how many guesses have been made
for it, as equal, effectively reducing the weight of the LUs for which very many users have provided
guess data. We refer to this later as the LU-weighted case.

6.3.2 Machine learning model

Since we may want to continuously make predictions as the user progresses through the course, the
model should be able to deal with sequence data of variable length. This leads us to consider recur-
rent neural networks as a possible model architecture. RNNs are a type of models that are suited
for processing sequential data through the use of parameter sharing between successive recurrence
steps [200]. In particular, RNNs can be thought of as dynamical systems in time t characterized by
a function f(ht,xt, θ) and a set of parameters θ, where an external input xt modifies the hidden
state ht of the model through the recurrence relation

ht = f(ht−1,xt, θ) (6.1)

such that the hidden state vector at time t is a compressed representation of the sequence x1 . . .xt.
The model parameters are optimized using the back-propagation through time (BPTT) approach,
where the recurrence relation is unrolled in time and the weights adjusted using gradient descent
and error propagation.

In general, RNN models are problematic to optimise on sequences with long-range correlations,
as they suffer from issues with vanishing gradients over long sequences. This is known as the
“vanishing gradient” problem, where the weight updates in the back-propagation step either decay
to very small values or increase exponentially (“exploding gradient”) over long sequences [201].
Inspired by the Deep Knowledge Tracing framework [196], we use a Long Short-Term Memory
(LSTM) [202] architecture to summarise a guess history of arbitrary length as a vector of fixed
length. The advantage of the LSTM-type model over standard RNN-s is that the network is
augmented with a memory cell and gates for storing and forgetting the item in memory, as shown
in fig. 6.4. This has been shown to help solve the vanishing gradient problem typical in RNN
applications.

In practice, on a per-user basis, the questions that are used to estimate the knowledge of
a particular user are fed one-by-one into the LSTM cell (eq. (6.1)), which creates a fixed-size
representation of the user’s knowledge, that is then mapped into the output space gpred. Between
the LSTM layer and the output layer, we use a number of densely connected layers interleaved with
dropout layers [203] in order to approximate the knowledge decoding transformations between the
knowledge representation and the output item space.
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Figure 6.4: A functional overview of the LSTM cell. The input xt and the output of the previous
timestep ht−1 are modulated by the input activation function f(xt, xt−1) = at. The cell state ct is
updated by ct = it · at + ft · ct−1, such that the previous state of the cell ct−1 is modulated by the forget
gate ft. The cell state is converted to the output ht by the output modulation gate. All the gates have a
form of non-linearity and weights and biases for the inputs.
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We use a RNN as opposed to a dense network working on a fixed-size input in order to be able
to give accurate estimations of the user’s knowledge before the full sequence is seen. Nevertheless,
the RNN needs to be optimised with a fixed input size Nsequence, so we pad the input matrix with
zeroes for the missing inputs. The parameters to optimise in the model are the input, output and
forget gate weights and biases and the weights of the dense layers connecting the LSTM output to
the final output vector. As hyper-parameters, we optimise the size of the LSTM layer, the number
and size of the intermediate dense layers and the amount of dropout that is applied. We use a
sigmoid activation function in the output layer to guarantee an output gpred ∈ [0, 1], rectified linear
units (ReLu) in the intermediate densely connected layers and a hyperbolic tangent function in
the LSTM layer. The specific choice of activation functions in the intermediate layer did not have
a significant effect on the performance of the model.

Care must be taken when computing the loss function that is minimised to optimise the weights.
Since for any user, the known guess vector gtrue (the prediction target) is sparse, we must compare
only those prediction values for which the true value is known. Technically, we implement this by
propagating the boolean mask of available answers as an auxiliary input along with the guess data
and compute the binary cross-entropy loss only over available answers.

6.3.3 Model architecture

In order to feed the (LU, answer) pairs into the LSTM, we need to define an appropriate numerical
representation of the LUs in the form of a fixed-length vector. As the set of all possible questions
is known at training time, we could simply consider each LU as a unique symbol that can be
embedded into a real vector space of dimension k by some appropriate function f(n) ⇒ Rk. The
simplest approach would be to represent each LU in the “one-hot” encoding with k = n, such
that fk(n) = δnk. This suffers from a dimensionality problem, as the number of LUs can in
principle be arbitrarily large.

In our case, each LU is also a word, or more precisely a word pair in the source-target languages,
thus we could use an existing word embedding such as word2vec [204] or GLOVE [205]. These
methods specify the embedding function based on contextual similarity that is extracted by data-
mining a large corpus of text. However, a predefined word embedding would limit the model to
only be useful for word-based question items, making it difficult to use data from other types of
learning activities, such as grammar exercises or speech.

Another option would be to derive the embedding directly as part of the neural network op-
timisation procedure by using an embedding layer that reduces the dimensionality of the one-hot
encoding. The advantage of this approach is that the embedding function f(n) can be optimised
as part of the model, thus, the theoretical performance is the highest. This was the first approach
we adopted and overall, it showed promising results. However, since over the lifetime of the model
the items in LU set can change due to modifications to the course structure, we have investigated
an encoding which is resilient to such changes and does not need immediate re-optimisation upon
adding new items.

Instead of an optimised embedding described above, we may use random vectors to represent the
questions. Using compressed sensing, we can reconstruct any d-dimensional k-sparse signal using
random vectors that have at most r ' k log d/k dimensions [206]. In our case, the dimensionality
is the number of individual LU items (N ' 5000) or symbols that we want to represent and the
sparsity is k = 1 for a one-hot encoding, thus, a uniform random vector of length 4-5 would be
sufficient to represent all the word pairs in the full course. We illustrate the sparse coding method
in fig. 6.5. In this approach, any new items would still be representable and the model would
ideally return an average knowledge estimate for these unknown items.

As mentioned above, the contents of the course may change over the lifetime of the model.
Therefore, we wish to ensure that any new LU could be represented by the chosen embedding.
We choose the random vector approach, as we can easily use the unique UUID4-based identifiers
of the LUs used in the internal database at Lingvist. The UUID4 protocol prescribes universally
unique identifiers for data in computer systems with negligible duplication probabilities based on
pseudo-random bits. We do this by mapping the 128 pseudo-random bits of UUID4 to 16 random
8-bit floats in the range [−1,+1], as illustrated in fig. 6.6. With this method, it is straightforward
to keep track of item (LU) to representation associations throughout the lifetime of the model, as
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Figure 6.5: An illustration of the sparse coding technique using random projections. In this example, we
encode a 3-sparse 10-dimensional signal to a 6-dimensional space using a matrix of Gaussian distributed
weights.

they are always uniquely specified just by the item’s identity in the item database. This practical
necessity arose when implementing the model in the production system at Lingvist which evaluates
the model predictions for the users in real time.

one-hot: N~5000 

0001000000...

UUID4: (128-bit)

1001010101010101010...

encoded: N=16

0.2 0.8 -0.3 ...

word representation

 

... ...

encoding

Figure 6.6: The word embedding scheme, where we use the 128-bit unique UUID4 representation to
construct an encoded representation of 16 8-bit floats in the range [−1,+1]. The actual bit strings and
floating point values are illustrative.

For each user, we take up to a fixed number Nseq = 10 . . . 100 of guesses as the input. These
guesses are then represented as a Nseq × (r + 1) matrix, where r = 16 based on the compressed
sensing arguments discussed above. Each row of the matrix corresponds to a tuple of the LU
representation and the guess value g ∈ {0, 1}. The output of the model is the n-dimensional
knowledge vector g, such that we predict the static knowledge of all LUs, based on a short guess
sequence. The overall structure of the neural network based model is shown in fig. 6.7, where the
sequence size is typically 50 . . . 100, the fixed-size representation size is 32 and the target vector
has a typical size of O(5000). For the output layer, the activation function has to be sigmoidal
such that the outputs can be interpreted as probabilities.

LSTM
encoder

x0 x1 x2 ... xn

input sequence
(LU, guess) pairs

c0

c1

c2

c3

c4

fixed-size
representation

dense layers

target vector
LU space

Figure 6.7: The overall architecture of the knowledge prediction neural network model. The arbitrary-
length input sequence of (LU, answer) tuples is fed into a recurrent LSTM unit, which encodes the sequence
into a fixed-size latent representation. This representation is decoded by a multi-layer densely connected
feedforward unit into the final output space.
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6.3.4 Optimisation
The loss function of a particular user m for the model optimisation is based on a binary cross-
entropy between the predicted knowledge and the true guess for all the items for which this user
has provided answers. It has the form

Lm =
∑

n∈ansm

H(yn, gn) (6.2)

where y = (yn) is the predicted knowledge vector, gn is the guess (prediction target) for a given
item n in the set of answered items ansm for user m. The binary cross-entropy between two
vectors yn ∈ [0, 1] and gn ∈ [0, 1] is defined as

H(yn, gn) = −[gn ln yn + (1− gn) ln (1− yn)].

We note that in the loss function, we sum over all the answers, including the ones used in the
input sequence. This does not pose a problem and serves as a cross-check on the model, where we
expect the output for an item that was seen in the input to be predicted with high confidence.

We use the binary cross-entropy, since it can be shown that this leads to a maximum likelihood
formulation of the problem. The binary cross-entropy is related to the Kullback-Leibler (KL)
divergence, defined over the true probability distribution g(x) and the assumed distribution h(x) as

DKL(g||h) = Eg ln
g(x)

h(x)
=

∫
g(x) ln g(x) dx−

∫
g(x) lnh(x) dx ≥ 0 (6.3)

through H(g, h) = H(g) − DKL(g||h) with H(g) = −Eg log g being the Shannon entropy. In the
case of binary discrimination, the distributions are defined by a single probability value g(1) =
p and g(0) = 1− p, such that the Shannon entropy is maximal for p = 0.5. The KL divergence is
a discrepancy measure between the true and assumed distributions, which satisfies DKL(g||g) = 0,
but is not symmetric nor does it satisfy the triangle inequality, hence it is not a true distance
measure.

We optimise the model with respect to the loss function over the whole dataset, using random
subsamples (minibatches) of 100 users for about 10-100 epochs with the Adam stochastic gradient
descent optimiser§. The Adam method estimates first and second moments of the gradient of
the loss function and uses it to adaptively update the parameter estimates [207]. The model was
implemented using the tensorflow package [208] and the optimisation was performed on a single
AWS g2.2xlarge instance, with an epoch time around O(10 s).

6.4 Results
In this section, we discuss the optimisation studies of the model and the overall performance as
estimated on held-out data.

6.4.1 Studies of the RNN model
In general, the model performance has only a mild dependence on the choice of hyperparameters,
introduced in section 6.3.2. Nevertheless, we scan the hyperparameter space by computing a cross-
validated mean AUC at each point in a 5-dimensional space, consisting of the size of the LSTM
layer, the size of the intermediate dense layers, the number of intermediate dense layers, the amount
of dropout and the learning rate. We find that the hyper-parameter scan prefers the encoding by
the LSTM to be rather small, around 32 to 64 units, and the intermediate dense layers are preferred
to be small (128-256) and deep (3-4 layers). The final optimised loss function is shown in fig. 6.8,
where we see from the loss on the training set that the model has sufficient generality to be able
to fit features of the data, with the performance on the held-out test set being still acceptable
after 10-15 epochs. We stopped the model training when the loss function on the test set had not
decreased for five epochs, using the optimisation only up to the point when the loss decreased.
§We used a learning rate of α = 0.001, exponential decay rates for the first and second moment β1 = 0.9, β2 = 0.999
and a learning rate decay of d = 0.0.
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Figure 6.8: The loss function of the final optimisation of the model. The loss on the training set is
shown in blue, the validation set in orange. In general, we see a relatively good convergence of the model
after approximately 10-15 optimisation epochs. There is a small amount of over-training present after ten
epochs, as visible from the increasing loss function on the test set.

One of the more important free parameters of the model is the length of the input guess
sequence Nseq, introduced in section 6.3.3. While RNN-type networks can work with an input
of arbitrary length, there is a clear trade-off between the amount of information provided to
the model vs. the amount it needs to predict. We studied how this affects the performance of
the model by retraining the model on the same dataset, selecting up to Nseq guesses for each
user. In order not to bias the analysis, as users with a different number of guesses may have
different knowledge characteristics, we optimise on the same underlying data where users have
at least Nseq = 100 guesses, masking the additional sequence elements. As expected, the model
performs better with longer sequences, as more information is provided about the user. We observe
a roughly linear relationship between the AUC and the guess sequence length, as can be seen
in fig. 6.9. The performance measurement was carried out on an independent sub-sample that was
held out from the model optimisation. We note that since the model predicts all items, including
the ones that were seen in the question phase, we expect the overall true correct rate to increase
with an increasing input sequence length.

Additionally, we have studied how the amount of training statistics affects the performance of
the model. Interestingly, we see that with even as few as 1000 users, the model is able to approxi-
mate the knowledge characteristics of an average user. In general, adding more data improves the
performance more significantly for words for which there are very few answers provided, as can be
seen in fig. 6.10. Adding more data improves the model performance, especially for words with
very low answer rates.

6.4.2 Discussion

As a first step, we compare the average performance of the model over all guesses to the reference
toy model. We show the average performance of the RNN model in fig. 6.11 on a held-out dataset
that was not seen during optimisation. In general, we see that the RNN model is more accurate
than the average model, with the average true positive rate improving from 0.38 to 0.54 at an
average false positive rate of 0.1 for the trial-weighted case, an improvement of about 40% in
efficiency. This conclusion also holds if all LUs are given equal weight. This is not surprising, as
the reference model has no discriminating information about the individual users or LUs. This
increase in efficiency directly translates into reduced learning time, as the LUs correctly predicted
can be defocused in the study period without losing the coverage of the course.

Furthermore, we studied some first-order statistics of the predictions, namely the per-user and
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Figure 6.9: Performance of the model as a function of the guess sequence length. For each point, we use
only up to Nsequence guesses from all users as the input to the model. The model is trained from scratch
on the full dataset and evaluated in the same way for all cases.

per-LU averages. In a very simple model, each user (LU) can be characterized by their average
correct rate, treating all LUs (users) as equal. More sophisticated treatments based on item
response theory would also be possible, where the skills assigned to users and difficulties assigned
to items are determined using a maximum likelihood procedure [209]. In fig. 6.12 we see that the
average per-LU and per-user correct rates are also reproduced to a good degree by the model, with
linear correlation coefficients above 90%. We can see that the correct rate for users and LUs with
a low (high) average correct rate are slightly under (over) estimated. This could result from the
model not having enough counterexamples to sufficiently learn the probability distribution p(g) for
very simple or difficult LUs and users with very low or high correct rate. We take this as an example
that the model is able to summarise the user and LU population and approximate the mean correct
rates.

We can further study the average performance of the model on a per-LU, per-user basis as
a function of number of guesses per LU. In fig. 6.13 we see that the overall performance of the
model is strongly dependent on how many guess attempts a given LU has, with the average ROC
AUC dropping significantly for rarer LUs. This performance degradation is expected, as we can
see from fig. 6.3 that the number of answers per word drops steeply going further in the course,
reflecting that this model was trained treating each trial equivalently. With increasing guess
statistics, it may be worthwhile to investigate a re-weighting or re-sampling of the trials such that
words that have fewer trials have a higher weight and would thus still be optimised for in the
training. This trend also introduces a natural cut-off in terms of when the predictions from the
model are no longer considered reliable at a priority index of around 4000 for LUs. The priority
index arises from an ordering of the LUs by when they appear in the course on average and can
simply be considered a specific way to order the LUs.

Additionally, we studied the performance as a function of the LU average guess rate, which
can be interpreted as the LU difficulty. We see in fig. 6.14 that the performance of the model
is broadly similar over a wide range of difficulties. For words that are very easy or difficult,
the variance in the trained model is considerable, since the model has less counterexamples for
optimisation. Furthermore, we see that the LUs with vanishing performance all have 0 correct
guesses in data, meaning they can be excluded from the predictions.

Prediction uncertainty We have also investigated the prediction uncertainty arising from the
model in terms of sensitivity to the inputs. In particular, for a word that is predicted to be known
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Figure 6.10: The effect of the amount of training data on the model performance We investigate three
cases: 1000 users, 5000 users, 15000 users (full dataset) and plot the performance characteristics of the
model (ROC AUC), averaged over words that have a certain fraction of users providing answers. Overall,
we see that the model performance increases significantly for words with few answers when adding training
data.

at a knowledge likelihood of ym = 0.9, as an example, how certain is the model of this prediction
and how much would it vary if the input sequence changed slightly? For neural networks, it has
been shown that using dropout in the evaluation phase is a good approximation for the inherent
sensitivity [210]. In fig. 6.15, we can see the evaluated uncertainty of the guess probability using
ten dropout rounds, compared to the data, in terms of the running mean of the average correct
rate as a function of the LU priority index. It is interesting to see that the 3σ confidence interval
around the predicted mean covers the data, however, the predicted mean is systematically lower
than the true guess probability as a function of the priority index. This systematic underestimation
clearly shows that while sensitivity to inputs accounts for a large fraction of the variability, there
is room for improvement in terms of the bias of the prediction.

6.4.3 Future work

As possible future improvements, extending the information in the LU feature vector beyond a
random representation may prove to be a straightforward way to improve the performance of the
model. In particular, the random representation could be augmented with features such as difficulty
or context based on expert labelling. This is particularly important, as the LUs are embedded in
sentences, so context priming effects could be significant [211].

Additionally, the Deep Knowledge Tracing approach was originally conceived for time-dependent
knowledge modelling and the current framework is naturally amenable to predicting the behaviour
of the guess sequences in time, such that effects of acquisition and forgetting could naturally be
incorporated.

Furthermore, the current model works only on a single language pair, but it could easily be
extended to multiple simultaneous languages by adding language data to the source representation
vector and decoding the internal knowledge representation into different target language spaces.
This would allow training a single model on all language pairs simultaneously, which could help
bootstrapping new courses that don’t yet have enough user interaction data.

Interpretable models Having optimised a model that is capable of estimating the knowledge
vector g based on a subset of guesses, it is interesting to study the explanatory factors of that
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Figure 6.11: Overall average performance of the model, as characterised by the receiver operating char-
acteristic (false positive to true positive rate curve) area under curve (ROC AUC). On the left, we show
the average treating all trials equally, on the right, the average by weighting trials such that each LU is
treated equally. We see that the RNN model (blue) outperforms the average model (orange).

model. In general, explaining the decisions or predictions of complex “black box” models is a
topic of intense research activity [212]. Recently, locally interpretable linear models (LIME) have
been proposed as a way of explaining the features a model makes use of for particular prediction
outcomes [213]. In the LIME approach, any classifier or regressor predictions can be explained
in a locally faithful way by fitting local linear approximations to the decision. We have used the
method to validate our optimised vocabulary model on a few examples and see that it uses guess
information in an intuitively correct way, as can be seen in section 6.4.3. We mention this as a
possible direction for future research, as understanding the factors in a prediction by a complex
model is an essential step in validation.

6.5 Summary
We showed that by formulating the problem of predicting existing knowledge as a sequence-to-
vector binary classification problem, RNNs present a simple and flexible solution with a wide
range of applicability. This method outperforms the existing reference implementation at Lingvist
based on average correct rates by about 45% in terms of true positive rate at a fixed false positive
rate. In order to achieve this result, we formalized the reference model based on average guess
accuracies and formulated the vocabulary prediction problem as binary classification. We found
that sparse coding from random bits in database identifiers can be used to represent categorical
items in a practical and resilient fashion.

Moreover, we saw that a single flexible model architecture based on recursive neural networks
is able to predict knowledge probabilities of thousands of words based on just a small amount
of randomly chosen guesses. The RNN model is easily extensible should more information about
LUs or users become available. In particular, we see extension to predicting knowledge in multiple
languages simultaneously or incorporating time-dependent information as possible future improve-
ments.

Furthermore, we studied the reliability of the predictions by evaluating the sensitivity of the
model to the inputs using a sampling technique, which allows to attach uncertainties to predictions,
and by deriving locally-interpretable models around predictions. Using this sensitivity analysis in
HEP, where multivariate predictions are commonplace, would allow the reliability of these results
to be studied from a new perspective.

Overall, in cases where the amount of available data is significant but the underlying theory is
not well known from first principles, such as language acquisition, the use of ML for modelling and
prediction tasks can provide significant advantages in terms of flexibility and speed over approaches
that require expert annotations, such as Bayesian Knowledge Tracing.
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Figure 6.12: Predicted vs. true average guess rate by LU (left) and user (right). We see that the model
performs best for LUs which have a true correct rate around 50%, with slight underestimation at low
correct rates and overestimation at high true correct rates.
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Figure 6.13: The performance characteristic (ROC AUC) as a function of lexical unit priority index.
The priority index is a monotonously growing index that roughly corresponds to the order in which words
are shown to users, with lower indices being shown earlier and more often. The words with a ROC AUC of
0 or 1 correspond to outliers where all the answers are either correct or incorrect. We show the individual
lexical units (blue dots), as well as the running mean of the distribution with a window size of 100 (blue
line).
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Figure 6.14: The performance of the model on a per-word basis as a function of the guess probability
(prior difficulty) of the word. We see that for words with very high or low guess probability, the variance
of the model is significant, resulting from few training examples.
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Figure 6.15: The predicted (blue) and true (red) guess probability as a function of LU priority index for
the first 500 LUs. We see that the prediction is generally sufficiently close to the true mean correct rate,
but trends somewhat lower than the data.
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Figure 6.16: Local explanations for a word that was known (left) and not known (right). In the case
where the word was known, the algorithm predicts the knowledge likelihood to be g = 0.24, based on the
correct guesses of the LUs j’ and non, but incorrect guesses for most other words in the trial set. In the case
where the word was not known on the right, the model predicts the guess likelihood to be g = 0.06 based on
incorrect guesses for most words. We see that incorrect guesses (= 0, red) tend to affect the prediction in a
negative way, whereas correct guesses (= 1, green) tend to reinforce the knowledge, as would be expected.

128



7 Conclusions and outlook

The SM is a successful and predictive theory of high-energy processes. Nevertheless, it is clearly
not a complete theory of the physical Universe. Among the open questions, the nature of the elec-
troweak symmetry breaking mechanism needs to be clarified experimentally. Deviations between
the couplings of the recently-discovered Higgs boson and SM particles can arise in BSM scenar-
ios and thus must be tested experimentally. The Large Hadron Collider and the corresponding
general purpose detector experiments, CMS and ATLAS, are in a unique position to clarify the
nature of this fundamental scalar. The couplings of the Higgs boson to vector bosons have been
determined in Run 1 of the LHC to a relative precision of ' 10%. In Run 2, thanks to the increased
centre-of-mass energy and luminosity, the couplings to the fermion sector can be explored in more
detail.

The focus of this thesis was the search for the top quark pair associated Higgs production
mode (tt̄H) in the channels where at least one of the top quarks decays leptonically and the
Higgs boson decays to bottom quarks. This is a sensitive channel which contributes to the overall
tt̄H cross-section measurement and thus the determination of the top quark Yukawa coupling.
However, the analysis is challenging due to the presence of an irreducible background arising from
the QCD production of top quark pairs and the complex multi-jet final state with a combinatorial
ambiguity between the jets. Multivariate analysis techniques that exploit the differences in the
dynamics of the signal and background processes are necessary to achieve sufficient sensitivity.
Traditionally, LHC analyses have employed machine learning techniques, where large amounts of
MC simulation are used to construct a signal-to-background classifier. This approach works well
and has been essential for many of the results of the LHC experiments. However, for final states
with a large number of jets, it is challenging to generate sufficient MC simulation events that
pass the experimental cuts in the most sensitive regions of the phase space, making it difficult
to optimise the machine learning algorithms. Such predictions also have significant theoretical
uncertainties arising from the challenges of matching the hard process to the parton shower and
the multiple momentum scales present in the hard process.

We have investigated an alternative approach for analysis, where the signal and background
processes are distinguished by making use of the matrix elements directly at the event observable
level. We made significant contributions to the matrix element method as applied to tt̄H(→ bb̄) in
CMS and this approach is now standard within the collaboration for this analysis. We have also
carried out a complete search for tt̄H(→ bb̄) in the leptonic channels in the 2016 data collected
by CMS using the matrix element method. We have not observed any significant excess and have
thus established an upper limit on the signal strength factor µ = σtt̄H/σ

SM
tt̄H at 1.52 (1.57 expected)

at a confidence level of 95%. The upcoming years and the data collected by the High-Luminosity
LHC project promise to be particularly interesting for tt̄H, with a discovery of this process being
within reach in the next years. On the other hand, theoretical and experimental uncertainties are
significant in this analysis. The former can be reduced by using more accurate theoretical models,
which are increasingly becoming available. There, the matrix element method can be a useful
way to incorporate latest predictions into the analysis. For the latter, the analysis techniques, in
particular the reconstruction of jets and the identification of jets from bottom quarks, need to be
refined.

For object reconstruction and identification, machine learning presents a useful way for com-
bining signals across various channels. We have investigated a method for b jet identification
where several independently optimised b discriminators based on different vertexing algorithms,
track properties and presence of leptonic decays of hadrons are combined into a multivariate super-
discriminator between jets arising from bottom quarks, light quarks and charm flavoured quarks.
This approach presented an improvement over the state-of-the art at CMS and was deployed during
the 2016 data taking and used in several physics analyses. The success of this discriminator relied
partly on benefiting from the developments made in the field of data science outside of high-energy
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physics. Currently, such discriminators rely fully on simulation of the hard scattering, the subse-
quent showering and hadronisation and the detector simulation and thus are assigned significant
uncertainties based on data-to-simulation corrections. An interesting direction for research would
be to reduce the sensitivity of such discriminators by making use of the theoretical and experi-
mental uncertainties during the optimisation phase. The direct use of collider data together with
the appropriate simulation in a semi-supervised learning environment may be possible to reduce
model dependence.

Although the SM of particle physics predicts many observable quantities accurately from a
relatively small set of principles and parameters, there are features that are less understood due
to the presence of non-perturbative physics, such as hadronisation or the precise parton content of
protons in high-energy processes. In such cases, modelling the observed data in a phenomenological
way and performing global fits presents a way to make testable predictions, as has been evidenced
by the usefulness of effective hadronisation models and PDF fits for LHC experiments. During
an internship at the private company Lingvist Technologies, we investigated and developed such
methods in the field of human cognition and language learning. We proposed a data-driven model
based on deep learning that predicted the performance of learners in a vocabulary test. Using such
predictions, it is possible to optimise the learning process and make it personal on a large scale.
Our proposed model out-performed the existing approach employed by the learning environment
offered by the company. Such data-driven methods may also be useful in physics for problems
where our understanding is not yet sufficient to have accurate predictions based on well-understood
theory. However, it remains an open question as to how to best develop these phenomenological
models such that they take into account the physical principles that have been well established by
experiments.

In conclusion, the successful operation of the LHC and the detectors has opened up a new
program in fundamental physics, making it possible to experimentally study the properties of the
recently discovered Higgs boson, the only known fundamental scalar.
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