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Wisdom is nothing more profound than an
abilitiy to follow one’s own advice.

– Sam Harris



Sommaire

Les circuits supraconducteurs représentent une plateforme de choix pour le dévelop-
pement de technologies quantiques en raison de leurs propriétés de cohérence et de notre
habilité à concevoir et à manipuler leur dynamique quantique de manière flexible. La réa-
lisation de technologies ayant le potentiel de s’avérer utiles pour la société, telles qu’un
ordinateur quantique tolérant aux fautes, nécessite cependant d’augmenter considérable-
ment notre capacité à réaliser des opérations quantiques spécifiques sur ces systèmes, et
ce sans engendrer d’erreurs. Pour ce faire, il est nécessaire d’améliorer à la fois notre ca-
ractérisation, notre modélisation et notre contrôle des dispositifs quantiques afin d’être en
mesure de comprendre et d’atténuer de façon pratique les sources d’erreurs qui limitent
les performances actuelles. Mes travaux s’attaquent à cette problématique en développant
de nouvelles approches pour sonder les qubits supraconducteurs, pour utiliser l’informa-
tion acquise afin de concevoir des descriptions simplifiées de leur fonctionnement et de
leurs imperfections, puis finalement pour optimiser nos contrôles externes sur ces modèles
afin de réaliser des opérations avec des erreurs minimales. Plus spécifiquement, je me suis
d’abord intéressé à la modélisation et à la simulation de la première expérience de correc-
tion d’erreurs quantiques avec des qubits supraconducteurs, laquelle a été réalisée dans
le groupe d’Andreas Wallraff à l’ETH Zürich (chapitre 3). Notre description numérique
de cette expérience impliquant 17 qubits a permis de démontrer notre compréhension des
résultats expérimentaux en plus d’étudier l’effet des différentes sources d’erreurs qui de-
vront être mitigées dans les expériences futures. Dans l’objectif de contribuer concrètement
à la réalisation d’opérations quantiques avec de meilleures fidélités, j’ai ensuite développé
une méthodologie combinant l’apprentissage automatique et le contrôle optimal quantique
(chapitre 4). Cette approche a le potentiel de s’avérer fort utile en raison de sa simplicité
d’utilisation et de son efficacité, lesquelles sont démontrées ici sur le contrôle d’un qubit
supraconducteur. En collaboration avec le groupe de recherche chez Google Quantum AI, je
me suis ensuite intéressé à la caractérisation précise des opérations réalisées sur des disposi-
tifs comportant des dizaines de qubits (chapitre 5). Nous avons développé deux protocoles
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qui sont robustes et très efficaces afin d’extraire une description des portes logiques qui
peut directement être utilisée afin de calibrer ces opérations. Finalement, j’ai contribué à la
conception d’une approche numérique permettant de résoudre des problèmes arbitraires
d’optimisation sur les dynamiques de grands systèmes quantiques ouverts (chapitre 6).
Cette méthode possède un coût en mémoire minimal, ce qui nous permet de nous attaquer à
des problèmes de contrôle optimal qui étaient autrement inaccessibles, comme l’optimisation
de la mesure dispersive d’un qubit supraconducteur décrite par un modèle réaliste. Somme
toute, mes travaux présentent plusieurs exemples où une approche basée sur un modèle et
une compréhension physique nous permet de combiner la caractérisation au contrôle afin
de contribuer concrètement au développement de technologies quantiques.

Mots-clés : Informatique quantique, Qubit supraconducteur, Simulation numérique,
Caractérisation quantique, Apprentissage automatique, Contrôle optimal quantique
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Chapitre 1

Introduction

Née du désir de comprendre le fonctionnement du monde naturel qui nous entoure,
la physique nous amène à concevoir de nouveaux outils nous permettant de sonder les
phénomènes dont une description complète nous échappe. Une compréhension appro-
fondie de ces phénomènes et des outils eux-mêmes ouvre la porte au développement de
technologies innovantes ayant des applications bien au-delà des explorations scientifiques
initialement poursuivies. Alors que cette compréhension est essentielle, c’est le contrôle
qui permet concrètement de transformer nos connaissances scientifiques en technologies
utiles [6]. Le développement de l’ordinateur quantique en est le parfait exemple.

Plus de 40 ans après la proposition concrète de contrôler les phénomènes quantiques afin
de simuler le comportement d’autres systèmes quantiques complexes par Richard Feynman
et ses contemporains [7], le domaine de l’informatique quantique se situe aujourd’hui à un
point charnière. Bien que l’ensemble des applications d’un ordinateur quantique universel
ne soit pas connu ni entièrement compris, la possibilité de simuler des phénomènes qui
sont simplement hors de portée de tout ordinateur classique afin de concevoir, entre autres,
de nouveaux matériaux, médicaments et processus chimiques a mené à un engouement
économique d’envergure [8]. Alors que le domaine de l’informatique quantique et les réali-
sations expérimentales ont énormément progressé dans les dernières années, d’importantes
contributions scientifiques sont encore nécessaires afin de réaliser les promesses associées à
l’utilité de l’ordinateur quantique [9].

Un enjeu majeur dans le développement d’un ordinateur quantique utile possédant des
milliers de qubits et réalisant des millions d’opérations est le compromis entre la cohérence
de l’information quantique et notre capacité à précisément la contrôler de manière arbitraire.
En effet, l’information que l’on utilise pour le calcul quantique est contenue dans l’état fragile
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de notre système quantique, c’est-à-dire de nos qubits. Cet état est sensible à de nombreuses
interactions avec son environnement pouvant mener à sa décohérence et donc à des erreurs
de calcul. Afin de préserver l’information quantique, il est alors nécessaire d’isoler notre
système de toute interaction externe. Cependant, ce couplage avec l’environnement externe
est nécessaire pour contrôler nos qubits et effectuer du calcul quantique, par exemple en
leur envoyant des signaux électromagnétiques. Somme toute, il est crucial de trouver un
juste équilibre dans notre conception des dispositifs quantiques et de nos opérations afin de
produire un minimum d’erreurs tout en réalisant les opérations logiques voulues avec une
durée réaliste.

Bien que fortement réduite, l’exigence associée à la réalisation d’opérations possédant
de très hautes fidélités persiste avec l’utilisation de la correction d’erreur quantique, un
ensemble de techniques permettant de corriger les erreurs de calcul à mesure qu’elles
surviennent [10, 11]. Pour les qubits supraconducteurs par exemple, l’une des plateformes
de technologies quantiques les plus prometteuses [12, 13], le niveau de compréhension
actuel de la fabrication et de l’opération de dispositifs contenant une centaine de qubits
permet d’atteindre des fidélités supérieures à 99% pour la mesure et les portes à deux qubits
et supérieures à 99.9% pour les portes à un qubit [14, 15]. Afin de réaliser un ordinateur
quantique tolérant aux fautes, la fidélité et potentiellement la durée des opérations doivent
cependant encore être améliorées, et ce dans un dispositif comportant au moins cent fois
plus qubits [16, 17].

Dans l’objectif d’obtenir une maîtrise plus précise des différents processus ayant lieu
dans le système quantique, il est nécessaire d’améliorer à la fois notre caractérisation, notre
modélisation et notre contrôle des dispositifs quantiques. En effet, à mesure que les sources
de bruit dominantes sont caractérisées, comprises et mitigées par la conception de meilleurs
dispositifs et opérations, de nouvelles sources d’erreurs deviennent dominantes et doivent à
leur tour être prises en compte afin de réduire les taux d’erreurs davantage. Dans cette thèse,
je m’intéresse particulièrement à ce processus où le développement technologique et l’avan-
cement de notre compréhension physique des phénomènes quantiques sont intimement
reliés.

Mes travaux portent donc principalement sur les façons dont on peut sonder un système
quantique afin d’extraire de l’information utile pour comprendre son fonctionnement (ca-
ractérisation), utiliser cette information afin de concevoir une description simplifiée de ses
dynamiques (modélisation), puis finalement optimiser les façons dont on interagit avec le
système afin de réaliser des opérations ayant une erreur minimale (contrôle). Les opérations
d’intérêt ici seront la mesure de l’état des qubits ainsi que les portes logiques impliquant un
et deux qubits. M’inspirant de la philosophie scientifique selon laquelle [18]
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« tous les modèles sont erronés, mais certains sont utiles »
je cherche à construire des modèles spécifiques pour les qubits supraconducteurs dont
la description des dynamiques réelles est suffisamment précise pour décrire l’expérience
réalisée avec une précision acceptable et/ou pour permettre la conception de nouvelles
opérations avec une fidélité cible. Appelant une telle représentation un bon modèle, une
question centrale à tous les travaux de cette thèse est donc :

Quel est un bonmodèle pourdécrire les opérations des qubits supraconducteurs?
Sans surprise, nous verrons qu’il n’existe pas de réponse absolue à cette question, mais
plutôt un ensemble de solutions qui dépendent fortement des opérations spécifiques et des
fidélités que l’on souhaite atteindre. Alors que les solutions offertes dans cette thèse sont
vouées à être remplacées par de nouveaux et meilleursmodèles à mesure que le domaine
progresse, les méthodologies élaborées ici pour répondre concrètement à cette question ont
le potentiel de rester au cœur des développements technologiques futurs.

Au chapitre 2, j’introduis d’abord les concepts clés derrière la modélisation physique des
opérations sur les qubits supraconducteurs, en plus de présenter les approches numériques
permettant de simuler la dynamique de tels systèmes. Construisant sur ces idées, je présente
au chapitre 3 l’approche de simulation que nous avons développée afin de décrire une
expérience de correction d’erreurs quantiques où 17 qubits sont utilisés afin de former
un qubit logique. En plus de démontrer notre compréhension des dynamiques complexes
en jeux dans une telle expérience, ces simulations nous permettent d’étudier l’effet des
différentes sources d’erreurs limitant la performance du qubit logique et ainsi de guider les
efforts expérimentaux futurs.

Au chapitre 4, je développe une approche réaliste et facile d’utilisation ayant pour but
d’améliorer la fidélité et la rapidité des opérations réalisées sur un dispositif supraconducteur.
Plus spécifiquement, j’adopte une méthode d’apprentissage automatique afin de caractériser
le système quantique directement à partir des données expérimentales qu’il produit. Par
la suite, j’optimise les opérations quantiques sur ce modèle entraîné en utilisant les outils
de la théorie du contrôle optimal quantique. Je démontre également l’utilité d’une telle
approche à l’aide de simulations numériques détaillées d’un qubit supraconducteur, en plus
de proposer de nombreuses applications concrètes et avenues de recherche associées à cette
méthodologie.

Au chapitre 5, j’introduis deux protocoles de caractérisation quantique ayant pour
but d’obtenir de manière efficace une description précise et détaillée de certaines portes
logiques réalisées dans l’expérience. Le premier protocole, intitulé CAFE, sert à caractériser
la fidélité d’une opération logique tout en obtenant un bilan des contributions cohérentes
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et incohérentes à l’erreur totale mesurée afin de guider les actions à entreprendre pour
réaliser de meilleures opérations. Le second protocole, intitulé MEADD, permet d’estimer
les paramètres unitaires des portes à deux qubits avec une précision inégalée en éliminant
l’influence d’une source de bruit importante, la fluctuation temporelle de la fréquence des
qubits, laquelle limite les autres protocoles existants. Ces travaux ont été réalisés dans le
cadre de mon stage avec l’équipe de recherche de Google Quantum AI.

Au chapitre 6, j’étudie finalement le contrôle optimal quantique de la mesure des qubits
supraconducteurs. Pour ce faire, nous développons une approche numérique permettant
de résoudre des problèmes d’optimisation arbitraires sur les dynamiques décrites par une
équation maîtresse de Lindblad. Alors que notre méthode possède un coût en mémoire
numérique minimal, elle permet de s’attaquer à l’optimisation de processus dans des sys-
tèmes quantiques ouverts beaucoup plus grands qu’auparavant. Nous appliquons cette
approche à l’optimisation de la mesure d’un qubit supraconducteur et démontrons des gains
potentiels importants par rapport aux protocoles de mesure utilisés actuellement. Étant
donné l’ampleur des applications potentielles de notre approche numérique, j’ai contribué
au développement d’une librairie disponible librement qui se nomme dynamiqs, laquelle
j’introduirai brièvement à la fin de cette thèse.



Chapitre 2

Les qubits supraconducteurs

2.1 Introduction

Les circuits supraconducteurs représentent une plateforme de choix pour étudier de
multiples phénomènes quantiques à une échelle macroscopique, profitant à la fois de la
supraconductivité et d’une facilité à concevoir des interactions spécifiques entre la lumière
et la matière. D’un côté, la supraconductivité fait en sorte que le courant électrique peut
circuler sans aucune dissipation dans de tels circuits, ce qui permet de préserver l’informa-
tion contenue dans ces signaux sur de longues périodes et ainsi faciliter l’observation de
phénomènes quantiques cohérents. Les dynamiques de l’état supraconducteur, un conden-
sat formé d’un nombre macroscopique de paires de Cooper et obéissant aux statistiques
bosoniques, peuvent être décrites avec un seul degré de liberté [19, 20]. L’existence d’une
telle description collective fait en sorte que les processus quantiques, typiquement associés
aux phénomènes physiques s’appliquant à l’échelle atomique, peuvent être mesurés en
pratique à l’échelle macroscopique en étudiant les dynamiques des excitations électroma-
gnétiques d’un circuit supraconducteur [21]. D’un autre côté, les circuits supraconducteurs
bénéficient d’une grande flexibilité dans la conception de leurs propriétés et de leurs cou-
plages avec d’autres éléments supraconducteurs, lesquels sont par exemple utilisés pour
la mesure et le contrôle précis du système quantique. En effet, il est possible d’utiliser des
techniques de microfrabrication bien établies et des appareils de contrôle de signaux micro-
ondes afin de réaliser et d’opérer diverses expérimentations quantiques à base de circuits
supraconducteurs.

En plus de représenter une plateforme idéale pour étudier des processus naturels fonda-
mentaux tels que les interactions entre la lumière et la matière, le contrôle précis des degrés

5
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de liberté de tels systèmes ouvre la porte à de nombreuses applications technologiques.
Afin d’accomplir un tel contrôle en pratique, nous verrons que plusieurs ingrédients sont
nécessaires. Dans les sections qui suivent, j’introduis les principaux éléments établissant
les fondements sur lesquels ma recherche est construite, notamment le résonateur, le qubit
transmon et la mesure dispersive combinant ces deux éléments, en plus de survoler la
réalisation d’opérations logiques sur ces systèmes ainsi que leur modélisation numérique.
Sans aucune prétention d’offrir une introduction complète et rigoureuse à la physique des
circuits supraconducteurs, je me concentre ici sur les concepts qui seront utiles pour le reste
de la thèse et j’invite la lectrice et le lecteur intéressés à se référer aux excellentes revues des
Réfs. [13, 22, 23, 24, 12, 25].

2.2 Les deux circuits étudiés : Le résonateur et le transmon

Les circuits supraconducteurs sont typiquement fabriqués en imprimant un patron spé-
cifique d’un métal normal comme l’aluminium ou le niobium sur un matériau diélectrique
possédant de faibles pertes comme du saphir ou du silicium [26]. L’utilisation d’un tel sys-
tème dans un réfrigérateur à dilution permet d’atteindre une température d’environ 10 mK
et ainsi d’opérer dans la phase supraconductrice du métal et de minimiser le bruit associé
à un environnement de température finie (kbT ≪ h̄ω0) [22]. Alors que de nombreuses
familles de circuits supraconducteurs existent et continuent d’être développées [25, 24],
l’approche la plus répandue et sur laquelle portent mes travaux de recherche consiste à
utiliser un circuit nommé transmon [27] et de le mesurer à l’aide d’un résonateur micro-onde
imprimé à proximité [28].

2.2.1 Le résonateur

L’une des façons les plus simples de réaliser un oscillateur harmonique quantique
avec un circuit supraconducteur consiste à imprimer un guide d’onde coplanaire en deux
dimensions où un métal conducteur est entouré de chaque côté par deux autres lignes de
métal formant le retour à la terre. Les conditions frontières (ouvertes ou fermées) de cette
structure font en sorte que les modes électromagnétiques normaux qui y sont confinés sont
quantifiés [13]. Grâce à l’ingénierie des matériaux et de la géométrie de ce guide d’onde,
il est possible de concevoir avec précision l’inductance (L) et la capacité électrique (C) de
ce circuit, de sorte à obtenir un résonateur avec une fréquence donnée entre 5 et 15 GHz.
Un exemple de la géométrie typiquement utilisée pour ces résonateurs est présenté à la
figure Fig. 2.1(a).
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(a)

ℏωr
|0⟩
|1⟩
|2⟩L C

(b) (c)

Figure 2.1 – Le résonateur. (a) Image optique tirée de la Réf. [26] d’un guide d’onde coplanaire
(structure en forme de S) fait d’aluminium imprimé sur du silicium. Ce résonateur λ/4 est couplé
capacitivement à une ligne de transmission (au bas de l’image) et possède une condition frontière
ouverte à l’autre extrémité (haut de l’image). (b) Le modèle effectif du circuit illustré en (a) est
celui d’un circuit LC, c’est-à-dire un simple oscillateur harmonique. (c) L’oscillateur harmonique
quantique possède un puits de potentiel quadratique (bleu foncé) et des niveaux d’énergies discrets
(bleu pâle) qui sont séparés par la même énergie h̄ωr. Les panneaux (b) et (c) sont des adaptations
d’une figure de la Réf. [13].

La description physique de ce circuit imprimé peut être obtenue à l’aide de la quantifi-
cation d’un modèle classique, le modèle du télégrapheur, où le résonateur est représenté
par une série de blocs fonctionnels où chaque unité infinitésimale de longueur possède
une inductance et une capacité vers la terre [29]. Dans l’approximation où seul le mode
fondamental du résonateur contribue aux dynamiques étudiées, cette description mène
directement à l’Hamiltonien de l’oscillateur harmonique quantique [13]

Ĥr = h̄ωr â† â, (2.1)

où ωr est la fréquence fondamentale du résonateur et â† (â) l’opérateur de création (d’anni-
hilation) habituel. Comme cet Hamiltonien est équivalent à celui d’un circuit LC, le guide
d’onde coplanaire est communément appelé un résonateur et est modélisé directement de
cette façon, tel qu’illustré à la Fig. 2.1(b).

Dans l’objectif de contrôler l’état quantique du résonateur, il est possible de lui appliquer
un signal micro-onde de fréquence ωd et de phase ϕd, par exemple en utilisant la ligne de
transmission couplée capacitivement qui est illustrée à la Fig. 2.1(a). Ce signal de contrôle
dépendant du temps peut être décrit de la façon suivante [13]

Ĥd(t)/h̄ = ϵ(t)â† + ϵ∗(t)â, (2.2)

où ϵ(t) = A(t) exp(−i(ωdt + ϕd)) est l’amplitude du signal qui est vue par le résonateur.

L’Hamiltonien Ĥd génère des états cohérents dans le résonateur, alors qu’il possède
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directement la forme du générateur de l’opérateur de déplacement [30]

D̂(α) = eαâ†−α∗ â, (2.3)

lequel produit un état cohérent arbitraire lorsqu’il est appliqué sur l’état fondamental du
résonateur,

|α⟩ = D̂(α)|0⟩ = e−|α|2/2
∞

∑
n=0

αn
√

n!
|n⟩, (2.4)

tel qu’obtenu directement à l’aide d’un développement en série de Taylor de l’exponentielle
de D̂(α).

Étant donné que les dynamiques de tels états cohérents sont décrites par des trajectoires
classiques, c’est-à-dire en utilisant des distributions de probabilité de forme purement
gaussienne pour décrire les états quantiques occupés, ils ne peuvent être utilisés pour réaliser
du calcul quantique universel. Il s’avère alors nécessaire d’introduire une certaine non-
linéarité dans le système afin de générer des états et des opérations quantiques intéressantes
pour l’informatique quantique. En effet, pour concevoir et effectuer des opérations sur l’unité
de calcul de l’informatique quantique, le qubit, il est nécessaire d’avoir un système où l’on
peut définir deux états quantiques précis et effectuer des transformations unitaires arbitraires
entre ces états. Nous avons donc besoin d’introduire le second circuit supraconducteur
d’intérêt : le transmon.

2.2.2 Le transmon

L’élément clé à la base du succès des qubits supraconducteurs est la jonction Joseph-
son [31], le seul élément de circuit non dissipatif connu qui est non linéaire. La jonction
Josephson est fabriquée en séparant deux électrodes supraconductrices avec une mince
barrière isolante, formant alors un lien que les paires de Cooper peuvent franchir par effet
tunnel. Considérant que chacune de ces électrodes forme un îlot supraconducteur, la pré-
sence de la jonction fait en sorte que la différence entre le nombre de paires de Cooper sur
chacun des îlots peut changer dans le temps. Cette dynamique cohérente est connue comme
l’effet Josephson et est décrite simplement par [32]

ĤJ J = −EJ

2

∞

∑
n=−∞

|n⟩⟨n + 1|+ |n + 1⟩⟨n|, (2.5)

où EJ est l’énergie Josephson et l’état |n⟩ décrit la différence entre le nombre de paires
de Cooper occupant chaque électrode. Pour obtenir la forme standard de l’Hamiltonien
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(a) (b) (c)

EJ CS

ℏωq |g⟩
|e⟩

| f⟩EC
CJ

Cg

Figure 2.2 – Le transmon [27]. (a)Micrographie optique d’un transmon (gauche) et micrographie
électronique à balayage de sa jonction Josephson (droite), laquelle est fabriquée en imprimant
deux couches d’aluminium séparées par un diélectrique fait d’oxyde d’aluminium. Image tirée
de la Réf. [33]. (b) Représentation sous forme de circuit du transmon. La jonction Josephson est
décrite par son énergie EJ et sa capacitance intrinsèque CJ . La jonction est située en parallèle à une
grande capacité CS provenant des larges plaques de métal supraconducteur illustrées au panneau
(a). (c) La jonction Josephson produit un potentiel périodique en forme de cosinus (vert), lequel est
anharmonique et produit donc des états propres (bleu pâle) qui ne sont pas séparés par la même
énergie. En particulier, l’énergie fondamentale h̄ωq de la transition |g⟩ ↔ |e⟩ est environ EC plus
grande que l’énergie associée à la seconde transition |e⟩ ↔ | f ⟩, où EC est l’énergie capacitive totale
du circuit. Les panneaux (b) et (c) sont des adaptations de figures de la Réf. [13].

Josephson, on introduit la base des états de phase

|φ⟩ =
∞

∑
n=−∞

eiφn|n⟩, (2.6)

où la différence de phase entre les électrodes est une valeur périodique φ ∈ [−π, π). À
partir de l’expression complémentaire

|n⟩ = 1
2π

∫ 2π

0
dφe−iφn|φ⟩, (2.7)

on peut définir l’opérateur de phase

eiφ̂ =
1

2π

∫ 2π

0
dφeiφ|φ⟩⟨φ|, (2.8)

lequel agit sur les états du nombre de paires de Cooper comme eiφ̂|n⟩ = |n − 1⟩. En substi-
tuant dans l’Éq. (2.5), on obtient alors directement l’Hamiltonien d’une jonction Josephson

ĤJ J = −EJ cos(φ̂). (2.9)

Cet Hamiltonien peut être comparé directement à celui d’une inductance linéaire L,
lequel prend la forme quadratique ĤL = Φ̂2/2L, où Φ̂ est l’opérateur quantifié de flux ma-
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gnétique traversant cette inductance. Comme illustré à la Fig. 2.2(c), le potentiel cosinusoïdal
de la jonction Josephson est anharmonique (c’est-à-dire non quadratique) et produit donc
des états propres avec des énergies de transition différentes. De ce fait, les circuits supra-
conducteurs composés d’une ou de plusieurs jonctions Josephson possèdent des niveaux
d’énergie que l’on peut directement adresser de manière distincte avec des contrôles de
fréquence choisie. En raison de la ressemblance entre ce système et celui d’un atome avec
des lignes spectrales distinctes, ce type de circuit supraconducteur est couramment appelé
atome artificiel [34, 13].

L’atome artificiel le plus répandu est le transmon [27], un circuit où l’énergie capacitive
est beaucoup plus faible que l’énergie Josephson, EJ/EC ≫ 1. Afin d’obtenir un circuit
supraconducteurdans le régimedu transmon, il suffitdoncde combiner la jonction Josephson
à grande capacitance en parallèle, par exemple en utilisant les deux grandes plaques de
métal supraconducteur illustrées à la Fig. 2.2(a).

Le circuit électrique décrivant un tel système est présenté à la Fig. 2.2(b). Fixant l’un
des îlots supraconducteurs du circuit à la terre, le nombre de paires de Cooper en surplus
sur la seconde électrode peut être décrit par l’opérateur n̂ = Q̂/2e, où Q̂ est la charge
électrique de l’îlot et e la charge d’un électron. Sachant que l’Hamiltonien associé à une
capacité électrique C est donné par ĤC = Q̂2/2C et utilisant ĤJ J de l’Éq. (2.9), on obtient
directement l’Hamiltonien du transmon

ĤT = 4EC(n̂ − ng)
2 − EJ cos(φ̂), (2.10)

où l’énergie capacitive EC = e2/2CΣ provient de la capacitance totale du circuit, soit CΣ =

CS + CJ + Cg et CJ est la capacitance propre de la jonction Josephson. La capacité Cg est
utilisée pour coupler le transmon aux appareils électroniques de contrôle, par exemple à
la source de tension illustrée en gris à la Fig. 2.2(b). Ce couplage permet de contrôler la
charge de grille ng du transmon et, comme nous le verrons à la section 2.4, de générer des
opérations logiques sur celui-ci. Les opérateurs conjugués de différence de charge n̂ et de
phase φ̂ à travers la jonction obéissent à la relation de commutation attendue [φ̂, n̂] = ih̄.

Le principal avantage du transmon est que le régime EJ/EC ≫ 1 permet à ses états
de basse énergie (|g⟩, |e⟩, | f ⟩) d’être exponentiellement insensibles au bruit de charge de
grille, c’est-à-dire à des fluctuations temporelles de ng dans le premier terme de l’Éq. (2.10)
qui est beaucoup plus petit que le second terme [27]. Cette caractéristique est centrale
au grand succès que connaît le transmon encore aujourd’hui, plus de 15 ans après son
introduction [15, 14]. En effet, le bruit de charge de grille est omniprésent pour les circuits
supraconducteurs et limite fortement la cohérence des qubits qui y sont sensibles, tels que
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ceux ayant précédé le transmon [13]. Le transmon sera d’ailleurs au cœur de tous les travaux
théoriques et réalisations expérimentales présentés dans cette thèse.

2.3 Électrodynamique quantique en circuit : la mesure dispersive

Ayant présenté le résonateur et le transmon individuellement, il est maintenant temps
de les combiner afin de former l’architecture unie nommée électrodynamique quantique en
circuit (cQED) [28, 35, 13]. Ce cadre théorique et expérimental est fondé sur la description
et le contrôle des interactions fortes qu’il est possible de concevoir entre des qubits supra-
conducteurs, opérés par exemple en tant que systèmes à deux niveaux agissant comme des
électrons (matière), et des photons micro-ondes provenant des champs électromagnétiques
quantifiés qui sont confinés dans tels circuits (lumière), comme dans celui du résonateur. La
physique décrivant un tel système est très riche et peut être utilisée afin de réaliser diverses
applications en traitement de l’information quantique et bien au-delà de ce champ d’appli-
cations [13]. Dans le cadre de cette dissertation, nous allons étudier une seule application
du couplage entre un qubit supraconducteur et un résonateur : la mesure dispersive du
transmon.

Tel qu’illustré à la Fig. 2.3, l’idée pour mesurer l’état du transmon consiste à le coupler
avec un mode auxiliaire dissipatif, le résonateur, où l’information s’échappe à un taux
beaucoup plus grand que celui du qubit. Ce régime est réalisé en pratique en utilisant
un grand couplage entre le résonateur et sa ligne de transmission. En raison de la forme
du couplage entre le résonateur et le transmon, les deux états du qubit |g⟩ et |e⟩ ont des
effets distinctifs sur le résonateur. Il est alors possible d’utiliser l’information provenant du
résonateur afin de discriminer l’état du qubit. Voyons comment cette mesure fonctionne
plus en détail.

Tout d’abord, le couplage capacitif entre le transmon et le résonateur crée un terme
d’interaction entre l’opérateur de charge du qubit et celui du résonateur n̂r ∝ i(â† − â),
produisant ainsi l’Hamiltonien

Ĥtr = 4EC(n̂ − ng)
2 − EJ cos(φ̂) + ωr â† â − ig(n̂ − ng)(â − â†), (2.11)

où g représente la force du couplage capacitif entre le transmon et le résonateur [13].
Dans le cadre de notre étude de l’optimisation de la mesure dispersive au chapitre 6, nous
utiliserons cet Hamiltonien complet afin de simuler les dynamiques temporelles du système.
Nous ajouterons d’ailleurs un second résonateur en série agissant comme un filtre Purcell
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Figure 2.3 –Mesure dispersive du transmon à l’aide d’une approche d’électrodynamique quantique
en circuit [13]. (a) En couplant capacitivement un résonateur dissipatif (bleu) et un transmon (vert),
l’état du résonateur devient dépendant de l’état du qubit. Il est alors possible de sonder le résonateur
avec un signal micro-onde et de discriminer les états |g⟩ et |e⟩ du transmon à partir du signal sortant
du résonateur. (b) Dans l’espace de phase du résonateur, où x et p sont les coordonnées conjuguées,
l’application du signal d’entrée produit des états cohérents différents dans le résonateur selon l’état
du qubit. En principe, ces états cohérents peuvent être macroscopiques et donc mesurés directement
en amplifiant le signal de sortie, par exemple à l’aide d’une détection homodyne (pas illustrée ici).
Cette figure est une adaptation d’une figure de la Réf. [13].

permettant de préserver la cohérence du transmon [13]. Cet Hamiltonien est cependant
complexe et il est difficile de voir directement comment le terme d’interaction (∝ g) nous
permet de mesurer le qubit. Étudions donc une description simplifiée de ce système.

Afin d’utiliser le transmon comme un qubit ayant deux niveaux d’énergie qui sont
cohérents et donc bien isolés de leur environnement, il est nécessaire d’éviter que ces états
soient intriqués avec le mode dissipatif du résonateur lors des opérations logiques. Ainsi,
on utilise typiquement un régime dit dispersif où le décalage de fréquence entre le transmon
et le résonateur, ∆ = ωq − ωr, est beaucoup plus grand que l’amplitude de leur couplage g.
Dans ce régime, il est possible de définir le petit paramètre |λ| = |g/∆| ≪ 1 et d’utiliser une
théorie de perturbations du second ordre afin d’obtenir un modèle grandement simplifié du
système. En considérant le transmon comme un système à deux niveaux, une telle approche
mène à l’Hamiltonien dispersif [28]

Ĥdisp ≈
h̄ω′

q

2
σ̂z + h̄ω′

r â† â + h̄χâ† âσ̂z, (2.12)

où χ est le couplage dispersif et où les fréquences du qubit ω′
q et de la cavité ω′

r ont été renor-
malisées par l’interaction (avec des termes ∝ g2/∆) [27]. Le couplage dispersif s’exprime
comme

χ = − g2EC/h̄
∆(∆ − EC/h̄)

, (2.13)

et possède typiquement une amplitude de l’ordre de quelques MHz.
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En réexprimant l’Hamiltonien dispersif comme

Ĥdisp ≈
h̄ω′

q

2
σ̂z + h̄(ω′

r + χσ̂z)â† â, (2.14)

on voit que la fréquence du résonateur (soit le préfacteur de â† â) dépend de l’état du qubit
puisque la valeur attendue de l’opérateur σ̂z est de ±1 pour les états |g⟩ et |e⟩ du transmon.
Tel qu’illustré à la Fig. 2.3, il est alors possible d’appliquer un signal de contrôle linéaire
sur le résonateur afin d’y créer un état cohérent avec ⟨â† â⟩ = |α|2 photons. Étant donné
que le couplage dispersif ∝ χ modifie la fréquence du résonateur, ces états cohérents vont
tourner avec des sens de rotation différents dans le référentiel du résonateur (tournant à
h̄ω′

r) de sorte à produire deux états cohérents distincts. Il est alors possible de mesurer l’état
du résonateur, par exemple en utilisant une approche de détection homodyne [36], afin
de discriminer si le transmon est dans son état |g⟩ ou |e⟩. J’invite la lectrice ou le lecteur
intéressés à visiter les Réfs. [22, 37] pour plus de détails sur ce processus de mesure du
résonateur.

Intuitivement, notre capacité à mesurer avec précision l’état du transmon, ou en d’autres
mots de discriminer le bon état quantique avec une grande fidélité, est principalement relié
au ratio entre le signal et le bruit (SNR). En adoptant un point de vue géométrique dans
l’espace de phase du résonateur illustré à la Fig. 2.3(b), la mesure consiste à établir une
frontière entre les états associés à |g⟩ et |e⟩ puis à étiqueter les états possibles de la cavité
(tous les points dans l’espace de phase) comme étant associé à l’un ou l’autre de ces états.
Dans cette description, les états cohérents correspondent à des distributions de probabilité
en deux dimensions où le bruit de mesure est associé au volume de leur recouvrement alors
que le signal produit est directement proportionnel à la distance entre le centre des deux
états cohérents. C’est pourquoi au chapitre 6 nous chercherons à optimiser la séparabilité
entre les états cohérents produits lorsque le transmon est dans |g⟩ et |e⟩, une mesure qui est
quantifiée par le SNR.

2.4 Portes logiques sur le transmon

Ayant survolé la façon dont on peut définir un qubit dans les états de basse énergie
d’un transmon et le mesurer avec précision en couplant ce circuit à un résonateur, il est
maintenant temps de considérer les façons dont on peut effectuer des opérations logiques
sur ces mêmes états quantiques. En effet, la réalisation de calculs quantiques arbitraires
nécessite d’effectuer un ensemble universel de portes logiques, lequel est formé par exemple
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Φx

Ĥs

Figure 2.4 – Afin de contrôler les états quantiques du transmon, il est possible d’utiliser une ligne
de transmission (gris) couplée capacitivement ou inductivement au circuit. L’application d’un signal
de tension sur la ligne couplée capacitivement permet de modifier la charge de grille du transmon et
de générer des dynamiques unitaires. De façon similaire, l’application d’un courant externe Ix(t)
permet de contrôler le flux traversant la boucle supraconductrice du transmon Φx et de modifier la
fréquence et/ou l’état du transmon [27]. Le couplage du transmon aux composantes de contrôle
l’expose également à un environnement externe, ce qui produit des canaux de dissipation illustrés
avec le taux de relaxation γ et le taux de déphasage γϕ. Figure tirée de la Réf. [13].

de rotations arbitraires à un qubit et d’un CNOT à deux qubits [38]. Toutes ces portes
logiques sont représentées par des matrices unitaires de dimension 2n × 2n agissant sur n
qubits. En pratique, il est possible d’appliquer des signaux micro-ondes sur le transmon
afin de réaliser de telles transformations unitaires. Spécifiquement, nous nous concentrons
ici sur les opérations à un qubit et présenterons la porte à deux qubits utilisée et simulée
dans cette thèse, le CZ, au chapitre 3.

Dans l’objectif de contrôler le transmon, il est possible d’envoyer des signaux électro-
magnétiques externes à travers des lignes de transmissions dédiées qui, selon la géométrie
utilisée, peuvent se coupler capacitivement à l’opérateur de charge du transmon n̂ ou induc-
tivement à l’opérateur de phase φ̂. Alors que le couplage capacitif est naturellement réalisé
en approchant la ligne de transmission à l’une des plaques du transmon, l’accès direct au
degré de liberté de phase du transmon nécessite la création d’une boucle fermée de circuit
supraconducteur. Tel qu’illustré à la Fig. 2.4, une telle boucle peut être réalisée en combi-
nant deux jonctions Josephson en parallèle, un circuit communément appelé SQUID [39].
Comme nous le verrons aux chapitres 3 et 5, il est possible d’appliquer un flux externe
constant à travers cette boucle afin de modifier la fréquence des transmons ou d’appliquer
une modulation temporelle à ce flux afin de réaliser des opérations équivalentes à celles
produites par un pilotage via l’opérateur de charge [27].

Étant donné la similitude entre le contrôle par la charge et la phase du transmon, on
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se concentre ici sur la réalisation d’opérations en appliquant des signaux à une ligne de
transmission couplée capacitivement au transmon. L’Hamiltonien de ce système piloté par
un signal cohérent d’amplitude A(t) est

Ĥ1q(t) = 4EC(n̂ − ng)
2 − EJ cos(φ̂) + A(t) cos(ωdt + ϕd)n̂, (2.15)

où ωd (ϕd) est la fréquence (phase) du signal.

Afin de comprendre comment l’Hamiltonien de l’Éq. (2.15) peut être utilisé pour réaliser
des portes arbitraires sur le qubit, on utilise d’abord un développement en série de Taylor
du terme cos(φ̂) dans l’Hamiltonien du transmon profitant du fait que EJ/EC ≫ 1 et en
négligeant l’effet de la charge de grille ng comme on s’intéresse aux niveaux de basse énergie
du transmon. On obtient alors

Ĥq = 4ECn̂2 +
1
2

EJ φ̂2 − 1
4!

EJ φ̂4. (2.16)

En analogie directe avec l’oscillateur harmonique quantique, on introduit ensuite les opéra-
teurs de création b̂† et d’annihilation b̂ du transmon de sorte à obtenir

φ̂ =

(
2EC

EJ

)1/4

(b̂† + b̂), (2.17)

n̂ =
i
2

(
EJ

2EC

)1/4

(b̂† − b̂), (2.18)

où l’on voit que le régime transmon EJ/EC ≫ 1 justifie le développement en série pour φ̂.
On obtient ainsi

Ĥq =
√

8ECEJ b̂†b̂ − EC

12
(b̂† + b̂)4 (2.19)

≈ h̄ωqb̂†b̂ − EC

2
b̂†b̂†b̂b̂, (2.20)

où h̄ωq =
√

8ECEJ − EC et où nous avons fait appel à une approximation séculaire afin
d’éliminer les termes où le nombre d’opérateurs b̂† est différent du nombre de b̂. Cette
approximation est justifiée par le fait que dans le référentiel tournant du qubit, obtenu avec
à partir de la transformation unitaire Ûq = eiωqtb̂† b̂, ces termes oscillent avec une fréquence
beaucoup plus rapide que leur amplitude, h̄ωq ≫ EC/4, de sorte qu’ils se moyennent à
zéro [13]. En exprimant l’Hamiltonien du contrôle, A(t) cos(ωdt + ϕd), dans le référentiel
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du qubit on obtient

Ĥd(t) ≈
i
2

(
2EC

EJ

)1/4 A(t)
2

(
b̂†ei(∆t+ϕ) − b̂e−i(∆t+ϕ)

)
, (2.21)

où ∆ = ωd − ωq est le décalage de fréquence entre le signal de conduite et la transition
|g⟩ ↔ |e⟩ du transmon. Encore une fois, nous avons utilisé l’approximation séculaire afin
d’éliminer les termes oscillants à la fréquence ωd + ωq ≫ |Ã(t)/2|, où Ã(t) inclut toutes les
constantes (sauf un facteur 2 utilisé par convention) devant les opérateurs entre parenthèses.

Enfin, en effectuant une troncature aux deux premiers niveaux du transmon avec b̂† →
σ̂+, b̂ → σ̂−, et σ̂± = (σ̂x ± σ̂y)/2, on obtient

Ĥqubit
d (t) =

Ã(t)
2
[
cos(ϕd)σ̂x − sin(ϕd)σ̂y

]
, (2.22)

pour un signal résonant avec la fréquence du qubit (∆ = 0). On comprend alors qu’en
appliquant un signal de tension oscillant à la fréquence du qubit sur la ligne de transmission
couplée au transmon, il est possible de réaliser des portes arbitraires en choisissant l’axe de
rotation à l’aide de la phase ϕd ainsi que l’angle de rotation en contrôlant l’amplitude A(t)
et la durée du signal. Par exemple, on voit que l’on peut réaliser une porte

Rx(θ) = e−iθσ̂x/2 = cos(θ/2)1− i sin(θ/2)σ̂x, (2.23)

en fixant la phase ϕd = 0 et en appliquant l’amplitude constante Ã(t) ≡ Ω pour une durée
T de sorte à obtenir l’opérateur d’évolution temporelle

Û(T) = e−iĤqubit
d T/h̄ = e−iΩTσ̂x/2. (2.24)

On peut alors directement identifier ΩT = θ. Ainsi, il est possible de réaliser une porte
Rx(π) en appliquant une amplitude effective de Ω/2π ≈ 16.7 MHz pendant 30 ns, des
valeurs typiques pour les portes à un qubit réalisées avec des transmons.

Cependant, de nombreuses limitations nous empêchent de réaliser les opérations uni-
taires voulues avec une précision parfaite. En plus de la cohérence finie du transmon, de
la largeur de bande limitée des impulsions qu’il est possible de produire en laboratoire et
de l’impact des dynamiques que nous avons négligées pour arriver à l’Éq. (2.22), l’une des
principales limitations à la qualité des portes logiques à un qubit provient de la fuite de
niveau. En effet, le transmon ne constitue simplement pas un système à deux niveaux et
l’opérateur de charge n̂ possède des éléments de matrices significatifs couplant les états
|1⟩ ↔ |2⟩, |2⟩ ↔ |3⟩, etc. Comme on peut comprendre à l’aide d’une transformée de Fourier,
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les impulsions micro-ondes de courtes durées utilisées auront typiquement une contribution
significative à la fréquence de la transition |1⟩ ↔ |2⟩, laquelle est seulement décalée par
200 − 300 MHz de la transition |0⟩ ↔ |1⟩ [13]. Cette contribution non négligeable produira
un échange de population vers l’état |2⟩ (et potentiellement les autres états) et cette fuite de
niveau peut significativement réduire la fidélité des opérations réalisées [40].

Afin d’atténuer cet effet, il est cependant possible de concevoir soigneusement la forme
des impulsions micro-ondes utilisées de sorte à minimiser la population sortant des deux
premiers états. L’approche DRAG [41, 42] permet par exemple d’ajuster l’enveloppe des
impulsions utilisées afin d’éliminer au premier ordre la contribution spectrale des contrôles
à la fréquence de transition nuisible (|1⟩ ↔ |2⟩). Cette approche simple s’avère très efficace
pour atténuer la fuite de niveaux et est grandement répandue aujourd’hui [22]. Il ne s’agit
là que d’une approche spécifique au contrôle de portes logiques et nous verrons au cha-
pitre chapitre 4 que la théorie du contrôle optimal quantique fournit un ensemble d’outils
puissants pour arriver à contrôler un dispositif quantique au meilleur de nos capacités.

Alors qu’il existe de nombreuses façons de quantifier la qualité avec laquelle un processus
quantique E en approche un autre U , lequel est typiquement une porte quantique (une
opération unitaire) où U (ρ) = UρU†, la quantité la plus souvent communiquée et celle que
j’utiliserai dans les différents projets de cette thèse est la fidélité moyenne de portes, définie
comme [43]

F (E , U) =
∫

dψ ⟨ψ|U†E(|ψ⟩⟨ψ|)U|ψ⟩, (2.25)

où 0 ≤ F ≤ 1 et E est un canal quantique quelconque, c’est-à-dire une transformation
complètement positive et préservant la trace de la matrice densité (CPTP). Cette métrique
compare l’action du canal E à l’inverse de l’action du canal cible U sur chaque état pur de
sorte à retrouver l’identité si les deux canaux sont équivalents pour cet état. La moyenne
sur tous les états de l’espace d’Hilbert est ensuite utilisée, d’où la présence de l’intégrale.
Ici, la mesure de Haar dψ est simplement une façon d’indiquer que tous les états que l’on
échantillonne ont un poids égal et une probabilité normalisée telle que

∫
dψ = 1 [44].

Évidemment, il n’est pas pratique de moyenner sur une infinité d’états purs |ψ⟩. Heu-
reusement, comme le canal E est une fonction quadratique de l’état |ψ⟩, il s’avère qu’il suffit
d’utiliser un ensemble d’états qui reproduit les statistiques de la mesure de Haar pour tout
polynôme de degré deux afin de calculer la moyenne de façon exacte [45]. Un tel ensemble
est appelé 2-design et contient minimalement 4n états purs pour n qubits. Comme nous le
verrons au chapitre 5, cette propriété permet de grandement réduire le nombre d’expériences
nécessaires afin d’estimer la fidélité d’une opération sur quelques qubits. En simulation,
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comme ne nous sommes pas restreints à utiliser des matrices |ψ⟩⟨ψ| correspondant à des
états physiques (c’est-à-dire des matrices hermitiennes de trace 1), il est possible de simple-
ment utiliser un ensemble de matrices Uj formant une base orthonormale de l’espace des
opérateurs unitaires, tel que les 4n matrices de Pauli sur n qubits.

2.5 Simulations des dynamiques quantiques

Dans le cadre de cette thèse, on s’intéresse principalement à comprendre et à améliorer
les opérations quantiques réalisées sur les qubits supraconducteurs. Pour ce faire, il est
nécessaire d’avoir un modèle détaillé des caractéristiques du système, par exemple un
Hamiltonien incluant les différentes interactions présentes dans le dispositif, puis d’étudier
ses dynamiques temporelles sous l’application de nos contrôles externes. Étant donné la
complexité du système etdes contrôles changeantdans le temps, la description analytique des
dynamiques est très limitée, voire impossible, et nous avons plutôt recours à des méthodes
numériques.

L’approche numérique la plus simple consiste à utiliser les Hamiltoniens présentés
jusqu’à maintenant, par exemple l’Éq. (2.15) pour les portes à un qubit et l’Éq. (2.11) pour
la mesure, puis à résoudre l’équation de Schrödinger

ih̄
d
dt

|ψ(t)⟩ = Ĥ(t)|ψ(t)⟩, (2.26)

afin d’étudier l’impact des contrôles sur les dynamiques produites. Cette équation différen-
tielle ordinaire (ÉDO) de premier ordre (linéaire et homogène) peut être résolue de plusieurs
façons, par exemple en calculant le propagateur Û(t) agissant comme |ψ(t)⟩ = Û(t)|ψ(0)⟩,
où

Û(t) = T exp
(
−i
∫ t

0
Ĥ(t′)dt′

)
(2.27)

et T est l’opérateur de produit chronologique. Cette approche requiert typiquement une
complexité numérique O(d2) en mémoire pour entreposer l’Hamiltonien de dimension
d = 2n pour n qubits et O(d3) en temps pour calculer l’exponentielle d’une matrice. Une
seconde approche consiste à profiter du fait que l’équation de Schrödinger est une ÉDO pour
la résoudre en utilisant l’un des nombreux algorithmes d’intégration d’ÉDO existants et
disponibles librement, commeune approche de Runge-Kutta [46]. Alors que la complexité en
mémoire est la même, la complexité numérique en temps de cette approche est deO(d2 × m)

où m est le nombre de pas de temps nécessaire, ce qui peut être avantageux dans certaines
situations.
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Cependant, pour décrire précisément le comportement observé en laboratoire, il est
nécessaire de prendre en compte les nombreuses sources de bruits menant au temps de
cohérence fini des circuits supraconducteurs. De plus, la dissipation peut jouer un rôle clé
dans les dynamiques que l’on souhaite décrire, par exemple pour la mesure dispersive du
transmon alors que la mesure d’un système quantique est un processus fondamentalement
dissipatif [36]. On utilise une équation maîtresse afin de simuler de telles dynamiques
quantiques, une méthode établie en optique quantique [30, 47]. Je réfère la lectrice et le
lecteur intéressés à la Réf. [48] pour une introduction complète à la formulation d’une telle
équation à partir des interactions entre un système et son environnement. Je me contente ici
de résumer le fait que l’équation maîtresse de Lindblad que nous utilisons suppose que le
système est couplé faiblement auxdegrés de liberté de son environnement (approximation de
Born) et que les dynamiques associées à ces derniers s’atténuent beaucoup plus rapidement
que l’échelle de temps des dynamiques du système de sorte que l’information qui s’y échappe
ne revient pas dans le système (approximation de Markov).

L’équation maîtresse de Lindblad décrivant l’évolution de l’état du système ouvert ρ̂

prend la forme

d
dt

ρ̂ = − i
h̄
[
Ĥ, ρ̂

]
+ ∑

k
L̂kρ̂L̂k −

1
2

{
L̂†

k L̂k, ρ̂
}

= − i
h̄
[
Ĥ, ρ̂

]
+ ∑

k
D[L̂k]ρ̂

≡ Lρ̂,

(2.28)

où {·, ·} est l’anticommutateur, D[·] le superopérateur de dissipation et L le Lindbladien.
Les opérateurs de saut ou de dissipation L̂k décrivent la manière dont l’environnement
agit sur le système. Pour un circuit supraconducteur, ces opérateurs peuvent être obtenus à
partir d’une description microscopique du système et de son environnement, par exemple
en représentant l’environnement par une ligne de transmission de température finie qui
est couplée capacitivement à un transmon. Une telle approche mène aux opérateurs de
dissipation Lk ∈ (

√
γ(n̄γ + 1)b̂,

√
γ(n̄γ)b̂†), où γ est le taux de relaxation du transmon

dépendant de l’amplitude du couplage entre le circuit et l’environnement à la fréquence
fondamentale du transmon et où n̄γ est le nombre de photons thermiques présents dans
l’environnement [13]. Une approche phénoménologique est également utilisée afin de
décrire le déphasage que le qubit subit suite aux fluctuations temporelles des caractéristiques
de son environnement. Cette description produit un troisième opérateur de dissipation de
la forme√2γφb̂†b̂, où γφ est le taux de déphasage pur du qubit [13]. Nous verrons plus en
détail la forme des équations maîtresses utilisées dans chacun des chapitres qui suivent.
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D’un point de vue fonctionnel, l’Éq. (2.28) constitue également une ÉDO du premier
ordre qu’il est possible de résoudre numériquement à l’aide d’une grande variété d’ap-
proches. De façon similaire à la résolution de l’équation de Schrödinger, il est possible de
calculer le propagateur qui est désormais un superopérateur agissant sur la matrice densité
tel que

ρ̂(t) = T exp
(∫ t

0
L(t′)dt′

)
ρ̂(0). (2.29)

Comme le Lindbladien L est représenté par une matrice de taille d2 × d2, cette approche
requière une complexité numérique O(d4) en mémoire et O(d6) en temps de calcul. Ces
deux exigences deviennent rapidement problématiques pour la simulation de grands sys-
tèmes quantiques ouverts où d = 2n ≳ 500. Dans le cadre de cette thèse, nous utilisons donc
plutôt des algorithmes d’intégration d’ÉDO existant afin de résoudre l’équation maîtresse
et d’obtenir les dynamiques quantiques de systèmes complexes. En évitant toute représen-
tation sous forme de superopérateur, une telle approche nécessite une complexité O(d2)

en mémoire et O(d3 × m) en temps, où m est le nombre de pas d’intégration nécessaire.
Au chapitre 3, nous utiliserons également une approche Monte-Carlo afin de réduire la
complexité numérique en temps de calcul àO(d2 × m × N), où N est une constante associée
au nombre de trajectoires aléatoires qui sont échantillonnées.

Ayant survolé l’ensemble des concepts fondamentaux nécessaires au contrôle des qubits
supraconducteurs et à la modélisation précise de telles dynamiques, il est maintenant temps
d’explorer diverses applications de ces idées afin de faciliter la réalisation expérimentale
d’un ordinateur quantique tolérant aux fautes.



Chapitre 3

Simulation précise de dynamiques
quantiques à plusieurs transmons

Ce chapitre porte sur la simulation d’une expérience de correction d’erreur quantique
impliquant 17 transmons réalisée par nos collaborateurs à l’ETHZurich [1]. Cette expérience
marque la toute première démonstration de correction d’erreur quantique avec des qubits
supraconducteurs, quelques mois après une démonstration similaire dans un système de 10
ions piégés [49]. La simulation précise d’une expérience d’une telle envergure est évidem-
ment très ardue, mais elle est également nécessaire afin de valider notre compréhension des
résultats expérimentaux, de développer de nouvelles approches pour mieux contrôler un tel
dispositif et de trouver les facteurs limitant la performance observée pour guider les efforts
expérimentaux futurs. Mes travaux ont porté sur l’élaboration de ces simulations taillées
sur mesure à l’expérience.

Après une courte introduction à la correction d’erreur quantique et au code de surface à
la section 3.1, je présente les modèles de bruit typiquement utilisés pour simuler la perfor-
mance d’un code quantique à la section 3.2. Par la suite, j’introduis notre méthodologie de
simulation à la section 3.3 avant de présenter à la section 3.4 l’article scientifique qui partage
et compare les résultats expérimentaux et de simulation. Je conclus en donnant quelques
perspectives sur ce projet et sur les directions futures de recherche à la section 3.5.

21
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3.1 La correction d’erreur quantique

Bien que de nombreuses applications intermédiaires de processeurs quantiques sont
possibles, il est aujourd’hui largement reconnu que la correction d’erreur est nécessaire à la
conception d’un ordinateur quantique tolérant aux fautes [9]. En l’absence de correction, il
semble en effet improbable de concevoir un dispositif en mesure de réaliser des millions
d’opérations sur des milliers de qubits avec des taux d’erreur sous le seuil de 10−10, soit les
ressources nécessaires estimées pour obtenir un avantage quantique afin de résoudre des
problèmes intéressants [50, 51, 52, 53].

La correction d’erreur quantique utilise la redondance afin de protéger l’information
quantique encodée dans plus de degrés de liberté qu’il ne serait nécessaire pour la repré-
senter, en plus de réaliser du calcul quantique universel avec cette information. Au-delà
de l’encodage de manière redondante et non locale dans un code de correction, il est né-
cessaire de s’assurer que l’information reste dans le bon état du code. Pour ce faire, une
approche répandue consiste à mesurer des observables appelés des stabilisateurs [54] et à
utiliser les syndromes classiques obtenus (les 0 et les 1 mesurés) afin de décoder l’état dans
lequel le système se trouve ainsi que les opérations à appliquer afin de retourner dans un
état du code, si nécessaire. Je note que de nombreuses approches alternatives existent, par
exemple en concevant un système où la dissipation stabilise les états du code de manière
autonome [55, 56]. On s’intéresse spécifiquement ici à l’opération d’un code de surface, le
type de code stabilisateur le plus répandu [16].

De manière plus formelle, les états d’un code stabilisateur |ψL⟩ appartiennent au sous-
espace des états propres de valeur propre +1 d’un groupe abélien S appelé le groupe
stabilisateur [54]

Sj|ψL⟩ = +1|ψL⟩, ∀Sj ∈ S . (3.1)

Pour un code dénoté comme [[n, k, d]] utilisant n qubits physiques et encodant k qubits
logiques avec une distance d, le groupe S est généré par m = n − k opérateurs de Pauli
indépendants. Ces stabilisateurs font partie du groupe des matrices du Pauli sur n qubits,
Pn. La distance d correspond au poids minimal d’un opérateur de Pauli qui commute avec
tous les opérateurs de S sans être lui-même dans S . Intuitivement, cet opérateur E ∈ Pn a
un effet sur les états du code qui est non-trivial, mais qui n’est pas détectable alors qu’il ne
crée que des syndromes triviaux

Sj(E|ψL⟩) = ESj|ψL⟩ = (+1)E|ψL⟩, ∀Sj ∈ S . (3.2)

Ainsi, le code quantique est en mesure de corriger toute erreur de Pauli ayant un poids
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inférieur à d, où le poids correspond au nombre de qubits affectés de manière non triviale
par l’opérateur. Afin d’implémenter un tel code stabilisateur, l’idée consiste à successivement
mesurer l’ensemble des stabilisateurs du groupe S , formant alors un cycle du protocole
de correction, puis d’utiliser un décodeur, un algorithme classique, afin de déduire les
erreurs qui se sont produites lors du cycle. Étant donné que la mesure d’un stabilisateur
projette l’état logique dans le sous-espace de valeur propre −1 du stabilisateur Sj lorsqu’un
syndrome non trivial est détecté, il suffit alors d’appliquer délibérément le bon opérateur
Ej sur le système afin de corriger l’erreur qui est survenue étant donné que E2

j = 1 pour
toute matrice de Pauli. La tâche de trouver la bonne erreur Ej s’étant produite à partir des
syndromes mesurés est celle du décodeur. Dans ce chapitre, nous étudions la performance
d’un code de surface de distance d = 3 et nous nous contentons d’utiliser un algorithme
standard pour réaliser le décodage des syndromes [57].

Le code de surface [58] est utilisé et étudié par de nombreux groupes de recherche
en raison de l’excellent compromis qu’il offre entre ses contraintes expérimentales et sa
performance logique [16]. En effet, la mesure des stabilisateurs du code de surface se
décompose en un circuit n’utilisant que 4 opérations à deux qubits par stabilisateur (des
CNOT ou CZ) et ces qubits peuvent être connectés de façon locale à seulement 4 voisins sur
une grille cartésienne en deux dimensions. Même sous ces contraintes de connectivité locale,
le code de surface possède une très bonne protection contre les erreurs survenant dans le
circuit quantique, comme nous le verrons dans l’article de la section 3.4. Cette performance
peut également être quantifiée à l’aide de simulations numériques du code de surface en
présence d’erreurs de dépolarisation associées à chacune des opérations réalisées. Avec ce
modèle où chaque opération produit une erreur de Pauli avec une probabilité p, il existe un
seuil d’erreur pseuil sous lequel la probabilité d’obtenir une erreur logique diminue de façon
exponentielle avec la taille du code de surface telle que

pL ∝
(

p
pseuil

) d+1
2

, (3.3)

où la constante de proportionnalité est environ 0.03 et le taux d’erreur seuil est environ de
1% [16]. Dans l’objectif d’atteindre pL ≈ 10−10, il est alors nécessaire d’opérer sous le seuil
d’erreur du code et d’utiliser un code avec une grande distance, ce qui nécessite n = 2d2 − 1
qubits physiques. Étant donné la suppression exponentielle des erreurs fournie par le code,
on comprend que toute amélioration physique des opérations réalisées (toute réduction de
la probabilité p) peut avoir un grand impact sur l’empreinte physique qu’il sera nécessaire
d’utiliser afin de concevoir un ordinateur quantique universel qui est utile.
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3.2 Modèles de bruit en QEC

Le développement des codes stabilisateurs, tout comme la présence du seuil d’erreur
obtenu numériquement, est basé sur le fait que les qubits sont réellement des systèmes à
deux niveaux et que les erreurs provenant des différentes opérations sont purement sto-
chastiques et indépendantes. Ces hypothèses ne sont pas respectées en pratique en utilisant
des transmons comme qubits. En effet, de nombreuses imperfections peuvent causer des
déviations importantes au modèle de bruit stochastique local, telles que la fuite de niveaux,
les erreurs cohérentes produisant des portes unitaires imparfaites, le couplage résiduel
continuellement actif entre les transmons ainsi que l’ensemble des opérations logiques
ayant un effet non trivial sur les qubits avoisinants, par exemple suite à une diaphonie des
signaux de contrôle. En plus de l’ingénierie précise de toutes les composantes et opérations
du système, la simulation numérique de l’impact de ces différentes imperfections devient
cruciale à notre compréhension et à notre capacité à opérer un code de correction d’erreur à
grande échelle. Je survole ici les différentes approches utilisées afin de simuler la réalisation
d’un code de surface.

Tel qu’illustré schématiquement à la Fig. 3.1, il existe trois approches principales afin de
simuler le bruit provenant d’un circuit demesure des stabilisateurs. Tout d’abord, l’approche
la plus simple et la plus efficace numériquement consiste à utiliser un canal de dépolarisation
afin d’appliquer des erreurs de Pauli de façon stochastique après ou avant chacune des
opérations. Le bruit prend alors la forme

Edepol.(ρ̂1q) = (1 − pΣ)1ρ̂1q1+ px σ̂xρ̂1qσ̂x + py σ̂yρ̂1qσ̂y + pz σ̂zρ̂1qσ̂z, (3.4)

où pΣ = px + py + pz. Le qubit subit donc une erreur de bit avec une probabilité px, une
erreur de phase avec une probabilité pz ou les deux avec une probabilité py. Ce canal est
également généralisé à deux qubits suivant les opérations CNOT ou CZ et dans ce cas les
15 probabilités associées aux 15 générateurs non triviaux du groupe P2 sont typiquement
choisies comme étant les mêmes, souvent par manque d’information concernant les erreurs
unitaires réellement présentes. Il s’agit cependant d’un choix significatif étant donné que
certains générateurs (9/15) correspondent à des erreurs de poids deux (par exemple σ̂x ⊗
σ̂y), lesquels sont beaucoup plus dommageables pour le code que les erreurs de poids un
(6/15, par exemple 1⊗ σ̂z). Au chapitre 5, nous développerons d’ailleurs un protocole de
caractérisation précis de ces erreurs cohérentes, lequel pourrait être utilisé directement afin
d’obtenir des probabilités d’erreurs de Pauli plus représentatives de l’expérience.

Étant donné que les circuits de codes stabilisateurs utilisent des portes de Clifford et
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1

(a) {X, Y, Z}

{IX, IY,…, ZZ}

(b)

{Kβ}

(c)

{Kα}

U Ũ

Figure 3.1 – Différentes approches pour simuler le bruit associé à la réalisation d’un circuit quan-
tique. (a) Le modèle le plus répandu en correction d’erreur quantique ne considère que des erreurs
de Pauli, formant ainsi un canal dépolarisant (rouge) qui suit l’application des portes quantiques
parfaites (bleu). Lorsque les opérations unitaires sont des portes de Clifford, un tel circuit comportant
des milliers de qubits peut être simulé de façon efficace sur un ordinateur classique [60]. (b) Les
canaux de bruits affectant quelques qubits peuvent être généralisés à des opérateurs de Kraus arbi-
traires. Des algorithmes classiques sont disponibles afin de simuler un tel modèle général impliquant
jusqu’à environ 40 qubits [61]. (c) Au-delà d’opérations discrètes n’affectant que quelques qubits de
façon locale, il est possible de simuler l’ensemble des dynamiques temporelles d’un circuit quantique
à partir des signaux de contrôle réellement utilisés dans l’expérience. Cette méthode utilisant par
exemple une équation maîtresse peut difficilement être appliquée à plus d’une vingtaine de qubits.

que le modèle de bruit n’applique que des opérations de Pauli, en vertu du théorème de
Gottesman-Knill, il est possible d’utiliser une représentation classique très efficace afin
de simuler de manière exacte ces circuits en un temps polynomial sur un ordinateur clas-
sique [59]. Cette approche est d’ailleurs utilisée dans la librairie en code source ouvert Stim,
laquelle permet de simuler efficacement des codes de surface comportant des milliers de
qubits correspondant à des distances d > 100 [60].

La seconde approche consiste à généraliser le bruit ainsi que les opérations unitaires à
des canaux quantiques arbitraires représentés à l’aide d’un ensemble d’opérateurs de Kraus,
une approche aussi appelée la représentation de la somme d’opérateurs [62]. Dans ce cas,
le canal quantique de chaque porte logique est représenté par

EKraus(ρ̂l) = ∑
α

K̂αρ̂lK̂†
α, (3.5)

où l indique le nombre de qubits impliqués et ∑α K̂†
αK̂α = 1 pour toute opération préservant

la trace de la matrice densité. Dans cette représentation, une transformation unitaire ne
possède qu’un seul opérateur de Kraus K̂ = Û, de sorte que U (ρ̂) = Ûρ̂Û†. En pratique,
les portes logiques sont souvent simulées en utilisant la décomposition approximative
E = A ◦ U , où la transformation unitaire (potentiellement différente de l’opération cible)
U est suivie par un canal de relaxation et de déphasage du qubit A [63]. Cette approche
permet de grandement limiter le nombre d’opérateurs de Kraus nécessaires.

La décomposition paropérateurs deKraus permetdoncde discrétiser le circuit quantique
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en une séquence d’opérations dont l’effet est obtenu à l’aide de plusieurs multiplications
de matrices avec l’équation Éq. (3.5). Étant donné que le nombre d’opérateurs nécessaires
pour décrire un canal composé de l qubits peut aller jusqu’à 4l , des canaux impliquant
seulement l = 1 ou l = 2 sont typiquement utilisés afin de restreindre les ressources
numériques nécessaires [63]. De ce fait, cette approche ne prend typiquement pas en compte
les interactions parasites entre les qubits, lesquelles nécessiteraient d’utiliser un support sur
de nombreux qubits (par exemple l = 8 considérant les qubits voisins lors des opérations
CZ [64]). Avec de telles approximations, il est possible de simuler jusqu’à environ 40 qubits
à l’aide de la librairie en code source ouvert qsim [61].

Enfin, la troisième et dernière approche que je considère pour modéliser l’expérience
de correction d’erreur est l’utilisation d’une équation maîtresse (EM). Tel que présenté au
chapitre dernier, cette équation différentielle prend la forme

EEM(ρ̂l) =
∫

dtL ρ̂l , (3.6)

où l = 17 pour un code de surface de distance trois. Ce modèle nous permet de simuler
l’évolution temporelle du système de manière continue et d’inclure des interactions impli-
quant de nombreux qubits, comme nous le verrons dans la section qui suit avec la simulation
des interactions parasites ZZ entre tous les qubits voisins. Nous utilisons une telle équation
maîtresse pour simuler l’expérience étant donné que ce problème de diaphonie quantique
est présent dans tout dispositif supraconducteur et que les erreurs corrélées impliquant de
nombreux qubits peuvent briser les hypothèses d’une correction d’erreur quantique réussie
avec un code de distance trois.

3.3 Méthodologie

Dans cette section, je décris la méthodologie utilisée pour simuler l’expérience de cor-
rection d’erreur quantique réalisée à l’ETH Zurich [1], laquelle implique 17 qubits. Ces
simulations sont basées sur les caractéristiques mesurées directement sur le dispositif, telles
que les temps de cohérence de chacun des qubits à différents points d’opération, les erreurs
de mesure et le couplage entre les qubits voisins. Étant donné que nous ne sommes pas
en mesure d’inclure l’ensemble des sources de bruit du dispositif, les résultats de ces si-
mulations fournissent une limite supérieure à la performance réalisable avec ce dispositif.
Par exemple, nous n’incluons pas les erreurs cohérentes de contrôle des portes logiques, les
fuites de niveaux des transmons, les pertes de population associées au couplage avec des
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défauts à deux niveaux dans les matériaux ni le déphasage des qubits voisinant produit par
la mesure dispersive du transmon.

Dans les sous-sections qui suivent, je décris en détail notre approche de simulation ainsi
que les différentes approximations que nous avons réalisées afin de rendre la description
juste d’une telle expérience possible en pratique. Je prends soin de justifier chacune de ces
approximations en plus de démontrer numériquement la validité de plusieurs d’entre elles.

3.3.1 Hamiltonien du système

Le système est composé de 17 transmons de fréquence variable couplés capacitivement
à 4 voisins dans une structure de grille cartésienne. L’Hamiltonien décrivant le dispositif
prend alors la forme

Ĥsys =
17

∑
k=1

4EC,kn̂2
k − EJ,k(Φk) cos(φ̂k − φ0,k) + ∑

k<k′
h̄gk,k′ n̂kn̂k′ , (3.7)

où h̄gk,k′ est l’amplitude du couplage capacitif, Φk est le flux externe appliqué dans la boucle
supraconductrice du transmon k et tan(φ0,k) = d tan(πΦk/Φ0) avec Φ0 le quantum de flux
et d l’asymétrie entre les deux jonctions Josephson utilisées [27]. Cet Hamiltonien dépend
également du temps lors de la réalisation de portes logiques, par exemple avec des flux
externes variant sur chacun des qubits Φk(t) lors des portes CZ et avec un terme de conduite
de la forme Ak(t) cos(ωd,kt + ϕd,k)n̂k pour les portes à un qubit.

La simulation des dynamiques associées à un tel Hamitonien est très ardue, même en
ne considérant aucun bruit et en utilisant l’Éq. (2.26). En effet, l’utilisation approximative
de m niveaux par transmon nécessite un espace d’Hilbert de taille m17, ce qui représente
130 millions d’états pour m = 3. Le simple stockage de cet Hamiltonien nécessite plus de
130’000 TB de mémoire en format dense, un requis simplement inaccessible en pratique 1.
Il devient alors nécessaire d’utiliser des approximations afin de simplifier le problème
numérique.

L’approximation la plus importante que nous utilisons consiste à ne considérer que
les deux premiers niveaux du transmon (m = 2). Cette approximation est partiellement
justifiée par le fait que l’expérience rejette, avec un processus de sélection a posteriori, toutes

1. Étant donné que la matrice hamiltonienne n’est pas complètement dense, il est possible d’utiliser une
représentation creuse et de diminuer ce coût en mémoire par un facteur d’amplitude considérable (typiquement
plus de 100, une valeur qui dépend du ratio du nombre d’entrées non nulles dans la matrice). Le requis en
mémoire présenté est le plus pessimiste et sert principalement à illustrer la complexité du problème que l’on
souhaite résoudre.
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les réalisations où une fuite de niveau est détectée. En effet, chaque mesure dispersive
réalisée discrimine également l’état |2⟩ des transmons ce qui permet de détecter directement
la présence d’une ou de plusieurs fuites de niveau et donc de limiter la grande majorité
des expériences conservées à des dynamiques restreintes au sous-espace de calcul. Sous ce
modèle d’un ensemble de modes à deux niveaux, le modèle effectif du système devient

Ĥeff(t)/h̄ =
17

∑
k=1

ωk[Φk(t)]
2

σ̂z
k + ∑

k<k′
ξk,k′ [Φk(t), Φk′(t)]σ̂z

k σ̂z
k′ + ∑

k
Ĥd,k(t), (3.8)

où ωk[Φk(t)] est la fréquence du qubit k, Ĥd,k(t) sont des Hamiltoniens associés au contrôle
des portes logiques que nous verrons plus bas et ξk,k′ [Φk(t), Φk′(t)] est la force de l’interaction
ZZ (ou l’interaction croisée de Kerr) provenant du couplage capacitif entre les transmons.
Ce dernier terme dépend fortement de la différence de fréquence entre ces qubits, d’où
la dépendance aux flux externes. Nous incluons cette dépendance puisque la fréquence
des qubits varie fortement (de l’ordre de 1 GHz) afin d’activer les opérations à deux qu-
bits, causant des changements importants dans la force de l’interaction ZZ parasite entre
les qubits impliqués dans les portes et leurs voisins. Grâce à la conception soigneuse de
la géométrie et des nombreux paramètres du dispositif comme la forme des signaux et
les fréquences d’opération utilisées, il s’avère que Ĥeff génère une bonne description des
dynamiques cohérentes du dispositif et que les nombreuses interactions négligées avec cet
Hamiltonien sont largement minimisées. Nous en verrons la démonstration à la section 3.4.

Afin de décrire l’effet d’un environnement de température effective nulle, nous incluons
les processus de relaxation et de déphasage des transmons de manière phénoménologique
à l’aide de l’équation maîtresse

d
dt

ρ̂ = − i
h̄
[
Ĥeff(t), ρ̂

]
+ ∑

k
γ1,kD[σ̂−

k ]ρ̂(t) + ∑
k

γφ,k[Φk(t)]D[σ̂z
k ]ρ̂(t), (3.9)

où γ1,k est le taux de relaxation du qubit k et γφ,k[Φk(t)] son taux de déphasage, lequel
change significativement lors de l’exécution de portes CZ. Tous les paramètres entrant dans
l’Hamiltonien Ĥeff(t) et dans cette équation maîtresse ont été mesurés expérimentalement
pour chaque qubit et sont utilisés directement dans nos simulations, incluant le taux de
déphasage des qubits pendant les portes CZ et pendant les autres opérations.

3.3.2 Approche numérique

Afin de simuler l’expérience de correction d’erreur quantique, il est nécessaire d’intégrer
l’équation différentielle de l’Éq. (3.9) pour la séquence de portes réalisant jusqu’à 16 rondes
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de la mesure des stabilisateurs du code de distance 3, chaque ronde durant 1.1µs. Afin
de rendre cette simulation possible, nous utilisons la méthode des fonctions d’onde de
Monte-Carlo [65, 66, 67], disponible avec la librairie QuTiP [68]. Le principal avantage de
cette approche est qu’elle n’utilise que des états purs (fonctions d’ondes), lesquels sont
des vecteurs de taille m17 plutôt que les matrices densité de taille m17 × m17 utilisées dans
l’équation maîtresse. La réduction majeure des besoins en mémoire rend cette approche
significativement plus facile à utiliser pour nos besoins. Tel qu’expliqué plus bas, cette
approche stochastique nécessite cependant un coût d’échantillonnage additionnel.

La méthode de Monte-Carlo consiste à faire évoluer un état pur |ψ(t)⟩ avec un Hamilto-
nien non hermitien de la forme

Ĥnh = Ĥeff(t)−
ih̄
2 ∑

l
ĉ†

l ĉl , (3.10)

où ĉl sont les opérateurs de dissipation de l’équation maîtresse originale. L’évolution tem-
porelle sous cet Hamiltonien pour une durée infinitésimale dt mène à une réduction de la
norme carrée de l’état quantique initialement pur de

dp = ∑
l

dt⟨ψ(t)|ĉ†
l ĉl |ψ(t)⟩ ≪ 1. (3.11)

Un processus stochastique est alors utilisé afin d’obtenir l’état au nouveau temps t+dt. Avec
une probabilité de 1 − dp, la fonction d’onde |ψ(t + dt)⟩ est renormalisée (par le facteur
1 − dp) afin de retrouver un état pur. 2 Avec une probabilité restante de dp, la fonction
d’onde est plutôt obtenue en appliquant un saut quantique à l’état |ψ(t)⟩ tel que

|ψ(t + dt)⟩ = ĉl |ψ(t)⟩
⟨ψ(t)|ĉ†

l ĉl |ψ(t)⟩1/2
, (3.12)

où le choix de l’opérateurde saut ĉl est choisi demanière stochastique à partir des probabilités

pl =
⟨ψ(t)|ĉ†

l ĉl |ψ(t)⟩
∑l′⟨ψ(t)|ĉ†

l′ ĉl′ |ψ(t)⟩
, (3.13)

de chaque opérateur de saut.

Le résultat d’une telle évolution stochastique est appelé une trajectoire quantique et
correspond à l’évolution d’un état pur interrompu par des sauts discrets dont la fréquence
et le caractère sont dictés par la forme de l’équation maîtresse originale. Un avantage de

2. Afin d’éviter plusieurs opérations numériques, je note qu’en pratique la fonction d’onde n’est pas renor-
malisée à chaque pas temporel, mais seulement après chaque saut quantique et à la toute fin de l’évolution.
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cette approche est que chacune des trajectoires quantiques peut être calculée de façon
indépendante, de sorte que de nombreuses solutions peuvent être obtenues en parallèle en
utilisant les différents fils d’exécution de l’ordinateur classique.

Avec un nombre suffisant de trajectoires, il est possible de simplement moyenner les
résultats obtenus afin d’obtenir la solution à l’équationmaîtresse originaleE[|ψ(t)⟩⟨ψ(t)|] =
ρ̂(t). La valeur attendue des observables d’intérêt peut être obtenue de façon similaire avec

E[⟨ψ(t)|Ô|ψ(t)⟩] = Tr[ρ̂(t)Ô]. (3.14)

Dans l’objectif de nous assurer d’utiliser suffisamment de trajectoires quantiques pour
que l’Éq. (3.14) soit satisfaite avec le niveau de précision requis, nous analysons la conver-
gence des valeurs attendues de tous les stabilisateurs du code et des opérateurs logiques du
code en fonction du nombre de trajectoires utilisées. Nous trouvons que cinquante mille
trajectoires suffisent afin d’estimer ces valeurs attendues avec moins de 1% d’incertitude
relative. Je me suis également assuré que les résultats obtenus convergeaient vers les so-
lutions exactes. Pour ce faire, j’ai comparé les matrices densité obtenues en solutionnant
avec l’approche Monte-Carlo à celles obtenues en solutionnant directement l’équation maî-
tresse pour de plus petits systèmes comportant jusqu’à 7 qubits (ce qui correspond à un
code de surface de distance 2 [69]). En utilisant des tolérances d’erreur qui sont de l’ordre
de la précision numérique lors de la résolution de l’équation maîtresse, j’ai pu ajuster les
tolérances et paramètres d’échantillonnage de l’algorithme Monte-Carlo afin d’assurer une
convergence vers la bonne solution sur le plus grand système possédant 17 qubits.

3.3.3 Opérations logiques

Je décris maintenant les 3 opérations logiques réalisées dans l’expérience de correction
d’erreur quantique : les portes à un qubit, à deux qubits et la mesure projective des qubits.
Tel qu’illustré à la Fig. 3.2, ces trois opérations peuvent ensuite être combinées afin de former
un cycle complet de correction d’erreurs quantiques à l’aide du code de surface.

Les portes à un qubit de l’expérience sont réalisées en TSQ = 40 ns et sont représentées
par les unitaires Ry(−π/2), Ry(π/2) et Ry(π). Cette durée relativement longue est utilisée
afin de minimiser la diaphonie classique des opérations alors que les contrôles appliqués sur
un qubit peuvent influencer l’état des autres qubits (je discuterai de cet effet plus en détail à
la section 5.5). De ce fait, les erreurs cohérentes des portes à un qubit sont minimes et la
fidélité de ces opérations est principalement limitée par la cohérence des transmons. Cette
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Figure 3.2 – Circuit quantique réalisant la stabilisation d’un code de surface de distance trois sur
17 qubits. Les qubits en rouge sont les qubits du code (D1 à D9) et les quatre qubits auxiliaires en
vert (bleu) sont utilisés pour mesurer les stabilisateurs de type Z (X).

caractéristique expérimentale nous permet d’éviter de simuler l’évolution précise des qubits
lors des portes à un qubit où des impulsions micro-ondes dépendantes du temps Ωk(t) sont
appliquées. En effet, on se contente d’utiliser un Hamiltonien constant de la forme

ĤSQ
d,k =

θ

2TSQ
σ̂

y
k (3.15)

pendant TSQ = 40 ns afin de réaliser l’unitaire cible sur les qubits, où θ ∈ {−π/2, π/2, π}.
Ainsi, le bruit associé à ces opérations provient seulement de l’interaction ZZ parasite entre
les qubits et de la relaxation et du déphasage des transmons. Ce modèle produit une fidélité
de porte moyenne pour l’ensemble des opérations et l’ensemble des qubits de 0.08%, ce qui
correspond de près à la valeur de 0.09%mesurée expérimentalement. J’ai également effectué
des simulations de la détection d’erreur quantique avec 7 des qubits du dispositif utilisé ici
(un code de surface de distance 2 [69]) avec et sans l’utilisation d’une telle approximation
de contrôle constant et je n’ai obtenu aucune différence significative sur la performance du
code.

Les portes à deux qubits sont des portes CZ et sont réalisées dans l’expérience en appli-
quant un flux magnétique à travers la boucle supraconductrice de chacun des transmons
couplés capacitivement de sorte que les niveaux |11⟩ et |20⟩ soient en résonance pour une
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durée précise [70, 71]. Étant donné notre traitement des transmons en tant que systèmes à
deux niveaux, il ne nous est pas possible de simuler directement les dynamiques temporelles
associées à ces opérations. Encore une fois, la sélection a posteriori des données de l’expé-
rience ne contenant aucune fuite de niveaux nous permet de nous concentrer uniquement
sur les dynamiques dans le sous-espace de calcul. De façon similaire aux portes à un qubit,
nous utilisons alors un Hamiltonien constant

ĤCZ
d,k,k′ =

(
π

TCZ
− ξk,k′

)
1k − σ̂z

k
2

⊗ 1k′ − σ̂z
k′

2

=

(
π

TCZ
− ξk,k′

)
|1⟩⟨1|k ⊗ |1⟩⟨1|k′ ,

(3.16)

pour les durées utilisées d’environ TCZ = 100 ns, alors qu’on vérifie facilement que CZ =

e−iπ|11⟩⟨11|.

En plus de cette modification à l’Hamiltonien pour générer l’unitaire du CZ, il est
nécessaire de prendre en compte que la fréquence des qubits change significativement
lors de ces opérations. En effet, les transmons sont généralement opérés au point où leur
sensibilité aux variations de flux magnétique externe est minimale (ce qui correspond à
environ 6 GHz pour les qubits ancillaires et 4 GHz pour les qubits du code), mais doivent
être déplacés à des flux où leur taux de déphasage est plus élevé afin d’activer l’interaction
du CZ (à des fréquences d’environ 5 GHz). À ces fréquences, l’interaction ZZ parasite avec
les qubits voisins est également accrue en raison d’un décalage en fréquence beaucoup plus
faible entre les qubits qui ne devraient pas interagir.

Nous prenons en compte ces deux effets dans nos simulations en utilisant directement
les fréquences d’interactions utilisées par les 24 portes CZ du code afin de calculer les
interactions ZZ modifiées avec tous les qubits voisins de ces opérations, en plus d’utiliser les
taux de cohérence (T∗

2 ) mesurés expérimentalement à la fréquence d’interaction de chaque
transmon et de chaque porte. Ces temps de cohérence sont en moyenne trois fois plus courts
que lorsqu’aucune porte CZ n’est réalisée sur le transmon. Avec ce modèle, nous obtenons
une erreur de porte moyenne de 0.9% en simulation alors que l’erreur moyenne évaluée
expérimentalement est de 1.5%. Je présenterai à la section 3.3.5 une modification au modèle
de bruit permettant d’obtenir la même infidélité moyenne que dans l’expérience, ainsi que
l’effet de cette modification sur la performance simulée du code de surface.

Enfin, les mesures dispersives des transmons sont simulées de manière phénoménolo-
gique en faisant évoluer les qubits à l’aide de notre équation maîtresse pour la durée totale
de la mesure (Tmesure ≈ 400 ns), avant d’effectuer une projection idéale de l’état du système



33

en suivant la règle de Born

|ψ⟩ → Πj
k|ψ⟩√

pj
k

, (3.17)

où Πj
k est le projecteur dans la base de calcul du qubit k, j ∈ {0, 1} correspond à l’état mesuré

du qubit et pj
k = ⟨ψ|Πj

k|ψ⟩ est la probabilité de mesurer le qubit k dans l’état j. Par la suite,
nous incluons les erreurs de mesures provenant d’une discrimination imparfaite des états
en inversant le bit obtenu j en utilisant la matrice d’affection de mesure qui a été caractérisée
expérimentalement pour chaque qubit, c’est-à-dire en utilisant les probabilités d’erreur
P(0|1) et P(1|0).

Rassemblant nos modèles des portes logiques et des mesures projectives, il nous est pos-
sible de simuler exactement la séquence d’opérations utilisée dans l’expérience de correction
d’erreur quantique, laquelle inclut d’ailleurs plusieurs durées tampons afin de synchroniser
les opérations possédant des durées légèrement différentes. Utilisant l’algorithme de Monte-
Carlo décrit plus haut, nous sommes alors en mesure de simuler l’évolution du système de
17 qubits pour 16 cycles de correction d’erreur, ce qui correspond environ à 20µs. Cependant,
les ressources numériques en mémoire et en temps de calcul pour obtenir suffisamment
de trajectoires quantiques sont élevées et nous souhaitons simuler cette expérience avec un
ensemble de paramètres différents afin d’étudier la performance du code lors de diverses
améliorations au dispositif. Nous utilisons alors une simplification provenant de la structure
du circuit quantique réalisé afin de grandement accélérer ces simulations.

3.3.4 Modèle effectif 9+4

Dans l’expérience, les stabilisateurs de type Z et X sont mesurés séquentiellement afin
de réduire le nombre maximal de portes CZ réalisées en parallèle à seulement trois. Ce choix
est motivé par le fait que le couplage capacitif fixe entre les transmons crée des interactions
parasites significatives lorsque leur décalage en fréquence est réduit [64]. Nous sommes
en mesure d’exploiter cette structure afin de réduire le nombre de qubits dans l’espace
d’Hilbert simulé de 17 à 13 tout en obtenant essentiellement les mêmes dynamiques. Nous
surnommons cette modélisation effective 9+4 en référence à l’espace d’Hilbert utilisé avec
les 9 qubits du code et un registre de seulement 4 qubits ancillaires. Voyons plus en détail
comment ce modèle est construit.

Tel qu’illustré schématiquement à la Fig. 3.3(a), le circuit quantique permettant de
réaliser le code de surface de distance trois peut être séparé en deux moitiés où toutes les
opérations à un et deux qubits n’agissent que sur les 9 qubits du code (rouge) et 4 qubits



34

1 2 3 4 5 6 7 8
Cycle index, m

−1.0

−0.5

0.0

0.5

1.0

­  Z
L
 ®

9+4, j0L
®

9+4, j1L
®

17, j0L
®

17, j1L
®

1 2 3 4 5 6 7 8
Cycle index, m

−1.0

−0.5

0.0

0.5

1.0

­  X
L
 ®

9+4, j+ L

®

9+4, j ¡ L

®

17, j+ L

®

17, j ¡ L

®

(a)

(c)

(b)

Mesure des stabilisateurs Z Mesure des stabilisateurs X 1 cycle

Cycle m Cycle m

Figure 3.3 – Illustration du modèle effectif 9+4. (a) La mesure des stabilisateurs Z (X) est simulée
en retirant de l’espace d’Hilbert utilisé, à l’aide d’une trace partielle, les qubits ancillaires de type X
(Z). La matrice densité ρ(•) inclut les qubits associés au code de couleur de la figure. Seulement
13 qubits (9 qubits du code et 4 qubits ancillaires) sont nécessaires pour décrire les opérations
appliquées sur le système à tout moment. (b) Le modèle complet inclut l’ensemble des 17 qubits,
tout au long de la simulation. (c) Résultats de simulation de l’expérience de stabilisation du code
de surface impliquant les 17 qubits, en utilisant le modèle effectif (9+4) et le modèle total (17). On
observe un excellent accord des temps de vie logique T1 et T2 entre les deux modèles de simulations.

ancillaires de type Z (vert) ou X (bleu). Pendant ce temps, la mesure dispersive des qubits
ancillaires de l’autre type, laquelle dure 400 ns des 550 ns du demi-cycle, projette ces qubits
dans un état pur séparable. Par exemple pour les quatre qubits ancillaires de type X, dénotés
par k′′, cet état prend la forme

|Xn⟩ = ⊗k′′ |jk′′⟩, (3.18)

où jk′′ ∈ {0, 1}. En supposant que les qubits ancillaires de type X restent approximativement
dans un état séparable pendant toute la durée du demi-cycle, il est possible d’éliminer
ces modes de l’Hamiltonien lors de l’évolution temporelle du système, mais de tout de
même considérer leur effet sur les 13 qubits restants. Pour ce faire, nous incluons de manière
effective l’interaction ZZ provenant de l’état dans lequel se trouvent les qubits éliminés.
Nous tenons également compte du temps de vie fini des qubits ancillaires T1,k′′ en modifiant
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l’Hamiltonien effectif de l’Éq. (3.8) de sorte à obtenir

Ĥ9+4(t)/h̄ =
13

∑
k=1

1
2

(
ωk[Φk(t)] +

4

∑
k′′=1

ξk,k′′ [Φk(t)]
1 − ⟨σ̂z

k′′⟩
2

e−t/T1,k′′

)
σ̂z

k

+ ∑
k<k′

ξk,k′ [Φk(t), Φk′(t)]σ̂z
k σ̂z

k′ + ∑
k

Ĥd,k(t),
(3.19)

où ⟨σ̂z
k′′⟩ ∈ {−1, 1} est la valeur attendue du qubit ancillaire éliminé directement au début

du demi-cycle, sachant que l’interaction ZZ avec un qubit éliminé par une trace partielle
crée simplement un décalage de la fréquence du qubit restant. Nous prenons en compte la
dépendance temporelle de ce décalage lors des portes CZ (avec la dépendance temporelle
ξk,k′′ [Φk(t)]) et à mesure que les qubits ancillaires relaxent (avec le terme e−t/T1,k′′ ).

À la suite de l’évolution temporelle pour T = 550 ns sous Ĥ9+4(t), les qubits ancillaires
de type Z sont mesurés de manière projective et l’état simulé est remplacé en utilisant

|ψ(T)⟩9|Zn⟩4 → |ψ(T)⟩9|Xn⟩4, (3.20)

où |ψ(T)⟩9 représente l’état des 9 qubits du code après avoir projeté l’état quantique des
13 qubits. Plutôt que d’utiliser directement l’état quantique des qubits de type X mesuré
au tout début du demi-cycle, nous tenons compte de leur durée de vie en changeant les
états |1⟩ vers |0⟩ avec une probabilité 1 − exp(−Tdemi−cycle/T1,k′′). La simulation du second
demi-cycle, mesurant les stabilisateurs de type X, est effectuée de la même manière que le
premier.

La Fig. 3.3(c) illustre la validité dumodèle 9+4 en comparant directement la performance
du code de surface obtenue avec ce modèle à celle obtenue avec le modèle simulant les
17 qubits. Tel que présenté dans l’article suivant à la section 3.4, la performance du code
est évaluée en préparant un état propre du code et en le stabilisant pour plusieurs cycles
de correction d’erreur, ici jusqu’à 8 cycles. Un ajustement à la décroissance exponentielle
observée permet d’extraire les temps de vie logique T1,L et T2,L du qubit encodé. Nos résultats
présentent un excellent accord entre les deux modèles, avec un désaccord qui est contenu
dans l’erreur associée à l’ajustement exponentiel. Bien qu’il ne permette que de simuler
un nombre limité de processus de bruit, je note que notre modèle effectif va au-delà des
approches précédentes [72, 73] dans le traitement des erreurs corrélées (interactions ZZ) et
de la dissipation agissant de manière continue pendant les différentes opérations.

Le modèle 9+4 permet de considérablement réduire les besoins numériques de simula-
tion par rapport à l’utilisation de 17 qubits. Avec notre approche Monte-Carlo et ordinateur
performant (vitesse d’horloge de 3 GHz), le modèle de 17 qubits requiert environ 25 s par
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Figure 3.4 – Ajustement du modèle de bruit. (a) Les portes à deux qubits CZ simulées à partir
de notre modèle effectif et des paramètres de cohérence de tous les transmons du dispositif (vert)
produisent des fidélités qui sont plus élevées que celles observées expérimentalement (orange). Il est
possible d’ajuster le temps de déphasage des qubits (Tφ) lors de ces opérations afin de reproduire
les fidélités mesurées avec précision (rouge). (b) Reproduction de la figure 4a de la Réf. [1] où nous
ajoutons en rouge les résultats provenant du modèle où les fidélités des portes à deux qubits ont été
ajustées.

trajectoire quantique et par cycle de correction d’erreur, alors que le modèle 9+4 nécessite
environ 2 s. De même, les besoins en mémoire sont réduits de 6 GB par trajectoire quantique
à seulement 1 GB. Afin d’accumuler suffisamment de statistiques avec un ordinateur possé-
dant 64 fils d’exécution parallèle, notre modèle effectif requiert environ 7 h pour simuler la
plus longue expérience réalisée alors que l’approche à 17 qubits nécessite 87 h. Étant donné
ces ressources d’envergure et le fait que nous devons simuler de nombreuses réalisations
avec différents paramètres expérimentaux, on comprend que toute simplification justifiée
est la bienvenue pour simuler de grands systèmes quantiques.

3.3.5 Modèle de bruit ajusté

La plus grande divergence entre notre modèle effectif et les données de caractérisation
des opérations expérimentales provient des portes à deux qubits, lesquelles ont une infidélité
moyenne de 1.5% dans l’expérience et de 0.9% dans nos simulations. Comme l’origine exacte
du bruit additionnel observé dans l’expérience n’est pas bien comprise ni quantifiée, nous
évitons d’ajouter du bruit dans nos simulations afin de reproduire l’infidélité mesurée. Ce
choix mène à des résultats de simulation qui présentent des performances significativement
meilleures que celles observées expérimentalement, comme nous le verrons dans l’article
de la section 3.4.
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Il est cependant facile d’ajuster nos paramètres de simulation afin de reproduire les
fidélités des portes logiques mesurées. Une approche couramment utilisée [63] consiste
à ajuster le taux de déphasage des transmons lors de la simulation des opérations CZ
afin d’obtenir les mêmes fidélités. Cette modification artificielle regroupe donc toutes les
erreurs inexpliquées sous la forme d’un déphasage phénoménologique. L’utilisation de
cette approche est illustrée à la Fig. 3.4(a) où l’on ajuste la valeur de Tφ des deux transmons
afin de reproduire les données de caractérisation par étalonnage de portes aléatoires (RB)
obtenues expérimentalement pour les 24 portes CZ du code de surface de distance trois.

À la Fig. 3.4(b), on observe que cette modification (symboles rouges) permet de repro-
duire de près la performance globale du code de surface observée dans l’expérience. En effet,
on obtient un temps de cohérence logique T1,L de 18.2µs comparativement au temps de
16.4µs obtenu expérimentalement. Cependant, le temps de vie logique du code est une mé-
trique globale qui dépend des nombreuses caractéristiques du dispositif et de l’algorithme
de décodage utilisé. Ainsi, un nombre combinatoire de choix de paramètres de simulation
différents pourrait être utilisé tout en donnant essentiellement la même performance lo-
gique. Dans la publication qui suit, nous évitons donc d’effectuer tout ajustement sur les
données expérimentales et nous contentons d’utiliser les caractéristiques de cohérence et de
l’Hamiltonien du système qui ont été mesurées.

3.4 Publication [1] : Réaliser la correction d’erreur quantique avec
17 transmons

L’article qui suit a été publié dans la revueNature et représente la première démonstration
de correction d’erreur quantique à l’aide de qubits supraconducteurs. Impliquant 17 qubits
et jusqu’à 16 cycles de correction d’erreur, cette expérience nécessite l’orchestration de
centaines de portes logiques à un et deux qubits et une centaine de mesures projectives, ce
qui représente l’une des expériences d’informatique quantique les plus complexes réalisées
à ce jour par un groupe académique. Alors que la conception, la fabrication et l’opération
du dispositif ont été effectuées par nos collaborateurs à l’ETH Zurich, nous avons réalisé la
modélisation et les simulations numériques de l’expérience dans le groupe à Sherbrooke. À
partir d’une modélisation et d’un code initialement construits par Agustin Di Paolo, alors
étudiant au doctorat à Sherbrooke, j’ai significativement étendu la pertinence et l’efficacité
de nos simulations grâce à une étroite collaboration avec nos collègues à Zurich. Ainsi,
j’ai pu inclure dans nos simulations l’ensemble des particularités du dispositif qui ont été
caractérisées dans l’expérience, incluant les paramètres de l’Hamiltonien de chaque qubit,
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leurs propriétés de cohérences et la séquence d’opération exacte utilisée en pratique. Avec
ces informations, j’ai effectué toutes les simulations numériques des différentes composantes
de l’expérience et ces résultats sont présentés aux Figs. 2-4 de l’article.

Nos résultats de simulation s’accordent bien avec les résultats expérimentaux au niveau
de la performance totale de l’expérience quantifiée par le taux d’erreur logique plogique, ainsi
qu’au niveau des sous-composantes de cette expérience comme la fidélité des opérations in-
dividuelles et des stabilisateurs mesurés (lesquels impliquent 3 et 5 transmons). Étant donné
que plusieurs imperfections ne sont pas incluses dans les simulations, cet accord indique que
nous possédons une bonne compréhension des sources d’erreurs limitant principalement
la performance de l’expérience en pratique. Les autres sources d’erreurs, lesquelles sont
typiquement moins bien caractérisées, sont donc suffisamment sous contrôle afin que leur
impact sur les résultats ne soit pas dominant. Sans aucun doute, avec l’amélioration du
contrôle des dispositifs quantiques et la réduction des taux d’erreurs, ces imperfections
devront être prises en compte et activement mitigées lorsqu’elles deviendront un facteur
limitant.

Les résultats expérimentaux démontrent que le seuil de rentabilité n’a pas été atteint,
lequel correspond au point où le taux d’erreur du qubit logique (pL ≈ 3 %) est inférieur au
taux d’erreur des qubits physiques (∼ pphys.). Nos simulations permettent de démontrer
que ce seuil pourrait être atteint en diminuant les erreurs des opérations d’un facteur deux
ou trois. Ces extrapolations de la performance attendue avec des taux d’erreur physiques
plus bas en simulation nous permettent également de conclure que la fidélité des portes à
deux qubits est le principal facteur limitant de la performance du code de surface réalisé.
Les travaux de recherches permettant d’améliorer la fidélité de ces opérations à deux qubits
dans le contexte de la mesure des stabilisateurs s’avèrent donc cruciaux pour démontrer
une suppression des erreurs à l’aide d’une correction quantique des erreurs.
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Realizing repeated quantum error 
correction in a distance-three surface code

Sebastian Krinner1,9 ✉, Nathan Lacroix1,9, Ants Remm1, Agustin Di Paolo2,3, Elie Genois2,3, 
Catherine Leroux2,3, Christoph Hellings1, Stefania Lazar1, Francois Swiadek1, 
Johannes Herrmann1, Graham J. Norris1, Christian Kraglund Andersen1,8, Markus Müller4,5, 
Alexandre Blais2,3,6, Christopher Eichler1 & Andreas Wallraff1,7

Quantum computers hold the promise of solving computational problems that are 
intractable using conventional methods1. For fault-tolerant operation, quantum 
computers must correct errors occurring owing to unavoidable decoherence and 
limited control accuracy2. Here we demonstrate quantum error correction using the 
surface code, which is known for its exceptionally high tolerance to errors3–6. Using 17 
physical qubits in a superconducting circuit, we encode quantum information in a 
distance-three logical qubit, building on recent distance-two error-detection 
experiments7–9. In an error-correction cycle taking only 1.1 μs, we demonstrate the 
preservation of four cardinal states of the logical qubit. Repeatedly executing the 
cycle, we measure and decode both bit-flip and phase-flip error syndromes using a 
minimum-weight perfect-matching algorithm in an error-model-free approach and 
apply corrections in post-processing. We find a low logical error probability of 3% per 
cycle when rejecting experimental runs in which leakage is detected. The measured 
characteristics of our device agree well with a numerical model. Our demonstration of 
repeated, fast and high-performance quantum error-correction cycles, together with 
recent advances in ion traps10, support our understanding that fault-tolerant 
quantum computation will be practically realizable.

The surface code4,11 is a planar realization of Kitaev’s toric code3, which 
uses topological features of a qubit lattice to correct errors in quantum 
information-processing systems. This code is a prominent contender 
to reach fault-tolerant quantum computation because of its high error 
threshold of about 1% against quantum circuit noise5,12 and its compat-
ibility with 2D architectures. The surface code belongs to the family of 
stabilizer codes13,14, which encode quantum information into a joint 
subspace of definite parities on a set of physical data qubits to form a 
logical qubit. Errors are detected using measurements of auxiliary qubits 
to extract parity information without collapsing the logical qubit state. 
The fault-tolerant operation of a quantum computer requires repeated 
detection and correction of both bit-flip and phase-flip errors on data 
qubits. With an increasing number of physical qubits and thus an increas-
ing code distance d, the number of errors d( − 1)/2⌊ ⌋ that can at least be 
detected and corrected per error-correction cycle increases, making 
the code more resilient when error rates are sufficiently low.

Error correction limited to a single type of error has been real-
ized with repetition codes in nuclear magnetic resonance15, trapped 
ions16, nitrogen-vacancy centres17 and superconducting circuits9,18. In 
single-cycle experiments, fault-tolerant stabilizer measurements and 
correction of both types of error have been demonstrated with the 
five-qubit code and the Bacon–Shor code19–22. Recently, error detection 
in a distance-two surface code has been realized with seven qubits7–9, 

and only very recently, repeated stabilizer-based error correction has 
been demonstrated with a distance-three colour code in a trapped-ion 
system10.

Correction of both bit-flip and phase-flip errors requires at least a 
distance-three code. In combination with fault-tolerant circuits for 
error-syndrome measurements, this guarantees that any single error 
on any of the constituent data and auxiliary qubits or operations can 
be corrected14,23. While the work we discuss here focuses on digital 
encoding of quantum information, continuous-variable encoding, 
for example, in harmonic oscillator states, constitutes an alternative 
approach to quantum error correction; see, for example, refs. 24–27.

Realization in superconducting circuits
Experimentally realizing a distance-three surface code requires nine 
data qubits and eight auxiliary qubits23,28,29, also referred to in the lit-
erature as ancilla or measurement qubits. The qubits are arranged in 
a diagonal, planar square lattice, the edges of which are shown in grey 
in the schematic of Fig. 1a. The data qubits Dj, j = 1…9 (red dots) form a 
3 × 3 array and are interlaced with auxiliary qubits Ai, labelled Xi (blue) 
and Zi, i = 1…4 (green). We realized this arrangement in a superconduct-
ing circuit using 17 transmon qubits30 (yellow) capacitively coupled to 
each other along the edges of the square array with roughly 1-mm-long 
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coplanar waveguide segments (cyan); see Fig. 1b. We discuss the fab-
rication of this device in the Supplementary Information (section I).

Using the auxiliary qubits Xi and Zi, we measure the parity of the 
neighbouring two or four data qubits Dj, which are located at the ver-
tices of the blue and green plaquettes (Fig. 1a, b), in the X or Z basis, 
see Methods. These parity measurements are also referred to as sta-
bilizer measurements13,14. The corresponding mutually commuting 
weight-two (or weight-four) stabilizer operators S Xˆ = ∏ ˆi

j j
X

=1
2(4)  and 

S Zˆ = ∏ ˆi
j j

Z
=1

2(4)  of the surface code are products of two (or four) Pauli-X̂  
or Pauli-Ẑ  operators of the data qubits j located at the vertices of a 
given data-qubit plaquette. Measurements of the stabilizer operator 
Ŝ
Ai

 with outcomes s = ± 1Ai  indicate even or odd parity of the corre-
sponding data-qubit state. A change of data-qubit parity signals an 
error. In our experiments, in which we do not reset auxiliary qubits, 
odd parity is indicated by a change of auxiliary-qubit state from cycle 
to cycle, whereas even parity is indicated by the absence of such 
changes.

In our experiments, the stabilizer gate sequence is realized as two 
or four controlled-phase (CZ) gates31–33 (see Methods), between data 

and auxiliary qubits, operated in a low and high frequency band (see 
Fig. 1c), respectively, combined with initial and final π/2 rotations on 
the auxiliary qubits (Fig. 2a, b). The gate sequence for measuring Ŝ

iX
 

contains further initial and final π/2 rotations acting on the data qubits, 
implementing a basis change from the Z to the X basis (blue dashed 
squares in Fig. 2a, b). We apply echo pulses to the data qubits in the 
middle of the gate sequence to reduce dephasing of the data qubits 
and residual coherent coupling to spectator qubits34.

The 24 pairwise CZ gates have a mean duration of 98(7) ns, including 
two conservatively chosen 15-ns-long buffers at the beginning and the 
end, and show a mean gate error of 0.015(10). The gate error histogram, 
shown as an integrated (cumulative) distribution, shows variations of 
about a factor of four in two-qubit gate error (Fig. 1d and Methods). 
Single-qubit gates showing a mean error of 0.0009(4) are realized by 
applying short resonant microwave pulses to each qubit individually 
through a dedicated drive line (pink coplanar waveguide in Fig. 1b). We 
determined both single-qubit and two-qubit gate fidelities in randomized 
benchmarking experiments. We discuss the experimental setup used 
to realize these gates in the Supplementary Information (section IV).
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Fig. 1 | Device concept, architecture and performance. a, Conceptual 
representation of the distance-three surface code consisting of data qubits 
(red circles), Z-type auxiliary qubits (green circles) and X-type auxiliary qubits 
(blue circles), with their connectivity indicated by grey lines. The data qubits 
participating in the weight-three logical operators ẐL and X̂L are indicated by 
solid black lines. Green (blue) plaquettes indicate X-type (Z-type) stabilizer 
circuits. b, False-colour micrograph of the device realizing the concept in a 
with 17 transmon qubits; see key for circuit elements and text for details. The 

qubit lattice is rotated by 45° with respect to a. The scale bar denotes 1 mm.  
c, Frequency arrangement in three distinct bands for idling data qubits  
(red circles), idling Z-type/X-type auxiliary qubits (green/blue circles) and 
readout resonators (violet open circles). The qubit–frequency tuning ranges 
are indicated by vertical bars. d, Cumulative distributions (integrated 
histograms) of single-qubit gate (pink), simultaneous two-qubit gate (cyan), 
and two-state (red) and three-state readout errors (light red).
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A key element of individual stabilizer measurements are fast and 
high-fidelity measurements of auxiliary-qubit states while leaving 
data-qubit states unaffected35–37; see Methods. Accurate stabilizer meas-
urements using mid-cycle qubit readout on timescales comparable 
with or shorter than the cumulated gate times per error-correction 
cycle also contribute to maximizing the performance of error  
detection and correction in our surface-code implementation as a 
whole.

With our readout scheme, we discriminate the two computational 
qubit states and a leakage state, which—if undetected or uncorrected 
for—is detrimental to any surface-code implementation37–42. We achieve 
a mean readout assignment error of 0.009(7) when discriminating 
the computational states only (two-state readout) and of 0.022(14) 
when discriminating the computational states and the leakage state 
(three-state readout); see Supplementary Information (section VI). The 
corresponding cumulative distribution for two-state readout exhibits 
performance variations on the device of about a factor of two when 
disregarding two outliers, whereas the distribution for three-state 
readout shows variations larger by about a factor of two (Fig. 1d).

With all elements in place for realizing a surface code, we first char-
acterize the measurements of individual Ŝ

Ai
 stabilizers. To do so, we 

prepare the data qubits Dj of a given weight-two or weight-four pla-
quette sequentially in each one of its 22 = 4 or 24 = 16 basis states com-
posed of |0⟩ and |1⟩ for Ŝ

iZ
 and |+⟩ and |−⟩ for Ŝ .

iX
 At the beginning of 

each experiment, all qubits are initialized by heralding the ground state 
|0⟩ from single-shot readout.

For each input state, we compute the mean values s Ai from about 
4 × 104 measurements of sAi (coloured bars in Fig. 2c) and find good 
qualitative agreement with master equation simulations (red outlines); 
see Supplementary Information (sections VII and VIII) for details. Here 
+1/−1 indicate even/odd parity of the measured state. The coloured 
percentage values show the corresponding experimental and simulated 
errors of the stabilizer measurements. On average, the experimental 
parity assignment error is 3.9(1.3)% for weight-two stabilizers and 
8.2(2.2)% for weight-four stabilizers. We attribute the differences 
between measurements and simulation mostly to two-qubit gate errors 
owing to microscopic defect modes changing their frequency on time-
scales of hours or days (Supplementary Information, section III).

Having verified that all stabilizer measurements perform at high 
quality levels individually, we combine the stabilizer measurements 
into a surface-code cycle. Executing this cycle once, we prepare one 
of the four cardinal logical qubit states. Executing the cycle several 
times, we stabilize the logical states and investigate the performance 
of our realization of the code.

The surface-code cycle
At the beginning of each experimental sequence, we prepare the nine 
data qubits in either one of the product states 0⟩⊗9 and X̂ 0⟩L

⊗9 ( + ⟩⊗9 
and Ẑ + ⟩L

⊗9) to begin the process of initializing the cardinal logical 
qubit states |0⟩L and |1⟩L (|+⟩L and |−⟩L). The cardinal states are eigenstates 
of the eight stabilizer operators Ŝ

Ai
 and ±1 eigenstates of the logical 

Pauli operators, which we choose as Z Z Z Zˆ = ˆ ˆ ˆL 1 2 3 and X X X Xˆ = ˆ ˆ ˆL 1 4 7; see solid 
black lines in Fig. 1a. As required, ẐL and X̂L commute with all stabilizers 
and anti-commute with each other. Because each of the prepared prod-
uct states is an equal superposition of 16 equivalent instances of the 
target logical state, executing a single quantum error-correction cycle 
deterministically initializes the target logical state in the stabilizer 
eigenspace corresponding to the measurement outcome of the stabi-
lizers (Supplementary Information, section IX).

In a single surface-code cycle, we first execute all gate operations 
implementing the four Ŝ

iZ
 stabilizer measurements. We realize the 

necessary two-qubit gates in four time steps, in each of which we exe-
cute three CZ gates simultaneously; see Methods. Parallelizing stabi-
lizer execution is a key technical requisite for scalable quantum error 
correction, in particular for operation of larger-distance codes.

The gate execution is followed by readout of the Z-type auxiliary 
qubits to complete the Z-type stabilizer measurements; see Fig. 3a. 
Simultaneous with the Z-type auxiliary-qubit readout, we start execut-
ing the X-type stabilizer circuits, which are equivalent up to a basis 
change of the data qubits. This allows us to execute the Ŝ

iZ
 and Ŝ

iX
 

stabilizer measurements in a parallel, pipelined approach43, which 
imposes fewer constraints on the choice of two-qubit gate interaction 
frequencies compared with parallel scheduling29,44. See Fig. 3a for a 
full circuit diagram and Supplementary Information (section X) for a 
full pulse sequence. In the pipelined approach with fast readout, we 
achieve a short quantum error-correction cycle time of tc = 1.1 μs. A 
short tc relative to the physical qubit coherence times is essential to 
be able to identify errors unambiguously. Moreover, a short absolute 
value of tc reduces the execution time of error-corrected quantum 
algorithms45,46.

To maximize the performance of the distance-three surface code, we 
have designed our device with parameters minimizing leakage on data 
qubits. In addition, we reject all experimental runs with residual leakage 
events, which we detect on auxiliary qubits during the execution of each 
cycle and on data qubits after the last cycle, using our three-state read-
out; see Methods. We discuss the fraction of experimental runs retained 
after leakage rejection in the Supplementary Information (section XI).

To characterize the fidelity of the nine-data-qubit logical state that 
we initialized deterministically using our measurement-based 
approach, we measure the expectation values of the 29 Pauli operator 
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strings that form the basis of the target state20,47. For |0⟩L, we find a 
quantum state fidelity of Fphys = Tr(ρ|0⟩L⟨0|L) = 54.0(1)% (dark red bar 
in Fig. 3b). Considering only errors in the logical subspace7, we find a 
logical fidelity of FL = 99.6(2)%; see Methods and Supplementary Infor-
mation (section IX). We also determine the fidelity of the experimentally 
prepared state with respect to correctable subspaces including states 
that are equivalent to the target state up to Pauli errors of weight i = 1…4 
and find (Fw1, Fw2, Fw3, Fw4) = [34.3(0), 7.3(5), 0.3(8), 0.1(4)]%. Hence the 
prepared initial state has a fidelity of F F F= + ∑ = 96.0(9)%i ic phys =1

4
w  with 

respect to states that are, in principle, correctable; see Supplementary 
Information (section IX).

Repeated quantum error correction
Once the first quantum error-correction cycle completes the 
logical-state initialization, we make use of all subsequent cycles for 
logical-state preservation. In our experiments, we preserve the cardi-
nal logical qubit states for up to n = 16 cycles. In each cycle m = 1…n, 
we extract eight stabilizer values s .m

Ai  Changes in stabilizer values signal 

the occurrence of errors and are used to construct error syndromes 
σm consisting of eight syndrome elements σ s s= (1 − × )/2.m

Ai
m
Ai

m
Ai

−1  The 
elements σm

Ai are inferred in each cycle from the current (m) and the 
previous (m − 1) measured stabilizer values, with σ = 1(0)m

Ai  indicating 
an error (no error)18.

We collectively process successive syndromes σm to determine which 
data and auxiliary qubits have most probably suffered an error4,14,44 
using the approach described in Methods. Executing n consecutive 
error-correction cycles and rejecting runs in which leakage has been 
detected, we record stabilizer measurement outcomes and construct 
syndromes from their values, the averages of which are shown in Fig. 3c, 
d. When averaging the syndromes over all individual elements and 
time, we find that the average syndrome element ≪σ = 0.14 1 is small 
(see arrows in Fig. 3c, d), indicating that errors are rare and therefore 
allowing for efficient error detection and correction9. In Methods, we 
discuss the syndrome measurement outcomes in more detail.

To determine the performance of our distance-three surface code, 
we extract the logical error per cycle when preserving eigenstates of 
the logical qubit operators ẐL and X̂L versus the number of executed 
cycles n. For each sequence of cycles, we decode the error syndromes, 
including a syndrome determined from the final data-qubit readout. 
We use a minimum-weight perfect-matching algorithm, the weights 
of which we determine in an error-model-free approach (Methods). 
After the nth cycle, we perform a projective readout of the final 
data-qubit state in the Z or X basis, from which we determine the eigen-
value zL = ±1 of ẐL or xL = ±1 of X̂L.

Decoding the error syndromes and applying corrections to zL or xL 
when indicated (Methods), we compute the mean logical qubit expec-
tation values z Z= ⟨ ˆ ⟩L L  and x X= ⟨ ˆ ⟩L L  as a function of n from a total of 106 
experimental runs, in which the available data are reduced by 
ground-state heralding before and leakage rejection during each run. 
We observe an exponential decay of Z⟨ ˆ ⟩L  and X⟨ ˆ ⟩L  with n (solid symbols 
in Fig. 4a, b). From the logical qubit operator expectation values, we 
extract the logical error probability EL = (1 −  Z⟨ ^ ⟩L |)/2 (solid symbols in 
Fig. 4c) as a function of n and find a small logical error per cycle of  
εL = [1 − exp(−tc/T1,L)]/2 ≈ tc/2T1,L = 0.032(1), also indicated on the 
right-hand side of the corresponding dataset in Fig. 4c. Equivalently, 
we obtain εL = [1 − exp(−tc/T2,L)]/2 ≈ tc/2T2,L = 0.029(1) for X⟨ ^ ⟩L . We note 
that both the coherence time of T2,L = 18.2(5) μs and the lifetime 
T1,L = 16.4(8) μs of the logical qubit, as extracted from the decay curves 
of X⟨ ^ ⟩L  and Z⟨ ^ ⟩L  are much longer than the duration of the quantum 
error-correction cycle tc = 1.1 μs in our implementation of the surface 
code. For completeness, in the Supplementary Information (section 
XI), we also state and discuss the logical error per cycle when leakage 
is not rejected.

We note that, in our implementation of the surface code, the logical 
coherence time is only about a factor of two lower than the mean 
physical coherence time T = 37.5 μs2

⁎  of all 17 qubits, whereas the 
logical relaxation time is about a factor of four lower than twice the 
mean physical energy relaxation time T2 = 65.0 μs,1  as indicated in 
Fig. 4a, b. We discuss this result further in Methods and put it into con-
text in the next section.

Performance assessment and projection
We compare the state-preservation experiments with numerical sim-
ulations using a Monte Carlo wavefunction method (open symbols in 
Fig. 4a–c). The model underlying the simulations (Supplementary 
Information, section VII) uses the measured coherence times, interac-
tion rates and readout errors of the device as inputs. We find that, 
despite the complexity of the quantum error-correction cycle, the 
measured expectation values X⟨ ˆ ⟩L  and Z⟨ ˆ ⟩,L  when rejecting leakage, 
come close to the simulated values (open symbols in Fig. 4a, b). The 
logical lifetimes extracted from exponential fits (dashed lines in Fig. 4a, 
b) to the simulated expectation values are approximately 26 μs. They 
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provide an upper bound for the performance achievable with the 
specified device parameters, as further error sources such as gate con-
trol errors, population loss into microscopic defect modes and 
measurement-induced dephasing are not included in the simulation 
model.

Because the numerical simulations model the performance of our 
quantum device well, we use the model to project how future improve-
ments in gate and readout fidelities are expected to reduce the logical 
error per cycle εL. To free the projection from device-specific spread 
in qubit parameters, we use the average over all 17 qubits as uniform 
parameters (see Supplementary Information Table 1) and find good 
agreement with the results obtained from the qubit-specific model. 

We then uniformly reduce all physical error parameters of the numer-
ical model by a factor x, repeat the simulations of X̂L  and ẐL  versus 
n and extract the mean logical error per cycle εL as a function of the 
improvement factor x. We find that the simulated error per cycle scales 
to a good approximation as 1/x2 (see inset in Fig. 4c), as expected for a 
distance-three code44. For reference, we plot the scaled two-qubit 
physical error per cycle ε2Q in the same plot (dashed-dotted line).

A metric commonly used to assess the performance of quantum error 
correction compares the logical error per cycle εL to the dominant error 
on the physical level, typically the two-qubit gate error ε2Q (refs. 10,48). 
Such a comparison is particularly relevant in architectures in which the 
logical two-qubit gate error is dominated by errors εL in the quantum 
error-correction cycles belonging to or following the logical two-qubit 
gate operation. The number of required cycles scales in general with 
d in planar architectures and in architectures allowing for transver-
sal execution of logical two-qubit gates5,6,23,49,50. The good agreement 
between measured (about 3%) and simulated (about 2%) logical errors 
εL together with their simulated quadratic scaling suggests that the 
break-even of per-cycle logical errors with two-qubit gate errors may 
be in reach for modest improvements of device performance, when 
using leakage detection or correction.

While a comparison with the break-even point evaluates perfor-
mance for a fixed code distance d, a comparison related to the error 
threshold is necessary to judge how far one is from reaching the desired 
sub-threshold regime, in which εL decreases exponentially with d. In 
fact, simulations on the basis of a simplified one-parameter circuit 
noise model44,51 predict a few percent logical error per cycle at thresh-
old, a rate that is close to the logical error per cycle observed in our 
experiment.

In our experiments, we demonstrate the viability of realizing quan-
tum error correction in the surface code by detecting errors during 
the error-correction cycle and decoding the error syndromes and cor-
recting for errors in post-processing, which is sufficient in a quantum 
memory setting. Next-generation experiments will provide the capa-
bility of correcting errors during the cycle using real-time decoding10 
and fast in-sequence feedback36, implemented with dedicated digital 
electronics. Feedback will also enable the mid-cycle suppression of 
leakage52, for example, by auxiliary qubit reset. Realizing larger surface 
code lattices while improving the performance of their components and 
demonstrating exponential suppression of logical errors with increas-
ing code distance are upcoming important steps towards achieving the 
long-term goal of fault-tolerant quantum computation.
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Methods

Parity measurement
In a Z-basis measurement, if an odd number of the data qubits involved 
in the parity operator under consideration is in the |1⟩ state, the auxil-
iary qubit state is flipped. On the other hand, if an even number of data 
qubits is in |1⟩, the auxiliary qubit state remains unchanged. The equiv-
alent is true in the X basis for an even or an odd number of data qubits 
in the |−⟩ state. Here |0⟩ and |1⟩ are the transmon qubit ground and first 
excited states, respectively, and ± ⟩ = ( 0⟩ ± 1 )/ 2 are their superposi-
tions. To map the parity of the data qubits Dj onto the corresponding 
auxiliary qubit, we effectively use a sequence of controlled-NOT gates 
with the data qubits as control and the auxiliary qubit as target, and 
subsequently measure the state of the auxiliary qubit in the Z basis 
using single-shot readout. In the Z basis, a single bit-flip error of any 
individual data qubit leads to a change of parity, as does a single 
phase-flip in the X basis. Hence measurements of changes of data-qubit 
parities allow us to detect and identify phase-flip or bit-flip errors, as 
long as they occur sufficiently rarely44.

CZ gates
We realize the necessary two-qubit CZ gates by tuning adjacent pairs 
of data (Dj) and auxiliary qubits (Xi, Zi) into resonance31–33 using 
individual flux lines implemented with coplanar waveguides (green 
in Fig. 1b) shorted near the superconducting quantum interference 
device (SQUID) loop of each qubit. We fabricated all qubits with asym-
metric SQUIDs53,54 to allow for data qubits to idle at their minimum and 
auxiliary qubits at their maximum frequencies, at which the qubits 
are first-order insensitive to flux noise. Data qubits are designed with 
idle frequencies 3.7–4.1 GHz in a low-frequency band and auxiliary 
qubits with idle frequencies 5.9–6.3 GHz in a high-frequency band (red 
and blue/green dots in Fig. 1c); also see Supplementary Information  
(section II).

We implement CZ gates by tuning both data and auxiliary qubits to 
an intermediate interaction frequency ωint and ωint − α, respectively, 
with ωint/2π ranging from 4.4 to 5.6 GHz (Supplementary Information, 
section III). The qubit anharmonicity α ≈ −0.17 GHz is designed to be 
small to minimize residual qubit–qubit interactions34. We make use 
of net-zero flux pulses33, which reduce both the detrimental effect 
of low-frequency flux noise on qubit coherence and the impact of 
non-idealities in the transfer function of the flux lines on gate fideli-
ties. Given the large designed detuning of about 2 GHz between the data 
and auxiliary qubits at their idle frequencies, we calculate residual ZZ 
interaction strengths between qubits lower than αzz/2π ≈ 8 kHz (ref. 34). 
It is only during two-qubit gate execution that αzz increases by a factor 
of approximately 2 to 25, depending on the interaction frequency ωint, 
which we partially mitigate using echo pulses. The coupling strength 
between auxiliary qubits and data qubits at the interaction point is 
about J/2π ≈ 7 MHz.

Two-qubit gate error
We determine the two-qubit gate error from interleaved randomized 
benchmarking experiments with sets of three gates executed in paral-
lel, as used in our realization of the surface-code cycle. Time-varying 
microscopic defects in our device have a detrimental influence on 
two-qubit gate performance and are responsible for outliers in the 
gate-error distribution (Supplementary Information, section III).

Qubit readout
Each qubit is coupled to a resonant pair of readout resonator and Pur-
cell filter (red and blue λ/4 coplanar waveguide resonators in Fig. 1b). 
Moreover, each readout resonator is coupled strongly to the qubit 
(g/2π ≈ 169 MHz for auxiliary qubits and g/2π ≈ 252 MHz for data qubits) 
and has a large effective bandwidth (κeff/2π ≈ 10 MHz) to enable fast, 
high-fidelity readout55. The individual Purcell filters both maintain 

high qubit coherence, despite the large coupling and bandwidth of 
the readout resonators, and reduce undesired readout crosstalk (Sup-
plementary Information, section V) between qubits that are in close 
proximity or have similar frequencies56. This is particularly important 
for the simultaneous frequency-multiplexed readout of groups of 
four or five qubits using joint feed lines (purple coplanar waveguides 
in Fig. 1b). The readout resonator frequencies are separated by about 
200 MHz within each feed line and occupy a frequency band extending 
from 6.8 to 7.6 GHz (purple points in Fig. 1c).

We read out the states of all qubits dispersively by applying 
frequency-multiplexed, Gaussian-filtered microwave pulses of duration 
200–300 ns to all four feed lines. We integrate the transmitted signals 
in a heterodyne detection scheme for a duration of 400 ns (Supplemen-
tary Information, section VI). Auxiliary qubits are read out near their 
idle frequencies, whereas data qubits are read out at a flux-tuned qubit 
frequency of approximately 5 GHz, reducing the data-qubit-readout 
resonator detuning57 and thus enhancing the dispersive coupling and 
the readout fidelity55,58.

Gate sequence
The two-qubit gates are accompanied by a set of single-qubit gates 
applied to all auxiliary qubits in a leading and a trailing time step, and 
a dynamical decoupling pulse applied to all data qubits at a central 
time step (Fig. 3a). We choose the order of gate operations to provide 
resilience against single auxiliary qubit errors and to avoid interac-
tions with microscopic defect modes (Supplementary Information,  
section III).

Leakage detection
We make use of a leakage-detection scheme on the basis of three-state 
readout, which allows us—in post-processing—to reject those sequences 
in which any of the qubits were measured in a leakage state; see Sup-
plementary Information (section VI). In our CZ gate scheme, we make 
use of the second excited state |2⟩ of the auxiliary qubits rather than that 
of the data qubits to mediate the interaction, which minimizes data 
qubit leakage. Performing three-state readout of the data qubits after 
the final error-correction cycle, we reject experimental runs for which 
data qubit leakage was detected. The rejected fraction per qubit and per 
cycle amounts to 0.0017(2). In addition, there is a cycle-independent 
rejection probability of about 0.01 per qubit, owing to false positives 
caused by readout error. In addition, we detect if any of the eight aux-
iliary qubits has leaked to the |2⟩ state in any of the n cycles, using the 
same three-state readout, and find an average rejection probability 
of 0.0094(4) per qubit per cycle. In total, this leads to a rejected data 
fraction per cycle of 8%.

Logical-state characterization
For the data shown in Fig. 3b, we use our leakage-detection scheme 
and correct for readout errors on data qubits. The logical fidelity is 
calculated as FL = Fphys/PL = 99.6(2)%, in which PL = 54.2(1)% is the exper-
imentally measured probability of preparing a state in the logical sub-
space (Supplementary Information, section IX). Both Fphys and PL are 
smaller than in a distance-two surface code (see ref. 7 for an example) 
because the two quantities are expected to decrease with increasing 
distance d at a constant physical error rate. To further evaluate the 
performance of our logical-state initialization, we analyse the fidelity 
of the prepared state with respect to subspaces of states that our 
surface-code implementation can, in principle, correct. The errors 
that are correctable by the distance-three surface code include all 
single-qubit Pauli (weight-one) errors X̂ ,j  Ŷ j or Ẑj on any data qubit j and 
a subset of higher-weight errors; see Supplementary Information  
(section IX) for details. We observe that weight-one errors account for 
most of the errors on data qubits in the |0⟩L state initialization, with 
higher-weight errors having a largely reduced probability of occurrence 
(see Fig. 3b).
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Syndrome graph
For syndrome analysis, we construct a graph in which the syndrome 
elements are shown at the auxiliary qubit locations along two spatial 
coordinates for each cycle index m, which forms the temporal coordi-
nate. Spatial and temporal correlations between non-zero syndrome 
elements correspond to data and auxiliary qubit errors, respectively. 
If the overall error rate is sufficiently low, we obtain a low density of 
non-zero syndrome elements, or — equivalently — mean syndrome 
element values σ 1m

Ai≪ , with the mean taken over experimental realiza-
tions. In that case, the underlying errors can be decoded with low ambi-
guity (Supplementary Information, section XII).

Syndrome analysis
All syndrome elements σm

Ai  averaged over repetitions of the experiments 
are approximately constant as a function of m for m ≥ 2; see Fig. 3c, d 
obtained for preserving |0⟩L, |1⟩L and |+⟩L, |−⟩L, respectively. We attribute 
the small remaining increase of σm

Ai with  m to the fact that, in the absence 
of auxiliary qubit reset, auxiliary qubits initially prepared in the ground 
state tend to an asymptotic probability of 0.5 to be in the excited state 
after m cycles. As a result, with increasing m, auxiliary qubits suffer  
from larger decoherence during readout and during the subsequent 
idling periods of about 150 ns before the start of the next quantum- 
error-correction cycle. Our numerical simulations show the same feature 
(open symbols in Fig. 3c, d). For m = 1, the averaged syndrome elements 
σ Ai

1  are reduced because the corresponding reference stabilizer values 
are computed from the initial data qubit product state, which we prepare 
with high fidelity. In the first cycle, the four values of σ i

1
Z  are smaller than 

σ i
1
X  because a quantum-error-correction cycle starts with measurements 

of Ŝ
iZ
 and errors thus accumulate only during half a cycle.

Error decoding
We decode the error syndromes using a minimum-weight perfect- 
matching algorithm59,60. We determine the weights in an error- 
model-free approach by inferring the errors per cycle from the meas-
ured data using a correlation analysis of the syndromes as described 
in the Supplementary Information (section XII) and refs. 9,61. The cor-
rection of an error, initiated by analysing all cycles in post-processing, 
takes the form of changing the sign of the logical qubit operator values 
zL and xL when indicated by the decoder. We note that, for correcting 
ẐL, it is sufficient to decode only syndromes σ{ }m

iZ , or — equivalently — 
only σ{ }m

iX  for X̂L.

Logical coherence times
The reference for the logical energy relaxation time T1,L is twice the mean 
physical qubit energy relaxation time T1, assuming an infinite lifetime 
of the physical qubit ground state for the comparison.

We also note that, within error bars, the lifetimes of the states |0⟩L 
and |1⟩L, and the coherence times of the states |+⟩L and |−⟩L are, respec-
tively, identical. This is expected, as all cardinal states of the logical 
qubit have the same number of qubits in the excited state and as our 
dynamical decoupling scheme alternates between the states  |0⟩L and  
|1⟩L, and between the states  |+⟩L and  |−⟩L, respectively, which are there-
fore affected similarly by decoherence.

To compare the performance of the error-correction experi-
ments presented here to the recent error-detection experiments in 
distance-two surface codes realized with seven qubits7–9, we post-select 
data from those runs of our distance-three experiment in which all 
syndrome elements are zero. When doing so, we estimate logical life-
times in excess of 1 ms (Supplementary Information, section XIII). In 

the seven-qubit device, logical lifetimes and coherence times in the 
range 60–70 μs were observed, with comparable data-retention rates 
of about 50% per cycle when post-selecting on no detected errors by 
evaluating three stabilizers7. The current 17-qubit device achieves simi-
lar data-retention rates when evaluating eight stabilizers per cycle. 
This observation demonstrates that our 17-qubit device, including 
the tune-up and calibration procedures used, performs notably better 
than our previous seven-qubit device.

Data availability
All data are available from the corresponding author on reasonable 
request.
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3.5 Perspectives futures

Outre le besoin d’améliorer essentiellement toutes les opérations réalisées dans le code
de surface, les prochaines étapes vers la conception d’un ordinateur quantique tolérant
aux fautes avec une telle architecture consistent à démontrer des opérations logiques entre
plusieurs qubits encodés dans des codes de surface ainsi que l’opération d’un qubit logique
avec un temps de cohérence macroscopique, par exemple de l’ordre de plusieurs minutes.
Ces démonstrations nécessiteront l’utilisation de beaucoup plus que 17 transmons, ce qui
nous oblige à utiliser des approches de simulation qui sont en mesure de décrire de tels
espaces d’Hilbert afin de bien comprendre les performances attendues et éventuellement
observées en pratique.

Il existe donc un besoin important de développer des outils de simulation qui sont
adaptés pour des systèmes de centaines de qubits, mais qui capturent tout de même les
processus physiques importants du dispositif. Un exemple important d’un tel outil est
l’utilisation d’une approche semi-classique afin de décrire la fuite de niveau des transmons
à l’aide de processus incohérents, une approche pouvant être mise à l’échelle pour de
nombreux qubits [74]. Il serait également intéressant d’étudier les interfaces entre différents
modèles de simulation permettant de conserver l’information importante à la performance
précise du code tout en simplifiant le modèle, par exemple en démontrant un passage
fidèle d’une simulation de plusieurs équations maîtresses (possible pour n ≲ 20) à une
représentation d’opérateurs de Kraus (possible pour n ≲ 40) puis à une simulation de
portes de Clifford (possible pour n ≲ 10000).

D’un autre côté, la simulation précise des dynamiques temporelles d’opérations im-
pliquant seulement quelques qubits demeure très utile pour améliorer notre capacité à
contrôler le dispositif quantique. Nous en verrons un exemple important au chapitre suivant
en démontrant la forte corrélation entre la précision du modèle de simulation utilisé et
notre capacité à réaliser du contrôle quantique d’une grande fidélité. Il serait intéressant
de concevoir des opérations dont les caractéristiques sont spécifiquement conçues pour
augmenter la performance logique d’un code correcteur. Il est par exemple possible de
démontrer que la phase acquise par un transmon lors d’une porte CZ avec un second qubit
dans l’état |2⟩ (c’est-à-dire un état ayant fui le sous-espace de calcul) peut avoir un impact
significatif sur le taux d’erreur logique du code de surface [75, 74]. Ce degré de liberté est
habituellement absent de la définition usuelle de la fidélité de porte moyenne du CZ, une
démonstration que des degrés de liberté additionnels pourraient être utilisés afin d’optimiser
la performance du code de correction d’erreur.
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Dans l’objectif de favoriser l’exploration de nouveaux protocoles de contrôle de ce genre,
je travaille actuellement à développer une librairie numérique facilitant la simulation précise
des dynamiques de systèmes supraconducteurs. Cette librairie se nomme Blueprint et
permet de combiner efficacement les composantes supraconductrices utilisées telles que les
résonateurs LC, les transmons et leurs coupleurs afin de créer l’Hamiltonien et les opérateurs
de dissipation nécessaires à la simulation de toutes les opérations du code de surface (portes
logiques à un et deux qubits, mesure dispersive, opérations de réduction de la fuite de
niveaux [76, 77], etc.). Le code utilise la librairie JAX [78], laquelle permet l’accélération des
opérations réalisées sur des tenseurs (entre autres en utilisant des processeurs graphiques)
et le calcul des gradients numériques par autodifférentiation. Blueprint est également
conçue pour fonctionner directement avec la librairie dynamiqs [79] permettant d’accélérer
la simulation de dynamiques quantiques produites par exemple par une équation maîtresse.
Je présenterai la librairie dynamiqs à la section 6.4. Comme nous le verrons au chapitre
suivant, ces caractéristiques permettent de réaliser diverses optimisations par descente de
gradient sur le système quantique, ouvrant la porte à de nombreuses applications en contrôle
optimal quantique et en estimation de paramètres. La librairie Blueprint a le potentiel de
grandement simplifier et d’accélérer le genre de simulations réalisées dans ce chapitre,
lesquelles ont été construites à partir de zéro au niveau dumodèle physique et qui ont plutôt
recours à la librairie QuTiP [68] pour résoudre l’équation maîtresse.



Chapitre 4

Contrôle optimal basé sur
l’apprentissage automatique

Dans ce chapitre, j’introduis une approche permettant de réaliser des opérations quan-
tiques plus rapides et de plus grandes fidélités sur un dispositif quantique donné. Cette
méthode est conçue pour être facilement utilisable en pratique. Plus spécifiquement, j’adopte
une approche d’apprentissage automatique afin de construire un modèle des dynamiques
quantiques directement à partir de données obtenues en mesurant le système. Par la suite,
j’utilise ce modèle entraîné dans une boucle d’optimisation permettant de trouver les
contrôles qui réalisent les opérations voulues avec une fidélité optimale. Je démontre l’utilité
de cette approche à l’aide de simulations numériques des dynamiques d’un transmon.

Dans ce qui suit, j’introduis d’abord une vue d’ensemble de la problématique de re-
cherche ainsi que sur les avantages et limitations des solutions existantes. Je présente ensuite
les concepts clés couverts par notre approche à la section 4.2, tels que le contrôle optimal
quantique, l’apprentissage automatique, ainsi que leur union pour le contrôle de dispositifs
quantiques. Je résume les principaux résultats de ce projet de recherche à la section 4.3. La
description complète de notre approche ainsi que l’ensemble des résultats se retrouvent
dans l’article présenté à la section 4.4. Finalement, je présente diverses avenues de recherche
et applications associées à la méthodologie que j’ai développée à la section 4.5, lesquelles
permettent de s’attaquer à des problèmes concrets dans le développement de technologies
quantiques.
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4.1 Mise en contexte

Notre capacité à contrôler avec précision l’information quantique contenue dans un
système est étroitement liée à notre compréhension des dynamiques en jeu dans ce système.
Étant donné la complexité de ces dynamiques pour un système quantique avec de nom-
breuses composantes et un environnement subissant des fluctuations temporelles, il est très
difficile d’obtenir un modèle précis de tous ces degrés de liberté. Dans l’objectif de réaliser
des opérations quantiques de haute fidélité, il est alors nécessaire de caractériser spécifi-
quement les processus de bruit dominants et d’ajuster notre conception et nos contrôles
du dispositif afin d’atténuer leurs effets néfastes. Considérons deux exemples d’une telle
approche pour le transmon.

Une sourcemajeure de décohérence pour les transmons provient des pertes diélectriques
associées à la présence de systèmes à deux niveaux situés dans les matériaux entourant les
qubits [80]. La présence de ces modes non contrôlés est principalement due à des imperfec-
tions de fabrication menant à l’existence de défauts dans le réseau atomique des matériaux.
Ces défauts se trouvent notamment aux interfaces entre le substrat sur lequel le qubit est
imprimé et le métal formant le qubit supraconducteur, à la surface du diélectrique formant
la jonction Josephson, ainsi qu’aux interfaces substrat-air, métal-air et métal-métal [81]. Ces
imperfections sont d’ailleurs à l’origine de fluctuations temporelles importantes du temps
de relaxation des dispositifs supraconducteurs [82, 83].

Alors que les processus de fabrication font l’objet de recherche active afin de limiter la
présence de ces systèmes à deux niveaux [84, 85, 86, 87], une caractérisation précise de leur
impact sur la cohérence des qubits supraconducteurs permet de grandement restreindre
leur impact négatif sur la cohérence et la fidélité des opérations quantiques. En effet, il est
possible d’optimiser, et ce jusqu’à grande échelle, les fréquences utilisées lors de toutes les
opérations des qubits à fréquence variable afin d’éviter les régions où le couplage avec un
système à deux niveaux est important [88, 89]. Cette allocation judicieuse des fréquences
utilise le fait que le couplage est inversement proportionnel au décalage de fréquence entre
le système à deux niveaux et le qubit. Cependant, ce processus d’optimisation doit être
répété périodiquement, typiquement en ajustant les fréquences tous les jours à la suite du
mouvement dans le domaine fréquentiel des défauts. Une approche alternative fonctionnant
avec des qubits à fréquence fixe consiste à modifier la fréquence même des systèmes à
deux niveaux en appliquant des contrôles externes. Par exemple, il a été démontré que
l’application de signaux électriques, de déformations physiques au substrat, et d’impulsions
micro-ondes peuvent modifier le spectre fréquentiel des défauts et du même coup modifier
leur impact sur la cohérence du système quantique étudié [90, 91, 92, 93].
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Un second exemple proéminent de l’importance d’une caractérisation adéquate dans la
réalisation d’opérations quantiques de haute fidélité provient de la distorsion des impulsions
électromagnétiques que l’on envoie au dispositif. Ces distorsions comprennent tout écart
entre les impulsions qui sont générées dans les appareils électroniques de contrôle et les
impulsions réellement reçues par le qubit. Ces distorsions sont dues entre autres aux pertes
lors de la propagation des signaux dans les lignes de transmission, aux réflexions aux di-
verses interfaces où l’impédance des milieux de propagation n’est pas parfaitement accordée,
et aux imperfections des composantes micro-ondes utilisées telles que le mélangeur IQ et
les filtres micro-ondes. La déformation résultant de l’ensemble de ces effets est typique-
ment modélisée par une fonction de transfert, une simple transformation linéaire. Afin de
réaliser des opérations quantiques de haute fidélité, il est alors nécessaire de caractériser
cette transformation et de l’inverser numériquement afin de générer des signaux qui, une
fois propagés jusqu’au dispositif quantique, ont la forme désirée. Cette caractérisation est
typiquement réalisée à température pièce avec des appareils d’analyse de signaux standards
tels qu’un oscilloscope ou un analyseur de réseau vectoriel (VNA) [22, 94]. Cependant, les
propriétés de transmission changent avec la température et les transmons se retrouvent à
des températures cryogéniques. De plus, cette caractérisation n’inclut pas l’ensemble de la
propagation jusqu’aux qubits montés sur leur porte-échantillon, où les différents contacts et
interfaces peuvent mener à des réflexions importantes.

À mesure que les techniques de fabrication et que la cohérence des qubits supracon-
ducteurs s’améliorent, la contribution des distorsions dans l’erreur totale des opérations
quantiques devient de plus en plus grande. Afin de réaliser des opérations sous le seuil
d’erreur requis par la correction d’erreur quantique, il est alors nécessaire d’améliorer notre
caractérisation et notre contrôle des signaux que l’on envoie aux qubits. Pour ce faire, il
est possible d’utiliser le qubit lui-même pour analyser les signaux qu’il reçoit. Cette idée,
laquelle est au cœur du domaine de la détection quantique, a notamment été explorée
pour améliorer le traitement de l’information quantique dans des qubits supraconducteurs
dès 2012 [95]. Depuis, de nombreuses approches ont été développées afin d’étendre le
domaine d’application ainsi que de raffiner la précision et l’exactitude d’une telle caractérisa-
tion [96, 97, 98, 99, 100]. Par exemple, dans les récents travaux deHyyppä et co-auteurs [100],
un protocole de caractérisation des distorsions micro-ondes possédant une précision inéga-
lée a été développé et utilisé afin de démontrer des opérations logiques à un transmon de
très haute fidélité (99.98%) et de très courte durée (7.9 ns).

Pour les signaux à basse fréquence utilisés typiquement dans les opérations à deux
qubits [101], il demeure difficile d’éliminer de façon significative l’ensemble des distor-
sions [94]. Une approche de choix consiste alors à adapter les contrôles utilisés afin de les



52

rendre moins sensibles aux distorsions que l’on ne peut éliminer. Par exemple, il est possible
de largement atténuer l’impact des distorsions à longue durée en appliquant des signaux bi-
polaires ayant une aire sous la courbe de zéro, alors que les distorsions associées à la seconde
moitié des signaux annulent approximativement celles de la première moitié [70, 71].

Somme toute, les exemples de systèmes à deux niveaux et de distorsion des signaux de
contrôle nous démontrent l’importance d’obtenir une description précise des dynamiques
quantiques du système afin de réaliser des opérations quantiques de haute fidélité. Étant
donné qu’effectuer une caractérisation rigoureuse et exacte de tous les degrés de liberté
du système quantique est simplement impossible, il devient nécessaire de faire appel à
des approches heuristiques. L’idée est alors de trouver une description effective qui est en
mesure de reproduire le comportement du système jusqu’à un niveau de précision suffisant.
À partir d’un tel modèle et de notre compréhension approximative des dynamiques en
jeu, il est ensuite possible d’ajuster avec précision nos contrôles externes afin de réaliser
les opérations voulues avec de meilleures fidélités que si l’on considérait un modèle plus
simple.

Dans le cadre du projet discuté dans ce chapitre, je propose précisément une telle
approche combinant la caractérisation du système quantique à son contrôle. Cette idée a
été inspirée par mon projet de recherche à la maîtrise, lequel est présenté dans un article
intitulé Quantum-tailored machine-learning characterization of a superconducting qubit [102].
L’une des conclusions importantes de ce projet est qu’il est possible d’utiliser une quantité
réaliste de données produites par le système étudié afin de construire un modèle décrivant
ses dynamiques de manière nettement plus précise que les approches de caractérisation
habituelles. Cette approche s’appuie sur les travaux réalisés à l’Université de Berkeley par
E. Flurin et ses collaborateurs [103]. Ces travaux démontrent qu’il est possible d’utiliser
une approche d’apprentissage automatique initialement développée pour le traitement
du langage afin de prédire les dynamiques d’un transmon. En intégrant directement les
caractéristiques quantiques du problème dans la conception de l’approche d’apprentissage,
nous démontrons qu’il est possible d’améliorer à la fois l’efficacité de l’entraînement et la
précision du modèle résultant.

Comme illustré à la Fig. 4.1, l’idée avec ce nouveau projet est d’utiliser ce que nous avons
appris en nous attaquant à la tâche de caractérisation précise d’un dispositif quantique
afin de compléter une boucle de rétroaction et de directement améliorer les opérations
réalisées sur le système quantique. L’utilisation du modèle pour raffiner les opérations
quantiques peut prendre diverses formes, par exemple la calibration des paramètres fixes du
système (tels que les fréquences d’opération, l’amplitude et la fréquence des impulsions),
la conception de nouvelles opérations ou de nouvelles formes de contrôles par ingénierie
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Figure 4.1 – Il est possible d’utiliser un réseau de neurones afin d’apprendre précisément la
dynamique d’un système quantique à partir de données expérimentales. L’un des résultats clé de
mon projet de maîtrise (2021) [102] est que cette caractérisation peut être grandement facilitée
et améliorée en adaptant notre approche d’apprentissage aux spécificités du problème physique
considéré. Une telle approche inspirée par la physique peut être comparée favorablement à l’approche
habituelle traitant le modèle d’apprentissage comme une boîte noire. L’objectif du projet présenté
dans ce chapitre (2024) [2] est d’utiliser un tel modèle construit par apprentissage automatique afin
de fermer la boucle et d’améliorer les opérations réalisées sur le dispositif quantique.

des impulsions, ou même l’ajustement en temps réel des impulsions avec un contrôle par
rétroaction. Ici, je me concentre sur l’utilisation de la théorie du contrôle optimal quantique
afin de produire les contrôles réalisant les opérations voulues. Comme nous verrons dans ce
qui suit, cette approche est très performante et le fait de la combiner avec un modèle entraîné
directement sur des données expérimentales permet d’éliminer son principal inconvénient :
le biais de modèle.

4.2 Concepts clés

Dans cette section, j’introduis les deux approches au cœur de ce projet de recherche,
soient le contrôle optimal de qubits supraconducteurs et l’apprentissage automatique, en
plus de présenter le fort lien unissant ces deux domaines.
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4.2.1 Contrôle optimal d’un transmon

Tel qu’illustré schématiquement à la Fig. 4.2(a), la façon principale dont on contrôle les
qubits supraconducteurs consiste à générer des signaux micro-ondes à l’aide d’un généra-
teur d’onde arbitraire (AWG), un appareil électronique opérant à température pièce. Les
impulsions sont par la suite dirigées dans le réfrigérateur à dilution à l’aide de lignes de
transmission, typiquement des câbles coaxiaux, afin d’atteindre les qubits se trouvant à des
températures effectives d’environ 10 mK. Tel que décrit à la section 2.4, ces signaux génèrent
des opérations à un qubit arbitraires qui sont représentées par des transformations unitaires
comme la porte à un qubit Ucible = σx illustrée à la Fig. 4.2(a).

La théorie du contrôle optimal quantique (QOCT) [104, 105, 6] formalise différentes
approches permettant de trouver la forme exacte des contrôles externes à appliquer afin de
réaliser une opération quantique voulue avec une fidélité maximale et en un minimum de
temps. Cette théorie est fondée sur les outils développés dans le domaine mathématique
de la théorie du contrôle [106, 107], lesquels ont dû être adaptés aux particularités de la
mécanique quantique [108, 36, 109]. Un domaine actif de recherche du QOCT porte sur la
contrôlabilité, à savoir si une opération cible est atteignable en principe étant donné une
infidélité et une durée finies [110]. Ici, on s’intéresse plutôt à la conception explicite de
ces contrôles, avec pour objectif de trouver la manière optimale de réaliser l’opération en
pratique [6].

En raison de la complexité requise pour décrire l’évolution des systèmes quantiques
d’intérêt, les méthodes numériques sont au cœur de la conception des contrôles optimaux.
La résolution d’un problème de contrôle optimal, lequel est formulé à partir du principe
du maximum de Pontryagin (PMP) [106], se résume à trouver la séquence de contrôle qui
minimise une fonction de coût étant donné une équation du mouvement et des contraintes
fixes, typiquement des conditions frontières. La résolution du PMP est très ardue en pratique
étant donné la multitude de contraintes couplées à satisfaire. L’approche par excellence
consiste alors à utiliser une approximation au premier ordre du principe du maximum et à
résoudre le système d’équations différentielles non linéaires couplées résultant de façon
itérative, où la solution testée à une itération donnée est obtenue à partir du gradient de la
solution précédente [109]. C’est précisément cette approche d’optimisation par descente du
gradient qui est utilisée par la méthode la plus répandue en contrôle optimal quantique :
GRadient-Ascent Pulse Engineering (GRAPE) [111].

Le fonctionnement de GRAPE et de la grande majorité des approches de contrôle
optimal quantique dites à boucle ouverte (c’est-à-dire n’utilisant pas directement le système
quantique que l’on veut contrôler) est illustré à la Fig. 4.2(b). Après un paramétrage de la
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Figure 4.2 – Approche standard de contrôle optimal d’un qubit supraconducteur. (a) Le contrôle
des qubits supraconducteurs passe principalement par la génération d’impulsions micro-ondes à
l’aide d’appareils électroniques classiques. Ces signaux se propagent ensuite jusqu’aux qubits afin
de générer des dynamiques temporelles non triviales. L’objectif du contrôle quantique consiste alors
à concevoir ces impulsions de sorte à produire les opérations quantiques voulues. La qualité de ces
opérations peut être quantifiée à l’aide d’une mesure appelée la fidélité de porte moyenne F . (b)
La conception des impulsions micro-ondes peut être réalisée à l’aide d’une approche de contrôle
optimal quantique par boucle ouverte. Cette approche consiste à paramétrer les contrôles d’entrée, à
simuler l’évolution du système quantique due à ces impulsions en utilisant un modèle numérique,
à calculer une fonction de coût (typiquement la fidélité de porte), puis à utiliser un algorithme
d’optimisation afin de minimiser la fonction de coût et ainsi trouver les signaux de contrôle optimaux.
Cet algorithme consiste typiquement à réaliser une descente de gradient, comme c’est le cas pour
l’approche GRAPE très répandue [111]. De façon cruciale, la performance des contrôles optimaux
sur le dispositif quantique réel dépend de la précision avec laquelle le modèle est en mesure de tenir
compte des dynamiques du dispositif.

forme des impulsions de contrôle, par exemple un utilisant une amplitude spécifiée à chaque
pas de temps, l’idée consiste à utiliser un modèle du système quantique d’intérêt. Ce modèle
numérique permet à la fois de simuler l’évolution du système produite par les impulsions
données en entrée ainsi que de calculer la dérivée des dynamiques résultantes par rapport
aux paramètres de contrôle. La qualité avec laquelle l’impulsion utilisée accomplit l’opération
voulue est quantifiée à l’aide d’une fonction de coût, typiquement la fidélité moyenne de
l’unitaire résultante. Un algorithme de descente de gradient est enfin utilisé pour mettre à
jour la forme de l’impulsion d’entrée de manière à minimiser cette fonction de coût. Cette
boucle d’optimisation est répétée jusqu’à la convergence de la solution, typiquement dans
un minimum local de l’espace des solutions.

Alors que différentes approches existent afin de raffiner cette optimisation, par exemple
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en utilisant des descentes de gradient du deuxième ordre [112, 113] ou en s’assurant de
trouver le minimum global de l’espace des solutions [114, 115], l’approche de type GRAPE
décrite plus haut fonctionne remarquablement bien en simulation. En effet, il est systé-
matiquement possible de trouver des opérations quantiques avec des précisions limitées
seulement par la précision numérique utilisée, et ce, avec des durées de contrôle significa-
tivement plus courtes que ce qu’il est possible de faire avec des formes d’impulsions plus
simples, lesquelles sont typiquement plates et monochromatiques.

Cependant, cette performance repose de façon cruciale sur le fait que le modèle numé-
rique utilisé décrit l’ensemble des dynamiques du système quantique considéré, et ce, avec
une très haute précision. Dans ce contexte, le modèle représente la transformation prenant
en entrée les impulsions micro-ondes de contrôle et fournissant en sortie l’état quantique du
système produit par ces impulsions. Comme décrit à la section 2.5, ce modèle prend typi-
quement la forme d’une équation maîtresse de Lindblad où les paramètres de l’Hamiltonien
et des taux de perte sont obtenus à l’aide d’expériences de calibration couramment utilisées
comme celle de Ramsey. Sans surprise, ce modèle est imparfait et la précision finie de ses pré-
dictions peut significativement limiter la performance des impulsions optimales lorsqu’elles
sont appliquées sur le système réel. Il s’avère que cette limitation est prédominante pour
les qubits supraconducteurs alors que les réalisations expérimentales du contrôle optimal
quantique sont contraintes d’aller au-delà d’une optimisation par boucle ouverte afin de
calibrer les impulsions directement sur le système quantique d’intérêt [116, 117, 118].

Afin d’illustrer cet effet, j’effectue l’optimisation d’une rotation de 180◦ autour de l’axe
σx, Ucible = exp(−iπσx/2), sur un modèle de qubit transmon à la Fig. 4.3, puis j’évalue
la performance de ce contrôle optimal lorsque la fréquence du qubit est modifiée (via un
changement à son énergie Josephson EJ). L’infidélité du contrôle atteint la précision des
erreurs numériques lorsque le modèle est parfait dans cette simulation simple où aucun
bruit n’est considéré. Cependant, aussitôt qu’un biais de modèle est présent, c’est-à-dire une
incompatibilité entre le modèle utilisé lors du contrôle optimal et la dynamique quantique
réelle du système (ici la fréquence fondamentale du transmon), l’erreur associée à l’opération
quantique croît rapidement, pour atteindre une modeste fidélité de 99.9% avec un décalage
de la fréquence du transmon de moins de 0.5 MHz. Étant donné les fluctuations temporelles
importantes de la fréquence des qubits supraconducteurs [119, 120], une telle sensibilité
aux paramètres exacts du système s’avère problématique en pratique.

Somme toute, la modélisation physique usuelle des dispositifs quantiques est insuffi-
sante pour réaliser des opérations de très haute fidélité (> 99.99%) avec une approche de
contrôle optimal quantique par boucle ouverte. Une solution consiste à raffiner notre mo-
dèle des dynamiques du système, une tâche correspondant précisément à la caractérisation
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Figure 4.3 – Effet du biais de modèle sur une approche de contrôle optimal quantique (QOC) par
boucle ouverte. Numériquement, il est possible d’optimiser la forme d’une impulsion micro-onde
de 30 ns afin de réaliser une porte logique σ̂x avec une erreur moyenne limitée seulement par la
précision numérique utilisée (< 10−12). Cependant, en appliquant cette même impulsion sur un
modèle simplifié d’un transmon possédant une fréquence d’oscillation légèrement différente de celle
supposée lors de l’optimisation, l’infidélité croît rapidement.

quantique discutée dans le chapitre d’introduction. Adoptant une approche variationnelle,
il est alors possible de paramétrer la transformation réalisée par notre modèle et d’optimiser
ces paramètres afin de décrire les données expérimentales produites par le système de la
manière la plus exacte possible. C’est précisément ce que nous cherchons à accomplir dans
le cadre de ce projet de recherche à l’aide d’une approche par apprentissage automatique
supervisée.

4.2.2 Apprentissage automatique

L’apprentissage automatique est un domaine en pleine effervescence, notamment en rai-
son de l’avenue d’infrastructures de calcul spécialisées supportant l’entraînement demodèles
possédant des centaines de milliards de paramètres [121]. Les applications des algorithmes
d’apprentissage automatique ne cessent de se multiplier dans divers domaines en raison de
leur capacité à résoudre de façon approximative des problèmes exceptionnellement com-
plexes. Le domaine de l’informatique quantique n’y fait pas exception [122, 123, 124, 125, 126].
Alors qu’une introduction rigoureuse au domaine de l’apprentissage automatique dépasse le
cadre de cette thèse, j’invite la lectrice et le lecteur intéressés à consulter l’une des excellentes
références suivantes [127, 128, 129, 130].

Pour nos besoins, une définition opérationnelle suffisante est que l’apprentissage au-
tomatique est une approche permettant d’exploiter les corrélations présentes dans des
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ensembles de données afin de réaliser une tâche spécifiée par une fonction de coût. En
optimisant les paramètres libres du modèle d’apprentissage afin de minimiser cette fonction
de coût, la transformation réalisée par le modèle tend à accomplir la tâche voulue de manière
heuristique. La qualité avec laquelle le modèle est en mesure d’accomplir cette tâche dépend
à la fois des spécificités du modèle (notamment son expressivité, c’est-à-dire l’espace des
transformations qu’il est en mesure d’approximer) et de son entraînement (par exemple
la quantité et la qualité des données d’entraînement, l’algorithme d’optimisation utilisé,
les hyperparamètres associés à la fonction de coût et à la façon dont les paramètres sont
initialisés et modifiés, etc.).

Alors que les architectures de ces modèles d’apprentissage sont constamment en déve-
loppement, un concept clé pour améliorer la performance du modèle consiste à spécialiser
la transformation qu’il réalise aux spécificités du problème considéré. Comme présenté
à la section 4.1, c’est ce que nous avons démontré dans mon projet de maîtrise dans le
cadre d’une tâche de caractérisation quantique [102]. De façon plus générale, cette idée
de spécialisation du modèle d’apprentissage est répandue dans le domaine. On note par
exemple le succès des réseaux de neurones convolutifs (CNN) en reconnaissance d’images
alors que ceux-ci préservent les corrélations spatiales entre les pixels d’entrée en analy-
sant les données sur une parcelle à la fois [131, 132, 133]. De façon similaire, les réseaux
de neurones récurrents (RNN) préservent l’information chronologique des séquences de
données en traitant les entrées une à la fois tout en gardant une mémoire des entrées reçues
précédemment [134]. Alors que les données ordonnées séquentiellement se retrouvent dans
de très nombreuses applications physiques où la dynamique temporelle d’un système est
en jeu, c’est sans surprise que les RNNs sont couramment utilisés en informatique quan-
tique [135, 136, 137, 103]. Nous utilisons également ce type d’architecture dans le cadre
de mon projet, plus spécifiquement un réseau Long-Short Term Memory (LSTM) [138]. Il
s’agit du type de RNN le plus répandu alors que sa structure de régulation de l’information
permet l’apprentissage de corrélations sur de longues séquences. L’idée au cœur du succès
de cette architecture consiste à gérer l’introduction et la suppression des caractéristiques en
mémoire à l’aide de structures agissant comme portes. Ces transformations font en sorte que
l’information soit en mesure de se propager sur de longues séquences tout en évitant que
les gradients ne s’estompent trop rapidement pour influencer les sorties futures [127].

Retournant à notre problème de contrôle optimal de qubits supraconducteurs nécessitant
une meilleure caractérisation du dispositif quantique, nous sommes en lieu de se demander
pourquoi utiliser une approche d’apprentissage automatique alors que l’on dispose d’ap-
proches rigoureuses fondées sur des principes physiques pour réaliser cette caractérisation.
Les deux raisons principales sont la prévention du problème de biais du modèle ainsi que



59

la simplification de sa réalisation pratique en réduisant le nombre d’expériences requises.

L’utilisation d’apprentissage automatique permet de grandement atténuer le problème
de biais du modèle alors qu’en vertu du théorème d’approximation universelle, les réseaux
de neurones sont en mesure d’approximer n’importe quelle fonction continue sur des sous-
ensembles euclidiens [139]. Ainsi, la transformation apprise par le modèle d’apprentissage
peut être rendue complètement générale et donc agnostique aux approximations physiques
typiquement utilisées. En utilisant un modèle d’apprentissage suffisamment expressif pour
représenter le comportement complet du dispositif quantique, il est alors possible d’utiliser
des données expérimentales produites par ce dispositif afin d’apprendre ses dynamiques
sans aucun biais.

La seconde motivation principale pour utiliser l’apprentissage automatique à la place
d’une approche fondée uniquement sur la physique du problème est d’obtenir une solution
approximative de façon plus efficace, c’est-à-dire nécessitantmoins d’expériences en pratique.
Comme décrit à la section 4.1, la tâche de caractérisation est très complexe en raison des
nombreux degrés de liberté pouvant affecter la dynamique du dispositif quantique que
l’on désire contrôler. Alors qu’une caractérisation explicite de chacun de ces degrés de
liberté devient rapidement irréalisable en pratique à mesure que la taille du système et/ou
la précision requise augmentent, il devient nécessaire d’utiliser une approche heuristique
différente. L’approche d’apprentissage automatique est alors particulièrement prometteuse
étant donné ses nombreux succès démontrés à résoudre des problèmes de complexité
similaire, et ce, sans aucune connaissance des étapes intermédiaires ou sous-composantes
du problème à résoudre.

Un exemple important de l’utilité d’une approche heuristique d’apprentissage auto-
matique à la résolution d’un problème de nature quantique se retrouve en tomographie
d’états quantiques (QST). Cette tâche consiste à reconstruire l’état quantique d’un système
à partir de mesures sur un ensemble de copies de cet état. Afin d’identifier cet état de façon
unique, les opérateurs de mesure doivent former une base complète de l’espace d’Hilbert du
système, ce qui nécessite un nombre exponentiel d’expériences et de paramètres à estimer,
par exemple 4n pour un système de n qubits. La résolution rigoureuse du problème de QST
est simplement insurmontable pour des états à plusieurs corps (n ≳ 10).

Cependant, il existe des représentations alternatives permettant de décrire de nombreux
états quantiques complexes de manière approximative, voire exacte, en profitant de leur
structure. L’exemple par excellence est l’utilisation de réseaux de tenseurs [140]. En utilisant
un tel réseau comme représentation variationnelle de l’état quantique, il est alors possible
d’optimiser ses paramètres afin de reproduire les statistiques de mesures observées de
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l’état quantique à reconstruire, et ce, avec un nombre réduit d’opérateurs par rapport à une
reconstruction complète [141]. Par exemple, il a récemment été démontré qu’un nombre de
copies de l’état quantique augmentant de façon polynomiale était suffisant pour reconstruire,
avec une erreur bornée, des états quantiques à plusieurs corps possédant une structure
d’intrication locale à l’aide d’une telle approche [142]. Ces mêmes idées s’appliquent à la
tomographie de processus quantiques (QPT) où la dynamique temporelle d’une opération
est caractérisée [143], une tâche qui s’apparente à celle réalisée dans le cadre de mon
projet. Je note cependant que contrairement à la description d’une seule opération en QPT,
nous cherchons à caractériser l’ensemble des dynamiques du dispositif pour des contrôles
arbitraires. Il est alors nécessaire d’estimer les paramètres dynamiques du système quantique,
une tâche souvent décrite comme l’apprentissage de l’Hamiltonien [144, 145].

Voyons maintenant les différentes façons d’utiliser l’apprentissage automatique dans le
contexte du contrôle optimal de dispositifs quantiques.

4.2.3 Apprentissage automatique pour le contrôle quantique

Au cours des dernières années, l’avenue principalement explorée pour résoudre le
problème du biais demodèle en contrôle optimal quantique consiste à concevoir les contrôles
externes en interagissant directement avec le système quantique. Cette approche utilise
une boucle d’optimisation fermée, laquelle est illustrée à la Fig. 4.4. L’idée de ce contrôle
par rétroaction est d’utiliser certaines observations expérimentales afin de mettre à jour
la stratégie de contrôle utilisée, puis de tester ces nouveaux contrôles directement sur le
système quantique afin d’obtenir de nouvelles observations et d’itérer jusqu’à l’obtention
d’une stratégie optimale de contrôle. De nombreuses propositions [146, 147, 148, 149, 150],
de même que plusieurs réalisations expérimentales [94, 55, 151], utilisent l’apprentissage
par renforcement (RL) [129] pour résoudre ce problème d’optimisation en boucle fermée.
Dans ce type d’apprentissage automatique, au lieu d’optimiser les paramètres libres du
modèle de sorte à minimiser une fonction de coût évaluée sur un ensemble de données fixe,
le modèle procède par essai et erreur en interagissant directement avec le système d’intérêt.
Le système est typiquement appelé environnement dans ce contexte.

Le principal avantage de cette approche est qu’elle peut être construite de sorte à n’uti-
liser aucun modèle, c’est-à-dire aucune conception préalable sur la façon dont les actions
(contrôles) influencent les observations reçues. Cette approche élimine donc complètement
le problème du biais demodèle en n’assumant absolument rien sur la dynamique du système
quantique.
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Figure 4.4 – Contrôle par rétroaction. Certaines actions avec des particularités bien définies Ω(t),
par exemple des impulsions micro-ondes avec diverses enveloppes temporelles, sont appliquées
sur le système quantique d’intérêt. Le système est ensuite mesuré directement afin de produire
des observations quantitatives, par exemple des bits de mesures projectives. Ces observations sont
utilisées par le contrôleur, lequel prend la forme d’un modèle quelconque avec des paramètres libres
tels qu’un réseau de neurones. Le contrôleur modifie alors la stratégie de contrôle utilisée de sorte
à minimiser une fonction de coût associée aux observations reçues. L’adaptation de la stratégie
de contrôle est typiquement réalisée en combinant une descente de gradients avec un algorithme
d’exploration de l’espace de contrôle. L’apprentissage par renforcement (RL) est un outil idéal pour
résoudre ce genre de problème de contrôle par rétroaction.

Il est cependant important de noter que le simple fait d’utiliser une approche d’appren-
tissage par renforcement dite sans modèle, telle que l’algorithme appelé Q-learning [152]
ou l’optimisation de politique proximale (PPO) [153], n’est pas suffisant pour s’affranchir
complètement du biais de modèle. En effet, plusieurs approches de RL sans modèle qui ont
été proposées se basent en fait sur un modèle physique du système. Par exemple, l’approche
présentée dans la Réf. [146] utilise explicitement un Hamiltonien et résout l’équation de
Schrödinger afin d’évaluer la qualité des contrôles utilisés. De façon similaire, les auteurs de
la Réf. [149] construisent l’état quantique du système à partir de l’information incomplète
provenant des observations réalistes, ce qui nécessite un modèle d’équation maîtresse. Une
approche pour éviter d’utiliser une modélisation physique est alors de construire l’état
quantique du système directement à partir d’observations complètes. Cette approche basée
sur la tomographie d’états quantiques a été démontrée dans la Réf. [94]. Elle fonctionne
bien pour le contrôle de petits systèmes quantiques, tel qu’un seul qubit, mais est impossible
à réaliser en pratique pour contrôler des systèmes quantiques plus complexes étant donné
la quantité requise d’expériences.

Je souligne qu’il est possible de rendre l’approche de contrôle par RL réellement exempte
de tout biais et applicable à plus grande échelle, comme décrit dans l’excellente Réf. [148].
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L’idée consiste à soigneusement concevoir l’expérience réalisée de sorte que les observables
quantiques mesurées correspondent directement à la fonction de coût que nous souhaitons
minimiser, typiquement l’infidélité d’un état ou d’un processus. Par exemple dans le pro-
blème de préparation d’états bosoniques arbitraires, il est possible d’intriquer l’état de la
cavité contenant l’état quantique d’intérêt avec un qubit ancillaire de sorte que la mesure
du qubit permette d’effectuer la tomographie de Wigner de l’état bosonique [154]. L’obten-
tion de quelques échantillons s’avère suffisante pour estimer la fidélité de l’état bosonique
préparé et ainsi accomplir la tâche de contrôle par RL sans biais de modèle [148].

L’utilisation judicieuse de contrôle par RL s’avère très utile afin de calibrer une opération
spécifique avec une grande fidélité et les réalisations expérimentales de cette approche
avec des qubits supraconducteurs continuent de s’accroître [55, 151, 155]. Cependant, cette
approche vient avec un lot d’inconvénients. Tout d’abord, son implémentation nécessite
des interactions en temps réel avec le dispositif quantique, ce qui peut s’avérer difficile à
réaliser expérimentalement. De plus, l’agent apprenant la stratégie de contrôle optimale agit
comme une boîte noire, c’est-à-dire qu’il n’apprend qu’une seule opération quantique et
qu’on ne peut typiquement pas utiliser l’information apprise pour effectuer d’autres tâches
de contrôle ou de caractérisation. Le dernier inconvénient, mais sans doute le plus important,
est que cette approche nécessite un grand nombre d’interactions adaptatives avec le système
quantique, sans aucune garantie de converger vers une bonne solution.

Ce besoin en données et en temps expérimental découle du fait que le modèle d’ap-
prentissage apprend à partir de zéro et doit résoudre une tâche très complexe. En effet, le
modèle doit à la fois construire une représentation sur la façon dont les actions disponibles
influencent la fonction de coût à optimiser, uniquement en se basant sur son expérience des
actions et observations reçues jusqu’à ce point, en plus de devoir naviguer l’énorme espace
des contrôles afin de trouver la solution optimale. Reconnaissant le fait que ces deux aspects
de la tâche d’apprentissage peuvent être complètement séparés, je propose une approche en
deux étapes distinctes permettant de simplifier le problème à résoudre. L’objectif est alors
d’améliorer l’efficacité avec laquelle nous sommes en mesure de réaliser des opérations
quantiques de haute fidélité en pratique.

4.2.4 Contrôle optimal en deux étapes

Comme illustré à la Fig. 4.5, je propose de diviser en deux la transformation passant
des observations expérimentales (entrées) à la forme du contrôle optimal (sortie). Tel
que détaillé dans l’article scientifique qui suit à la section 4.4, l’approche consiste d’abord
à appliquer un ensemble de contrôles différents sur le dispositif quantique d’intérêt et
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Figure 4.5 – Les deux étapes de l’approche proposée permettant de contrôler un dispositif quan-
tique avec une grande fidélité. Plutôt que de chercher à passer directement des observations expé-
rimentales aux contrôles réalisant l’opération voulue de façon optimale (flèche bleue), je propose
de séparer cette transformation en deux. Tout d’abord, les dynamiques quantiques du dispositif
sont caractérisées à l’aide d’une approche d’apprentissage automatique supervisé (rouge). Par la
suite, ce modèle entraîné décrivant le comportement du dispositif est utilisé dans une optimisation
par descente de gradients afin de trouver la forme du contrôle réalisant l’opération voulue avec une
fidélité optimale (mauve).

d’effectuer des mesures projectives. Cette expérience produit un ensemble de données
échantillonnant la transformation subie par le système lors de l’application d’impulsions
arbitraires. Alors que chaque entrée de l’ensemble de données (ici des impulsions micro-
ondes) est associée à une étiquette (ici le résultat d’une ou de plusieurs mesures projectives),
on utilise une approche d’apprentissage automatique dite supervisée afin d’entraîner le
modèle paramétré (ici un réseau de neurones récurrent) à prédire les étiquettes avec le
plus de précision possible. Cette première étape produit alors un modèle décrivant les
dynamiques quantiques du système. En utilisant un modèle d’apprentissage suffisamment
expressif et ayant accès à un grand ensemble de données, cette description devrait être plus
exacte que la modélisation physique typiquement utilisée. Nous démontrons et quantifions
le tout dans l’article qui suit.

La deuxième étape consiste simplement à utiliser le modèle entraîné dans l’une des
nombreuses approches de contrôle optimal quantique dont la performance est bien reconnue.
Une telle optimisation permet alors d’obtenir la forme des contrôles réalisant les opérations
voulues avec une infidélité et une durée minimales tout en respectant les contraintes expéri-
mentales pertinentes. Plus spécifiquement, nous utiliserons une approche par descente de
gradients alors qu’il est particulièrement aisé d’obtenir la dérivée première d’une fonction
de coût arbitraire par rapport aux paramètres d’un réseau de neurones en profitant de la
différentiation automatique [156, 157].

En plus de simplifier la tâche d’apprentissage nécessitant des données expérimentales,
cette approche en deux étapes possède plusieurs avantages par rapport aux approches
de contrôle par rétroaction. D’abord, le modèle entraîné décrivant les dynamiques du
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dispositif lors de l’application de contrôles arbitraires nous permet d’optimiser tout un
ensemble d’opérations sans nécessiter de données supplémentaires. En plus d’être enmesure
d’optimiser un ensemble universel de portes logiques d’un seul coup, cette caractéristique
peut être particulièrement avantageuse afin de réaliser une simulation quantique ou de
compiler un algorithme quantique en un circuit de profondeur réduite suite à l’utilisation de
portes paramétrées de façon continue [101, 158]. Un autre avantage de l’approche proposée
est qu’en plus des applications de contrôle optimal, les données expérimentales demême que
le modèle entraîné nous permettent d’obtenir des informations détaillées de caractérisation.
Celles-ci peuvent être utiles afin de comprendre et potentiellement d’améliorer le dispositif
quantique. Je reviendrai sur ces idées à la section 4.5. Enfin, d’un point de vue pratique,
cette approche est très facile à réaliser expérimentalement alors qu’elle ne nécessite aucune
rétroaction en temps réel et que la production de l’ensemble de données utilise le dispositif
dans son mode d’opération habituel où des impulsions micro-ondes sont envoyées aux
qubits et sont suivies par des mesures projectives.

4.3 Résultats principaux

Ceprojet de recherche introduit et démontre une approche au contrôle optimal quantique
conçue pour pallier le problème de biais de modèle tout en étant aisément réalisable en
pratique. À l’aide de simulations numériques réalistes des dynamiques d’un transmon,
nous démontrons plus spécifiquement qu’il est possible d’entraîner un réseau de neurones
récurrent sur un ensemble de données de taille modeste afin de caractériser le comportement
du système quantique avec une excellente précision. De façon plus quantitative, l’utilisation
d’un million d’impulsions est suffisante pour entraîner un RNN à prédire l’état quantique
d’un qubit supraconducteur avec une erreur moyenne de moins d’un pour cent sur ses
valeurs attendues. Un ensemble de données de cette taille ne prend que quelques heures
à acquérir sur un dispositif supraconducteur standard, où la grande majorité du temps
d’acquisition est dominée par le chargement des impulsions sur les appareils de contrôle.

Par la suite, nous démontrons pour la première fois à notre connaissance l’utilisation
d’un réseau de neurones comme modèle dans une boucle ouverte d’optimisation afin de
trouver les contrôles optimaux d’un système quantique. Cette approche nous permet de
trouver des impulsions micro-ondes réalisant des opérations logiques arbitraires sur le
transmon avec des fidélités de plus de 99.98%. Il s’agit d’une démonstration de principe
claire que notre approche combinant l’apprentissage automatique et le contrôle optimal
quantique, surnommée MLQOC, fonctionne et est prometteuse en pratique.



65

Afin de motiver l’importance et l’utilité de notre approche, nous comparons également
sa performance à l’approche standard de contrôle optimal en boucle ouverte en présence de
biais demodèle. Parmi les différentes sources possibles d’un tel biais dans un scénario réaliste
de contrôle quantique, nous utilisons la distorsion des impulsions pour illustrer le pouvoir
de notre approche. Ce choix nous permet de quantifier aisément l’importance du biais
présent dans le système. Nos résultats montrent que contrairement à l’approche standard
au contrôle optimal qui est largement affectée par le biais de modèle, la performance de
notre approche reste largement inchangée, même en présence d’importantes distorsions. En
effet, alors que la fidélité des opérations trouvées par l’approche standard chute rapidement
sous le seuil du 99.9%, la fidélité des opérations du MLQOC demeure à environ 99.98%. De
ce fait, notre approche MLQOC peut mener à un gain considérable en ce qui concerne notre
capacité à contrôler un système quantique avec précision dans la situation très répandue
où notre modélisation physique du dispositif est simplement insuffisante pour atteindre la
fidélité voulue.

Ce gain s’explique par le fait que dans notre approche, le modèle apprend l’ensemble de
la transformation expérimentale : des contrôles fournis en entrée (ici la forme des impulsions
micro-ondes générées par les appareils électroniques) jusqu’au bit classique de mesure
projective qui a été classifié. De ce fait, la transformation apprise inclue les distorsions
potentiellement subies par les impulsions, de même que toute autre dynamique présente
dans le dispositif et affectant les observables mesurés. Notre modèle d’apprentissage peut
donc être considéré comme étant un estimateur non biaisé des dynamiques quantiques et
classiques du système étudié. Comme nous le verrons, un tel modèle peut s’avérer très utile
dans l’opération et le développement de technologies quantiques.

4.4 Publication [2] : De la caractérisation par apprentissage auto-
matique au contrôle optimal quantique

Fort de l’expérience acquise lors de mon projet de maîtrise, j’ai proposé ce projet de
recherche et ai réalisé l’ensemble des travaux numériques et de rédaction menant à l’article
scientifique qui suit. Plus spécifiquement, j’ai rédigé l’ensemble du code numérique basé
sur la librairie PyTorch [159] permettant l’utilisation de processeurs graphiques. Les princi-
paux algorithmes de la librairie que j’ai construite permettent l’entraînement de réseaux de
neurones en utilisant des données basées sur des contrôles micro-ondes et des mesures pro-
jectives, l’optimisation de portes logiques quantiques arbitraires par descente de gradients,
ainsi que des simulations réalistes des dynamiques de qubits supraconducteurs pilotés
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par des impulsions micro-ondes variables dans le temps. J’ai généré toutes les données de
simulation, entraîné divers modèles d’apprentissage automatique, optimisé de nombreuses
portes logiques, en plus d’analyser les résultats et d’itérer les caractéristiques des approches
utilisées afin d’améliorer la performance de notre méthode.

J’ai également poursuivi ma collaboration avec le groupe expérimental d’Irfan Siddiqi
à l’Université de Berkeley en Californie dans le cadre de ce projet. Après avoir proposé
d’appliquer notre méthodologie sur leur dispositif quantique comportant huit transmons,
j’ai travaillé avec Noah Stevenson afin d’adapter l’ensemble des étapes de notre approche
à une réalisation expérimentale. Noah a acquis les données sur le qubit supraconducteur
étudié et a testé les contrôles optimaux, en plus de contribuer à faciliter la mise en œuvre
expérimentale de notre approche dans un contexte plus général. Ces résultats expérimentaux
sont toujours en préparation et seront inclus dans une seconde version de l’article qui suit.
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Implementing fast and high-fidelity quantum operations using open-loop quantum optimal control
relies on having an accurate model of the quantum dynamics. Any deviations between this model
and the complete dynamics of the device, such as the presence of spurious modes or pulse distortions,
can degrade the performance of optimal controls in practice. Here, we propose an experimentally
simple approach to realize optimal quantum controls tailored to the device parameters and envi-
ronment while specifically characterizing this quantum system. Concretely, we use physics-inspired
machine learning to infer an accurate model of the dynamics from experimentally available data and
then optimize our experimental controls on this trained model. We show the power and feasibility
of this approach by optimizing arbitrary single-qubit operations on a superconducting transmon
qubit, using detailed numerical simulations. We demonstrate that this framework produces an ac-
curate description of the device dynamics under arbitrary controls, together with the precise pulses
achieving arbitrary single-qubit gates with a high fidelity of ∼ 99.99%.

I. INTRODUCTION

The precise characterization and control of quantum
devices are central to the development of useful quantum
technologies. The powerful framework of quantum opti-
mal control (QOC) theory can be used to go from a given
description of the quantum dynamics, such as a charac-
terized model, to realizing arbitrary quantum operations
with maximal fidelity and minimal duration [1–3]. The
successful practical implementation of many QOC ap-
proaches, such as GRAPE [4] and Krotov [5], thus rely
on having an accurate model of the system dynamics to
produce the desired output quantum state or process [6].
In simulation, optimizing the input controls using these
methods can routinely yield quantum operations with
decoherence-limited or even machine-precision fidelity,
and these controls can have much shorter durations com-
pared to what is achievable with simpler, monochromatic
and flat, pulse shapes [7–11].
A critical problem with using open-loop QOC ap-

proaches in experiments is model bias, since the perfor-
mance of the resulting controls is intrinsically limited by
the underlying model accuracy. Indeed, any mismatch
between the model used to describe the quantum evo-
lution and the actual dynamics of the physical system
can cause the optimal controls to perform significantly
worse in practice. This performance degradation is rou-
tinely observed when considering parameter deviations
to the assumed model, and has led to the development of
robust QOC approaches [12–15]. These approaches sac-
rifice some control performance for the benefit of robust-
ness under certain model parameter variations. However,
beyond being inaccurate with model parameters deviat-
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ing from their “true” values due to finite characterization
precision and system drifts, the model used for QOC can
additionally be incomplete, which also leads to important
biases. Out-of-model dynamics typically originate from
unaccounted frequency- and power-dependent distortions
in the control lines, crosstalk between qubits and control
lines, and more generally coupling to spurious modes not
included in the system modeling such as material defects,
box modes, and neighboring couplers and readout appa-
ratus. Precisely characterizing and modeling the dynam-
ics associated with each of these potential interactions
is a challenging task, both experimentally and numeri-
cally. There is thus a need for alternative approaches to
optimally controlling quantum systems.

The shortcomings of using inaccurate models in the
control optimization has led to recent proposals of closed-
loop optimization approaches based on reinforcement-
learning (RL), which rely on direct interactions between
a controller and the quantum system of interest [16–
20]. Using such a feedback control approach, the QOC
problem can be made model-free, thus alleviating the
aforementioned problem of model bias. For example,
this approach was applied experimentally to realize high-
fidelity single- and two-qubit quantum gates, as well as
a quantum error correction stabilization protocol in su-
perconducting quantum devices [21–23]. Although use-
ful for precisely calibrating a specific operation, these
model-free approaches possess important drawbacks, no-
tably in terms of sample efficiency, generalizability be-
yond performing a single quantum operation, ease of ex-
perimental implementation given the need for real-time
feedback, and performance of the control solutions. For
instance, Porotti et al. [20] demonstrated that model-
based gradient-ascent approaches, such as GRAPE, sig-
nificantly outperform model-free RL approaches on stan-
dard state preparation optimal control tasks, both in
terms of state fidelity and data efficiency. This can be
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understood from the fact that in the model-free setting,
the task of the learning agent is much more complex, as
it needs to both resolve how a given control pulse (ac-
tion) impacts the state or process fidelity (reward), and
learn how to improve that control by navigating the enor-
mous control parameter space. The first part of this task
can be recognized as a quantum characterization prob-
lem, whereas the second part of finding the optimal con-
trol strategy can be directly achieved using one of the
many successful QOC approaches, instead of relying on
the trial-and-error exploration of the RL approach.
Based on this understanding, we propose in this work

to simplify the quantum optimal control problem by
breaking it down into two parts that we perform in suc-
cession. First, we frame the quantum characterization
problem, or model learning problem, as a supervised ma-
chine learning (ML) task. We use a parametrized repre-
sentation to learn a description of the quantum system
dynamics directly from experimentally available data.
Second, we use that trained model in a gradient-based
optimal control loop to find the external controls realizing
our target operations. In the following, we demonstrate
that this modular and easily implementable approach can
yield high-fidelity controls using experimentally realistic
data, while providing notable benefits in terms of data
efficiency, scalability to complex control problems, and
device characterization.
The paper is organized as follows. In Sec. II, we de-

scribe our machine-learning-based optimal control ap-
proach and its benefits over alternative control ap-
proaches. Using detailed numerical simulations, we then
present a case study implementation of our approach and
demonstrate its performance for realizing high-fidelity ar-
bitrary single-qubit gates in a transmon qubit in Sec. III.
In Sec. IV, we analyze the impact of out-of-model dynam-
ics on the optimal control performance, and demonstrate
the distinct advantages of our approach in the presence
of model bias. We conclude with a short discussion on
the relevance of this work in Sec. V.

II. MACHINE-LEARNING BASED QOC

The two main steps of our proposed quantum optimal
control approach based on machine-learning characteri-
zation are presented schematically in Fig. 1. The char-
acterization task consists of constructing a model that
captures the transformation from arbitrary input pulse
shapes to the resulting quantum state observables of in-
terest. In this work, we focus on qubit gates and there-
fore take these observables to be the Pauli matrices on
n qubits, which are informationally complete to describe
qubit states. We can thus consider that the model we
want to construct outputs the full quantum state ρ(t).
Note that a more restricted set of observables could be
used if acquiring this information is prohibitive, for ex-
ample in the case of a large Hilbert space, as long as
the relevant metric to optimize can be described by the
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FIG. 1. Optimally controlling a quantum system using
machine-learning characterization. (a) A supervised machine
learning approach is used to characterize the quantum dy-
namics produced by arbitrary input controls. The dataset is
constructed by applying a set of diverse pulses sequentially to
the quantum system and obtaining labels of the system ob-
servables using (projective) measurements. A parametrized
representation (blue box) learns this transformation from in-
put pulse shape to output quantum observables by minimizing
a loss function related to the distance between its predictions
and the data labels. (b) The trained model is used directly
in a gradient-based quantum optimal control loop to find the
pulses best realizing the quantum operations of interest. The
parametrized pulse shape is iteratively updated such as to
minimize a cost function associated with a state or process
infidelity.

model output observables.

The idea of our approach is to learn this model di-
rectly from data taken on the device of interest using a
supervised machine learning strategy. To construct the
dataset, we simply drive the quantum system sequen-
tially with a large set of different pulses, and perform
projective measurements to obtain bits of information
about how the quantum state was transformed by each
of these pulses. After averaging over a chosen amount of
shots, these measurement outcomes form the labels that
the model will be trained to predict, using a loss function
quantifying the distance between the model predictions
and the labels. As detailed in Sec. III, additional physi-
cally motivated loss terms can be added to regularize the
model’s training, as was done in our previous work [24].
We emphasize that this machine-learning training is per-
formed offline such that no real-time feedback between
the model and the quantum system is required.

The second step consists of directly using the trained
model in a gradient-based optimal control loop to find
our control strategy. At this point after the learn-
ing stage, the model parameters are fixed and only the
parametrized pulse shapes are optimized. Given the
auto-differentiable nature of the model and its fast eval-
uation on graphics processing units (GPUs), these op-
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timizations can be performed in less than a minute on
standard hardware. Additionally, the optimization can
be designed to include arbitrary experimental limitations
in the cost function [25], such as to directly find opti-
mal controls that are easily implementable in practice.
Importantly, in contrast to direct feedback control ap-
proaches, the trained representation is not tied to a spe-
cific quantum gate and we can use the trained model to
optimize for arbitrary quantum operations which can be
described and realized by the same input controls and
output observables as the model. For instance, using a
model outputting the quantum state of n qubits, we can
optimize for arbitrary qubit gates and qubit state prepa-
rations. This can be directly generalized to higher dimen-
sional systems such as qudits and bosonic modes, as long
as these additional degrees of freedom are observable in
the quantum system of interest.

An important advantage of our two-step approach to
quantum control is that it is highly modular and cus-
tomizable. First, having a trained model describing the
system dynamics for arbitrary input controls that is fast
to evaluate can be very valuable for understanding, cal-
ibrating, and improving the quantum system of inter-
est. Indeed, this model can be used as a heuristic digi-
tal twin of the device to perform simulations and proto-
type new protocols. This is especially useful given that
the trained model heuristically includes experimentally-
relevant imperfections that were learned from data and
that are typically not accounted for when modeling the
system. Additionally, this model is fully differentiable
which means one can replace typically used parameter
sweeps or gradient-free approaches with gradient-based
optimization of the controls, which are faster and yield
better solutions [26, 27].

The second aspect making our approach modular is
that the specific architecture used to learn from data,
together with the optimal control algorithm used sub-
sequently, can be explicitly engineered to satisfy the
specific data, speed and performance requirements of a
given quantum system. This is particularly useful to ex-
plore the bias-variance tradeoffs of learning an accurate
representation of the device dynamics and to perform
model selection. For instance, using a black-box learn-
ing model to remove any potential bias might require
too much data to be trained to reach the desired pre-
cision, whereas a fully principled approach based on a
physics description might be computationally prohibitive
to model or unable to describe the dynamics accurately
enough. Using a graybox approach [28] combining phys-
ical priors about the device properties together with ad-
ditional freedom might be optimal in such a realistic sce-
nario, which can be directly realized within our frame-
work. Indeed, our approach allows us to use as much
prior knowledge as desired in the learning model, any-
where from a parametrized master equation [24, 29] to a
fully general neural network, as long as the model outputs
are informationally-complete for quantifying the desired
quantum operations fidelity.

We note that approaches of directly combining charac-
terization (system identification) and control have been
studied in control theory [30] and applied to quantum
systems using a variety of models and data [28, 31–36].
Focused on experimental feasibility and on mitigating
the problem of model bias, this work provides a compre-
hensive framework for applying such an approach to su-
perconducting and other solid-state devices and demon-
strates its performance through detailed simulations. In
addition, an important distinction of our work is the
demonstration for the first time of using a trained neural
network as the model for performing open-loop quantum
optimal control, which allows us to significantly mitigate
any model bias in practice. In contrast to the similar ap-
proach by Youssry et al. [28], we show that learning an
explicit Hamiltonian description of the dynamics is not
required for performing arbitrary QOC with high fidelity.

III. TRANSMON SINGLE-QUBIT GATES

We now present a comprehensive case study of our
approach applied to realizing fast and high-fidelity mi-
crowave single-qubit gates in a fixed-frequency supercon-
ducting transmon qubit [37]. We emphasize that our
approach is agnostic to the specific physical implemen-
tation and could be applied to other platforms following
the steps detailed here. The available qubit controls in
the chosen superconducting qubit system are microwave
pulses generated at room temperature by classical control
electronics, which travel down a cryogenic fridge before
reaching the qubit. Information about the dynamics re-
sulting from the controls can be acquired via projective
measurement of arbitrary qubit operators using standard
dispersive qubit readout [38, 39]. Given these input con-
trols and available output observables, the task of inter-
est is to design the external microwave pulses such as to
realize arbitrary qubit unitaries with the highest fidelity
and minimal duration.

The following four subsections detail the four steps re-
quired for achieving this task using our machine-learning
based quantum optimal control approach (MLQOC).
Namely, the framework consists of (1) acquiring a dataset
on the device, (2) training a machine-learning model on
this data, (3) performing QOC optimizations using this
trained model, and (4) testing the performance of the
optimal controls on the device of interest. As a proof of
principle of the method, here the data set is generated
by numerical simulation of the device (step 1), and the
same is true for testing the performance of the optimized
controls (step 4). The other two steps remain unchanged
when working with an experimental device. In our simu-
lations, we take special care not to make approximations
which would artificially simplify the model learning and
optimal control tasks considered, in an effort to provide
a convincing demonstration of our approach in an exper-
imentally realistic scenario.
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A. Simulation dataset

Physical model. We consider a transmon qubit capaci-
tively coupled to a microwave drive line described by the
Hamiltonian (ℏ = 1) [37]

Ĥtot(t) = 4EC(n̂− ng)
2 − EJ cos φ̂+Ω(t)n̂ (1)

= Ĥtrans +Ω(t)n̂ , (2)

with EC (EJ) the charging (Josephson) energy, Ω(t) the
applied microwave drive coupling to the transmon charge
operator n̂, and φ̂ the canonically-conjugate phase oper-
ator. Given that the qubit is operated in the transmon
regime, EJ/EC = 110, and that we are interested in
quantum operations limited to the qubit subspace, we
can safely ignore the gate charge ng [37]. Throughout
this work, we simulate this full Hamiltonian keeping the
first 5 eigenstates of Ĥtrans. We do not perform any
rotating-wave approximation (RWA) in order to capture
the fast-oscillating dynamics that are relevant for high-
fidelity and fast operations [7, 40].
We parametrize the drive pulses Ω(t) as the input to

the arbitrary waveform generator (AWG) that produces
in-phase (SI) and quadrature (SQ) signals. These signals
are then combined to a local oscillator (LO) of frequency
ωLO to be up-converted to the desired GHz-frequency sig-
nals, a process known as sideband mixing [41, 42]. This
pulse parametrization reflects the actual controls of a re-
alistic experiment, allowing our model to capture poten-
tial IQ-mixer imperfections and other pulse distortions,
in addition to allowing for precise control of the pulses
frequency spectrum. In the absence of imperfections in
the control electronics and pulse distortion in the control
lines, the microwave pulse reaching the qubit is described
by

Ω(t) = SI(t) cos(ωLOt) + SQ(t) sin(ωLOt). (3)

To drive the transmon on resonance at ωq and avoid IQ-
mixer imperfections producing distorted output signals
at frequencies close to ωLO, the AWG signals are typ-
ically generated by convolving the pulse envelope with
an intermediate frequency oscillation at frequency ωIF

such that ωLO + ωIF = ωq [42]. We reproduce this ex-
perimental condition here using ωIF/2π = 100MHz and
ωLO/2π = 6.198GHz to reach the qubit frequency at
ωq/2π ≈ 6.298GHz.
As shown in Appendix F, when restricting the descrip-

tion to the computational states of the transmon, the
effect of the drive Ω(t) takes the usual form in the rotat-

ing frame of the qubit, Ĥqubit = I(t)σ̂x + Q(t)σ̂y, for a
resonant drive and under the rotating-wave approxima-
tion. The real-valued signals I and Q can be expressed
as linear combinations of the AWG signals SI and SQ.
We thus understand how controlling SI and SQ allows us
to perform arbitrary single-qubit gates. Here, we avoid
the approximations mentioned above and simulate the
full transmon Hamiltonian Eq. (2) directly using Eq. (3)
with arbitrary time-dependent signals SI and SQ.

In the AWG as in our simulations, the pulse shapes
SI and SQ are specified by real amplitudes positioned
at a finite number of times during the operation, called
pixels. We take the size of these pixels to be 1 ns. Im-
portantly, we apply a Gaussian filter to these discrete
signals to (i) interpolate between pixels and simulate
experimentally-accurate continuous time evolutions be-
yond a piece-wise constant pulse approximation [7, 27],
and (ii) account for the finite bandwidth of the AWG and
the filters used in experiments. We use a Gaussian filter
standard deviation of 250MHz.
To simulate the full time dynamics of the system un-

der the application of the drives, we solve the Lindblad
master equation (ME)

dρ̂

dt
= −i

[
Ĥtot(t), ρ̂

]
+ γD[b̂]ρ̂+ 2γφD[b̂†b̂]ρ̂, (4)

which accounts for transmon relaxation and dephas-
ing [39]. In this expression, γ (γφ) is the relaxation (pure

dephasing) rate, and D[X̂]ρ̂ = X̂ρ̂X̂† − {X̂†X̂, ρ̂}/2 the
Lindblad dissipator. In the following, we use relatively
high relaxation and coherence times of T1 = T2 = 300 µs,
corresponding to γ/2π = 3.33 kHz and γφ/2π = 1.67 kHz.
This choice allows us to resolve the finite control preci-
sion of our MLQOC approach, beyond the gate fidelity
limit set by decoherence. We use the open-source library
dynamiqs to perform these simulations, which alows us
to use GPU acceleration and to efficiently batch the sim-
ulations over multiple pulse shapes in parallel [43].
Experiment and dataset generation. As illustrated

in Fig. 2(a), the experiment we consider consists of three
steps, where (i) the transmon is prepared in one of the
six cardinal states of the Bloch sphere, (ii) a microwave
drive with a given pulse shape and duration is applied
to the qubit, and (iii) the qubit is readout in the basis
σj ∈ {X,Y, Z}. This same experiment is repeated Nshots

times to acquire statistics, where Nshots ≥ 1, and the
label associated with this specific pulse shape and prepa-
ration is the qubit expectation value estimate resulting
from averaging these shots. We emphasize that we never
feed the full quantum state to the model and that this
label, i.e. the average measurement result, is a realistic
noisy estimate of the true qubit expectation value that
the model is trying to predict. State preparation and
measurement (SPAM) errors can add noise to these la-
bels. This noise can be made effectively unbiased using
standard error mitigation strategies based on inverting
the confusion matrix or on measuring half of the shots
with the negative measurement operator. For simplicity
in evaluating model performances, we did not model the
effect of the mitigated SPAM errors which would typi-
cally be significantly smaller than shot noise in our sim-
ulations (Nshots = 32).
To construct the supervised ML datasets, this experi-

ment is repeated for all of the pulse shapes in a chosen set
of pulses, while randomizing over the prepared state and
measurement axis for each of these pulses. Implemen-
tation details for constructing the pulse set such as to
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FIG. 2. Learning driven qubit dynamics using supervised machine learning. (a) Model architecture. Preserving the structure
of the three-step experiment, the model uses a small fully connected neural network (FNN, Encode) to map the nominally
prepared quantum state (ρ0) to the initial hidden state representation of the model (h0). Each pixel of the input pulse shape is
fed sequentially to a recurrent neural network cell (RNN ). A second FNN (Decode) is used to produce the predicted quantum
state ρ̃n, here parametrized using Pauli expectation values. During training, the experimental readout outcomes are used as
labels and the model parameters are adjusted by minimizing a loss function, here principally composed of a mean squared
error (MSE) between the labels and predictions. (b) Loss on the training and validation datasets during a supervised LSTM
training. All hyperparameters and dataset characteristics are detailed in Appendix B. The dashed lines correspond to the
sampling noise floor of the noisy labels for both datasets, see text for details. (c) Mean squared error of the predicted quantum
state expectation values as a function of pulse duration, averaged over the entire test dataset. Dashed lines correspond to the
median over time, with values reported in the legend. The MSE is zero for the first 4 ns because we impose a zero padding
of 2 ns at the beginning and end of every pulse. (d) Sample model predictions (circles) and true quantum trajectories (full
lines) for three input pulse shapes unseen during training. The envelopes of the gaussian flat top (top), random (middle) and
sinusoidal (bottom) pulses are shown in inset, with axes corresponding to drive amplitude in MHz and time in ns. Note that
during training, the ML model never has access to the true quantum trajectories used here for evaluating model performance
in panels (c-d), but only to the noisy labels obtained from Nshots = 32 projective measurements.

efficiently sample the control space is presented in Ap-
pendix C. We have found that using a combination of
random pulse shapes together with physically motivated
envelopes, such as Gaussian, sinusoidal, and flat-top en-
velopes with DRAG components [44] was sufficient for
the ML models considered to learn an accurate and gen-
eralizable representation of the quantum dynamics.

Putting this data together in the form of supervised
learning datasets, each input consists of a one-hot en-
coded vector p⃗ describing which of the six cardinal states
was prepared, together with a two-dimensional real ar-

ray S = (S⃗I , S⃗Q) containing the pulse shape amplitudes
at each pixel of the evolution for the two drive quadra-
tures. The output labels are a combination of a one-hot
encoded vector m⃗ capturing which Pauli operator was
measured together with a single floating point number
representing the associated qubit expectation value esti-
mate Tr[σjρ(t)]. Finally, we split this dataset into train-

ing, validation and test sets, as is standard in supervised
learning approaches to both avoid over-fitting by select-
ing the best model from the performance on the vali-
dation set, and to obtain unbiased model performance
metrics by evaluating the chosen models on a separate
test set [45].

B. Model learning

Model architecture. The parametrized representation
we use to learn the quantum dynamics from the data de-
scribed above is the physics-inspired neural-network illus-
trated in Fig. 2(a). It is principally composed of a recur-
rent neural network (RNN) architecture [45, 46], which
processes the input pulse shapes one pixel at a time such
as to preserve the time-ordered structure of the learning
problem. The RNN, composed here of a long short-term
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memory (LSTM) unit cell [47], is performing the same
set of operations at each time step in a recurrent fashion,
using the new input together with a hidden state (h) to
encode information about the context of that input. This
vector allows the model to capture correlations within
the input data and to potentially keep a memory of pre-
vious inputs. Given our quantum characterization prob-
lem where the model needs to output the quantum state
at different times, we engineer a direct correspondence
between the hidden state of the model hn the quantum
state of the system ρn. We thus use an encoding layer,
a small fully-connected neural network, to map the ini-
tially prepared quantum state to the initial hidden state
of the model, and use a similar decoding layer to map
this hidden state back to the qubit state prediction ρ̃(t).

To have a model that can efficiently train on a finite
and realistic dataset, we have designed the model archi-
tecture to explicitly preserve most of the structure of the
physical problem at hand. Nonetheless, the model is gen-
eral enough to go significantly beyond the usual assump-
tions of a Markovian, single-mode description of the qubit
dynamics. As demonstrated in Sec. IV, this choice is mo-
tivated by our objective of obtaining high-fidelity con-
trols in scenarios where the physical description used in
typical open-loop control approaches is insufficient. We
emphasize that many other architecture choices could be
directly used within our framework, such as a transformer
model [48] or a parametrized master equation.

To train the model, we use a loss function principally
composed of a Mean Squared Error (MSE) loss between
the model predictions and the labels, as is common for re-
gression tasks in supervised machine learning. Addition-
ally, following Ref. [24], we expand the loss function with
terms assuring that the RNN outputs are valid quantum
states, i.e. that they are positive, and that the initial
state predicted by the model corresponds to the known
prepared state of the qubit. These physically motivated
loss terms help regularize the model training, as it ex-
plores the parameter space of valid representations more
efficiently [49]. An explicit expression for the full loss
function, together with the hyperparameters used, can
be found in Appendix B.

Quantum characterization results. A typical training
of the RNN model is presented in Fig. 2(b) on a training
dataset comprising of 3.2 million pulse shapes of maxi-
mal duration of 30 ns, each measured for 32 shots. As
demonstrated in Appendix A, similar performances can
be reached using significantly less data. Both the training
and validation MSE losses reach a value close to the sam-
pling noise floor of about 5.6 × 10−3, which is obtained
by computing the same MSE metric assuming perfect
knowledge of the qubit expectation values, as given by
the simulation data. This imprecision is significant as
it corresponds to an average distance between the noisy
labels and the model output qubit state probabilities of
about 7%. Such a high noise floor raises the question of
whether the ML model is learning an accurate descrip-
tion of the quantum dynamics.

Leveraging the fact we are working with simulation
data, we can go beyond the experimentally-available
noisy labels and compare the model predictions directly
to the ground truth quantum trajectories obtained from
simulation. In Fig. 2(d), we can qualitatively observe
the high accuracy of the trained model at describing the
qubit dynamics for various input pulse envelopes, as the
model predictions (dots) match closely the true trajecto-
ries (full lines). This agreement is quantified in Fig. 2(c),
showing a median MSE of about 5×10−5 across the three
measurement axes and over different pulse lengths on the
previously unseen test dataset. This order of magnitude
improved accuracy on the predicted outcome probabili-
ties indicate that, remarkably, the ML model is able to
use the noisy labels that one can obtain experimentally
in order to learn the mapping from arbitrary pulse shapes
to highly accurate quantum dynamics. The error asso-
ciated with the model predictions is lowest at the initial
time where we have the most accurate information about
the qubit state given the finite number of prepared states
shared amongst all experiments. The finite model preci-
sion for evolving the quantum state for every pixel then
leads to a linear increase in the prediction error over time,
which is translated into a quadratic increase on the MSE
in Fig. 2(c). This behavior is expected for any model
with a finite accuracy, and is akin to evolving the state
using the ME with slightly inaccurate model parameters,
or to numerically solving a differential equation with a
finite precision solver.
The accuracy of the ML model can be significantly im-

proved by extending the training dataset, for example us-
ing more shots such as to construct more precise labels,
and performing more experiments with different pulse
shapes such as to explore more of the control space. As
we will show next, the amount and quality of the training
data used here is sufficient to obtain high-fidelity controls
from the model. Additional results exploring how the
quality and quantity of training data impact the learned
representation and the performance of the resulting op-
timal controls are presented in Appendix A.
The neural network model takes about an hour to train

on a standard Nvidia RTX 3080 GPU. This time could be
significantly reduced if needed for a specific implementa-
tion, for example by pre-training the model on simulation
data before training on the experimental measurements.
This timescale is comparable to the experimental data
acquisition time for building the datasets using trans-
mon qubits, which is a few hours per million pulse shapes
with 32 shots, including the overhead of pulse sequence
uploading on the control electronics.

C. Quantum Optimal Control

Having demonstrated that a RNN can be used to accu-
rately learn quantum dynamics from experimentally re-
alistic data, we now present how one can successfully use
that representation to perform quantum optimal control.
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FIG. 3. Quantum optimal control of a 20 ns RX(π) gate on a trained RNN. The optimal MLQOC pulse fidelity is 99.994%
on the 5-level transmon. (a) Parallel optimization of 30 randomly initialized pulse shapes. The optimization of the best
performing pulse is highlighted in red, with the inset showing its decomposition into individual costs. (b) Resulting raw (bars)
and gaussian filtered (dots with line) optimal pulse shape for the two drive quadratures I and Q. (c) Predicted (dots) and true
(lines) quantum state evolution when applying the optimal pulse shape on the initial state |1⟩.

We focus on single-qubit quantum gates and optimize the
external controls such as to maximize the average gate
fidelity of a given unitary Utarget. As schematically il-
lustrated in Fig. 1(b), the optimization procedure simply
consists of making each pixel of the input pulse a free
parameter and computing the evolution of the quantum
system due to these controls using the trained ML model
with fixed internal parameters. By evolving a set of ini-
tial quantum states forming a unitary 2-design, one can
compute the average gate fidelity of the arbitrary black-
box quantum channel [50, 51], which is represented here
by a neural network. For the case of one qubit, the six
cardinal states used as preparations in our experiment
form a unitary 2-design [52]. Finally, an optimization al-
gorithm is used to update the input controls such as to
maximize the fidelity of the operation of interest.

Making use of the fact that the RNN is fully auto-
differentiable, we employ a gradient-based approach
and design the cost function to include a multitude of
experimentally-relevant constraints, without having to
analytically derive an expression for their gradient. In
addition to the cost associated with the average gate
infidelity of the operation of interest, we use regular-
izing costs that yield smooth and low amplitude con-
trols, which are desirable in the experiment to mitigate
crosstalk and pulse distortion effects [25, 53]. In particu-
lar, we use a cost term proportional to the average abso-
lute pulse amplitude to penalize for unnecessarily strong
pulses, a cost for amplitudes |Ω|/2π > 100MHz, together
with terms proportional to the first and second deriva-
tives of the pulse shapes to find smooth controls with a
limited frequency spectrum. The full cost function and
optimization parameters used here are presented in Ap-
pendix D.

A typical control optimization on the trained RNN is
shown in Fig. 3(a) for the case of a 20 ns RX(π) trans-
mon qubit gate. Benefiting from the fast forward and
backward evaluation of the RNN, 30 randomly initialized
pulses are optimized in parallel on a single GPU card in
under a minute. This batched optimization and ability
to perform a large number of iterations significantly mit-
igates the convergence issues that many GRAPE-like ap-

proaches face. As a result, we can use the trained model
to obtain optimal controls for a wide variety of gates on
a very short timescale, which can be used to create a
universal gate set of optimal pulses or to compile contin-
uously parametrized gates.
The optimal control found by our MLQOC approach

yields a 99.994% average gate fidelity on the full 5-level
transmon model. The pulse shape and resulting qubit
dynamics are illustrated in Fig. 3(b-c). Importantly,
this optimal pulse is smooth and easily implementable in
practice with limited bandwidth electronics. The main
sinusoidal oscillations seen in the optimal pulse corre-
spond to the expected intermediate frequency of about
2π×100MHz. Deconvolving this intermediate frequency,
we obtain a smooth envelope in the quadrature effectively
driving σX (black line), together with a small orthogonal
component (gray line) necessary to adjust the Z phase
of the resulting unitary and to mitigate leakage to the
|2⟩ state [44]. As shown in panel (c), the pulse produces
coherent dynamics on the qubit that resemble the one
of standard sinusoidal and Gaussian control pulses, both
according to the RNN model (dots) and the true master
equation dynamics (lines).

D. MLQOC performance

An important advantage of our approach is that the
trained model is not tied to a specific set of gates and
can be used to optimize for arbitrary quantum opera-
tions captured by the model inputs and outputs, here
any single-qubit unitary. As a demonstration, we use
the same trained RNN model presented in Fig. 2 to
optimize for a variety of gates and compile the results
in Table I. We first optimize for π and ±π/2 rotations
around the three axes of the Bloch sphere. This gate
set, together with the identity operation I realized by
applying no drive, generates the full single-qubit Clifford
group. We obtain an average fidelity of about 99.99% for
this gate set, demonstrating that finite-precision model
trained on realistic data can yield high-fidelity quantum
operations. We have also optimized 100 unitaries sam-
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SQ gate Duration (ns) Fidelity (%)

RX,Y,Z(π) 20 99.993

RX,Y,Z(±π/2) 15 99.983

Haar random 20 99.984

TABLE I. Gate performance of the MLQOC approach, eval-
uated on the full 5-level transmon. The trained model can
be used to find arbitrary Clifford and Haar random unitaries
with high fidelity. Reported fidelities are the average over the
different axes (X, Y , Z) for Clifford gates and the median over
100 uniformly sampled gates for the Haar random gates. The
transmon coherence limits are 99.9975% and 99.9967% for
15 ns and 20 ns gates, respectively. Note that the gate dura-
tions include a 4 ns zero padding to avoid gate bleed-through.

pled uniformly at random from the Haar measure [54],
and obtained gates with similar performances. This re-
sult further demonstrates that the trained RNN repre-
sentation is accurately capturing arbitrary dynamics on
the qubit subspace of our transmon model such that it
can be used directly for performing QOC.
The fact that the trained ML model does not fully

reach the coherence-limited average gate fidelities of
∼ 99.997% can be attributed to the finite precision of the
heuristic that the RNN learns to represent the quantum
dynamics. As shown in Appendix A, reducing shot noise
and increasing the training dataset size does not signif-
icantly improve the control fidelity results, and impor-
tant stochasticity in the performance of similar models
remains, even for trained models performing the quan-
tum characterization task significantly better than the
one presented in Fig. 2. Given that it is possible to train
a model that would yield coherence-limited gates, such
as a model approaching the master equation used to gen-
erate the data, it would be interesting to try refining the
training data by sampling around the optimal pulses or
to explore the performance of different machine-learning
architectures. Despite this limitation, we show in the
next section that our MLQOC approach can significantly
outperform open-loop QOC approaches in practical sce-
narios by alleviating the problem of model bias.

IV. COMPARISON WITH OPEN-LOOP QOC

Having presented proof-of-principle results of our ap-
proach on transmon single-qubit gates, we now demon-
strate the advantage of using MLQOC in realistic ex-
perimental settings where model bias will necessarily be
present. In particular, we show that the MLQOC ap-
proach studied here achieves significantly better quantum
gates than typical open-loop QOC methods under realis-
tic model bias. This improvement is achieved by learning
an accurate representation of the device dynamics from
data, and using that model to design high-fidelity con-
trols.
We consider model bias solely coming from out-of-

(b)

(a)

FIG. 4. Demonstrating the usefulness of the proposed
MLQOC approach under a realistic source of model bias in the
form of random pulse distortions. (a) Predicting the quantum
state dynamics of the test dataset using the master equation
model (blue) and RNN models trained on experimentally-
available data containing 1 million pulse shapes, each sam-
pled 32 shots (red). (b) Performance of the 20 ns RX(π)
gates found by optimizing on the models of panel (a), as eval-
uated on the full transmon model. The gate coherence limit
is indicated by a black line.

model dynamics, i.e. effects that are present in the quan-
tum device but not in the physical modeling used by the
open-loop QOC approach. We take these dynamics to be
unaccounted pulse distortions in the control lines, which
produce discrepancies between the pulse shape the qubit
receives and the one we model. Note that considering
pulse distortions is simply a choice for demonstrating the
performance of MLQOC in the presence of model bias,
although this choice is motivated by realistic experimen-
tal scenarios with superconducting qubits [55–58]. The
methodology used to generate the random pulse distor-
tions is detailed in Appendix E.
In Fig. 4, we present the performance of the open-

loop (blue) and machine-learning-based (red) QOC ap-
proaches at performing the two tasks identified within
our framework, namely the quantum characterization as
reported by the MSE in panel (a) and the optimal con-
trol as reported by the obtained average gate infidelity
in panel (b), both as a function of the amplitude of the
random pulse distortions λ. Scaling this amplitude λ di-
rectly translates into scaling the magnitude of the model
bias. For instance, a distortion of λ = 0.2 corresponds
to pulses deviating on average by only 3% from their
original shape, which is less than 0.3MHz.
Since the model used for the open-loop QOC approach
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is the full master equation used to describe the transmon
qubit, it perfectly describes the quantum system when
no model bias is present (λ = 0), and achieves coherence-
limited single-qubit gates. However, as we scale the am-
plitude of the pulse distortions (λ > 0), the mean-squared
error for predicting the true quantum states of our test
dataset grows sharply. Consequently, the controls opti-
mized using the ME model yields single-qubit gate fideli-
ties that rapidly drop below 99.9% when amplifying the
out-of-model dynamics, see panel (b).

In contrast, our proposed ML framework is designed to
learn the entire transformation describing our control of
the quantum system, from the input pulses of the AWG
all the way to the measurement bits we extract, which
includes pulse distortions as well as any other dynamics
of the quantum device that can affect our measurements.
As shown in panel (a), the MLmodel precision is then vir-
tually unaffected by the added pulse distortions, simply
because these dynamics are present in the data it learns
from. Using these trained models in panel (b) then allows
us to find optimal controls that remain close to 99.99%
fidelity, even under important pulse distortions.

These results constitute a clear demonstration that in
a realistic scenario where model bias limits our ability to
perform open-loop QOC, our approach of employing ML
can lead to a considerable gain in quantum control fi-
delity. We note that even in a well characterized system
where our physical model yields similar quantum char-
acterization performance to the trained ML model, our
MLQOC approach can still offer an advantage. This is
the case here for λ = 0.2 where the MSE are similar for
both approaches, see panel (a), but the resulting fidelity
is superior for MLQOC, see panel (b). This is explained
by the fact that the trained model can capture the full
device dynamics and thus provide optimal pulses that ac-
count for spurious effects such as pulse distortions. As
opposed to the physical ME model, the ML model is
providing an effectively unbiased estimator of the true
quantum dynamics, which for the same level of precision
can yield better performing controls in practice.

V. CONCLUSION

In this work, we have presented an experimentally sim-
ple two-step approach to quantum control aimed at suc-
cessfully realizing optimal quantum operations in prac-
tice. We tackled the problem of model bias by learning
a parametrized representation of the system dynamics
directly from experimentally available data, before us-
ing that representation to find optimal controls. Using
accurate transmon simulations, we have demonstrated
that our machine-learning based quantum optimal con-
trol (MLQOC) approach can leverage a practical amount
of experimental data to provide a precise characteriza-
tion of the qubit dynamics and produce high-fidelity
(∼99.99%) controls for arbitrary single-qubit gates, thus
going significantly beyond realizing a single operation
with high fidelity.
The MLQOC framework promises to enable many

quantum optimal control applications where model bias
is an important bottleneck, without necessitating any
real-time feedback control or having to rely on data-
intensive blackbox optimizations of single operations.
Beyond experimental ease of implementation, our ap-
proach is applicable to a wide range of quantum control
problems because its modular features can be adapted
to the specificities and requirements of a given quantum
system. Importantly, our method of reducing the com-
plexity of the learning task to only the quantum char-
acterization, together with the use of powerful gradient-
based QOC techniques, suggests it might be more data
efficient and more scalable to complex control problems
than model-free approaches. It will be interesting to ex-
plore how these approaches perform as we expand to-
wards optimally controlling multi-qubit entangling and
parallel operations.
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Appendix A: Data requirements

The success of our approach to quantum optimal con-
trol relies on constructing an accurate model of the quan-
tum dynamics from data. We explore here how the
amount and quality of training data impact our results.
We change the accuracy of the data labels by numerically
sampling more measurements (Nshots), from the experi-
mentally inexpensive 32 shots (results of the main text),
up to the limit of perfect labels. See Appendix C for a
discussion on different approaches to sampling the pulse
shapes we use for training.
In Fig. 5, we present the impact of the training dataset

size and experiment repetitions (Nshots) used on both
tasks considered in this work: the ML-based character-
ization of the quantum dynamics in panel (a) and the
resulting quantum optimal control gate fidelity in panel
(b). Unsurprisingly, using more training data leads to
models with better prediction accuracy on the unseen
test data. However, we show that such an improvement
in the ML model is not necessarily needed to obtain high-
fidelity quantum controls. For example, we can get the
MSE on the model prediction down from 2.1 × 10−4 to



12

(b)

(a)

FIG. 5. Impact of the quantity and quality of training data
on the model learning and optimal control performance. (a)
Mean-squared prediction error on the unseen test dataset of
RNN models trained on increasingly more pulse shapes with
different sampling repetitions (Nshots). (b) Average gate in-
fidelity of 20 ns RX(π) gate optimized on the models of panel
(a), as evaluated on the true 5-level transmon model. The
black line is the coherence limit of the gate.

8.5× 10−5 by using 3.2 million training pulse shapes in-
stead of 1 million. However, the optimal controls found
by both of these models lead to a single-qubit gate fi-
delity of about 99.99%, with most of the variability in
the resulting fidelities explained by the stochastic nature
of both the model training and the control optimization.
Similarly, increasing the number of shots leads to sig-
nificant improvements in the model prediction accuracy
(about an order of magnitude reduction in the MSE at
3.2 million pulses between the three cases considered),
but this improvement does not translate into significant
improvements in the resulting control fidelities.

We explain this feature of our approach from the fact
that even though the ML model has a finite precision,
which can be thought of as error bars on the model pa-
rameter estimates, as long as the learned parametriza-
tion does not lead to a significant bias in the quantum
dynamics, the optimal controls on the finite precision
model should also be close to optimal on the true quan-
tum system. We can think of the QOC optimization
on the trained neural network, which has a finite preci-
sion but very small bias, as adding Gaussian noise to the
quantum state evolved using the master equation. The
controls that maximize the gate fidelity on average using
such a noisy model should also be optimal on the true
noiseless model. Here, we show that as long as we have
enough data to train a model with a mean-squared pre-

diction error of less than about 2 × 10−4, we can obtain
quantum gates with 99.99% fidelity. Given the impor-
tant time cost associated with acquiring large amounts
of data on the quantum system, it is then desirable to
use as little data as required for the MLQOC protocol to
yield the desired control fidelities.

We emphasize that on the MHz-scale repetition rate
typical of quantum systems such as superconducting
qubits, only a few hours are required to acquire the
amount of data considered here. Given that our frame-
work can be easily extended to parallel single-qubit gates
with virtually no additional experimental time, optimiz-
ing quantum operations using MLQOC is easily achiev-
able with current experiments. Additionally, the lim-
ited data requirements we obtain for performing arbi-
trary single-qubit operations open the door to realisti-
cally using MLQOC for more complex control tasks such
as two-qubit gates, readout, and reset operations, which
is beyond the scope of this work.

Appendix B: Machine-learning trainings

In this section, we present the implementation details
of our machine-learning (ML) model trainings, whose ar-
chitecture is illustrated in Fig. 2. Our numerical imple-
mentation is based on PyTorch [59]. The recurrent neu-
ral network we use is the vanilla long-short term memory
unit implemented in torch.nn.lstm with a single layer
and a hidden size of 48, see the PyTorch documentation
for more details. The Encode transformation is depth-
2 fully connected neural networks (FCNN) with a hid-
den size of 96 and a sigmoid activation function, whereas
the Decode transformation is a single-layer linear net-
work, using again a sigmoid activation function to map
the network output into proper probabilities ∈ (0, 1). We
emphasize that none of these hyperparameters were care-
fully optimized, as the objective in this work is to demon-
strate how our proposed MLQOC framework can be suc-
cessful with a simple implementation. Such an hyper-
parameter optimization, together with using more pow-
erful neural network architectures such as transformer
models [48], could yield slightly better performances, but
would not change any of our conclusions.

We train this model using gradient-descent based on
the Adam optimizer [60] with a learning rate of 0.001.
During training, we use an initial batch size of 256 and
double it at epochs [100, 200, 500, 800] in order to reduce
the stochastic noise in the optimal model parameters
as training progresses. We use the following physics-
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inspired loss function to train our model [24]

L = Lpred + wpositLposit + wprepLprep, (B1)

Lpred =
1

N

N∑

n=1

(
(Πj

n − Π̃j
n)

2
)
, (B2)

Lposit =
1

N(Nt + 1)

Nt∑

t=0

N∑

n=1

ReLU
(
|ρ̃t,n|2 − 1

)
, (B3)

Lprep =
1

N

N∑

n=1

|ρ̃0,n − ρ0,n|2 , (B4)

where ρ̃t,n = (x̃t,n, ỹt,n, z̃t,n) is the model prediction of
the qubit states for the nth quantum trajectory at time
index t, given N pulse shapes with Nt pixels. We use the
hyperparameters wposit = wprep = 1.0.
The prediction loss Lpred is a simple mean squared er-

ror between the labels and the model predictions for the
qubit population in the j ∈ {X,Y, Z} basis, given by

Π̃j
n = (1− ⟨̃σj⟩)/2 ∈ [0, 1]. Here the labels are also prob-

abilities of measuring the qubit state in the −1 eigenstate
of the operator σj , which are constructed from averaging
the Nshots = 32 projective measurements for each input
pulse shape. The MSE given by this loss term is the met-
ric we care most about to obtain an accurate quantum
characterization of the qubit dynamics. However, there is
more information about the RNN output that we can use
to quantify if it accurately describes our physical prob-
lem.
We leverage that information with the following two

loss terms, which allow to make our model training
more accurate and more data efficient. The positivity
loss Lposit insures that the ML model predictions corre-
spond to valid quantum states, i.e. that the predicted
density matrices are positive. The rectified linear unit
ReLU(x) = max(0, x) allows us to penalize only for non-
physical states and not for mixed state predictions, given
that we are learning from data with relaxation and de-
phasing. Finally, the preparation loss Lprep makes the
RNN predictions accurate at the beginning of the quan-
tum trajectory, t = 0, by using our knowledge of the
finite set of prepared initial states. When dealing with
experimental data, or more generally with data contain-
ing state preparation and measurement (SPAM) errors,
we can set the targeted prepared states ρ0,n to be consis-
tent with our best estimate of these errors. For example,
we can average over subsets of the data where the pro-
jective readout immediately follows the preparation, and
effectively perform quantum state tomography of the six
cardinal states of the Bloch sphere [61].
We note that the model architecture, together with the

loss functions we use, can easily be extended to model-
ing the dynamics of n qubits or multi-level systems. For
example, the input dimension of the RNN could be 2n
for n microwave drives with two quadratures, and the
prepared and output quantum states can be represented
using 4n − 1 expectation values for n qubits. This nat-
ural extension would be sufficient to apply our frame-

work to optimize for two-qubit gates and parallel single-
qubit gates. Of course, the data requirements and model
complexity necessary for successfully applying MLQOC
to controlling a quantum system with an exponentially
large Hilbert space should also scale unfavorably with the
number of qubits. However, using the heuristic represen-
tation of a machine-learning model might be beneficial
for tackling such complex control problems.

Appendix C: Pulse datasets

The quantum characterization task is achieved by
training a parametrized representation, such as a neu-
ral network acting as a universal function approximator,
to describe the transformation from arbitrary input pulse
shapes into the dynamics of the quantum systems under
study. Given the enormous size of the input control pa-
rameter space, with every pixel taking an arbitrary float-
ing point value, and the fact that we want to acquire
a finite dataset in a reasonable experimental time, it is
natural to try uniformly sampling at random the input
controls to form our ML datasets. This approach works
well and the trained ML model can predict the dynam-
ics for random pulse shapes accurately. However, with
that choice the model performs poorly at predicting the
dynamics of smooth pulses, which for example possess
a very different frequency spectrum than random pulses
(data not shown). Given that in an experimental scenario
we want to use smooth control pulses, such as to respect
the bandwidth limitations of the control electronics and
avoid crosstalk problems arising from having signals with
a wide frequency spectrum, having a trained model that
is inaccurate at capturing the dynamics of smooth pulses
is practically not useful.
To remedy the situation, we simply include smooth

pulses in the training data. Here, we generate these
smooth pulses using physically-motivated envelopes that
are commonly used to perform single-qubit gates. Specif-
ically, in addition to uniformly sampled random en-
velopes, our set of pulses is composed of flat, gaussian,
gaussian with a flat top, gaussian with an orthogonal
DRAG component, and sinusoidal pulses. Heuristically,
we chose proportions of 25% of flat pulses with random
amplitudes, 25% of flat-top gaussian pulses with random
widths, amplitudes, and standard deviations, 25% of uni-
formly sampled random pulses, 12.5% of gaussian pulses
with an orthogonal DRAG component with random am-
plitudes, and 12.5% of sinusoidal pulses with random
amplitudes and frequencies. We generated a total 4.25
million pulses, and used 75% for the training set, 15%
for the validation set used to avoid overfitting, and 10%
for the test set used to evaluate and compare model per-
formances.
Given our pulse parametrization at the level of the

AWG before IQ mixing, our pulses should have a main
sinusoidal oscillation corresponding to the intermediate
frequency, here around 100MHz, such that the resulting
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pulses reach the qubit frequency and produce non-trivial
dynamics. We thus generate all of the aforementioned
pulses at the envelope level, i.e. without any explicit os-
cillating component. We then convolve these envelopes
with the intermediate frequency oscillations, which result
in the final pulses of the dataset. In order to explicitly
sample the impact of detuned drives on the qubit dy-
namics, we randomly sample the intermediate frequency
we use to convolve with our envelopes, using a gaussian
distribution centered at the nominal ωIF/2π = 100MHz
with a standard deviation of 1MHz.

We note that fine tuning the quality of the training
dataset by using pulses that are known to achieve the tar-
get operations with good fidelity, and perhaps increasing
the sampling (Nshots) for these pulses, could be beneficial
to the performance of the MLQOC approach. However,
as we have demonstrated in the main text, such fine tun-
ing is unnecessary and the approach works well as long
as the pulses seen during training have the same char-
acteristics as the controls we implement in the end. In
that sense, although such an informed construction of the
training dataset will necessarily bias the model learning
towards a given set of dynamics, this bias should be ben-
eficial for learning a good model efficiently, as long as the
bias is consistent with the constraint we put on the fol-
lowing QOC optimizations. Indeed, it is desirable to have
a trained model that is good at predicting the dynamics
of smooth pulses, even if it is somewhat specialized and
not fully generalizable, since ultimately this is what our
optimal control task requires. This bias is enforced ex-
plicitly in this work by using a cost function minimizing
the first and second derivatives of the optimal controls.

Appendix D: QOC implementation details

In this section, we present the implementation details
of our quantum optimal control (QOC) approach illus-
trated in Fig. 1(b). We use an open-loop optimization
where the pulses are parametrized at every pixel, the
trained ML model with fixed parameters is used to com-
pute the dynamics resulting from the pulses, and the cost

function is expressed as follows [25]

C = Cfidel + wclampCclamp + wmeanCmean (D1)

+ wfirstCfirst + wsecondCsecond, (D2)

Cfidel =
1

N

N∑

n=1

1−AGF (ρn,T ) , (D3)

Cclamp =
1

N(Nt + 1)

Nt∑

t=0

N∑

n=1

ReLU (Ωn,t − Ωmax) ,

(D4)

Cmean =
1

N(Nt + 1)

Nt∑

t=0

N∑

n=1

|Ωn,t|2 , (D5)

Cfirst =
1

NNt

Nt∑

t=1

N∑

n=1

|∂tΩn,t|2 , (D6)

Csecond =
1

N(Nt − 1)

Nt∑

t=2

N∑

n=1

∣∣∂2
tΩn,t

∣∣2 , (D7)

where Ωmax is the maximal allowed drive amplitude,
which is 2π×100MHz in this work. This constitutes
a reasonable choice to avoid significantly amplifying
the effect of classical crosstalk on a transmon chip,
as typical sinusoidal 20 ns single-qubit π gates require
|Ω|/2π ≈ 31MHz. The partial time derivatives in the
smoothing cost functions are implemented as finite dif-
ferences numerically with ∂tΩn,t = Ωn,t−Ωn,t−1, and the
average gate fidelity is computed as [62]

AGF (ρn,T ) =

∑
j Tr

(
Utargetρ

jU†
target RNN(ρj)

)
+ d2

d2(d+ 1)
,

(D8)

where d = 2 for a qubit, T the final time index, σj are
the 6 cardinal states (our chosen unitary 2-design), and
RNN(ρj) represents the transformation realized by our
trained ML model, which acts here in place of the usual
quantum channel.
As mentioned in the main text, we optimize for a batch

of 30 pulses in parallel on the same GPU card in under a
minute, and select the best performing pulse on the full
cost function as the optimal control. We use the Adam
optimizer with a learning rate of 0.001 to perform the
gradient descent [60]. As in the ML model training, all
the gradients are computed numerically using the auto-
differentiable feature of PyTorch [59].
We have observed that whereas the clamping cost

Cclamp simply allows the pulses to respect an experi-
mental constraint, the average amplitude cost Cmean to-
gether with the smoothing cost functions Cfirst and Csecond
are very important for constraining the parameter explo-
ration during the optimization towards controls where
the trained RNN has an accurate representation of the
dynamics. Indeed, the trained model predicts dynamics
which are very close to the true master equation dynam-
ics for smooth input pulses, which allows us to find opti-
mal controls with over 99.99% fidelity when using these
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regularizing cost functions. However, optimizing the con-
trols on the trained model using only the fidelity cost
can lead to pulses where the predicted and true dynam-
ics diverge significantly. This problem can be completely
avoided using the smoothing cost functions, and if neces-
sary a simple post-selection based on the same smooth-
ness criteria over the optimization results of the batch.
We optimize our pulses for all the single-qubit gate re-
sults presented in the main text using wclamp = 10.0,
wmean = 0.1, and wfirst = wsecond = 0.01. We have ob-
served that fine tuning these hyperparameters do not lead
to significant changes in the resulting optimal gate fideli-
ties.

Appendix E: Random pulse distortions

We simulate pulse distortions numerically by applying
a fixed causal transfer function to the pulses. We first
generate the random transfer function F (ω) in the fre-
quency domain, using the noise parameter θ that we scale
from 0 to 0.4 in Fig. 4. We add the noise to the trivial
flat transfer function such that

F (ω ≥ 0) = 1 + U(−θ, θ), (E1)

where U(min,max) is the uniform distribution, and we
replicate the values for the negative frequencies such that
F (ω) is even. To obtain a smooth transfer function,
we sample 11 points from the uniform distribution, that
we attribute to frequencies up to 600MHz, before using
a gaussian filter with a 2.5GHz bandwidth to interpo-
late between these values for 1001 points in the range
[−1.5, 1.5] GHz.
Instead of using Fourier transforms to convolve all the

pulses of our datasets with the noisy transfer function
defined in the frequency domain, we express F (ω) in the
time domain using a transfer matrix which can be di-
rectly applied to the pulses using a simple matrix mul-
tiplication. This transfer matrix is obtained by numeri-
cally solving [7]

Tjk =

∫ ∞

−∞
F (ω)

sin(ω∆t/2) cos(ω(j − k)∆t)

πω
dω, (E2)

where ∆t is the pixel size (in units of time) and j, k are
the pixel indices.
Finally, given that this noise models a physical pro-

cess, we impose causality by setting the lower triangular
elements to zero and renormalizing it. Using this ap-
proach, we can simulate a realistic scenario where out-of-
model dynamics are present in the quantum system we
are trying to control, and we can have a single tunable
parameter θ to quantify the resulting model bias.

Appendix F: IQ mixing and qubit drive

In this section, we detail the IQ mixing transformation
applied to the input microwave pulses, typically gener-

ated by an arbitrary waveform generator (AWG), before
reaching the transmon qubit. We then show how these
mixed pulses can be viewed as the usual σX and σY drive
Hamiltonian prefactors. As detailed in Refs. [41, 42], the
two AWG signals SI and SQ get mixed with a local os-
cillator signal of frequency ωLO in a process known as
sideband mixing to produce the drive

Ω(t) = SI(t) cos(ωLOt) + SQ(t) sin(ωLOt). (F1)

We then define the AWG signals with an envelope com-
bined with sinusoidal oscillations at an intermediate fre-
quency ωIF and a phase ϕ, such that

SI(t) = I(t) cos(ωIFt+ ϕ), (F2)

SQ(t) = −Q(t) sin(ωIFt+ ϕ). (F3)

We then directly get

Ω(t) =
I(t)

2
[cos(ω+t+ ϕ) + cos(ω−t+ ϕ)] (F4)

− Q(t)

2
[cos(ω−t+ ϕ)− cos(ω+t+ ϕ)] (F5)

where ω± = ωIF ± ωLO. We thus see that by setting
I(t) = Q(t) = A(t), we obtain a single carrier frequency
signal at the upper sideband ω+,

Ω(t) = A cos(ω+t+ ϕ). (F6)

Using a LO close to the qubit frequency such that ωIF +
ωLO ≈ ωq, we can then precisely control the frequency
spectrum of the qubit pulses we send, with a limitation
set by the AWG bandwidth and potentially the cable
filters used in the experiment. Note that one can also
choose a different phase between the SI and SQ signals
to drive the lower sideband.
We now demonstrate that such a drive can be used to

perform arbitrary qubit gates. Starting from Eq. (2), we
can introduce the creation and annihilation operators to
diagonalize the quadratic terms of the transmon Hamil-

tonian and obtain, after expanding the cos ϕ̂ term and
truncating after the second order [39]

Ĥ(t) ≈ ωq b̂
†b̂− EC

2
b̂†b̂†b̂b̂+Ω(t)

i

2

(
2EC

EJ

)1/4

(b̂† − b̂).

(F7)

Going into the qubit rotating frame with the transforma-

tion Û(t) = exp
(
iωq b̂

†b̂t
)
and applying the rotating-wave

approximation (RWA), we obtain the time-dependent
drive Hamiltonian

Ĥd(t) ≈
i

2

(
2EC

EJ

)1/4
A(t)

2

(
b̂†ei(∆t+ϕ) − b̂e−i(∆t+ϕ)

)
,

(F8)

where ∆ = ω+ − ωq. Performing a two-level truncation

with b̂† → σ+, b̂ → σ−, and σ± = (σX±σY )/2, redifining
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the prefactor in front of the last parenthesis to be Ã(t)
and assuming that the drive is on resonance with the
qubit (∆ = 0), we finally get the textbook single-qubit
drive Hamiltonian

Ĥqubit
d (t) = Ã(t) [cos(ϕ)σX − sin(ϕ)σY ] . (F9)

We thus understand how controlling the pixel amplitudes
of the AWG inputs SI(t) and SQ(t) allows us to perform
arbitrary single-qubit operations.
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4.5 Perspectives

Alors que ce projet se concentre sur l’introduction de la méthodologie combinant une
caractérisation par apprentissage automatique avec le contrôle optimal quantique ainsi que la
démonstration de son fonctionnement et de son utilité, de nombreuses avenues de recherche
intéressantes restent inexplorées. En plus d’une démonstration expérimentale, je discute ici
de trois directions principales que je considère comme particulièrement prometteuses pour
faire suite au projet : l’étude du compromis biais-variance avec l’entraînement de modèles
d’apprentissage différents, l’optimisation d’opérations quantiques plus complexes, ainsi
que l’application directe du modèle entraîné pour améliorer notre compréhension et notre
utilisation du dispositif quantique.

4.5.1 Modularité et compromis biais-variance

L’un des aspects rendant notre approche particulièrement intéressante pour résoudre
divers problèmes de contrôle quantique est sa modularité. En effet, les différentes sous-
composantes de notre méthodologie, telles que l’expérience spécifique réalisée pour générer
les données d’entraînement, l’architecture d’apprentissage, ainsi que l’algorithme de contrôle
optimal, peuvent toutes être choisies judicieusement afin de satisfaire les besoins spécifiques
en efficacité expérimentale et en performance du dispositif quantique étudié. Par efficacité
expérimentale, j’entends simplement la durée totale et le nombre d’expériences différentes
qu’il est possible de réaliser afin de générer les données d’entraînement et d’obtenir les
solutions de contrôle recherchées. Par exemple, la dérive des paramètres expérimentaux
peut faire en sorte qu’une opération calibrée ne possède une grande fidélité que pour
une journée. Combinée à la fréquence de répétition possible de l’expérience, qui est par
exemple de l’ordre de ∼100 kHz pour des qubits supraconducteurs et de ∼10 Hz pour des
ions piégés [49], cette contrainte peut mener à une limite supérieure restrictive sur la taille
de l’ensemble de données accessible. Étant donné que chaque réalisation expérimentale
possède ses contraintes et ses particularités qu’il est possible d’exploiter, l’aspect modulaire
de l’approche utilisée devient nécessaire afin d’assurer son bon fonctionnement.

Plus spécifiquement, alors que la performance des contrôles obtenus par notre approche
MLQOC est limitée par la capacité du modèle entraîné à représenter les dynamiques du
système, le choix d’architecture d’apprentissage s’avère déterminant. Alors que nous nous
sommes concentrés sur l’utilisation de réseaux de neurones récurrents dans notre preuve de
concept, ce choix n’est pas nécessairement optimal étant donné la situation expérimentale
rencontrée. On sait par exemple que dans le cadre de nos simulations, lemodèle réel décrivant



84

Aucun  
modèle

Modèle 
physique

Performance

Efficacité exp.

Variance

Biais

Figure 4.6 –Compromis entre biais et variance dumodèle d’apprentissage utilisé. L’utilisation d’un
modèle physique permet l’utilisation d’une transformation paramétrée du problème qui est simplifiée
et qui nécessite donc un ensemble minimal de données pour être entraînée. Cependant, l’expressivité
restreinte de ce modèle, lequel n’est en mesure de représenter que certaines transformations bien
définies, limite sa performance. De l’autre côté, s’affranchir de tout modèle permet d’apprendre
une transformation complètement générale et donc de tenir compte de l’ensemble des corrélations
présentes dans les données, menant ainsi à une performance optimale en présence d’un ensemble
suffisant de données d’entraînement. Le désavantage de cette approche est qu’elle est très peu efficace
expérimentalement, nécessitant de nombreuses expériences pour apprendre à partir de zéro.

les dynamiques du transmon, décrit par l’équation maîtresse choisie, permet d’atteindre
des fidélités de porte significativement plus élevées, lesquelles sont ultimement limitées
par la cohérence du transmon (ici 99.997% en comparaison au 99.98% atteint avec notre
approche). Commediscuté un peu plus bas, il devrait alors être possible d’utiliser la structure
de l’équationmaîtresse afin d’entraîner unmodèle plus précis et ainsi atteindre demeilleures
opérations quantiques. Cependant, l’utilisation de telles suppositions sur la dynamique
du système nous expose au problème de biais du modèle qui peut à son tour limiter la
performance des contrôles en pratique si certaines dynamiques qui ont été supposées ne
sont pas présentes dans le dispositif expérimental.

Ce compromis dans le choix du modèle d’apprentissage est illustré à la Fig. 4.6, considé-
rant à la fois la capacité du modèle à décrire les dynamiques quantiques (performance),
ainsi que la quantité de données nécessaire pour y arriver (efficacité expérimentale). La
recherche d’un bon équilibre entre l’expressivité et le biais de modèle est cruciale parce
qu’en pratique, on ne possède toujours qu’un ensemble fini de données bruitées. La sélection
de la bonne architecture d’apprentissage permet alors de tirer le maximum de ces données
pour son application en contrôle optimal.

L’intuition rendant cette problématique de recherche intéressante peut être décrite
comme suit. D’un côté, une approche n’utilisant aucun modèle telle que celle activement
poursuivie en apprentissage par renforcement peut rapidement s’avérer beaucoup trop
coûteuse en temps ou en données pour de nombreuses applications de contrôle quantique.
De l’autre côté, l’utilisation d’un modèle basé uniquement sur des principes physiques ne
permet typiquement pas de décrire l’ensemble des dynamiques avec le niveau de précision
nécessaire. Ainsi, il devient avantageux de chercher le juste milieu dans ce dilemme biais-
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Figure 4.7 – Apprendre les dynamiques quantiques directement à partir d’une représentation
paramétrée de l’équation maîtresse. (a) Le réseau de neurones récurrent (RNN) utilise un état
caché (ht) pour décrire les dynamiques du dispositif quantique. (b) Le modèle physique d’une
équation maîtresse (ME) représente l’état du système à l’aide d’une matrice densité (ρt) et modélise
son évolution temporelle à l’aide d’une équation différentielle ordinaire (EDO), laquelle réalise
une transformation complètement positive tout en préservant la trace de la matrice densité. (c) En
utilisant des paramètres variationnels pour représenter certaines portions de cette transformation, par
exemple l’Hamiltonien et les opérateurs de dissipation accentués en orange, il est possible d’utiliser
direction l’équation maîtresse comme modèle d’apprentissage. Ce genre d’approche est grandement
facilité par l’utilisation de la librairie dynamiqs, disponible en libre accès [79].

variance afin d’entraîner de façon efficace le modèle nous permettant d’atteindre le niveau
de contrôle quantique recherché. Ce genre d’approche, parfois qualifiée de boîte grise [160],
ouvre un continuum de possibilités entre l’utilisation de modèles purement physiques (par
exemple avec un Hamiltonien et une équation maîtresse) et de modèles qui sont des boîtes
noires (tel qu’un réseau de neurones).

Afin de rendre le tout un peu plus concret, je présente le lien explicite entre l’utilisation
d’un réseau de neurones récurrent et d’une équation maîtresse pour décrire les dynamiques
d’un système quantique à la Fig. 4.7, en plus de présenter comment une telle équation
peut être utilisée comme modèle d’apprentissage. Le RNN apprend à suivre l’évolution de
l’état quantique du système de façon implicite à l’aide d’un état caché (ht) qu’il modifie
en fonction des contrôles reçus en entrée de façon séquentielle. D’une manière similaire,
l’équation maîtresse transforme un état quantique (ρt) à chaque pas de temps en fonction
des contrôles externes venant modifier l’Hamiltonien du système.

L’idée d’utiliser un modèle physique afin de caractériser le dispositif quantique est
réalisée en définissant certains éléments de l’équation maîtresse comme paramètres va-
riables. Le modèle d’apprentissage devient alors une équation différentielle ordinaire (EDO)
paramétrée et que l’on peut résoudre à l’aide de l’un des nombreux algorithmes numériques
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existants, tels que les méthodes de Runge-Kutta [46]. Je note que ce modèle d’équation maî-
tresse paramétrée peut être entraîné de manière très efficace sur des processeurs graphiques
en utilisant une librairie supportant l’autodifférentiation, telle que PyTorch ou JAX [78].
Une implémentation de la sorte est d’ailleurs grandement facilitée par la librairie en libre
accès dynamiqs sur laquelle j’ai contribué [79]. Je décrirai cette librairie et ses applications
en contrôle optimal et en estimation de paramètre au chapitre 6.

Tel qu’illustré à la Fig. 4.7(c), il est possible de choisir comme paramètres libres les en-
trées d’une matrice hermitienne représentant l’Hamiltonien du système ainsi qu’un certain
nombre de matrices unitaires représentant les opérateurs de dissipation. Cela constitue une
modélisation purement physique, ou sous forme de boîte blanche, du problème. Cependant,
ce choix est loin d’être unique et il est possible de tester de nombreux modèles physiques
comprenant plus oumoins de degrés de libertés ou de sources de bruits afin de quantifier les
dynamiques présentes dans le dispositif quantique. Une telle caractérisation par sélection de
modèles [161] promet d’être très utile pour acquérir une compréhension approfondie du sys-
tème quantique que l’on désire contrôler. Au-delà des différentes modélisations physiques,
il est également possible d’ajouter des paramètres arbitraires au modèle d’apprentissage
afin de tenir compte des dynamiques qui seraient trop coûteuses à simuler rigoureusement,
comme celles associées aux éléments supraconducteurs dont le qubit est couplé capaciti-
vement et inductivement comme ses (quatre) coupleurs, sa cavité de mesure, les défauts
à deux niveaux dans les matériaux l’entourant, etc. L’obtention de modèles heuristiques
précis pour décrire ces dynamiques demeure un objectif de recherche important dans le
développement des technologies quantiques.

4.5.2 Opérations quantiques plus complexes

Au-delà des opérations logiques à un qubit démontrées dans ces travaux, il serait fort
intéressant d’explorer les performances de notre approche pour réaliser des opérations plus
complexes impliquant davantage de qubits. De par sa simplicité et sa modularité, l’approche
MLQOC pourrait en effet s’avérer bénéfique afin d’améliorer plusieurs opérations logiques
complexes réalisées en pratique, lesquelles ont typiquement des fidélités plus faibles que
celle de 99.99% aujourd’hui accessible pour des portes à un qubit en isolation.

La première extension naturelle mais non triviale consiste à considérer les portes à un
qubit réalisées en parallèle. Sur le système à Berkeley et de nombreux autres, ces opéra-
tions possèdent une erreur moyenne environ dix fois plus grande que lorsque réalisées en
isolation [162]. Cette réduction de notre capacité à contrôler précisément le dispositif quan-
tique est principalement due à la diaphonie classique et quantique. Par diaphonie classique,
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Figure 4.8 – Optimisation de portes parallèles à un qubit à l’aide de l’approche MLQOC. (a)
L’utilisation d’un modèle représentant l’ensemble des dynamiques temporelles de n qubits est
l’approche la plus générale, mais nécessite d’apprendre un nombre exponentiel de degrés de liberté.
(b) De façon alternative, le problème d’apprentissage peut être décomposé en différentes portions
de manière à tenir compte des dynamiques principales en jeu dans le système.

j’entends simplement qu’en raison des différents couplages capacitifs de l’échantillon, le
signal alimentant un qubit peut également affecter d’autres qubits avec des atténuations
et des délais temporels différents. Par diaphonie quantique, je fais référence aux interac-
tions générant de l’enchevêtrement entre les différentes composantes du système, telles que
l’interaction capacitive entre deux qubits produisant un couplage ZZ [64]. La présence de
ce couplage non nul déplace la fréquence de résonance du qubit de façon conditionnelle à
l’état de nombreux autres qubits. De façon formelle, cet effet modifie le contrôle individuel
des n qubits en parallèle (n × U2×2) vers un problème de contrôle sur n qubits (U2n×2n).

Le modèle d’apprentissage à utiliser afin d’appliquer notre approche MLQOC au pro-
blème d’opérations logiques parallèles devrait idéalement tenir compte de tous les degrés de
liberté du système. Tel qu’illustré à la Fig. 4.8(a), le modèle serait alors en mesure de prédire
l’évolution du système total à partir de contrôles arbitraires sur chaque qubit. Étant donné
que ces degrés de liberté augmentent de façon exponentielle avec la taille du système (2n),
on peut s’attendre à ce que la complexité dumodèle d’apprentissage demême que le nombre
de données nécessaires pour l’entraîner soient très élevés, même pour des processeurs ne
comportant que quelques qubits.

Une approche beaucoup plus réaliste consiste à décomposer l’architecture du modèle
d’apprentissage en cellules unitaires, où chaque sous-modèle pourrait par exemple ap-
prendre à décrire la dynamique d’un seul qubit. Cet exemple est illustré à la Fig. 4.8(b).
Cette approche se base sur le fait que la diaphonie quantique impacte les dynamiques de
façon beaucoup plus faible que les impulsions micro-ondes utilisées, ce qui est le cas pour la
grande majorité des réalisations physiques. En effet, les qubits voisins sont typiquement dé-
calés dans le domaine fréquentiel afin de minimiser leurs interactions [163] ou des éléments
ajustables de couplage sont utilisés pour minimiser l’interaction ZZ [164]. Afin de tenir
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compte de la diaphonie classique, il est possible d’ajouter une certaine connectivité entre les
nœuds (illustrée avec les flèches bleues) et d’utiliser notre connaissance des particularités du
dispositif afin de choisir quelles connexions ajouter, par exemple sur la base de l’allocation
fréquentielle des différents qubits. Il serait très intéressant de tester une telle approche de
MLQOC et de la mettre à l’échelle sur un dispositif quantique comportant plusieurs qubits.

Dans le même ordre d’idées, il serait possible d’appliquer l’approche MLQOC aux
portes à deux qubits générant de l’intrication. Ces opérations sont plus bruyantes avec
des fidélités d’environ 99.5% et pourraient être significativement accélérées à l’aide d’une
approche de conception des impulsions par contrôle optimal [165]. La méthodologie dé-
veloppée ici est directement applicable à ce problème de contrôle alors que les étiquettes
provenant de mesures dispersives des qubits individuels peuvent également être utilisées
pour estimer les valeurs attendues de l’état à deux qubits. De plus, les entrées prennent la
même forme d’impulsions micro-ondes pour les opérations à résonance croisée réalisant
un CNOT [166], ou deviennent des contrôles de basse fréquence du flux externe pour les
opérations conservant le nombre d’excitations comme le CZ [71, 101]. Dans les deux cas, le
fonctionnement du modèle d’apprentissage reste inchangé, c’est-à-dire que l’on cherche à
prédire les observables quantiques à partir des contrôles fournis en entrée.

Outre l’augmentation des espaces d’Hilbert et de contrôle, une particularité rendant
cette tâche plus difficile provient de l’estimation des paramètres d’enchevêtrement rési-
duels, lesquels sont typiquement difficiles à estimer. Par exemple, afin de réaliser l’opération
unitaire correspondant à un CZ, l’échange d’excitation entre les deux qubits, une transfor-
mation associée à un opérateur de la forme XX + iYY, doit être nulle. Il est alors nécessaire
d’optimiser les contrôles utilisés afin de minimiser cette quantité qui est nécessairement
non nulle en pratique. De par sa faible valeur comparable à de nombreuses autres sources
de bruit, cette quantité est difficile à évaluer à partir d’un nombre restreint d’échantillons.
Heureusement, il est possible de concevoir judicieusement les expériences produisant les
données d’entraînement de sorte à obtenir une certaine visibilité sur ce type de petits para-
mètres que l’on cherche à contrôler, notamment en utilisant un principe d’amplification où
l’opération étudiée est répétée un nombre variable de fois. Un exemple très pertinent d’une
telle approche est l’utilisation du protocole MEADD [4] que je présenterai au prochain
chapitre.

Enfin, je tiens à souligner qu’en plus des opérations unitaires, notre approche MLQOC
peut être appliquée à l’optimisation d’opérations dissipatives telles que la mesure et la
réinitialisation d’un qubit supraconducteur. Comme nous le verrons au chapitre chapitre 6,
ces opérations peuvent significativement bénéficier d’une approche de contrôle optimal
quantique. L’utilisation d’un modèle précis devient alors cruciale à la réalisation réussie
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d’une telle approche en pratique. Pour le problème d’optimisation de la mesure du qubit,
l’une des principales questions ouvertes concerne le type d’étiquette idéal à utiliser pour
entraîner le modèle décrivant le système. Plus spécifiquement, les signaux continus pro-
duits par la mesure peuvent être utilisés de plusieurs façons, notamment en les intégrant
directement dans la résolution d’une équation maîtresse stochastique [36], en calculant les
corrélations à n points des distributions de signaux produits [167], en les moyennant et en
intégrant une équationmaîtresse [13], ou en utilisant une approche agnostique à la physique
du système. Il serait très intéressant d’étudier laquelle de ces approches est la plus efficace
et performante pour réaliser le contrôle optimal de la mesure d’un qubit supraconducteur.

4.5.3 Applications directes

Afin de compléter le survol des perspectives de recherche futures pour ce projet, je
détaille ici trois applications directes associées au modèle d’apprentissage que l’on entraîne
avec l’approche MLQOC. Ces applications sont illustrées à la Fig. 4.9 et concernent l’étalon-
nage du dispositif à plus grande échelle, le prototypage de nouveaux protocoles, ainsi que
le contrôle par rétroaction.

Tel qu’illustré à la Fig. 4.9(a), l’étalonnage des différentes opérations réalisées dans
un ordinateur quantique peut être représenté par un graphe orienté acyclique [88]. Notre
approche de contrôle optimal pourrait être bénéfique dans plusieurs de ces nœuds où la tâche
est également de trouver la valeur des contrôles réalisant un objectif quantifiable, tel que la
minimisation d’un couplage entre deux qubits ou d’une population dans un état donné. De
manière plus générale, chacune de ces calibrations consiste à envoyer des signaux de contrôle
au système quantique et à recevoir des bits de mesure en retour. De ce fait, l’ensemble des
données générées lors de l’étalonnage d’un dispositif pourrait potentiellement être utilisé
pour entraîner le modèle d’apprentissage.

Étant donné que le modèle d’apprentissage construit une transformation approchant
celle réalisée par le système quantique réel, ce modèle peut être utilisé en tant que jumeau
digital [168] du dispositif. L’utilisation du modèle entraîné dans diverses tâches de simu-
lations est bénéfique pour plusieurs raisons. Tout d’abord, la transformation des entrées
(contrôles) vers les sorties (observables) s’évalue rapidement de façon numérique et est
autodifférentiable. De ce fait, plusieurs balayages de paramètres nécessitant de nombreuses
expériences pourraient être remplacés ou voir leur ampleur diminuée en utilisant une ap-
proche de descente du gradient avec le modèle. De plus, le modèle représente de façon
heuristique un grand nombre d’imperfections pertinentes sur le plan expérimental qui ne
sont typiquement pas prises en compte dans notre modélisation physique. Ainsi, il serait
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Figure 4.9 – Trois exemples d’applications de l’approche MLQOC. (a) Au-delà de l’étalonnage
fin des opérations logiques, de nombreuses opérations de calibration pourraient bénéficier de l’ap-
proche MLQOC. (b) Le modèle entraîné représente une approximation de la transformation réalisée
par le dispositif quantique. Réalisant une transformation qui est différentiable et facile à évaluer
numériquement, ce modèle peut alors être utilisé dans toutes sortes de tâches de simulation telles
que le prototypage de protocoles. (c) Le modèle entraîné peut également être utilisé en rétroaction
directe avec le système quantique afin de contrôler une partie de son fonctionnement en temps réel.

intéressant de développer de nouveaux protocoles en utilisant cette représentation approxi-
mative afin de concevoir des approches qui sont robustes aux sources de bruit rencontrées
dans l’expérience.

Enfin, si les conditions expérimentales le permettent, il serait également possible d’inté-
grer le modèle d’apprentissage dans une approche de rétroaction avec le système quantique
afin de contrôler certaines opérations en temps réel. Alors que le modèle est entraîné et que
ses paramètres sont fixes, une telle approche de contrôle par rétroaction permettrait par
exemple d’utiliser l’information produite par le système lors de son utilisation afin de dé-
clencher de nouveaux étalonnages suite à la dérive des paramètres du système. L’idée étant
simplement qu’un modèle rapide à évaluer numériquement peut être utilisé en temps réel
avec l’opération du dispositif quantique. Évidemment, il pourrait être intéressant de mettre
à jour les paramètres du modèle à partir de l’information sortant du système quantique
dans une telle configuration, une approche qui s’apparente aux très prometteuses méthodes
d’apprentissage par renforcement basées sur un modèle [169, 150].

Prenant un pas de recul sur l’ensemble des travaux couverts dans ce chapitre, l’ap-
prentissage automatique est un outil très puissant et utile pour résoudre toutes sortes de
problèmes en informatique quantique et il est évident que ses applications vont continuer
de se multiplier dans le futur. Je tiens cependant à souligner que ce ne sont pas tous les
problèmes qui doivent nécessairement être résolus avec cet outil. Une compréhension heuris-
tique du fonctionnement du système ne devrait pas remplacer la compréhension physique
nécessaire à la conception de meilleurs dispositifs quantiques. Je considère plutôt que les
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représentations heuristiques et fondamentalement physiques peuvent bénéficier l’une de
l’autre afin de faire progresser notre compréhension et notre contrôle des technologies
quantiques. Une façon de contribuer à ce co-développement serait par exemple d’étudier de
nouvelles approches d’apprentissage automatique taillées sur mesure aux problèmes de
nature quantique que nous rencontrons en informatique quantique.



Chapitre 5

Protocoles de caractérisation
quantique

Au chapitre précédent, nous avons vu comment utiliser une approche d’apprentissage
automatique afin de caractériser les dynamiques arbitraires d’un système quantique. Dans
ce chapitre, nous développons des approches beaucoup plus ciblées afin de caractériser
de façon précise et efficace certains éléments des dynamiques totales du système. Plus
spécifiquement, nous cherchons à quantifier la qualité des opérations logiques à un et deux
qubits réalisées sur des qubits supraconducteurs. Dans l’objectif d’utiliser l’information
obtenue pour améliorer le fonctionnement du dispositif en pratique, nous souhaitons non
seulementmesurer la fidélité des opérations logiques,mais également caractériser les sources
d’erreurs expérimentales causant les imperfections mesurées.

Ce chapitre porte sur les travaux que j’ai réalisés dans le cadre de mon stage étendu
avec l’équipe de Google Quantum AI. En tant qu’étudiant-chercheur au cours des deux
dernières années, j’ai eu la chance de travailler directement avec les équipes théoriques
et expérimentales œuvrant à la conception d’un ordinateur quantique tolérant aux fautes.
Confronté aux problématiques associées à l’opération d’un dispositif supraconducteur de
grande échelle, j’ai contribué à l’élaboration de protocoles permettant de caractériser les
portes logiques des transmons à fréquence variable utilisés chez Google. J’ai d’ailleurs
eu l’occasion de développer et de réaliser mes propres expériences sur ces qubits afin de
démontrer la performance des protocoles présentés dans ce chapitre.

Dans la section qui suit, j’introduirai les problématiques ayant motivé la conception des
deux protocoles de caractérisation sur lesquels j’ai principalement contribué. Ces protocoles
sont intitulés CAFE et MEADD, des acronymes dont je décrirai la signification en détail.
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CAFE a pour but de caractériser la fidélité d’une opération logique à un ou deux qubits et
d’obtenir un bilan des contributions cohérentes et incohérentes à l’erreur totale mesurée.
De son côté, MEADD a pour but de caractériser les paramètres unitaires décrivant ces
mêmes opérations. Je présenterai les résultats principaux associés à ces deux protocoles à
la section 5.2, avant de reproduire les articles scientifiques les introduisant à la communauté
aux sections 5.3 et 5.4. Je conclurai avec une discussion ouverte de différentes applications
et extensions de ces protocoles à la section 5.5.

5.1 Mise en contexte

L’élaboration et l’opération d’un ordinateur quantique à grande échelle, possédant au-
jourd’hui une centaine de qubits, mais éventuellement des millions de qubits, font naître
de nombreuses problématiques qui ne sont typiquement pas rencontrées dans le contexte
d’expérimentations sur quelques qubits. Dans ma recherche, je m’intéresse principalement
à comprendre le fonctionnement des qubits supraconducteurs et à utiliser cette information
afin d’améliorer les opérations réalisées en pratique. En appliquant ces tâches de carac-
térisation et de contrôle à un dispositif possédant de nombreux qubits, les principales
problématiques proviennent sans surprise de la complexité des dynamiques quantiques
dans un grand espace d’Hilbert, mais également de la stabilité des opérations dans le temps.
En effet, les conditions expérimentales ont tendance à changer de façon significative sur
une période d’environ 24 h pour diverses raisons plus ou moins bien comprises telles que
des changements en température des appareils électroniques de contrôle [170] et des mou-
vements en fréquence des défauts à deux niveaux présents dans les matériaux entourant
les qubits [82]. Ainsi, la caractérisation et la calibration des opérations sont typiquement
répétées à tous les jours sur l’ensemble des qubits, ce qui pose des contraintes importantes
sur la rapidité d’exécution et d’analyse des protocoles utilisés, ainsi que sur leur robustesse
devant des qubits et des opérations ayant des propriétés et des sources de bruit pouvant
varier considérablement.

Suite à ces contraintes d’efficacité et de robustesse des protocoles assurant leur bon
fonctionnement à grande échelle, on comprend qu’il devient essentiel de concevoir des
approches de caractérisation spécialisées afin d’extraire l’information utile au contrôle en
utilisant le moins de ressources possible. Une idée simple mais importante est que certaines
informations sur la performance du dispositif sont plus utiles que d’autres dans le but
d’améliorer cette même performance en pratique. Par exemple, l’étalonnage de la perfor-
mance globale du système avec une mesure comme le volume quantique [171], l’entropie
croisée associée à l’échantillonnage de circuits aléatoires [172], ou le taux d’erreur logique
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d’un qubit encodé dans un code de surface [1, 15] sont toutes des métriques très utiles pour
comparer différents systèmes entre eux, mais s’avèrent peu utiles pour indiquer les actions
à entreprendre afin d’améliorer cette même métrique. Dans ce qui suit, nous introduisons
deux protocoles, CAFE et MEADD, spécifiquement conçus pour répondre aux besoins en
efficacité, en robustesse et en informations pertinentes pour le contrôle.

5.1.1 Motivations pour CAFE

Une approche communément utilisée pour obtenir de l’information pertinente à l’amé-
lioration du contrôle consiste à caractériser individuellement la fidélité de chacune des
opérations utilisées. Cela méthode permet de diagnostiquer les opérations les plus fau-
tives pour ensuite les calibrer à nouveau. Une limitation importante provenant d’une telle
approche est qu’en raison des imperfections, le contexte spatial et temporel dans lequel l’opé-
ration est réalisée peut grandement affecter sa fidélité. Ainsi, la performance de l’opération
dans le contexte utilisé lors de sa caractérisation n’est pas nécessairement représentative de
sa contribution à l’erreur totale du circuit d’intérêt. Cette idée de l’importance du contexte
spatial et temporel sur la fidélité d’une opération est illustrée à la Fig. 5.1.

Par contexte spatial, je réfère ici à l’environnement physique dans lequel le ou les qubits
se trouvent lors de l’opération d’intérêt. Comme discuté au chapitre 4, la diaphonie clas-
sique (provenant des contrôles appliqués sur d’autres qubits) et quantique (provenant de
l’échange d’information entre les qubits voisins en raison d’un couplage non nul) fait en
sorte que la fidélité d’une opération en isolation peut être très différente de celle réalisée en
parallèle avec d’autres opérations. Par exemple, l’erreur moyenne d’une porte CZ réalisée
en parallèle avec d’autres CZ est typiquement deux fois plus grande que lorsque la même
opération est exécutée en isolation [172]. De façon similaire, l’importance du contexte tem-
porel des opérations provient du fait qu’en pratique l’environnement des qubits possède
une mémoire finie, ce qui peut faire en sorte que l’action précise d’un signal de contrôle
devienne dépendante de l’historique des signaux appliqués précédemment. Pour les qubits
supraconducteurs, cette dépendance temporelle provient notamment des signaux parasites
dans les lignes de contrôle [70, 97] et des excitations résiduelles dans la cavité micro-onde
suite à une mesure du qubit [173].

Somme toute, on comprendqu’il est désirable de caractériser les opérations en conservant
le plus possible le contexte dans lequel elles sont exécutées dans le circuit quantique d’intérêt.
C’est précisément ce qu’on cherche à faire avec notre protocole intitulé Context-aware fidelity
estimation (CAFE) [3], lequel permet d’obtenir la fidélité d’une opération ou d’un groupe
d’opérations quantiques. En plus de cette idée de caractériser les opérations dans le même
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Figure 5.1 – La fidélité d’une opération quantique peut dépendre significativement du contexte spa-
tial et temporel dans lequel elle se trouve. (a)Un groupe d’opérations (bleu) réalise la transformation
unitaire souhaitée avec une certaine fidélité moyenne F . (b) La fidélité du même groupe d’opération
(bleu) peut être significativement différente lorsqu’il est introduit dans le circuit quantique d’intérêt
comportant d’autres opérations. Notamment, le contexte temporel défini par les opérations précé-
dentes (orange) et le contexte spatial défini par les opérations réalisées en parallèle (vert) peuvent
tous deux interférer avec le groupe d’opérations de sorte à réduire sa fidélité.

contexte où on veut les utiliser, CAFE est conçu pour ne nécessiter que très peu d’expériences,
pour être robuste aux erreurs associées à la préparation et à la mesure des qubits, ainsi que
pour fournir un budget de l’erreur totale en termes de contributions cohérentes (provenant de
processus unitaires sur système d’intérêt) et incohérentes (provenant de pertes stochastiques
associées à l’échange d’information avec les degrés de liberté de l’environnement).

Cette distinction entre la présence de processus parasites qui sont cohérents ou inco-
hérents est importante alors que les actions à entreprendre en pratique pour les atténuer
peut grandement différer. En effet, une source d’erreur cohérente peut être décrite par une
transformation unitaire (laquelle correspond à une rotation de l’état du qubit ou du système
quantique d’un angle et d’un axe donné) et peut donc être corrigée directement en utilisant
notre contrôle universel de l’état du système. En pratique, cela correspond typiquement à
ajuster la valeur des paramètres définissant la forme des signaux de contrôle utilisé de sorte
à minimiser cette erreur. D’un autre côté, les erreurs incohérentes ne peuvent pas de façon
générale être éliminées avec des contrôles cohérents sur le système quantique. Cependant, il
est possible d’atténuer l’amplitude des erreurs incohérentes à partir de contrôles cohérents
sur le système. L’exemple le plus simple d’une telle approche pour les qubits supraconduc-
teurs à fréquence variable consiste à ajuster la fréquence d’opération du ou des transmons
afin d’exploiter un régime où les pertes sont réduites. Le découplage dynamique [174],
qui sera présenté plus en détail un peu plus bas, est un autre exemple de l’utilisation de
contrôles cohérents pour atténuer l’impact de processus incohérents.

En utilisant les approches les plus répandues pour caractériser la fidélité d’opérations
quantiques, telles que l’étalonnage par portes aléatoires (randomized benchmarking, RB) [175,
45] et la mesure d’entropie croisée (cross entropy benchmarking, XEB) [176, 172], il s’avère
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cependant ardu de quantifier précisément les contributions cohérentes et incohérentes à
l’erreurmoyenne totale. Cette difficulté provient du fait que la grandemajorité des protocoles
de caractérisation introduisent des opérations aléatoires et moyennent sur les résultats afin
d’estimer la fidélité d’un ensemble cible d’opérations (ou d’une seule opération) [177].
De façon effective, cette moyenne permet d’uniformiser les différentes sources de bruits
de sorte que l’erreur totale puisse être amplifiée en utilisant des séquences de portes plus
longues puis approchée par une simple exponentielle. Par exemple, en échantillonnant
les opérations aléatoires à partir du groupe de Clifford, l’action combinée de l’opération
d’intérêt et des portes aléatoires peut être décrite par un canal dépolarisant [44]. L’effet
d’un tel canal est simplement de rétrécir la sphère de Bloch de façon uniforme [62]. Ainsi,
la fidélité de l’opération d’intérêt peut être estimée en mesurant la probabilité de réaliser
l’opération voulue en fonction du nombre d’applications de cette opération m, puis en
ajustant ces probabilités avec une fonction exponentielle de la forme

p(m) = A f m +
1
2n , (5.1)

pour une opération sur n qubits où {A, f } sont des paramètres d’ajustement tels que A
représente les erreurs de préparation et de mesure (SPAM) et f est l’estimation de la fidélité
moyenne de l’opération. Cette idée d’ajouter des portes aléatoires afin de simplifier la
forme effective du bruit moyen est au cœur de nombreux protocoles de caractérisation
quantique [177, 162].

Par le fait même d’introduire des portes aléatoires, l’information sur les dynamiques
cohérentes est cependant masquée dans l’erreur totale rendue incohérente. Il devient donc
difficile d’estimer de façon précise sa contribution. Quelques approches existent pour y arri-
ver, lesquelles utilisent principalement une estimation indépendante de l’erreur incohérente
puis combinent ces estimés bruités afin d’obtenir la contribution unitaire à l’erreur totale
telle que ecoh. = etot. − eincoh.. Cette estimation de l’erreur incohérente se fait typiquement en
mesurant la pureté de l’état quantique dans les expériences de RB [178] ou en analysant la
variance des distributions en XEB [172]. Cependant, cette simple combinaison des erreurs
incohérentes et totales mesurées fait en sorte que l’estimation de l’erreur cohérente possède
une grande incertitude et fournit fréquemment des résultats non physiques avec des valeurs
négatives.

Avec CAFE, nous n’introduisons aucune porte aléatoire afin de préserver la structure ori-
ginale du bruit associé au groupe d’opérations à caractériser. Cela nous permet d’amplifier
directement les erreurs cohérentes et incohérentes de sorte à pouvoir estimer leurs contri-
butions de manière harmonieuse. En effet, les erreurs incohérentes eincoh. proviennent de
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processus stochastiques et s’accumulent donc par définition de façon linéaire avec le nombre
d’exécutions de l’opération m. De l’autre côté, les erreurs cohérentes ecoh. sont des processus
unitaires agissant sur l’état quantique d’intérêt. Comme la fidélité de porte moyenne est
une fonction quadratique de l’état quantique évolué suite à l’opération, voir l’Éq. (2.25),
les erreurs cohérentes s’accumulent plutôt de façon quadratique avec m au premier ordre.
Comme nous le verrons dans l’article introduisant CAFE plus en détail, il est alors possible
d’utiliser cette différente dépendance en m afin d’estimer ces deux quantités, eincoh. et ecoh.,
de manière cohérente directement à partir des données fournies par notre protocole.

5.1.2 Motivations pour MEADD

Une fois qu’uneméthode comme CAFE a été utilisée afin de diagnostiquer les opérations
majoritairement responsables de l’erreur totale observée, il est nécessaire d’ajuster nos
contrôles afin d’améliorer la performance de ces opérations en pratique. Pour ce faire, il est
particulièrement utile de connaître avec précision quel paramètre unitaire de l’opération
cible doit être ajusté. Une telle caractérisation permet d’éviter d’avoir à balayer chacun des
paramètres de contrôle de sorte à améliorer la fidélité mesurée, un processus de calibration
nécessitant de nombreuses expériences [116, 117].

L’une des opérations limitant principalement la performance des processeurs supracon-
ducteurs s’avère être les portes logiques à deux qubits [1, 15]. Pour les dispositifs conçus à
Google, ces opérations sont décrites par un ensemble de portes conservant le nombre total
d’excitations dans les deux qubits. Cet ensemble est communément appelé fSim pour simula-
tion fermionique, alors que la conservation du nombre de photons correspond directement
à la conservation du nombre d’électrons dans la simulation de systèmes quantiques tels que
ceux utilisés en chimie quantique [101]. Cet ensemble de portes est réalisé en contrôlant le
flux externe traversant la boucle supraconductrice des transmons et de leur coupleur [13].
Ignorant les phases associées à chacun des deux qubits, l’unitaire de ces opérations s’exprime
comme [101]

fSim(θ, ϕ) =




1 0 0 0

0 cos θ −i sin θ 0

0 −i sin θ cos θ 0

0 0 0 e−iϕ




, (5.2)

où θ est l’angle associé à l’échange d’une excitation entre les deux qubits |01⟩ ↔ |10⟩ et ϕ
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est la phase conditionnelle accumulée par l’état |11⟩. L’opération principalement utilisée en
correction d’erreur quantique est CZ = fSim(0, π), bien que d’autres constructions existent
basées par exemple sur la porte iSWAP = fSim(π/2, 0) [179]. Je note que l’opération CNOT
communément utilisée en informatique quantique est équivalente au CZ avec l’ajout, sur le
qubit cible, d’une porte Hadamard précédent et suivant l’opération à deux qubits.

Alors que les phases à un qubit peuvent être facilement contrôlées en ajustant la phase
des signaux micro-ondes utilisés lors des opérations à un qubit précédant et suivant la
porte fSim [180], les angles θ et ϕ définissent l’intrication entre les qubits et dépendent donc
des dynamiques lors de l’opération à deux qubits. Afin d’être en mesure de calibrer des
opérations à deux qubits de haute fidélité (> 99.9%), il est alors souhaitable de caractériser
ces deux paramètres avec précision. En effet, une erreur de seulement 3 degrés (0.05 rad)
sur ces angles mène à une fidélité de porte moyenne inférieure à 99.85% en l’absence de
toute autre erreur.

L’approche communément utilisée afin d’estimer la valeur des paramètres unitaires
d’une opération consiste à répéter cette opération un nombre variable de fois afin d’amplifier
les erreurs et ainsi obtenir un signal mesurable. Comme les angles de rotations et les phases
définis comme paramètres unitaires s’accumulent de façon cohérente avec chaque répétition,
il est possible d’ajuster les données obtenues avec unmodèle simple et d’obtenir le paramètre
associé à une seule réalisation de l’opération cible avec une bonne précision. Par exemple,
pour estimer l’angle de rotation d’une porte à un qubit Rx(π) pour une opération imparfaite
réalisée dans l’expérience Ûexp. = Rx(π + λ), il suffit de l’appliquer un nombre pair de fois
2m à l’état initial |0⟩ pour différents m ∈ N puis de mesurer le qubit dans la base de calcul
afin d’obtenir la probabilité

Prob(m) =
∣∣⟨1|(Ûexp.)

2m|0⟩
∣∣2 (5.3)

=
∣∣∣⟨1|e−im(π+λ)σ̂x |0⟩

∣∣∣
2

(5.4)

=
∣∣∣⟨1|e−imλσ̂x e−imπσ̂x |0⟩

∣∣∣
2

(5.5)

=
∣∣∣(−1)m⟨1|e−imλσ̂x |0⟩

∣∣∣
2

(5.6)

= |⟨1| cos(mλ)1− i sin(mλ)σ̂x|0⟩|2 (5.7)
= sin2(mλ) (5.8)

Cette expérience produit alors des oscillations de Rabi qui peuvent aisément être ajustées
à un modèle d’oscillations sinusoïdales afin d’obtenir le paramètre λ recherché. Ce type
d’approche par amplification de l’amplitude peut être utilisée de façon générale afin d’esti-
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Figure 5.2 – Fluctuations temporelles des paramètres unitaires d’une opération CZ telles que
caractérisées parune approche de Floquet [170]. Les paramètres ζ etγ associés à la phase différentielle
et commune des qubits, lesquelles peuvent toutes deux être contrôlées par des opérations à un qubit,
varient de façon significative avec le temps et semblent osciller périodiquement. Bien quemal compris,
ce phénomène est typiquement attribué à des fluctuations en température des appareils électroniques
de contrôle et/ou de l’environnement des qubits. Figure tirée de la Réf. [170].

mer les paramètres unitaires décrivant la porte logique d’intérêt. Il suffit alors d’adapter les
états quantiques préparés, les différents nombres de répétitions utilisés, la base de mesure
ainsi que l’analyse subséquente des données. Par exemple, les protocoles nécessaires pour
caractériser les cinq paramètres unitaires de portes logiques à deux qubits préservant le
nombre total d’excitations sont décrits dans les annexes de la Réf. [170]. Ces protocoles ont
d’ailleurs été nommés "calibration par Floquet", où la référence à la théorie de Floquet [181]
provient de la périodicité des circuits quantiques d’amplification utilisés.

Cette approche d’amplification possède cependant des limitations importantes pro-
venant du fait que la répétition des opérations n’amplifie pas que le paramètre unitaire
à estimer, mais amplifie également le bruit ainsi que d’autres processus unitaires dont la
stabilité temporelle moindre peut affecter la précision du protocole de caractérisation. Pour
les qubits supraconducteurs à fréquence accordable par le flux magnétique, tels que ceux
utilisés à Google, le bruit sur la fréquence de transition des qubits est une source importante
d’erreurs. En raison de ce degré de liberté fortement couplé aux variations de l’environ-
nement du qubit, la phase des qubits varie significativement dans le temps. Cet effet est
illustré à l’aide de données expérimentales à la Fig. 5.2.

En plus de créer du déphasage venant réduire la visibilité du signal amplifié lors de
l’utilisation de longues séquences de portes, ces variations temporelles importantes de
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Figure 5.3 – Utilisation de découplage dynamique (DD) pour l’estimation de paramètres unitaires.
(a) La répétition de l’unitaire cible permet d’amplifier le paramètre unitaire à estimer, mais amplifie
également les erreurs parasites. (b) L’ajout de portes de découplage dynamique réalisant l’identité,
par exemple la séquence XY4 ≡ XYXY [182], permet de filtrer une portion de ces erreurs. (c) Les
erreurs et autres processus unitaires qui commutent avec les portes de découplage dynamique sont
amplifiés de façon cohérente, alors que (d) ceux qui anti-commutent sont éliminés au premier ordre.

la phase des qubits peuvent directement brouiller le signal moyen mesuré. C’est le cas
par exemple de la phase conditionnelle ϕ, qui je le rappelle est l’un des deux paramètres
d’intrication d’une porte fSim et qui est donc en principe totalement indépendant des
phases individuelles des qubits. À la Fig. 5.2, on observe que l’estimation de ce paramètre
est beaucoup moins précise que celle de θ, l’autre paramètre d’intrication. Ceci est dû au fait
que la phase totale accumulée par l’état |11⟩ lors d’une porte fSim est donnée par ϕ + 2γ.
Ainsi, le protocole de Floquet produit un signal venant amplifier à la fois le paramètre stable
ϕ que l’on veut estimer ainsi que la phase à un qubit γ qui fluctue significativement dans le
temps. De ce fait, la capacité du protocole à estimer ϕ de façon précise est fortement limitée.

Afin de surmonter ces limitations de l’estimation de paramètres unitaires par ampli-
fication, nous introduisons un protocole faisant appel au découplage dynamique. Cette
approche de caractérisation, que nous intitulons MEADD pour Matrix Element Amplification
using Dynamical Decoupling [4], sera décrite en détail à la section 5.4. La principale intuition
pour bien comprendre en quoi le découplage dynamique est particulièrement bénéfique
à notre approche de caractérisation est la suivante : l’insertion d’une séquence de portes
quantiques à un qubit se combinant à l’identité dans un circuit répété permet d’éliminer
au premier ordre tous les processus unitaires qui anti-commutent avec ces portes. Cette
idée est illustrée de façon schématique à la Fig. 5.3. Avec MEADD, les processus unitaires
que nous éliminons sont tous ceux pouvant interférer avec le paramètre unique que l’on
souhaite estimer.

Afin de bien comprendre cette idée, étudions un exemple simple s’apparentant à une
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expérience d’écho de spin. Ici, on considère la situation artificielle où l’on souhaite caractéri-
ser une faible rotation ϵx autour de l’axe X d’une opération. Supposons que cette opération
expérimentale réalise plutôt des rotations parasites à la fois autour de X et de Y de sorte à
être décrite par

Ûexp. = Rx(ϵx)Ry(ϵy) = e−iϵx σ̂x/2e−iϵyσ̂y/2. (5.9)

Avec une approche directe d’amplification telle que celle décrite plus haut, le signal produit
dépend à la fois de ϵx et de ϵy alors que

Prob(m) =
∣∣⟨1|(Ûexp.)

m|0⟩
∣∣2 (5.10)

=
∣∣∣⟨1|e−imϵx σ̂x/2e−imϵyσ̂y/2 +O(ϵ2

j )|0⟩
∣∣∣
2

(5.11)

≈ m2(ϵx + ϵy)
2/4, (5.12)

pour ϵx, ϵy ≪ 1. On comprend donc que notre estimation du paramètre ϵx va être biaisée
par la rotation parasite ϵy. En ajoutant maintenant un nombre pair de portes de découplage
dynamique σ̂x de sorte que l’opération cycle répétée m fois devienne

Ûcycle = Ûexp.σ̂xÛexp.σ̂x, (5.13)

nous sommes en mesure d’éliminer la dépendance en ϵy alors que l’opérateur σ̂y anti-
commute avec les portes de découplage dynamique σ̂x. En effet,

Ûexp.σ̂x = σ̂xe−iϵx σ̂x/2eiϵyσ̂y/2, (5.14)

de sorte que
Ûcycle = e−iϵx σ̂x +O(ϵ2

j ). (5.15)

On retrouve donc directement le signal Prob(m) = sin2(mϵx) voulu grâce au découplage
dynamique. Avec MEADD, on applique cette même idée afin d’estimer les paramètres des
portes fSim avec une précision surpassant tout autre approche.
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5.2 Résultats principaux

Dans les articles scientifiques qui suivent, nous introduisons deux protocoles de caracté-
risation permettant principalement d’estimer la fidélité de portes logiques sur deux qubits
et d’obtenir leur description unitaire complète. À l’aide de simulations et de réalisations
expérimentales, nous démontrons que ces protocoles surpassent les approches existantes en
termes d’efficacité expérimentale et de précision. Ces deux protocoles de caractérisation sont
maintenant utilisés quotidiennement dans la calibration des opérations sur les dispositifs à
Google Quantum AI et peuvent être utilisées directement ou facilement adaptées afin d’être
appliqués à de nombreux autres dispositifs quantiques.

CAFE introduit une approche expérimentale minimale mais complète afin de carac-
tériser une opération ou d’un groupe d’opérations dans le contexte même de leur circuit
quantique. Ce protocole permet d’estimer précisément la fidélité de porte moyenne ainsi
que les contributions cohérentes (unitaires) et incohérentes (stochastiques) à l’erreur totale
mesurée. Nos simulations de portes CZ avec des taux d’erreurs réalistes démontrent que
CAFE est légèrement plus précis que l’approche la plus répandue (RB), tout en utilisant
significativement moins de ressources expérimentales. En utilisant différentes répétitions
du circuit d’intérêt et en ajustant les fidélités moyennes mesurées à un modèle, CAFE est
robuste aux erreurs de préparation d’état et de mesure (SPAM).

Nous appliquons CAFE expérimentalement afin de démontrer l’évaluation précise
des erreurs cohérentes et incohérentes d’une centaine de portes CZ sur un dispositif Syca-
more [172]. Nous utilisons également CAFE afin d’estimer la fidélité de plusieurs groupes
d’opérations dans le contexte du circuit utilisé pour stabiliser l’état quantique d’un code de
surface de distance trois. Dans cette situation, CAFE nous permet d’observer une signature
claire de certaines erreurs présentes uniquement lors de la réalisation concurrente des autres
portes quantiques, illustrant ainsi l’utilité de caractériser les opérations dans le contexte où
elles se trouvent.

Enfin, CAFE peut directement être utilisé afin de valider notre compréhension des er-
reurs cohérentes dans les opérations réalisées. En effet, il est possible d’effectuer les mêmes
expériences, mais de changer les portes logiques utilisées à la toute fin avant de mesurer
l’état quantique final afin de tester la fidélité de l’opération réalisée par rapport à une unitaire
arbitraire. Par exemple, il est possible de mesurer la fidélité d’une réalisation donnée par
rapport à l’unitaire cible CZ, mais également de mesurer la fidélité par rapport à une autre
unitaire comme fSim(0.01, π − 0.02). À ce moment, il est possible de comparer la contribu-
tion cohérente à l’erreur totale entre ces deux caractérisations afin de vérifier si l’unitaire
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fSim(0.01, π − 0.02) décrit bel et bien l’opération expérimentale mieux que l’unitaire cible
CZ = fSim(0, π). Nous utilisons directement cette propriété du protocole CAFE afin de
démontrer que la caractérisation unitaire obtenue par MEADD est significativement plus
exacte que toute autre approche existante.

Avec notre second protocole, MEADD, nous surmontons la principale limitation à la
caractérisation précise des paramètres unitaires des portes logiques réalisées sur des qubits
supraconducteurs à fréquence variable : le bruit en fréquence. Pour ce faire, nous utilisons
une approche de découplage dynamique (DD) où nous ajoutons des portes à un qubit entre
chacune des répétitions de l’opération cible. Au-delà de l’intuition conventionnelle selon
laquelle le découplage dynamique filtre le bruit de basse fréquence [183], nous introduisons
l’idée d’utiliser le DD afin de filtrer spécifiquement certains éléments de matrice d’une
transformation unitaire. À partir d’une conception soignée des circuits quantiques utilisés
dans le protocole, il est alors possible d’amplifier de façon cohérente le ou les paramètres
que l’on cherche à estimer tout en éliminant l’impact des autres termes ainsi que des sources
de bruit de basse fréquence. De manière cruciale, ces estimations sont robustes au premier
ordre à toutes les erreurs associées aux portes à un qubit que l’on ajoute afin de filtrer
l’information que l’on souhaite amplifier.

En nous concentrant sur les portes CZ, nous démontrons expérimentalement sur un
processeur Sycamore que MEADD est cinq fois plus précis que les approches existantes
pour estimer la phase conditionnelle ϕ et dix fois plus précis pour estimer l’angle d’échange
d’excitation θ. Pour l’angle θ, cela correspond à une incertitude demoins de 0.4 mrad (0.02◦),
une réalisation faisant de MEADD un outil indispensable dans la calibration d’opérations
quantiques à deux qubits de très haute fidélité.

Nous démontrons enfin l’utilité de MEADD dans la caractérisation d’opérations à un
qubit ainsi que l’estimation de la diaphonie quantique entre deux qubits voisins impliqués
dans des portes CZ parallèles. Pour les portes à un qubit, MEADD est plus précis que
l’approche répandue par un facteur de plus de six. Concernant la diaphonie quantique,
MEADD est en mesure d’estimer en médiane des rotations de (0.42 ± 0.07) mrad alors que
ces processus parasites sont sous le seuil de bruit des autres approches et donc indétectables
en pratique. Nous fournissons également la formulation de protocoles MEADD afin de
caractériser d’autres portes à deux qubits préservant le nombre total d’excitations telles que
iSWAP et

√
iSWAP.
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5.3 Publication [3] : Caractérisation de la fidélité des opérations
quantiques (CAFE)

Je suis premier auteur à contribution égale avec deux autres collaborateurs de l’article
suivant publié dans la revue Physical Review Research. Cette attribution des contributions
témoigne du fort environnement de collaboration dans lequel ces travaux ont été réalisés.
En effet, j’ai activement contribué à la détermination analytique du modèle d’ajustement
à utiliser pour caractériser les contributions cohérentes et incohérentes des portes à un
des deux qubits, à la mise en œuvre numérique du protocole ainsi qu’à la rédaction du
manuscrit. J’ai réalisé l’ensemble des simulations numériques, en plus d’acquérir les données
expérimentales, d’analyser les résultats et de produire toutes les figures.

Je note qu’en raison d’un problème technique causé par quelques figures trop volumi-
neuses numériquement en format PDF, l’article qui suit n’est pas la version publiée dans
PRR, laquelle est disponible à la Réf. [3], mais une reproduction exacte où la résolution des
figures a été réduite.
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We present Context Aware Fidelity Estimation (CAFE), a framework for benchmarking quan-
tum operations that offers several practical advantages over existing methods such as Randomized
Benchmarking (RB) and Cross-Entropy Benchmarking (XEB). In CAFE, a gate or a subcircuit
from some target experiment is repeated n times before being measured. By using a subcircuit,
we account for effects from spatial and temporal circuit context. Since coherent errors accumulate
quadratically while incoherent errors grow linearly, we can separate them by fitting the measured
fidelity as a function of n. One can additionally interleave the subcircuit with dynamical decoupling
sequences to remove certain coherent error sources from the characterization when desired. We
have used CAFE to experimentally validate our single- and two-qubit unitary characterizations by
measuring fidelity against estimated unitaries. In numerical simulations, we find CAFE produces
fidelity estimates at least as accurate as Interleaved RB while using significantly fewer resources.
We also introduce a compact formulation for preparing an arbitrary two-qubit state with a single
entangling operation, and use it to present a concrete example using CAFE to study CZ gates in
parallel on a Sycamore processor.

I. INTRODUCTION

Reliably understanding the structure of noise in quan-
tum processors is vital for advancing quantum compu-
tation. There are a variety of characterization meth-
ods available to quantify and validate the performance
of individual quantum operations like state prepara-
tion, single- and two-qubit gates, measurement, and re-
set [1]. Amongst these techniques, some use random-
ness to estimate gate fidelities efficiently, such as random-
ized benchmarking (RB) [2–7], cross-entropy benchmark-
ing (XEB) [8, 9], channel spectrum benchmarking [10],
and direct fidelity estimation [11–13], while others use
complete sets of input states, such as unitary tomogra-
phy [14, 15], quantum process tomography [16, 17], and
gate set tomography [18, 19]. These methods all have
upsides and downsides in terms of speed, scalability, and
the amount of information provided [1].
An important problem that many existing techniques

face is that as quantum computers scale, complex inter-
component interactions arise, such as control crosstalk
or temporal correlations caused by residual pulse tails.
For example, experiments may use amplifiers with tem-
perature dependent gain profiles, which could be linked
to pulse duty cycle and cause circuit-dependent errors.
These effects can make the performance of a quantum
operation highly context dependent [9, 20–22], and there
is a growing need for characterization methods which ac-
count for them.
In this paper, we describe a characterization method

called Context-Aware Fidelity Estimation (CAFE) which
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measures the fidelity between an experimentally imple-
mented quantum operation and a reference unitary. In
CAFE, we repeat a gate or a subcircuit from a target ex-
periment n times and measure the average gate fidelity
against the reference unitary raised to the nth power. For
example, the subcircuit can be part of a stabilizer extrac-
tion circuit in a quantum error correction experiment, as
demonstrated experimentally in Sec. VI. This procedure
allows us to capture context-related errors which isolated
characterizations do not capture [23, 24]. Since coherent
errors accumulate quadratically as a function of n while
incoherent errors grow linearly, we can separate their con-
tributions to the infidelity. This is in contrast with RB
and XEB, where random compiling is used to twirl co-
herent errors into incoherent ones.
Throughout the main text of this paper, we focus on

using CAFE to study the performance of CZ gates im-
plemented in parallel, as two-qubit operations have been
shown to be a dominant error source across recent large-
scale experiments on a number of experimental plat-
forms, especially in the presence of stray interactions [25–
27]. We also discuss CAFE for a subcircuit of a stabilizer
extraction circuit. In the Appendices, we present results
from CAFE experiments characterizing parallel single-
qubit operations.

II. CONTEXT AWARE FIDELITY ESTIMATION

A typical CAFE experiment is performed in three
steps, schematically shown in Fig. 1. First, a state |ψ⟩ is
prepared from an m-qubit 2-design {ψi} [28–31]. These
ensembles match the Haar-random distribution up to sec-
ond moments, allowing us to measure fidelity. In App. B,
we present a method to construct shallow circuits that
prepare arbitrary two-qubit entangled states for this pur-
pose. The method uses a single entangling operation to
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FIG. 1. A schematic of the circuits used to measure the fidelity of n repetitions of the cycle circuit, which is selected to be a
subcircuit from some target experiment. First, a state pulled from a m qubit 2-design, {ψi}, is prepared (blue). Second, the
cycle circuit being characterized is applied n times (pink). Third, we undo the combined action of the previous circuit in a
single step, similar to the inversion step in randomized benchmarking, and measure the resulting state in the computational
basis (green). The fidelity between n repetitions of the applied operation and the nth power of the reference unitary can be
found by averaging the probability of getting |0⟩⊗m over all 4m initial states. The faded operations represent the spatial context
of the cycle circuit being characterized.

prepare a two-qubit state with the desired entanglement
signature, followed by single-qubit operations to reach
the desired state. The structure of the circuits produced
by this method is illustrated in Fig. 3(a) in blue.
Next, the m-qubit circuit of interest, referred to as the

cycle circuit, is repeated n times, along with operations
on neighboring uninvolved qubits. The cycle circuit can
include multiple operations, allowing close matching to
the circuit context found in the target experiment. As
an example, an experiment which includes dynamical de-
coupling (DD) would be robust to certain coherent errors,
and including these DD gates in the cycle circuit allows
CAFE to neglect contributions from these coherent er-
rors, focusing on the errors which impact performance.
Inserting DD gates is one of several ways for CAFE to
separate coherent and incoherent contributions to gate
errors, which we discuss further in Sec. IV.
Lastly, we apply a circuit that maps the state back

to |0⟩⊗m, assuming the cycle circuit implements the de-
sired “fiducial unitary”, before measuring the qubits in
the computational basis. This final step is analogous to
the inversion step of RB, used to undo the action of the
total applied circuit before measurement. Moreover in
CAFE, this final step allows us to validate the perfor-
mance of different unitary characterization methods, as
discussed further in Sec. V. The average gate fidelity of
the operation, which we refer to as fidelity in the follow-
ing, can be found by averaging over the experiments for
all 2-design states {ψi} [14]:

F(Ucycle, Ufiducial) = ⟨P0...0⟩{ψi}. (1)

We note that in them = 2 case, the preparation and mea-
surement stages only use a single entangling gate, so their
contribution to the total error rate is far smaller than the
circuit being characterized for most values of n. In gen-
eral, since the information we extract from CAFE comes
from fitting fidelity over different values of n, reason-

able state-preparation and measurement (SPAM) errors
do not significantly impact the characterization results,
as they only cause a constant offset in the fidelity curve.
While the number of 2-design states scales exponentially
with qubit count, random circuits can approximate these
states in polynomial depth [29], which could be used for
performing CAFE on m > 2 qubits.

III. COMPARING CAFE WITH RANDOMIZED
BENCHMARKING

In this section, we compare our CAFE approach to
the widely used Interleaved Randomized Benchmarking
(IRB) protocol for estimating the fidelity of noisy CZ

gates. The error model for these gates, which is fully
described in App. E, contains coherent errors together
with amplitude and phase damping as incoherent noise.
In Fig. 2, we show that for this model, and using realistic
error rates, CAFE yields a more accurate average gate
fidelity estimation than IRB, while requiring significantly
less experimental resources.

More concretely, the randomized benchmarking proto-
col uses 20 different circuits for 7 depths 5 ≤ n ≤ 35 of
random two-qubit Cliffords (which often require 2 CZs
together with single-qubit gates once compiled), in ad-
dition to repeating these same circuits interleaved with
a CZ at every depth in order to obtain the CZ gate fi-
delity estimate. In contrast, CAFE uses only 16 different
circuits and 5 depths 0 ≤ n ≤ 8 of CZs (with at most
two additional CZ layers for state preparation and mea-
surement). Moreover, the single-qubit gates used by IRB
to create the random Clifford gates introduce unwanted
error sources from decoherence and systematic errors, a
problem that CAFE alleviates altogether by only repeat-
ing the cycle circuit of interest. Note that, unlike CAFE,
RB additionally provides an estimate of the average gate
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FIG. 2. Simulations comparing the CAFE and Interleaved
Randomized Benchmarking (IRB) techniques for characteriz-
ing the average gate infidelity of noisy CZ gates with ampli-
tude and phase damping noise in addition to coherent errors.
For CAFE (blue), we use depths n ∈ [0, 2, 4, 6, 8], whereas for
IRB (gray) we use depths n ∈ [5, 10, 15, 20, 25, 30, 35] for ob-
taining both the reference RB curve and the acquisition with
interleaved CZ gates. Both approaches use 2000 shots per
circuit. Labels presents the median absolute errors (MAE)
of IRB and CAFE over N = 1000 different noisy CZ gates.
MAE = median(|F̃1 − F1|, . . . , |F̃N − FN |). We note that
MAE scales with the true error of the gates being considered.

fidelity of all two-qubit Cliffords, which can be of inde-
pendent interest. We also want to point out that us-
ing additional depths n and sampling shots can improve
both approaches, and that considering a different range
of noise parameters can change the resulting median ab-
solute errors significantly. However, we have found that
the conclusion remains that CAFE allows one to do a
gate characterization at least as accurate as IRB, while
requiring significantly less run time in experiment.

IV. BUDGETING COHERENT AND
INCOHERENT ERRORS

Using CAFE, one can accurately estimate the fidelity
of any unitary operation and report this single number
as a performance metric, which is useful for validation
and for estimating the performance of different quantum
algorithms [1]. However, such a metric alone provides
very little information as to how to improve the gate
fidelity in practice. A central feature of CAFE is that
one can extract actionable information about the origins
of gate error by budgeting the coherent and incoherent
contributions. To do so, one can fit the fidelity decay
curve to a physical model, or modify the cycle circuit to
echo out different parts of the gate errors, for example
by leveraging Dynamical Decoupling (DD) pulses. We
note that such budgeting is helpful for directing research
focus, as interventions required to mitigate coherent and
incoherent errors tend to be different.

A. Separating coherent and incoherent errors
through fitting to a model

One way to obtain an error budget from CAFE is to fit
the experimental data to a model. Although the CAFE
experiment and resulting error budget are valid for any
m-qubit unitary, we will again focus on the two-qubit CZ

case to simplify the discussion in the main text. A more
general derivation is presented in App. C. We assume
that the cycle unitary is an excitation-preserving two-
qubit gate close to a CZ

Ũ(∆θ,∆γ,∆ϕ) =



1 0 0 0

0 e−i∆γ cos(∆θ) −ie−i∆γ sin(∆θ) 0

0 −ie−i∆γ sin(∆θ) e−i∆γ cos(∆θ) 0

0 0 0 −e−i(∆ϕ+2∆γ)


 ,

(2)

where Ũ(0, 0, 0) = CZ, and the swap, single-qubit phase,
and controlled-phased miscalibration angles are assumed
to be small, such that ∆θ, ∆γ, ∆ϕ ≪ 1. To simplify
further the expressions here, we also assume that the
noisy quantum channel implementing the cycle circuit
can be described by a two-qubit depolarizing channel

E(ρ) =(1− pdepol) Ũρ Ũ
† + pdepol Id/d , (3)

which outputs a totally mixed state with probability
pdepol and otherwise applies the cycle unitary Ũ . With
such a channel, the average gate fidelity for n repetitions
of the cycle circuit is given by

Fn =
1

4
− ϵspam − 1

20
(1− pdepol)

n ·
(
1−

∣∣∣1 + 2e−in∆γ cos(n∆θ) + e−in(2∆γ+∆ϕ)
∣∣∣
2 )
,

(4)

where we have explicitly included the SPAM errors ϵspam,
which are assumed to vary slowly over the timescale of
an experiment. We note that in this model we made a
steady-state assumption about the gates in our system,
but modeling transient behavior could be achieved with a
more advanced fit. Using the expression in Eq. 4, we can
model the experimental data to obtain the gate fidelity
F , in addition to the incoherent errors ϵincoh and coher-
ent errors ϵcoh of the quantum operation. To get these
parameters in a way that is robust to SPAM errors, we
use

1−F = 1− F1

(1− ϵspam)
, (5)

ϵincoh = 1− F1(pdepol = 0)

(1− ϵspam)
, (6)

ϵcoh = 1− F1(∆θ = ∆γ = ∆ϕ = 0)

(1− ϵspam)
. (7)
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 cycle circuits nPreparation Measurement

FIG. 3. Experimental characterization of CZ gates performed
in parallel using CAFE. (a) Structure of the 16 circuits used
to characterize the fidelity of a CZ gate for a given depth.
The angles {α, β} and single-qubit unitaries Uj are found us-
ing the method described in App. B. Here the cycle circuit is
a single CZ gate. (b) Data represents the cycle circuit fidelity
compared to the ideal CZ unitary for different cycle repeti-
tions, along with fits using the model presented in Eq. 4 and
resulting gate budgets in the inset table. We plot the data
for three specific gates – at the 10th, 50th and 90th percentile
on a Sycamore device in terms of average gate infidelity – to
illustrate the accuracy of the modeling over a wide range of
data. Error bars represent the standard deviation of binomial
distributions scaled by a factor of 5 to be visible.

In numerical simulations, which are presented in App. E,
this analysis procedure was shown to be valid and ro-
bust to different unitary errors, as well as amplitude and
phase damping channels. We use this method to bud-
get errors in Figs. 2 to 5. A similar budgeting approach
for single-qubit X(π) gates, together with experimental
results acquired on a Sycamore chip, are presented in
App. D.
As shown in Fig. 3, the simple model of Eq. 4 allows us

to accurately fit the CAFE curves spanning a wide range
of CZ gate fidelities executed in parallel on a Sycamore
chip. Additional data showing the consistency of the
resulting error budget with XEB is presented in App. H.
A useful and intuitive picture to analyze the CAFE

data is to consider the incoherent and coherent errors
as linear and quadratic contributions to the gate infi-
delity, respectively. This can be seen directly by expand-
ing Eq. 4 up to terms O((∆θ)4, (∆γ)4, (∆ϕ)4, pdepol

2)

Fn ≈ 1− ϵspam − ϵlin n− ϵquad n
2 (8)

ϵlin =
3pdepol

4
n (9)

ϵquad =
8[(∆θ)2 + (∆γ)2 +∆γ∆ϕ] + 3(∆ϕ)2

20
n2. (10)

This approximate quadratic form can be found for dif-
ferent cycle unitaries under similar noise channels, and
could be used directly in the budgeting procedure given
low gate infidelities and shallow cycle repetitions n, or
in cases lacking an accurate analytical model for the
quantum channel. Note that the fit model and result-
ing CAFE error budgeting can be straightforwardly ex-
tended to another platform or experiment. For exam-
ple, the quantum channel describing the cycle circuit can
be parameterized by a set of Kraus operators and com-
puted numerically to fit the CAFE fidelities at different
depths n. However, since CAFE performs only the min-
imal set of circuits needed to extract the average gate
fidelity, the data will not contain enough information to
fully characterize generic quantum channels, and addi-
tional experiments or other characterization tools should
be considered if that were the goal.
We also note that the quantity ϵincoh estimates the av-

erage gate infidelity when no coherent control errors are
present. This useful characterization metric is defined as
R(E) in Ref. [32], where the authors show that it bounds
the unitarity of the channel u(E):

d− 1

d
(1−

√
u(E)) ≤ R(E). (11)

As such, we can also relate our incoherent error estimate
to unitarity. For instance, in the case of depolarizing
noise, the unitarity is

u(Edepol) = (1− pdepol)
2, (12)

and the incoherent error obtained from CAFE is, as de-
rived in App. C,

1− ϵincoh =
1

d
+
d− 1

d
(1− pdepol) (13)

=
1

d
+
d− 1

d

√
u(Edepol). (14)

B. Isolating Coherent Channels using Dynamical
Decoupling

Exploiting the versatility of CAFE, a second method
for error budgeting is to modify the cycle circuit in order
to isolate specific error channels. In particular, this is
viable when the impact of the modifications is insignif-
icant relative to the error channels being isolated. As
a relevant example, we can leverage the fact that the
cycle circuit is repeated n times by inserting dynamical
decoupling gates in between repetitions. This approach
of combining DD and CAFE, which we refer to as DE-
CAF, is particularly useful to characterize the amount of
certain coherent error present in the cycle circuit with-
out necessitating full unitary tomography. We note that
this is somewhat similar to the work in Ref. [5], with a
single repetition of the cycle circuit, and the randomized
unitaries replaced with specific DD pulses.
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FIG. 4. CAFE combined with dynamical decoupling (DE-
CAF). (a) Structure of the 16 DECAF circuits for character-
izing a CZ gate at a given depth. Only the cycle circuit high-
lighted in orange differs from the CAFE circuits of Fig. 3a.
(b) Experimental results on characterizing CZ gates in paral-
lel when dynamical decoupling gates are part of the cycle cir-
cuit (orange), alongside the standard CAFE data presented in
Fig. 3 (blue). Interleaving the CZ gates with X gates on both
qubits echoes out low-frequency Z noise, which contributes to
ϵincoh, and removes the sensitivity to single-qubit phase uni-
tary errors, which contribute to ϵcoh. Performing the simple
DECAF experiment thus provides valuable information about
the error mechanisms in CZ gates. Error bars are scaled by a
factor 5 to be visible.

In the case of a CZ gate, adding an X gate to
both qubits in the CAFE cycle circuit echos out the
single-qubit phase errors, in addition to mitigating low-
frequency noise, as demonstrated in App. F [33, 34]. As
shown in Fig. 4, the DECAF data has higher fidelities
and decreases more linearly than the CAFE data in prac-
tice. Looking at the resulting fits over all characterized
CZ gates, we see a significant decrease in the median
coherent error from 5.5×10−4 to 9.4×10−5, which high-
lights single-qubit phase miscalibrations, alongside a de-
crease of the median incoherent error from 7.2 × 10−3

to 6.7× 10−3, which indicates the level of low-frequency
noise in the device.

V. VALIDATING UNITARY
CHARACTERIZATIONS

One key difference between CAFE and other methods
for extracting error rates is the final unentangling step be-
fore measurement. By doing all of the inversion in a sin-
gle step, similar to RB, but using an arbitrary character-
ized reference unitary for the inversion, we can validate
different unitary characterizations while respecting the
non-Clifford nature of most coherent error models. As

a)

b)

Y(α)

H U2

U1 U3

U4 H

Y(β)

Z

|0⟩
|0⟩

Z

Measurement

FIG. 5. Using CAFE to validate different unitary charac-
terizations of a CZ gate with 50th percentile infidelity. (a)
Only the three single-qubit gates {U3, U4, Y (β)} highlighted
in green need to be modified to compare the fidelity of the
experimental CZ gate with an arbitrary unitary. (b) The
different curves represent the fidelity between the experimen-
tal gate and an ideal CZ unitary (blue), a unitary extracted
from an XEB experiment (green), and a unitary character-
ized with a newly introduced method called MEADD [35].
Since only the pre-measurement circuit changes in the three
different CAFE experiments, the improvement in fidelity can
entirely be attributed to considering a gate unitary that is
closer to the experimental CZ implementation. Error bars
are scaled by a factor 5 to be visible.

such, we can use CAFE to benchmark unitary character-
izations, simply by changing the final measurement step
and seeing which predictions most accurately map the
final state back to |0⟩⊗m, in conjunction with the meth-
ods presented in Sec. IVA. As illustrated in Fig. 5(a),
for a two-qubit cycle circuit, this change corresponds to
modifying three single-qubit gates in the last step of the
CAFE protocol.

In Fig. 5(b), we compare the CZ unitary extracted by
XEB to the one extracted using a unitary characteri-
zation method called Matrix-Element Amplification by
Dynamical Decoupling (MEADD) [35], which is a char-
acterization technique that we have developed based on
Floquet characterization [36, 37]. MEADD allows us to
isolate and precisely measure the different unitary param-
eters in any phased fSim gate (a general excitation num-
ber preserving two-qubit gate). We can see very clearly
that the unitary predicted by MEADD is significantly
better at predicting the coherent error than the unitary
extracted by XEB. By increasing the amount of context
around the gate, for example including some microwave
operations or measurements on the surrounding qubits
to include crosstalk or measurement-induced dephasing
effects, we can see which characterizations break down
in other contexts (see Sec. VI), and build trust that the
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FIG. 6. a. The stabilizer extraction circuit for a distance-3 surface code, with the section to be characterized boxed in orange.
b. A layout for the CAFE experiment along with the qubit groups characterized. c. CAFE data for repetitions of the cycle
circuit from a. on the qubit groups in b., with the m = 2 groups in green and the m = 1 groups in red. CAFE allows us to
see that q11 (red, dotted) is experiencing a significant context-dependent error.

structures seen in our characterizations are the dominant
effects impacting algorithm performance on the proces-
sor.

VI. CHARACTERIZING MULTI-LAYER
CIRCUITS USING CAFE

Here, we provide an example of a CAFE experiment
that includes both spatial and temporal context by char-
acterizing a cycle circuit containing multiple layers. As
illustrated in Fig. 6a, we consider a portion of the stabi-
lizer extraction circuit for a distance-3 surface code ex-
periment used in Ref. [26]. In Fig. 6b, we show how this
section of the circuit can be considered on its own and
broken down into qubit groups. We can then run a par-
allel CAFE experiment on these qubit groups which uses
the highlighted section as the cycle circuit. The resulting
experimental data is shown in Fig. 6c. We can see that
one of the m = 1 qubit groups experiences significant
error, despite its individual single-qubit gates X and H

showing good fidelities when characterized in isolation.
This highlights the importance of context-aware charac-
terization, as the error mode being experienced was only
visible when the gates were run in conjunction. This ex-
periment also highlights the flexibility of CAFE in being
able to characterize multi-operation circuits simultane-
ously on qubit groups of varying size.

VII. CONCLUSION

CAFE separates itself from other gate characteriza-
tion methods due to its simplicity, efficiency, and flexibil-
ity, most notably as a complementary tool to other gate
characterizations that provide more granular output. We
have found its ability to split coherent and incoherent er-
rors more reliable than other methods, and the ability to
experimentally test unitary characterizations has allowed
us to design and evaluate novel characterization methods
more effectively.

Overall, our results demonstrate that CAFE yields ac-
curate fidelity and error budget estimates using signifi-
cantly less time in practice than complementary charac-
terization protocols. This approach is thus particularly
useful to quickly identify the worst performing individ-
ual quantum operations, typically single- and two-qubit
gates, directly in the context of the larger quantum cir-
cuit in which they are found. Moreover, CAFE yields
actionable information about the origins of the gate er-
rors, namely the contributions of incoherent and coherent
noise, which allow one to calibrate the quantum device
to optimize performance on the experiment of interest.
This usefulness of CAFE is demonstrated in Sec. VI for
characterizing and re-calibrating a portion of the stabi-
lizer extraction circuit of a distance-3 surface code exper-
iment.

The flexibility of CAFE allows for many other as-of-yet
unexplored variations, from creating fits which include
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the impact of leakage, to changing the cycle circuit round-
by-round to echo out components in different ways, to
analyzing the different input bases separately to extract
details about the error structure. Our hope is that other
researchers will be able to create their own modifications
of the CAFE framework to study the errors facing their
own systems.
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FIG. 7. Heatmaps for per-qubit and per-pair median error rates for single-qubit Randomized Benchmarking, CZ XEB, and
average readout identification error.
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FIG. 8. Cumulative density functions for single-qubit RB, CZ XEB, and readout errors.

Appendix A: Device Specifics

All experimental data presented here was collected on a subset of a Sycamore device with 72 transmon qubits and
121 tunable couplers, where each qubit is coupled to up to four neighbors. In Fig. 7 we present median error rates
for microwave single qubit gates, CZ gates, and measurements over the timeframe data was acquired for this paper.
All errors reported are measured simultaneously. For more information on the architecture see Refs. [9] and [38], and
for more information on gates implementation see Ref. [39].

Appendix B: Preparing and measuring two-qubit states

We describe a method to prepare or measure an arbitrary two-qubit state with a single maximally entangling
operation. We start by considering a general two-qubit target state

|ψ⟩ =A|00⟩+B|01⟩+ C|10⟩+D|11⟩,
|A|2 + |B|2 + |C|2 + |D|2 = 1.

(B1)

We can then write a matrix with the amplitudes of this state

Mψ =

[
A B
C D

]
, (B2)

and perform the singular value decomposition (SVD) Mψ = UψSψV
†
ψ . Considering the initial singular value, S00

ψ , we
can quantify the level of entanglement in the targeted state. The first step to generate this state is to prepare a state
with a matching entanglement signature.
In the case where we intend to use a CZ gate, this can be done by putting one qubit in |+⟩, and applying a Y rotation

to the other qubit with an angle of α = 2arccos
(
S00
ψ

)
. This state, labeled as |CZ⟩ in Fig. 9, is equivalent to the final
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state up to single qubit rotations. To find these rotations, we take the SVD of the 2× 2 matrix corresponding to this

intermediate state, UCZSCZV
†
CZ . The single qubit unitary required for the first qubit is given by U1 = UψU

−1
CZ , and the

unitary for the second qubit is U2 = VψV
−1
CZ . The resulting circuit is shown in Fig. 9. Constructions for CZ and

√
iSWAP

are implemented as the methods prepare two qubit state with c and prepare two qubit state with iswap in
the open-source software Cirq [40].

H

Y(α)

U2

U1

|CZ⟩ → MCZ

|0⟩
|0⟩

|ψ⟩

FIG. 9. A simple circuit that maps |00⟩ to an arbitrary two-qubit state |ψ⟩ using only one CZ operation. The overlap of any
two-qubit state with the state |ψ⟩ can be obtained by executing the inverse of this circuit and reporting the probability of
measuring |00⟩ afterwards.

Appendix C: Derivation of Eq. 4

In this section, we derive Eq. 4 as an example of how one could do the same for other unitaries and error models
of interest. Given a general quantum channel described by a set of Kraus operators Kα,

E(ρ) =
∑

α

KαρK
†
α , (C1)

the average fidelity of the quantum operation E with respect to a unitary operation U is

F(E , U) =

∫
⟨ψ(x)|U†E

(
|ψ(x)⟩ ⟨ψ(x)|

)
U |ψ(x)⟩ dµ(x) (C2)

=
∑

α

∫ ∣∣ ⟨ψ(x)|U†Kα |ψ(x)⟩
∣∣2 dµ(x) , (C3)

where x is a parametrization of pure quantum states and µ(x) is the Haar measure. To evaluate F , we introduce the
projector on the symmetric subspace of the system and its replica, which is expressed as

PS =
d(d+ 1)

2

∫
|ψ(x)⟩ ⟨ψ(x)| ⊗ |ψ(x)⟩ ⟨ψ(x)| dµ(x) , (C4)

where d = 2m is the dimension of the m-qubit Hilbert space. Using this projector, the fidelity takes the form

F(E , U) =
2

d(d+ 1)
tr
(
PS
∑

α

K†
αU ⊗ U†Kα

)
(C5)

=
1

d(d+ 1)

∑

α

trK†
αKα +

∣∣ tr(U†Kα)
∣∣2 (C6)

=
1

d+ 1
+

1

d(d+ 1)

∑

α

∣∣ tr(U†Kα)
∣∣2 . (C7)

In order to compute the fidelity expression in Eq. C7, one computes the eigenvalues of U†Kα and sum them up
directly to get tr(U †Kα). For example, we consider the case where the operation of interest can be described by a

quantum channel that either applies the unitary Ũ , or totally depolarizes the qubits with probability pdepol

E(ρ) = (1− pdepol) Ũρ Ũ
† + pdepol Id/d , (C8)
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where Id is the d-dimensional identity operator. The fidelity of this channel after n consecutive applications is given
by

Fn = (1− pdepol)
n d+

∣∣ tr[(U †)nŨn]
∣∣2

d(d+ 1)
+
[
1− (1− pdepol)

n
] 1
d
. (C9)

After subtracting ϵspam from the RHS to account for experimental SPAM errors, the expression in Eq. C9 can be used

to fit the CAFE data of any m-qubit unitary Ũ , subject to symmetric depolarizing noise, with respect to a reference
unitary U . Note that in the case where the quantum operation under characterization, Ũ , corresponds exactly with
the reference unitary U , the CAFE data should obey the following single-exponential decay

Fn =
1

d
+
d− 1

d
(1− pdepol)

n. (C10)

Otherwise, when Ũ ̸= U , coherent errors are present and the first term of C9 will introduce errors that scale quadrat-
ically with n to first order.
In the case we are interested in, we want to use CAFE to characterize a two-qubit gate, where d = 4, U = CZ and

Ũ is a number-preserving fSim gate close to a CZ gate:

Ũ(∆θ,∆γ,∆ϕ) =




1 0 0 0

0 e−i∆γ cos(∆θ) −ie−i∆γ sin(∆θ) 0

0 −ie−i∆γ sin(∆θ) e−i∆γ cos(∆θ) 0

0 0 0 −e−i(2∆γ+∆ϕ)


 , (C11)

with some residual SWAP-like error captured by the angle ∆θ, single-qubit phase error captured by ∆γ, and CPhase-
like error captured by ∆ϕ, with ∆θ, ∆γ, ∆ϕ≪ 1. Since CZ is diagonal, we can show that the eigenvalues of (U †)nŨn

are

λ =
(
1 e−in(∆γ−∆θ) e−in(∆γ+∆θ) e−in(2∆γ+∆ϕ)

)
, (C12)

for n ∈ N. As such, tr[(U†)nŨn] = sum(λ) and substituting into Eq. C9 gives

Fn =
1

4
− (1− pdepol)

n

(
1−

∣∣1 + 2e−in∆γ cos(n∆θ) + e−in(2∆γ+∆ϕ)
∣∣2

20

)
(C13)

= 1− 3pdepol
4

n− 8(∆θ)2 + 8(∆γ)2 + 8(∆γ∆ϕ) + 3(∆ϕ)2

20
n2 (C14)

+O((∆θ)4, (∆γ)4, (∆ϕ)4, pdepol
2), (C15)

which is the expression in Eq. 4 of the main text, after subtracting the SPAM errors ϵspam from the RHS to account
for experimental imperfections.

Appendix D: Single-qubit CAFE

In order to give an additional example on how to deploy the CAFE characterization framework, we present an
experiment characterizing 68 single-qubit X gates in parallel on a Sycamore processor. The results are presented
in Fig. 10, showing the fidelity of the experimental gate with both an ideal unitary (in blue) and a characterized one
(in red), in addition to fits using an analytical model derived below, for three example gates. In the single qubit case,
the minimal 2-design contains only 4 states which can all be prepared with a single gate, which significantly speeds
up the characterization. We have used cycle repetitions n up to 32 here, showing how one can modify the experiment
when studying especially high-fidelity operations to maintain good fit robustness.
Assuming that the incoherent noise of the experimental gate can be described by a totally depolarizing channel,

our model to fit the single-qubit CAFE data can again be derived from Eq. (C9). For this case where U = Rx(π) and
d = 2, we can parametrize a single-qubit unitary

Ũ(∆µ) =

(− sin(∆µ/2) −i cos(∆µ/2)
−i cos(∆µ/2) − sin((∆µ/2)

)
, (D1)
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FIG. 10. Single-qubit parallel CAFE results for three X gates close to the 10th (left), 50th (center), and 90th (right) percentiles
of infidelity, from a total of 68 parallel X gates on a Sycamore device. The data in blue computes the fidelity with an ideal
U = X unitary, whereas the CAFE data in red uses a characterized unitary. Note that in this data, the characterized single-
qubit unitaries were not used to optimize the gate parameters, thus the imperfect calibration.

where Ũ(0) = Rx(π). One can easily show that the eigenvalues of (U †)nŨn are

λn =

{
(inein∆µ/2 ine−in∆µ/2), for n even

(ein∆µ/2 e−in∆µ/2), for n odd
(D2)

where n ∈ N. As such,
∣∣∣tr[(U †)nŨn]

∣∣∣
2

= |sum(λn)|2 = 4 cos2(n∆µ/2) (D3)

and Eq. C9 becomes

Fn =
1

2
− ϵspam + (1− pdepol)

n

(
2

3
cos2(n∆µ/2)− 1

6

)
. (D4)

where, as before, we have explicitly included the SPAM errors ϵspam to account for experimental imperfections. The
error budget in terms of the fidelity F , incoherent error contribution ϵincoh, and coherent error contribution ϵcoh is
obtained the same way as in Eqs. (5) to (7) of the main text, i.e. by fitting the data with this expression, evaluating
it at n = 1 with different noise parameters set to zero, and normalizing by the SPAM errors. Figure 10 shows that
such a model allows us to accurately reproduce the CAFE data obtained in the experiment.

Appendix E: Numerical CAFE simulations

In this section, we present numerical simulations where we characterize a CZ gate using the CAFE approach
presented in the main text. We simulate the same 24 = 16 circuits executed on the Sycamore device with noisy
two-qubit unitaries, together with either depolarizing noise in App. E 1 or amplitude and phase damping noise in
App. E 2. We also used the same low cycle repetitions n ∈ [0, 2, 4, 6, 8] which make the CAFE experiment have
especially low execution time relative to other two-qubit benchmarking techniques. In Sec. III we showed that using
CAFE to characterize a CZ gate can allow for a more accurate fidelity estimation than the widely used Randomized
Benchmarking (RB) protocol while using significantly less experimental resources. Note that we also simulate the
sampling of 2000 shots used experimentally, which places an upper bound on the standard deviation of all the CAFE
data points presented in Figs. 3, 4, and 5 of

σF ≤ 1

8
√
Nshots

≈ 0.0028, (E1)

which is smaller than all the markers used in the plots of the main text.
Importantly, these simulations allow us to confirm the validity of the CAFE experiment and following fitting

procedure to obtain accurate estimates of the following: the average gate fidelity of the quantum operation with
regards to any reference unitary, the incoherent error contribution to the infidelity and the coherent error contribution.
The simulations were performed using the open-source software Cirq [40].
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FIG. 11. Simulating the CAFE experiment for characterizing 1000 different CZ gates with realistically small coherent errors
and depolarizing incoherent noise. Two error budgeting techniques obtained by fitting this CAFE data are presented. In blue,
using a quadratic fit for the fidelity at depths n ∈ [0, 2, 4], and in orange using the analytical expression of Eq. (4) for depths
n ∈ [0, 2, 4, 6, 8]. Inset shows the median absolute errors (MAE) of the two error budgeting techniques from the true values
inserted into the simulation. We note that MAE scales with the true error of the gates being considered. The true incoherent
(coherent) errors are obtained from the channel’s average gate infidelity when only depolarizing errors (unitary errors) are
present in the simulation.

1. Depolari ing noise

In a first case, we consider that the noisy CZ gate we are trying to characterize is described by the quantum channel

E(ρ) =(1− pdepol) Ṽ ρ Ṽ
† + pdepol Id/d , (E2)

which outputs a totally depolarized state with probability pdepol, and otherwise applies the excitation-preserving
unitary

Ṽ (θ, ζ, χ, γ, ϕ) =




1 0 0 0

0 e−i(γ+ζ) cos θ −i e−i(γ−χ) sin θ 0

0 −i e−i(γ+χ) sin θ e−i(γ−ζ) cos θ 0

0 0 0 −e−i(2γ+ϕ)


 , (E3)

where we allow for miscalibrations in all of the five angles that parametrize this gate, where Ṽ (0, 0, 0, 0, 0) = CZ. For
the simulation, we then sample the depolarizing probability uniformly in the range from 0 to 0.05, and sample the
miscalibrated angles from a normal distribution with zero mean and standard deviation of 0.05 rad such that

pdepol ∝ U(0, 0.05) (E4)

{θ, ζ, χ, γ, ϕ} ∝ N (0, 0.052). (E5)

Using this model, we can simulate the noisy CAFE experiment for different cycle repetitions n, and then fit these
data points to obtain an error budgeting of the noisy CZ gate, which we can compare directly with the true parameter
values that were drawn for the simulation.
In Fig. 11, we present the average gate infidelity (1 − F), incoherent error contribution ϵincoh, and coherent error

contribution ϵcoh to this infidelity for 1000 independently sampled unitaries and depolarizing probabilities. We present
two valid gate error budgeting approaches, one which fits the CAFE data with the analytical expression in Eq. 4 (orange
points), and one which uses the simple quadratic form of Eq. 8 (blue points). These scatter demonstrate the validity
of CAFE to characterize the fidelity of a quantum operation and budget its coherent and incoherent contributions
with an imprecision smaller or equal to 0.001 on median for realistic gate fidelities. Note that the reported median
absolute errors depend on the specific range of gate fidelities considered. For example, the MAE values decrease
significantly when considering only gate infidelities < 1% in the ensemble.
The quadratic fit results shown in blue in Fig. 11 are an indication of how the CAFE framework can be deployed in

order to estimate the fidelity of an operation in context. However, this simplest approach gives slightly biased results
for ϵincoh and ϵcoh, which is understood from the breakdown of the npdepol ≪ 1 approximation and/or the nα ≪ 1
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FIG. 12. Similar simulations as presented in Fig. 11, now implementing realistic amplitude and phase damping incoherent noise
instead of a depolarizing channel. The analytical fit, which still uses Eq. (4) that effectively lumps the incoherent noise into a
pdepol probability, works remarkably well even under this different noise channel.

approximation, where α here stands for any of the five miscalibrated CZ angles. Consequently, using a quadratic fit
should be used carefully, for operations with high fidelity (> 99 %) and using shallow cycle repetitions n. In fact,
for these simulations, we have found that using larger depths than n = 4 for the quadratic fit decreased the accuracy
of the resulting error budgets. However, if the fidelity of the operation of interest is very high, for example with
single-qubit gates, using a quadratic fit becomes an attractive strategy when lacking a proper analytical model of the
error origins.

On the other hand, the analytical fit performs well for larger depths n since it does not rely on any approximation.
Here, we have only used the depths n ∈ [0, 2, 4, 6, 8] to be consistent with the experiment results of the main text.
These results are an important validation for CAFE, but not necessarily surprising since we are using the same error
model to simulate the experiment and to fit the resulting data. In the next sub-section, we show that this model also
holds very well for different noise models such as amplitude and phase damping, provided they cause realistic gate
infidelities of a few percent or less.

2. Amplitude and phase damping noise

To verify the robustness of the CAFE framework to different incoherent noise processes, we have also simulated a
two-qubit CAFE experiment where the quantum channel is described by the same unitary Ṽ with randomly sampled
angles as before, but now followed by a single-qubit amplitude and phase damping channel on both qubits. The total
decay and phase-flip probabilities for both qubits were sampled from a normal distribution with a standard deviation
of 0.03, before taking the absolute value

{pdecay,total, pphaseflip,total} ∝
∣∣N (0, 0.032)

∣∣ , (E6)

and the individual decay and phase-flip probabilities of the two qubits were splitting these total probabilities with a
ratio drawn from a normal distribution with mean of 0.5 and standard deviation of 0.1, such that the qubits have
similar but distinct coherence properties.

In Fig. 12, we show that the CAFE framework we developed again gives very accurate CZ characterizations and
error budgets. In particular, using the analytical expression of Eq. (4) to fit this CAFE data works remarkably well
given that the noise present in the gate cannot be fully described by the assumed depolarizing channel. Since the
incoherent noise is small, but in the realistic range of creating about 0.1 % to 4 % gate infidelity, the fit is able to
approximate well the incoherent error contribution into the single exponential of the model. This gives us confidence
that we can leverage this model in realistic gate characterization scenarios. Moreover, the simulations show that the
accuracy of using this model increases with increasing gate fidelities, which is a great indication for the continued
usefulness of this method as gates and qubit coherences keep improving.
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FIG. 13. Example of fitting the CAFE curve obtained in simulations with the depolarizing noise channel used in App. E 1
(left) and the amplitude and phase damping noise channel used in App. E 2 (right). In blue, we show simulations including
both incoherent errors of strength ϵincoh = 0.005 and coherent errors of ϵcoh = 0.002, and the dotted line shows the fit of this
data using Eq. (4). As in the main text, only the even depths are used in the fit, the odd depths points are presented with
x symbols simply to show their consistency with the model. Note: the green data is the same in both panels as we fix the
incoherent errors to be zero.

3. Fitting CAFE data

In Fig. 13, we present examples of the CAFE data together with fits to the model of Eq. (4) realized on the
simulation data to obtain the CZ error budgets presented in Figs. 11 and 12. We see that the model of Eq. (4) fits the
CAFE data very well for realistic noise of strength ϵincoh = 0.005 and ϵcoh = 0.002, even when the incoherent noise
comes from an amplitude and phase damping channel. In Fig. 13, we also show simulation data using the same noise
channel but an ideal unitary (ϵcoh = 0) in red, and using the same unitary without any incoherent noise (ϵincoh = 0)
in green. The linear and purely quadratic behaviors of these curves, respectively, can be easily understood from the
quadratic form of Eq. (8) where the incoherent errors build up linearly with n, whereas the coherent errors build up
quadratically.
Since we simulate the actual 16 circuits used to obtain the average gate fidelity at different depths, we capture some

depth-dependent behaviors that are due to coherent effects in the single- and two-qubit unitaries (see for example
the green ‘x’ at n = 1 in Fig. 13, which is actually higher than the point at n = 0). This is not an artifact of the
finite sampling, but is due to the fact that the preparation and measurement circuits both require an imperfect CZ

gate, which can coherently map the state closer or further away from the desired state |00⟩, depending on the specific
imperfect unitaries. Similarly, part of the incoherent noise channel can anti-commute with the CZ unitary and produce
back-and-forth behaviors between the odd and even depths n. We have found in simulation that using only the even
depths avoids this issue, while performing similarly or better in terms of accuracy in error budgeting, compared to
using all the even and odd depths.

Appendix F: Dynamical Decoupling in CAFE

In this Appendix, we show how applying an X gate to both qubits after the CZ in the cycle circuit decouples the
fSim unitary from both of its single-qubit phases. First, we can show that interleaving a pair of fSim gates with
parallel X gates gives a cycle unitary that also corresponds to an fSim gate. To see this, consider what happens when
conjugating an fSim unitary by parallel Xs:

(X ⊗X)fSim(X ⊗X) =



0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0







1 0 0 0
0 e−iγu11 e−iγu12 0
0 e−iγu21 e−iγu22 0
0 0 0 e−i(2γ+ϕ)






0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 (F1)

=




e−i(2γ+ϕ) 0 0 0
0 e−iγu22 e−iγu21 0
0 e−iγu12 e−iγu11 0
0 0 0 1


 , (F2)
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where we’ve factored the fSim unitary into phases between the particle-number subspaces and a special unitary U in
the single-excitation subspace

U =

(
u11 u12
u21 u22

)
=

(
e−iζ cos θ −ieiχ sin θ

−ie−iχ sin θ eiζ cos θ

)
. (F3)

Following this with a second fSim gate gives

fSim(X ⊗X)fSim(X ⊗X) = e−i2γ




e−iϕ 0 0 0
0 ũ11 ũ12 0
0 ũ21 ũ22 0
0 0 0 e−iϕ


 (F4)

UXUX = Ũ =

(
ũ11 ũ12
ũ21 ũ22

)
=

(
u11u22 + u212 u11(u21 + u12)
u22(u21 + u12) u11u22 + u221

)
. (F5)

Here the common phase γ has been eliminated (only appearing as a global phase), and the controlled phase ϕ is a
relative phase between the even- and odd-parity subspaces. For the case of something close to a CZ gate (small swap
angle θ and small differential phase ζ), the single-excitation unitary simplifies to

U = I − i(θ cosχX − θ sinχY + ζZ) +O(ζ2) +O(θ2) (F6)

XUX = I − i(θ cosχX + θ sinχY − ζZ) +O(ζ2) +O(θ2) (F7)

UXUX = I − i2θ cosχX +O(ζ2) +O(θ2) +O(ζθ) . (F8)

As such, the effects of the differential phase ζ, to first order, are also removed by this echoing.

Appendix G: Swap errors without phase matching

When running CAFE with characterized unitaries in the experiments performed in this work, we do not attempt to
correct the swap errors. This is for two reasons. First, the swap errors are the smallest errors in the system, and tend
to be overshadowed by the other sources of error. Second, in our system, the relative phases accumulated between
qubits sitting at different idle frequencies are accounted for by changing the microwave phases. This is possible
because the two-qubit gate we are using, the CZ gate, ideally commutes with such differential phases. The effect of
not “phase matching” (that is, removing this differential phase by shifting qubit frequencies) on swap errors is that
the swap phase χ is shifted from cycle to cycle, preventing the swaps from coherently adding and further diminishing
their effect relative to the other error sources. Should one be concerned with relatively large swap angles θ, one could
incorporate the application-dependent value of χ in the determination of the circuit to map the predicted state back
to |00⟩.

Appendix H: Additional CZ Data

For completeness, we present in Fig. 14 the entire error budget results from the parallel CZ CAFE dataset acquired
on a Sycamore processor. This data illustrates that CAFE can be straightforwardly deployed on large-scale quantum
processors to characterize the fidelity of quantum operations in parallel, while budgeting the incoherent and coherent
error contributions. For reference, we also present an error budgeting of the same CZ gates obtained from XEB. Note
that in this latter case, the coherent error contribution is obtained by subtracting the incoherent speckle purity error
from the total XEB error, which gives an unphysical negative ϵincoh value for 33 out of the 103 gates. In our tests,
this problem did not arise for CAFE.
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FIG. 14. Error budgets of parallel CZ gates on a Sycamore processor. Data in blue is obtained from the CAFE experiment
using the procedure detailed in the main text, where 3 samples of this data are shown in Fig. 3. For reference, we present
similar gate error budget information as obtained from standard XEB in gray, where the incoherent error is extracted from
the speckle purity and the coherent error is obtained from the difference with the total gate error. Data shows 103 different
two-qubit gates.
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5.4 Publication [4] : Estimation des paramètres unitaires de portes
quantiques (MEADD)

Je suis second auteur de l’article suivant [4], lequel est en processus de révision finale
pour sa publication dans la revue npj Quantum Information. Alors que le premier et le dernier
auteur ont eu l’idée du protocole MEADD et ont élaboré la majorité des formulations
analytiques, j’ai principalement contribué à raffiner la méthodologie ainsi qu’à la mise en
œuvre numérique et expérimentale du protocole pour l’ensemble de ses applications sur
différentes portes quantiques. J’ai grandement contribué à rédiger l’article en plus d’acquérir
toutes les données expérimentales et de produire l’ensemble des figures.
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Repeating a gate sequence multiple times amplifies systematic errors coherently, making it a use-
ful tool for characterizing quantum gates. However, the precision of such an approach is limited
by low-frequency noises, while its efficiency hindered by time-consuming scans required to match
up the phases of the off-diagonal matrix elements being amplified. Here, we overcome both chal-
lenges by interleaving the gate of interest with dynamical decoupling sequences in a protocol we call
Matrix-Element Amplification using Dynamical Decoupling (MEADD). Using frequency-tunable su-
perconducting qubits from a Google Sycamore quantum processor, we experimentally demonstrate
that MEADD surpasses the accuracy and precision of existing characterization protocols for esti-
mating systematic errors in single- and two-qubit gates. In particular, MEADD yields factors of 5 to
10 improvements in estimating coherent parameters of the CZ gates compared to existing methods,
reaching a precision below one milliradian. We also use it to characterize coherent crosstalk in the
processor which was previously too small to detect reliably.

I. INTRODUCTION

Scalable quantum computation suffers from system-
atic errors, such as over-rotation and crosstalk. Char-
acterizing these errors often requires coherently ampli-
fying them by repeating the same gate sequence in a
quantum circuit, a core principle of many schemes [1–5].
This approach also allows one to distinguish errors in the
gate of interest from state preparation and measurement
(SPAM) errors. However, in practice, noise in the sys-
tem often overshadows small, systematic coherent errors,
limiting the extent to which they can be amplified and
characterized with precision. In particular, frequency-
tunable superconducting qubits suffer from slow fluctu-
ations and drift in qubit frequencies [6, 7], imposing a
noise floor that limits the precision of standard charac-
terization approaches.
In this work, we introduce Matrix-Element Amplifica-

tion using Dynamical Decoupling (MEADD) – a protocol
for amplifying coherent errors even in the presence of low-
frequency noise. This is achieved by interleaving the gate
of interest with carefully chosen single-qubit gates that
implement a dynamical decoupling (DD) sequence [8–
12], echoing away irrelevant and noisy parameters while
amplifying the parameter being measured. The working
principle of MEADD is illustrated in Fig. 1, using the
CZ gate as an example. While its primary application
is for characterizing two-qubit gates, we also apply the
principles of MEADD to the single-qubit setting by in-
corporating the gate of interest into the DD sequence.
We experimentally demonstrate the effectiveness of our
approach using a Google Sycamore processor, see Supple-
mentary Information in [13] for details of the hardware.

∗ E-mail: jarthurgross@google.com
† E-mail: qzj@google.com

We combine ideas from several established charac-
terization techniques. Like Floquet calibration [4, 5],
MEADD fundamentally measures eigenvalue differences,
allowing amplification of errors and mitigation of SPAM.
The additional ingredient is to use DD sequences to en-
sure the eigenvalue difference only depends on one gate
parameter at a time, much like what is done in Hamilto-
nian learning [14]. This isolation significantly simplifies
data processing, making it easy to debug and relatively
robust to unknown processes such as stray couplings and
leakage. By echoing away unknown and irrelevant diag-
onal terms, it also eliminates the need for costly scans
to identify resonance conditions, i.e., phase matching off-
diagonal matrix elements so that they add to each other
constructively when the gate is repeated n times. This
gives MEADD greater efficiency in the number of exper-
iments to run, which need only scale logarithmically in
the maximum circuit depth, compared to similar noise-
robust methods based on signal processing [15], which
scale linearly in circuit depth.

An essential requirement of MEADD is the robustness
to systematic errors in the DD implementation, such as
over rotations. These errors can also be amplified coher-
ently, ultimately spoiling the estimation of the intended
parameter. We present a systematic approach to con-
structing DD sequences such that these types of errors
cancel each other to the first order, ensuring accuracy and
reliability in practice. Since these robust DD sequences
depend on the gate of interest, MEADD is most suitable
for characterizing gates whose errors can be thought of
as perturbations of the ideal gate.

The main text begins with Sec. II, where we describe
implementation details for single- and two-qubit gates on
frequency-tunable superconducting qubits. Understand-
ing these details is critical to designing efficient methods
for characterizing such operations. In Sec. III, we present
experimental results for the CZ gate, single-qubit X ro-
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(c)

γϕ + γ ϕ

ϕ

(a) Standard amplification

(b) MEADD

|0⟩
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|0⟩

MeasPrep

n
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X
ϕ

X

X

X

X

X

X
n

n

ϕ + γ

FIG. 1. Schematic of the working principle of MEADD. (a) Standard gate repetition amplifies the matrix elements to estimate,
but also amplifies other coherent and incoherent (noise) processes. (b) Making use of single-qubit dynamical decoupling
sequences, MEADD filters out specific matrix elements while additionally echoing out the noisy time-varying single-qubit
phases. The parameter we are estimating—together with other matrix element commuting with the DD gates—then builds
up linearly with depth and can be fitted from the slope, with Heisenberg scaling in precision with circuit depth. All MEADD
circuits possess this simple structure, with a preparation and pre-measurement layer containing at most a single entangling
operation together with at most four single-qubit gates, and terminated by standard single-qubit Z-basis measurement. (c)
Fluctuations in a noisy parameter γ (red), representing single-qubit phases for example, can overshadow the estimation of a
stable parameter ϕ (black) in a simple gate repetition scheme that provides estimates depending on both of these parameters
(purple). Note that a separate, and necessarily noisy, estimation of γ is therefore required to find ϕ. In contrast, MEADD
provides a direct estimate of the stable parameter ϕ as illustrate on the bottom, thus yielding more precise and accurate
characterization information.

tations, and crosstalk. In all these cases, MEADD gives
improved accuracy, precision, and efficiency over existing
techniques. In Sec. IV we discuss the characterization
protocol for single-qubit gates and explain how matrix-
element amplification works in practice. In Sec. V we
detail the MEADD protocol for characterizing the entan-
gling parameters of two-qubit excitation-preserving gates
before demonstrating in Sec. VI that it is robust to im-
plementation errors in the DD gates.

II. GATES IN SUPERCONDUCTING SYSTEMS

Leveraging the hierarchy of precision in the different
controls available on a quantum device is central to de-
signing highly accurate and reliable characterization pro-
tocols. It is important to understand how quantum gates
are implemented with specific types of devices. To that
end, we present the considerations for calibrating gates in
tunable-frequency superconducting qubits, highlighting
the principal noise sources therein [7, 16–18]. That said,
our method can be adapted to various types of quantum
devices by modifying the gate sequences accordingly.
Consider a qubit driven by a microwave pulse, where

we ignore leakage errors into energy levels lying outside
of the qubit subspace. Under the rotating wave approxi-
mation (RWA), the Hamiltonian for this two-level system
is (ℏ = 1)

HRWA(t) = −1

2
ω01(t)Z +

(
Ω(t) e−iνtσ− + h.c.

)
, (1)

where Z = |0⟩⟨0| − |1⟩⟨1|, |0⟩ and |1⟩ representing the

ground and first excited states of the qubit, respectively.
The terms with σ− = |1⟩⟨0| and its Hermitian conjugate
σ+ = |0⟩⟨1| capture the microwave control field, where
Ω(t) is an envelope function with bandwidth ∼100MHz
and ν/2π is the nominal microwave frequency, sitting
at several GHz. The parameter ω01(t) is the angular
frequency of the qubit, adjustable via the SQUID loop
flux. Ideally, ω01(t) matches ν during idle periods and
rotations about axes in the X-Y plane. However, noise
in the flux control line and surrounding electromagnetic
environment can cause ω01(t) to drift, leading to vari-
ous errors when performing qubit operations. This can
be seen directly by moving to the interaction frame of
the microwave frequency |ψI(t)⟩ = e−iνtZ/2 |ψ(t)⟩, which
eliminates the rapidly oscillating phase e−iνt in Eq. (1)
as follows

HI(t) = e−iνtZ/2HRWA(t) e
iνtZ/2 +

1

2
νZ (2)

= −1

2
δω01(t)Z +

(
Ω(t)σ− + h.c.

)
. (3)

Here, one can directly see how any non-zero detuning
δω01(t) = ω01(t) − ν ≪ ν can lead to unwanted Z rota-
tions. The resulting unitary produced by this drive can
be formally written as

UI = T exp

(
−i
∫ tf

ti

HI(t) dt

)
, (4)

where T is the time ordering operator and ti (tf ) the
initial (final) time of the pulse.
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We now discuss how to implement quantum logical cir-
cuits in the above interaction picture, i.e. control HI(t)
such that UI corresponds to the desired quantum gate.
Note that as we always initialize and measure the qubits
in the Z basis, there is no need to implement the unitary
e−iνtZ/2 for the frame change before the final measure-
ment. However, any gate operation that is not diagonal
in the Z basis needs to account for the frame change, a
process known as phase tracking or matching.
Single-qubit XY rotations (microwave gates). An ar-

bitrary SU(2) matrix can be parameterized using three
angles as

R(µ, ζ, χ) =

(
e−iζ cos µ

2 −i eiχ sin µ
2

−i e−iχ sin µ
2 eiζ cos µ

2

)
. (5)

This parametrization directly leads to an Euler decom-
position of arbitrary single-qubit gates as an X rotation
sandwiched by two Z rotations:

R(µ, ζ, χ) = Z(ζ − χ)X(µ)Z(ζ + χ) , (6)

where

X(φ) = e−iφX/2 , Z(φ) = e−iφZ/2 . (7)

The rotation X(µ) can be achieved by applying a mi-
crowave pulse to the qubit, e.g., Ω(t) = µC(t), where
C(t) is the shifted cosine function

C(t) =

{ 1
2T

(
1 + cos 2πt

T

)
, for −T

2 ≤ t ≤ T
2 ,

0, for |t| > T
2 ,

(8)

where the pulse time T is around 15 ns in our system.
As such, the parameter µ of the single-qubit gate is di-
rectly determined by the amplitude of the microwave
drive, which can be controlled to a high precision using
standard arbitrary waveform generators.
More generally, we consider a rotation along an arbi-

trary axis in the XY plane, which we notate as a phased-X
rotation

PhX(µ, ϑ) ≡ Z(ϑ)X(µ)Z(−ϑ) , (9)

where µ and ϑ specify the angle and axis of the rotation,
respectively. It can be implemented by simply changing
the phase of the microwave pulse

Ω(t) = µeiϑC(t) . (10)

This microwave phase can be used to control χ much
more precisely than the uncertainties on the qubit phase,
making it an ideal control knob to use in designing char-
acterization protocols. Additionally, the freedom we have
in the microwave phase allows us to eliminate one Z ro-
tation from our single-qubit gate

R(µ, ζ, χ) = Z(2ζ)PhX(µ,−ζ − χ) , (11)

which can save time and reduce errors.

In practice, we additionally make corrections to the
pulse, such as compensating for the AC Stark effect by
introducing a detuning ∆(µ),

Ω(t) = µeiϑe−i∆(µ)tC(t) , (12)

which can also be used to adjust the gate parameter ζ.
Finally, we make use of Derivative Removal by Adia-
batic Gate (DRAG) [19] pulses to mitigate leakage errors,
which consist of mixing the original pulse Ω(t) with its
first time derivative; see App. A for a simple derivation.
Impedance mismatches in the control lines can reflect mi-
crowave pulses, which cause delayed tails after the main
pulses. Here we assume that these tails do not bleed into
the entangling pulses such as to preserve the indepen-
dence of consecutive gates.
Physical single-qubit Z rotations. Rotations around the

Z axis can be implemented simply by moving the qubit
frequency away from ν for some duration using a flux
pulse, while leaving Ω(t) = 0. This can be seen directly
by considering the evolved qubit state in the interaction
frame under the propagator of Eq. (4)

|ψI(tf )⟩ = eiφ(tf , ti)Z/2 |ψI(ti)⟩ , (13)

where the Z-rotation angle reads

φ(tf , ti) =

∫ tf

ti

δω01(t) dt . (14)

This type of Z rotation typically takes ∼20 ns to imple-
ment on our hardware (including a ∼10 ns pulse and two
5 ns paddings before and after the pulse), regardless of
the angle, with a corresponding gate infidelity of about
10−3. However, these physical Z pulses typically have
nonzero tails lasting much longer than the gate time [20–
22], on the order of hundreds of ns in our devices, which
can disturb many subsequent operations.
Virtual single-qubit Z rotations. For quantum circuits

consisting of only single-qubit gates and diagonal two-
qubit gates, such as the CZ gate, the Z rotations can be
implemented in software without actually sending flux
pulses to the qubits [17]. This is because Z rotations
commute with diagonal two-qubit gates, and when com-
muted through a microwave gate, only change its phase
χ, which we can control with high precision relative to
physical Z rotations.
In more detail, one can push single-qubit Z rotations

from the beginning of the circuit down—through any
two-qubit gates—and combine them with other Z rota-
tions along the way until they hit single-qubit gates that
are not Z rotations. One can then use Eq. (11) to put
the Z rotations after the XY rotations, and repeat the
same procedure until all the single-qubit Z rotations are
pushed to the end of the circuit. Finally, they can be
directly eliminated because the qubits are measured in
the Z basis. The above process also works for two-qubit
gates that are diagonal up to a SWAP. However, physi-
cal Z rotations are still required for most other two-qubit
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gates, and they are typically applied before every two-
qubit pulses in these cases.
Relative axes of XY rotations. Consider a circuit

consisting of only XY rotations and diagonal two-qubit
gates, such as CZ. One can implement the following
gauge transformation on all the XY rotations without
affecting the measurement results

χj → χj + constant, (15)

where χj is the rotation axis of the j-th XY gate. There-
fore, the absolute value of χ has no physical significance
and cannot be measured using such circuits. The relative
χ between two different XY rotations, however, is physi-
cal and needs to be calibrated. For example, we consider
the relative χ between a π gate and a π/2 gate, which is
nonzero due to effects such as ac-Stark shifts imparting
χ differently for different values of µ. Suppose one has
a well calibrated −π/2 pulse, meaning µ = −π/2 and ζ
has been removed through virtual Z phase updates,

R(−π/2, 0, χπ/2) = Z(−χπ/2)X(−π/2)Z(χπ/2) , (16)

and a π pulse with well calibrated rotation angle µ

R(π, 0, χπ) = Z(−χπ)X(π)Z(χπ) . (17)

One can characterize the relative phase χπ/2 − χπ by
considering the composite gate:

R(π, 0, χπ)R(−π/2, 0, χπ/2) (18)

= Z(χπ/2 − 2χπ)X(π/2)Z(χπ/2) (19)

= R(π/2, ζ, χ) , (20)

where

ζ = χπ/2 − χπ , χ = χπ . (21)

The relative phase is now ζ of the composite gate, and
can be estimated using our calibration circuits.
Two-qubit gates. In a Sycamore quantum processor,

two-qubit gates are performed by applying flux pulses to
both qubits and the frequency-tunable coupler between
them [23]. The first two pulses bring the qubits into
resonance with each other, while the third pulse activates
a tunable excitation-preserving interaction that can be
used to perform entangling gates. We parametrize the
most general excitation-preserving two-qubit gates by the
swap angle 0 ≤ θ ≤ π/2, the swap phase χ, the controlled
phase ϕ, and the differential and common single-qubit
phases ζ and γ, respectively:

U(θ, ζ, χ, γ, ϕ) =



eiγ 0 0 0

0 e−iζ cos θ −i eiχ sin θ 0

0 −i e−iχ sin θ eiζ cos θ 0

0 0 0 e−i(γ+ϕ)


 . (22)

Z(−γ′ )

Z(−γ′ ) Z(−ζ+)

Z(+ζ+) Z(+ζ−)

Z(−ζ−)
F(θ,ϕ)

F(θ,ϕ)
Z(+ζ+)

Z(−ζ+) Z(−ζ−)

Z(+ζ−) Z(−γ′ )

Z(−γ′ )

FIG. 2. Two equivalent ways to decompose the arbitrary
excitation-preserving two-qubit gate U(θ, ζ, χ, γ, ϕ) defined in
Eq. (22) into single-qubit Z rotations and the fundamental en-

tangler F (θ, ϕ) = e−iθ(X⊗X+Y⊗Y )/2−iϕZ⊗Z/4. While the dif-
ferential phases ζ± = (ζ±χ)/2 do not commute with F (θ, ϕ),
the symmetric phase γ′ = γ + ϕ/2 does and can be placed
either before or after the entangling operation.

In our representations of two-qubit gates, we use the lexi-
cographically ordered basis {|00⟩ , |01⟩ , |10⟩ , |11⟩}, where
the left bit corresponds to the left qubit in tensor prod-
ucts and the top wire in circuit diagrams.
One can separate the entangling parameters θ and ϕ

from the single-qubit Z-phase parameters χ, ζ, and γ, as
show in Fig. 2, which is a special case of the KAK decom-
position [24]. Given the aforementioned low-frequency
flux noise and drift in the control electronics, the param-
eters ζ, χ, and γ associated with single-qubit Z phases are
much less stable than the entangling parameters θ and
ϕ in our device. The instability in single-qubit phases
ultimately hinders one’s ability to characterize precisely
the entangling-gate parameters, as shown schematically
in Fig. 1(c). We solve this problem with MEADD by
decoupling the estimation of θ and ϕ from the noise as-
sociated with flux control.

III. EXPERIMENTAL RESULTS

In this section we present comprehensive benchmark
results on a 69-qubit Sycamore processor for characteriz-
ing CZ gates, single-qubit microwave gates, and crosstalk
due to charge-charge (capacitive) coupling. In all these
cases MEADD significantly outperforms other character-
ization methods both in terms of accuracy, precision, and
efficiency. We defer the implementation details and ro-
bustness discussions to later sections.
Entangling parameters in CZ. We compare MEADD to

cross-entropy benchmarking (XEB) [13], unitary tomog-
raphy (UT) [23] and the phase method (PM) [5] in Fig. 3.
In panel (a), we use a recently introduced protocol named
Context-Aware Fidelity Estimation (CAFE) [25] to as-
sess the accuracy of different methods, where the average
gate fidelity between the learned unitary and the physi-
cal gate implemented is estimated. Using different num-
bers of gate repetitions n gives the protocol robustness
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FIG. 3. Experimental results of MEADD on CZ gates. (a) Fidelity of our CZ gates obtained using the Context-Aware Fidelity
Estimation (CAFE) protocol [25] with respect to unitaries characterized by MEADD (blue), Cross-Entropy Benchmarking
(XEB, orange), and a perfect CZ (gray). Solid lines with markers are the median over 85 different CZ gates of a single
Sycamore device, and the shaded regions are the inner quartile regions. A higher CAFE fidelity corresponds to a more accurate
unitary characterization of the gate, see text for details. Inset shows the empirical cumulative distribution functions (CDF)
of the coherent errors inferred from the CAFE curves of every CZ gate, with median values reported in the legend. Also
shown are the results obtained using the unitary tomography (UT, green) and the phase method (PM, red) characterization
protocols. (b) Empirical CDFs of run-to-run standard deviations in the characterized controlled phase ϕ, and (c) swap angle
θ, measured over 12 sequential characterizations of the 85 CZ gates. The different protocols were interleaved with one another
over several hours to average out device inconsistencies. The median standard deviations of the different methods are reported
in milliradian in the plots.

to SPAM errors and allows for error budgeting in terms
of incoherent and coherent contributions, as these errors
build up linearly and quadratically with n to lowest or-
der [25]. As such, the CAFE results at each depth n
give an estimate of the average gate fidelity between any
given unitary Un and the physical gates implemented
(nominally CZn) such that a higher fidelity directly cor-
responds to a more accurate unitary description of the
gate. The unitaries extracted with MEADD outperform
all other unitary characterization techniques as measured
by CAFE. Specifically, looking at the inset of Fig. 3(a),
we see that MEADD captures significantly more of the
coherent error budget, resulting in a median of 2.5×10−4

uncharacterized coherent error across the 85 CZ gates
characterized, 3-5x smaller than the other methods.

In Fig. 3(b-c), we compare the precision of MEADD
to the other methods by repeating the different unitary
characterization techniques and reporting the run-to-run
standard deviation of the estimated two-qubit entangling
parameters ϕ and θ for all 85 CZ gates of the device.
MEADD provides significantly more consistent charac-
terizations than any other method, with 5x and 10x im-
provements over XEB for the controlled phase ϕ and swap
angle θ, respectively. Remarkably, MEADD achieves a
3.4×10−4 rad standard deviation for estimating the resid-
ual swap angle θ of our CZ gates. Such precision, below
one milliradian, promises to be a key asset in the cali-
bration of stable high fidelity two-qubit gates as required
for scalable quantum error correction applications. Com-
bined with the high accuracy of the MEADD estimates
shown in Fig. 3(a), these results show the effectiveness

of dynamical decoupling pulses in isolating the parame-
ter of interest from low-frequency and other noise sources
present in frequency-tunable transmons.

Relative axes of XY rotations. We additionally show
how low-frequency noise is mitigated using a simple ex-
ample that can be regarded as MEADD for single-qubit
gates. In Fig. 4, we present similar benchmarks of the
accuracy and precision of MEADD, now for the case of
interleaved single-qubit X(−π/2) and X(π) gates over
the 69 qubits of the device. In panel (a), we compare the
CAFE results obtained using the unitaries constructed
from the MEADD estimates (blue) of the relative axis
ζ = χπ/2 − χπ in Eq. (21) to the ones assuming per-
fect gates (gray). The higher fidelities obtained from the
MEADD unitaries indicate that these characterizations
accurately describe the implemented gates. In panels (b)
and (c), we compare the MEADD characterization re-
sults to a direct 4-axis tomography protocol which con-
sists of preparing an equatorial state, applying an X(π)
pulse, and then measuring expectation values of X and
Y . Since the state preparation and measurements use
X(−π/2) gates, this protocol measures the relative axes
of the X(π) and X(−π/2) gates just like MEADD with
interleaved X(−π/2) and X(π) gates does, as described
at the end of Sec. IV. MEADD achieves a median run-to-
run standard deviation of 6.11×10−4 rad on estimating ζ,
a 6x improvement over the tomography protocol. This is
illustrated in panel (b) for a representative qubit, show-
ing the tight distribution of repeated characterizations.
By providing such reliable unitary characterizations in an
experimentally efficient protocol, MEADD demonstrates
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(a) (b) (c)

0.61 3.9

FIG. 4. Experimental results of MEADD for interleaved single-qubit X(−π/2) and X(π) gates. (a) CAFE results for the
single-qubit unitaries characterized by MEADD (blue) compared to assuming a perfect gate (gray) for 69 qubits of a single
Sycamore device. The cycle circuit being repeated in CAFE is the same as in the MEADD protocol, namely a X(−π/2)
rotation followed by a X(π) rotation, performed in parallel on all qubits. Solid lines with markers are the median over the
69 qubits, and the shaded regions are the inner quartile regions. (b) Distributions of the characterized relative rotation axis
parameter ζ = χπ/2 − χπ defined in Eq. (21) for a representative single-qubit gate characterized 32 times interleaved between
MEADD (blue) and 4-axis tomography (orange), using the same number of measurements for both methods. (c) Distributions
of run-to-run standard deviations in ζ estimates for the two methods over the 32 sequential characterizations of the 69 qubits.
The median standard deviations of the two methods are reported in milliradian.

its utility for calibrating high-fidelity operations in qubits
subject to low-frequency flux noise.
Crosstalk. While we have discussed MEADD so far

in the context of characterizing gates, we can also use
it to measure other parameters of our system. A good
example is crosstalk between qubits caused by unwanted
charge-charge (capacitive) couplings, which results in a
qubit-subspace Hamiltonian of the form

H ∝ eiχ σ+ ⊗ σ− + h.c., (23)

and produces an unwanted excitation swapping with an-
gle θxtalk. These terms are often hard to measure, as
swapping between the two qubits is suppressed when
their detuning, on the order of 100MHz, is much larger
than the unwanted coupling, which is typically on the
order of 100 kHz. The errors this incurs for typical gate
times (10s of nanoseconds) yields average gate infidelities
between 1 × 10−5 and 1 × 10−4, which while small can
be particularly damaging due to their nonlocal nature
within error-correcting circuits [26].
A typical strategy for measuring the swap in this

case is to tune the qubits to resonance. Since the
qubit frequency uncertainty is typically on the order
of 100 kHz, such a strategy requires scanning over the
qubit-frequency control to find the resonance, which is
expensive to perform in practice. In contrast, we can
use MEADD to directly estimate the unwanted crosstalk
without any qubit flux tuning.
We demonstrate the precision of this MEADD-based

crosstalk characterization strategy in Fig. 5. As shown in
panel (a), we obtain MEADD data with an unambiguous
signal for swapping angles on the order of only 1mrad.
We can fit this data to reliably characterize crosstalk-

induced swapping with a precision below 0.1mrad, as
shown in panel (c), which corresponds to an uncertainty
on the effective swapping coupling strength of less than
0.5MHz. Note that this protocol can readily be used to
characterize long-range crosstalk across distant qubits on
the processor.

IV. CHARACTERIZING SINGLE-QUBIT
GATES WITH COHERENT AMPLIFICATION

Having presented the experimental results of MEADD,
we now describe how the protocol works, starting with
the single-qubit version. For the arbitrary single-qubit
gate R(µ, ζ, χ) in Eq. (5) we set µ = 2θ to draw an ex-
plicit connection to the two-qubit parametrization (22),

R(µ, ζ, χ) = I cosΩ(θ, ζ)− i σ(θ, ζ, χ) sinΩ(θ, ζ) , (24)

where

cosΩ = cos θ cos ζ , Ω ∈ [θ, π − θ] , (25)

and the spin-1/2 operator

σ =
sin θ

sinΩ

(
X cosχ− Y sinχ+ Z cot θ sin ζ

)
. (26)

In matrix form, we have

σ(θ, ζ, χ) =

(
cos ϱ eiχ sin ϱ

e−iχ sin ϱ − cos ϱ

)
, (27)

where the polar angle ϱ is defined by

ϱ = arccot(cot θ sin ζ) , ϱ ∈ [θ, π − θ] . (28)
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0.07

0.42

(a) (b) (c)

CZ
CZθxtalk

FIG. 5. Experimental results of MEADD for characterizing crosstalk. (a) Evolution of the components of the Bloch vector
in the odd-parity sector, Xodd = |10⟩⟨01| + |01⟩⟨10|, Yodd = i |10⟩⟨01| − i |01⟩⟨10|, and Zodd = |01⟩⟨01| − |10⟩⟨10|, for two
neighboring qubits involved in 2n parallel CZ gates. The corresponding crosstalk angle is about 4mrad per cycle. Error bars
correspond to the standard deviation over 2000 shots and are smaller than the data markers. Distributions of (b) the median
crosstalk swap angle θxtalk and (c) the run-to-run standard deviation in this estimate after repeating the measurement 10 times
over one hour for 24 neighboring CZ gates on the Sycamore processor. As shown in the inset, the 34 ns CZ gates (gray) are
performed simultaneously on neighboring qubit pairs (green and yellow), and we use MEADD to characterize the residual swap
angle produced by these operations, yielding θxtalk = (0.42± 0.07) mrad on median.

We can measure the eigenvalues ±Ω(θ, ζ) of R precisely
by preparing and measuring uniform superpositions of
the eigenstates of R:
∣∣σ+

〉
= eiχ/2 cos(ϱ/2) |0⟩+ e−iχ/2 sin(ϱ/2) |1⟩ (29)

∣∣σ−〉 = eiχ/2 sin(ϱ/2) |0⟩ − e−iχ/2 cos(ϱ/2) |1⟩ , (30)

where σ |σ±⟩ = ± |σ±⟩. We parametrize these superpo-
sitions by the relative phase τ between them

|Φ(τ)⟩ = 1√
2

(
e−iτ/2

∣∣σ+
〉
+ eiτ/2

∣∣σ−〉) . (31)

After applying the cycle unitary n times to the initial
state, we have

Rn |Φ(τ0)⟩ = |Φ(τ0 + 2nΩ)⟩ . (32)

We then measure the probability of finding |Φ(0)⟩ ,

P0 =
∣∣⟨Φ(0)|Φ(τ0 + 2nΩ)⟩

∣∣2 (33)

=
1 + cos(τ0 + 2nΩ)

2
, (34)

and the probability to find |Φ(π/2)⟩ is

Pπ/2 =
∣∣⟨Φ(π/2)|Φ(τ0 + 2nΩ)⟩

∣∣2 (35)

=
1 + sin(τ0 + 2nΩ)

2
. (36)

Estimating these two measurement probabilities for a se-
quence of repetitions will give us the measurement record

2P0 − 1 + i(2Pπ/2 − 1) = exp
[
i(τ0 + 2nΩ)

]
, (37)

from which we can extract Ω by fitting the complex argu-
ment as a linear function of repetitions. This procedure
is robust to SPAM errors.

To extract the gate parameters µ and ζ, we perform a
set of similar experiments, where we add different virtual
Z rotations between the gates, giving us unitaries

Z(z)R(µ, ζ, χ) = Z(ζ + z − χ)X(µ)Z(ζ + χ) (38)

= R
(
µ, ζ + z/2, χ− z/2

)
. (39)

By measuring Ω(θ, ζ+z/2) as a function of z, one can fit
the curve to the form given in Eq. (25), obtaining µ and
ζ. Note this technique is identical to the technique for
extracting two-qubit gate parameters within the single-
excitation subspace given in [4]. Like there, the angle
χ does not manifest in the eigenphase Ω(θ, ζ), and so
we cannot coherently amplify errors in that parameter
without additional interventions. In other words, χ cor-
responds to a gauge transformation

R(µ, ζ, χ)n = Z(−χ)R(µ, ζ, 0)n Z(χ) , (40)

which does not add up when the same gate is repeated.
That being said, the relative axis of two different single-
qubit gates can be estimated with amplified precision.
For example, we amplify the relative axis between X(π)
and X(−π/2) defined in Eq. (21) by interleaving them
many times. Any low-frequency noise in the qubit fre-
quency that would cause phase to accumulate between
the gates will be echoed away, making the measurement
of this relative phase robust to these fluctuations.
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V. CHARACTERIZING
EXCITATION-PRESERVING TWO-QUBIT

GATES WITH MEADD

The entangling parameters ϕ, θ, and χ of our two-qubit
gates are more consistent over time than the single-qubit
phases that are susceptible to low-frequency flux noise.
It would therefore be useful to design characterization
circuits that are sensitive only to the stable entangling
parameters. To that end, we introduce microwave gates
that are interleaved with the repeated two-qubit gate,
as illustrated in Fig. 1. To remove flux noise, MEADD
is designed to be insensitive to the single-qubit parame-
ters ζ and γ; we use an adapted Floquet characterization
technique without DD to estimate these parameters, as
described in Appendix B.
For the simple case of interleaving a two-qubit unitary

U with X gates, one obtains the cycle unitary

C = (X ⊗X)U . (41)

A useful representation for the following discussion
is given by decomposing the two-qubit unitary from
Eq. (22) into the even and odd parity subspaces
Heven ⊕Hodd,

U =
(
e−iϕ/2 Ueven

)
⊕ Uodd (42)

=

[
e−iϕ/2

(
ei(γ+ϕ/2) 0

0 e−i(γ+ϕ/2)

)]

⊕
(

e−iζ cos θ −i eiχ sin θ

−i e−iχ sin θ eiζ cos θ

)
. (43)

This decomposition is a direct sum of two SU(2) unitaries
with a relative phase e−i(ϕ/2) between the even and odd
parity sectors. Conveniently, X ⊗ X decomposes into
the direct sum X ⊕X in this representation, giving the
decomposition for the cycle unitary

C =
(
e−iϕ/2Ceven

)
⊕ Codd , (44)

where Ceven = XUeven and Codd = XUodd. Importantly,
the 2-cycle unitary is trivial in the even-parity subspace

C2
even = XUevenXUeven = I , (45)

a feature we use to design our characterization protocol.
Controlled phase. For measuring ϕ, we need to mea-

sure a relative phase between the even- and odd-parity
subspaces. Because the 2-cycle unitary is trivial on the
even-parity subspace, we can choose any state such as
|00⟩ to serve as our even-parity reference.
To measure the relative phase −ϕ/2 we will therefore

prepare states of the form

|ψ0⟩ =
1√
2

(
|00⟩+ |ψ0,odd⟩

)
(46)

=
1√
2

(
|00⟩+ α |01⟩+ β |10⟩

)
, (47)

|0⟩
|0⟩

XY(π/2)
2n

X/YX

X/YX
ei2nϕ

|0⟩
|0⟩

2n
X/Y
X

X cos(θ cos(χ))
cos(θ sin(χ))

|0⟩
|0⟩

2n
X/Y
X

Xodd / YoddX sin(θ cos(χ))
sin(θ sin(χ))

(a) ϕ

(b) θ, χ
Z

Z

FIG. 6. MEADD circuits used to characterize the entangling
parameters of CZ gates. (a) The circuits are composed of
three steps. Prepare |+0⟩ with a microwave gate (blue), or
similarly |0+⟩ (not shown), interleave X ⊗ X dynamical de-
coupling gates (yellow) with the repeated CZ gates for even
repetitions 2n, and finally measure both qubits in the X
and Y bases (green). As explained in the main text, com-
bining the resulting measurement bits for different depths n
yields an estimate of the controlled phase ϕ that is robust
to both low-frequency noise and DD gate imperfections. (b)
Similarly for the swapping angle θ and phase χ, we prepare
|10⟩ (or |01⟩, not shown), use X ⊗ X and Y ⊗ X as DD
gates, and measure either in the computational basis of both
qubits (top circuit) or in the Bell basis of the odd parity sub-
space (bottom circuit), where Xodd = |10⟩⟨01|+ |01⟩⟨10| and
Yodd = i |10⟩⟨01| − i |01⟩⟨10|.

where |ψ0,odd⟩ ∈ Hodd. Applying even powers of the
cycle unitary to this initial state puts a phase on |00⟩ and
transforms the odd-parity part of the state separately

C2n |ψ0⟩ =
1√
2

(
e−inϕ |00⟩+ α′ |01⟩+ β′ |10⟩

)
, (48)

where

α′ = α⟨01|C2n
odd|01⟩+ β⟨01|C2n

odd|10⟩ , (49)

β′ = α⟨10|C2n
odd|01⟩+ β⟨10|C2n

odd|10⟩ . (50)

We will make separable measurements on the qubits
to infer ϕ, which one can understand by looking at the
final density matrix C2n |ψ0⟩⟨ψ0|C2n† and taking partial
traces. Tracing out the right qubit gives

(
1 + |α′|2 e−inϕβ′∗

einϕβ′ |β′|2

)
, (51)

and tracing out the left qubit gives
(
1 + |β′|2 e−inϕα′∗

einϕα′ |α′|2

)
. (52)
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FIG. 7. Numerical simulation results on signal to noise ratio (SNR) for measuring the swap angle. Variance is measured over
100 different realizations for each parameter point. The number of simulated measurements is normalized so that the total
number of measurements per parameter inferred is the same across the methods (see Appendix C for details). The phase
method [5] has an advantage over unitary tomography in that it coherently amplifies errors. However, this amplification is
suppressed as the value of the differential single-qubit phase ζ becomes comparable to θ. In contrast, MEADD exhibits strong
SNR through coherent amplification with no visible dependence on the detuning ζ.

Observe that by going between choosing α or β to be
1 (and the other 0), one engineers the amplitudes α′

and β′ to take on the values of all the odd-parity cy-
cle matrix elements. By preparing the states |0+⟩ and
|+0⟩ and measuring X and Y on each qubit to recon-
struct the off-diagonal reduced-density-matrix elements,
one obtains the matrix of values einϕC2n

odd. This protocol
is illustrated in Fig. 6(a) and shares some principles with
unitary tomography [23]. As pointed out earlier, Codd is
a special unitary, with determinant one, and we have

det
(
einϕC2n

odd

)
= ei2nϕ det

(
C2n

odd

)
= ei2nϕ . (53)

This procedure amplifies ϕ coherently 2n times, suppress-
ing the variance of our estimates of ϕ by a factor of
n2. The ability to repeat this measurement for multi-
ple depths n and fit the slope of the accumulated phase
makes us robust to SPAM errors. Fluctuations in single-
qubit phases are also swept away; identically within the
even-parity subspace, and to a large extent within the
odd-parity subspace as well. The extent to which they
survive will be discussed in more detail when considering
the swap angle θ. Decoherence errors are also mitigated,
because they tend to affect only the magnitude of the de-
terminant, not its phase. Altogether, this simple protocol
yields highly accurate and precise estimates of the con-
trolled phase, as demonstrated experimentally in Fig. 3.

Swap angle and axis. We now show how to estimate
θ and χ with the circuits illustrated in Fig. 6(b). The
2-cycle unitary in the odd-parity subspace {|01⟩ , |10⟩}

reads

C2
odd = XUoddXUodd (54)

= Z(−ζ) e−iθ(cosχX+sinχY )Z(−ζ)
× Z(ζ) e−iθ(cosχX−sinχY )Z(ζ) (55)

≈ Z(−ζ)X(4θ cosχ)Z(ζ) , (56)

where the approximation applies for θ ≪ 1, which is rel-
evant when implementing controlled-phase gates like CZ
(we discuss larger θ to conclude the section). The dy-
namical decoupling sequence ensures that the only part
of the swap that remains is around the X axis in the
odd-parity sector. The corresponding cycle Rabi angle
Ω ≈ |θ cosχ| can be estimated by observing the popula-
tion transfer rate between |01⟩ and |10⟩. To determine
the swap around the Y axis, we also introduce the com-
plementary cycle unitary

C = (Y ⊗X)U = Ceven ⊕ Codd , (57)

where the second equation is a result of Y ⊗X = Y ⊕Y .
For θ ≪ 1, we have

C2
odd = Y UoddY Uodd (58)

≈ Z(−ζ)Y (−4θ sinχ)Z(ζ) , (59)

which can be used to estimate Ω ≈ |θ sinχ|. Again, the
variance of the estimates scales as O(1/n2). Measuring
only the population transfer between |01⟩ and |10⟩ leaves
cosχ and sinχ with ambiguous signs. By additionally
measuring in the Bell-type basis

|±⟩odd = 1√
2

(
|01⟩ ± |10⟩

)
, (60)

|±i⟩odd = 1√
2

(
|01⟩ ± i |10⟩

)
, (61)
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(a) (b) (c)

FIG. 8. Numerical simulation results for characterizing the controlled phase of a CZ gate with ϕ = π − 0.01, using MEADD
and imperfect DD gates. (a) Using the robust DD sequence described in Sec. V, the angle of the determinant in Eq. (53),
which corresponds to −2nϕ, builds up linearly even if we introduce microwave over-rotation errors on one of the qubits. The
strength of the over-rotation, a factor multiplying the π rotation around X, is varied between 0 and 10% and illustrated with the
different colors. (b) Similar simulations now using the XY4 DD sequence, which is not robust to implementation errors in this
protocol. (c) Resulting ϕ-estimate error obtained from the fitting the slope of the MEADD data for the different over-rotation
errors. Dashed line indicates millirad precision.

one resolves these ambiguities and also mitigates the ef-
fect of dephasing errors, since one is effectively measuring
the complete odd-parity Bloch vector and can distinguish
shrinkage from rotation. Since both C and C preserve the
parity, we can also mitigate single-qubit relaxation errors
to first order by postselecting on parity.
For the case of large θ, we can estimate θ and χ using

the relations

Ω = arccos
(
1− 2(sin θ cosχ)2

)/
2 , (62)

Ω = arccos
(
1− 2(sin θ sinχ)2

)/
2 , (63)

where the Rabi angles Ω and Ω can be learned similarly
as in the case where θ ≪ 1.
In Fig. 7, we compare in simulation MEADD to previ-

ously employed techniques for measuring the swap angle:
the phase method [5] and unitary tomography [23]. Uni-
tary tomography measures observables whose expecta-
tion values correspond to the real and imaginary parts of
the matrix elements of a two-qubit, excitation-preserving
gate. This is achieved by using the vacuum state as a
phase and eigenstate reference. The phase method uses
the same initial states and observables as unitary tomog-
raphy, while repeating the gate to be characterized for
various cycle numbers and inserting Z phases at various
points to amplify coherent errors and disambiguate dif-
ferent parameter contributions to the composite unitary.
As seen in Fig. 7, this coherent amplification gives the
phase method higher signal to noise ratio (SNR) than
unitary tomography, even when keeping the total number
of measurement results constant across both characteri-
zation methods. However, one sees that the advantage
of coherent amplification is washed out once ζ is on the
same order as θ.
In comparison, MEADD exhibits significantly higher

SNR and maintains the advantage from coherent am-
plification even when ζ is significantly larger than θ,

as the dynamical-decoupling sequence cancels the swap-
suppressing effects of ζ.

VI. ROBUSTNESS TO IMPLEMENTATION
ERRORS

The dynamical decoupling sequences used by MEADD
will unavoidably contain systematic errors, so we must
design sequences that are robust to these imperfec-
tions. It is well known that the so-called XY4 sequence
(XY )2n is robust to any small systematic errors in X
and Y [10, 27], whereas the Carr-Purcell-Meiboom-Gill
(CPMG) sequence X2n is susceptible to over-rotation er-
rors in X [9]. Similar to XY4, we require our characteri-
zation sequence to be robust to any systematic errors in
the single-qubit gates. These errors can lead to non-zero
matrix elements between the even and odd-parity sub-
spaces, which destroy the direct sum structure in Eq. (44)
that we rely on.
In Fig. 8, we demonstrate the importance of using a ro-

bust DD sequence to characterize the entangling parame-
ters of a CZ gate with MEADD. We simulate the protocol
to estimate the controlled phase detailed in Sec. V, both
with the robust CPMG and the non-robust XY4 DD se-
quences. Using the robust DD sequence in panel (a), we
see that the phase builds up linearly even if we intro-
duce microwave over rotation errors on one of the qubits.
Even for an over rotation of 10% (0.314 rad), we still get
linear phase accumulation to a good approximation that
gives us an estimate of ϕ to sub milliradian precision, as
shown in panel (c) with the blue curve. On the other
hand, using the non robust DD sequence gives unusable
data as we introduce microwave over rotation errors on
one of the qubits, as shown in panel (b). For over rota-
tion of just 2% (0.063 rad), the phase accumulation is so
distorted from being linear that the error in the ϕ esti-
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mate is larger than the value we are trying to measure
(0.01 rad). With this sequence, even 1% over-rotation
error introduces errors in the ϕ estimate larger than a
milliradian, i.e. it is more than an order of magnitude
more sensitive to implementation errors than the robust
DD sequence.
In the following, we will first demonstrate how to de-

sign robust MEADD protocols for the case of a CZ gate,
before moving to general excitation-number conserving
two-qubit gates. We consider small arbitrary systematic
errors of the X gate as

X̃(ϵ) = e−i(ϵXX+ϵY Y+ϵZZ)X (64)

≈ (I − iϵ · σ)X , (65)

where ϵ = (ϵX, ϵY , ϵZ) and σ = (X, Y, Z). Since the
errors are assumed to be small, we will consider their
effect to first order, which allows us to treat errors on
the individual qubits separately in the following.
Robustness for CZ gate. The perfect 2-cycle unitary

for U = CZ reads

C2 = (X ⊗X)CZ(X ⊗X)CZ (66)

= −Z ⊗ Z . (67)

Noticing that C4 = I ⊗ I, we have

[
(X ⊗X)CZ

]3
= (Y ⊗ Y )CZ = CZ(X ⊗X) . (68)

Considering errors on the right qubit, the noisy 2-cycle
unitary is

C̃2 = (X ⊗ X̃)CZ(X ⊗ X̃)CZ (69)

≈ C2 − i
[
(I ⊗ ϵ · σ)(X ⊗X)CZ(X ⊗X)CZ

+ (X ⊗X)CZ(I ⊗ ϵ · σ)(X ⊗X)CZ
]
, (70)

With the identities in Eq. (68), we have

C̃2 = V C2 , (71)

where

V = I − i
[
(I ⊗ ϵ · σ) + CZ (I ⊗ Y ϵ · σ Y ) CZ

]
. (72)

Since X and Y interact with the CZ gate in similar ways,
we first consider ϵX, ϵY ̸= 0 and ϵZ = 0, for which we have
the anticommutation relations

{(I ⊗ ϵ · σ), Z ⊗ Z} = 0 , (73)

{CZ(I ⊗ Y ϵ · σY )CZ, Z ⊗ Z} = 0 . (74)

Both generator terms in the error unitary V in Eq. (72)
anticommute with C2 = −Z ⊗ Z. Therefore the noisy 4-

cycle unitary C̃4 = V C2V C2 is identical to the noiseless
4-cycle unitary C4 to first order, and the sequence is
robust to small errors in X and Y for a 4-cycle.
For ϵZ ̸= 0 and ϵX = ϵY = 0, we have

C̃2 = e−iϵZ(I⊗Z−I⊗Z)C2 = C2 , (75)

and the error ϵZ cancels itself in a 2-cycle. The comple-
mentary sequence C from Eq. (57) is robust in exactly
the same way, the only difference being the Y operators
in Eq. (72) maybe replaced by X, which does not affect

their anticommutation with C2 = −Z ⊗ Z.
One subtlety here is the gauge freedom related to the

position assigned to Z errors around microwave gates. It
turns out that it can be totally ignored here because one
can always commute half of ϵZ to the right of the X gate,
leaving a pair of ϵZ/2 and −ϵZ/2 errors conjugating the
CZ gate. This gauge has thus no impact at all on the
characterization of the controlled phase ϕ or swap angle
θ, but is indistinguishable from a change in the swapping
phase χ. For the current case of CZ characterization
this is acceptable, as for an ideal CZ gate there is no
swapping between the qubits (θ = 0), at which point χ
has no meaning.
Robustness for crosstalk. We use MEADD to measure

the crosstalk (stray coupling) by treating the Hamilto-
nian Eq. (23) integrated over a given time period as a
gate, and executing the dynamical decoupling sequence
to measure the small swap angle, exactly as one does for
CZ gates. The main difference is that there is no ZZ term
as part of the cycle unitary to echo away, so we use XY4
sequences on both qubits, which in this case are robust
to microwave over rotation errors because of the lack of
a strong entangling gate.
Robustness for arbitrary excitation-preserving gates.

Recall from Fig. 2 that the general excitation-preserving
gate decomposes into the fundamental entangler F (θ, ϕ)
surrounded by Z phases. Defining the Z rotations be-
fore and after the fundamental entangler to be Kpre and
Kpost, respectively, we get

U = KpostF (θ, ϕ)Kpre . (76)

Combining the two-qubit gate with the dynamical-
decoupling gate, which we notate as D, we represent the
repeated cycle unitary as

(DU)n =
[
DKpostF (θ, ϕ)Kpre

]n
(77)

= K−1
pre

[
KpreDKpostF (θ, ϕ)

]n
Kpre (78)

= K−1
pre

[
D′F

]n
Kpre , (79)

where we used the gauge freedom to put all the prod-
uct unitaries after the entangler in the repeated block,
and simplified the notation with D′ ≡ KpreDKpost and
F ≡ F (θ, ϕ). We can combine both phase fluctuations
(which are errors in Kpre/post) and microwave imperfec-
tions (which are errors in D) into one expression

D̃′ ≈ (I − iϵE)D′ , (80)

where ϵ is a small parameter and E an error matrix with
∥E∥ = O(1). To the first order in ϵ, the repeated cycle
unitary with error reads

[
D̃′F

]n ≈
(
I − iϵ

n−1∑

j=0

[
D′F

]j
E
[
D′F

]−j
)[
D′F

]n
. (81)
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The condition that the protocol being first-order insensi-
tive to an arbitrary error in Kpre/post or D is

T (E) ≡
n−1∑

j=0

[
D′F

]j
E
[
D′F

]−j
= 0 , (82)

that is, the twirl of E under the group generated by
D′F = KpreDKpostF (θ, ϕ) equals zero. According to
our robustness condition, this term must vanish for all E
corresponding to single-qubit errors:

E ∈ span{I⊗X, I⊗Y, I⊗Z,X⊗I, Y⊗I, Z⊗I} . (83)

The action of conjugating E by D′F , called the adjoint
action, is an orthogonal map from the 15-dimensional Lie
algebra of SU(4) to itself, which includes the subspace to
which E belongs. We notate this map by

[
Ad(D′F )

]
(A) = (D′F )A(D′F )−1 . (84)

As such, we can now analyze the robustness of a
dynamical-decoupling sequence by inspecting the eigen-

values of Ad(D′F ). In this new notation,

T (E) =
n−1∑

j=0

[
Ad(D′F )

]j
(E) , (85)

which is the action of the sum of
[
Ad(D′F )

]j
on E.

Since Ad(D′F ) is an orthogonal map, its eigenvalues are
phases. For non trivial phases, this sum will vanish, so
we need to ensure that the eigenspaces overlapping with
E all have non trivial eigenvalues. We simplify the re-
quired analysis by noting that Ad(D′F ) acts trivially on
span{X⊗X,Y⊗Y,Z⊗Z}. It also respects the Z2 sym-
metry of permuting subsystems, so we can further block
diagonalize the map into symmetric and antisymmetric
subspaces, each 6-dimensional. For representing matrices
in these subspaces, we choose for our bases the symmet-
ric/antisymmetric combinations of IX, YZ, IY, ZX, IZ,
and XY, in that order.
Using Ad± to denote the adjoint action restricted to

these symmetric/antisymmetric combinations, consider
the adjoint action of the fundamental entangler:

Ad+
(
F (θ, ϕ)

)
=




cos(θ − ϕ/2) − sin(θ − ϕ/2) 0 0 0 0
sin(θ − ϕ/2) cos(θ − ϕ/2) 0 0 0 0

0 0 cos(ϕ/2− θ) − sin(ϕ/2− θ) 0 0
0 0 sin(ϕ/2− θ) cos(ϕ/2− θ) 0 0
0 0 0 0 1 0
0 0 0 0 0 1



, (86)

Ad−
(
F (θ, ϕ)

)
=




cos(θ + ϕ/2) − sin(θ + ϕ/2) 0 0 0 0
sin(θ + ϕ/2) cos(θ + ϕ/2) 0 0 0 0

0 0 cos(θ + ϕ/2) − sin(θ + ϕ/2) 0 0
0 0 sin(θ + ϕ/2) cos(θ + ϕ/2) 0 0
0 0 0 0 cos 2θ − sin 2θ
0 0 0 0 sin 2θ cos 2θ



. (87)

For the case where the dynamical decoupling layer is D =
X ⊗X, the adjoint action in both subspaces is diagonal
in this basis and respects the 2-dimensional subspaces we
just identified:

Ad±
(
D) =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1



. (88)

The combination of CZ with the dynamical decoupling

gives symmetric and antisymmetric actions

Ad+(DCZ) =




0 0 0 1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 1



, (89)

Ad−(DCZ) =




0 0 0 1 0 0
0 0 −1 0 0 0
0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1



. (90)

The eigenvalues are non trivial with values −1, i, and −i,
except for the last diagonal entry in Ad+, which corre-
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sponds to the symmetric combination of XY. Since this
is a non-local, non excitation preserving error that is not
expected to be present in our system, we do not concern
ourselves with echoing this away. Taking sums of powers
of the other eigenvalues,

∑
j λ

j , we find that all vanish
when including four terms in the sum, which agrees with
our earlier analysis, where the 4-cycle unitary was iden-
tical with the noiseless 4-cycle unitary when considering
all single-qubit errors.
We can carry this same analysis out for other fSim

gates. Consider
√
iSWAP = F (π/4, 0), for instance:

Ad+
(
D
√
iSWAP

)

=
1√
2




1 −1 0 0 0 0
1 1 0 0 0 0
0 0 −1 −1 0 0
0 0 1 −1 0 0

0 0 0 0 −
√
2 0

0 0 0 0 0 −
√
2



, (91)

Ad−
(
D
√
iSWAP

)

=
1√
2




1 −1 0 0 0 0
1 1 0 0 0 0
0 0 −1 1 0 0
0 0 −1 −1 0 0

0 0 0 0 0
√
2

0 0 0 0 −
√
2 0



. (92)

None of these eigenvalues are trivial, so everything is
echoed away. Because the phases are smaller, however,
it takes 8 cycles instead of 4 before complete cancella-
tion occurs, which puts stricter limits on how noisy the
microwaves can be before the errors start polluting the
characterization.
Finally, consider the iSWAP gate itself, F (π/2, 0).

Looking at its adjoint action, we notice a problem:

Ad+
(
iSWAP

)
=




0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1




(93)

Ad−
(
iSWAP

)
=




0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1



. (94)

Since the symmetric (IZ, XY) subspace is degenerate
with trivial eigenvalue +1, we need to use the dynamical-
decoupling gates. However, the antisymmetric (IZ, XY)
subspace is also degenerate, with eigenvalue −1, using
the dynamical-decoupling gate will flip that eigenvalue
to +1, which will allow antisymmetric Z errors to be am-
plified.

One strategy for overcoming this problem is to only
use the iSWAP gate in every other cycle. In the cycles
where we do not use the iSWAP gate, we will instead
idle the qubits for the iSWAP gate time. This ensures
the Z phase errors are identical between cycles, and thus
coherently cancel with one another. Since adjacent ideal
X ⊗X gates cancel, the sum of adjoint actions we need
to consider for this sequence is

∑

j

Ad±(iSWAPj) + Ad±
(
D iSWAPj

)

=
(
1 + Ad±(D)

)∑

j

Ad±(iSWAP)j . (95)

The prefactor 1 + Ad±(D) annihilates all but the (IX,
YZ) subspace (symmetric and antisymmetric), and we
see that iSWAP effectively echos away those errors on its
own, so this sequence echos away low-frequency Z noise
and is robust to imperfections in the microwave gates.

VII. CONCLUSION

We have introduced a unitary characterization frame-
work called MEADD that significantly surpasses exist-
ing approaches for frequency-tunable transmons, both in
terms of accuracy and precision, while being experimen-
tally efficient. It leverages the noise structure and control
precision hierarchy of the quantum device to yield gate
characterizations that are largely insensitive to qubit fre-
quency noise and robust to imperfections in the extra dy-
namical decoupling gates required for its implementation.
With MEADD, we have experimentally demonstrated
precise measurements of both single- and two-qubit gate
parameters and crosstalk. Remarkably, MEADD can
readily be used to estimate the entangling parameters
of CZ gates with 5x and 10x higher precision than pre-
vious methods for the controlled-phase and swap angle,
respectively. This characterization information readily
identifies systematic errors present in the implemented
quantum operations which can then be corrected for by
adjusting the control parameters. We expect that in-
sights making MEADD useful in characterizing supercon-
ducting qubits can be applied to other qubit platforms,
including leveraging the most precise control parameters
for estimating less precise ones, isolating stable parame-
ters from less stable and noisy ones, and targeting only
a few parameters at a time.
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tby, Bálint Pató, Andre Petukhov, Harald Putterman,
Chris Quintana, Jan-Michael Reiner, Pedram Roushan,
Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger,
Vadim Smelyanskiy, Doug Strain, Kevin J. Sung, Peter
Schmitteckert, Marco Szalay, Norm M. Tubman, Amit
Vainsencher, Theodore White, Nicolas Vogt, Z. Jamie
Yao, Ping Yeh, Adam Zalcman, and Sebastian Zanker,
“Observation of separated dynamics of charge and spin in
the Fermi-Hubbard model,” arXiv:2010.07965 [quant-ph]
(2020).

[5] C. Neill, T. McCourt, X. Mi, Z. Jiang, M. Y. Niu,
W. Mruczkiewicz, I. Aleiner, F. Arute, K. Arya, J. Ata-
laya, R. Babbush, J. C. Bardin, R. Barends, A. Bengts-
son, A. Bourassa, M. Broughton, B. B. Buckley, D. A.
Buell, B. Burkett, N. Bushnell, J. Campero, Z. Chen,
B. Chiaro, R. Collins, W. Courtney, S. Demura, A. R.
Derk, A. Dunsworth, D. Eppens, C. Erickson, E. Farhi,
A. G. Fowler, B. Foxen, C. Gidney, M. Giustina, J. A.

Gross, M. P. Harrigan, S. D. Harrington, J. Hilton,
A. Ho, S. Hong, T. Huang, W. J. Huggins, S. V.
Isakov, M. Jacob-Mitos, E. Jeffrey, C. Jones, D. Kafri,
K. Kechedzhi, J. Kelly, S. Kim, P. V. Klimov, A. N. Ko-
rotkov, F. Kostritsa, D. Landhuis, P. Laptev, E. Lucero,
O. Martin, J. R. McClean, M. McEwen, A. Megrant,
K. C. Miao, M. Mohseni, J. Mutus, O. Naaman, M. Nee-
ley, M. Newman, T. E. O’Brien, A. Opremcak, E. Os-
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Appendix A: Derivative Removal by Adiabatic Gate
(DRAG)

In this appendix, we present a simple derivation of
the DRAG pulse used to mitigate gate leakage [19]. We
model a superconducting qubit as a driven nonlinear os-
cillator similar to Eq. (3) in the main text (ℏ = 1),

HI(t) = δω01(t) a
†a− η

2
a† 2a2 + [Ω(t)a† + h.c.] , (A1)

where a† (a) is the bosonic creation (annihilation) op-
erators and η the so-called anharmonicity. Setting the
detuning δω01(t) = 0 and truncating the Hamiltonian to
the second level |2⟩, we have

HI(t) =




0 Ω(t)∗ 0

Ω(t) 0
√
2Ω(t)∗

0
√
2Ω(t) −η


 . (A2)

The time-dependent Schrödinger equation under HI(t)
reads

i
∂

∂t
|ψI(t)⟩ = HI(t) |ψI(t)⟩ . (A3)

Going to a second interaction picture |ψII(t)⟩ =
e−iηt |2⟩⟨2| |ψI(t)⟩, we have

i
∂

∂t
|ψII(t)⟩ = HII(t) |ψII(t)⟩ , (A4)

where the off-diagonal Hamiltonian HII reads

HII(t) =




0 Ω(t)∗ 0

Ω(t) 0
√
2Ω(t)∗eiηt

0
√
2Ω(t)e−iηt 0


 . (A5)

Using first-order time-dependent perturbation theory, we
obtain the leakage amplitude at the end of the microwave
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pulse for −T/2 ≤ t ≤ T/2,

⟨2|ψII(T/2)⟩ ≈ −i
∫ T

2

−T
2

⟨2|HII(t) |1⟩ ⟨1|ψII(t)⟩ dt (A6)

=

∫ T
2

−T
2

L(t)e−iηt dt (A7)

≡ L̃(η) , (A8)

where L(t) ≡ −i
√
2Ω(t)⟨1|ψII(t)⟩ and L̃(η) its Fourier

transformation. For any differentiable L(t), we have

L̃(η) =
i

η

∫ T
2

−T
2

L(t) de−iηt (A9)

=
i

η
L(t)e−iηt

∣∣∣
T
2

−T
2

+
i

η

∫ T
2

−T
2

L(1)(t)e−iηt dt , (A10)

where L(n)(t) = dnL(t)/dtn. Using integration by parts
again, we have

L̃(η) ≈ i

η
L(t)e−iηt

∣∣∣
T
2

−T
2

− 1

η2
L(1)(t)e−iηt

∣∣∣
T
2

−T
2

− i

η3
L(2)(t)e−iηt

∣∣∣
T
2

−T
2

, (A11)

where higher order terms are truncated when
|L(n+1)(t)/L(n)(t)| ≪ η. We choose a control pulse
Ω(t) whose value and first derivative vanish at both
boundaries,

Ω(−T/2) = Ω(T/2) = 0 , (A12)

Ω(1)(−T/2) = Ω(1)(T/2) = 0 . (A13)

Putting Eq. (A12) into the Schrödinger equation (A4),
we have

⟨1|ψ(1)
II (−T/2)⟩ = ⟨1|ψ(1)

II (T/2)⟩ = 0 . (A14)

With identities (A12)-(A14), the first two terms in
Eq. (A11) vanish, and we can express the leakage am-
plitude as

L̃(η) ≈ − i

η3
L(2)(t) e−iηt

∣∣∣
T
2

−T
2

(A15)

= −
√
2

η3
Ω(2)(t)⟨1|ψII(t)⟩ e−iηt

∣∣∣
T
2

−T
2

. (A16)

To zero out the leakage, we add a derivative term to the
original pulse Ω(t),

ΩDRAG(t) = Ω(t)− i

η
Ω(1)(t) , (A17)

and correspondingly, we have

LDRAG(t) = L(t)−
√
2

η
Ω(1)(t)⟨1|ψII(t)⟩ . (A18)

Replacing L(t) with LDRAG(t) in Eq. (A11) leads to the
leakage amplitude for the DRAG pulse. The leading con-
tribution from the added derivative term in LDRAG(t)
comes from the term with coefficient 1/η2 in Eq. (A11)
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2

, (A19)

which exactly cancels Eq. (A16) and eliminates gate leak-
ages.

Appendix B: Floquet characteri ation for two-qubit
gates

For complete characterization of the two-qubit gate,
we need the single-qubit phases ζ and γ in addition to
the entangling parameters θ, χ, and ϕ. To accomplish
this, we use a method very similar to Floquet charac-
terization [4]. We are able to simplify the protocol by
removing the variable Z rotations since we can use our
precise estimate of θ to infer ζ from the energy splitting
in the odd-parity sector.
We repeat the unitary for many different depths n, us-

ing preparation and measurement analogous to what is
used to arrive at Eqs. (51) and (52) and shown in Fig. 6,
only this time we are directly measuring the matrix ele-
ments of the gate unitary Uodd instead of Codd, which is
interleaved with DD gates. Computing the complex an-
gle of the determinant at each depth n allows us extract
γ from the slope exactly as we extracted ϕ from the slope
in Eq. (53).
To extract ζ, we use another technique for mitigating

the effects of decoherence. The singular value decompo-
sition of the experimentally measured matrix M (which
in the ideal case is simply Uodd) give us

M = UMΣMV
†
M . (B1)

Just as we took the complex angle of the determinant
to mitigate decoherence effects, we will take the unitary
part of M to mitigate decoherence effects:

M ′ = UMV
†
M (B2)

In the case of interest where swapping is small, the eigen-
states of M ′ can be unambiguously associated with |01⟩
and |10⟩, allowing us to consistently define the sign as
well as the magnitude of the rotation angle of this uni-
tary. Fitting the rotation angle as a function of depth n
allows us to extract the rotation angle per gate Ω. Fi-
nally, we extract ζ using the relation cosΩ = cos ζ cos θ
and sgn ζ = sgnΩ:

ζ = sgnΩ arccos(cosΩ/ cos θ) . (B3)

There is a danger here that noise causes cosΩ to exceed
cos θ, in which case we set ζ = 0.
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This method leverages the amplification and SPAM
robustness of repeating the unitary to measure γ and Ω,
while making use of our precise measurement of θ to ulti-
mately extract ζ (something that had to be accomplished
with additional experiments using physical Z rotations in
Floquet [4] and Phase-method [5] characterizations).

Appendix C: Simulation parameters

In Fig. 7, for each of the 100 executions at a particular
parameter point, unitary tomography and phase method
collected 160,000 measurement results. Since the phase
method uses four different repetition numbers (1, 2, 4,

and 8), this meant only collecting 2,500 samples per cir-
cuit as opposed to 10,000 samples per circuit for unitary
tomography. Phase method uses two different Z rotations
for each repetition number, without doing measurement
flipping, while unitary tomography does not add any ex-
tra Z phases, but does do measurement flipping, so at
each depth the number of circuits is the same. We did
not simulate realistic asymmetric readout noise, so the
measurement flipping is essentially just giving twice as
many samples at that point. The MEADD circuits used
in Fig. 7 only measures two of the five parameters (θ and
χ), so the number of measurement results were lowered
to 64,000.
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5.5 Perspectives

En plus de l’application des protocoles CAFE et MEADD à d’autres opérations (par
exemple des portes qui ne font pas partie du groupe de Clifford ou des opérations à plus
de deux qubits) et à d’autres plateformes de processeurs quantiques (par exemple des
ions piégés ou des atomes neutres), il existe plusieurs adaptions et extensions dont le
développement pourrait s’avérer particulièrement utile.

Tout d’abord pour CAFE, le modèle utilisé pour approcher les données et extraire le
bilan des contributions à l’erreur moyenne totale pourrait être grandement raffiné. Plus
spécifiquement, nous utilisons un simple canal de dépolarisation pour décrire les processus
incohérents, alors que nous savons que des modèles microscopiques du bruit incluant de la
relaxation et du déphasage décrivent mieux les dynamiques des portes logiques. Il serait
alors intéressant d’utiliser différents modèles afin d’approcher les données produites par
CAFE et de caractériser quelles dynamiques sont significatives et d’en apprendre plus sur le
comportement réel de l’opération réalisée, une méthode qui s’apparente encore une fois à la
sélection de modèles [161]. D’ailleurs, plutôt que d’ajuster la moyenne des circuits de CAFE,
il serait possible d’utiliser l’information plus granulaire de chacun des circuits formant
le 2-design (4n pour n qubits) afin d’extraire davantage d’information sur les processus
cohérents et sur la non-uniformité du bruit stochastique.

Tirant profit du fait que CAFE offre une excellente visibilité sur les erreurs cohérentes
associées à une opération, il pourrait être grandement bénéfique d’utiliser cette métrique
dans l’optimisation d’opérations en boucle fermée sur le dispositif. En effet, l’utilisation
de CAFE permettrait à la fonction de coût de quantifier la performance des opérations
testées de manière plus détaillée, ce qui pourrait améliorer la convergence et réduire les
ressources expérimentales nécessaires à l’optimisation d’opération utilisant directement la
fidélité fournie par une approche d’étalonnage par portes aléatoires [116, 117, 118, 151].

Grâce à son estimation précise et exacte des paramètres unitaires de portes logiques à un
et deux qubits, MEADD peut également être utilisée directement dans la calibration de ces
opérations, par exemple en construisant la fonction de coût à partir de l’information fournie
par MEADD dans une boucle d’optimisation basée sur l’apprentissage par renforcement.
Ainsi, au lieu ou en plus d’optimiser simplement la fidélité de porte moyenne, la fonction
de coût d’optimisation pourrait prendre la forme quadratique suivante

CMEADD = wθ(θ̃ − θ̄)2 + wϕ(ϕ̃ − ϕ̄)2, (5.16)

où (θ̃, ϕ̃) sont les estimations expérimentales fournies par MEADD des paramètres de la
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porte fSim réalisée expérimentalement, (θ̄, ϕ̄) sont les paramètres cibles (par exemple θ̄ = 0
et ϕ̄ = π pour un CZ) et wj sont des préfacteurs permettant d’ajuster si l’un des paramètres
unitaires est à prioriser dans l’optimisation.

Enfin, MEADD pourrait être généralisé à la caractérisation d’opérations unitaires impli-
quant davantage de qubits afin de caractériser et éventuellement calibrer un groupe élargi
d’opérations. Par exemple, la mesure des stabilisateurs dans le code de surface requiert une
transformation unitaire impliquant 5 qubits et 4 portes CZ (en plus de quelques portes à un
qubit que l’on pourrait potentiellement négliger en raison de leur fidélité largement supé-
rieure). Plusieurs imperfections peuvent faire en sorte que l’unitaire associée à la réalisation
de ces stabilisateurs ne correspond pas directement à la combinaison des 4 unitaires à deux
qubits. Étant donné que les erreurs cohérentes associées à la réalisation imparfaite de la
mesure des stabilisateurs peuvent être particulièrement dommageables pour le code de
surface [184], il serait très intéressant d’utiliser MEADD pour caractériser avec précision
ces erreurs.



Chapitre 6

Optimisation de la mesure en circuit
QED

Au chapitre 4, nous avons développé une approche combinant l’apprentissage automa-
tique à des techniques existantes de contrôle optimal quantique afin de réaliser des portes
logiques de haute fidélité à l’aide de qubits supraconducteurs. Ce chapitre porte également
sur le contrôle optimal quantique, mais on s’intéresse ici à la résolution de problèmes de
contrôle où les approches existantes sont inadéquates. Plus spécifiquement, on cherche à
contrôler des systèmes quantiques complexes où la dissipation joue un rôle clé qu’on ne peut
négliger. Alors que les solutions existantes nécessitent des ressources numériques prohibi-
tives pour résoudre ces problèmes, nous proposons une approche alternative permettant
d’obtenir les contrôles optimaux pour tout système où la dynamique quantique peut être
décrite par une équation maîtresse sous forme de Lindblad. Afin de démontrer l’utilité et le
potentiel de cette approche, nous l’appliquons à la résolution de deux opérations de grande
importance ayant typiquement des fidélités moindres que les portes logiques unitaires : la
mesure et la réinitialisation de transmons.

Dans les sections qui suivent, j’introduis l’importance ainsi que les problématiques
associées au contrôle optimal quantique de systèmes ouverts, avant de présenter à la sec-
tion 6.2 une vue d’ensemble sur la méthodologie que nous avons développée ainsi que sur
les résultats que nous avons obtenus en l’appliquant au contrôle d’un transmon. Après la
présentation de l’article scientifique portant sur cette recherche à la section 6.3, je discute
à la section 6.4 de quelques directions de recherche prometteuses en plus d’introduire
brièvement la librairie numérique que nous avons développée en lien avec ce projet : dyna-
miqs [79].

142
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6.1 Mise en contexte

La généralisation du contrôle optimal quantique à partir d’opérations purement unitaires,
telles que le transfert d’un état quantique à un autre et la réalisation de portes logiques, vers
l’optimisation d’opérations sur des systèmes quantiques ouverts est intéressante pour plu-
sieurs raisons. Tout d’abord, plusieurs opérations nécessaires au traitement de l’information
quantique sont décrites par des processus dissipatifs, notamment la mesure et l’initialisation
d’états quantiques. Ainsi, l’optimisation des contrôles réalisant de telles opérations requière
une description des dynamiques quantiques qui est plus générale qu’une transformation
unitaire, en l’occurrence l’utilisation d’une transformation complètement positive et pré-
servant la trace de la matrice densité [48]. Comme décrit au chapitre 2, la représentation
la plus répandue en circuits supraconducteurs d’une telle transformation est une équation
maîtresse sous forme de Lindblad. Cette représentation considère que le système d’intérêt
est couplé faiblement à un environnement dont les dynamiques s’atténuent beaucoup plus
rapidement que l’échelle de temps des dynamiques du système. Pour les qubits supracon-
ducteurs ainsi que plusieurs autres plateformes, un aspect rendant le contrôle optimal en
système ouvert particulièrement prometteur est le fait que certaines dynamiques dissipatives
sont contrôlables, ouvrant ainsi la porte aux nombreuses applications connues en ingénierie
de la dissipation quantique [185]. Par exemple, les transmons sont typiquement couplés à
une cavité micro-onde, laquelle est dissipative en raison de son couplage important avec une
ligne de transmission. Il est alors possible d’appliquer des impulsions externes sur le qubit
ou sur la cavité afin de modifier la cohérence du transmon, par exemple en tirant profit de
l’interaction dispersive qui est également utilisée pour sa mesure.

L’inclusion explicite des processus dissipatifs dans l’optimisation peut également mener
à de meilleures opérations unitaires en exploitant des sous-espaces qui sont moins affectés
par la décohérence associée à l’environnement [186]. L’exemple par excellence illustrant le
possible avantage d’une telle approche est la présence de sous-espaces sans décohérence
dans un système où il existe une symétrie entre le système et son environnement, par exemple
lorsque plusieurs qubits sont couplés de façon indiscernable au même environnement [187].
Je note enfin que dans plusieurs situations où l’environnement possède une densité spectrale
de bruit non uniforme ou des temps de corrélation non négligeables avec une certaine mé-
moire de durée finie, il est possible d’utiliser une approche de contrôle optimal en systèmes
quantiques ouverts afin d’exploiter cette structure et de réaliser de meilleures opérations
quantiques. L’utilisation de contrôles de découplage dynamique (DD) pour allonger la
cohérence de l’information quantique en est un parfait exemple [174].

Malheureusement, la résolution numérique du contrôle optimal d’un système quantique



144

ouvert est significativement plus ardue que celle d’un système fermé, même en se limitant à
des dynamiques markoviennes décrites par une équation maîtresse. En effet, la résolution
numérique de l’équation maîtresse requière de nombreuses multiplications matrice-matrice
comportant chacune d2 éléments, où d = 2n pour n qubits, alors que la résolution de
l’équation de Schrödinger se limite à des multiplications matrice-vecteur avec des vecteurs
d’état comportant d éléments. L’utilisation dematrices densité et de potentiellementplusieurs
opérateurs de bruit ajoute des contraintes significatives de mémoire numérique. De plus,
l’optimisation de ces dynamiques nécessite typiquement des centaines d’itérations, même
en utilisant une approche par descente de gradient qui est typiquement beaucoup plus
efficace qu’une approche sans gradient pour des problèmes possédant plusieurs paramètres
(> 10) [188, 189]. Ces gradients, les dérivées premières d’une fonction de coût arbitraire
par rapport aux paramètres libres du problème, sont couramment calculés en résolvant
l’équation maîtresse en sens inverse du temps, c’est-à-dire en intégrant de t = T > 0 à
t = 0 [106]. La décohérence génère alors des dynamiques qui se dilatent au lieu de se
contracter dans le temps, ce qui rend l’équation différentielle raide et peut mener à des
divergences numériques.

On comprend alors qu’une approche précise et efficace numériquement permettant
d’évaluer les gradients d’une fonction de coût arbitraire basée sur les dynamiques générées
par une équation maîtresse est au cœur du contrôle optimal en systèmes quantiques ouverts.
C’est précisément ce que nous proposons dans le cadre de ce projet de recherche.

Il existe diverses approches dans la littérature afin de calculer ces gradients pour des
systèmes quantiques ouverts, mais elles possèdent des limitations importantes. D’un côté,
les approches basées sur le calcul analytique des gradients [111, 190, 191] ne sont pas
généralisables à des fonctions de coût arbitraires,par exemple lors de l’utilisation de fonctions
non analytiques, et sont fastidieuses à utiliser alors que tout ajout à la fonction de coût
nécessite un travail de formulation mathématique. De façon plus importante encore, ces
approches reposent sur diverses approximations des dynamiques afin d’obtenir une forme
analytique des gradients, telles qu’une décomposition de Trotter-Suzuki ou une extension
en série de Magnus [192, 193]. Ces approximations affectent l’exactitude des gradients
et des dynamiques simulées, ce qui peut grandement affecter la convergence ainsi que la
pertinence expérimentale des solutions obtenues.

Une approche prometteuse pour surmonter ces limitations consiste à utiliser une ap-
proche purement numériquement pour calculer les gradients d’une transformation arbi-
traire : la différentiation automatique [157]. Cette approche accumule un graphe de calcul
de toutes les opérations numériques réalisées impliquant les paramètres voulus ainsi que
leurs dérivées premières. Par la suite, une simple application de la règle de dérivation en
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chaîne permet d’obtenir tous les gradients recherchés. Pour une introduction plus complète
à la différentiation automatique dans le contexte du contrôle optimal, je réfère la lectrice et
le lecteur intéressés aux références suivantes : [194, 195]. Pour nos besoins, l’idée principale
est que la différentiation automatique est très utile pour calculer des gradients arbitraires,
mais elle vient avec un coût élevé en mémoire numérique afin de construire et conserver le
graphe de calcul. Par exemple, pour une transformation y = x2 impliquant le paramètre x,
la dérivée première est dy/dx = 2x. Alors que le calcul numérique se poursuit avec d’autres
transformations, à la fois le résultat y et la dérivée 2x doivent être conservés enmémoire pour
l’évaluation ultérieure des gradients. Dans le contexte du contrôle optimal en système ouvert,
les transformations réalisées sont associées à l’intégration de l’équation maîtresse. Ainsi,
chaque pas d’intégration numérique ρ(t + ∆t) = Lρ(t) nécessite de conserver en mémoire
à la fois ρ(t) et ρ(t + ∆t). Pour un grand espace d’Hilbert, ce besoin en mémoire devient
simplement insurmontable en pratique et nous avons besoin d’une approche alternative.

6.2 Résultats principaux

Les principales contributions associées à ce projet de recherche sont l’introduction
d’une nouvelle méthodologie ainsi que son utilisation dans la démonstration d’un avantage
marqué à utiliser le contrôle optimal quantique afin de mesurer et d’initialiser des qubits
supraconducteurs. Dans l’article qui suit, nous introduisons ainsi uneméthodologie générale
et efficace afin de résoudre des problèmes arbitraires de contrôle optimal dans des systèmes
quantiques ouverts complexes. Cette tâche était très coûteuse, voire impossible à réaliser avec
les approches existantes. Par la suite, nous démontrons des améliorations d’un facteur deux,
à la fois sur la fidélité et la durée des opérations,dans lamesure dispersive et la réinitialisation
d’un transmon. Ces tâches représentent deux exemples de problèmes d’optimisation très
difficiles à résoudre numériquement, lesquels deviennent accessibles grâce à notre approche.

6.2.1 Notre méthodologie

Inspiré par l’article pionnier en apprentissage automatique inspiré par la physique
de Chen et co-auteurs [196], nous formulons une approche pour obtenir, avec un faible
coût en mémoire numérique, les gradients d’une fonction de coût arbitraire dépendant des
dynamiques produites par une équation maîtresse sous forme de Lindblad. Il est important
de souligner que cet article largement cité demême que notre approche s’appuient fortement
sur la méthode de l’état adjoint introduite dans le domaine mathématique du contrôle il
y a plus de soixante ans [106]. Combinant cette méthode de l’état adjoint aux approches
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modernes de rétropropagation des gradients [197], nous sommes en mesure à la fois (1) de
généraliser notre approche à des problèmes de contrôle arbitraires, c’est-à-dire avec des
objectifs et des contraintes complètement généralisables, ainsi que (2) de minimiser les coûts
enmémoire de sorte à pouvoir utiliser des processeurs graphiques (GPUs) et rendre pratique
l’ingénierie des contrôles appliqués sur des systèmes quantiques ouverts possédant de
grands espaces d’Hilbert. Ces aspects rendent notre approche particulièrement prometteuse
dans la résolution de divers problèmes de contrôle optimal quantique, ainsi que toutes autres
applications bénéficiant de l’utilisation de gradients telles que l’estimation de paramètres,
la tomographie d’états et de processus quantiques, ou la spectroscopie du bruit quantique.

L’idée au cœur de notre approche, la méthode de l’état adjoint, consiste d’abord à définir
une représentation duale de lamatrice densité ϕ(t), laquelle décrit la sensibilité de la fonction
de coût par rapport à l’état quantique évolué (la matrice densité au temps t). Par la suite,
cet état adjoint est évolué dans le sens inverse du temps à partir de l’équation différentielle
originale (l’équation maîtresse de Lindblad) afin d’obtenir tous les gradients de la fonction
de coût. Voyons plus en détail comment cette approche fonctionne.

Dans un problème de contrôle optimal quantique générique, nous cherchons à ob-
tenir les paramètres de contrôle θ = (θ1, . . . , θm) réalisant les dynamiques voulues sur
le système quantique. Le succès de cette tâche est quantifié par une fonction de coût
C = C(θ, ρ(t0), . . . , ρ(tn)), laquelle dépend des paramètres θ et potentiellement de façon ex-
plicite des états quantiques à certains moments intermédiaires de l’évolution ρ(tj). Une telle
dépendance est très utile afin de trouver les contrôles optimaux réalisant l’opération voulue
tout en respectant certaines caractéristiques désirables, telles que minimiser la population
dans certains niveaux. Par exemple dans les optimisations de la mesure du transmon qui
suivent, nous utilisons un coût pénalisant la population de la cavité de mesure au-delà d’un
certain seuil n̄crit pour l’ensemble de l’évolution temporelle afin d’éviter les effets indésirables
de transitions vers des états excités du transmon, un phénomène appelé l’ionisation [198].

Afin de minimiser la fonction de coût C, nous cherchons donc à calculer les gradients

dC
dθ

=
∂C
∂θ

+ ∑
j

∂C
∂ρ(tj)

∂ρ(tj)

∂θ
. (6.1)

Les gradients ∂C/∂θ peuvent être évalués directement à partir de la définition de la fonction
de coût lorsqu’il y a une dépendance explicite sur les paramètres θ, soit de façon analytique
ou purement numérique en utilisant l’autodifférentiation. Cependant, les états quantiques du
système à différents temps ρ(tj) apparaissant dans cette équation sont obtenus en résolvant
l’équation maîtresse de Lindblad qui, je le rappelle, prend la forme
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dρ

dt
= Lρ = −i[H, ρ] + ∑

k
D[Lk]ρ, (6.2)

avec H l’Hamiltonien du système, Lk les opérateurs de dissipation et le super-opérateur
D[L]ρ = LρL† − {L†L, ρ}/2. Ainsi, l’utilisation d’une approche de différentiation au-
tomatique nécessite de différentier à travers l’ensemble des opérations réalisées lors de
l’intégration de l’équation maîtresse, ce qui amène un coût en mémoire prohibitif. Afin
de contrer ce problème, il est possible d’obtenir les gradients voulus en solutionnant une
seconde équation différentielle tout en évitant de conserver en mémoire de nombreux états
quantiques. Il est alors possible d’exploiter un compromis entre la mémoire utilisée et la
complexité de calcul nécessaire.

En pratique, on définit alors un état adjoint

ϕ(tj) ≡
dC

dρ(tj)
, (6.3)

lequel capture la sensibilité de la fonction de coût par rapport à l’état quantique du système.
Comme présenté dans l’article, il est aisé de démontrer que l’évolution de cet état adjoint
obéit à une équation différentielle analogue à l’équation maîtresse,

dϕ

dt
= −L†ϕ = −i[H, ϕ]− ∑

k
D†[Lk]ϕ, (6.4)

oùD†[L]ϕ = L†ϕL−{L†L, ϕ}/2. L’intégration de cette équation différentielle à l’aide d’un
algorithme numérique, tel qu’une méthode de Runge-Kutta [46], se fait ici du temps final tn

jusqu’au temps initial t0. Notons que le signe moins devant les opérateurs de dissipation
implique que les dynamiques de ϕ se contractent dans le sens inverse du temps, ce qui
assure la stabilité numérique de la solution obtenue. L’état initial utilisé pour résoudre cette
équation différentielle ϕ(tn) = dC/dρ(tn) est obtenu directement à partir de l’état final
ρ(tn) suite à l’intégration de l’équation maîtresse originale Éq. (6.2).

Somme toute, les gradients de la fonction de coût par rapport à l’ensemble des paramètres
du problème peuvent être obtenus directement à partir de la connaissance de la matrice
densité et de l’état adjoint du système aux temps voulus,

dC
dθ

=
∂C
∂θ

−
∫ t0

tn

∂θ Tr
[
ϕ†(t)L(t, θ)ρ(t)

]
dt. (6.5)

Notre approche procède donc en deux étapes réalisées de façon successive : une intégra-
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tion directe de l’équation maîtresse suivie par une intégration en sens inverse du temps de
l’équation maîtresse et de l’équation adjointe Éq. (6.4). De ce fait, l’utilisation enmémoire est
réduite à seulementO(nc × d2), avec d la dimension de l’espace d’Hilbert et nc le nombre de
points temporels nécessaires à l’évaluation de la fonction de coût. Pour plusieurs problèmes
de contrôle optimal, uniquement l’état final du système est utilisé dans la fonction de coût
et nc = 1. De plus, il est possible de calculer le scalaire associé à la fonction de coût partielle
directement lorsque le temps t = tj est atteint lors de l’intégration numérique, de sorte à
éviter le besoin de garder l’état ρ(tj) en mémoire.

Le coût en mémoire est donc réduit à O(d2) avec notre approche, une réduction de
plusieurs ordres de magnitude pour de nombreux problèmes de contrôle par rapport à
une approche par différentiation automatique [194, 199]. En effet, cette dernière approche
nécessite plutôt un coût en mémoire de O(m × d2), où m est le nombre d’évaluations de
l’équation différentielle utilisé par l’algorithme d’intégration. Par exemple, le stockage de
la matrice densité pour un système possédant un espace d’Hilbert de dimension d = 1000
et une évolution temporelle avec m = 2000 pas d’intégration nécessite environ 30 GB de
mémoire, ce qui dépasse déjà les capacités de nombreux processeurs graphiques (GPUs).
En revanche, notre approche ouvre la porte à la résolution de problèmes de contrôles
dans de grands systèmes quantiques ouverts (N ≲ 10 000) ainsi que pour des problèmes
nécessitant de nombreux pas d’intégration (aucune dépendance en m en principe 1). Je note
que typiquement le nombre de pas d’intégration nécessaire croît en fonction du ratio entre
l’échelle de temps des dynamiques significatives les plus rapides du système (par exemple
la fréquence d’un terme de pilotage micro-onde) et la durée totale d’évolution.

6.2.2 Mesure dispersive optimale d’un transmon

Nous utilisons notre approche afin de trouver les contrôles réalisant une mesure disper-
sive optimale d’un transmon décrit par un modèle exhaustif incluant à la fois l’Hamiltonien
complet du transmon [27] ainsi que sa cavité de mesure et son filtre Purcell [200]. Ce
modèle nécessite un espace d’Hilbert d’environ d = 2000. Nous démontrons d’abord que
l’ingénierie de l’impulsion micro-onde utilisée pour la mesure permet d’améliorer à la fois

1. Tel que décrit dans l’article, la résolution de l’équation maîtresse en sens inverse du temps génère des
dynamiques en expansion, lesquelles peuvent mener à des instabilités numériques. Ce problème est cependant
complètement résolu en gardant en mémoire la matrice densité à quelques points de contrôle lors de l’évaluation
en sens normal du temps de la même équation. En pratique, le nombre de points temporels où la matrice
densité doit être conservée en mémoire dépend de l’échelle de temps la plus rapide des processus de dissipation.
L’utilisation de ces points de contrôles mène donc à une mise à l’échelle de la mémoire en fonction du nombre
de pas d’intégration nécessaire, mais avec un pré-facteur qui est typiquement plusieurs ordres de grandeur
plus petit que dans le cas de la différentiation automatique.
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la fidélité et la durée totale de la mesure par un facteur d’environ 25 %. Ce gain relativement
modeste est limité par l’amplitude finie de l’interaction dispersive entre le transmon et le
mode du système cavité-filtre utilisé pour la mesure. Intuitivement, le contrôle de la forme
de l’impulsion permet de modifier la trajectoire de ce mode de mesure de façon à maximiser
la séparation entre la réponse lorsque le qubit se retrouve dans l’état |g⟩ au lieu de |e⟩.
Cependant, des trajectoires arbitraires ne peuvent être réalisées parce que la vitesse et la
direction avec laquelle ces trajectoires se séparent sont essentiellement limitées par la forme
de l’interaction dispersive

Ĥdispersif = χâ† âσ̂z, (6.6)

créant des rotations dans l’espace de phase du mode de mesure avec un sens de rotation
opposé pour |g⟩ et |e⟩ [13]. Ainsi, le nombre maximal de photons admissibles dans la cavité
n̄ = ⟨â† â⟩ < n̄crit, la valeur essentiellement fixe de l’interaction dispersive χ ≈ g2/∆ et
le taux auquel l’information est évacuée du mode de mesure κ limitent tous la fidélité de
mesure réalisable pour une durée donnée [13].

L’ajout d’un contrôle micro-onde directement sur le transmon permet cependant à
notre approche d’optimiser la fréquence et l’enveloppe de ce signal afin de découvrir deux
stratégies de contrôle significativement plus performantes. Dans la première, le contrôle
optimisé sur le transmon possède environ la fréquence de la cavité, ce qui crée de façon
effective une interaction longitudinale de la forme

Ĥlongitudinal = gz(â† + â)σ̂z, (6.7)

laquelle engendre plutôt un déplacement linéaire dans l’espace de phase dumode demesure
avec une direction opposée pour |g⟩ et |e⟩ [201, 202], ce qui est optimal [203]. La vitesse de
cette séparation est cependant encore une fois limitée par la valeur du décalage dispersif
entre les états |g⟩ et |e⟩ du transmon [204].

La seconde stratégie d’optimisation trouve plutôt une fréquence d’impulsionmicro-onde
sur le transmon correspondant à sa transition |e⟩-| f ⟩. Ce contrôle permet de transférer la
population du premier au second état excité du transmon. Cette approche, connue sous
le nom de mise à l’étage ou shelving [205], est bénéfique parce que la réponse du mode de
mesure dans le second état excité diffère davantage de la réponse de l’état fondamental,
c’est-à-dire que χg f > χge, créant ainsi un plus grand signal de mesure [13]. Cette approche
permet d’atteindre une fidélité demesure optimale deux fois plus rapidement que l’approche
usuelle, soit en 40 ns au lieu de 80 ns pour les paramètres choisis. L’erreur demesure associée
à cette approche est également deux fois plus petite, soit 1.0 × 10−3 au lieu de 2.1 × 10−3.
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Il est également possible d’interpréter clairement plusieurs caractéristiques des contrôles
optimaux trouvés, notamment avec cette approche de mise à l’étage où l’impulsion sur le
qubit réalise une porte π d’environ 10 ns entre les états |e⟩ et | f ⟩ du transmon avec une
enveloppe très similaire à celle communément utilisée [41]. Ce qui est particulièrement
impressionnant est que la fidélité de cette porte est de plus de 99% alors qu’une forte
impulsion concomitante sur la cavité, laquelle permet d’amorcer la mesure lors de ces 10 ns,
cause un décalage ac-Stark significatif et dépendant du temps sur la fréquence du transmon.
La calibration expérimentale d’une telle opération serait donc très ardue sans une telle
approche de contrôle optimal en mesure d’optimiser simultanément plusieurs paramètres
interdépendants.

6.2.3 Réinitialisation optimale d’un transmon

Nous appliquons enfin notre approche de contrôle optimal quantique en système ouvert
sur le problème de réinitialisation du transmon dans le même modèle possédant une cavité
et un filtre. Cette opération cherche à amener le transmon dans son état |g⟩ de façon incondi-
tionnelle en utilisant typiquement deux impulsions micro-ondes : une à la fréquence |e⟩-| f ⟩
afin de transférer la population du premier au second état excité et la seconde impulsion à
la fréquence | f 0⟩-|g1⟩ afin de transférer cette population dans la cavité possédant un grand
taux de dissipation κ ≫ γt [206]. Dans l’approche habituelle, ces contrôles sont définis à
l’aide de quatre paramètres qui sont calibrés un à la fois puis fixés, soient l’amplitude et la fré-
quence des deux impulsions possédant une enveloppe plate. En revanche, notre approche de
contrôle optimal permet d’optimiser l’ensemble de ces paramètres simultanément, et même
d’optimiser beaucoup plus de paramètres en modifiant la forme des impulsions micro-ondes
utilisées. Nos résultats montrent qu’une telle optimisation du système quantique ouvert
permet d’obtenir une réinitialisation significativement plus performante du transmon, avec
des populations résiduelles du transmon (dans les états |e⟩ et | f ⟩) de moins de 3 × 10−4 en
200 ns. L’approche de calibration habituelle atteint des populations résiduelles dix fois plus
grandes pour la même durée ou trois fois plus grandes en plus de 300 ns.
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6.3 Publication [5] : Contrôle optimal de grands systèmes quan-
tiques ouverts

Cette section reproduit la publication scientifique [5] dans laquelle je suis deuxième
auteur. J’ai proposé de poursuivre cette problématique de recherche, soit l’optimisation
de la mesure et de la réinitialisation du transmon, en adaptant l’approche de [196]. J’ai
travaillé de près avec le premier auteur, alors en visite pour quatre mois dans le groupe.
Principalement, j’ai contribué à l’élaboration du code de simulation et d’optimisation en
PyTorch [159], à l’analyse des résultats et à la rédaction du manuscrit.

Nous avons soumis l’article qui suit au journal Physical Review Letters et sommes en
attente du retour de la seconde ronde d’arbitrage.
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We present a framework that combines the adjoint state method together with reverse-time back-
propagation to solve prohibitively large open-system quantum control problems. Our approach
enables the optimization of arbitrary cost functions with fully general controls applied on large open
quantum systems described by a Lindblad master equation. It is scalable, computationally efficient,
and has a low memory footprint. We apply this framework to optimize two inherently dissipative
operations in superconducting qubits which lag behind in terms of fidelity and duration compared
to other unitary operations: the dispersive readout and all-microwave reset of a transmon qubit.
Our results show that, given a fixed set of system parameters, shaping the control pulses can yield
2x improvements in the fidelity and duration for both of these operations compared to standard
strategies. Our approach can readily be applied to optimize quantum controls in a vast range
of applications such as reservoir engineering, autonomous quantum error correction, and leakage-
reduction units.

Introduction.— Quantum optimal control (QOC)
provides a framework to design external controls for re-
alizing arbitrary quantum operations with maximal fi-
delity and minimal time [1–3], crucial requirements of
useful quantum error correction [4]. A common assump-
tion of QOC is that minimizing operation time will also
reduce the impact of environmental noise, such that only
closed quantum systems need to be considered. However,
these approaches are limited by the fact that controlling
the system’s coherent dynamics can drastically alter the
impact of some noise sources, as exemplified by dynam-
ical decoupling methods [5–7]. Moreover, closed-system
approaches cannot extend to inherently dissipative pro-
cesses such as qubit readout and reset. Consequently,
optimally controlling open quantum systems emerges as
an important avenue [8–10]. It addresses both the mini-
mization of decoherence in quantum information process-
ing [11–13] and the design of dissipative protocols [14–16],
marking a significant step towards comprehensive quan-
tum control in engineered systems.
Over the last decade, several approaches have emerged

for open-system QOC. Closed-loop control methods
based on feedback engineering [17, 18] or reinforcement
learning [19–22] have seen recent success but are diffi-
cult to scale to a large number of parameters. Open-
loop methods such as gradient-ascent pulse engineer-
ing [15, 23], Krotov’s method [24–26] or automatic differ-
entiation [27–30] circumvent this limitation by computing
numerical gradients, thereby providing a path to explore
the parameter space. However, the control of large open
systems remains challenging: the sheer size of the prob-
lem prohibits any framework that requires vectorizing the
Liouvillian, or storing many density matrices. Two recent
papers [31, 32] propose to mitigate this memory overhead

with semi-analytical approaches.

In this Letter, we present a framework enabling the re-
alization of QOC on large open quantum systems with
a fully general parametrization over the controls and
arbitrary cost functions. Our approach combines the
adjoint state method [33–35] with reverse-time back-
propagation [36–39] to solve prohibitively large open-
system quantum control problems defined in Lindblad
form. This approach ensures precise and fast numerical
computation of arbitrary gradients with minimal mem-
ory usage, making it ideal for GPU acceleration. In the
second part of this work, we demonstrate the useful-
ness of this approach by optimizing two critical opera-
tions for the realization of a fault-tolerant quantum com-
puter based on superconducting circuits: dispersive read-
out [40–42] and all-microwave reset [43, 44] of a transmon
qubit [45].

Adjoint state method.— Consider a QOC problem
for which we seek to find a set of parameters minimiz-
ing a cost function C(θ, ρ̂(t0), . . . , ρ̂(tn)). This function,
in general, depends on both the problem parameters
θ = (θ1, . . . , θm) and on the density matrix of the sys-
tem at a set of times, ρ̂(ti). Gradient-based approaches
to optimize the control parameters rely on computing the
derivative of the cost function with respect to each pa-
rameter, dC/dθ. To do so, we apply the adjoint state
method [33] to open quantum systems. In this context,
the adjoint state is defined as ϕ̂(t) = dC/dρ̂(t), and rep-
resents how a change in the density matrix at time t
modifies the cost function. For open quantum systems
under the usual Born-Markov approximations [46], the
evolution of the density matrix is governed by a Lind-

ar
X

iv
:2

40
3.

14
76

5v
2 

 [q
ua

nt
-p

h]
  2

2 
A

pr
 2

02
4



2

blad master equation (ℏ = 1),

dρ̂

dt
= Lρ̂ ≡ −i[Ĥ, ρ̂] +

∑

k

D[L̂k]ρ̂, (1)

where Ĥ is the system Hamiltonian, L̂k are jump op-
erators, and D[L̂]ρ̂ = L̂ρ̂L̂† − {L̂†L̂, ρ̂}/2. The adjoint
state is then subject to a dual ordinary differential equa-
tion [47],

dϕ̂

dt
= −L†ϕ̂ ≡ −i[Ĥ, ϕ̂]−

∑

k

D†[L̂k]ϕ̂, (2)

where D†[L̂]ϕ̂ = L̂†ϕ̂L̂ − {L̂†L̂, ϕ̂}/2. This equation can
be integrated numerically over the time interval of in-
terest [t0, tn] with initial condition ϕ̂(tn) = ∂C/∂ρ̂(tn),
computed analytically if a closed form is available, or
directly through automatic differentiation. Notably, the
overall minus sign in Eq. (2) ensures numerical stability
of the integration by generating contracting dynamics in
reverse time. The derivative of the cost function with
respect to the problem parameters is given by

dC

dθ
=

∂C

∂θ
−
∫ t0

tn

∂θ Tr
[
ϕ̂†(t)L(t, θ)ρ̂(t)

]
dt . (3)

This integral is straightforward to compute using the den-
sity matrix and adjoint state at each time t ∈ [t0, tn], as
obtained from Eqs. (1) and (2). In particular, the partial
derivative with respect to θ can be easily computed from
automatic differentiation of the adjoint state equation by
noting that

∂θ Tr
[
ϕ̂†Lρ̂

]
= −Tr

[
∂θ(dϕ̂/dt)

†ρ̂
]
, (4)

which has the form of a vector-Jacobian product.
The QOC optimization is illustrated in Fig. 1 and pro-

ceeds in two steps. First, the forward pass consists in
using the initial set of parameters (e.g. a sequence of dis-
crete pulses) to numerically integrate the master equation
from t0 to tn while saving the density matrix at each time
ti of interest. The cost function C(θ, ρ̂(t0), . . . , ρ̂(tn)) is
then evaluated. To lower the memory footprint, the cost
function can also be evaluated on the fly during the for-
ward pass such that only a single density matrix needs
to be stored. In a second step, the backward pass, both
the master and adjoint equations are simultaneously in-
tegrated in reverse time, starting from t = tn. During
this process, the integral of Eq. (3) is iteratively evalu-
ated, such as to obtain the entire gradients dC/dθ once
the backpropagation is finished. Having access to the
gradients of the cost function, we can now iteratively up-
date the control parameters using standard optimization
algorithms [48–50].
We emphasize how each density matrix (blue) is com-

puted twice: once during the forward pass, and once

C

Forward pass

Backward pass

Figure 1. Adjoint state quantum optimal control. In the for-
ward pass, the master equation is integrated and checkpointed
for several time points (dark blue). In the backward pass, the
density matrix ρ̂ is recomputed in reverse time (light blue) to-
gether with the adjoint state ϕ̂ (green) and with the gradients
(red) of the cost function C. When a checkpoint is reached,
the density matrix is restored to its forward time trajectory,
and the adjoint state updated with the corresponding cost
function gradient.

during the backward pass. This enables a low memory
footprint for the overall scheme, with at most a single
density matrix and adjoint state needed to be stored at
any given moment. The memory footprint of the method
thus scales as O(N2) with N the Hilbert space dimen-
sion. This is in stark contrast with methods based on
automatic differentiation [28], for which the density ma-
trix needs to be stored at each time point of the numer-
ical integration, thus scaling as O(MtN

2), with Mt the
number of numerical integration steps. Such memory re-
quirements can quickly become prohibitive, even for open
quantum systems of intermediate sizes, N ≳ 100.
Note that this large gain in memory comes at the

cost of trading off some numerical runtime. Overall, the
scheme requires the integration of four differential equa-
tions in total [47], against only two for automatic dif-
ferentiation. In addition, the reverse time integration
of Eq. (1) can be numerically unstable due to the expan-
sive dynamics of the system. This can however be fully
resolved with checkpointing the quantum states during
the forward pass [39], thus effectively trading back some
memory for numerical stability. In practice, checkpoint-
ing at the time scale of the largest dissipation operator
is sufficient to ensure numerical stability without adding
significant complexity.
We have implemented this optimization scheme using

PyTorch [51], taking advantage of its automatic differ-
entiation capabilities and GPU support. This framework
allows us to run optimization problems for open quantum
system with hundreds of parameters, arbitrary cost func-
tions, and for Hilbert space dimensions of up to N ∼ 5000
while running on a single GPU with 24 GB of memory.
Our code is available through the dynamiqs open-source
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library [52], simplifying replication of this work and its
application to various QOC problems. We now demon-
strate the usefulness of this method by optimizing read-
out and reset of a transmon, two operations that inher-
ently rely on dissipation.
Transmon model.— Let us consider the experimen-

tally realistic model depicted in Fig. 2(a) of a transmon
coupled to a readout resonator and Purcell filter [53]

dρ̂

dt
= −i[Ĥ, ρ̂] + γD[b̂]ρ̂+ κD[f̂ ]ρ̂, (5)

with transmon relaxation rate γ and filter relaxation rate
κ, and where

Ĥ = 4EC n̂t − EJ cos(φ̂t) + ωrâ
†â+ ωf f̂

†f̂

− ign̂t(â− â†)− J(â− â†)(f̂ − f̂†)

+ Ωtn̂t sin(ωd,tt)− iΩf (f̂ − f̂†) sin(ωd,f t).

(6)

The first two terms denote the free transmon Hamilto-
nian with charging energy EC and Josephson energy EJ ,
with n̂t and φ̂t the charge and phase operators, and with
b̂ the corresponding annihilation operator in the diago-
nal basis. The resonator and filter modes are denoted by
â and f̂ , with respective frequencies ωr and ωf . These
three modes are capacitively coupled in series with cou-
pling strengths g ≫ J . The system can be driven using a
capacitive coupling either through the transmon with a
microwave pulse at frequency ωd,t and envelope Ωt(t), or
through the Purcell filter at frequency ωd,f and envelope
Ωf (t).
For numerical simulation of this model, we first di-

agonalize the free transmon Hamiltonian and identify
the lowest energy eigenstates. We also diagonalize the
resonator-filter subsystem yielding two normal modes,
each coupled to the transmon. Finally, we apply the
rotating-wave approximation (RWA) on couplings and
drives. This allows for larger numerical time steps by
eliminating fast oscillating dynamics thereby simplifying
master equation integration. However, this also implies
that not all of the chaotic or transmon ionization dy-
namics are captured [54–56]. To avoid probing these
regimes, we limit the maximum amplitudes of control
drives, e.g. to 200MHz for transmon readout.
We use typical device parameters corresponding to a

critical photon number of n̄crit = (∆/2g)
2
= 16 [40] and

dispersive rates of χ/2π = 3.8MHz and 8.1MHz with the
lower and higher normal modes, respectively. The filter
loss rate is κ/2π = 30MHz and the transmon relaxation
time is T1 = 20 µs. The remaining system parameters
can be found in [47].
Transmon readout.— Readout of transmon qubits

is realized through the dispersive coupling to a res-
onator [40]. In this case, the resonator frequency is
shifted by the average occupancy in the transmon, and
can be measured by driving the resonator at its bare fre-
quency and monitoring the output field, see Fig. 2(b).

In the presence of a Purcell filter, either normal mode of
the hybridized resonator-filter subsystem can be used for
readout [57].
The metric we use to maximize the measurement fi-

delity is the signal-to-noise ratio (SNR). Accounting for
optimal weighting functions, it reads [58]

SNR(τm) =

√
2ηκ

∫ τm

0

dt |βe(t)− βg(t)|2, (7)

where η ∈ [0, 1] is the measurement efficiency, τm is the
readout integration time, and βe/g = Tr

[
f̂ ρ̂g/e

]
is the

average field value in the filter mode, with ρ̂g/e the den-
sity matrix obtained after initializing the transmon in the
|g/e⟩ state. To obtain results that can be compared to ex-
periments, we use η = 0.6 [41]. The optimization objec-
tive is to maximize the SNR, and thus maximize the dis-
tance between the pointer states |βe−βg| in the shortest
possible time. Further assuming that the pointer states
βg,e are Gaussian, one can link the SNR and the trans-
mon lifetime to the readout assignment error [47, 59].
To optimize the transmon readout, we discretize the

control pulse envelopes Ω(t) with 1 ns time bins and use a
250MHz gaussian filter to interpolate between these pix-
els during numerical integration and to model realistic ex-
perimental distortions [60]. In addition to the discretized
drive amplitudes, the optimization parameters θ include
the carrier frequency ωd of each drive. Contrary to the
drive amplitudes, the latter are kept constant through-
out the pulse duration, in accordance with typical exper-
iments. The cost function used to optimize the transmon
readout is principally composed of the SNR of Eq. (7),
with additional cost terms constraining the control pulses
in order to regularize the optimization and avoid out-of-
model dynamics. For example, we limit the number of
photons in the hybridized resonator-filter modes, penalize
unwanted transitions to higher excited transmon states,
and limit the maximal available pulse amplitudes. The
full cost function is detailed in [47]. We perform gradi-
ent descent using Adam [49] and use the adjoint state
method previously described to compute gradients.
Figure 2(c) shows the SNR and the assignment error

as a function of the integration time τm obtained by our
approach, and panel (d) shows the corresponding pulse
envelopes for τm = 40ns optimizations. As a point of
comparison, we first consider the two non-optimized ref-
erence pulses labelled ‘flat’ and ‘two-step’. The former
consists of a constant pulse with 2 ns ramp-up and ramp-
down times (dark blue squares), and the latter of a two-
step pulse meant to rapidly populate the readout mode
(blue circles) [41]. In both cases, the amplitude is cal-
ibrated to reach n̄ = n̄crit photons in the steady state.
The SNR versus τm for these two pulses is fitted with
the function (full blue and dark blue lines) [53]

SNR(τm) = α
√
2ηκ

(√
τm −√

τm,0

)
, (8)
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Figure 2. (a) Lumped-element model of a transmon coupled to a readout resonator and Purcell filter. The transmon and filter
are driven, and the filter output field is measured through its transmission line. (b) Dispersive readout of a transmon. The
mean field in the filter depends on the transmon state. Signal-to-noise ratio of readout increases with the integrated difference
of mean fields. (c) Signal-to-noise ratio and assignment error of transmon readout for several drive envelopes: a flat envelope,
a 4 ns two-step envelope [41], and optimized envelopes (QOC) with optional additional drives on the transmon at frequencies
ωd,t ≃ ωr (green) and ωd,t ≃ ωef (red). The flat and two-step data points are fitted according to Eq. (8). The black line shows
the T1 limit given by τm/2T1. (d) Reference and optimized pulse envelopes at 40 ns of integration time.

where α = 2|Ωf sin(2ϕ)|/κ is the effective resonator dis-
placement in the steady state, with ϕ = arctan(2χ/κ)
and χ the dispersive shift obtained from exact diagonal-
ization of Eq. (6). In this expression, √τm,0 accounts for
an initial delay for the resonator to populate, and is nu-
merically fitted to τm,0 = 19ns and τm,0 = 13ns for the
flat and two-step pulses, respectively. As the integration
time increases, the SNR (assignment error) of both ref-
erences pulses increase (decrease), up until the transmon
T1 limit is reached (solid black line). Minimum assign-
ment errors of 2.1× 10−3 and 1.8× 10−3 are obtained at
80 ns and 65 ns respectively. This is similar performance
to state-of-the-art readout experiments [41, 42, 57, 61], as
expected from our choice of realistic experimental param-
eters. Our objective is now to obtain smaller assignment
errors in shorter measurement times.

The light blue symbols in Fig. 2(c) are obtained by
optimizing the pulse envelope and drive frequency us-
ing our QOC approach. The gain is modest and mainly
limited by the dispersive coupling with the transmon.
Interestingly, the optimized pulses follow a two-step-like
shape with a strong initial drive and a weaker subsequent
drive, see panel (d). We attribute the small oscillations
in the envelope to the rotational gauge freedom of the
resonators, which the optimizer is arbitrarily choosing.

Significant improvements are, however, obtained by
adding a drive on the transmon concurrently to the read-
out drive on the resonator. Interestingly, the optimizer
converges on two distinct frequencies for the transmon
drive. The first strategy found by the optimizer is to drive
the transmon at a frequency close to the resonator fre-
quency (green symbols). In that case, the assignment er-
rors decreases faster with integration time than with the
above approaches, leading to a minimal assignment error
of 1.6×10−3 at 60 ns. The effectiveness of this optimized
readout strategy stems from the fact that driving the

qubit at the resonator frequency creates a longitudinal-
like interaction that can be combined with the usual dis-
persive interaction to improve readout, as demonstrated
in Refs. [62–64].

The second strategy found by the optimizer employs a
transmon drive at the (ac-Stark shifted) |e⟩-|f⟩ transition
frequency (red symbols). Given that the cavity response
differs more significantly between the transmon states |g⟩
and |f⟩ than between |g⟩ and |e⟩ [53], transferring popula-
tion into the |f⟩ state leads to a significant improvement
of the assignment error, which reaches 1.0×10−3 in 40 ns.
Interestingly, this shelving approach has already been
used to improve readout in circuit QED [65–68]. There,
a π-pulse between |e⟩ and |f⟩ is applied to the trans-
mon followed by the measurement drive. In contrast, the
optimized strategy found here applies the π-pulse while
the cavity is loaded with measurement photons leading
to a considerable reduction in the measurement time,
see Fig. 2(d). This is possible because the optimizer ac-
counts for the time-dependent ac-Stark shift. The op-
timized π-pulse features a DRAG-like envelope [69] and
achieves a gate fidelity over 99 % in less than 10 ns, even
while the readout mode is being strongly driven. Impor-
tantly, we note that this approach could achieve signif-
icantly higher fidelities by increasing the modest trans-
mon lifetime of 20µs used here, as shown by the high
SNR in Fig. 2(c).

Transmon reset.— As a second demonstration of the
adjoint state method, we consider the optimization of
the f0-g1 reset of a transmon [43, 44, 70]. This is an
all-microwave reset protocol based on a Raman transi-
tion between states |f00⟩ and |g01⟩. For the ket |ijk⟩,
|i⟩ stands for the qubit state and |jk⟩ the resonator-filter
normal modes. Given the large photon loss rate of the fil-
ter, the state |g01⟩ quickly decays to |g00⟩, thus ensuring
a fast reset of the transmon |f⟩ state. An additional drive
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Figure 3. Residual excitation out of |g00⟩ after f0-g1 reset
for a calibrated pulse (blue) and an optimized pulse (red)
for a system prepared in |g00⟩, |e00⟩, and |f00⟩. Each filled
red marker corresponds to a different optimization. Lighter
hollow markers illustrate the population dynamics at shorter
times for the optimized pulse with 200 ns duration.

at the |e⟩-|f⟩ transition frequency allows to reset both |e⟩
and |f⟩ states of the transmon. We use the adjoint-state
method to find optimal controls for both the f0-g1 and
e-f drives simultaneously, in a similar fashion as for opti-
mizing the readout. The cost function is now principally
maximizing the transmon population in the |g00⟩ state at
the end of the protocol, along with smaller contributions
for regularizing the pulses, see [47] for details.
The results of the reset optimization are summarized in

Fig. 3. The three panels show the residual excitation out
of |g00⟩ against the reset time for a reference flat pulse
(blue) and an optimized pulse (red) for different initial
transmon states. The reference pulse is composed of two
constant drives at the f0-g1 and e-f transitions, where
amplitudes and frequencies are calibrated numerically in
a similar fashion to what is done in experiments, see [47].
The QOC pulse is obtained by optimizing the carrier fre-
quency and envelopes of both drives, for several total
reset times. The optimized pulses show significant im-
provement over the reference, with a residual excitation
of less than 0.05 % at 100 ns (200 ns) for the |e⟩ (|f⟩) state
preparation. Note that this delay in the |f⟩ reset time is
due to a larger relative weight for the reset of |e⟩ chosen
in the cost function, and could be adjusted to achieve the
most experimentally relevant reset scheme. This repre-
sents a notable improvement over the reference pulses,
which reach a steady state after more than 300 ns with
larger residual excitations of about 0.07 %. Our results
also favourably compare to state-of-the-art experimen-
tal realizations of this protocol that reach 1.7 % residual
excitations in 100 ns [42], or 0.3 % in 300 ns [44].
Conclusion.— We obtained a fully general framework

to optimize open quantum system dynamics in large
Hilbert spaces by combining the adjoint state method
and reverse-time back-propagation. We have demon-
strated the applicability of this method to complex open-
system optimization problems using the example of su-

perconducting transmon readout and reset. We stress
that our method can readily be applied to optimiz-
ing a wide range of quantum control problems where
the dissipative dynamics play a significant role such as
reservoir (dissipation) engineering [71, 72], autonomous
QEC [73, 74], leakage-reduction units [75], quantum cool-
ing, and more. We encourage readers to apply this frame-
work on their own optimal control problems using the
open-source library dynamiqs [52].
Acknowledgments.— We sincerely thank Alain Sar-

lette, Ross Shillito, Cristobal Lledó, Pierre Guilmin and
Adrien Bocquet for useful discussions. R.G. extends
his gratitude to Alain Sarlette for helping organise and
support this long-term academic exchange. This work
was supported by grant ANR-18-CE47-0005, NSERC,
the Canada First Research Excellence Fund, and the
Ministère de l’Économie et de l’Innovation du Québec.
The numerical simulations were performed using HPC
resources at Institut quantique and Inria Paris.

REFERENCES

[1] A. P. Peirce, M. A. Dahleh, and H. Rabitz, Optimal con-
trol of quantum-mechanical systems: Existence, numer-
ical approximation, and applications, Phys. Rev. A 37,
4950 (1988).

[2] J. Werschnik and E. Gross, Quantum optimal control
theory, Journal of Physics B: Atomic, Molecular and Op-
tical Physics 40, R175 (2007).

[3] C. P. Koch, U. Boscain, T. Calarco, G. Dirr, S. Fil-
ipp, S. J. Glaser, R. Kosloff, S. Montangero, T. Schulte-
Herbrüggen, D. Sugny, and F. K. Wilhelm, Quantum op-
timal control in quantum technologies. strategic report on
current status, visions and goals for research in europe,
EPJ Quantum Technology 9, 10.1140/epjqt/s40507-022-
00138-x (2022).

[4] B. M. Terhal, Quantum error correction for quantum
memories, Rev. Mod. Phys. 87, 307 (2015).

[5] L. Viola, E. Knill, and S. Lloyd, Dynamical decoupling of
open quantum systems, Phys. Rev. Lett. 82, 2417 (1999).

[6] K. Khodjasteh and D. A. Lidar, Fault-tolerant quan-
tum dynamical decoupling, Phys. Rev. Lett. 95, 180501
(2005).

[7] M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga,
W. M. Itano, and J. J. Bollinger, Optimized dynamical
decoupling in a model quantum memory, Nature 458,
996 (2009).

[8] R. Schmidt, A. Negretti, J. Ankerhold, T. Calarco, and
J. T. Stockburger, Optimal control of open quantum
systems: Cooperative effects of driving and dissipation,
Physical review letters 107, 130404 (2011).

[9] T. Schulte-Herbrüggen, A. Spörl, N. Khaneja, and
S. Glaser, Optimal control for generating quantum
gates in open dissipative systems, Journal of Physics
B: Atomic, Molecular and Optical Physics 44, 154013
(2011).

[10] C. P. Koch, Controlling open quantum systems: tools,
achievements, and limitations, Journal of Physics: Con-
densed Matter 28, 213001 (2016).



6

[11] M. H. Goerz, D. M. Reich, and C. P. Koch, Optimal
control theory for a unitary operation under dissipative
evolution, New Journal of Physics 16, 055012 (2014).

[12] Z. An, H.-J. Song, Q.-K. He, and D. L. Zhou, Quantum
optimal control of multilevel dissipative quantum systems
with reinforcement learning, Phys. Rev. A 103, 012404
(2021).

[13] T. Propson, B. E. Jackson, J. Koch, Z. Manchester, and
D. I. Schuster, Robust quantum optimal control with
trajectory optimization, Phys. Rev. Appl. 17, 014036
(2022).

[14] D. J. Egger and F. K. Wilhelm, Optimal control of a
quantum measurement, Phys. Rev. A 90, 052331 (2014).

[15] S. Boutin, C. K. Andersen, J. Venkatraman, A. J. Ferris,
and A. Blais, Resonator reset in circuit qed by optimal
control for large open quantum systems, Phys. Rev. A
96, 042315 (2017).

[16] D. Basilewitsch, F. Cosco, N. L. Gullo, M. Möttönen,
T. Ala-Nissilä, C. P. Koch, and S. Maniscalco, Reservoir
engineering using quantum optimal control for qubit re-
set, New Journal of Physics 21, 093054 (2019).

[17] H. Chen, H. Li, F. Motzoi, L. Martin, K. B. Whaley, and
M. Sarovar, Quantum proportional-integral (pi) control,
New Journal of Physics 22, 113014 (2020).

[18] R. Porotti, V. Peano, and F. Marquardt, Gradient-
ascent pulse engineering with feedback, PRX Quantum
4, 030305 (2023).

[19] V. V. Sivak, A. Eickbusch, H. Liu, B. Royer, I. Tsioutsios,
and M. H. Devoret, Model-free quantum control with re-
inforcement learning, Phys. Rev. X 12, 011059 (2022).

[20] V. Sivak, A. Eickbusch, B. Royer, S. Singh, I. Tsioutsios,
S. Ganjam, A. Miano, B. Brock, A. Ding, L. Frunzio,
et al., Real-time quantum error correction beyond break-
even, Nature 616, 50–55 (2023).

[21] Y. Baum, M. Amico, S. Howell, M. Hush, M. Liuzzi,
P. Mundada, T. Merkh, A. R. Carvalho, and M. J. Bier-
cuk, Experimental deep reinforcement learning for error-
robust gate-set design on a superconducting quantum
computer, PRX Quantum 2, 040324 (2021).

[22] L. Ding, M. Hays, Y. Sung, B. Kannan, J. An,
A. Di Paolo, A. H. Karamlou, T. M. Hazard, K. Azar,
D. K. Kim, B. M. Niedzielski, A. Melville, M. E.
Schwartz, J. L. Yoder, T. P. Orlando, S. Gustavsson,
J. A. Grover, K. Serniak, and W. D. Oliver, High-
fidelity, frequency-flexible two-qubit fluxonium gates
with a transmon coupler, Phys. Rev. X 13, 031035
(2023).

[23] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen,
and S. J. Glaser, Optimal control of coupled spin dy-
namics: design of nmr pulse sequences by gradient as-
cent algorithms, Journal of Magnetic Resonance 172, 296
(2005).

[24] V. Krotov, Global methods in optimal control theory , Vol.
195 (CRC Press, 1995).

[25] M. Goerz, D. Basilewitsch, F. Gago-Encinas, M. G.
Krauss, K. P. Horn, D. M. Reich, and C. Koch, Kro-
tov: A python implementation of krotov’s method for
quantum optimal control, SciPost physics 7, 080 (2019).

[26] D. Basilewitsch, C. P. Koch, and D. M. Reich, Quan-
tum optimal control for mixed state squeezing in cav-
ity optomechanics, Advanced Quantum Technologies 2,
1800110 (2019).

[27] H. Jirari, Optimal control approach to dynamical sup-
pression of decoherence of a qubit, Europhysics Letters

87, 40003 (2009).
[28] N. Leung, M. Abdelhafez, J. Koch, and D. Schuster,

Speedup for quantum optimal control from automatic
differentiation based on graphics processing units, Phys.
Rev. A 95, 042318 (2017).

[29] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M.
Siskind, Automatic differentiation in machine learning:
a survey, Journal of Marchine Learning Research 18, 1
(2018).

[30] M. Abdelhafez, D. I. Schuster, and J. Koch, Gradient-
based optimal control of open quantum systems us-
ing quantum trajectories and automatic differentiation,
Phys. Rev. A 99, 052327 (2019).

[31] M. H. Goerz, S. C. Carrasco, and V. S. Malinovsky,
Quantum optimal control via semi-automatic differenti-
ation, Quantum 6, 871 (2022).

[32] Y. Lu, S. Joshi, V. San Dinh, and J. Koch, Optimal con-
trol of large quantum systems: assessing memory and
runtime performance of grape, Journal of Physics Com-
munications 8, 025002 (2024).

[33] L. Pontryagin, V. Boltyanskii, R. Gamkrelidze, and
E. Mishechenko, The Mathematical Theory of Optimal
Processes (CRC Press, 1962).

[34] N. B. Dehaghani and A. P. Aguiar, An application of pon-
tryagin neural networks to solve optimal quantum control
problems, arXiv preprint (2023), 2302.09143.

[35] U. Boscain, M. Sigalotti, and D. Sugny, Introduction to
the pontryagin maximum principle for quantum optimal
control, PRX Quantum 2, 030203 (2021).

[36] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K.
Duvenaud, Neural ordinary differential equations, Ad-
vances in neural information processing systems 31,
https://doi.org/10.48550/arXiv.1806.07366 (2018).

[37] P. Kidger, On neural differential equations, Ph.D. the-
sis, Mathematical Institute, University of Oxford (2022),
2202.02435.

[38] J. Somlói, V. A. Kazakov, and D. J. Tannor, Controlled
dissociation of i2 via optical transitions between the x
and b electronic states, Chemical physics 172, 85 (1993).

[39] S. H. K. Narayanan, T. Propson, M. Bongarti, J. Hück-
elheim, and P. Hovland, Reducing memory requirements
of quantum optimal control, in International Conference
on Computational Science (Springer, 2022) pp. 129–142.

[40] A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and
R. J. Schoelkopf, Cavity quantum electrodynamics for
superconducting electrical circuits: An architecture for
quantum computation, Phys. Rev. A 69, 062320 (2004).

[41] T. Walter, P. Kurpiers, S. Gasparinetti, P. Mag-
nard, A. Potočnik, Y. Salathé, M. Pechal, M. Mondal,
M. Oppliger, C. Eichler, and A. Wallraff, Rapid high-
fidelity single-shot dispersive readout of superconducting
qubits, Phys. Rev. Appl. 7, 054020 (2017).

[42] Y. Sunada, S. Kono, J. Ilves, S. Tamate, T. Sugiyama,
Y. Tabuchi, and Y. Nakamura, Fast readout and reset
of a superconducting qubit coupled to a resonator with
an intrinsic purcell filter, Phys. Rev. Appl. 17, 044016
(2022).

[43] M. Pechal, L. Huthmacher, C. Eichler, S. Zeytinoğlu,
A. A. Abdumalikov, S. Berger, A. Wallraff, and S. Filipp,
Microwave-controlled generation of shaped single pho-
tons in circuit quantum electrodynamics, Phys. Rev. X
4, 041010 (2014).

[44] P. Magnard, P. Kurpiers, B. Royer, T. Walter, J.-C.
Besse, S. Gasparinetti, M. Pechal, J. Heinsoo, S. Storz,



7

A. Blais, and A. Wallraff, Fast and unconditional all-
microwave reset of a superconducting qubit, Phys. Rev.
Lett. 121, 060502 (2018).

[45] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I.
Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin,
and R. J. Schoelkopf, Charge-insensitive qubit design de-
rived from the cooper pair box, Phys. Rev. A 76, 042319
(2007).

[46] C. Gardiner and P. Zoller, Quantum noise: a handbook of
Markovian and non-Markovian quantum stochastic meth-
ods with applications to quantum optics (Springer Science
& Business Media, 2004).

[47] See Supplemental Material for more information.
[48] C. G. Broyden, The convergence of a class of double-rank

minimization algorithms 1. general considerations, IMA
Journal of Applied Mathematics 6, 76 (1970).

[49] D. P. Kingma and J. Ba, Adam: A method for stochastic
optimization (2014), arXiv:1412.6980.

[50] H. Robbins and S. Monro, A Stochastic Approximation
Method, The Annals of Mathematical Statistics 22, 400
(1951).

[51] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
et al., Pytorch: An imperative style, high-performance
deep learning library, Advances in neural information
processing systems 32 (2019), 1912.01703.

[52] P. Guilmin, R. Gautier, A. Bocquet, and E. Genois,
dynamiqs: an open-source library for GPU-accelerated
and differentiable simulation of quantum sys-
tems (2024), in preparation, library available at
github.com/dynamiqs/dynamiqs.

[53] A. Blais, A. L. Grimsmo, S. M. Girvin, and A. Wallraff,
Circuit quantum electrodynamics, Rev. Mod. Phys. 93,
025005 (2021).

[54] J. Cohen, A. Petrescu, R. Shillito, and A. Blais, Reminis-
cence of classical chaos in driven transmons, PRX Quan-
tum 4, 020312 (2023).

[55] R. Shillito, A. Petrescu, J. Cohen, J. Beall, M. Hauru,
M. Ganahl, A. G. Lewis, G. Vidal, and A. Blais, Dynam-
ics of transmon ionization, Phys. Rev. Appl. 18, 034031
(2022).

[56] M. F. Dumas, B. Groleau-Paré, A. McDonald, M. H.
Muñoz-Arias, C. Lledó, B. D’Anjou, and A. Blais, Unified
picture of measurement-induced ionization in the trans-
mon (2024), arXiv:2402.06615.

[57] F. Swiadek, R. Shillito, P. Magnard, A. Remm,
C. Hellings, N. Lacroix, Q. Ficheux, D. C. Zanuz, G. J.
Norris, A. Blais, et al., Enhancing dispersive readout
of superconducting qubits through dynamic control of
the dispersive shift: Experiment and theory (2023),
arXiv:2307.07765.

[58] C. C. Bultink, B. Tarasinski, N. Haandbæk, S. Poletto,
N. Haider, D. Michalak, A. Bruno, and L. DiCarlo, Gen-
eral method for extracting the quantum efficiency of dis-
persive qubit readout in circuit qed, Applied Physics Let-
ters 112, https://doi.org/10.1063/1.5015954 (2018).

[59] J. Gambetta, W. A. Braff, A. Wallraff, S. M. Girvin,
and R. J. Schoelkopf, Protocols for optimal readout of
qubits using a continuous quantum nondemolition mea-
surement, Phys. Rev. A 76, 012325 (2007).

[60] F. Motzoi, J. M. Gambetta, S. T. Merkel, and F. K. Wil-
helm, Optimal control methods for rapidly time-varying
hamiltonians, Phys. Rev. A 84, 022307 (2011).

[61] Y. Sunada, K. Yuki, Z. Wang, T. Miyamura, J. Ilves,
K. Matsuura, P. A. Spring, S. Tamate, S. Kono, and
Y. Nakamura, Photon-noise-tolerant dispersive readout
of a superconducting qubit using a nonlinear purcell fil-
ter, PRX Quantum 5, 010307 (2024).

[62] J. Ikonen, J. Goetz, J. Ilves, A. Keränen, A. M. Gun-
yho, M. Partanen, K. Y. Tan, D. Hazra, L. Grönberg,
V. Vesterinen, S. Simbierowicz, J. Hassel, and M. Möttö-
nen, Qubit measurement by multichannel driving, Phys.
Rev. Lett. 122, 080503 (2019).

[63] S. Touzard, A. Kou, N. E. Frattini, V. V. Sivak, S. Puri,
A. Grimm, L. Frunzio, S. Shankar, and M. H. Devoret,
Gated conditional displacement readout of superconduct-
ing qubits, Phys. Rev. Lett. 122, 080502 (2019).

[64] M. H. Muñoz Arias, C. Lledó, and A. Blais, Qubit read-
out enabled by qubit cloaking, Phys. Rev. Appl. 20,
054013 (2023).

[65] F. Mallet, F. R. Ong, A. Palacios-Laloy, F. Nguyen,
P. Bertet, D. Vion, and D. Esteve, Single-shot qubit read-
out in circuit quantum electrodynamics, Nat Phys 5, 791
(2009).

[66] B. D’Anjou and W. A. Coish, Enhancing qubit readout
through dissipative sub-poissonian dynamics, Phys. Rev.
A 96, 052321 (2017).

[67] S. S. Elder, C. S. Wang, P. Reinhold, C. T. Hann,
K. S. Chou, B. J. Lester, S. Rosenblum, L. Frunzio,
L. Jiang, and R. J. Schoelkopf, High-fidelity measurement
of qubits encoded in multilevel superconducting circuits,
Phys. Rev. X 10, 011001 (2020).

[68] L. Chen, H.-X. Li, Y. Lu, C. W. Warren, C. J.
Križan, S. Kosen, M. Rommel, S. Ahmed, A. Osman,
J. Biznárová, et al., Transmon qubit readout fidelity at
the threshold for quantum error correction without a
quantum-limited amplifier, npj Quantum Information 9,
26 (2023).

[69] F. Motzoi, J. M. Gambetta, P. Rebentrost, and F. K.
Wilhelm, Simple pulses for elimination of leakage in
weakly nonlinear qubits, Phys. Rev. Lett. 103, 110501
(2009).

[70] S. Zeytinoğlu, M. Pechal, S. Berger, A. A. Abduma-
likov, A. Wallraff, and S. Filipp, Microwave-induced
amplitude- and phase-tunable qubit-resonator coupling
in circuit quantum electrodynamics, Phys. Rev. A 91,
043846 (2015).

[71] J. F. Poyatos, J. I. Cirac, and P. Zoller, Quantum reser-
voir engineering with laser cooled trapped ions, Phys.
Rev. Lett. 77, 4728 (1996).

[72] P. M. Harrington, E. Mueller, and K. Murch, En-
gineered dissipation for quantum information science
(2022), arXiv:2202.05280.

[73] B. Royer, S. Singh, and S. M. Girvin, Stabilization of
finite-energy gottesman-kitaev-preskill states, Phys. Rev.
Lett. 125, 260509 (2020).

[74] J. M. Gertler, B. Baker, J. Li, S. Shirol, J. Koch, and
C. Wang, Protecting a bosonic qubit with autonomous
quantum error correction, Nature 590, 243–248 (2021).

[75] P. Aliferis and B. M. Terhal, Fault-tolerant quantum
computation for local leakage faults, Quantum Info.
Comput. 7, 139–156 (2007).

[76] GPUs used: Nvidia RTX6000 24GB, Nvidia RTX8000
48GB, Nvidia V100 32GB, Nvidia RTX3080 10GB.

[77] C. Le Bris and P. Rouchon, Low-rank numerical approx-
imations for high-dimensional lindblad equations, Phys.
Rev. A 87, 022125 (2013).



8

[78] J. R. Dormand and P. J. Prince, A family of embedded
runge-kutta formulae, Journal of computational and ap-
plied mathematics 6, 19 (1980).



1

Supplemental Material for "Optimal control in large open quantum systems –
the case of transmon readout and reset"

Ronan Gautier,1, 2, 3 Élie Genois,1 and Alexandre Blais1, 4
1Institut Quantique and Département de Physique,
Université de Sherbrooke, Sherbrooke, QC, Canada

2Laboratoire de Physique de l’École Normale Supérieure, Inria, ENS,
Mines ParisTech, Université PSL, Sorbonne Université, Paris, France

3Alice & Bob, Paris, France
4Canadian Institute for Advanced Research, Toronto, ON, Canada

CONTENTS

S1. Adjoint state method for open quantum systems 1
A. Adjoint state master equation 1
B. Explicit expression of gradients 1
C. Practical implementation 2

S2. Optimal control of a transmon 2
A. System parameters 2
B. Optimization process 3
C. Numerical integration scheme 3
D. Gaussian filtering 4
E. Cost function contributions 4

S3. Transmon readout 5
A. Assignment error 5
B. Phase-space trajectories 5

S4. Transmon reset 5
A. Calibration 5
B. Pulses 6

S1. ADJOINT STATE METHOD FOR OPEN
QUANTUM SYSTEMS

A. Adjoint state master equation

In this section, we prove that the adjoint state follows
the differential equation Eq. (2) shown in the main text,
following a similar derivation as in Ref. [36]. Starting
from a general Lindblad master equation

dρ̂

dt
= Lρ̂ ≡ −i[Ĥ, ρ̂] +

∑

k

D[L̂k]ρ̂, (S1)

we can write that for an ε change in time, the evolved
quantum state takes the form

ρ̂(t+ ε) = ρ̂(t) +

∫ t+ε

t

L(τ, θ)ρ̂(τ)dτ

= ρ̂(t) + εL(t, θ)ρ̂(t) +O(ε2).

(S2)

Using the definition of the adjoint state and applying the
chain rule, we find

ϕ̂(t) =
dC

dρ̂(t)
=

dC

dρ̂(t+ ε)

dρ̂(t+ ε)

dρ̂(t)

= ϕ̂(t+ ε)
(
1 + εL(t, θ) +O(ε2)

)
.

(S3)

Then, the proof of the adjoint state master equation fol-
lows directly from the definition of the derivative,

dϕ̂(t)

dt
= lim

ε→0

ϕ̂(t+ ε)− ϕ̂(t)

ε

= − lim
ε→0

(
ϕ̂(t+ ε)L(t, θ) +O(ε2)

)

= −ϕ̂(t)L(t, θ)

(S4)

or equivalently, using the fact that the adjoint state is
hermitian, ϕ̂† = dC/dρ̂† = dC/dρ̂ = ϕ̂, we get the fol-
lowing result thus completing the proof

dϕ̂(t)

dt
= −L†(t, θ)ϕ̂(t). (S5)

B. Explicit expression of gradients

To derive an explicit expression for dC/dθ, we also fol-
low Ref. [36] and introduce an augmented density matrix
ρ̂aug(t) = [ρ̂(t), θ(t)]T which includes a second block row
with time-dependent parameters. In practice, parame-
ters are constant throughout the integration, but this
fictitious time-dependence will allow us to isolate the sen-
sitivity of the cost function to an infinitesimal change of
parameters at each point in time. The augmented density
matrix follows the differential equation

dρ̂aug(t)

dt
= Laug(t, θ)ρ̂aug(t) =

(
L(t, θ)ρ̂(t)

0

)
. (S6)

We can also introduce the augmented adjoint state,
ϕ̂aug(t) = [ϕ̂(t), dC/dθ(t)], where the parameter sensitiv-
ity dC/dθ(t) represents the cost function gradient with
respect to the parameters at a given time. We then fol-
low a similar derivation as in the previous section. The
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main difference comes in the application of the chain rule
of Eq. (S3) which now yields,

ϕ̂aug(t) =
dC

dρ̂aug(t)
=

dC

dρ̂aug(t+ ε)

dρ̂aug(t+ ε)

dρ̂aug(t)

= ϕ̂aug(t+ ε)
(
1 + εM(t, θ) +O(ε2)

) (S7)

where

M(t, θ) =
d(Laug(t, θ)ρ̂aug(t))

dρ̂aug(t)

=

(
L(t, θ) ∂θL(t, θ)ρ̂(t)

0 0

)
,

(S8)

and where ∂θ denotes the partial derivative with respect
to θ. Similarly as before, we can rearrange this expres-
sion, reinsert it in the definition of the derivative and
take the limit of ε → 0. Then, selecting only the second
block of the resulting differential equation yields

d

dt

(
dC

dθ(t)

)
= −∂θ Tr

[
ϕ̂†(t)L(t, θ)ρ̂(t)

]
. (S9)

We have thus obtained a straightforward differential
equation on the parameter sensitivity. Integrating this
equation from t = 0 to T , with the initial condition that
dC/dθ(T ) = ∂C/∂θ yields

dC

dθ
=

∂C

∂θ
−
∫ 0

T

∂θ Tr
[(

L†(t, θ)ϕ̂(t)
)
ρ̂(t)

]
dt, (S10)

which is Eq. (3) in the main text. We can also get the
derivative of the loss function with respect to the inte-
gration time T from a simple application of the chain
rule

dC

dT
=

dC

dρ̂(T )

dρ̂(T )

dT
= Tr

[
ϕ̂†(T )L(T, θ)ρ̂(T )

]
. (S11)

Finally, between Eqs. (S5), (S10) and (S11), we obtain
the gradients of the loss function with respect to all rel-
evant objects involved in the computation, thus allowing
one to perform gradient descent for the desired parame-
ters from arbitrary cost functions.

C. Practical implementation

The full implementation in Python of the approach de-
scribed in the main text is available on the freely avail-
able open-source software dynamiqs [52]. To summarize
the structure of a numerical implementation of the ad-
joint state method for open quantum systems, we present
a pseudo-code implementation in Alg. S1. It involves a
function ODEstep(f, t, y, θ) that computes a single step
of the integration of a linear ordinary differential equa-
tion, ẏ = f(t, θ)y, at time t. The CostFn(θ, Lρ) function
computes the cost function from the parameters θ and a

Algorithm S1: Adjoint state method for open
quantum systems.

1 t ← t0;
2 ρ ← ρ0;
3 Lρ ← {ρ0}; // checkpoint storage list (optional)
4 for ti ∈ {t1, . . . , tn} do // forward pass
5 while t < ti do
6 ρ, δt ← ODEstep(L, t, ρ, θ);
7 t ← t+ δt

8 end
9 Lρ ← Lρ + {ρ};

10 end
11 C ← CostFn(θ, Lρ);
12 ϕ ← AutoDiff(CostFn, C, Lρ[n]);
13 ∇ ← AutoDiff(CostFn, C, θ);
14 for ti ∈ {tn−1, . . . , t0} do // backward pass
15 while t > ti do
16 {ρ, ϕ}, δt ← ODEstep

(
{−L,L†}, t, {ρ, ϕ}, θ

)
;

17 δϕ ← AutoDiff(ODEstep, ϕ, θ);
18 ∇ ← ∇− Tr[δϕ · ρ];
19 t ← t− δt;
20 end
21 ϕ ← ϕ+ AutoDiff(CostFn, C, Lρ[i]);
22 ρ ← Lρ[i];
23 end
24 return ∇

list of density matrices Lρ. It can also be computed on
the fly in the for loop to avoid storing these matrices.
Finally, the AutoDiff(g, xout, xin) function computes the
partial derivative ∂xout/∂xin through automatic differ-
entiation of g, where xin and xout are given inputs and
outputs of the function g. Note that lines 17 and 18 can
be merged in a single computation of a vector-Jacobian
product to avoid storage of δϕ.

S2. OPTIMAL CONTROL OF A TRANSMON

A. System parameters

Unless stated otherwise, we use EC/2π = 315MHz,
EJ/EC = 51, corresponding to a bare transmon fre-
quency ωt/2π = 6GHz and to an anharmonicity α/2π =
−349MHz. The resonator and filter frequencies are
ωr/2π = 7.2GHz and ωf/2π = 7.21GHz with couplings
g/2π = 150MHz and J/2π = 30MHz. This yields a
transmon-resonator detuning of ∆/2π = 1.2GHz, a crit-
ical photon number of n̄crit = (∆/2g)

2
= 16 [40] and dis-

persive rates of χ/2π = 3.8MHz and 8.1MHz with the
lower and higher normal modes, respectively. Finally,
the filter loss rate is κ/2π = 30MHz and the transmon
relaxation rate is γ/2π = 8kHz, i.e. T1 = 20 µs.
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Description Analytical formula Weight Hyperparameters

Signal-to-noise ratio 1/
√

2ηκ
∫ τm
0

|βe(t)− βg(t)|2 dt 1.0 η = 0.6, κ/2π = 30MHz

Pulse amplitude (filter) 1
τm

∫ τm
0

ReLU(|Ωf (t)| − Ωmax)dt 0.1 Ωmax/2π = 200MHz

Pulse amplitude (transmon) 1
τm

∫ τm
0

ReLU(|Ωt(t)| − Ωmax)dt 0.1 Ωmax/2π = 200MHz

Forbidden states (transmon)
∑

i=g,e

∑Nt−1
k≥n

1
τm

∫ τm
0

Tr
[
|k⟩⟨k|t ρ̂i(t)

]
dt 1.0 n = 2 or 3, Nt = 5

Forbidden states (undriven normal)
∑

i=g,e

∑N −1
k≥n

1
τm

∫ τm
0

Tr
[
|k⟩⟨k|u ρ̂i(t)

]
dt 5000 n = 2, Nu = 4

Critical photon number (resonator)
∑

i=g,e
1
τm

∫ τm
0

ReLU(Tr
[
â†âρ̂i(t)

]
− n̄crit) dt 0.1 n̄crit = 16

State reset |g⟩ log10(1− |⟨g00| ρ̂g(τm) |g00⟩|2) 0.3 –

State reset |e⟩ log10(1− |⟨g00| ρ̂e(τm) |g00⟩|2) 1.0 –

State reset |f⟩ log10(1− |⟨g00| ρ̂f (τm) |g00⟩|2) 0.3 –

Pulse amplitude (transmon) 1
τm

∫ τm
0

ReLU(|Ωt(t)| − Ωmax)dt 0.1 Ωmax/2π = 600MHz

Table S1. Summary of readout (top) and reset (bottom) cost functions. Each line corresponds to a different contribution to
the total cost function, with an overall weight tuned heuristically. All contributions are functions of the problem parameters
and/or of the density matrix at certain times. Time integrals are numerically discretized in 1 ns time bins. ReLU denotes a
rectified linear unit function such that ReLU(x) = 0 for x ≤ 0 and ReLU(x) = x for x ≥ 0. The states |k⟩t and |k⟩u denote the
k-th Fock state in the transmon and undriven normal mode respectively. Finally, ρ̂i denotes the density matrix for a transmon
initialized in state |i⟩t.

B. Optimization process

In this work, we optimize transmon readout and reset
by simulating the Lindblad master equation of Eq. (1)
with the Hamiltonian of the main text which contains
three modes: the full transmon Hamiltonian, a readout
resonator and a Purcell filter. In our simulations, we first
diagonalize the transmon Hamiltonian in the charge basis
using 300 charge states and then truncate the subsystem
to Nt = 5 eigenstates of lowest energy. In parallel, we
also diagonalize the resonator-filter subsystem yielding
two normal modes – each coupled to the transmon – and
keep Nd Fock states for the mode used to readout/reset
the transmon (driven mode) and Nu Fock states in the
other mode (undriven mode). For readout, we typically
take Nd = 85 and Nu = 4. For reset, we instead use
Nd = Nu = 4 since neither mode is actively driven.
Note that we intentionally select small Hilbert space

sizes to lower the simulation runtime: a typical gradi-
ent descent on such transmon readout/reset simulations
takes a few days per data point using a single GPU [76].
To avoid probing unphysical simulations with such low
Hilbert space sizes, we actively steer the optimizer in
two ways. First, we engineer the cost function such as
to avoid large populations in boundary Fock states and
limit the pulse amplitudes. See Table S1 for detailed
cost function contributions. Second, we validate all opti-
mized simulations with a single additional simulation in
a larger Hilbert space, using pulses as obtained by the
optimization process. For such simulations, we typically
take Nt = 6, and Nd = 90 and Nu = 8 for readout, or
Nd = Nu = 8 for reset. All data points shown in the
main text correspond to such validated simulations, and

do not deviate significantly from the results obtained on
the reduced Hilbert space simulations.

C. Numerical integration scheme

Regarding the integration scheme of the ordinary dif-
ferential equation (ODE), we used a second-order Rou-
chon solver [77] with a fixed integration time step of
δt = 0.003 ns. Such a method ensures preservation of
the positivity and trace of the density matrix at all times
during the integration, contrary to standard ODE inte-
gration schemes. This is particularly interesting in the
context of the adjoint state method to avoid divergence
during the reverse-time integration of the master equa-
tion. Later on in this work, we have also used a standard
order-4/5 Dormand-Prince integration scheme [78] which
provided better runtimes in the forward pass and similar
ones in the backward pass, even considering the stiffness
of the reverse-time integration. In any case, several thou-
sands of integration steps are typically required in our
simulations. This makes the use of standard automatic
differentiation prohibitive in computer memory. A simple
pen-and-paper estimation of memory with the previously
stated Hilbert space size and Mt = 10 000 time steps
yields a memory footprint of 8Mt(NtNdNu)

2 = 215 GB
where 8 is the number of bytes used to store a single-
precision complex number.
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D. Gaussian filtering

As stated in the main text, all simulated pulse en-
velopes are first discretized in τ0 = 1ns time bins and
then gaussian filtered according to Ref. [60]. Each com-
plex amplitude of the discretized pulse then corresponds
to an additional parameter in the optimization. Con-
cretely, the time-dependent pulses read

Ω(t) = Fg



⌊τm/τ0⌋−1∑

j=0

ΩjΠj(t, τ0)


 (t) (S12)

where

Πj(t, τ0) ≡ Θ(t− jτ0)−Θ(t− (j + 1)τ0) (S13)

is the rectangle function, with Θ is the Heaviside unit
step function, and where Fg is a gaussian filter of band-
width ωB/2π = 250MHz. Commuting Fg with the sum
of Eq. (S12), we get the simpler expression

Ω(t) =

⌊τm/τ0⌋−1∑

j=0

Ωjζj(t), (S14)

where

ζj(t) =
1

2

[
erf

(
ω0

t− jτ0
2

)
− erf

(
ω0

t− (j + 1)τ0
2

)]
,

(S15)
with erf the error function and ω0/2π = 425.5MHz [60].

E. Cost function contributions

Designing appropriate cost functions is essential to ob-
tain useful quantum optimal control results from numeri-
cal optimizations. In this work, we define composite cost
functions with a principal component and several smaller
regularizing contributions. The cost functions used for
transmon readout and reset are summarized in Table S1.
Let us describe each cost function separately.
For transmon readout, the main contribution is the in-

verse of the SNR. We use the inverse (instead of e.g. the
negation) such that the optimizer focuses on other cost
function contributions increasingly more as the SNR
grows large. There are five regularizing cost functions
on top of this main component. The first two correspond
to a maximum pulse amplitude on the filter and trans-
mon respectively, at Ωmax/2π = 200MHz. These cost
functions use a rectified linear unit function, or ReLU,
such that ReLU(x) = 0 for x ≤ 0 and ReLU(x) = x for
x ≥ 0. As such, no hard limits are set on the pulse am-
plitudes to allow the optimizer to explore a larger param-
eter space in case interesting solutions can be found at
larger amplitudes. Two other contributions correspond
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Figure S1. Cost function as a function of the optimization
epoch for (a) transmon readout QOC with no transmon drive
at 40 ns, and (b) transmon reset QOC at 200 ns. The inset of
panel (a) shows the cost function contributions in log scale,
with the main contribution being the inversed SNR. Other
contributions are meant to regularize the pulse and to avoid
unphysical regions. See Table S1 for the detailed cost function
contributions.

to forbidden states in the transmon and undriven nor-
mal mode respectively. As previously discussed, these
costs are used to avoid probing unphysical pulses that
would make use of boundary Fock states sitting close to
our artificial numerical truncation. Finally, the last con-
tribution to the cost function is a soft upper bound on the
number of photons in the resonator. Indeed, according
to the standard theory of dispersive qubit readout [53],
non-QND readout can be probed by driving the readout
resonator above its critical number of photons n̄crit. This
cost function also allows for a fair comparison between
all readout strategies by limiting the effective speed of
pointer state separation, given by n̄χ in the absence of
additional transmon drives.
For transmon reset, the main contributions are the log-

arithms of residual population outside the |g00⟩⟨g00| sub-
space, for a transmon initialized in either |g⟩, |e⟩, or |f⟩.
In particular, we weight these three contributions non-
uniformly with a larger weight on the |e⟩ state reset.
This is a choice motivated by experimental designs for
which population inside the qubit subspace is typically
much larger than leaked population at the beginning of
resets. However, these weights can be freely adapted to
the experiment. The only regularizing cost function for
transmon reset is an upper bound on the pulse ampli-
tude, similar to that of transmon readout. Because reset
attempts to evacuate the system photons, additional cost
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Figure S2. (a) Mean phase-space trajectories of the Purcell filter during a 40 ns readout. Each panel shows βe and βg against
time for a different readout strategy, where βe/g = Tr[f̂ ρ̂g/e] is the filter mean field after initializing the transmon in the |e⟩ or
|g⟩ state. Lines that join each trajectory represent 1 ns intervals. The optimal control algorithm attempts to maximize SNR,
which corresponds to the integrated distance between both trajectories. (b) Phase-space distance against time for the same
readout strategies as in (a).

functions are not required.
In Fig. S1, we show how typical cost function con-

tributions evolve as a function of the optimization epoch
(i.e. iteration). Panel (a) shows a 40 ns transmon readout
optimization where only the filter is driven, while panel
(b) shows a 200 ns reset optimization. In both cases,
we find a clear decrease in the total cost in the first 20
to 50 epochs, and convergence to a steady value after-
wards. For readout, the cost function is dominated by
the SNR cost function. The inset highlights the smaller
cost contributions in log scale. For these regularizing cost
functions, we regularly see peaks indicating that the op-
timizer is generating dynamics close to the Hilbert space
boundaries before retracting away, all the while achieving
increasingly better SNR.

S3. TRANSMON READOUT

A. Assignment error

In Fig. 2(c) of the main text, we show the assignment
error of transmon readout as a function of the integration
time. This assignment error is computed in Refs. [57, 59]
assuming that the transmon pointer states stay gaussian
during readout. This assumption is verified to a very
good approximation for all of our simulated readout se-
quences. Given this structure, the assignment error reads

εa(τm) ≃ 1

2
erfc

(
SNR(τm)

2

)
+

τm
2T1

, (S16)

where εa = 1−F = [P (e|g) + P (g|e)]/2, with P (i|j) the
probability of measuring state |i⟩ when |j⟩ is prepared,
F the readout fidelity, and erfc the complementary error
function.

B. Phase-space trajectories

Figure S2(a) shows the readout trajectories obtained
by our three optimized control strategies, in compari-
son with the flat and two-step readout references. No-
tably, we see that pulse shaping the microwave drives on
the cavity and qubit, while still using an experimentally-
realistic bandwidth, makes the readout dynamics devi-
ate from the usual dispersive trajectories. As quanti-
fied in Fig. S2(b), optimizing the control drives leads to
both a faster and a larger separation between the qubit
pointer states, which directly translates into better read-
out SNR. The red curve, which corresponds to adding
the transmon drive at the |e⟩-|f⟩ transition frequency
such as to achieve shelving, shows how beneficial that
approach is for the system parameters considered here,
compared to standard dispersive readout. The discov-
ered scheme of simultaneously shelving and populating
the readout mode with photons could straightforwardly
be implemented with the typical controls available in cur-
rent transmon experiments.

S4. TRANSMON RESET

A. Calibration

Since the f0-g1 reset of the transmon |e⟩ and |f⟩ states
requires two concurrent microwave drives on the trans-
mon, the frequency and amplitude of these drives need
to be calibrated in a self-consistent way. In order to get
the best reset performance using flat drives on which to
compare our optimal controls, we perform a numerical
calibration procedure that follows closely what is done in
typical experiments [43, 44].
Namely, for a given f0-g1 drive amplitude Ωf0g1, we

first scan the reset drive frequency ωf0g1 to find the ac-
Stark shifted resonant frequency that maps the prepared
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|f⟩ transmon state back to |g⟩ after 100 ns. The results
of this simulated experiment are illustrated in Fig. S3(a,
e) for the lower and higher normal readout mode, re-
spectively, and for different drive amplitudes Ωf0g1/2π
between 50 and 650MHz. Once the frequency ωf0g1 is
fixed on resonance, we calibrate the |e⟩-|f⟩ drive fre-
quency ωef . This is achieved by performing a similar
experiment as before, but in which the transmon is pre-
pared in |e⟩ instead of |f⟩, and both the f0-g1 drive and
e-f drives are on. The amplitude ratio Ωf0g1/Ωef between
both drives is kept constant such that the effective f0-g1
Rabi rate yields g̃(Ωf0g1) = Ωef [44, 70]. The results of
this second calibration are shown in Fig. S3(b, f) for the
lower and higher modes, respectively. Finally, the |e⟩-|f⟩
drive amplitude Ωef is calibrated from a 1D parameter
sweep while performing the same |e⟩ reset experiment.
This sweep is shown in Fig. S3(c, g). In the end, this
whole procedure yields a single set of calibrated param-
eters (ωf0g1, ωef , Ωef ) for every value of Ωf0g1 and for
each normal mode. We simulate the corresponding re-
set of each set of calibrated parameters, and show the
corresponding results in the panels of Fig. S3(d, h).
Out of all of the calibrated sets of parameters, we se-

lected the best performing reset (both in terms of speed
and fidelity) to compare with our optimal controls in
Fig. 3 of the main text. This corresponds to a f0-g1
amplitude of Ωf0g1/2π = 350MHz driving the higher fre-
quency normal mode of the coupled resonator-filter sub-
system. This mode has a larger dispersive coupling to the
transmon than the lower frequency normal mode. This
particular reset is shown with a red title in Fig. S3(h).

B. Pulses

In Fig. S4, we present the optimal reset pulse shapes
found using our quantum optimal control approach. The
200 ns pulse of panel (b) produces the transmon popula-
tion dynamics illustrated with the pink markers in Fig. 3
of the main text. Interestingly, in the 100 ns pulse of
panel (a), we see that the numerical optimization yields
an initial π-pulse to transfer population from |e⟩ to |f⟩
which quickly decays back to |g⟩ because of the f0-g1
drive. This behaviour can be understood by the fact that
our chosen cost function puts more weight into resetting
the |e⟩ state. As such, the optimal drive scheme with this
constraint initially resets the |e⟩ state, and subsequently
resets the population that was initially in the |f⟩ state
at the beginning of the protocol. This behaviour is con-
sistent with the fact that the residual population when
initializing in |e⟩ converges after 100 ns whereas it con-
verges after 200 ns for the |f⟩ initial state, as reported in
the main text. Our choice of relative weights between the
different residual populations is motivated by the ther-
mal population of a high frequency transmon (5GHz) in
a relatively cold environment (20mK ∼ 417MHz), but

is arbitrary and could easily be adapted to other exper-
imentally relevant scenarios, e.g. a low-frequency fluxo-
nium qubit (<1GHz) in contact with the same thermal
bath.
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6.4 Perspectives

La méthodologie de contrôle optimal quantique dans de grands systèmes quantiques
ouverts développée dans ce chapitre, de même que les résultats de mesure et d’initialisation
d’un transmon, ouvrent la porte à plusieurs avenues de recherche. Tout d’abord, il serait
très intéressant de démontrer expérimentalement l’utilisation des contrôles optimisés afin
de réaliser la mesure et l’initialisation d’un qubit supraconducteur. Le gain en performance
associé à ces opérations optimisées pourrait s’avérer très important vers la réalisation d’un
ordinateur quantique tolérant aux fautes. Du côté des explorations numériques d’optimisa-
tion de processus quantiques, je discute dans ce qui suit de quelques applications à court et
moyen terme que je trouve particulièrement prometteuses. Avant cela, je présente briève-
ment le programme dynamiqs, un outil permettant de grandement faciliter ce genre de
projets.

6.4.1 Librairie dynamiqs

Réalisant la grande utilité et applicabilité de notre approche de simulation de grands
systèmes quantiques ouverts et du calcul de gradients arbitraires sur ces dynamiques,
ainsi que le besoin dans la communauté des circuits supraconducteurs, nous avons décidé
de créer une libraire en langage Python partagée librement avec un code source ouvert.
Avec pour objectif d’accélérer la simulation et l’optimisation de dynamiques quantiques,
nous avons nommé cette librairie dynamiqs [79]. Bien que toujours en développement,
dynamiqs possède déjà une communauté active avec plus d’une centaine d’utilisateurs et
de nombreux contributeurs. L’ensemble du code est aujourd’hui majoritairement développé
par Pierre Guilmin, Ronan Gautier et Adrien Bocquet. Ma principale contribution se trouve
dans l’élaboration initiale de la librairie ainsi que dans les nombreuses discussions sur les
caractéristiques techniques du code.

Développé en Python, dynamiqs offre une interface similaire à la très populaire librai-
rie QuTiP [68], mais présente quatre avantages importants provenant principalement de
l’utilisation de techniques développées en apprentissage automatique. Premièrement, en
utilisant la méthode de l’adjoint ainsi que ses variations numériques [197], il est possible
d’obtenir le gradient des dynamiques simulées, et ce, pour des fonctions de coût et des
paramètres arbitraires. L’utilisation de l’approche développée dans l’article de ce chapitre
permet de rester très efficace au niveau de la mémoire numérique nécessaire et ainsi d’être
en mesure de simuler et d’optimiser la dynamique de grands systèmes quantiques ouverts.
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Deuxièmement, dynamiqs offre d’énormes accélérations pour la simulation d’un sys-
tème où l’on s’intéresse aux dynamiques utilisant de nombreux paramètres différents. En
effet, tous les paramètres de simulation tels que l’Hamiltonien du système et les opérateurs
de dissipations peuvent être mis en lot et résolus simultanément. Cette approche est com-
munément appelée batching en apprentissage automatique et permet essentiellement de
réaliser de façon vectorielle ce qui est normalement exécuté avec une boucle séquentielle.
Troisièmement, l’ensemble des simulations et des opérations numériques peuvent être accé-
lérées à l’aide de processeurs graphiques (GPUs) sans effort additionnel. Ces processeurs
excellent entre autres à la multiplication de grandes matrices, ce qui correspond exactement
aux opérations utilisées lors de la résolution de l’équation maîtresse. Finalement, alors que
le code Python est reconnu pour être significativement plus lent que d’autres langages,
dynamiqs est basé sur la librairie JAX, laquelle réalise une compilation à la volée du code
Python vers un code optimisé au niveau de la machine [78]. Cette compilation rend nos
algorithmes très rapides malgré leur formulation accessible en Python.

Somme toute, dynamiqs ouvre la porte à de multiples applications en contrôle optimal
et en caractérisation de systèmes quantiques (ou estimation de paramètres), en plus d’offrir
diverses accélérations dans la simulation de dynamiques quantiques. Des extraits de code
présentant l’interface de dynamiqs et son utilisation dans la simulation et l’optimisation
des dynamiques d’un oscillateur harmonique sont présentés à la Fig. 6.1.

6.4.2 Exemple d’une application directe de la méthode développée

Parmi les multiples applications possibles de la méthodologie développée ici, par
exemple en utilisant dynamiqs, je considère que l’une des plus prometteuses concerne
l’optimisation des opérations nécessaires à la correction d’erreur quantique dans des sys-
tèmes bosoniques [208]. Dans les réalisations en circuits supraconducteurs de tels codes,
l’information quantique est typiquement contenue dans les degrés de liberté d’une cavité
micro-onde, laquelle est couplée à un système non linéaire tel qu’un transmon ou un circuit
comprenant des jonctions Josephson. Afin de préparer, préserver, manipuler et mesurer cette
information quantique encodée, il existe de nombreux protocoles appliquant des impulsions
micro-ondes à la cavité ainsi qu’à son système auxiliaire non linéaire. Alors que ces contrôles
sont généralement très simples et de longues durées, l’utilisation d’une approche de contrôle
optimal permettrait potentiellement d’utiliser davantage la structure de ces systèmes afin
de diminuer l’erreur logique résultant de ces opérations.

Dans une réalisation du code de Gottesman-Kitaev-Preskill (GKP) [209] par exemple,
l’information sur l’état logique du système est extraite à l’aide d’un protocole spécialisé
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Figure 6.1 – Extraits de code Python utilisant la libraire dynamiqs disponible en libre accès [79].
(a) Simulation de l’évolution d’un oscillateur harmonique Ĥ = ωâ† â avec une relaxation L̂ =

√
κâ

en résolvant l’équation maîtresse de Lindblad par la fonction mesolve. (b) Résultat fourni en sortie
permettant de facilement suivre l’évolution de la simulation et d’adapter les options de l’algorithme
si nécessaire. (c) Calcul des gradients du nombre de photons final dans la cavité n̄ = Tr[â† âρ̂(t f )]
par rapport à la fréquence de la cavité ω, au taux de relaxation κ et à l’amplitude de l’état cohérent
initial α. Cette population pourrait représenter la fonction de coût que l’on souhaite optimiser. Dans
ce cas, il suffit de fournir les gradients à un algorithme de descente du gradient, tel qu’Adam [207],
afin de mettre à jour les paramètres du système et d’optimiser la métrique voulue. (d) Sortie du code
présenté en (c).

afin de stabiliser le système dans son état logique de manière autonome [210]. Ce protocole
combine une série d’interactions contrôlées entre la cavité et le système auxiliaire à des
réinitialisations répétées de ce système auxiliaire, une technique pouvant être considérée
comme de l’ingénierie de la dissipation [211]. Cependant, ce protocole ne réalise pas l’opé-
ration optimale pour récupérer l’ensemble de l’information accessible afin de stabiliser l’état
GKP [212, 213]. Sachant qu’un gain important est atteignable en principe, il serait alors très
intéressant d’utiliser une approche de contrôle optimal quantique en système ouvert afin
d’optimiser les contrôles appliqués sur ce système et ainsi d’améliorer la performance du
code.



Conclusion

Dans cette thèse, nous avons exploré différentes façons de construire un bon modèle
pour décrire les dynamiques quantiques de qubits supraconducteurs avec un niveau de
précision suffisant pour comprendre les limitations principales des expériences réalisées
actuellement. À partir de caractérisations expérimentales détaillées nous permettant de
construire ces bons modèles, nous avons également optimisé les façons dont on contrôle ces
systèmes complexes afin de réaliser des opérations quantiques avec de meilleures fidélités,
notamment des portes logiques et des mesures projectives sur les qubits. Nos méthodologies
sont au cœur du développement des technologies quantiques alors qu’elles permettent de
caractériser un système quantique, de concevoir un modèle à partir de cette information
et finalement d’utiliser ce modèle afin de contrôler l’opération du système avec une erreur
minimale. Bien que la plupart des approches développées ici aient été spécialisées à des
systèmes de circuits supraconducteurs, elles peuvent aisément être adaptées à de nombreux
autres systèmes quantiques d’aujourd’hui et de demain.

Suite à une introduction aux concepts clés de modélisation et de simulation des opéra-
tions effectuées avec les qubits supraconducteurs au chapitre 2, nous avons appliqué ces
idées à la description détaillée d’une expérience de correction d’erreurs quantiques utilisant
17 qubits au chapitre 3. Nous avons vu spécifiquement les compromis nécessaires entre
une modélisation précise des dynamiques physiques et une simulation pouvant être mise
à l’échelle à des dispositifs de grande taille. Alors que ces deux types de simulations sont
essentiels au développement des technologies quantiques, des études approfondies sont
nécessaires afin de réconcilier ces approches et ainsi prendre en compte les sources de bruit
réalistes lors des extrapolations à grande échelle.

Au chapitre 4, nous avons exploré une méthodologie alternative de caractérisation et de
contrôle basée sur l’apprentissage automatique. Nous avons démontré l’utilité d’une telle
approche sur le contrôle d’un qubit supraconducteur et décrit de nombreuses applications
de cette méthode qui promettent d’être utiles pour améliorer la fidélité et la rapidité des
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opérations réalisées avec nos dispositifs quantiques. Plus généralement, le codéveloppement
de l’apprentissage automatique et des technologies quantiques ne fait que commencer et les
efforts dans cette direction présentent un potentiel énorme.

Au chapitre 5, nous avons introduit deux protocoles de caractérisation quantique, CAFE
et MEADD, qui sont spécifiquement conçus afin d’extraire l’information utile au contrôle
des opérations quantiques de manière précise et efficace. Il s’avère que pour atteindre des
fidélités de portes logiques supérieures à 99.9% pour des centaines de qubits différents, il
est nécessaire d’utiliser des protocoles robustes qui sont spécialisés au système et même aux
séquences d’opérations étudiés. Avec la quête vers des fidélités et des systèmes toujours plus
grands, je m’attends à ce que de nombreux autres protocoles de ce genre soient développés
et largement utilisés.

Au chapitre 6, nous avons finalement développé uneméthode numérique d’optimisation
des dynamiques quantiques dans de grands systèmes ouverts et avons démontré son utilité
dans la conception des contrôles utilisés dans la mesure dispersive et la réinitialisation du
transmon. Ces résultats démontrent que des gains d’envergure en fidélité de contrôle sont
possibles lorsque l’on possède un bon modèle des dynamiques du dispositif. Plus générale-
ment, l’ensemble des travaux de cette thèse mène à cette même conclusion selon laquelle la
construction d’un bon modèle est essentielle à l’amélioration des technologies quantiques.
Alors que nous nous sommes concentrés sur les portes logiques à un et deux qubits et sur la
mesure et la réinitialisation d’un transmon, les outils de caractérisation et de contrôle que
nous avons développés peuvent être appliqués à de nombreuses approches prometteuses
en détection quantique [214], en ingénierie de la dissipation [185], en correction d’erreurs
quantiques bosonique [208], en communication quantique [215] et bien plus.

Prenant un dernier pas de recul sur l’ensemble des travaux présentés dans cette thèse, je
considère qu’étant donné la complexité des systèmes que l’on cherche à contrôler ainsi que
le besoin de constamment réduire les erreurs des opérations quantiques réalisées, le travail
de modélisation, de caractérisation et de contrôle sera toujours à parfaire à mesure que les
systèmes évoluent. De la même façon que mes travaux s’appuient sur les résultats de nom-
breuses années de recherche réalisées par la communauté, j’ai espoir que mes contributions
au domaine pourront être utiles au développement des technologies quantiques de demain,
et je peux me réconforter de les voir être utilisées aujourd’hui même [216, 217, 218, 15]. La
recherche dans le domaine de l’informatique quantique s’avère toujours pleine de surprises
fascinantes nous confrontant continuellement à notre ignorance, mais nous récompensant
toujours pour nos efforts de compréhension d’une manière concrète. Je me sens très privilé-
gié d’avoir la chance de prendre part à cette aventure scientifique et je suis enthousiaste de
découvrir ce que son futur nous réserve.



Bibliographie

[1] S. Krinner, N. Lacroix, A. Remm, A. Di Paolo, E. Genois, C. Leroux, C. Hel-
lings, S. Lazar, F. Swiadek, J. Herrmann, G. J. Norris, C. K. Andersen,
M. Müller, A. Blais, C. Eichler et A. Wallraff, « Realizing repeated quantum
error correction in a distance-three surface code », Nature, vol. 605, p. 669–674, mai
2022. (Cité aux pages vii, 21, 26, 36, 37, 94, and 97.)

[2] É. Genois, N. J. Stevenson et A. Blais, « Quantum optimal control of supercon-
ducting qubits based on machine-learning characterization ». En préparation, 2024.
(Cité aux pages viii, 53, and 65.)

[3] D. M. Debroy, É. Genois, J. A. Gross, W. Mruczkiewicz, K. Lee, S. Hong,
Z. Chen, V. Smelyanskiy et Z. J iang, « Context-aware fidelity estimation », Phys.
Rev. Res., vol. 5, p. 043202, Dec 2023. (Cité aux pages viii, 94, and 104.)

[4] J. A. Gross, É. Genois, D. M. Debroy, Y. Zhang, W. Mruczkiewicz, Z.-P. Cian
et Z. J iang, « Characterizing coherent errors using matrix-element amplification »,
2024. arXiv :2404.12550. (Cité aux pages viii, 88, 100, and 122.)

[5] R. Gautier, É. Genois etA. Blais, «Optimal control in large open quantum systems :
the case of transmon readout and reset », 2024. arXiv :2403.14765. (Cité aux pages viii
and 151.)

[6] S. J. Glaser,U. Boscain, T. Calarco,C. P. Koch,W. Köckenberger,R. Kosloff,
I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny et F. K.
Wilhelm, « Training schrödinger’s cat : quantum optimal control : Strategic report
on current status, visions and goals for research in europe », The European Physical
Journal D, vol. 69, déc. 2015. (Cité aux pages 1 and 54.)

[7] « 40 years of quantum computing », Nature Reviews Physics, vol. 4, p. 1–1, jan. 2022.
Publisher : Nature Publishing Group. (Cité à la page 1.)

[8] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe et J. L. O’Brien,
« Quantum computers », Nature, vol. 464, p. 45–53, mars 2010. Publisher : Nature
Publishing Group. (Cité à la page 1.)

[9] J. Preskill, « Quantum computing in the nisq era and beyond », Quantum, vol. 2,
p. 79, août 2018. (Cité aux pages 1 and 22.)

[10] P. W. Shor, « Scheme for reducing decoherence in quantum computer memory »,
Phys. Rev. A, vol. 52, p. R2493–R2496, Oct 1995. (Cité à la page 2.)

[11] A. Kitaev, « Fault-tolerant quantum computation by anyons », Annals of Physics,
vol. 303, p. 2–30, jan. 2003. (Cité à la page 2.)

173



BIBLIOGRAPHIE 174

[12] M. H. Devoret et R. J. Schoelkopf, « Superconducting circuits for quantum in-
formation : An outlook », Science, vol. 339, no. 6124, p. 1169–1174, 2013. (Cité aux
pages 2 and 6.)

[13] A. Blais, A. L. Grimsmo, S. M. Girvin et A. Wallraff, « Circuit quantum elec-
trodynamics », Rev. Mod. Phys., vol. 93, p. 025005, May 2021. (Cité aux pages 2, 6, 7, 9,
10, 11, 12, 14, 15, 17, 19, 89, 97, and 149.)

[14] Y. Kim, A. Eddins, S. Anand, K. X. Wei, E. V. D. Berg, S. Rosenblatt, H. Nayfeh,
Y. Wu, M. Zaletel, K. Temme et A. Kandala, « Evidence for the utility of quantum
computing before fault tolerance »,Nature, vol. 618, p. 500–505, 2023. (Cité aux pages 2
and 10.)

[15] R. Acharya, L. Aghababaie-Beni, I. Aleiner, T. I. Andersen, M. Ansmann,
F. Arute, K. Arya, A. Asfaw, N. Astrakhantsev, J. Atalaya, R. Babbush,
D. Bacon, B. Ballard, J. C. Bardin, J. Bausch, A. Bengtsson, A. Bilmes, S. Bla-
ckwell, S. Boixo et al., « Quantum error correction below the surface code thre-
shold », 2024. arXiv :2408.13687. (Cité aux pages 2, 10, 94, 97, and 172.)

[16] A. G. Fowler, M. Mariantoni, J. M. Martinis et A. N. Cleland, « Surface
codes : Towards practical large-scale quantum computation»,Physical ReviewA, vol. 86,
p. 032324, sept. 2012. Publisher : American Physical Society. (Cité aux pages 2, 22,
and 23.)

[17] E. T. Campbell, B. M. Terhal et C. Vuillot, « Roads towards fault-tolerant uni-
versal quantum computation », Nature, vol. 549, p. 172–179, sept. 2017. Publisher :
Nature Publishing Group. (Cité à la page 2.)

[18] G. E. P. Box, « Science and statistics », Journal of the American Statistical Association,
vol. 71, no. 356, p. 791–799, 1976. (Cité à la page 2.)

[19] J. Bardeen, L. N. Cooper et J. R. Schrieffer, « Theory of superconductivity »,
Phys. Rev., vol. 108, p. 1175–1204, Dec 1957. (Cité à la page 5.)

[20] U. Eckern, G. Schön et V. Ambegaokar, « Quantum dynamics of a supercon-
ducting tunnel junction », Phys. Rev. B, vol. 30, p. 6419–6431, Dec 1984. (Cité à la
page 5.)

[21] M. Devoret, B. Huard, R. Schoelkopf et L. F. Cugliandolo,QuantumMachines :
Measurement and Control of Engineered Quantum Systems : Lecture Notes of the Les Houches
Summer School : Volume 96, July 2011. Oxford University Press, 06 2014. (Cité à la
page 5.)

[22] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson et W. D.
Oliver, « A Quantum Engineer’s Guide to Superconducting Qubits »,Applied Physics
Reviews, vol. 6, p. 021318, juin 2019. (Cité aux pages 6, 13, 17, and 51.)

[23] U. Vool et M. Devoret, « Introduction to quantum electromagnetic circuits », Inter-
national Journal of Circuit Theory and Applications, vol. 45, p. 897–934, juin 2017. (Cité à
la page 6.)

[24] M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-J. Wang,
S. Gustavsson et W. D. Oliver, « Superconducting qubits : Current state of play »,
Annual Review of Condensed Matter Physics, vol. 11, p. 369–395, mars 2020. (Cité à la
page 6.)



BIBLIOGRAPHIE 175

[25] J. Clarke et F. K. Wilhelm, « Superconducting quantum bits », Nature, vol. 453,
p. 1031–1042, 2008. (Cité à la page 6.)

[26] C. R. H. McRae, H. Wang, J. Gao, M. R. Vissers, T. Brecht, A. Dunsworth,
D. P. Pappas et J. Mutus, « Materials loss measurements using superconducting
microwave resonators », Review of Scientific Instruments, vol. 91, sept. 2020. (Cité aux
pages 6 and 7.)

[27] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais,
M. H. Devoret, S. M. Girvin et R. J. Schoelkopf, «Charge-insensitive qubit design
derived from the cooper pair box », Phys. Rev. A, vol. 76, p. 042319, Oct 2007. (Cité
aux pages 6, 9, 10, 12, 14, 27, and 148.)

[28] A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin et R. J. Schoelkopf, « Cavity
quantum electrodynamics for superconducting electrical circuits : an architecture for
quantum computation », Physical Review A, vol. 69, p. 062320, juin 2004. (Cité aux
pages 6, 11, and 12.)

[29] D. M. Pozar, Microwave engineering ; 3rd ed. Hoboken, NJ : Wiley, 2005. (Cité à la
page 7.)

[30] H. Carmichael, Statistical Methods in Quantum Optics 1 : Master Equations and Fokker-
Planck Equations. Physics and astronomy online library, Springer, 1998. (Cité aux
pages 8 and 19.)

[31] B. Josephson, « Possible new effects in superconductive tunnelling », Physics Letters,
vol. 1, no. 7, p. 251–253, 1962. (Cité à la page 8.)

[32] M. H. Devoret, « Quantum fluctuations in electrical circuits », in Quantum Fluctua-
tions, Les Houches, Session LXIII (S. Reynaud, E. Giacobino et J. Zinn-Justin, éds),
chap. 10, Elsevier Science, 1995. (Cité à la page 8.)

[33] K. Serniak, Nonequilibrium Quasiparticles in Superconducting Qubits. Thèse doctorat,
Yale University, 2019. (Cité à la page 9.)

[34] J. Clarke, A. N. Cleland, M. H. Devoret, D. Esteve et J. M. Martinis, « Quan-
tum mechanics of a macroscopic variable : The phase difference of a josephson junc-
tion », Science, vol. 239, no. 4843, p. 992–997, 1988. (Cité à la page 10.)

[35] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer,
S. Kumar, S. M. Girvin et R. J. Schoelkopf, « Circuit Quantum Electrodynamics :
Coherent Coupling of a Single Photon to a Cooper Pair Box », Nature, vol. 431, p. 162–
167, sept. 2004. arXiv : cond-mat/0407325. (Cité à la page 11.)

[36] H. Wiseman et G. Milburn, Quantum Measurement and Control. Cambridge Univer-
sity Press, 2010. (Cité aux pages 13, 19, 54, and 89.)

[37] D. I. Schuster, A. Wallraff, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. M.
Girvin et R. J. Schoelkopf, « ac stark shift and dephasing of a superconducting
qubit strongly coupled to a cavity field », Phys. Rev. Lett., vol. 94, p. 123602, Mar 2005.
(Cité à la page 13.)

[38] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor,
T. Sleator, J. A. Smolin et H. Weinfurter, « Elementary gates for quantum
computation », Physical Review A, vol. 52, p. 3457–3467, nov. 1995. (Cité à la page 14.)



BIBLIOGRAPHIE 176

[39] R. L. Fagaly, « Superconducting quantum interference device instruments and
applications », Review of Scientific Instruments, vol. 77, p. 101101, 10 2006. (Cité à
la page 14.)

[40] J. M. Chow, L. DiCarlo, J. M. Gambetta, F. Motzoi, L. Frunzio, S. M. Girvin
et R. J. Schoelkopf, « Optimized driving of superconducting artificial atoms for
improved single-qubit gates », Phys. Rev. A, vol. 82, p. 040305, Oct 2010. (Cité à la
page 17.)

[41] F. Motzoi, J. M. Gambetta, P. Rebentrost et F. K. Wilhelm, « Simple Pulses for
Elimination of Leakage in Weakly Nonlinear Qubits », Physical Review Letters, vol. 103,
p. 110501, sept. 2009. (Cité aux pages 17 and 150.)

[42] J. M. Gambetta, F. Motzoi, S. T. Merkel et F. K. Wilhelm, « Analytic control
methods for high-fidelity unitary operations in a weakly nonlinear oscillator », Phys.
Rev. A, vol. 83, p. 012308, Jan 2011. (Cité à la page 17.)

[43] M. A. Nielsen, « A simple formula for the average gate fidelity of a quantum dyna-
mical operation », Physics Letters A, vol. 303, p. 249–252, oct. 2002. (Cité à la page 17.)

[44] A. Hashim, L. B. Nguyen, N. Goss, B. Marinelli, R. K. Naik, T. Chistolini,
J. Hines, J. P. Marceaux, Y. Kim, P. Gokhale, T. Tomesh, S. Chen, L. J iang,
S. Ferracin, K. Rudinger, T. Proctor, K. C. Young, R. Blume-Kohout et I. Sid-
diqi, « A practical introduction to benchmarking and characterization of quantum
computers », 2024. arXiv :2408.12064. (Cité aux pages 17 and 96.)

[45] C. Dankert, R. Cleve, J. Emerson et E. Livine, « Exact and approximate unitary
2-designs and their application to fidelity estimation », Physical Review A, vol. 80, juil.
2009. (Cité aux pages 17 and 95.)

[46] D. F. Griffiths et D. J. Higham,Numerical Methods for Ordinary Differential Equations.
Springer London, nov. 2010. (Cité aux pages 18, 86, and 147.)

[47] C. Gardiner et P. Zoller, Quantum Noise : A Handbook of Markovian and Non-
Markovian Quantum Stochastic Methods with Applications to Quantum Optics. Springer
Series in Synergetics, Springer, 2004. (Cité à la page 19.)

[48] H.-P. Breuer et F. Petruccione, The Theory of Open Quantum Systems. Oxford
University Press, 01 2007. (Cité aux pages 19 and 143.)

[49] C. Ryan-Anderson, J. G. Bohnet, K. Lee, D. Gresh, A. Hankin, J. P. Gaebler,
D. Francois, A. Chernoguzov, D. Lucchetti, N. C. Brown, T. M. Gatterman,
S. K. Halit, K. Gilmore, J. A. Gerber, B. Neyenhuis, D. Hayes et R. P. Stutz,
«Realization of real-time fault-tolerant quantum error correction »,Phys. Rev. X, vol. 11,
p. 041058, Dec 2021. (Cité aux pages 21 and 83.)

[50] M. Reiher,N. Wiebe,K.M. Svore,D. Wecker etM. Troyer, «Elucidating reaction
mechanisms on quantum computers », Proceedings of the National Academy of Sciences,
vol. 114, no. 29, p. 7555–7560, 2017. (Cité à la page 22.)

[51] C. Gidney et M. Ekera, « How to factor 2048 bit rsa integers in 8 hours using 20
million noisy qubits », Quantum, vol. 5, p. 433, avril 2021. (Cité à la page 22.)

[52] R. Babbush, J. R. McClean, M. Newman, C. Gidney, S. Boixo et H. Neven,
« Focus beyond quadratic speedups for error-corrected quantum advantage », PRX
Quantum, vol. 2, p. 010103, Mar 2021. (Cité à la page 22.)



BIBLIOGRAPHIE 177

[53] É. Gouzien, D. Ruiz, F.-M. Le Régent, J. Guillaud et N. Sangouard, « Perfor-
mance analysis of a repetition cat code architecture : Computing 256-bit elliptic curve
logarithm in 9 hours with 126133 cat qubits », Physical Review Letters, vol. 131, juil.
2023. (Cité à la page 22.)

[54] D. Gottesman, « Stabilizer codes and quantum error correction », 1997.
arXiv :9705052. (Cité à la page 22.)

[55] V. V. Sivak, A. Eickbusch, B. Royer, S. Singh, I. Tsioutsios, S. Ganjam,
A. Miano, B. L. Brock, A. Z. Ding, L. Frunzio, S. M. Girvin, R. J. Schoel-
kopf et M. H. Devoret, « Real-time quantum error correction beyond break-even »,
Nature, vol. 616, p. 50–55, mars 2023. (Cité aux pages 22, 60, and 62.)

[56] U. Réglade, A. Bocquet, R. Gautier, J. Cohen, A. Marquet, E. Alberti-
nale, N. Pankratova, M. Hallén, F. Rautschke, L.-A. Sellem, P. Rouchon,
A. Sarlette, M. Mirrahimi, P. Campagne-Ibarcq, R. Lescanne, S. Jezouin
et Z. Leghtas, « Quantum control of a cat qubit with bit-flip times exceeding ten
seconds », Nature, vol. 629, p. 778–783, mai 2024. (Cité à la page 22.)

[57] E. Dennis, A. Kitaev, A. Landahl et J. Preskill, « Topological quantum me-
mory », Journal of Mathematical Physics, vol. 43, p. 4452–4505, sept. 2002. (Cité à la
page 23.)

[58] S. B. Bravyi et A. Y. Kitaev, « Quantum codes on a lattice with boundary », 1998.
arXiv :9811052. (Cité à la page 23.)

[59] S. Aaronson et D. Gottesman, « Improved simulation of stabilizer circuits »,
Physical Review A, vol. 70, nov. 2004. (Cité à la page 25.)

[60] C. Gidney, « Stim : a fast stabilizer circuit simulator », Quantum, vol. 5, p. 497, juil.
2021. (Cité à la page 25.)

[61] Google Quantum AI, « qsim », sept. 2020. https ://quantumai.google/qsim. (Cité
aux pages 25 and 26.)

[62] M. A. Nielsen et I. L. Chuang,Quantum Computation and Quantum Information : 10th
Anniversary Edition. Cambridge University Press, 2011. (Cité aux pages 25 and 96.)

[63] Google Quantum AI, « Suppressing quantum errors by scaling a surface code
logical qubit », Nature, vol. 614, 2023. (Cité aux pages 25, 26, and 37.)

[64] S. Krinner, S. Lazar, A. Remm, C. Andersen, N. Lacroix, G. Norris, C. Hel-
lings, M. Gabureac, C. Eichler et A. Wallraff, « Benchmarking coherent errors
in controlled-phase gates due to spectator qubits », Phys. Rev. Appl., vol. 14, p. 024042,
Aug 2020. (Cité aux pages 26, 33, and 87.)

[65] J. Dalibard, Y. Castin et K. Mølmer, «Wave-function approach to dissipative
processes in quantum optics », Phys. Rev. Lett., vol. 68, p. 580–583, Feb 1992. (Cité à la
page 29.)

[66] K. Mølmer, Y. Castin et J. Dalibard, « Monte carlo wave-function method in
quantum optics », J. Opt. Soc. Am. B, vol. 10, p. 524–538, Mar 1993. (Cité à la page 29.)

[67] R. Dum, P. Zoller et H. Ritsch, « Monte carlo simulation of the atomic master
equation for spontaneous emission », Phys. Rev. A, vol. 45, p. 4879–4887, Apr 1992.
(Cité à la page 29.)



BIBLIOGRAPHIE 178

[68] J. Johansson, P. Nation et F. Nori, « Qutip 2 : A python framework for the
dynamics of open quantum systems », Computer Physics Communications, vol. 184,
p. 1234–1240, avril 2013. (Cité aux pages 29, 48, and 168.)

[69] C. K. Andersen, A. Remm, S. Lazar, S. Krinner, N. Lacroix, G. J. Norris,
M. Gabureac, C. Eichler et A. Wallraff, « Repeated quantum error detection
in a surface code », Nature Physics, vol. 16, p. 875–880, juin 2020. (Cité aux pages 30
and 31.)

[70] M. A. Rol, F. Battistel, F. K. Malinowski, C. C. Bultink, B. M. Tarasinski,
R. Vollmer, N. Haider, N. Muthusubramanian, A. Bruno, B. M. Terhal
et L. DiCarlo, « Fast, high-fidelity conditional-phase gate exploiting leakage inter-
ference in weakly anharmonic superconducting qubits », Phys. Rev. Lett., vol. 123,
p. 120502, Sep 2019. (Cité aux pages 32, 52, and 94.)

[71] V. Negîrneac, H. Ali, N. Muthusubramanian, F. Battistel, R. Sagastizabal,
M. S. Moreira, J. F. Marques,W. J. Vlothuizen, M. Beekman, C. Zachariadis,
N. Haider, A. Bruno et L. DiCarlo, «High-fidelity controlled-z gate withmaximal
intermediate leakage operating at the speed limit in a superconducting quantum
processor », Phys. Rev. Lett., vol. 126, p. 220502, Jun 2021. (Cité aux pages 32, 52,
and 88.)

[72] T. E. O’Brien, B. Tarasinski et L. DiCarlo, « Density-matrix simulation of small
surface codes under current and projected experimental noise », npj Quantum Infor-
mation, vol. 3, sept. 2017. (Cité à la page 35.)

[73] C. Huang, X. Ni, F. Zhang, M. Newman, D. Ding, X. Gao, T. Wang, H.-H.
Zhao, F. Wu, G. Zhang, C. Deng, H.-S. Ku, J. Chen et Y. Shi, « Alibaba cloud
quantum development platform : Surface code simulations with crosstalk », 2020.
arXiv :2002.08918. (Cité à la page 35.)

[74] J. Marshall et D. Kafri, « Incoherent approximation of leakage in quantum error
correction », 2023. arXiv :2312.10277. (Cité à la page 47.)

[75] B. M. Varbanov, F. Battistel, B. M. Tarasinski, V. P. Ostroukh, T. E. O’Brien,
L. DiCarlo et B. M. Terhal, « Leakage detection for a transmon-based surface
code », npj Quantum Information, vol. 6, déc. 2020. (Cité à la page 47.)

[76] J. F. Marques, H. Ali, B. M. Varbanov, M. Finkel, H. M. Veen, S. L. M. van der
Meer, S. Valles-Sanclemente,N. Muthusubramanian,M. Beekman,N. Hai-
der, B. M. Terhal et L. DiCarlo, « All-microwave leakage reduction units for
quantum error correction with superconducting transmon qubits », Phys. Rev. Lett.,
vol. 130, p. 250602, Jun 2023. (Cité à la page 48.)

[77] N. Lacroix, L. Hofele, A. Remm, O. Benhayoune-Khadraoui, A. McDonald,
R. Shillito, S. Lazar, C. Hellings, F. Swiadek, D. Colao-Zanuz, A. Flasby,
M. B. Panah, M. Kerschbaum, G. J. Norris, A. Blais, A. Wallraff et S. Krin-
ner, « Fast flux-activated leakage reduction for superconducting quantum circuits »,
2023. arXiv :2309.07060. (Cité à la page 48.)

[78] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin,
G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne et Q. Zhang,
« JAX : composable transformations of Python+NumPy programs », 2018. http ://gi-
thub.com/google/jax. (Cité aux pages 48, 86, and 169.)



BIBLIOGRAPHIE 179

[79] P. Guilmin, R. Gautier, A. Bocquet et É. Genois, « dynamiqs : an open-source
python library for gpu-accelerated anddifferentiable simulation of quantum systems».
dynamiqs.org, 2024. (Cité aux pages 48, 85, 86, 142, 168, and 170.)

[80] J. M. Martinis, K. B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K. D.
Osborn, K. Cicak, S. Oh, D. P. Pappas, R.W. Simmonds et C. C. Yu, «Decoherence
in josephson qubits from dielectric loss », Phys. Rev. Lett., vol. 95, p. 210503, Nov 2005.
(Cité à la page 50.)

[81] A. Nersisyan, S. Poletto, N. Alidoust, R. Manenti, R. Renzas, C.-V. Bui,
K. Vu, T. Whyland, Y. Mohan, E. A. Sete, S. Stanwyck, A. Bestwick et M. Rea-
gor, « Manufacturing low dissipation superconducting quantum processors », 2019.
arXiv :1901.08042. (Cité à la page 50.)

[82] P. V. Klimov, J. Kelly, Z. Chen, M. Neeley, A. Megrant, B. Burkett, R. Ba-
rends, K. Arya, B. Chiaro, Y. Chen, A. Dunsworth, A. Fowler, B. Foxen,
C. Gidney,M. Giustina, R. Graff, T. Huang, E. Jeffrey, E. Lucero, J. Y. Mutus,
O. Naaman, C. Neill, C. Quintana, P. Roushan, D. Sank, A. Vainsencher,
J. Wenner, T. C. White, S. Boixo, R. Babbush, V. N. Smelyanskiy, H. Neven
et J. M. Martinis, « Fluctuations of energy-relaxation times in superconducting
qubits », Phys. Rev. Lett., vol. 121, p. 090502, Aug 2018. (Cité aux pages 50 and 93.)

[83] M. Carroll, S. Rosenblatt, P. Jurcevic, I. Lauer et A. Kandala, « Dynamics
of superconducting qubit relaxation times », Nature Communications, vol. 8, no. 132,
2022. (Cité à la page 50.)

[84] I. Siddiqi, « Engineering high-coherence superconducting qubits », Nature Reviews
Materials, vol. 6, p. 875 – 891, 2021. (Cité à la page 50.)

[85] A. P. M. Place, L. V. H. Rodgers, P. Mundada, B. M. Smitham, M. Fitzpatrick,
Z. Leng, A. Premkumar, J. Bryon, A. Vrajitoarea, S. Sussman, G. Cheng,
T. Madhavan, H. K. Babla, X. H. Le, Y. Gang, B. Jäck, A. Gyenis, N. Yao,
R. J. Cava, N. P. de Leon et A. A. Houck, « New material platform for supercon-
ducting transmon qubits with coherence times exceeding 0.3 milliseconds », Nature
Communications, vol. 12, mars 2021. (Cité à la page 50.)

[86] M. Bal, A. A. Murthy, S. Zhu, F. Crisa, X. You, Z. Huang, T. Roy, J. Lee, D. v.
Zanten, R. Pilipenko, I. Nekrashevich, A. Lunin, D. Bafia, Y. Krasnikova
et al., « Systematic improvements in transmon qubit coherence enabled by niobium
surface encapsulation »,npj Quantum Information, vol. 10, avril 2024. (Cité à la page 50.)

[87] C. J. Kopas, D. P. Goronzy, T. Pham, C. G. T. Castanedo, M. Cheng, R. Co-
chrane, P. Nast, E. Lachman, N. Z. Zhelev, A. Vallieres, A. A. Murthy,
J. su Oh, L. Zhou, M. J. Kramer, H. Cansizoglu, M. J. Bedzyk, V. P. Dravid,
A. Romanenko, A. Grassellino, J. Y. Mutus, M. C. Hersam et K. Yadavalli,
« Enhanced superconducting qubit performance through ammonium fluoride etch »,
2024. arXiv :2408.02863. (Cité à la page 50.)

[88] P. V. Klimov, J. Kelly, J. M. Martinis et H. Neven, « The snake optimizer for
learning quantum processor control parameters », 2020. arXiv :2006.04594. (Cité aux
pages 50 and 89.)

[89] P. V. Klimov, A. Bengtsson, C. Quintana, A. Bourassa, S. Hong, A. Duns-
worth, K. J. Satzinger, W. P. Livingston, V. Sivak, M. Y. Niu, T. I. Andersen,

https://www.dynamiqs.org/index.html


BIBLIOGRAPHIE 180

Y. Zhang, D. Chik, Z. Chen, C. Neill, C. Erickson, A. Grajales Dau, A. Me-
grant, P. Roushan, A. N. Korotkov, J. Kelly, V. Smelyanskiy, Y. Chen et
H. Neven, « Optimizing quantum gates towards the scale of logical qubits », Nature
Communications, vol. 15, mars 2024. (Cité à la page 50.)

[90] B. Sarabi, A. N. Ramanayaka, A. L. Burin, F. C. Wellstood et K. D. Osborn,
« Projected dipole moments of individual two-level defects extracted using circuit
quantum electrodynamics », Phys. Rev. Lett., vol. 116, p. 167002, Apr 2016. (Cité à la
page 50.)

[91] G. J. Grabovski j, T. Peichl, J. Lisenfeld, G. Weiss et A. V. Ustinov, « Strain
tuning of individual atomic tunneling systems detected by a superconducting qubit »,
Science, vol. 338, no. 6104, p. 232–234, 2012. (Cité à la page 50.)

[92] L. V. Abdurakhimov, I. Mahboob, H. Toida, K. Kakuyanagi, Y. Matsuzaki
et S. Saito, « Driven-state relaxation of a coupled qubit-defect system in spin-locking
measurements », Phys. Rev. B, vol. 102, p. 100502, Sep 2020. (Cité à la page 50.)

[93] Y. Kim, L. C. G. Govia, A. Dane, E. van den Berg, D. M. Zajac, B. Mitchell,
Y. Liu, K. Balakrishnan, G. Keefe, A. Stabile, E. Pritchett, J. Stehlik et
A. Kandala, « Error mitigation with stabilized noise in superconducting quantum
processors », 2024. arXiv :2407.02467. (Cité à la page 50.)

[94] Y. Baum, M. Amico, S. Howell, M. Hush, M. Liuzzi, P. Mundada, T. Merkh,
A. R. Carvalho et M. J. Biercuk, « Experimental deep reinforcement learning
for error-robust gate-set design on a superconducting quantum computer », PRX
Quantum, vol. 2, p. 040324, Nov 2021. (Cité aux pages 51, 60, and 61.)

[95] S. Gustavsson, O. Zwier, J. Bylander, F. Yan, F. Yoshihara, Y. Nakamura,
T. P. Orlando et W. D. Oliver, « Improving quantum gate fidelities by using a
qubit to measure microwave pulse distortions », Phys. Rev. Lett., vol. 110, p. 040502,
Jan 2013. (Cité à la page 51.)

[96] M. Jerger, A. Kulikov, Z. Vasselin et A. Fedorov, « In situ characterization of
qubit control lines : A qubit as a vector network analyzer », Phys. Rev. Lett., vol. 123,
p. 150501, Oct 2019. (Cité à la page 51.)

[97] M. A. Rol, L. Ciorciaro, F. K. Malinowski, B. M. Tarasinski, R. E. Sagasti-
zabal, C. C. Bultink, Y. Salathe, N. Haandbaek, J. Sedivy et L. DiCarlo,
« Time-domain characterization and correction of on-chip distortion of control pulses
in a quantum processor », Applied Physics Letters, vol. 116, p. 054001, 02 2020. (Cité
aux pages 51 and 94.)

[98] J. Singh, R. Zeier, T. Calarco et F. Motzoi, « Compensating for nonlinear distor-
tions in controlled quantum systems », Phys. Rev. Appl., vol. 19, p. 064067, Jun 2023.
(Cité à la page 51.)

[99] S. Lazăr, Q. Ficheux, J. Herrmann, A. Remm, N. Lacroix, C. Hellings, F. Swia-
dek, D. C. Zanuz, G. J. Norris, M. B. Panah, A. Flasby, M. Kerschbaum, J.-C.
Besse, C. Eichler et A. Wallraff, « Calibration of drive nonlinearity for arbitrary-
angle single-qubit gates using error amplification », Phys. Rev. Appl., vol. 20, p. 024036,
Aug 2023. (Cité à la page 51.)

[100] E. Hyyppä, A. Vepsäläinen, M. Papič, C. F. Chan, S. Inel, A. Landra, W. Liu,
J. Luus, F. Marxer, C. Ockeloen-Korppi, S. Orbell, B. Tarasinski et J. Hein-



BIBLIOGRAPHIE 181

soo, « Reducing leakage of single-qubit gates for superconducting quantum proces-
sors using analytical control pulse envelopes », 2024. arXiv :2402.17757. (Cité à la
page 51.)

[101] B. Foxen, C. Neill, A. Dunsworth, P. Roushan, B. Chiaro, A. Megrant,
J. Kelly, Z. Chen, K. Satzinger, R. Barends, F. Arute, K. Arya, R. Babbush,
D. Bacon, J. Bardin, S. Boixo, D. Buell, B. Burkett, Y. Chen et al., « Demonstra-
ting a continuous set of two-qubit gates for near-term quantum algorithms », Physical
Review Letters, vol. 125, sept. 2020. (Cité aux pages 51, 64, 88, and 97.)

[102] É. Genois, J. A. Gross, A. Di Paolo, N. J. Stevenson, G. Koolstra, A. Hashim,
I. Siddiqi et A. Blais, « Quantum-tailored machine-learning characterization of a
superconducting qubit »,PRXQuantum, vol. 2, p. 040355, Dec 2021. (Cité aux pages 52,
53, and 58.)

[103] E. Flurin, L. S. Martin, S. Hacohen-Gourgy et I. Siddiqi, « Using a Recurrent
Neural Network to Reconstruct QuantumDynamics of a Superconducting Qubit from
Physical Observations », Physical Review X, vol. 10, p. 011006, jan. 2020. (Cité aux
pages 52 and 58.)

[104] A. P. Peirce, M. A. Dahleh et H. Rabitz, «Optimal control of quantum-mechanical
systems : Existence, numerical approximation, and applications », Phys. Rev. A, vol. 37,
p. 4950–4964, Jun 1988. (Cité à la page 54.)

[105] J. Werschnik et E. Gross, « Quantum optimal control theory », Journal of Physics B :
Atomic, Molecular and Optical Physics, vol. 40, no. 18, p. R175, 2007. (Cité à la page 54.)

[106] L. Pontryagin, V. Boltyanski i, R. Gamkrelidze et E. Mishechenko, The Ma-
thematical Theory of Optimal Processes. CRC Press, 01 1962. (Cité aux pages 54, 144,
and 145.)

[107] E. D. Sontag, Mathematical Control Theory. Springer New York, NY, 07 1998. (Cité à
la page 54.)

[108] D. D’Alessandro, Introduction to quantum control and dynamics. Chapman &
Hall/CRC applied mathematics & nonlinear science, Hoboken, NJ : Taylor & Francis
Ltd, 2007. (Cité à la page 54.)

[109] U. Boscain, M. Sigalotti et D. Sugny, « Introduction to the pontryagin maximum
principle for quantum optimal control », PRX Quantum, vol. 2, p. 030203, Sep 2021.
(Cité à la page 54.)

[110] G. Dirr et U. Helmke, Lie Theory for Quantum Control. Wiley, 2008. (Cité à la page 54.)
[111] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen et S. J. Glaser,

« Optimal control of coupled spin dynamics : design of NMR pulse sequences by
gradient ascent algorithms », Journal of Magnetic Resonance, vol. 172, p. 296–305, fév.
2005. (Cité aux pages 54, 55, and 144.)

[112] P. de Fouquieres, S. Schirmer, S. Glaser et I. Kuprov, « Second order gradient
ascent pulse engineering », Journal of Magnetic Resonance, vol. 212, p. 412–417, oct. 2011.
(Cité à la page 56.)

[113] S. Machnes,U. Sander, S. J. Glaser, P. de Fouquières,A. Gruslys, S. Schirmer
et T. Schulte-Herbrüggen, «Comparing, optimizing, and benchmarking quantum-
control algorithms in a unifying programming framework », Phys. Rev. A, vol. 84,
p. 022305, Aug 2011. (Cité à la page 56.)



BIBLIOGRAPHIE 182

[114] V. Krotov, Global Methods in Optimal Control Theory. CRC Press, oct. 1995. (Cité à la
page 56.)

[115] D. M. Reich, M. Ndong et C. P. Koch, «Monotonically convergent optimization
in quantum control using krotov’s method », The Journal of Chemical Physics, vol. 136,
mars 2012. (Cité à la page 56.)

[116] D. J. Egger et F. K. Wilhelm, « Adaptive hybrid optimal quantum control for
imprecisely characterized systems », Phys. Rev. Lett., vol. 112, p. 240503, Jun 2014.
(Cité aux pages 56, 97, and 140.)

[117] J. Kelly, R. Barends, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Duns-
worth, A. G. Fowler, I.-C. Hoi, E. Jeffrey, A. Megrant, J. Mutus, C. Neill,
P. J. J. O’Malley, C. Quintana, P. Roushan, D. Sank, A. Vainsencher, J. Wen-
ner, T. C. White, A. N. Cleland et J. M. Martinis, « Optimal quantum control
using randomized benchmarking », Phys. Rev. Lett., vol. 112, p. 240504, Jun 2014. (Cité
aux pages 56, 97, and 140.)

[118] M. Werninghaus, D. J. Egger, F. Roy, S. Machnes, F. K. Wilhelm et S. Filipp,
« Leakage reduction in fast superconducting qubit gates via optimal control », npj
Quantum Information, vol. 7, jan. 2021. (Cité aux pages 56 and 140.)

[119] J. J. Burnett,A. Bengtsson,M. Scigliuzzo,D. Niepce,M. Kudra, P. Delsing et
J. Bylander, «Decoherence benchmarking of superconducting qubits », npj Quantum
Information, vol. 5, juin 2019. (Cité à la page 56.)

[120] S. Schlör, J. Lisenfeld, C. Müller, A. Bilmes, A. Schneider, D. P. Pappas,
A. V. Ustinov et M. Weides, « Correlating decoherence in transmon qubits : Low
frequency noise by single fluctuators », Phys. Rev. Lett., vol. 123, p. 190502, Nov 2019.
(Cité à la page 56.)

[121] OpenAI, « Gpt-4 technical report », 2024. arXiv :2303.08774. (Cité à la page 57.)
[122] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe et S. Lloyd,

« Quantum machine learning », Nature, vol. 549, p. 195–202, sept. 2017. (Cité à la
page 57.)

[123] V. Dunjko et H. J. Briegel, « Machine learning & artificial intelligence in the quan-
tum domain : a review of recent progress », Reports on Progress in Physics, vol. 81,
p. 074001, jun 2018. (Cité à la page 57.)

[124] P. Mehta, M. Bukov, C.-H. Wang, A. G. Day, C. Richardson, C. K. Fisher
et D. J. Schwab, « A high-bias, low-variance introduction to machine learning for
physicists », Physics Reports, vol. 810, p. 1–124, mai 2019. (Cité à la page 57.)

[125] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-
Maranto et L. Zdeborová, «Machine learning and the physical sciences », Reviews
of Modern Physics, vol. 91, déc. 2019. (Cité à la page 57.)

[126] F. Marquardt, « Machine learning and quantum devices », SciPost Physics Lecture
Notes, mai 2021. (Cité à la page 57.)

[127] I. Goodfellow, Y. Bengio et A. Courville, Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org. (Cité aux pages 57 and 58.)

[128] Y. LeCun, Y. Bengio et G. Hinton, « Deep learning », Nature, vol. 521, p. 436–444,
mai 2015. (Cité à la page 57.)

http://www.deeplearningbook.org


BIBLIOGRAPHIE 183

[129] R. S. Sutton et A. G. Barto, Reinforcement Learning : An Introduction. The MIT Press,
second éd., 2018. (Cité aux pages 57 and 60.)

[130] D. Foster et K. Friston, Generative Deep Learning : Teaching Machines to Paint, Write,
Compose, and Play. O’Reilly, 2023. (Cité à la page 57.)

[131] K. Fukushima, « Neocognitron : A self-organizing neural network model for a me-
chanism of pattern recognition unaffected by shift in position », Biological Cybernetics,
vol. 36, p. 193–202, avril 1980. (Cité à la page 58.)

[132] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard et
L. Jackel, « Handwritten Digit Recognition with a Back-Propagation Network », in
Advances in Neural Information Processing Systems, vol. 2, Morgan-Kaufmann, 1989.
(Cité à la page 58.)

[133] S. Lawrence, C. Giles, A. C. Tsoi et A. Back, « Face recognition : a convolutional
neural-network approach », IEEE Transactions on Neural Networks, vol. 8, p. 98–113,
jan. 1997. (Cité à la page 58.)

[134] R. J. Williams et D. Zipser, « A learning algorithm for continually running fully
recurrent neural networks », Neural Computation, vol. 1, no. 2, p. 270–280, 1989. (Cité
à la page 58.)

[135] M. Hibat-Allah, M. Ganahl, L. E. Hayward, R. G. Melko et J. Carrasquilla,
« Recurrent neural network wave functions », Physical Review Research, vol. 2, juin 2020.
(Cité à la page 58.)

[136] M. August et X. Ni, « Using recurrent neural networks to optimize dynamical
decoupling for quantum memory », Physical Review A, vol. 95, jan. 2017. (Cité à la
page 58.)

[137] L. Banchi, E. Grant, A. Rocchetto et S. Severini, « Modelling non-markovian
quantum processes with recurrent neural networks », New Journal of Physics, vol. 20,
p. 123030, déc. 2018. (Cité à la page 58.)

[138] S. Hochreiter et J. Schmidhuber, « Long Short-Term Memory », Neural Computa-
tion, vol. 9, p. 1735–1780, 11 1997. (Cité à la page 58.)

[139] K. Hornik, M. Stinchcombe et H. White, « Multilayer feedforward networks are
universal approximators », Neural Networks, vol. 2, no. 5, p. 359–366, 1989. (Cité à la
page 59.)

[140] R. Orús, « Tensor networks for complex quantum systems », Nature Reviews Physics,
vol. 1, p. 538–550, août 2019. (Cité à la page 59.)

[141] M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma, D. Gross, S. D. Bartlett,
O. Landon-Cardinal, D. Poulin et Y.-K. Liu, « Efficient quantum state tomogra-
phy », Nature Communications, vol. 1, déc. 2010. (Cité à la page 60.)

[142] C. Jameson, Z. Qin, A. Goldar, M. B. Wakin, Z. Zhu et Z. Gong, « Optimal
quantum state tomography with local informationally complete measurements »,
2024. arXiv :2408.07115. (Cité à la page 60.)

[143] G. Torlai, C. J. Wood, A. Acharya, G. Carleo, J. Carrasquilla et L. Aolita,
« Quantum process tomography with unsupervised learning and tensor networks »,
Nature Communications, vol. 14, mai 2023. (Cité à la page 60.)

[144] C. E. Granade, C. Ferrie, N. Wiebe et D. G. Cory, « Robust online hamiltonian
learning », New Journal of Physics, vol. 14, p. 103013, oct. 2012. (Cité à la page 60.)



BIBLIOGRAPHIE 184

[145] H.-Y. Huang, Y. Tong, D. Fang et Y. Su, « Learning many-body hamiltonians with
heisenberg-limited scaling », Phys. Rev. Lett., vol. 130, p. 200403, May 2023. (Cité à la
page 60.)

[146] M. Bukov, A. G.-R. Day, D. Sels, P. Weinberg, A. Polkovnikov et P. Mehta,
« Reinforcement Learning in Different Phases of Quantum Control », Physical Review
X, vol. 8, p. 031086, sept. 2018. (Cité aux pages 60 and 61.)

[147] S. Borah, B. Sarma, M. Kewming, G. J. Milburn et J. Twamley, « Measurement-
based feedback quantum control with deep reinforcement learning for a double-well
nonlinear potential », Phys. Rev. Lett., vol. 127, p. 190403, Nov 2021. (Cité à la page 60.)

[148] V. V. Sivak, A. Eickbusch, H. Liu, B. Royer, I. Tsioutsios et M. H. Devoret,
« Model-free quantum control with reinforcement learning », Phys. Rev. X, vol. 12,
p. 011059, Mar 2022. (Cité aux pages 60, 61, and 62.)

[149] R. Porotti, A. Essig, B. Huard et F. Marquardt, « Deep reinforcement learning
for quantum state preparation with weak nonlinear measurements », Quantum, vol. 6,
p. 747, juin 2022. (Cité aux pages 60 and 61.)

[150] R. Porotti, V. Peano et F. Marquardt, « Gradient-ascent pulse engineering with
feedback », PRX Quantum, vol. 4, p. 030305, Jul 2023. (Cité aux pages 60 and 90.)

[151] L. Ding,M. Hays, Y. Sung, B. Kannan, J. An,A. Di Paolo,A.H. Karamlou, T.M.
Hazard, K. Azar, D. K. Kim, B. M. Niedzielski, A. Melville, M. E. Schwartz,
J. L. Yoder, T. P. Orlando, S. Gustavsson, J. A. Grover, K. Serniak et W. D.
Oliver, «High-fidelity, frequency-flexible two-qubit fluxoniumgateswith a transmon
coupler », Phys. Rev. X, vol. 13, p. 031035, Sep 2023. (Cité aux pages 60, 62, and 140.)

[152] C. J. C. H. Watkins et P. Dayan, « Q-learning », Machine Learning, vol. 8, p. 279–292,
mai 1992. (Cité à la page 61.)

[153] J. Schulman, F. Wolski, P. Dhariwal, A. Radford et O. Klimov, « Proximal
policy optimization algorithms », 2017. arXiv :1707.06347. (Cité à la page 61.)

[154] B. Vlastakis, G. Kirchmair, Z. Leghtas, S. E. Nigg, L. Frunzio, S. M. Girvin,
M. Mirrahimi, M. H. Devoret et R. J. Schoelkopf, « Deterministically encoding
quantum information using 100-photon schrödinger cat states », Science, vol. 342,
no. 6158, p. 607–610, 2013. (Cité à la page 62.)

[155] A. Almanakly, B. Yankelevich, M. Hays, B. Kannan, R. Assouly, A. Greene,
M. Gingras, B. M. Niedzielski, H. Stickler, M. E. Schwartz, K. Serniak,
J. I.-J. Wang, T. P. Orlando, S. Gustavsson, J. A. Grover et W. D. Oliver,
« Deterministic remote entanglement using a chiral quantum interconnect », 2024.
arXiv :2408.05164. (Cité à la page 62.)

[156] A. Griewank et A. Walther, Evaluating Derivatives. Other Titles in Applied Mathe-
matics, Society for Industrial and Applied Mathematics, jan. 2008. (Cité à la page 63.)

[157] A. G. Baydin, B. A. Pearlmutter, A. A. Radul et J. M. Siskind, « Automatic
differentiation in machine learning : a survey », 2018. arXiv :1502.05767. (Cité aux
pages 63 and 144.)

[158] F. Preti, T. Calarco et F. Motzoi, « Continuous quantum gate sets and pulse-class
meta-optimization », PRX Quantum, vol. 3, oct. 2022. (Cité à la page 64.)

[159] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,



BIBLIOGRAPHIE 185

M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai et S. Chin-
tala, « Pytorch : An imperative style, high-performance deep learning library », in
Advances in Neural Information Processing Systems, vol. 32, 2019. (Cité aux pages 65
and 151.)

[160] A. Youssry, Y. Yang, R. J. Chapman, B. Haylock, F. Lenzini, M. Lobino et
A. Peruzzo, « Experimental graybox quantum system identification and control »,
npj Quantum Information, vol. 10, p. 1–9, jan. 2024. (Cité à la page 85.)

[161] T. Hastie,R. Tibshirani et J. Friedman,The Elements of Statistical Learning. Springer
New York, août 2009. (Cité aux pages 86 and 140.)

[162] A. Hashim, R. K. Naik, A. Morvan, J.-L. Ville, B. Mitchell, J. M. Kreikebaum,
M. Davis,E. Smith,C. Iancu,K. P. O’Brien, I.Hincks, J. J.Wallman, J. Emerson
et I. Siddiqi, « Randomized compiling for scalable quantum computing on a noisy
superconducting quantum processor », Phys. Rev. X, vol. 11, p. 041039, Nov 2021.
(Cité aux pages 86 and 96.)

[163] J. B. Hertzberg, E. J. Zhang, S. Rosenblatt, E. Magesan, J. A. Smolin, J.-B. Yau,
V. P. Adiga,M. Sandberg,M. Brink, J. M. Chow et J. S. Orcutt, « Laser-annealing
josephson junctions for yielding scaled-up superconducting quantum processors »,
npj Quantum Information, vol. 7, août 2021. (Cité à la page 87.)

[164] F. Yan, P. Krantz, Y. Sung, M. Kjaergaard, D. L. Campbell, T. P. Orlando,
S. Gustavsson et W. D. Oliver, « Tunable coupling scheme for implementing
high-fidelity two-qubit gates », Physical Review Applied, vol. 10, nov. 2018. (Cité à la
page 87.)

[165] R. Shillito, J. A. Gross, A. Di Paolo, É. Genois et A. Blais, « Fast and diffe-
rentiable simulation of driven quantum systems », Physical Review Research, vol. 3,
p. 033266, sept. 2021. (Cité à la page 88.)

[166] N. Sundaresan, I. Lauer, E. Pritchett, E. Magesan, P. Jurcevic et J. M. Gam-
betta, « Reducing unitary and spectator errors in cross resonance with optimized
rotary echoes », PRX Quantum, vol. 1, p. 020318, Dec 2020. (Cité à la page 88.)

[167] P. Guilmin, P. Rouchon et A. Tilloy, « Correlation functions for realistic conti-
nuous quantum measurement », IFAC-PapersOnLine, vol. 56, no. 2, p. 5164–5170, 2023.
22nd IFAC World Congress. (Cité à la page 89.)

[168] A. S. Roy, K. Pack, N. Wittler et S. Machnes, « Software tool-set for automated
quantum system identification and device bring up », 2022. arXiv :2205.04829. (Cité
à la page 89.)

[169] T. M. Moerland, J. Broekens, A. Plaat et C. M. Jonker, « Model-based reinfor-
cement learning : A survey », 2022. arXiv :2006.16712. (Cité à la page 90.)

[170] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, A. Bengts-
son, S. Boixo, M. Broughton, B. B. Buckley, D. A. Buell, B. Burkett, N. Bu-
shnell, Y. Chen, Z. Chen et al., « Observation of separated dynamics of charge and
spin in the Fermi-Hubbard model », arXiv :2010.07965, oct. 2020. (Cité aux pages 93
and 99.)

[171] N. Moll, P. Barkoutsos, L. S. Bishop, J. M. Chow, A. Cross, D. J. Egger, S. Fi-
lipp, A. Fuhrer, J. M. Gambetta, M. Ganzhorn, A. Kandala, A. Mezzacapo,
P. Müller, W. Riess, G. Salis, J. Smolin, I. Tavernelli et K. Temme, « Quantum



BIBLIOGRAPHIE 186

optimization using variational algorithms on near-term quantum devices », Quantum
Science and Technology, vol. 3, p. 030503, juin 2018. (Cité à la page 93.)

[172] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Bis-
was, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen,
B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen,
A. Fowler, C. Gidney et al., « Quantum supremacy using a programmable super-
conducting processor », Nature, vol. 574, p. 505–510, oct. 2019. (Cité aux pages 93, 94,
95, 96, and 102.)

[173] C. C. Bultink, M. A. Rol, T. E. O’Brien, X. Fu, B. C. S. Dikken, C. Dickel, R. F. L.
Vermeulen, J. C. de Sterke, A. Bruno, R. N. Schouten et L. DiCarlo, « Active
resonator reset in the nonlinear dispersive regime of circuit qed », Phys. Rev. Appl.,
vol. 6, p. 034008, Sep 2016. (Cité à la page 94.)

[174] L. Viola, E. Knill et S. Lloyd, «Dynamical decoupling of open quantum systems »,
Physical Review Letters, vol. 82, p. 2417–2421, mars 1999. (Cité aux pages 95 and 143.)

[175] J. Emerson, R. Alicki et K. Życzkowski, « Scalable noise estimation with ran-
dom unitary operators », Journal of Optics B : Quantum and Semiclassical Optics, vol. 7,
p. S347–S352, sept. 2005. (Cité à la page 95.)

[176] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding, Z. J iang, M. J.
Bremner, J. M. Martinis et H. Neven, « Characterizing quantum supremacy in
near-term devices », Nature Physics, vol. 14, p. 595–600, avril 2018. (Cité à la page 95.)

[177] J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham, R. Parekh, U. Cha-
baud et E. Kashefi, « Quantum certification and benchmarking », Nature Reviews
Physics, vol. 2, p. 382–390, juin 2020. (Cité à la page 96.)

[178] J. Wallman, C. Granade, R. Harper et S. T. Flammia, « Estimating the coherence
of noise », New Journal of Physics, vol. 17, p. 113020, nov. 2015. (Cité à la page 96.)

[179] M. McEwen, D. Bacon et C. Gidney, « Relaxing hardware requirements for surface
code circuits using time-dynamics », Quantum, vol. 7, p. 1172, nov. 2023. (Cité à la
page 98.)

[180] D. C. McKay, C. J. Wood, S. Sheldon, J. M. Chow et J. M. Gambetta, « Efficient
Z gates for quantum computing », Physical Review A, vol. 96, août 2017. (Cité à la
page 98.)

[181] G. Floquet, « Sur les équations différentielles linéaires à coefficients périodiques »,
Annales scientifiques de l’École Normale Supérieure, vol. 12, p. 47–88, 1883. (Cité à la
page 99.)

[182] A. Maudsley, «Modified carr-purcell-meiboom-gill sequence for nmr fourier ima-
ging applications », Journal of Magnetic Resonance (1969), vol. 69, no. 3, p. 488–491,
1986. (Cité à la page 100.)

[183] J. M. Martinis, S. Nam, J. Aumentado, K. M. Lang et C. Urbina, « Decoherence
of a superconducting qubit due to bias noise », Phys. Rev. B, vol. 67, p. 094510, Mar
2003. (Cité à la page 103.)

[184] Á. Márton et J. K. Asbóth, « Coherent errors and readout errors in the surface
code », Quantum, vol. 7, p. 1116, sept. 2023. (Cité à la page 141.)



BIBLIOGRAPHIE 187

[185] P. M. Harrington, E. J. Mueller et K. W. Murch, « Engineered dissipation for
quantum information science », Nature Reviews Physics, vol. 4, p. 660–671, août 2022.
(Cité aux pages 143 and 172.)

[186] C. P. Koch, « Controlling open quantum systems : tools, achievements, and limita-
tions », Journal of Physics : Condensed Matter, vol. 28, p. 213001, mai 2016. (Cité à la
page 143.)

[187] D. A. Lidar, I. L. Chuang et K. B. Whaley, « Decoherence-free subspaces for
quantum computation », Phys. Rev. Lett., vol. 81, p. 2594–2597, Sep 1998. (Cité à la
page 143.)

[188] S. Machnes, E. Assémat, D. Tannor et F. K. Wilhelm, « Tunable, flexible, and
efficient optimization of control pulses for practical qubits », Phys. Rev. Lett., vol. 120,
p. 150401, Apr 2018. (Cité à la page 144.)

[189] L. Han et M. Neumann, « Effect of dimensionality on the nelder–mead simplex
method », Optimization Methods and Software, vol. 21, no. 1, p. 1–16, 2006. (Cité à la
page 144.)

[190] M. Goerz, D. Basilewitsch, F. Gago-Encinas, M. G. Krauss, K. P. Horn,
D. M. Reich et C. Koch, « Krotov : A python implementation of krotov’s method
for quantum optimal control », SciPost physics, vol. 7, no. 6, p. 080, 2019. (Cité à la
page 144.)

[191] D. Basilewitsch, C. P. Koch et D. M. Reich, « Quantum optimal control for mixed
state squeezing in cavity optomechanics », Advanced Quantum Technologies, vol. 2,
no. 3-4, p. 1800110, 2019. (Cité à la page 144.)

[192] T. Schulte-Herbrüggen, A. Spörl, N. Khaneja et S. Glaser, « Optimal control
for generating quantumgates in open dissipative systems», Journal of Physics B : Atomic,
Molecular and Optical Physics, vol. 44, no. 15, p. 154013, 2011. (Cité à la page 144.)

[193] S. Boutin, C. K. Andersen, J. Venkatraman, A. J. Ferris etA. Blais, «Resonator
reset in circuit qed by optimal control for large open quantum systems », Phys. Rev. A,
vol. 96, p. 042315, Oct 2017. (Cité à la page 144.)

[194] N. Leung, M. Abdelhafez, J. Koch et D. Schuster, « Speedup for quantum
optimal control from automatic differentiation based on graphics processing units »,
Phys. Rev. A, vol. 95, p. 042318, Apr 2017. (Cité aux pages 145 and 148.)

[195] M. Abdelhafez, D. I. Schuster et J. Koch, « Gradient-based optimal control of
open quantum systems using quantum trajectories and automatic differentiation »,
Phys. Rev. A, vol. 99, p. 052327, May 2019. (Cité à la page 145.)

[196] R. T. Q. Chen, Y. Rubanova, J. Bettencourt et D. Duvenaud, « Neural ordinary
differential equations », 2019. arXiv :1806.07366. (Cité aux pages 145 and 151.)

[197] P. Kidger, « On neural differential equations », 2022. arXiv :2202.02435. (Cité aux
pages 146 and 168.)

[198] M. F. Dumas, B. Groleau-Paré, A. McDonald, M. H. Muñoz-Arias, C. Lledó,
B. D’Anjou et A. Blais, « Unified picture of measurement-induced ionization in
the transmon », 2024. arXiv :2402.06615. (Cité à la page 146.)

[199] Y. Lu, S. Joshi, V. San Dinh et J. Koch, « Optimal control of large quantum sys-
tems : assessing memory and runtime performance of grape », Journal of Physics
Communications, vol. 8, p. 025002, fév. 2024. (Cité à la page 148.)



BIBLIOGRAPHIE 188

[200] F. Swiadek, R. Shillito, P. Magnard, A. Remm, C. Hellings, N. Lacroix,
Q. Ficheux, D. C. Zanuz, G. J. Norris, A. Blais, S. Krinner et A. Wallraff,
« Enhancing dispersive readout of superconducting qubits through dynamic control
of the dispersive shift : Experiment and theory », 2023. arXiv :2307.07765. (Cité à la
page 148.)

[201] J. Ikonen, J. Goetz, J. Ilves, A. Keränen, A. M. Gunyho, M. Partanen, K. Y.
Tan, D. Hazra, L. Grönberg, V. Vesterinen, S. Simbierowicz, J. Hassel et
M. Möttönen, « Qubit measurement by multichannel driving », Phys. Rev. Lett.,
vol. 122, p. 080503, Feb 2019. (Cité à la page 149.)

[202] S. Touzard, A. Kou, N. E. Frattini, V. V. Sivak, S. Puri, A. Grimm, L. Frun-
zio, S. Shankar et M. H. Devoret, « Gated conditional displacement readout of
superconducting qubits », Phys. Rev. Lett., vol. 122, p. 080502, Feb 2019. (Cité à la
page 149.)

[203] N. Didier, J. Bourassa et A. Blais, « Fast quantum nondemolition readout by
parametric modulation of longitudinal qubit-oscillator interaction », Phys. Rev. Lett.,
vol. 115, p. 203601, Nov 2015. (Cité à la page 149.)

[204] M. H. Muñoz Arias, C. Lledó et A. Blais, « Qubit readout enabled by qubit
cloaking », Phys. Rev. Appl., vol. 20, p. 054013, Nov 2023. (Cité à la page 149.)

[205] F. Mallet, F. R. Ong, A. Palacios-Laloy, F. Nguyen, P. Bertet, D. Vion et
D. Esteve, « Single-shot qubit readout in circuit quantum electrodynamics », Nat
Phys, vol. 5, no. 11, p. 791–795, 2009. (Cité à la page 149.)

[206] M. Pechal, L. Huthmacher, C. Eichler, S. Zeytinoğlu, A. A. Abdumalikov,
S. Berger, A. Wallraff et S. Filipp, « Microwave-controlled generation of shaped
single photons in circuit quantum electrodynamics », Phys. Rev. X, vol. 4, p. 041010,
Oct 2014. (Cité à la page 150.)

[207] D. P. Kingma et J. Ba, « Adam : A method for stochastic optimization », 2017.
arXiv :1412.6980. (Cité à la page 170.)

[208] W. Cai, Y. Ma, W. Wang, C.-L. Zou et L. Sun, « Bosonic quantum error correction
codes in superconducting quantum circuits », Fundamental Research, vol. 1, p. 50–67,
jan. 2021. (Cité aux pages 169 and 172.)

[209] D. Gottesman, A. Kitaev et J. Preskill, « Encoding a qubit in an oscillator », Phys.
Rev. A, vol. 64, p. 012310, Jun 2001. (Cité à la page 169.)

[210] B. Royer, S. Singh et S. M. Girvin, « Stabilization of finite-energy gottesman-kitaev-
preskill states », Phys. Rev. Lett., vol. 125, p. 260509, Dec 2020. (Cité à la page 170.)

[211] B. de Neeve, T. L. Nguyen, T. Behrle et J. Home, « Error correction of a logical grid
state qubit by dissipative pumping », 2020. arXiv :2010.09681. (Cité à la page 170.)

[212] V. V. Albert, K. Noh, K. Duivenvoorden, D. J. Young, R. T. Brierley, P. Rein-
hold, C. Vuillot, L. Li, C. Shen, S. M. Girvin, B. M. Terhal et L. J iang, « Perfor-
mance and structure of single-mode bosonic codes », Phys. Rev. A, vol. 97, p. 032346,
Mar 2018. (Cité à la page 170.)

[213] K. Noh, V. V. Albert et L. J iang, « Quantum capacity bounds of gaussian ther-
mal loss channels and achievable rates with gottesman-kitaev-preskill codes », IEEE
Transactions on Information Theory, vol. 65, no. 4, p. 2563–2582, 2019. (Cité à la page 170.)



BIBLIOGRAPHIE 189

[214] C. Degen, F. Reinhard et P. Cappellaro, « Quantum sensing », Reviews of Modern
Physics, vol. 89, juil. 2017. (Cité à la page 172.)

[215] K. Azuma, S. E. Economou, D. Elkouss, P. Hilaire, L. J iang, H.-K. Lo et I. Tzi-
trin, « Quantum repeaters : From quantum networks to the quantum internet », Rev.
Mod. Phys., vol. 95, p. 045006, Dec 2023. (Cité à la page 172.)

[216] A. Morvan, B. Villalonga, X. Mi, S. Mandrà, A. Bengtsson, P. V. Klimov,
Z. Chen, S. Hong,C. Erickson, I. K. Drozdov, J. Chau,G. Laun, R. Movassagh,
A. Asfaw, L. T. A. N. Brandão, R. Peralta, D. Abanin, R. Acharya, R. Allen
et al., « Phase transition in random circuit sampling », 2023. arXiv :2304.11119. (Cité à
la page 172.)

[217] X. Mi, A. A. Michailidis, S. Shabani, K. C. Miao, P. V. Klimov, J. Lloyd, E. Ro-
senberg, R. Acharya, I. Aleiner, T. I. Andersen, M. Ansmann, F. Arute,
K. Arya, A. Asfaw, J. Atalaya, J. C. Bardin, A. Bengtsson et al., « Stable
quantum-correlated many-body states through engineered dissipation », Science,
vol. 383, p. 1332–1337, mars 2024. (Cité à la page 172.)

[218] E. Rosenberg, T. I. Andersen, R. Samajdar, A. Petukhov, J. C. Hoke, D. Aba-
nin, A. Bengtsson, I. K. Drozdov, C. Erickson, P. V. Klimov, X. Mi, A. Morvan,
M. Neeley, C. Neill, R. Acharya, R. Allen et al., « Dynamics of magnetization
at infinite temperature in a heisenberg spin chain », Science, vol. 384, p. 48–53, avril
2024. (Cité à la page 172.)


	Sommaire
	Introduction
	Les qubits supraconducteurs
	Introduction
	Les deux circuits étudiés: Le résonateur et le transmon
	Le résonateur
	Le transmon

	Électrodynamique quantique en circuit: la mesure dispersive
	Portes logiques sur le transmon
	Simulations des dynamiques quantiques

	Simulation précise de dynamiques quantiques à plusieurs transmons
	La correction d'erreur quantique
	Modèles de bruit en QEC
	Méthodologie
	Hamiltonien du système
	Approche numérique
	Opérations logiques
	Modèle effectif 9+4
	Modèle de bruit ajusté

	Publication krinnerrealizing2022: Réaliser la correction d'erreur quantique avec 17 transmons
	Perspectives futures

	Contrôle optimal basé sur l'apprentissage automatique
	Mise en contexte
	Concepts clés
	Contrôle optimal d'un transmon
	Apprentissage automatique
	Apprentissage automatique pour le contrôle quantique
	Contrôle optimal en deux étapes

	Résultats principaux
	Publication genoismlqoc2024: De la caractérisation par apprentissage automatique au contrôle optimal quantique
	Perspectives
	Modularité et compromis biais-variance
	Opérations quantiques plus complexes
	Applications directes


	Protocoles de caractérisation quantique
	Mise en contexte
	Motivations pour CAFE
	Motivations pour MEADD

	Résultats principaux
	Publication debroycafe2023: Caractérisation de la fidélité des opérations quantiques (CAFE)
	Publication grossmeadd2024: Estimation des paramètres unitaires de portes quantiques (MEADD)
	Perspectives

	Optimisation de la mesure en circuit QED
	Mise en contexte
	Résultats principaux
	Notre méthodologie
	Mesure dispersive optimale d'un transmon
	Réinitialisation optimale d'un transmon

	Publication gautierROQOC2024: Contrôle optimal de grands systèmes quantiques ouverts
	Perspectives
	Librairie dynamiqs
	Exemple d'une application directe de la méthode développée


	Conclusion
	Bibliographie

