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We have observed exclusive 7 production in proton-antiproton collisions at /s = 1.96 TeV, using
data from 1.11 & 0.07 fb~" integrated luminosity taken by the Run II Collider Detector at Fermilab.
We selected events with two electromagnetic showers, each with transverse energy Er > 2.5 GeV
and pseudorapidity |n| < 1.0, with no other particles detected in —7.4 < n < 4+7.4. The two showers
have similar Ep and azimuthal angle separation A¢ ~ 7; 34 events have two charged particle tracks,
consistent with the QED process pp — p+ ete™ + P by two-photon exchange, while 43 events have
no charged tracks. The number of these events that are exclusive 77 is consistent with zero and
is < 15 at 95% C.L. The cross section for pp — p + vy + p with |n(y)| < 1.0 and Er(y) > 2.5 GeV
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In proton-(anti)proton collisions, two direct high-Erp
photons can be produced at leading order by gg — vy and
by gg — 7 through a quark loop. In the latter case it is
possible for another gluon exchange to cancel the color
of the fusing gluons, allowing the (anti)proton to emerge
intact with no hadrons produced. For pp collisions, this
is the “exclusive” process pp — p+ v+ P, for which the
leading order diagram is shown in Fig. 1a [1, 2]. The out-
going (anti)proton has nearly the beam momentum, and
transverse momentum pr S 1 GeV/c, having emitted a
pair of gluons in a color singlet. There is a pseudorapid-
ity gap An > 6 adjacent to the (anti)proton. In Regge
theory this is diffractive scattering via pomeron [3, 4], TP,
exchange. The cross section for |n(y)| < 1.0 and trans-
verse energy Erp(y) >2.5 GeV is predicted [5, 6] to be
0 (77Y)exclusive ~ 0.2 - 2 pb, depending on the low-z (un-
integrated) gluon density. Additional uncertainties come
from the cross section for g + g — v + ~, the probabil-
ity that no hadrons are produced by additional parton
interactions (rapidity gap survival factor and Sudakov
suppression [7]), and the probability that neither pro-
ton dissociates (e.g. p—p 777 ~) [5]. The calculation
is also imprecise because of the low Q2, the squared 4-
momentum transfer. The total theoretical uncertainty

on the cross section can be estimated to be a factor fg
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[8]. Apart from its intrinsic interest for QCD, the pro- 2
cess tests the theory of exclusive Higgs boson produc- «
tion [1, 2, 5, 8-11] p+p—p+ H + p, Fig. 1b, which may =
be detectable at the LHC. The leading order processes 2
g9 — vy and gg— H are calculable perturbatively, but 24
the more uncertain elements of the exclusive processes 2
(mainly the unintegrated gluon densities, the Sudakov
suppression and the gap survival probability) are com- 2
mon to both (see Fig. 1). For a 120 GeV standard model 2
Higgs boson the exclusive cross section at /s = 7 TeV is 2
3 fb with a factor X3 uncertainty [8]. 30
31
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39
40
FIG. 1. Leading order diagrams for central exclusive produc- a
tion in p(p) — p collisions: a) exclusive vy production in p—p ,,
collisions; b) Exclusive Higgs boson production in p — p col- -
lisions. Note the screening gluon that cancels the color flow "

from the interacting gluons.
45

1

Processes other than gg — v+ can produce an exclusive 2
~7 final state. Contributions from ¢g— vy and vy — -~y 3
are respectively < 5% and < 1% of gg— vy [5]. Back- «
grounds to exclusive vy events to be considered are w070 s
and nn, with each meson decaying to two photons, of ¢
which one is not detected. We also consider events where 7
one or both protons dissociate, e.g. p—pnT7™, to be s
background. These backgrounds are small. 0
We previously published a search for exclusive v pro- 1w
duction, finding three candidate events with Ep(y) > 51
GeV and |n| < 1.0, using data from 532 pb™! of inte- 1
grated luminosity [12]. The prediction of Ref. [5] was 1
0.875% events. Two events had a single narrow elec- 1
tromagnetic (EM) shower on each side, as expected for 15
7, but no observation could be claimed. This Letter i
reports the observation of 43 events with a contamina- 17
tion of < 15 %70 events (at 95% C.L.), after we low- 1
ered the trigger threshold on the EM showers from 4 1
GeV to 2 GeV and collected data from another 1.11 fb=!
of integrated luminosity. We used the QED process =z
p+p—p+y*y*+p—p+ete”+pin the same data set, 2
for which the cross section is well known, as a check of 2
the analysis. 2
The data were collected by the Collider Detector at 2
Fermilab, CDF II, at the Tevatron, with pp collisions at 2
Vs = 1.96 TeV. The CDF II detector is a general pur- =
pose detector described elsewhere [13]; here we give a 2
brief summary of the detector components used in this 2
analysis. Surrounding the beam pipe is a tracking sys- s

tem consisting of a silicon microstrip detector, a cylindri-
cal drift chamber (COT) [14], and a solenoid providing
a 1.4 Tesla magnetic field. The tracking system is fully
efficient at reconstructing isolated tracks with ppr > 1
GeV/c and |n| < 1. Tt is surrounded by the central and
end-plug calorimeters covering the range |n| < 3.6. Both
calorimeters have separate EM and hadronic compart-
ments. A proportional wire chamber (CES) [15], with
orthogonal anode wires and cathode strips, is embed-
ded in the central EM calorimeter, covering the region
of |n| < 1.1, at a depth of six radiation lengths. It allows
a measurement of the number and shape, in both 1 and
azimuth ¢, of EM showers (clusters of wires or strips).
The anode-wire pitch (in ¢) is 1.5 cm and the cathode-
strip pitch varies with n from 1.7 cm to 2.0 cm. The CES
provides a means of distinguishing single photon show-
ers from 70 — vy up to Er(7°) ~ 8 GeV. The region
3.6 < |n| < 5.2 is covered by a lead-liquid scintillator
calorimeter called the Miniplug [16]. At higher pseudo-
rapidities, 5.4 < |n| < 7.4, scintillation counters, called
beam shower counters (BSC-1/2/3), are located on each
side of the CDF detector. Gas Cherenkov detectors, with
48 photomultipliers per side, covering 3.7 < |n| < 4.7, de-
tect charged particles, and were also used to determine
the luminosity with a 6% uncertainty [17].

The data were recorded using a three-level on-line
event selection system (trigger). At the first level we
required one EM cluster with Ep > 2 GeV and || < 2.1
and no signal above noise in the BSC-1 counters (|n| =
5.4—5.9). This rapidity gap requirement rejected a large
fraction of inelastic collisions as well as most events with
more than one interaction. A second EM cluster with
similar properties was required at level two. A level three
trigger selected events with two calorimeter showers con-
sistent with coming from electrons or photons: i.e., pass-
ing the requirement (cut) that the ratio of shower energy
in the hadronic (HAD) calorimeter to that in the EM
(HAD:EM) be less than 0.125, and that the signal shape
in the CES is consistent with a single shower.

We now describe the offline selection of events, with
two isolated EM showers and no other particles except
the outgoing p and p, which were not detected. Two cen-
tral EM showers were required with Epr > 2.5 GeV to
avoid trigger threshold inefficiencies. A refined HAD:EM
ratio cut of < 0.055 + 0.00045F was applied, as well
as an acoplanarity cut of |7 — A¢| < 0.6. The trigger
selection efficiency for single photons was measured us-
ing data collected with an interaction trigger (minimum
bias). The BSC-1 gap trigger was taken to be 100% effi-
cient as the BSC-1 trigger threshold was clearly above the
noise level and the offline selection criteria. We measured
an overall trigger efficiency of eyig = 92% £ 2%(syst).
A weighting process was necessary due to the different
slope in Ep of the minimum bias probe data compared
to the signal. The trigger efficiency did not show any n
or ¢ dependence for |n| < 2.1. Monte Carlo signal sim-
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ulation data samples were generated using the SUPER-
CHIC computer software [18] based on recent develop-
ments of the Durham KMR model [2]. The Monte Carlo
samples were passed through a simulation of the detec-
tor [19]. The systematic error was estimated by using
the bin-wise uncertainty of the efficiency in the weight-
ing process of the signal Monte Carlo sample. Taking
into account a combined detector and offline reconstruc-
tion efficiency of er.c = 55% + 3%(syst), and a photon
identification efficiency of €iq = 93% £ 1%(syst), we ob-
tained a photon-pair efficiency epho = afrig * Epec * £i2d =
40% =+ 3%(syst). The systematic uncertainties of the re-
construction and identification efficiency were estimated
by shifting kinematical input parameters over a reason-
able interval motivated by the dominating jet-energy-
scale uncertainty [20]. The offline selection then required
that no activity other than these two showers (or clus-
ters of showers) occured in the entire detector, |n| < 7.4.
We used the same procedure as in our earlier study of
exclusive ete™ events [21], searching all the calorime-
ters for any signal above noise levels, determined using
non-interaction events. We also required the CLC coun-
ters and the more forward BSC counters to have signals
consistent with only noise. Events triggered only on a
bunch crossing (zero-bias) showed that the exclusive ef-
ficiency, €cqyc1, defined as the factor to be applied to the
delivered luminosity to account for the requirement of no
additional inelastic collision in the same bunch crossing,
is €emer = 6.8% £ 0.4%(syst). The probability of a zero-
bias event satisfying all the exclusivity cuts, i.e., having
no detected inelastic interaction, is an exponential as a
function of the bunch x bunch luminosity with inter-
cept 0.98 4+ 0.02 and inverse slope b = 67 + 6 mb. For
a full solid angle and fully-efficient noise-free detector,
the intercept would be 1.0 and the inverse slope would
be the inelastic pp cross section. We checked that the
rate of candidate events, corrected for the exclusive effi-
ciency, was constant during data taking (one year). The
systematic uncertainty was estimated using the spread
in inverse slope parameters from fits to data in different
time periods.

The selection of 81 events passing all cuts was made
without reference to the track detectors. We found that
34 have exactly two oppositely charged tracks, 43 have
no tracks in the COT, and four are in neither class. Vi-
sual inspection of the latter showed that two had pho-
ton conversions, and two were likely to be ete™ events
with bremsstrahlung. These numbers are consistent with
expectations from the detector simulation. The tracks e
in the 34 two-track events agree in all aspects with ss
the QED process p +p — p + ete™ + p via two vir- &
tual photons, previously observed in CDF [21, 22]. The %
calorimeter shower energies are consistent with the mo- a
menta measured from the tracks. Kinematic distribu- 1
tions, after detector simulation, are as expected. The -
mass M(eTe™) distribution is presented in Fig. 2a, to- s

TABLE I. Summary of parameters used for the measurement
of the exclusive photon-pair cross section for Er(y) > 2.5
GeV and |n(7)| < 1.0. Values for the e*e™ control study are
also given. Note that b/g stands for background.

1.11 £0.07 fb~ T
0.068 £ 0.004 (syst)

Integrated luminosity Lint
Exclusive efficiency

Exclusive vy
Events 43

Photon pair efficiency 0.40 £ 0.02 (stat) 4 0.03 (syst)
Probability of no conversions 0.57 £ 0.06 (syst)

7%7° b/g (events) 0.0, < 15 (95% C.L.)
Dissociation b/g (events) 0.14 £ 0.14 (syst)

+

Exclusive e"e™

Events 34

Electron pair efficiency 0.33 £ 0.01 (stat) & 0.02 (syst)
Probability of no radiation 0.42 £ 0.08 (syst)
Dissociation b/g (events) 3.8 0.4 (stat) £ 0.9 (syst)
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] (Abs. normalization) ] (Normalized to data)
o10F L14f
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i 6
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2F
0 7 07 7 % ‘ ‘
0 5 10 15 20 25 0 5 10 15 20 25

e*e invariant mass (GeV/c?) yy invariant mass (GeV/c?)

CDF Run Il Preliminary
c) PP - yy

CDF Run Il Preliminary
E d) PP - vy

+ Data
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+ Data
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FIG. 2. The eTe™ candidates: invariant mass distribution
(a). The two-photon candidates: invariant mass distribution
(b), |7 — Ag| distribution (c¢), and pr distribution of the two
photons. All error bars are statistical. The MC predictions
for vv are normalized to data. The QED prediction for eTe™
is normalized to the delivered luminosity and efficiencies.

gether with the QED prediction normalized to the deliv-
ered luminosity and efficiencies, showing that the cross
section agrees with the QED prediction in both mag-
nitude and shape. We measured a cross section of
Ue*e*,exclusive(|n(e)| < 1aET(€) > 2.5 GGV) =
2.88 fg:ig(stat) + 0.63(syst) pb, compared to 3.25 +

0.07 pb (QED, [23]). The systematic uncertainties for the
QED study are mostly identical to the photon case. Dis-
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tinct from photons, electrons leave tracks in the trackingss:
detectors and may radiate. The systematic uncertaintysss
on the radiation probability was estimated by varying thesso
exclusivity cuts by £10%. This eTe™ sample provides asso
valuable check of the exclusive v analysis. 361
The 43 events with no tracks have the kinematic prop-s
erties expected for exclusive v production [18]. In par-
ticular the M (vv) distribution (Fig. 2b) extending up
to 15 GeV/c? is as expected, as well as the acoplanarity
m—Ad(v7y) (Fig. 2¢) and the 2-vector sum of pr (Fig. 2d);%s
in these plots (unlike Fig. 2a) the SUPERCHIC Monte3
Carlo is normalized to the same number of events as the3s
data. An important issue is whether some of these events3ss
could be 797Y, rather than vv. Note that y7° events are”
forbidden by C-parity. The CES chambers give infor-s
mation on the number of EM showers. The minimums3s®
opening angle Af,,;, between the two photons from 7930

7;((;?) = 3.1° for p(r) = 5 GeV, well™

separated in the CES chambers, which have a granular- 72
ity < 0.5°. A 7Y can fake a 7 only if one photon ranges
out before the CES, or falls in an inactive region (8%)
of the detector. All of the 68 e* events in our sam-
ple, with similar energies, had matching showers in the
CES chambers. A GEANT [19] simulation predicts the
probability that a photon in our energy range produces
a shower to be 2 98.3%. We added the number of re-
constructed CES showers in the event, mostly 2 or 3 as
shown in Fig. 3 (left). The distribution agrees very well

decay is 2tan~!

CDF Run Il Preliminary CDF Run Il Preliminary
- T T T

30 N
'_g — Data ><24
5 22¢ £ =0.00
g 25f — W MC (scaled) 20F Froe =0 E
) <o 1070 MC (scaled) 18F X°= 267 E
S 201 16F F00(95%C.L.) < 0.34 E
i 14F E
15fF 12k E
""" 10F E
10 - . 8 - =
6 - 9
sF | af E
0 - it 2F ! ! ! ! E
0123456 78 910 0 02 04 06 038 1
Sum of CES showers Fraction of m°r® background
a) b) 376

377
FIG. 3. Estimate of 7°7° background fraction in the candi-a7
date sample. Distribution of reconstructed CES showers pers,
event for data compared to vy and 7 7° Monte Carlo (a).
Background fraction estimate using Pearson’s x? test to fit
the composition hypothesis to the data distribution (b).

380

382

383

with the vy simulation, and strongly disagrees with thesss
7979 simulation. Fitting to the sum of the two compo-ss
nents gives a best fit to the fraction F(7%7%) = 0.0, withsss
a 95% C.L. upper limit of 15 events. Since obtainingss
this result, a new calculation of exclusive 797 produc-s
tion [24] predicts g (797Y) = 6 - 24 fb for Ep(n%) > 2.5
GeV and |n] < 1.0, < 0.01 of our measured exclusive 3o
cross section. In the cross section calculation we takesn

this background to be zero. Exclusive nn production isso

also expected to be negligible. The only other signif-
icant background could be undetected proton dissocia-
tion, about 10% for the QED ete™ process but <1%
for P+ IP— ~ + v [25]. The cross section for both pho-
tons with Ep(vy) > 2.5 GeV and |n(y)| < 1.0 and no
other produced particles is given by:

N(candidates) —

Eint -E.€excl

N (background)

O ~+,exclusive = ’

where € is the product of the trigger, reconstruction,
identification, and conversion efficiencies (22.8%) in Ta-
ble I. The systematic uncertainty on the conversion prob-
ability was estimated by varying the exclusivity cuts by
+10%. We find aw excl (MY < 1, Ep(y) > 2.5 GeV) =
2.48 1030 (stat) O?ff(syst) pb. The theoretical predic-
tion [9] is strongly dependendent on the low-z gluon den-
sity, having central values 1.42 pb (MSTWO8LO) or 0.35
pb (MRST99), with other uncertainties estimated to be a
factor of about X3 [25]. A comparison of our measurment
with the only theoretical prediction available to date is
shown in Fig. 4. The rates of eTe™ and vy events with
Er(e/v) > 5 GeV are consistent with those in our earlier
studies [12, 21].

~ 5 [
o]
= Al g = oED-prwiD)
® S
S 2 hwi<io
3 b 18
2 |2 ]° E, > 2.5 GeV
o
2L 2 % \'s = 1960 GeV
=
D': ®
112
X

FIG. 4. Comparison of the measured cross section for the
exclusive vy production in pp collisions at /s = 1.96 TeV
with theoretical predictions [9].

In conclusion, we have observed the exclusive produc-
tion of two high-FE7 photons in proton-antiproton colli-
sions, which constitutes the first observation of this pro-
cess in hadron-hadron collisions. The cross section is in
agreement with the only theoretical prediction, based on
g+g — v+, with another gluon exchanged to cancel the
color and with the p and p emerging intact. If a Higgs bo-
son exists, it should be produced by the same mechanism
(see Fig. 1), and the cross sections are related.
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