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Abstract

Entanglement lies at the heart of quantum mechanics, serving as a de�ning fea-
ture that sets quantum systems apart from their classical counterparts. When two
or more subsystems interact, the resulting correlations cannot be fully explained
by conventional classical theories, a phenomenon quanti�ed by the concept of en-
tanglement entropy. Many physical systems possess additional structures in the
form of symmetries�ranging from simple charge conservation (Abelian) to more
sophisticated gauge or rotational symmetries (non-Abelian). These symmetries
impose constraints on both the dynamics and the entanglement structure. The
study of properties of entanglement in such systems is grouped under the name
symmetry-resolved entanglement. In Abelian cases, the total charge of a system
splits neatly between subsystems and the reduced density matrix for a subsystem is
block diagonal in the symmetry labels, making the analysis of symmetry-resolved
entanglement straightforward. For non-Abelian symmetries, though, charges need
not simply add or subtract, and this enriches the structure of entanglement con-
siderably.

This thesis explores the role of entanglement in isolated quantum systems,
focusing particularly on those systems which possess a rich symmetry structure,
namely a non-Abelian symmetry. We introduce a general framework for under-
standing such symmetry-resolved states, showing how the Hilbert space decom-
poses into irreducible representations that carry distinct symmetry labels. A cru-
cial idea here is the notion of subalgebras of observables that respect the underlying
symmetry. For a given non-Abelian symmetry group G, this subset of observables
remains invariant under its actions. This helps in rede�ning the notion of a sub-
system in a manner that respects the symmetry and eventually leads to a reduced
density matrix that is block-diagonal in the symmetry labels but continues to
re�ect internal entanglement. This leads to the concept of symmetry-resolved en-
tanglement entropy, which quanti�es accessible entanglement in an isolated quan-
tum system in the presence of a symmetry. Focusing on compact, semisimple Lie
groups, we derive exact formulas for the average and the variance of the typical
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entanglement entropy for the ensemble of random pure states with �xed non-
Abelian charges. By developing exact formulas for symmetry-resolved entropy and
studying their asymptotic behavior for typical symmetry-resolved states, we o�er
a unifying perspective on how entanglement intertwines with the notions of eigen-
state thermalization and chaos in quantum systems with nontrivial symmetries.
Compared to the Abelian scenario, the local structure and non-Abelian symme-
try together give rise to new phenomena. In particular, we �nd an asymmetry
in the entanglement entropy upon interchanging the subsystems, which we illus-
trate explicitly through the calculation of the Page curve in an SU(2)-symmetric
many-body model.

This framework deepens our understanding of the universal features of entangle-
ment and opens new avenues for exploring how symmetry constrains and structures
quantum correlations�relevant not only for fundamental theory but also for ex-
perimental platforms aiming to harness entangled states for quantum technologies.
We propose multiple future applications ranging from quantifying entanglement in
quantum gravity to studying the role of symmetry-resolved entanglement in the
context of non-Abelian eigenstate thermalization.
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Chapter 1 |

Introduction

Entanglement can be seen as the hallmark of complex quantum systems. When

the constituents of a system come into contact, they establish correlations that

cannot be explained in terms of classical physics: they become entangled. This

phenomenon has been put to use in many areas of interest like the study of thermal-

ization in isolated quantum systems [1�3] and, as we will see in the next chapter,

entanglement has been a central tool in the attempts to understand question of

information loss in the evaporation process of black holes through Hawking radi-

ation [4]. Remarkably, new phenomena arise from the interplay of entanglement,

symmetries and constraints that a system can have [5]. In this thesis, we investigate

these aspects in detail.

1.1 Entanglement and Typical States

The Hilbert space of any complex quantum system composed of multiple subsys-

tems can be expressed as a tensor product of the Hilbert spaces corresponding to

each subsystem. For simplicity, consider a bipartite system with two subsystems

A and B. Then its Hilbert space can be expressed through the decomposition

H = HA ⊗ HB, where HA and HB are the Hilbert spaces of subsyems A and B

respectively. Given a pure state |ψ⟩ of the system, we can quantify the entangle-

ment of this state by considering the reduced density matrix, ρA = trB(|ψ⟩⟨ψ|)
and evaluating its von Neumann entropy, given by SA = −trA(ρA log ρA). SA is

often referred to as the entanglement entropy of the state. Interestingly, one can

show that SA = SB for a bipartite system in a pure state [6].
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It is important to note that here we assume we know the complete structure of the

system through the structure of its Hilbert space H and through that of its con-

stituentsHA andHB. When such a system evolves without any interaction with its

external environment, it is called an isolated quantum system. In such a system,

the dynamics is governed by the Schrödinger equation, leading to unitary evolu-

tion that preserves the system's total energy as well as its quantum information.

A key area of study in isolated quantum systems is the approach of its observ-

ables to thermal equilibrium, a process known as thermalization [1�3]. In classical

systems, thermalization is often explained through ergodic dynamics, where the

system explores all accessible microstates over time. However, in isolated quan-

tum systems, the mechanism of thermalization is more intricate, where systems

starting in a non-thermal state can end up in a thermal state under the in�uence

of certain types of Hamiltonians. In these systems, the late-time properties of the

entanglement entropy of pure states has been argued to be key to understanding

thermalization in quantum systems [7], as it assumes the role the thermodynamic

entropy for these systems. A related phenomenon is that of quantum chaos, where

one studies quantum systems whose classical analogs exhibit chaotic behavior [8].

While classical chaos is characterized by sensitive dependence on initial conditions

and exponential divergence of nearby trajectories, quantum systems do not have

trajectories in phase space due to the uncertainty principle. As a result, quantum

chaos explores how chaotic dynamics manifest in the underlying quantum regime,

often focusing on the statistical properties of observables, energy levels, and eigen-

states [9�12].

One of the ideas central to these phenomena is that of typical states and their

entanglement [13�20]. For a given (high-dimensional) Hilbert space, a typical state

is one which is randomly sampled from a known probability distribution on this

space. The behavior of entanglement entropy in typical eigenstates of quantum-

chaotic hamiltonians is consistent with Page's formula [21] and is characterized by

the volume-law, i.e. the leading contribution to the entanglement entropy scales

linearly with volume of the subsystem [13,22]. An e�ective way to see the trend in

the entanglement of typical states for multiple bipartitions of the same system is

through the Page curve. The notion of Page curve for random states without con-

straints was �rst introduced in [21] motivated by the information puzzle in black
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hole evaporation [4, 23, 24]. We look at Page's formula and curves in more detail

in Chapter 2.

1.2 Symmetry-resolved Entanglement:

Abelian Symmetries

So far, the discussion has hovered around general isolated quantum systems. How-

ever, physically motivated systems often possess additional structure in the form of

symmetries. The role of symmetries in understanding the fundamentals of physical

systems has been instrumental. Symmetry-breaking in quantum �eld theory, solu-

tions to Einstein's equations argued on the basis of symmetries in general relativity

and the study of topological materials in condensed matter physics are only a few

examples of many such successful endeavors. In the context of isolated quantum

systems, symmetries play a fundamental role as they result in conservation laws

and constraints for physical quantities, including the entanglement entropy. The

study of entanglement for quantum systems with a symmetry has been given the

name of symmetry-resolved entanglement, and was introduced in [25�27]. A simi-

lar notion, the accessible entanglement entropy in the presence of symmetries and

superselections rules, has been discussed in [28�34]

Most of the work in this area has been focused on quantum systems with Abelian

symmetries like number conservation or charge conservation [35�64], (see [65] for

a review). Consider a system composed of two parts A and B, with the total

charge operator Q = QA + QB. We de�ne the eigenstates |ψq⟩ of the charge Q

as symmetry-resolved states satisfying Q|ψq⟩ = q|ψq⟩. For Abelian symmetries, as

the total charge q is conserved, for every eigenvalue qA of QA the corresponding

eigenvalue of QB is �xed as qB = q − qA, which is why the Hilbert space for this

system can be decomposed in the following manner

H(q) =
⊕

qA

(
H(qA)

A ⊗H(q−qA)
B

)
. (1.1)

Note that, as
[
|ψq⟩⟨ψq|, Q

]
= 0, we can show that the reduced density matrix com-
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mutes with the charge in A, i.e., [ρA, QA] = 0. Note that the number of possible

values of qA is bounded by dim(HA), which is why QA has a degenerate spec-

trum and can be decomposed into sectors corresponding to di�erent charges as

QA = ⊕qA qA In(qA) where n(qA) is the degeneracy of the eigenvalue qA. Therefore,

the reduced density matrix takes the block-diagonal form ρA = ⊕qA p
(qA)

ρ
(qA)
A with

each block of de�nite charge qA having probability p(qA).

1.3 Symmetry-resolved Entanglement:

Non-Abelian Symmetries

For non-Abelian symmetries the condition q = qA + qB is not satis�ed and the

reduced state ρA has non-vanishing correlations for di�erent values of qA. This pre-

vents us from using the above methodology to arrive at a block diagonal structure

for the reduce state ρA. To illustrate the new aspects that arise in the presence of

a non-Abelian symmetry, consider, for instance, a composite system that is invari-

ant under the non-Abelian symmetry group SU(2), with generators J⃗ = J⃗A + J⃗B.

Clearly, here a symmetry-resolved state cannot be a simultaneous eigenstate of

the components Jx, Jy, Jz as these observables do not commute. The only simul-

taneous eigenstates have J⃗ 2 = 0. Even if we were to diagonalize only a set of

commuting observables such as J⃗ 2 and Jz, we still face the issue that the non-

Abelian charges are not additive over subsystems as, for instance, J⃗ 2 ̸= J⃗ 2
A + J⃗ 2

B.

To facilitate understanding of the ideas that follow, we use a concrete example

of a system of N spin-1/2 particles with SU(2) invariant Hamiltonian. Our math-

ematical analysis only requires the symmetry group G, and the Hamiltonian is

used here simply to provide a physical motivation. For instance, we can consider

the random Heisenberg Hamiltonian [66,67]

H =
1√
N

N∑
n,m=1
n<m

cnm S⃗n · S⃗m + µ J⃗2 , with J⃗ =
N∑

n=1

S⃗n, (1.2)
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where the coupling constants cnm are assumed to be normally distributed with zero

average and unit variance, S⃗n are the individual spin operators, and µ is a coupling

constant. The system is invariant under global SU(2) rotations generated by J⃗ ,

[H, J i] = 0 . (1.3)

1.3.1 Hilbert Space Decomposition

This brings us to the �rst of the many de�ning questions around which this thesis

is centered:

How does the Hilbert space of an isolated quantum system with a non-Abelian

symmetry decompose?

This question can also be reworded as: What is a suitable basis for the Hilbert space

that respects the additional structure of a non-Abelian symmetry in our system? To

begin, let us note that given any symmtery groupG there are two types of operators

that immediately come to mind: (i) the generators of the symmetry {Osym}, and
(ii) the symmetry-resolved operators, i.e. operators {OG} that commute with the

generators, satisfying [OG, Osym] = 0 for all Osym. For the example at hand, {Osym}
will be the observables acting on the rotational degrees of freedom, the J i. While

{OG} will be the observables which commute with all observables in J i and can

be called the rotationally invariant observables. Finally, the observables which are

key to �guring out the decomposition of the Hilbert space are those that belong

to the intersection {Osym} ∩ {OG}. These observables are of course the Casimir

operators for the group G, and the decomposition of the Hilbert space then takes

the form of a direct sum over the eigenvalues of the Casimirs,

H =
⊕

qH(q) =
⊕

q

(
H(q)

sym ⊗H
(q)
G

)
, (1.4)

which for our example is

HN =
⊕

jH
(j)
N =

⊕
j

(
H(j)

sym ⊗H
(j)
G

)
. (1.5)

For an Abelian group, dim(H(q)
sym) = 1, which simpli�es the decomposition H =⊕

qH
(q)
G , making it convenient to eventually express the reduced state in a block
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diagonal form.

1.3.2 Symmetry-resolved Observables and States

Now that we have the form of the Hilbert space, we can ask the question:

How do we de�ne a symmetry-resolved state for this system?

In our example, each spin-j sector H(j)
N contains

(
2j + 1

)
× dimH(j)

G mutually or-

thogonal states. The factor
(
2j+1

)
accounts for the rotational degrees of freedom,

which are spanned by the states |j,m⟩ ∈ H(j)
sym. The remaining degrees of freedom

are rotationally invariant states, |j, χG⟩ ∈ H(j)
G . Fig. 1.1 illustrates this structure.

By de�nition, symmetry-resolved observables cannot create entanglement between

the rotational and internal parts. Consequently, a symmetry-resolved state |ψj⟩
must factorize as

|ψj⟩ = |j, ξ⟩ |j, χG⟩ with |j, ξ⟩ =∑m ξm|j,m⟩. (1.6)

To see why this is relevant, consider a situation in which the parameter µ in

Eq. 1.2 is large. In that case, the energy gap separating di�erent spin-j sectors

becomes quite large, making it impossible for the observables OG (which are both

rotationally invariant and symmetry-resolved) to induce high-energy transitions.

Their matrix elements connecting di�erent spin-j sectors vanish, and they also

obey the selection rule ∆m = 0. As a result, states that can be prepared or mea-

sured by these OG observables necessarily take the factorized form above, ensuring

that rotational and internal degrees of freedom remain unentangled.

1.3.3 Symmetry-resolved Subsystems and the Notion of Lo-

cality

The usual bipartitioning of the Hilbert space can also be done here, but that does

not incorporate the presence of a symmetry in our system. Any de�nition of a

subsystem will have to be compatible with Eq. (1.4) and should know about the

symmetry of the system. So, it is crucial to ask:
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Figure 1.1. Energy spectrum of the SU(2)-invariant random Heisenberg Hamiltonian

(1.2) with N = 6. On increasing the parameter µ, the spectrum splits in symmetry-

resolved blocks H(j)
N of �xed spin j, (1.5), with each block consisting of (2j+1)×dimH(j)

G

states as shown in the table. We show also the transitions induced by the local observable

Sx
1S

x
2 and by the G-invariant local observable S⃗1 · S⃗2.

Can we rede�ne the notion of a subsystem in a manner suitable to a quantum

system with a non-Abelian symmetry?

We de�ne AK as the algebra of observables de�ned at the kinematical level.

Inside it, there is a subalgebra AG ⊂ AK consisting of those observables that re-

spect the symmetry group G. This means that AG contains all operators that

remain invariant under the symmetries of the dynamics. By contrast, AK simply

includes all possible observables we can construct without imposing that symmetry

requirement.

A spin system such as the one described by Eq. (1.2) naturally provides a notion of

locality because it is built out of individual spins S⃗n. When we choose two subsets

of spins, A and B, we can decompose the total Hilbert space as H = HA ⊗ HB.

Observables OA acting solely on the spins in A form a kinematically local subal-

gebra AKA ⊂ AK . However, these K-local operators are not required to preserve

the symmetries of the dynamics. If we want operators that are both local to A

7



Figure 1.2. Matrix elements of the K-local observable Sx
1S

x
2 (1a)� (2a), of its SU(2)-

projected version
∑

j PjS
x
1S

x
2Pj (1b)� (2b), and of the G-local observable S⃗1 ·S⃗2 (1c)� (2c).

Block-diagonal matrix elements in the spin-lattice basis (1a) highlight the local or non-

local nature of the observable, while the o�-diagonal matrix elements in the energy basis

(2a) determine the possible transitions between energy levels. While the SU(2)-projected
observable allows only SU(2)-invariant transitions (∈ AG) (2b), it is not a local observable
(/∈ AKA) (1b). Hence, the SU(2)-projected observable is not G-local, (1.7). On the other

hand, the observable S⃗1 · S⃗2 ∈ AGA is both local (1c) and induces only SU(2)-invariant
transitions (2c).

and invariant under G, we must look instead at

AGA = AKA ∩ AG . (1.7)

This intersection captures observables that act only on spins in A and remain un-

changed by the symmetry.

To see the di�erence, consider two example operators that act on spins 1 and 2.

The operator Sx
1 S

x
2 belongs to AKA because it only involves spins 1 and 2, but it is

not in AGA since it breaks the rotational symmetry (it induces transitions between

spin multiplets). On the other hand, S⃗1 · S⃗2 is both local to spins 1 and 2 and

rotationally invariant, so it belongs to AGA. This is depicted pictorially in Fig. 1.1

and through matrix elements in Fig. 1.2. Thus, this subalgebra of observables
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enables us to de�ne the notion of a subsystem compatible with the non-Abelian

symmetry of the subsystem.

A symmetry-resolved state |ψj⟩ restricted to these G-local observables is described

by the density matrix ρGA. Because all operators in AGA commute with the gen-

erators J i
A of the symmetry within subsystem A, the density matrix ρGA also

commutes with J i
A. This commutation means ρGA is block-diagonal in the spin

sectors labeled by jA:

ρGA =
⊕
jA

p
(jA)

ρ
(jA)
GA . (1.8)

Such a structure also facilitates the decomposition of H(j)
N , the total Hilbert space

of spin j, into a direct sum over all possible spins jA in subsystem A:

H(j)
N = H(j)

sym ⊗
⊕
jA

(
H(jA)

GA ⊗H
(j, jA)
GB

)
. (1.9)

This decomposition di�ers from the simpler one we would get in an Abelian sym-

metry scenario (such as total charge), where the labels merely add or subtract.

Here, the rotational part H(j)
sym cannot be factored away so simply, and the comple-

ment subsystem B depends on both j and jA and not just on the di�erence j− jA.
If instead of the above procedure we took the usual approach of tracing out spins

in B to get a reduced density matrix ρKA, we would be restricting the state to the

subalgebra AKA. That choice would break the symmetry structure because ρKA

does not have to commute with J i
A. For this reason, in a non-Abelian symmetry

setting, K-local observables can connect di�erent spin sectors jA as depicted pic-

torially in Fig. 1.1 and through matrix elements in Fig. 1.2.

One way to avoid these transitions and induce G-locality in K-local observables is

through introducing projectors P (j) to forbid such transitions [68], but this comes

at the price of losing strict locality as shown in Fig. 1.2. De�ning a subsystem

through AGA avoids this problem because it ensures that any observable in that

subsystem is both local and G-invariant. As a result, it provides a natural way to

analyze parts of the system while consistently respecting the underlying symmetry.
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1.3.4 Symmetry-resolved Entanglement Entropy and Typi-

cality

How do we de�ne the entanglement entropy for a symmetry-resolved state for

isolated quantum systems with a non-Abelian symmetry?

We now have all the tools to obtain a closed form for the entanglement entropy

for such a case. When we only have access to observables in the subsystem A

that respect the symmetry group G, it means we can only measure operators

in the subalgebra AGA. The entanglement we can observe in that situation is

captured by the �accessible entanglement entropy,� which comes from restricting

the state to AGA. If the state of the system is a symmetry-resolved state |ψj⟩, this
accessible entropy is precisely the symmetry-resolved entanglement entropy SGA.

Mathematically, SGA is the von Neumann entropy of the density matrix ρGA, and it

decomposes into two parts. One term re�ects the entropy within each block ρ
(jA)
GA ,

weighted by its probability p(jA), while the other term accounts for the classical

entropy associated with the di�erent spin sectors labeled by jA.

SGA(|ψj⟩) = −tr(ρGA log ρGA) = −
∑
jA

p
(jA)

tr
(
ρ
(jA)
GA log ρ

(jA)
GA

)
−
∑
jA

p(jA) log p(jA) .

(1.10)

It is important to emphasize that this G-invariant notion of entanglement entropy,

SGA, is di�erent from the usual kinematical entanglement entropy SKA. The latter,

de�ned as −tr
(
ρKA log ρKA

)
, also captures the rotational degrees of freedom |j,m⟩

that are not G-invariant.

Finally, after having developed methods to help us evaluate the symmetry-resolved

entanglement entropy, we can ask the question

Given a random, symmetry-resolved state |ψj⟩, what is the probability of

obtaining a speci�c entanglement entropy, denoted by SGA?

We wish to analytically compute an estimate of the probability distribution of SGA,

P (SGA), through its mean and variance and then compare it to the numerical

estimate of the probability distribution. If its variance scales inversely in the
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subsystem size and vanishes in the thermodynamic limit, we would be able to argue

that the average entanglement is also the typical entanglement. Remarkably, the

exact formulas for the average ⟨SGA⟩ and the variance (∆SGA)
2 derived in [69] for

a general subalgebra of observables remain valid when one uses the dimensions of

the Hilbert spaces appearing in the decomposition (1.9). For a system composed

of N ≫ 1 spins, we expect to see that the typical entanglement entropy ⟨SGA⟩
completely characterizes the Page curve of subsystems [21, 69] since the variance

of the probability distribution P (SGA) is exponentially small in N .

1.4 Thesis Outline

This thesis is structured as follows:

� Chapter 2 goes through a pedagogical discussion covering the Page curve and

the calculation of the typical entanglement entropy for a Haar-random state.

� In Chapter 3, we explain how to operationally de�ne a subsystem by means

of a subalgebra of observables, and we establish the fundamental expression

for the typical entanglement entropy in full generality. The results presented

in this chapter are based on Sec. 2 of [5].

� Then, in Chapter 4, we introduce a non-Abelian symmetry group and derive

the decomposition (1.8)�(1.9) for an arbitrary group G, without imposing

any locality constraints. The results presented in this chapter are based on

Sec. 3 of [5].

� In Chapter 5, we address the role of locality and propose the concept of G-

local observables in many-body systems, based on the de�nition (1.7). The

results presented in this chapter are based on Sec. 4 of [5].

� We turn to many-body spin systems featuring SU(2) symmetry in Chapter 6,

where we obtain the exact expressions for the SU(2) symmetry-resolved en-

tanglement entropy of typical states. The results presented in this chapter

are based on Sec. 5 of [5].

� In Chapter 7, we derive the large-system asymptotics of the SU(2) symmetry-

resolved typical entropy (see also App.A). The results presented in this
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chapter are based on Sec. 6 of [5].

� In addition to this, Appendix B contains �ndings of a paper in progress,

focused on studying the temporal behaviour of the entanglement entropy

in systems governed by random matrix Hamiltonians. Starting from a fac-

torized state, we characterize the short-time and late-time behaviors of the

entanglement entropy and compute the typical entanglement entropy in time.

We also extend our analysis to gaussian states in random quadratic fermionic

Hamiltonians.

� Finally, Chapter 8 provides a summary of our �ndings and elaborates on

potential research directions.
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Chapter 2 |

Page Curves

2.1 Motivation: Black Hole Information Puzzle

Black holes have long been objects of study in general relativity. A puzzle arises

when one considers black holes alongside the fundamental principles of quantum

mechanics. Quantum physics with its principle of unitarity tells us that informa-

tion in any isolated quantum system's initial state must be preserved. However,

taking a look at black hole evaporation, �rst described by Hawking [23], suggests

that radiation emerging from the black hole is featureless (or �thermal�) and ap-

pears to carry little information of what formed the black hole in the �rst place.

This question of whether, and how, black holes preserve information is known as

the black hole information puzzle [4, 24].

One leading framework, hypothesized by Page [4], treats the black hole and its

surroundings as two subsystems of a single, larger isolated quantum system. The

black hole itself is described by an entropy known as the Bekenstein-Hawking en-

tropy, which is proportional to its horizon area. Additionally, any radiation in a

box around the black hole has its own thermodynamic entropy. In a typical anal-

ysis, each subsystem has a Hilbert space whose dimension depends on its entropy:

a subsystem with entropy s has a Hilbert-space dimension roughly es. When the

black hole subsystem (entropy sh ≃ log n) and the radiation subsystem (entropy

sr ≃ logm) are combined into an isolated quantum system, the overall state is

assumed to be pure. As a result of this construction, it is possible for the the black

hole and radiation to be entangled.
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In quantum physics, entropy can be understood as a measure of uncertainty of

measurement outcomes: given an observable O which can result in measurement

outcomes {oi} with probabilities {pi}, the entropy of measurement for O is given

by −∑i pi log pi. Within this framework, one de�nes the von Neumann entan-

glement entropy to measure how mixed or thermal each subsystem appears when

looked at individually. Speci�cally, if the radiation subsystem has a density matrix

ρr, the von Neumann entropy is Sr = −tr(ρr log ρr). A closely related measure,

known as the information in the radiation, is Ir = sr − Sr ≃ logm − Sr. This

quantity gauges the extent to which the radiation retains details of the overall

state, as opposed to looking completely thermal. When Ir is small, the radiation

carries little discernible information; when Ir is large, it encodes more of the black

hole's microscopic state.

An especially important concept here is that of typicality, which states that, for

large Hilbert spaces, a randomly chosen pure state is very nearly maximally en-

tangled, with the di�erence from maximal entanglement scaling inversely with the

Hilbert space dimension. Consequently, given a randomly chosen pure state, any

single subsystem of such a large system usually appears thermal if its dimension

is signi�cantly smaller than that of the complement. Page conjectured the fol-

lowing form for the typical entanglement entropy of a subsystem [21] under the

assumption m ≤ n

Sr =
mn∑

k=n+1

1

k
− m− 1

2n
, (2.1)

which was later proven in [70�72]. Additionally, it was proven that for 1≪ m ≤ n

this reduces to the form

Sr ≃ logm− m

2n
, (2.2)

which tells us that the information in the smaller subsystem is

Ir ≃
m

2n
∼ 1

2
esr−sh . (2.3)
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In the regimem > n, when the radiation subsystem becomes the bigger subsystem,

we use the fact that Sr = Sh to calculate

Ir = logm− log n+ Ih ≃ logm− log n+
n

2m
. (2.4)

For the black hole + radiation system, if the black hole has a large entropy and the

radiation entropy is initially small, using Eqs. (2.2) and (2.3) we can observe that

early Hawking radiation is expected to look almost thermal and carry minimal

information. However, as the black hole evaporates, it loses mass and its entropy

decreases. Meanwhile, the radiation entropy grows as more quanta accumulate

outside. Eventually, once the radiation becomes the larger subsystem, typicality

arguments through Eq. (2.4) suggest that it can carry a signi�cant portion of the

overall quantum information. This phenomenon is depicted in Fig. 2.1.

It is this plot for the typical entanglement entropy vs. the subsystem size that

has been of importance in studies of typical entanglement in condensed matter

theory, and has been named the Page curve. In the next section, we look at

a more technical derivation of the formula for the typical entanglement entropy

whose approximate form Page conjectured in 1993.

2.2 Derivation of the Page Formula

We begin with a bipartite quantum system composed of two subsystems A and B.

Subsystem A has a Hilbert-space dimension dA, and subsystem B has a Hilbert-

space dimension dB. Consequently, the combined system resides in a Hilbert space

H = HA⊗HB of dimension d = dA×dB. We consider a pure state |ψ⟩ ∈ H, chosen
at random according to the uniform (Haar) measure on the unit sphere in CdAdB .

Our objective is to determine the typical (or average) entanglement between A

and B quanti�ed via the von Neumann entropy of the reduced density matrix of

subsystem A. Although there are multiple ways in which one can derive Page's

formula, we are going to be looking at one in particular. The derivation is centered

around the idea that the typical entanglement entropy of such a system can be

expressed in the form

⟨SA⟩ = −⟨trρA log ρA⟩ = lim
r→1

∂r⟨tr(ρrA)⟩. (2.5)
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Figure 2.1. For the black hole + radiation system of dimension mn = 291600. If

the black hole has a large entropy and the radiation entropy is initially small, using

Eqs. (2.2) and (2.3) we can observe that early Hawking radiation is expected to look

almost thermal and carry minimal information. However, as the black hole evaporates,

it loses mass and its entropy decreases. Meanwhile, the radiation entropy grows as more

quanta accumulate outside. Eventually, once the radiation becomes the larger subsystem,

typicality arguments through Eq. (2.4) suggest that it can carry a signi�cant portion of

the overall quantum information.

For this reason, our goal is to evaluate the average
〈
tr(ρrA)

〉
, where ρA = trB

(
|ψ⟩⟨ψ|

)
.

2.2.1 De�ning the Measure Over Haar Random States

Starting with a �xed orthonormal basis {|n⟩} of H, we write

|ψ⟩ =

dAdB∑
n=1

ψn |n⟩, where

dAdB∑
n=1

|ψn|2 = 1.
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Because |ψ⟩ is assumed to be uniformly distributed (the Haar or uniform mea-

sure on the unit sphere in CdAdB), the probability distribution over the complex

coe�cients {ψn} is given schematically by

dµ(ψ) ∝ δ
(
1−

dAdB∑
n=1

|ψn|2
) dAdB∏

n=1

d(Reψn) d(Imψn). (2.6)

To proceed, we observe that every state in |ψ⟩ =∑dA,dB
i,j=1 cij|ai⟩|bj⟩ where dA ≤ dB,

can be rewritten as |ψ⟩ =∑dA
i=1 γij|a

′
i⟩|b

′
i⟩, where |γi|2 = λi and

dA∑
i=1

|γi|2 = 1. (2.7)

This set of normalized states have 2dAdB − 1 free parameters, incorporating for 2

free parameters for every complex entry in the state and also for the normalization

constraint
∑dA,dB

i,j |cij|2 = 1. Moreover, a particular sample of the cij's �xes the

γi's as follows

γk =

dA,dB∑
i,j=1

cij ⟨a
′

k|ai⟩⟨b
′

k|bj⟩. (2.8)

This along with Eq. (2.7) results in an additional m − 1 constraints. Therefore,

the number of free parameters in our space is actually 2dAdB − dA. The measure
over the state dµ(ψ) can then be transformed into a measure over the eigenvalues

of the reduced state {λi}dAi=1 [73] as

dµ(ψ)→ dµ(λ1, . . . , λdA) ∝ δ
(
1−

dA∑
i=1

λi

)
∆2(λ1, . . . , λdA)

∏
1≤k≤dA

λdB−dA
k dλk, (2.9)

where

∆2(λ1, . . . , λdA) =

dA∏
n<m

|λn − λm|2 (2.10)

is the squared Vandermonde determinant. Then, we want to evaluate

⟨tr(ρrA)⟩ =
∫ ( dA∑

i=1

λri

)
dµ(λ1, . . . , λdA) (2.11)
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Performing a change of variables qa = ζλa where qa ∈ [0,∞) results in the integral

⟨tr(ρrA)⟩ =
Z

Γ(dAdB + r)

∫ ( dA∑
i=1

qri

)
∆2(q1, . . . , qdA)

∏
1≤k≤dA

qdB−dA
k e−qkdqk, (2.12)

where Z includes all undermined factors including normalization constants. Noting

that the integral does not distinguish between the qi's allows us to drop the sum

⟨tr(ρrA)⟩ =
ZdA

Γ(dAdB + r)

∫
qri ∆

2(q1, . . . , qdA)
∏

1≤k≤dA

qdB−dA
k e−qkdqk. (2.13)

2.2.2 Simplifying Using Generalized Laguerre Polynomials

Next, we use the fact that the value of a determinant does not change if the

multiple of any one row is added to a di�erent row, to rewrite the Vandermonde

determinant in terms of generalized Laguerre polynomials [72]. The generalized

Laguerre polynomials are de�ned as

L
(dB−dA)
k (q) = (−1)kk!

k∑
r=0

(
k + dB − dA
r + dB − dA

)
(−1)r qr

r!
. (2.14)

Then, we can write

⟨tr(ρrA)⟩ =
dA−1∑
ik,jk=0

ZdAεi1i2...idA εj1j2...jdA
Γ(dA dB + r)

×
∫
qr1

dA∏
k=1

L
(ds−dA)
ik

(qk)L
(dB−dA)
jk

(qk)q
dB−dA
k e−qkdqk,

where ε is a fully antisymmetric tensor with dA indices satisfying∑
i2,...,idA

εi1i2...idAεj1i2...idA ∝ δi1j1 . (2.15)

Using this along with the orthonormality condition for Laguerre polynomials∫ ∞

0

L
(dB−dA)
i (q)L

(dB−dA)
j (q)qdB−dAe−qdq = Γ(i+ 1)Γ(dB − dA + i+ 1)δij, (2.16)
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leads to a simpli�ed esxpression for the integral

⟨tr(ρrA)⟩ =
Z̃

Γ(dAdB + r)

dA−1∑
i=0

Xi(r), (2.17)

where Z̃ is the modi�ed prefactor and

Xi(r) =
1

Γ(i+ 1)Γ(dB − dA + i+ 1)

∫ ∞

0

qr
(
L
(dB−dA)
i (q)

)2
qdB−dAe−qdq. (2.18)

Using the orthonormality condition we note that Xi(0) = 1, which when combined

with Eq. (2.17) leads us to

⟨tr(ρ0A)⟩ = dA =
Z̃dA

Γ(dAdB)
, (2.19)

giving us Z̃ = Γ(dAdB). We recall that the (generalized) Laguerre polynomials

L
(α)
k (q) admit the generating function

F (t, q) =
∞∑
k=0

(−1)k
k!

tk L
(dB−dA)
k (q) =

1(
1− t

)1+dB−dA
e
− t
1−t

q
, (2.20)

From this, one obtains

L
(dB−dA)
i (q) = (−1)i

[
di

dti
F (t, q)

]
t=0

. (2.21)

Using Eqs. (2.20) and (2.21), we get

Xi(r) =
1

Γ(i+ 1)Γ
(
dB − dA + i+ 1

)
×
[
di

dxi
di

dyi

∫ ∞

0

qdB−dA+re−qF (x, q)F (y, q)dq

]
x=0,y=0

=
Γ
(
dB − dA + r + 1

)
Γ(i+ 1)Γ

(
dB − dA + i+ 1

)
×
[
di

dxi
di

dyi
(1− x)r(1− y)r(1− xy)−dB+dA−r−1

]
x=0,y=0
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Figure 2.2. Page curve for a system with dimensions: d = 216. The plot shows the

variation of the typical entanglement entropy ⟨SA⟩ vs the subsystem fraction.

=
Γ(i+ 1)Γ(r + 1)2

Γ(dB − dA + i+ 1)

dA−1∑
p=0

Γ(dB − dA + r + p+ 1)

Γ(p+ 1)Γ(i− p+ 1)2Γ(r − i+ p+ 1)2
.

Finally, we evaluate the typical entanglement entropy as

⟨SA⟩ = − lim
r→1

∂r⟨tr(ρrA)⟩ = − lim
r→1

∂r

[ Γ(dAdB)

Γ(dAdB + r)

dA−1∑
i=0

Xi(r)
]
, (2.22)

which after evaluating the derivatives gives us for dA ≤ dB

⟨SA⟩ = Ψ
(
dA dB + 1

)
−Ψ

(
dB + 1

)
− dA − 1

2dB
; (dA ≤ dB). (2.23)
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To get the other half of the Page curve (dA > dB), we exchange dA and dB

⟨SA⟩ = Ψ
(
dAdB + 1

)
−Ψ

(
dA + 1

)
− dB − 1

2dA
; (dA > dB). (2.24)

We can also extend this derivation to calculate ⟨S2
A⟩ and ∆SA, as well as the

average of other higher moments of SA. A plot of ⟨SA⟩ against subsystem fraction
log(dA)
log(d)

is shown in Fig. 2.2.

2.3 Incorporating Symmetry Constraints

So far, the discussion on typical entanglement in this chapter has been for general

quantum systems. However, many physical systems have constraints sometimes

in the form of symmetries of the system. In this case, it is expected that the

observables and states accessible to a subsystem will change and that will have an

e�ect on the typical entanglement of a random state in such a system. A frame-

work for incorporating constraints through the language of algebra of observables

has been presented in [69]. Here, a closed form for the average entanglement in

such systems was obtained and it was shown that the variance around this aver-

age scales inversely with the Hilbert space sector dimension and vanishes in the

thermodynamic limit proving that the average entanglement is indeed the typical

entanglement. However, this framework does not deal with non-Abelian symme-

tries any quantum system might have. For this reason, we are motivated to build

on the roadmap provided by this framework and extend it in a manner such that

it takes into account the e�ect a non-Abelian symmetry might have on the observ-

ables and states accessible to a subsystem and also on the amount of entanglement

in a state of such a system.
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Chapter 3 |

Subsystems from Subalgebras
and Typical Entropy

3.1 Introduction

In this chapter, we lay the foundation for a rigorous treatment of entanglement

in isolated quantum systems by adopting an operational approach based on sub-

algebras of observables. Traditionally, the study of entanglement has relied on

the tensor product structure of a composite Hilbert space; however, many physi-

cally relevant situations call for a more general perspective where the notion of a

subsystem is de�ned through the observables that one can actually access. The

motivation for this approach is twofold. First, many experimental and theoretical

contexts do not naturally present a pre-de�ned tensor product structure; instead,

we must characterize the subsystem by the speci�c set of measurements available.

Second, the algebraic formulation provides a �exible and general framework that

can be extended to incorporate additional features present in our system such as

symmetries and constraints. In our setup, a subsystem is de�ned via a subalge-

bra of accessible observables. The key concepts of commutant and center of an

algebra then naturally allow us to decompose the Hilbert space into sectors that

are adapted to this subalgebra. This decomposition is central to our treatment

as it allows us to de�ne the restriction of any pure state to this subalgebra and

thereby to construct the corresponding reduced density matrix. The entanglement

entropy is then given by the von Neumann entropy of this reduced density matrix

and can be expressed as the sum of the average entropy within each sector and the
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Shannon entropy of the sector probabilities.

An important result of this chapter is the derivation of explicit expressions for

the average entanglement entropy and its variance over the ensemble of random

pure states. These expressions generalize Page's seminal result [21] to the context

of subalgebra-de�ned subsystems. Moreover, we establish rigorous bounds on the

average entropy and show that the variance vanishes in the limit of large Hilbert

space dimension, thereby a�rming that the average value represents the typical en-

tanglement entropy. In subsequent chapters, this framework will serve as the basis

for exploring more re�ned aspects of entanglement, including symmetry-resolved

entanglement and its implications in locality in quantum many-body physics. The

results presented in this chapter are based on Sec. 2 of [5].

3.2 Setup

We consider an isolated quantum system with Hilbert space H of �nite dimension

D = dimH < ∞. Pure states of the system, |ψ⟩ ∈ H, can be understood as

vectors in CD and observables O as D × D hermitian matrices. The algebra of

observables of the system,

A = L(H) ≃MD(C) , (3.1)

is the set L(H) of linear operators on H or equivalently the algebra MD(C) of

matrices on CD.

In general, a Von Neumann algebra on CD is an algebra of matrices that is

closed under (i) hermitian conjugation, (ii) addition, (iii) multiplication, and (iv)

contains all C multiples of the identity operator. In particular, the algebra A of

observables of the system is a Von Neumann algebra [74, 75].1 Here we are inter-

1While observables of the system are represented by hermitian matrices, linear combinations
are assumed to be over C and therefore the Von Neumann algebra of observables contains also
anti-hermitian matrices and, more importantly, unitary transformations. We note also that here
we have assumed that the Hilbert space of the system is �nite-dimensional, and therefore in
the de�nition of a Von Neumann algebra reduces to the one of a matrix algebra [75], with no
additional requirement about topological closure. For a discussion of the in�nite-dimensional
case and the classi�cation of Von Neumann algebras of observables in quantum �eld theory, we
refer to [76�79].
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ested in Von Neumann subalgebras of A. We say that a subalgebra is generated

by the set of hermitian matrices Ki (with i = 1, . . . , n) if it can be obtained by

their closure under (i)�(iv), which we denote by

C[Ki] ≡
{
M ∈MD(C) |M = a1+

∑
i

biKi +
∑
ij

cijKiKj + . . .
}
, (3.2)

with coe�cients a, bi, cij . . . in C. The notion of commutant will play a central

role. The commutant of a set of matrices is de�ned as

{K1, . . . , Kn}′ ≡ {M ∈MD(C) |MKi −KiM = 0 , i = 1, . . . , n} . (3.3)

There are two useful results that we will use multiple times: the �rst relates the

double commutant of a set of matrices to the algebra they generate, {K1, . . . , Kn}′′ =
C[K1, . . . , Kn]; the second result relates the intersection of commutants to the

union of the sets of generators:

C[Ki]
′ ∩ C[Hj]

′ = C[Ki, Hj]
′ . (3.4)

Note that the commutant of a Von Neumann algebra AS ⊂ A is also a Von

Neumann algebra (AS)
′ ⊂ A, and the double commutant coincides with the algebra

itself, (AS)
′′ = AS .

3.3 Hilbert space decomposition adapted to a sub-

algebra of observables

Given our physical system, we de�ne a subsystem S operationally, in terms of a

set of observables {O1, O2, . . .} that we have access to or that we can probe with

measuring devices available to us. These observables generate a Von Neumann

algebra AS on H,
AS = C

[
O1, O2, . . .

]
, (3.5)

that is a subalgebra of the algebra of observables A of the system, AS ⊆ A. The
two notions of commutant and center allow us to decompose the Hilbert space H
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in sectors adapted to the subalgebra of observables AS .
2

We start with the notion of commutant. We denote by S the complement of the

subsystem S and de�ne it in terms of the subalgebra of observables that commute

with AS , i.e., the commutant of AS in A,

AS = (AS)
′ ≡ {M ∈ A | [M,N ] = 0 , ∀N ∈ AS} . (3.6)

Next, we consider the center ZS of the subalgebra. Note that in general there are

observables R1, R2, . . . that can be measured both from S and from S, i.e. the

subalgebra AS can have a non-trivial center ZS ,

ZS = AS ∩ AS = C[R1, R2, . . . ] . (3.7)

These structures allow us to decompose the Hilbert space H as a direct sum of

tensor products. The construction can be understood concretely in terms of an

orthonormal basis of H adapted to the subsystem S. We �rst consider the ob-

servables R1, R2, . . . in the center ZS . By de�nition, the center ZS is an Abelian

algebra and, therefore, we can diagonalize these observables simultaneously. We

denote by r the eigenvalues of the observables in the center ZS . Then, we can select

a maximal commuting set of observables in AS with simultaneous eigenvalues α,

and a maximal commuting set of observables in AS with simultaneous eigenvalues

β. As a result, we obtain an orthonormal basis of H,

|r, α, β⟩ = |r, α⟩|r, β⟩ , (3.8)

that is adapted to the subalgebra AS . This basis gives a concrete meaning to the

direct sum decomposition

H =
⊕
r

(
H(r)

S ⊗H
(r)

S

)
, (3.9)

where |r, α⟩ is an orthonormal basis ofH(r)
S , and |r, β⟩ an orthonormal basis ofH(r)

S .

Note that when the center is trivial, i.e., ZS = {1}, this decomposition reduces to

2We refer to Ch. 11.8 in [74] for a pedagogical introduction, to [80�82] for applications to
lattice systems, to [83] for applications to information transport, and to [84, 85] for applications
to Hilbert space fragmentation.
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the familiar tensor product structure H = HA ⊗HB of a composite system.

We call dr and br the dimensions of the sectors appearing in the direct-sum

decomposition associated with a subalgebra AS ,

dr = dimH(r)
S , br = dimH(r)

S , D = dimH =
∑

r drbr . (3.10)

These dimensions play a central role in the expression of the typical entropy of a

subsystem.

3.4 Pure states restricted to a subalgebra and en-

tanglement entropy

Using the decomposition (3.9), observables of the subsystem S take the direct-sum

form

O ∈ AS ⊆ A =⇒ O =
⊕
r

(
O

(r)
S ⊗ 1

(r)
S
)
. (3.11)

It is useful to introduce a notion of Hilbert space HS of the subsystem, de�ned as

the direct sum of the subsystem sectors:

HS ≡
⊕
r

H(r)
S . (3.12)

The restriction of an operator O ∈ AS to the Hilbert space of the subsystem is

given by

O ∈ AS ⊆ A =⇒ OS ≡
⊕
r

O
(r)
S ∈ L(HS) . (3.13)

We can write this map from O to OS concretely as

Tr( · ΠS) : L(H) −→ L(HS) (3.14)

O 7−→ OS = Tr(OΠS)
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where Tr is the trace over H and TrS is the trace over HS .
3 In the adapted basis

|r, α, β⟩ ∈ H and |r, α⟩ ∈ HS , the map ΠS takes the form

ΠS =
∑
r

∑
αα′

(∑
β

|r, α, β⟩⟨r, α′, β|
)
⊗ |r, α′⟩⟨r, α| . (3.15)

With these de�nitions, we can now write the restriction of a pure state |ψ⟩ ∈ H to

the subsystem S as a density matrix ρS ,

ρ = |ψ⟩⟨ψ| =⇒ ρS = Tr(ρΠS) , (3.16)

so that the expectation value of an observable on the subsystem S is given by

O ∈ AS ⊆ A =⇒ ⟨ψ|O|ψ⟩ = TrS
(
OS ρS

)
. (3.17)

We note that the map ρ 7→ ρS is completely positive and trace preserving (CPTP)

[86], as can be seen by writing it in the operator sum form Tr(ρΠS) =
∑

rβ Y
†
rβ ρ Yrβ

with Kraus operators Yrβ =
∑

α |r, α, β⟩⟨r, α|.
We are now ready to de�ne the entanglement entropy S of the pure state

|ψ⟩ ∈ H restricted to a subalgebra of observables AS ⊆ A = L(H): the entropy of

the triple
(
|ψ⟩,A,AS

)
equals the von Neumann entropy SvN(ρS) of the restricted

state, i.e.,

S
(
|ψ⟩,A,AS

)
= −TrS(ρS log ρS) with ρS = ⟨ψ|ΠS |ψ⟩ . (3.18)

It is useful to express the entanglement entropy in the basis (3.8) adapted to a

subalgebra AS . We introduce �rst the projector P (r) =
∑

αβ |r, α, β⟩⟨r, α, β| to the
sector r of the Hilbert space decomposition. Using this projector, we can de�ne

the probability pr that the pure state is found to be in the sector r, together with

3Traces over the Hilbert spaces H, HS and H(r)
S are de�ned as

Tr( · ) =
∑
rαβ

⟨r, α, β| · |r, α, β⟩ , TrS( · ) =
∑
r

∑
α

⟨r, α| · |r, α⟩ , Tr
(r)
S ( · ) =

∑
α

⟨r, α| · |r, α⟩ .

Similarly, one can de�ne traces for H(r)

S and for HS =
⊕

rH
(r)

S in term of the basis |r, β⟩.
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the (normalized) projected state |ψ(r)⟩:

pr = ⟨ψ|P (r)|ψ⟩ =
∑
αβ

∣∣⟨r, α, β|ψ⟩∣∣2 , (3.19)

|ψ(r)⟩ = P (r)|ψ⟩√
⟨ψ|P (r)|ψ⟩

=
∑
αβ

ψ
(r)
αβ |r, α⟩|r, β⟩ . (3.20)

Any pure state |ψ⟩ ∈ H can then be expressed in the basis adapted to the subal-

gebra of observables AS as

|ψ⟩ =
∑
r

√
pr
∑
αβ

ψ
(r)
αβ |r, α⟩|r, β⟩ . (3.21)

The de�nition (3.16) of reduced density matrix takes then the direct sum form

ρS =
⊕
r

pr ρ
(r)
S , (3.22)

with ρ
(r)
S simply de�ned as the partial trace over H(r)

S , i.e.,

ρ
(r)
S = Tr

(r)

S̄

(
|ψ(r)⟩⟨ψ(r)|

)
=
∑
αα′

(∑
β

ψ
(r)
α′β ψ

(r)∗
αβ

)
|r, α′⟩⟨r, α| . (3.23)

Using the decomposition (3.22) and expanding

TrS(ρS log ρS) =
∑
r

Tr
(r)
S
(
pr ρ

(r)
S log(pr ρ

(r)
S )
)
,

we can write the entanglement entropy as the sum of two terms,

S
(
|ψ⟩,A,AS

)
= −

∑
r

pr tr
(
ρ
(r)
S log ρ

(r)
S
)
−
∑
r

pr log pr , (3.24)

where the �rst term is the average over sectors of the entanglement entropy in

each sector, and the second piece is the Shannon entropy of the distribution over

sectors.

We summarize some useful properties of the entanglement entropy of a subsys-

tem de�ned in terms of a subalgebra:
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Minimum � The entanglement entropy is non-negative and vanishes if and

only if the restriction of the state to the subalgebra is pure. For this to happen,

the state has to belong to a de�nite sector r and have a product form, i.e.,

S
(
|ψ⟩,A,AS

)
= 0 =⇒ ∃ r : |ψ⟩ = |r, ξ⟩S |r, χ⟩S , (3.25)

with |r, ξ⟩S =
∑

α ξα|r, α⟩ and |r, χ⟩S =
∑

β χβ|r, β⟩. As a special case, if we don't
restrict the state to any subalgebra, then the entanglement entropy of a pure state

vanishes, S
(
|ψ⟩,A,A

)
= 0.

Maximum�We can determine the maximum entanglement entropy by vary-

ing the Lagrangian L = −∑r pr
∑

i(λri log λri) −
∑

r pr log pr + µ0 (1−
∑

r pr)+∑
r µr (1−

∑
i λri), with probabilities pr and λri, and Lagrange multipliers µ0 and

µr. At the stationary point, we obtain the maximum entropy

Smax = log
(∑

r min(dr, br)
)
. (3.26)

The maximally-entangled state can be written as

|I⟩ =
∑
r

√
min(dr, br)∑
r′ min(dr′ , br′)

min(dr,br)∑
i=1

1√
min(dr, br)

|r, i⟩S |r, i⟩S . (3.27)

Commutant Symmetry � Note that the entanglement entropy of a sub-

system is symmetric under the exchange of the subsystem with its commutant,

i.e.,

S
(
|ψ⟩,A,AS

)
= S

(
|ψ⟩,A,AS

)
. (3.28)

This notion of commutant symmetry generalizes the familiar subsystem symmetry

SA = SB of the entanglement entropy of pure states in a tensor product HA⊗HB.
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3.5 Typical entanglement entropy: average and

variance

Consider the ensemble of random pure states |ψ⟩ ∈ H. Given a function of the

state, f(|ψ⟩), we can de�ne the average over the ensemble as

〈
f
〉
H =

∫
H
dµ(ψ) f(|ψ⟩) =

∫
dU f(U |ψ0⟩) , (3.29)

where dµ(ψ) is the uniform measure over the unit sphere in CD or, equivalently, dU

is the Haar measure over the unitary group U(D) that allows us to write a random

state |ψ⟩ = U |ψ0⟩ in terms of a reference state |ψ0⟩ and a random unitary U . The

function f can be a linear function of |ψ⟩⟨ψ|, such as the expectation value of a

subsystem observable in AS , or a non-linear function as the entanglement entropy

S(|ψ⟩,A,AS) of the state restricted to a subalgebra of observables. We note that

the result of this average can be expressed purely in terms of the dimensions (3.10)

of the sectors of the Hilbert space decomposition (3.9). For instance, the average

density matrix of a pure state and of its restriction to a subsystem S is

ρ = |ψ⟩⟨ψ| =⇒
〈
ρ
〉
H =

1

D
1,

〈
ρS
〉
H = TrS

(〈
ρ
〉
HΠS

)
=
⊕
r

drbr
D

1

dr
1
(r)
S ,

(3.30)

which results in the von Neumann entropy of the average state

SvN(⟨ρS⟩H) = −TrS(⟨ρS⟩H log⟨ρS⟩H) =
∑

r
dr br
D

log
(
D
br

)
. (3.31)

While in general, the average
〈
f
〉
H alone does not characterize the typical value

of a function f(|ψ⟩) for a random state, computing its moments
〈
fn
〉
H allows us

to characterize the probability distribution. We are interested in the probability

P (S) dS that a random pure state |ψ⟩ has entropy S when restricted to the sub-

algebra AS . When the dispersion around the average is small, ∆S ≪ ⟨S⟩, we can
simply use the average entropy ⟨S⟩ to characterize the entropy. In this case, we

say that the typical entanglement entropy of a random pure state is ⟨S⟩.

In [69], the exact formulas for the average entanglement entropy ⟨S⟩ and its

variance (∆S)2 for a pure random state restricted to a subalgebra of observables
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corresponding to the Hilbert space decomposition (3.9) were found to be:

⟨S⟩ ≡
〈
S
(
|ψ⟩,A,AS

)〉
H =

∑
r

ϱr φr, (3.32)

(∆S)2 ≡ ⟨S2⟩ − ⟨S⟩2 =
1

D + 1

(∑
r

ϱr
(
φ2
r + χr

)
−
(∑

r

ϱr φr

)2)
, (3.33)

with the quantities ϱr, φr, χr expressed in terms of the dimensions dr, br, D (3.10)

given by

ϱr =
dr br
D

, (3.34)

φr =


Ψ(D + 1)−Ψ(br + 1)− dr − 1

2 br
dr ≤ br ,

br ←→ dr dr > br ,

(3.35)

χr =


(dr + br)Ψ

′(br + 1)− (D + 1)Ψ′(D + 1)− (dr − 1)(dr + 2br − 1)

4b2r
dr ≤ br,

br ←→ dr dr > br ,

(3.36)

where Γ(x) is the gamma function, Ψ(x) = Γ′(x)/Γ(x) is the digamma function and

Ψ′(x) its derivative. This formula in terms of the dimensions (3.10) generalizes a

seminal result of Page [21] that applies to the special case of an a priori factorization

of the Hilbert space into subsystems.

It is useful to determine bounds on the average entropy and its variance that do

not rely on any special choice of system and subsystem or on any asymptotic limit.

We use the following inequalities for the digamma function and its derivative:

log(x) + 1
2x+1

< Ψ(x+ 1) < log(x) + 1
2x
, (3.37)

1
x
− 1

2x2+1
< Ψ′(x+ 1) < 1

x
− 1

2x2 . (3.38)

We start with the average ⟨S⟩. For any choice of non-trivial subsystem and for

all r we have br < D =
∑

r′ dr′br′ . Using (3.37) we can then put a tight bound on
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φr:

logmin
(
D
br
, D
dr

)
− 1

2
min

(
dr
br
, br
dr

)
≤ φr ≤ logmin

(
D
br
, D
dr

)
. (3.39)

It follows that the average entropy is bounded from above and from below by∑
r

drbr
D

(
logmin

(
D
br
, D
dr

)
− 1

2
min

(
dr
br
, br
dr

))
≤ ⟨S⟩ ≤

∑
r

drbr
D

logmin
(
D
br
, D
dr

)
.

(3.40)

We note that, as min
(
dr
br
, br
dr

)
≤ 1, we have also the exact inequality∣∣∣ ⟨S⟩ −∑r

drbr
D

logmin
(
D
br
, D
dr

) ∣∣∣ ≤ 1
2
, (3.41)

which is useful for extracting the asymptotics of the average entropy in the limit of

large dimensionD, up to terms of order one. We note also that, because of themin,

the upper bound is tighter than the entropy of the average (3.31), consistently with

the inequality ⟨SvN(ρS)⟩ ≤ SvN(⟨ρS⟩). Clearly, the average entropy is also smaller

than the maximum entropy (3.26).4

We consider then the variance (∆S)2. Here we use two (rather loose, but useful)

inequalities for the functions φr and χr,

0 ≤ φr ≤ logD , 0 ≤ χr ≤ 2 . (3.42)

It is immediate then to show that the variance of the entanglement entropy is

bounded from above by a decreasing function of the dimension D,

(∆S)2 ≤ (logD)2 + 2

D
. (3.43)

This bound shows that, independently of the details of the system and of the

subsystem, the variance of the entropy vanishes in the large dimension of the

Hilbert space limit, i.e., ∆S → 0 as D →∞. Therefore, if the average ⟨S⟩ is �nite
and non-vanishing in this limit, then its value represents the typical entanglement

entropy of a random pure state restricted to the subsystem.

4In fact
∑

r
drbr
D logmin

(
D
br
, D
dr

)
≤ log

(∑
r min(dr, br)

)
because log is concave and ⟨log ·⟩ ≤

log⟨·⟩.
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Chapter 4 |

Non-Abelian Symmetry-resolved
States and Entropy

4.1 Introduction

Symmetry plays a central role in modern physics, shaping the dynamics and struc-

ture of physical systems from elementary particles to complex many-body systems.

In this chapter, we develop a comprehensive framework to analyze entanglement in

systems that exhibit nontrivial symmetry properties, focusing particularly on the

case where the symmetry group G leaves the Hamiltonian invariant. This invari-

ance implies that the Hilbert space H carries a (reducible) unitary representation

of G. We call the physical observables, including the Hamiltonian, that commute

with the action of G as G-invariant observables. In this context, it becomes natu-

ral to restrict attention to G-invariant observables and, correspondingly, to de�ne

symmetry-resolved states as those pure states that remain pure when con�ned

to the subalgebra of G-invariant observables. While the entanglement properties

of systems with an Abelian symmetry (such as U(1)) are well understood, non-

Abelian symmetry groups, in particular semisimple Lie groups, i.e., continuous

groups that do not have any Abelian invariant subgroup [87�89], like SU(2) or

SU(3), introduce novel features. In these cases, the non-commuting nature of the

generators leads to a richer structure in the Hilbert space and a more intricate

interplay between symmetry and entanglement. For this reason, the conventional

methods of de�ning subsystems and the entanglement entropy are meaningless in

this setting.
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To address these challenges, we note that for semisimple Lie groups, the pres-

ence of nontrivial Casimir operators�which are constructed from the generators

and remain invariant under G�allows us to label irreducible representations. As

a consequence, the Hilbert space admits a symmetry-resolved decomposition with

sectors corresponding to the eigenvalues of the Casimir operators. After estab-

lishing the Hilbert space decomposition, we introduce the notion of a symmetry-

resolved subsystem using a subalgebra of accessible observables. Furthermore, we

derive explicit expressions for the symmetry-resolved entanglement entropy. Us-

ing the adapted basis from the symmetry-resolved decomposition, we express a

generic state as a direct sum over sectors and show that the entanglement entropy

decomposes into two contributions: the average of the entropies in each sector

and a Shannon entropy associated with the distribution of the sectors. Finally,

we obtain bounds on the entropy in terms of the dimensions of the subspaces,

generalizing Page's result to the symmetry-resolved setting. The results presented

in this chapter are based on Sec. 3 of [5].

4.2 Symmetry-resolved decomposition of the Hilbert

space

A compact Lie group G is de�ned by the Lie algebra of its generators T a with real

structure constants fab
c,

[T a, T b] = i fab
c T

c . (4.1)

We say that the �nite-dimensional Hilbert space H carries a unitary representation

of the group G if the generators T a are realized as D×D Hermitian matrices that

satisfy the commutation relations (4.1), with D = dimH. A group element with

real parameters αa acts on the Hilbert space as the unitary transformation U given

by

U = e iαaTa

. (4.2)

This representation of the group is, in general, reducible. It is useful to introduce

the Cartan-Killing metric ηab = tr(τaτ b) where τa are the generators in the adjoint

representation, [τa]bc = −i fab
c. Here we restrict attention to the case of real

34



compact semisimple Lie groups, for which the metric ηab is positive de�nite1. We

use this metric and its inverse ηab, with η
ac ηcb = δab, to raise and lower indices.

The symmetry generators T a generate a subalgebra Asym of the algebra of

observables A = L(H) of the system,

Asym = C[T a] . (4.3)

The commutant of this subalgebra de�nes the algebra of G-invariant observables,

AG ≡ (Asym)
′ = {M ∈ A | [M,T a] = 0} . (4.4)

Observables in AG commute with the generators T a and therefore satisfy the G-

invariance condition

U(T a)OU(T a)−1 = O . (4.5)

The rank of a semisimple Lie group G is the dimension rank(G) of any one

of the Cartan subalgebras of its Lie algebra. The number of linearly independent

Casimir operators Qk is exactly given by rank(G) [90, 91]. The Casimir operators

are obtained by listing all the completely-symmetric G-invariant tensors ηa1···ap of

order p, and then contracting them with the generators:

Qk = ηa1···ap(k) T
a1 · · ·T ap(k) , k = 1, . . . , rank(G) . (4.6)

These operators generalize the familiar quadratic Casimir operator Q1 = ηab T
aT b

de�ned in terms of the Cartan-Killing metric. They belong to the G-invariant

subalgebra AG as they are invariants, and they belong to the algebra Asym as they

are expressed in terms of the generators. Therefore, they belong to the center

Zsym of the algebra. In fact, for semisimple Lie groups (that is, Lie groups that

have no Abelian subgroup), a much stronger result holds [90,91]: these R linearly

independent Casimir operators generate the center,

Zsym = Asym ∩ AG = C[Qk] , (4.7)

1Note that in this case, by rescaling the generators, the metric ηab can be brought to the
Euclidean form δab. Here, we use the standard tensorial notation, where we keep track of upper
and lower indices, and repeated indices are contracted. As usual, the symbols (··· ) and [··· ] stand
for complete symmetrization or anti-symmetrization of the tensor.
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and characterize completely the irreducible representations of the group.

Using the results of Sec. 3.3, and denoting collectively q the eigenvalues of the

Casimir operators, we obtain a symmetry-resolved decomposition of the Hilbert

space:

H =
⊕
q

(
H(q)

sym ⊗H
(q)
G

)
, (4.8)

whereH(q)
sym carries the irreducible representation (q) of the symmetry generarators,

and H(q)
G is the space of G-invariant degrees of freedom of the system de�ned as

H(q)
G = InvG(H(q̄)

sym ⊗H) , (4.9)

where InvG denotes the G-invariant subspace in the tensor product and (q̄) is the

conjugate representation [88,89].

The symmetry-resolved decomposition (4.8) is a decomposition of the Hilbert

space H into a direct sum of irreducible representations labeled by the quantum

numbers q that label the eigenvalues of the Casimir operators. Furthermore, each

irreducible representation is a tensor product of the sym factor H(q)
sym that trans-

forms under an irreducible representation of the group, and the G-invariant Hilbert

space H(q)
G of internal degrees of freedom de�ned by (4.9). A generic state |ψ⟩ in

H can be expanded on the orthonormal basis adapted to this decomposition:

|ψ⟩ =
∑
q

√
pq
∑
m

∑
i

ψ
(q)
mi |q,m⟩sym |q, i⟩G , (4.10)

where m in the basis |q,m⟩sym denotes collectively the eigenvalues of the Cartan

generators of the group G, and i in the basis |q, i⟩G labels the internal G-invariant

degrees of freedom of the system.

We give three examples of the symmetry-resolved Hilbert space for semisimple Lie

groups:

G = SU(2) � This is the simplest non-trivial case illustrated in Chapter 1. The

generators are the spin operators J⃗ = (J i) with i = 1, 2, 3, the structure constants

are ϵijk, the Cartan-Killing metric δij. The rank of the group is one, and therefore,

the decomposition is in terms of a single Casimir operator, the quadratic Casimir

Q = δik J
iJk = J⃗ 2. As usual, the eigenvalues of the Casimir operator are written
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as j(j + 1) with j = 0, 1
2
, 1, . . . half-integer, and the eigenvalues of the Cartan

subalgebra operator Jz are m = −j, . . . ,+j. The Hilbert space decomposes as

H =
⊕

j

(
H(j)

sym⊗H
(j)
G

)
, withH(j)

sym of dimension dimH(j)
sym = 2j+1 and orthonormal

basis |j,m⟩sym. In Chapter 6 we discuss a concrete example of symmetry-resolved

spin system where the G-invariant Hilbert space of internal degrees of freedom H(j)
G

is the space of SU(2) intertwiners of a spin system, which can also be interpreted

geometrically as quantum polyhedra [92,93].

G = SU(3) � Starting from the 3×3 Gell-Mann matrices λa (with a = 1, . . . , 8)

and using the textbook normalization λa/2 of the generators in the fundamen-

tal representation [88, 89], we can express the Cartan-Killing metric as ηab =
1
4
tr(λaλb) = 1

2
δab, the structure constants as fabc = − i

4
tr(λ[aλbλc ]) (which is com-

pletely antisymmetric when all indices are raised), and the completely symmetric

tensor dabc = 1
2
tr(λ(aλbλc )). The rank of the group is 2, and therefore, there are

two linearly independent Casimir operators Q1 and Q2. The quadratic Casimir op-

erator Q1 =
1
2
ηabT

aT b has eigenvalues 1
3
(q2+p2+ qp+3q+3p). The cubic Casimir

operator Q2 = 1
8
dabc T

aT bT c has eigenvalues 1
18
(q − p)(q + 2p + 3)(p + 2q + 3)

sometimes called the anomaly coe�cient. The quantum numbers q, p = 0, 1, 2, . . .

label the irreducible representations and the decomposition as a direct sum over

the center is H =
⊕

q,p

(
H(q,p)

sym ⊗ H
(q,p)
G

)
. The dimension of the sym factor is

dimH(q,p)
sym = 1

2
(q + 1)(p+ 1)(q + p+ 2).

G = SO(4) � The algebra of the group is the same as the algebra of SU(2)L ×
SU(2)R with generators given by the spin operators J⃗L and J⃗R [87]. The group

has rank 2, and the two linearly independent Casimir operators can be taken as

QL = J⃗ 2
L and QR = J⃗ 2

R. The half-integer quantum numbers jL and jR label

the irreducible representations, and the symmetry-resolved decomposition of the

Hilbert space is H =
⊕

jL,jR

(
H(jL,jR)

sym ⊗H(jL,jR)
G

)
. The dimension of the sym factor

is dimH(jL,jR)
sym = (2jL + 1)(2jR + 1).

In general, for the classical compact matrix groups An = SU(n + 1), Bn =

SO(2n + 1) and Cn = Sp(2n) of rank n, the list of the n linearly independent

Casimir operators is given by Qk = ηa1...akT
a1 · · ·T ak with the invariant tensor

ηa1...ak = tr(τ (a1 · · · τak)) de�ned using where τa in the fundamental representa-

tion [91]. If one took τa in the adjoint representation instead, one could not
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distinguish the representation (q, p) from its conjugate (p, q) in SU(3), for in-

stance. In the case Dn = SO(2n), one can construct the invariant tensors from

the spinor representation or, equivalently, one can take the (n− 1) Casimir oper-

ators of even order, Q2k with k = 1, . . . , n− 1, together with the order-n Casimir

invariant Q̃ = ϵµ1ν1...µnνnJ
µ1ν1 · · · Jµnνn , where Jµν are the generators. The Casimir

operator Q̃ allows us to distinguish the two mirror representations of SO(2n).

In the case of SO(4), this construction reduces to the two quadratic invariants

Q = JµνJ
µν = 4 (J⃗ 2

L + J⃗ 2
R) and Q̃ = ϵµνρσJ

µνJρσ = 8 (J⃗ 2
L − J⃗ 2

R). A similar

construction applies to the exceptional Lie groups G2, F4, E6, E7, E8, with the

invariant tensors ηa1...ak built from the generators in an irreducible representation

that is non-degenerate.

Finally, let us comment on the Abelian case using the compact Lie group U(1)

or many copies of it:

G = U(1)× · · · ×U(1) � We note that the symmetry-resolved decomposition

(4.8) becomes trivial. In fact, in this case the structure constants fab
c vanish

because the generators T a commute, and therefore their algebra coincides with the

center, Asym = Zsym = C[T a]. As a result, we have a decomposition of the form

H =
⊕

mH
(m)
G where the eigenvalues of the commuting generators T a (sometimes

called charges or particle numbers) are collectively denoted as m. The sym factor

in the decomposition is trivial, dimH(m)
sym = 1, and can be reabsorbed into a phase

in each sector H(m)
G .

4.3 Symmetry-resolved states and subsystems

The symmetry-resolved decomposition of the Hilbert space (4.8) allows us to write

G-invariant observables as

O ∈ AG =⇒ O =
⊕
q

(
1
(q)
sym ⊗O

(q)
G

)
. (4.11)

Given a pure state |ψ⟩ ∈ H, we can write the restriction of the state to the G-

invariant observables as ρG = ⟨ψ|ΠG|ψ⟩, where the map ΠG is de�ned concretely

by (3.15). A symmetry-resolved state is de�ned as a pure state that remains pure

when restricted to the G-invariant subalgebra of observables AG. As shown in
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Chapter 3, Eq. (3.25), this implies that it belongs to an irreducible representation

q and has the product form:

|ψ⟩ symmetry-resolved state in H ⇐⇒ ∃ q : |ψ⟩ = |q, ξ⟩sym |q, χ⟩G .
(4.12)

In other words, symmetry-resolved states have no entanglement between internal

G-invariant degrees of freedom and sym degrees of freedom that change under

transformations of the group G.

A symmetry-resolved subsystem is de�ned by a set O1, O2, . . . of G-invariant

observables that we have access to. The algebra AGS that they generate is

AGS = C[Ol] ⊆ AG with Ol ∈ AG , l = 1, . . . , L . (4.13)

We are interested in the restriction of a state |ψ⟩ to this subalgebra, ρGS =

⟨ψ|ΠGS |ψ⟩. To build the map ΠGS , we follow the steps discussed in Chapter 3.

First, we de�ne the rest of the system using the commutant algebra,

AGS ≡ (AGS)
′ = {M ∈ A | [M,Ol] = 0 , ∀ Ol ∈ AGS} . (4.14)

Note that AGS also contains observables that are not G-invariant. The center of

the subalgebra is generated by a set of commuting G-invariant observables Ri in

the intersection of the two,

ZGS = AGS ∩ AGS = C[Ri] . (4.15)

By diagonalizing �rst the commuting observables Ri and calling collectively their

eigenvalues r, we obtain the direct sum decomposition

H =
⊕
r

(
H(r)

GS ⊗H
(r)

GS

)
. (4.16)

This decomposition allows us to de�ne the map ΠGS . As we are interested in the

restriction of a symmetry-resolved state to a symmetry-resolved subsystem, it is

useful to have a decomposition of the Hilbert space and an orthonormal basis that

is adapted to both decompositions (4.8) and (4.16). We show that this is possible

in general with a concrete construction.
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We introduce a decomposition adapted to symmetry-resolved states and

symmetry-resolved subsystems. Let us consider the algebra AsymGS generated by

the symmetry generators T a and by the G-invariant observables Ol that generate

the subsystem,

AsymGS = C[T a, Ol] . (4.17)

The commutant of this algebra is2

AG S ≡ (AsymGS)
′ = C[T a, Ol]

′ = C[T a]′ ∩ C[Ol]
′ (4.18)

= (Asym)
′ ∩ (AGS)

′ = AG ∩ AGS (4.19)

Note that, because of the presence of the symmetry generators T a in AsymGS , the

algebra AG S contains only the G-invariant observables in AGS . We can now de�ne

the center

ZsymGS = AsymGS ∩ AGS = C[Qk, Ri] . (4.20)

Note that the center of the algebra AsymGS is generated by the elements of the

center Ri of the symmetry-resolved subsystem and by the Casimir operators Qk

of the group G. The fact that the two commutes, [Ri, Qk] = 0, follows immedi-

ately from the fact that Ri are G-invariant observables, i.e., [Ri, T
a] = 0, and the

Casimir operators (4.6) are functions of the symmetry generator. By diagonalizing

simultaneously the commuting set {Qk, Ri} with eigenvalues denoted collectively

by q and r, we obtain the decomposition

H =
⊕
q

(
H(q)

sym
⊗
⊕
r

(
H(r)

GS ⊗H
(q,r)

GS

))
. (4.21)

The decomposition comes with an orthonormal basis adapted simultaneously to

symmetry-resolved states and to the symmetry-resolved subsystems,

|q, r, α, β⟩ = |q,m⟩sym |r, α⟩GS |q, r, β⟩GS . (4.22)

Note that the basis elements |r, α⟩GS of the symmetry-resolved system depend on

the eigenvalues r of Ri but not on the eigenvalues q of the Casimirs Qk. This

feature can also be understood by considering the two decompositions H(q)
G =

2In the �rst line we used the relation (3.4) that applies to any set of observables Hi and Kj .

40



⊕
r

(
H(r)

GS ⊗H
(q,r)

GS

)
and H(r)

GS =
⊕

q

(
H(q)

sym
⊗H(q,r)

GS

)
, that relate the formulas (4.8),

(4.16) and (4.21).

4.4 Symmetry-resolved entanglement entropy

The entanglement entropy of a symmetry-resolved state |ψ⟩ restricted to a symmetry-
resolved subsystem can be de�ned and computed using the tools introduced above.

The symmetry-resolved state can be �rst written in the basis adapted to the sub-

system:

|ψ⟩ =
(∑

m

ξm |q,m⟩sym
)(∑

r

√
pr
∑
α,β

χ
(r)
αβ |r, α⟩GS |q, r, β⟩GS

)
, (4.23)

with pr, the probability of �nding the state in the sector is r. The state belongs

to a de�nite sector q, it does not have entanglement between internal G-invariant

degrees of freedom and sym degrees of freedom, and, in general, can have en-

tanglement between the G-invariant degrees of freedom in the subsystem and its

complement. The restriction to the subsystem can be written as

ρGS = ⟨ψ|ΠGS |ψ⟩ =
⊕
r

pr ρ
(r)
GS with (ρ

(r)
GS)αα′ =

∑
β

χ
(r)
αβχ

(r)∗
α′β . (4.24)

The entanglement entropy S(|ψ⟩,A,AGS) can then be computed using (3.18),

(3.24). Bounds on the entanglement entropy can be written in terms of the dimen-

sions of the sectors:

dr = dimH(r)
GS , bqr = dimH(q,r)

GS , Dq = dimH(q)
G =

∑
r drbqr . (4.25)

In particular a symmetry-resolved state |ψ(q)⟩ in the sector q has entanglement

entropy bounded from above by

0 ≤ S(|ψ(q)⟩,A,AGS) ≤ log
(∑

r

min(dr, bqr)
)
. (4.26)

Note that here, the sectorH(q)
sym is simply an ancilla, and the entropy is independent

of ξm.
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A random symmetry-resolved state with �xed q can be de�ned starting from

a reference state of the symmetry-resolved form |q, ξ⟩sym |q, χ⟩G, and acting on it

with a random unitary of the form
⊕

q(U
(q)
sym⊗U

(q)
G ), where U

(q)
sym and U

(q)
G are Haar-

measure distributed on H(q)
sym and H(q)

G respectively. The average entanglement

entropy and its variance are then given by the expressions (3.32) and (3.33), with

the dimensions dr and bqr given above.
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Chapter 5 |

Locality, Many-body Systems
and G-local Entanglement

5.1 Introduction

In certain quantum systems, the inherent notion of locality, stemming from the

spatial arrangement of particles or sites, provides a natural way of selecting a

subset to de�ne subsystems. This chapter explores how the presence of a global

symmetry group G further re�nes this picture. In many-body systems, the stan-

dard tensor-product structure based solely on spatial locality (often referred to as

the K-local decomposition) does not capture the full physical content when global

symmetries are present. While the K-local subalgebra of observables is associated

with a spatial region A, such observables do not necessarily respect the symmetry

of the system. Extending the work in Chaper 4, we introduce a G-local subalgebra

which comprises those observables that are both local (acting solely on region A)

and invariant under the action of G. Unlike the K-local case, the G-local observ-

ables (illustrated in Chapter 1 in Figs. (1.1) and (1.2)) are not, in general, mutually

commuting with those on the complementary region, a fact that leads to subtle

di�erences in the entanglement structure.

In this chapter we develop a formalism to decompose the symmetry-resolved Hilbert

space further into subsystems de�ned by the G-local algebra. In particular, by in-

troducing Casimir operators associated with the subgroup acting on region A, we

obtain an additional decomposition intp sectors labeled by the eigenvalues of the
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subsystem Casimir operators. This re�ned decomposition enables us to de�ne

a symmetry-resolved entanglement entropy that quanti�es the entanglement of a

state when restricted to the G-local observables in region A. The chapter presents

exact formulas for the average symmetry-resolved entanglement entropy and its de-

composition into con�gurational and number entropy contributions. For random

symmetry-resolved states, these formulas are expressed in terms of the dimensions

of the various sectors. In the Abelian case, illustrated with G = U(1), the analysis

simpli�es considerably, and we recover known results, including the equivalence

between G-local and K-local entropies and the expected equipartition behavior

under speci�c limits. This chapter sets the stage for the analysis of typical entan-

glement for non-Abelian symmetry groups where the two notions are expected to

di�er, highlighting the nontrivial interplay between symmetry and locality. The

results presented in this chapter are based on Sec. 4 of [5].

5.2 Setup

In a lattice many-body system, there is a built-in notion of locality associated with

the N bodies, or particles, at the sites of the lattice. We assume that the Hilbert

space at each site n is a copy of a �nite-dimensional Hilbert space Hd ≃ Cd that

carries a unitary (reducible) representation of a compact Lie group G. Therefore,

the kinematical Hilbert space HN of the system is the tensor product of the Hilbert

spaces at sites [67,94]:

HN = Hd ⊗ · · · ⊗ Hd︸ ︷︷ ︸
N

. (5.1)

Calling T a
n the d-dimensional (reducible) representation of the generators of the

group G at each site n, we have that the generator of global transformation for

the group G acting on HN is simply given by the sum

T a =
N∑

n=1

T a
n . (5.2)

We can then use the results of Chapter 4, and in particular (4.8)�(4.9), to decom-

pose the Hilbert space in symmetry-resolved sectors

HN =
⊕

qH
(q)
N =

⊕
q

(
H(q)

sym ⊗H
(q)
G

)
(5.3)
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where the quantum number q labels the irreducible representations of the group

G, i.e., the eigenvalues of the Casimir operators for a semisimple Lie group. The

representation space H(q)
sym is the one already described in Sec. 4.2 and the invariant

space is

H(q)
G = InvG

(
H(q̄)

sym ⊗Hd ⊗ · · · ⊗ Hd︸ ︷︷ ︸
N

)
, (5.4)

where q̄ is the conjugate representation.

5.3 K-local decomposition of the Hilbert space

Let us consider a subset n ∈ A of the nodes of the many-body lattice, for instance,

the ones de�ning a local region A of the lattice and excluding its complement

B [94]. This subsystem corresponds to the standard tensor-product decomposition

HN = HA ⊗HB , with HA =
⊗
n∈A

Hd , HB =
⊗
n∈B

Hd . (5.5)

This decomposition is associated with a K-local subalgebra of observables. Let

us de�ne �rst the kinematical algebra of observables AK = L(HN). The K-local

subalgebra in A is

AKA = {O ∈ AK | O = OA ⊗ 1B with OA ∈ L(HA)} . (5.6)

Clearly we have that the K-local subalgebra in B coincides with the commutant

of A, i.e., AKB = (AKA)
′, and that the center is trivial AKA ∩ AKB = 1.

We note that the operator (5.2) that generates global unitary transformations

for the group G takes the form

T a = T a
A ⊗ 1B + 1A ⊗ T a

B , (5.7)

which is additive over the subsystems A and B. The operator T a
A given by

T a
A ⊗ 1B =

∑
n∈A

T a
n ∈ AKA , (5.8)
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and generates unitary transformations for the group G in A.1

5.4 G-local decomposition and symmetry-resolution

G-invariant observables OG of the many-body system belong to the algebra AG

de�ned in (4.4). G-local observables in the subsystem A are observables that are

both G-invariant and belong to the subsystem A. They are, therefore, elements of

the intersection of the two algebras,

AGA = AKA ∩ AG . (5.9)

We can similarly de�ne G-local observables in B,

AGB = AKB ∩ AG . (5.10)

Note that in general, for a non-Abelian group, the two subalgebras are not the

commutant of each other, AGB ̸= (AGA)
′. In fact, using AG = (Asym)

′ and the

intersection formula (3.4), we �nd

(AGA)
′ = (AKA ∩ AG)

′ =
(
(AKB)

′ ∩ (Asym)
′)′ = C[1A ⊗OB, T

a
A ⊗ 1B] . (5.11)

We can now determine the center of the subalgebra,

ZGA = AGA ∩ (AGA)
′ = C

[
Q

(1)
A , . . . , Q

(rank(G))
A

]
, (5.12)

which is generated by the Casimir operators in the subsystem A,

Q
(k)
A = ηa1···ap(k) T

a1
A · · ·T

ap(k)
A , k = 1, . . . , rank(G) , (5.13)

with the symmetric tensors ηa1···ap(k) de�ned in (4.6). Denoting collectively qA

the eigenvalues of the subsystem Casimir operators in A, and using the results of

Sec. 4.3, we obtain a decomposition of the Hilbert space sector H(q)
N in G-local

1Note that we are using the same notation for the generator acting on the Hilbert space of
a single site T a

n ∈ L(Hd) and for the generator acting on a single site of the many-body Hilbert
space, T a

n ≡ 1d ⊗ · · · ⊗ T a
n ⊗ · · · ⊗ 1d ∈ L(Hd ⊗ · · · ⊗ Hd).

46



subsystems:

H(q)
N = H(q)

sym ⊗
⊕
qA

(
H(qA)

GA ⊗H
(q, qA)
GB

)
, (5.14)

where the factors are de�ned as

H(qA)
GA = InvG(H(q̄A)

sym ⊗HA) , H(q, qA)
GB = InvG(H(q̄)

sym ⊗H
(qA)
sym ⊗HB) . (5.15)

This decomposition provides us with an orthonormal basis of H(q)
N adapted to the

subalgebra AGA. It is then immediate to compute the entanglement entropy SGA

of a state |ψ⟩ restricted to the G-local subalgebra in A,

SGA = S(|ψ⟩,A,AGA) . (5.16)

It is interesting to compare the properties of the G-local entanglement entropy SGA

to the ones of the familiar K-local entanglement entropy SKA,

SKA = S(|ψ⟩,A,AKA) . (5.17)

In general, the two entropies do not coincide because the G-local subalgebra can

be understood as a coarse-graining of the K-local one [74], i.e., AGA ⊂ AKA.

They both probe local properties of the many-body system and can be understood

as functions of the number of bodies NA in the subsystem A. However, there is

a crucial di�erence between the two. Commutant symmetry (3.28) implies that

SKA(|ψ⟩) = SKB(|ψ⟩), but in general SGA(|ψ⟩) ̸= SGB(|ψ⟩) becauseAGB ̸= (AGA)
′.

Bringing together the results of Chapter 3, Chapter 4, and the decomposition

(5.14), we obtain the exact formulas for the typical G-local symmetry-resolved en-

tanglement entropy that apply to a compact Lie group G. For a random symmetry-

resolved state |ψ(q)⟩ with total charge q, the total symmetry-resolved entanglement
entropy has average value

⟨SGA⟩q =
∑

qA| dqA≤bqqA

dqAbqqA
D

(
Ψ(D + 1)−Ψ(bqqA + 1)− dqA − 1

2 bqqA

)
(5.18)

+
∑

qA| dqA>bqqA

dqAbqqA
D

(
Ψ(D + 1)−Ψ(dqA + 1)− bqqA − 1

2 dqA

)
, (5.19)
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where the dimensions of the sectors are de�ned as

dqA = H(qA)
GA , bqqA = dimH(q, qA)

GB , D = dimH(qA)
GA =

∑
qA
dqAbqqA . (5.20)

Note that the formula takes into account the fact that, in the sum over subsystem

charges qA, the dimensions of the subsystem sectors can satisfy either dqA ≤ bqqA
or dqA > bqqA .

The symmetry-resolved entanglement entropy SGA(|ψj⟩) can be understood as

the sum of two terms, S
(conf)
GA and S

(num)
GA . One �rst de�nes the symmetry-resolved

entanglement entropy at �xed system and subsystem charges S
(jA)
GA as the von

Neumann entropy of the density matrix ρ
(jA)
GA in each sector jA. Then the con�gu-

rational entropy S
(conf)
GA is given by its average over the probability p(jA) of �nding

the state in the sector jA, and the number entropy S
(num)
GA is the Shannon entropy

of the probability p(jA). The table below summarizes the de�nitions commonly

used in the literature:

Total symmetry-resolved entanglement entropy SGA(|ψj⟩)

Symmetry-resolved entanglement entropy

at �xed system & subsystem charges
S
(jA)
GA = −tr

(
ρ
(jA)
GA log ρ

(jA)
GA

)
Con�gurational entropy S

(conf)
GA =

∑
jA
p
(jA)

S
(jA)
GA

Number entropy (Shannon) S
(num)
GA = −∑jA

p(jA) log p(jA)

(5.21)

The average symmetry-resolved entanglement entropy at �xed subsystem charge,

⟨S(qA)
GA ⟩q, i.e., the entanglement entropy of a random symmetry-resolved state |ψ(q)⟩

projected to the sector with subsystem charge qA, is given by the standard Page

formula [21,69]

⟨S(qA)
GA ⟩q =


Ψ(dqAbqqA + 1)−Ψ(bqqA + 1)− dqA − 1

2 bqqA
dqA ≤ bqqA ,

bqqA ←→ dqA dqA > bqqA .

(5.22)

The average over the subsystem sectors qA, weighted with the probability

ϱqA =
dqAbqqA
D

(5.23)
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of the state |ψ(q)⟩ being found in each sector, is given by the con�gurational entropy

⟨S(conf)
GA ⟩q =

∑
qA

ϱqA⟨S(qA)
GA ⟩q . (5.24)

The average Shannon entropy of the probability distribution (5.23) de�nes the

number entropy

⟨S(num)
GA ⟩q =

∑
qA

ϱqA
(
Ψ(D + 1)−Ψ(dqAbqqA + 1)

)
(5.25)

Finally, the total symmetry-resolved entanglement entropy can be written as the

sum

⟨SGA⟩q = ⟨S(conf)
GA ⟩q + ⟨S(num)

GA ⟩q . (5.26)

5.5 U(1) symmetry-resolved entanglement

In the case of an Abelian symmetry group there are signi�cant simpli�cations that

we illustrate here with the example of G = U(1) and charge conservation [13�20].

We consider a lattice many-body system with nodes carrying a copy of the

two-dimensional Hilbert space H2 = C2 of a spin-1/2 particle, and transforming

under a reducible representation of the group U(1), i.e.,

HN = H2 ⊗ · · · ⊗ H2︸ ︷︷ ︸
N

with H2 =
⊕

m′=±1/2

H(m′)
2 = span(|1/2, ±1/2⟩) .

(5.27)

The generator of the U(1) symmetry at each site is the spin operator Sz
n = σz/2,

and the generator of global U(1) transformations is

Jz =
N∑

n=1

Sz
n , (5.28)

which generates global rotations that preserve the direction of the axis z. The

Hilbert space of the system decomposes as a direct sum over irreducible represen-

tations of the group U(1) labeled by the quantum number m, the eigenvalue of Jz
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or the total charge,

HN =

+N/2⊕
m=−N/2

(
H(m)

sym ⊗H
(m)
G

)
=

+N/2⊕
m=−N/2

H(m)
G (5.29)

We note that, as the group is Abelian, the sym factor H(m)
sym is trivial, it has

dimension dimH(m)
sym = 1 and the pure phase eimθ associated to each irreducible

representation m can be reabsorbed in the U(1)-invariant part of the state in

H(m)
G . Moreover, as for U(1) the conjugate representation is simply m = −m, the

invariant Hilbert space is given by

H(m)
G = InvG

(
H(−m)

sym ⊗HN

)
=

⊕
m1,...,mN=±1/2

m1+···+mN=m

H(m1)
2 ⊗ · · · ⊗ H(mN )

2 . (5.30)

To de�ne a G-local subsystem with NA bodies, we de�ne the generator of U(1)

transformations in A,

Jz
A =

∑
n∈A

Sz
n , (5.31)

with eigenvalues mA. The decomposition in G-local subsystems is then given by

H(m)
G =

⊕
mA

(
H(mA)

GA ⊗H(m,mA)
GB

)
=

⊕
mA,mB

mA+mB=m

(
H(mA)

GA ⊗H(mB)
GB

)
, (5.32)

where we used the relation H(mA)
sym ⊗ H(mB)

sym = H(mA+mB)
sym that holds only in the

Abelian case, together with the de�nitions

H(mA)
GA ≡ InvG(H(−mA)

sym ⊗HA) , (5.33)

H(m,mA)
GB ≡ InvG(H(−m)

sym ⊗H(mA)
sym ⊗HB) = InvG(H(−m+mA)

sym ⊗HB) = H(m−mA)
GB .

(5.34)

Note that, in the Abelian case, for a symmetry-resolved state |ψ(m)⟩ ∈ H(m)
G , the

G-local and the K-local entropy coincide,

G = U(1) =⇒ SGA(|ψ(m)⟩) = SKA(|ψ(m)⟩) , (5.35)
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and the commutant symmetry (3.28) implies the subsystem symmetry

G = U(1) =⇒ SGB(|ψ(m)⟩) = SGA(|ψ(m)⟩) . (5.36)

Applying the general formulas (5.18)�(5.26) to the Abelian Lie groupG = U(1),

we see that the total symmetry-resolved entanglement entropy in the sector of

charge m has the average value

⟨SGA⟩m =
∑

mA| dmA
≤bmmA

dmA
bmmA

D

(
Ψ(D + 1)−Ψ(bmmA

+ 1)− dmA
− 1

2 bmmA

)
(5.37)

+
∑

mA| dmA
>bmmA

dmA
bmmA

D

(
Ψ(D + 1)−Ψ(dmA

+ 1)− bmmA
− 1

2 dmA

)
,

(5.38)

where the dimensions of the sectors are given by

Dm = dimH(m)
G =

(
N

N
2
+m

)
(5.39)

dmA
= dimH(mA)

GA =

(
NA

NA

2
+mA

)
(5.40)

bmmA
= dimH(m,mA)

GB =

(
N −NA

N−NA

2
+m−mA

)
(5.41)

Note that the formula takes into account the fact that, in the sum over subsystem

charges qA, the dimensions of the subsystem sectors can satisfy either dmA
≤ bmmA

or dmA
> bmmA

.

We can also decompose the total symmetry-resolved entanglement entropy into

di�erent components. The average symmetry-resolved entanglement entropy at

�xed subsystem charge, ⟨S(mA)
GA ⟩m, i.e., the entanglement entropy of a random

symmetry-resolved state |ψ(m)⟩ projected to the sector with subsystem charge mA,
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is given by the standard Page formula [21,69]

⟨S(mA)
GA ⟩m =


Ψ(dmA

bmmA
+ 1)−Ψ(bmmA

+ 1)− dmA
− 1

2 bmmA

dmA
≤ bmmA

,

bmmA
←→ dmA

dmA
> bmmA

.

(5.42)

The average over the subsystem sectors mA, weighted with the probability

ϱmA
=
dmA

bmmA

D
(5.43)

of the state |ψ(m)⟩ being found in each sector, is given by the con�gurational

entropy

⟨S(conf)
GA ⟩m =

∑
mA

ϱmA
⟨S(mA)

GA ⟩m . (5.44)

The average Shannon entropy of the probability distribution (5.23) de�nes the

number entropy

⟨S(num)
GA ⟩m =

∑
mA

ϱmA

(
Ψ(D + 1)−Ψ(dmA

bmmA
+ 1)

)
(5.45)

Finally, the total symmetry-resolved entanglement entropy can be written as the

sum

⟨SGA⟩m = ⟨S(conf)
GA ⟩m + ⟨S(num)

GA ⟩m . (5.46)

To compare to the literature on the thermodynamic limit [13�16] and on equipar-

tition of entanglement [27], we introduce intensive quantities and study the be-

havior of subsystem entropy in the limit N → ∞ at �xed intensive properties.

Speci�cally, we de�ne the subsystem fraction f , the system U(1) charge density s,

and the subsystem charge density t as follows:

f =
NA

N
, s =

2m

N
, t =

2mA

NA

, (5.47)

and we restrict here to f < 1/2. At the leading order in N , the symmetry-resolved

entanglement entropy at �xed system and subsystem charge reduces to

⟨S(mA)
GA ⟩m = log dmA

+O(1) = fNβ(t)− 1

2
logN +O(1) , (5.48)
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where we used the property (3.37) that allows us to write the digamma function

Ψ(x) as a logarithm at the leading order, and we have de�ned the function β(t)

as:

β(t) = −1− t
2

log

(
1− t
2

)
− 1 + t

2
log

(
1 + t

2

)
. (5.49)

This result corresponds exactly to the one found in [14].2 We then compute the

con�gurational entropy, number entropy, and total symmetry-resolved entropy in

the thermodynamic limit. In this limit, the probability ϱmA
(5.43) is approxi-

mated by a discrete Gaussian probability with mean m̄A = Nf s
2
and variance

σ2
A = N f(1−f)

4
. In terms of intensive quantities, this translates into a continu-

ous probability density function ϱ(t) with mean t̄ = s and variance σ2
t = 1−f

fN
.

We evaluate the con�gurational entropy at leading order in N using saddle-point

techniques. This is equivalent to computing the symmetry-resolved entanglement

entropy at �xed system and subsystem charge (5.48) at the mean t = t̄ = s:

⟨S(conf)
GA ⟩m = fNβ(s)− 1

2
logN +O(1) . (5.50)

The computation of the number entropy is straightforward. The Shannon entropy

of a discrete Gaussian probability is simply given by 1
2
log(2πσ2

A) +
1
2
where σA is

the variance. Hence, the number entropy is:

⟨S(num)
GA ⟩m =

1

2
log(N

πf(1− f)
2

) +
1

2
+O(1) =

1

2
logN +O(1) . (5.51)

We note that when we sum the con�gurational entropy and the number entropy

to obtain the total symmetry-resolved entanglement entropy, the logarithmic con-

tributions cancel, resulting in the formula

⟨SGA⟩m = fNβ(s) +O(1) , (5.52)

with no logarithmic corrections.

Finally, we comment on the equipartition (or lack of equipartition) of entan-

glement entropy in the thermodynamic limit, as discussed in [27] and [14]. By

equipartition of entanglement, one means that the entropy ⟨S(mA)
GA ⟩m is indepen-

2A note about conventions. In [14], the U(1) charges are de�ned as positive quantities. To
compare the formulas, one can use the relations M ≡ m+N/2 and Q = mA +NA/2.
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dent of mA in some limit. As we found that ⟨S(mA)
GA ⟩m ≈ fNβ(t) with t = 2mA/NA,

we conclude that there is no equipartition of entanglement entropy, as the lead-

ing order in N depends explicitly on the subsystem charge mA, as already found

in [14]. Furthermore, following the argument in [14], we emphasize the importance

of the order of limits. If mA is �xed before taking the limit N → ∞, using the

expansion β(t) = log 2− 1
2
t2+O(t4), we obtain instead ⟨S(mA)

GA ⟩m ≈ fN log 2. This

result matches that of [27], where the leading order is independent of mA and the

equipartition of entanglement entropy is restored.
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Chapter 6 |

SU(2) symmetry-resolved en-
tanglement in a spin system

6.1 Introduction

In certain quantum systems like the lattice models composed of spin-1
2
particles, the

natural tensor product structure of the Hilbert space provides a standard frame-

work to study entanglement via the division of the system into spatially localized

regions. However, when the system is endowed with a non-Abelian symmetry�in

our case, the group G = SU(2)�this conventional approach must be re�ned. The

presence of a global non-Abelian symmetry (group G) imposes additional con-

straints on the system, reduces the number of accessible observables respecting the

symmetry, and naturally leads to a symmetry-resolved decomposition of the Hilbert

space as seen in Chapter 4. This chapter is devoted to developing the theoretical

tools needed to analyze entanglement in such symmetry-resolved sectors and to

distinguish between two notions of locality: the standard K-local observables and

the more restrictive G-local observables, which are invariant under the symmetry

group. While the standard K-local subalgebra is generated by observables acting

on a spatial region A (and leads to the familiar tensor-product decomposition, it

does not respect the symmetry constraints imposed by G. In contrast, as seen in

Chapter 5, the G-local subalgebra is de�ned as the intersection of the K-local sub-

algebra with the algebra of G-invariant observables. This re�nement is essential

because we are interested in quantifying the entanglement of symmetry-resolved

states which are prepared and measured by G-invariant observables. The resulting
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G-local entanglement entropy, computed by restricting a symmetry-resolved state

to the G-local subalgebra, can di�er signi�cantly from the conventional K-local

entropy.

This chapter systematically develops the framework to compute the G-local en-

tanglement entropy for our spin system with a SU(2) symmetry. We �rst review

the symmetry-resolved decomposition of the Hilbert space and construct the corre-

sponding G-invariant subalgebra along with its center. We obtain explicit formulas

for the dimensions of the internal spaces, and we illustrate how symmetry-resolved

states can be written in a factorized form for the particular system at hand. We

then construct G-local subsystems and compute the symmetry-resolved entangle-

ment entropy. Several examples with small numbers of spins are presented to

highlight the di�erences between K-local and G-local entanglement. In particular,

we show that for some states the G-local entropy vanishes even though the K-local

entropy is nonzero, re�ecting the loss of information when only rotationally invari-

ant operators are accessible. Finally, by combining these ideas with statistical

techniques developed in earlier chapters, we derive exact formulas for the average

and variance of the G-local entanglement entropy for random symmetry-resolved

states. These results, which are expressed in terms of the dimensions of the various

sectors, allow us to characterize the Page curve in symmetry-resolved systems. The

analysis reveals features unique to a non-Abelian symmetry, including an asym-

metry of entanglement under the exchange of subsystems. The results presented

in this chapter are based on Sec. 5 of [5].

6.2 Setup

We consider a system consisting of N spin-1
2
particles. Each particle has Hilbert

space H(1/2) ≃ C2, and the Hilbert space of the system comes with a built-in tensor

product structure,

HN = H(1/2) ⊗ · · · ⊗ H(1/2)︸ ︷︷ ︸
N

. (6.1)
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The spin operators S⃗n = (Sx
n, S

y
n, S

z
n) generate SU(2) rotations of each particle,

satisfy the algebra

[Si
n , S

j
n′ ] = i δnn′ ϵijk S

k
n , n, n′ = 1, . . . , N, (6.2)

and can be represented in terms of Pauli matrices σ⃗ as S⃗n = 12⊗ . . .⊗ σ⃗
2
⊗ . . .⊗12.

We also introduce the total spin operator J⃗ ,

J⃗ =
N∑

n=1

S⃗n , (6.3)

which generates SU(2) rotations of the full system, i.e., [J i, Sj
n] = i ϵijk S

k
n. As

usual, we write the eigenvalues of J⃗ 2 as j(j + 1). There is a minimum and a

maximum spin of the system, which depends on the number N of particles:

N even =⇒ jmin = 0 , jmax =
N
2
, j integer, (6.4)

N odd =⇒ jmin = 1
2
, jmax =

N
2
, j half-integer. (6.5)

6.3 Symmetry-resolved decomposition of the Hilbert

space

We start with the algebra of observables of the system, which we call the kinemat-

ical algebra AK to distinguish it from the group-invariant algebra AG discussed

later. The kinematical algebra of observables of the system is generated by the

spin operators Si
n,

AK = L(HN) = C
[
Si
n

]
, with n = 1, . . . , N, (6.6)

where L(HN) ≃ M2N (C) is the set of linear operators on HN , and C
[
Si
n

]
denotes

the algebra generated by Si
n as de�ned in (3.2). The subalgebra generated by the

SU(2) symmetry generators J i is

Asym = C
[
J i
]
. (6.7)
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We can introduce then the commutant (Asym)
′, which de�nes the algebra AG of

group-invariant observables,

AG ≡ (Asym)
′ = {M ∈ AK | [M,J i] = 0 } = C[S⃗n · S⃗n′ ] . (6.8)

This is the algebra of observables that commute with the symmetry generators J i

or, equivalently, that are invariant under rotations:

O ∈ AG ⇐⇒ U OU−1 = O with U = e iαiJ
i

. (6.9)

The center of the subalgebra is generated by the Casimir operator J⃗ 2,

Zsym = Asym ∩ AG = C[J⃗ 2] . (6.10)

The symmetry-resolved decomposition of the Hilbert space is then given by a direct

sum over the eigenvalues of the elements in the center,

HN =

jmax⊕
j=jmin

(
H(j)

sym ⊗H
(j)
G

)
, (6.11)

that is a sum over the irreducible representations j, with each j-sector consisting

of a tensor product of the Hilbert spaces for rotational symmetry degrees of free-

dom and for internal (rotationally invariant) degrees of freedom. The rotational-

symmetry degrees of freedom span a Hilbert space of dimension dimH(j)
sym = 2j+1,

with an orthonormal basis given by the spin-j states

|j,m⟩ ∈ H(j)
sym , (6.12)

where m = −j, . . . ,+j are the eigenvalues of Jz. The internal degrees of freedom

can be understood as the SU(2)-invariant tensors in the tensor product of N spin-1
2

representations and one spin-j representation, which form the intertwiner space

H(j)
G = InvG

(
H(j) ⊗ H(1/2) ⊗ · · · ⊗ H(1/2)︸ ︷︷ ︸

N

)
. (6.13)

Note that we have used Eq. (5.4) with the conjugate representation j = j for

the group SU(2). An orthonormal basis of this space is given by the recoupling
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basis [95],

|j, k1, . . . , kN−2⟩ =

<latexit sha1_base64="NnjJIqhBB4WdWaqgKf6xQrB1CgQ="></latexit>

k1 k2 · · · kN�2

j

N spin 1/2

∈ H(j)
G . (6.14)

The quantum numbers k1, . . . , kN−2 label the eigenvalues kr(kr + 1) of the recou-

pling operators K⃗2
r . These operators form a maximal set of commuting observables

de�ned in terms of the operators

K⃗r =
r∑

n=1

S⃗n , r = 1, . . . , N − 2 (6.15)

which are the generator of SU(2) rotations of the �rst r spins.

The dimension of the Hilbert space H(j)
G of the internal degrees of freedom can

be computed using the general formula for the dimension of SU(2) intertwiner

space between the representations j1, . . . , jL, (see App. 6.5 for a detailed deriva-

tion):

Dj ≡ dimH(j)
G =

2j + 1

j + N
2
+ 1

(
N

N
2
+ j

)
, (6.16)

where
(
n
k

)
= n!

k!(n−k)!
is the binomial coe�cient. The sum of the dimensions of

symmetry-resolved sectors matches the dimension 2N of the Hilbert space of N

spin-1
2
particles, i.e., dimHN =

∑
j(2j + 1)Dj = 2N .

Symmetry-resolved states are states of N spin-1
2
particles that transform in

a spin-j representation of the total spin and have no entanglement between its

rotational and its internal degrees of freedom, i.e., states of the form:

|ψ⟩ = |j, ξ⟩sym |j, χ⟩G ∈ HN , (6.17)

with

|j, ξ⟩sym =
∑
m

ξm |j,m⟩ ∈ H(j)
sym , (6.18)
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|j, χ⟩G =
∑

k1,...,kN−2

ck1,...,kN−2
|j, k1, . . . , kN−2⟩ ∈ H(j)

G , (6.19)

i.e.,

|ψ⟩ =
∑

m, k1,...,kN−2

ξm ck1,...,kN−2
|j,m⟩ |j, k1, . . . , kN−2⟩ . (6.20)

6.4 Symmetry-resolved subsystems: K-local vs G-

local observables

A system of N -particles often comes with a built-in notion of locality. For instance,

the particles might be distributed at the nodes of a lattice, therefore inducing a

notion of �rst-neighbors and regions. Local observables of the system can then be

expressed in terms of the spin operators S⃗n of a subset of spins belonging to the

region. The kinematical algebra of observables AK is generated by the complete

set of spin operators (6.6), while the subalgebra of observables in a region A is

generated by the NA spin operators in the region,

AKA = C
[
Si
a

]
, with a = 1, . . . , NA. (6.21)

We call AKA the K-local subalgebra of observables for the region A. Note that

this subalgebra induces the standard decomposition of the Hilbert space as a tensor

product HN = HA⊗HB over the region A and its complement B. In fact one �nds

that the commutant of AKA is generated by the observables in the complementary

region B, with NA +NB = N and

AKB ≡ (AKA)
′ = C

[
Si
b

]
, with b = NA + 1, . . . , NA +NB. (6.22)

Moreover, note that the center of the subalgebra is trivial, AKA∩AKB = 1, which

results in the familiar tensor product structure with no direct sum.

Observables that are invariant under the group G = SU(2) form the algebra

AG, (6.8). To identify a local subalgebra of G-invariant observables we take the

intersection with AKA,

AGA ≡ AG ∩ AKA = C
[
S⃗a · S⃗a′

]
, with a, a′ = 1, . . . , NA. (6.23)

60



We call AGA the G-local subalgebra of observables for the region A. Note that

this subalgebra is generated by the scalar products S⃗a · S⃗a′ of spins in A. The

commutant of AGA in AK is

AGA ≡ (AGA)
′ = (AG ∩ AKA)

′ =
(
(Asym)

′ ∩ (AKB)
′)′ (6.24)

=
(
C[J i]′ ∩ C[Si

b]
′ )′ = C

[
J i, Si

b

]
= C

[
J i, Li, Si

b

]
, (6.25)

where we have used the intersection formula (3.4). Note that AGA is not a subal-

gebra of AKB as it contains also the total symmetry generator J i. Note also that

AGA is not the same as AGB. As we have highlighted in the last equality above,

it is useful also to introduce the operator Li that measures the total spin of the

particles in A,

L⃗ =

NA∑
a=1

S⃗a , (6.26)

and generates rotations of the spins in A. Note that [L⃗2, J i] = 0 because J i

generates global rotations and L⃗2 is rotationally invariant. Therefore, the center

of the subalgebra is non-trivial

ZGA = AGA ∩ AGA = C[L⃗2] , (6.27)

and is generated by the Casimir operator L⃗2 of A. We denote its eigenvalues ℓ(ℓ+1)

with

NA even =⇒ ℓmin = 0 , ℓmax =
NA

2
, ℓ integer, (6.28)

NA odd =⇒ ℓmin = 1
2
, ℓmax =

NA

2
, ℓ half-integer. (6.29)

Using the results of Chapter 4 on subsystems from subalgebras, we �nd the de-

composition

HN =
ℓmax⊕

ℓ=ℓmin

(
H(ℓ)

GA
⊗H(ℓ)

GA

)
. (6.30)

This decomposition is useful for computing the reduction of a generic pure state

of the system to the G−local subalgebra. We are interested in the reduction of a

special class of states�symmetry-resolved states�and it is useful to introduce a
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decomposition adapted to them.

We prepare a symmetry-resolved state |ψ⟩ = |j, ξ⟩sym |j, χ⟩G and we are inter-

ested in measurements ofG-local observables inA. In order to build a basis adapted

to both the decomposition associated with Asym = C[J i] and AGA = C[S⃗a · S⃗a′ ],

we consider the algebra generated by the union of the generating sets,

AsymGA = C[J i, S⃗a · S⃗a′ ] . (6.31)

Note that, using (3.4), this algebra can also be written in terms of the intersection

of commutants,

AsymGA =
(
(Asym)

′ ∩ (AGA)
′)′ . (6.32)

To build the decomposition, we need its commutant and center. The commutant

of AsymGA in AK is

(AsymGA)
′ = (Asym)

′ ∩ (AGA)
′ = AG ∩ AGA (6.33)

= C
[
S⃗n · S⃗n′

]
∩ C

[
J i, Li, Si

b

]
= C[J⃗ 2, L⃗2, S⃗b · S⃗b′ ] . (6.34)

The center of AsymGA is then non-trivial,

ZsymGA = AsymGA ∩ (AsymGA)
′ = C[J⃗ 2, L⃗2] . (6.35)

Note that the observables J⃗ 2 and L⃗2 commute,1 which is always the case for the

center as it is an Abelian algebra by de�nition. Simultaneously diagonalizing the

observables J⃗ 2 and L⃗2, we �nd the decomposition of the Hilbert space as a sum

over j and ℓ

HN =

jmax⊕
j=jmin

ℓmax⊕
ℓ=ℓmin

(
H(j)

sym ⊗H
(ℓ)
GA ⊗H

(j,ℓ)
GB

)
, (6.36)

which can be reorganized as

HN =

jmax⊕
j=jmin

H(j)
N with H(j)

N = H(j)
sym ⊗

ℓmax⊕
ℓ=ℓmin

(
H(ℓ)

GA ⊗H
(j,ℓ)
GB

)
, (6.37)

1The fact that the commutator [J⃗ 2, L⃗ 2] = 0 vanishes can be quickly shown by noticing that

[J i, L⃗ 2] = 0 as J i generates rotations of the full system and L⃗ 2 is a scalar.
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which provides a derivation of the expression (1.9) in the introduction. The Hilbert

spaces appearing in (6.37) are de�ned by

H(ℓ)
GA = InvG

(
H(ℓ) ⊗ H(1/2) ⊗ · · · ⊗ H(1/2)︸ ︷︷ ︸

NA

)
, (6.38)

H(j,ℓ)
GB = InvG

(
H(j) ⊗H(ℓ) ⊗ H(1/2) ⊗ · · · ⊗ H(1/2)︸ ︷︷ ︸

NB

)
. (6.39)

Their dimensions can be computed using the general formula for the dimension of

SU(2) intertwiner space (see App. 6.5 for a detailed derivation):

dℓ ≡ dimH(ℓ)
GA =

2ℓ+ 1
NA

2
+ ℓ+ 1

(
NA

NA

2
+ ℓ

)
, (6.40)

bjℓ ≡ dimH(j,ℓ)
GB =

(
N −NA

N−NA

2
+ j − ℓ

)
−

N−NA

2
− j − ℓ

N−NA

2
+ j + ℓ+ 1

(
N −NA

N−NA

2
+ j + ℓ

)
.

(6.41)

These formulas are derived in the next section.

6.5 Dimensions of SU(2) intertwiner spaces

In this section we give a derivation of the dimension of the Hilbert spaces H(ℓ)
GA,

H(j,ℓ)
GB , and H(j)

G based on the calculation of the dimension of the SU(2) invariant

spaces

ν(j1, . . . , jL) = dim InvG(H(j1) ⊗ · · · ⊗ H(jL)) . (6.42)

These invariant spaces, also known as intertwiners, are well studied in loop quan-

tum gravity [96, 97], where they are the fundamental building blocks for describ-

ing quantum geometries [92, 93]. Using techniques typical of intertwiner calcula-

tions [95], we write the projector to intertwiner space

P : H(j1) ⊗ · · · ⊗ H(jL) −→ InvG(H(j1) ⊗ · · · ⊗ H(jL)) (6.43)
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via group averaging

P =

∫
SU(2)

D(j1)(g)⊗ · · · ⊗D(jL)(g) dg , (6.44)

where D(j)(g)mm′ are Wigner matrices for the representation with spin j and dg

is the Haar measure for the group SU(2). The dimension of the SU(2)�invariant

space can then be computed as the trace of the identity in this space or, equiva-

lently, the trace of the projector TrP , i.e., ν is given by the integral

ν(j1, . . . , jL) =

∫
SU(2)

χ(j1)(g) · · ·χ(jL)(g) dg , (6.45)

where χ(j)(g) = TrD(j)(g) is the character of the representation with spin j. We

compute the integral using the class-angle parametrization g = h eiθσzh−1 of a

group element, which results in the character χ(j)(g) = sin(2j+1)θ
sin θ

expressed as a

function of the class angle θ. The Haar measure for class functions ψ(g) = f(θ)

reduces to
∫
dg = 2

π

∫ 2π

0
(sin θ)2 dθ.

This paper uses the dimension ν with N spin-1/2 and one spin-j. After a few

manipulations with elementary trigonometric identities, we �nd

ν(1
2
, . . . , 1

2
, j) =

2N

π

∫ 2π

0

(sin θ) (cos θ)N (sin (2j + 1) θ) dθ . (6.46)

Using the residue theorem, we evaluate the integral (6.46) as a contour integral on

the unit circle of the complex plane. The only contribution to the integral comes

from the pole in the origin

ν(1
2
, . . . , 1

2
, j) = −1

2
Resz=0

(
1
z

(
1
z
− z
) (

1
z2j+1 − z2j+1

) (
1
z
+ z
)N)

. (6.47)

We expand the binomial
(
1
z
+ z
)N

=
∑N

k=0

(
N
k

)
z2k−N and read the residue from

the coe�cient of 1
z
. If N + 2j is odd, the integral vanishes. If N + 2j is even, we

�nd

ν(1
2
, . . . , 1

2
, j) =

2j + 1
N
2
+ j + 1

(
N

N
2
+ j

)
. (6.48)

This is the expression also found, for instance, in [98, 99] and derived via combi-

natorial methods.
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Using the intertwiner methods discussed above, we can now compute the di-

mension ν with N −NA spin-1/2, one spin-j, and one spin-ℓ which appears in the

formula for the non-Abelian symmetry-resolved entanglement entropy. We �nd

ν(1
2
, . . . , 1

2
, j, ℓ) =

2N−NA+1

π

∫ 2π

0

(cos θ)N−NA
(
sin(2j + 1)θ

)(
sin(2ℓ+ 1)θ

)
dθ

(6.49)

=

(
N −NA

N−NA

2
+ j − ℓ

)
−

N−NA

2
− j − ℓ

N−NA

2
+ j + ℓ+ 1

(
N −NA

N−NA

2
+ j + ℓ

)
.

(6.50)

We note that this formula reduces to the expression (6.48) for ℓ = 0 or j = 0.

To summarize, we have

Dj = dimH(j)
G = ν(1

2
, . . . , 1

2
, j) , (6.51)

dℓ = dimH(ℓ)
GA = ν(1

2
, . . . , 1

2
, ℓ) , (6.52)

bjℓ = dimH(j,ℓ)
GB = ν(1

2
, . . . , 1

2
, j, ℓ) . (6.53)

6.6 Symmetry-resolved State

If we compare the decomposition (6.11) with (6.37), we obtain the decomposi-

tion of the Hilbert space of G-invariant degrees of freedom at �xed total angular

momentum,

H(j)
G =

ℓmax⊕
ℓ=ℓmin

(
H(ℓ)

GA ⊗H
(j,ℓ)
GB

)
, (6.54)

with the adapted orthonormal basis [95]

|ℓ, ka⟩|j, ℓ, hb⟩ =

<latexit sha1_base64="tsGjU9ARbW54+i/CqhaRzh5OB7k="></latexit>

k1 k2 · · · kNA�2

`
h1 h2 · · · hNB�2

j
`

NA spin 1/2 NB spin 1/2

,

(6.55)
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which coincides with (6.14), |j, kr⟩ with kr equal to ka for r = 1, . . . , NA− 2, equal

to ℓ for r = NA − 1, and equal to hb for r = NA, . . . , NA + NB − 2. From this

decomposition, we also derive the relation between the dimensions dℓ, bjℓ and Dj,

Dj =
∑

ℓ dℓ bjℓ . (6.56)

We can now compute the density matrix ρGA of a symmetry-resolved state |ψ⟩
reduced to AGA. Following the general construction described in Chapter 4, the

generic symmetry-resolved state in this basis is:

|ψ⟩ = |j, ξ⟩
∑
ℓ

√
pℓ
∑
ka,hb

χ
(ℓ)
ka,hb
|ℓ, ka⟩|j, ℓ, hb⟩ . (6.57)

The density matrix of the symmetry-resolved state reduced to AGA is

ρGA =
⊕
ℓ

pℓ ρℓ, (6.58)

where

ρℓ =
∑
ka,k′a

∑
hb

χ
(ℓ)
ka,hb

χ
(ℓ)∗
k′a,hb
|ℓ, ka⟩⟨ℓ, k′a| . (6.59)

This is the expression used in the next section to compute the G-local entanglement

entropy SGA.

We conclude this section with a few observations. By direct comparison of the

decomposition (6.30) and (6.36), we see that the decomposition of the complement

of the GA-Hilbert space is not the GB-Hilbert space as

H(ℓ)

GA
=
⊕

j

(
H(j)

sym ⊗H
(j,ℓ)
GB

)
. (6.60)

Moreover, di�erently from what happens in the Abelian case discussed in Sec. 5.5,

we note that here states in H(j,ℓ)
GB are eigenstates of the total angular momentum

J⃗ 2 and of the angular momentum of A, i.e., L⃗ 2, but they are not in an eigenstate

of the angular momentum of B, i.e., J⃗ 2
B = (

∑
b S⃗b)

2, unless J⃗ 2 = 0 in which case

J⃗ 2
B = L⃗ 2.
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6.7 G-local entanglement entropy of symmetry-

resolved states

Given a symmetry-resolved state, i.e., a state of the form (6.57), we can compute

its density matrix reduced to the G-local subalgebra of observables AGA using the

techniques of the previous section. The G-local entanglement entropy is then given

by the general formula (3.18),

SGA ≡ S
(
|ψ⟩,AG,AGA

)
= −tr(ρGA log ρGA) (6.61)

= −
∑
ℓ

pℓ tr(ρℓ log ρℓ) −
∑
ℓ

pℓ log pℓ , (6.62)

where ρℓ is the reduced density matrix in the sector ℓ and pℓ the probability of

the sector, as de�ned in (6.58). We give a few examples to illustrate how SGA is

computed and its di�erences from SKA:

N = 2, j = 0 � This is the singled state |s⟩ of two spin-1/2 particles,

|s⟩ = | ↑ ↓ ⟩ − | ↓ ↑ ⟩√
2

(6.63)

As K-local subsystem with NA = 1, we can take the �rst particle with the algebra

of observables AKA = C[S⃗1]. As usual [86], the associated entanglement entropy

is SKA(|s⟩) = log 2. On the other hand, if we consider the algebra of G-local

observables of the �rst particle we �nd that it is trivial as there is no rotational

invariant observable besides S⃗ 2
1 = 1

2
(1
2
+ 1)1, i.e., AGA = {1} and SGA(|s⟩) = 0.

N = 4, j = 0 � The recoupling of N = 4 spin-1/2 particles into a scalar (j = 0)

de�nes a two-dimensional Hilbert space spanned by the two orthogonal states

|ψ0⟩ = |s⟩A |s⟩B , (6.64)

|ψ1⟩ =
∑

m=0,±1

(−1)1−m
√
3
|t+m⟩A |t−m⟩B , (6.65)

where we have denoted A = (1, 2) and B = (3, 4) the coupling of the four particles.
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The K-local and the G-local entanglement entropies of the subsystem A are

SKA(|ψ0⟩) = 0 , SGA(|ψ0⟩) = 0 ,

SKA(|ψ1⟩) = log 3 , SGA(|ψ1⟩) = 0 .
(6.66)

Note that the K-local entropy measures the entanglement in the magnetic degrees

of freedom m, which results in the log 3 above. On the other hand, the G-local

entanglement entropy for each of the two states vanishes as they are eigenstates of

(S⃗1 + S⃗2)
2, which is the only non-trivial observable in AGA = C[S⃗1 · S⃗2]. In fact,

using the basis (6.55), we see that |ψ1⟩ is factorized. To show a non-trivial G-local

entropy, we consider the superposition

|ψ⟩ =
√

1− p |ψ0⟩ +
√
p eiϕ |ψ1⟩ (6.67)

for which we can easily compute the reduced density matrices

ρKA = (1− p) |s⟩⟨s|+ p
∑

m=0,±1

1
3
|tm⟩⟨tm| , (6.68)

ρGA = (1− p) |0⟩⟨0|+ p |1⟩⟨1| , (6.69)

where the states |0⟩ and |1⟩ are the eigenstates with ℓ = 0, 1 of the G-local observ-

able L⃗ 2 = (S⃗1 + S⃗2)
2. It follows that the entanglement entropies for the K-local

and the G-local subalgebras are

SKA(|ψ⟩) = −(1− p) log(1− p)− p log(p/3) , (6.70)

SGA(|ψ⟩) = −(1− p) log(1− p)− p log p . (6.71)

In this simple case, the G-local entanglement entropy is purely due to the Shannon

entropy of the sector, i.e., the last term in (6.62), because the subalgebra coincides

with the center, AGA = AGB = Z.

N = 4, j = 1, m = +1 � The recoupling of N = 4 spin-1/2 particles into a

vector (j = 1) de�nes the Hilbert space H(1)
4 = H(1)

sym ⊗ H(1)
G of dimension 3 × 3.
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We consider a (m = +1) symmetry-resolved state

|ψ⟩ =
√

1− p |η1⟩ +
√
p eiϕ |η2⟩ (6.72)

given by the superposition of the two orthogonal basis states with m = +1

|η1⟩ = |s⟩A |t+⟩B , |η2⟩ = 1√
2

(
|t+⟩A |t0⟩B − |t0⟩A |t+⟩B

)
, (6.73)

where |s⟩ and |tm⟩ are the singlet state and the triplet state (with the magnetic

number m = 0,±1) obtained by coupling two spin-1/2 particles. The K-local

density matrix for the two spins in A, de�ned as usual as ρKA = TrB|ψ⟩⟨ψ|, is

ρKA = (1− p)|s⟩⟨s|+ p
2

(
|t+⟩⟨t+|+ |t0⟩⟨t0|

)
−
√

p(1−p)
2

(
e−iϕ|s⟩⟨t0|+ e+iϕ|t0⟩⟨s|

)
.

(6.74)

The non-vanishing eigenvalues of ρKA are {p
2
, 1− p

2
}. Therefore, K-local entangle-

ment entropy is

SKA(|ψ⟩) = −p
2
log p

2
− (1− p

2
) log(1− p

2
) . (6.75)

On the other hand, if we have only access to the rotational invariant observable of

the particles in subsystem A = (1, 2), that is only the observable S⃗1 · S⃗2, then the

accessible entropy is given by the probability of outcomes {p, 1− p},

SGA(|ψ⟩) = −p log p − (1− p) log(1− p) . (6.76)

We note that, for 2
3
≤ p ≤ 1, we have that the G-local entropy is smaller than the

K-local entropy, SGA(|ψ⟩) ≤ SKA(|ψ⟩), while for 0 ≤ p ≤ 2
3
the G-local entropy

is larger SGA(|ψ⟩) ≥ SKA(|ψ⟩). We note also another di�erence compared to the

Abelian case (1.1) where the reduced density matrix is shown to be black diagonal.

From (6.74), we see that the density matrix ρKA is not block diagonal as it has

non-vanishing matrix elements |s⟩⟨t0| that connect blocks with di�erent ℓ. This is

a generic feature of SU(2)-symmetry-resolved states.

N = 6, j = 1, m = +1 � The Hilbert space H(1)
6 = H(1)

sym ⊗ H
(1)
G has dimen-

sion 3 × 9. We consider the subsystem of the �rst NA = 3 particles. The G-local

entanglement entropy is associated to the restriction of the state to the subalge-
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bra AGA = C[S⃗1 · S⃗2, S⃗1 · S⃗3, S⃗2 · S⃗3] which now is a non-commutative algebra

and therefore allows intertwiner entanglement, i.e., the �rst term in (6.62). The

associated Hilbert space decomposition is

H(1)
G =

⊕
ℓ= 1

2
, 3
2

(
H(ℓ)

GA ⊗H
(1, ℓ)
GB

)
. (6.77)

We consider the two orthogonal states |ψ1⟩ and |ψ2⟩ with j = 1, m = +1 obtained

from the coupling of the angular momentum of six spin-1/2 particles as described

by the diagrams below [95]:

|ψ1⟩ =

<latexit sha1_base64="Y8U6dLlt1rTFxqKWL4VGLKnoOC8="></latexit>

+1

m2m1 m3 m4 m5 m6

0 1/2 1/2 0
1

, |ψ2⟩ =

<latexit sha1_base64="6bFBm1kdZ4D9fEY4ppu5ury50SM="></latexit>

+1

m2m1 m3 m4 m5 m6

1 3/2 1/2 0
1

. (6.78)

These two states are simultaneous eigenstates of the observables (S⃗1 + S⃗2)
2 and

(S⃗1+ S⃗2+ S⃗3)
2. As a result, when restricted to G-invariant observables of the �rst

three spins, they have vanishing G-local entropy SGA(|ψ1⟩) = 0 and SGA(|ψ2⟩) =
0. On the other hand, because of the entanglement in the rotational degrees of

freedom, we have that the K-local entropies are SKA(|ψ1⟩) = 0 and non-vanishing

SKA(|ψ2⟩) ̸= 0. Next, we consider the symmetry-resolved state with m = +1

described in Fig. 6.1(b),

|ψ⟩ = 1√
2
(|ψ1⟩+ |ψ2⟩) , (6.79)

given by the superposition of the two orthonormal |ψ1⟩ and |ψ2⟩ introduced in

(6.78). As shown in Fig. 6.1(b) for p = 1/2, the G-local entropy of this state is

SGA(|ψ⟩) = log 2 while the K-local entropy is SKA(|ψ⟩) = −3
8
log 3

8
− 5

8
log 5

8
. This

example allows us to comment on the symmetry under the exchange of A with B.

Clearly SKA(|ψ⟩) = SKB(|ψ⟩). On the other hand, we note that the restriction to

the subalgebra AGB = C[S⃗4 · S⃗5, S⃗4 · S⃗6, S⃗5 · S⃗6] is associated with Hilbert space

decomposition

H(1)
G =

⊕
jB= 1

2
, 3
2

(
H(jB)

GB ⊗H
(1, jB)
GA

)
, (6.80)

and SGB(|ψ⟩) = 0 because |ψ⟩ is an eigenstate of (S⃗5 + S⃗6)
2 = 0 and (S⃗4 + S⃗5 +

S⃗6)
2 = 1

2
(1
2
+1). This example shows concretely that, in the non-Abelian case, the

commutant symmetry (3.28) allows an asymmetry under subsystem exchange in
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Figure 6.1. For a system of N = 6 spins with total spin j = 1, magnetization m = +1
and subsystem size NA = 3, we show: (a) the probability distribution of the G-local

(purple) and the K-local (yellow) entanglement entropies SGA and SKA of a sample

of random symmetry-resolved states, including a comparison of the numerical values

(µGA, σGA) and the exact values (⟨SGA⟩,∆SGA) of the average and variance of P (SGA);
(b) the entanglement entropy of a superposition of the two states (6.78), which highlights

the non-trivial relation between SGA and SKA; at p = 0: SGA = SKA = 0, at p = 1
2 :

SGA > SKA, and at p = 1: SKA > SGA = 0.

the G-local entanglement entropy, SGB(|ψ⟩) ̸= SGA(|ψ⟩).

6.8 Typical G-local entanglement entropy: exact

formulas

We combine the results of Sec. 3.5 on the typical entanglement entropy of a sub-

system de�ned in terms of a subalgebra of observables, together with the results of

Sec. 4.4 on symmetry-resolved entanglement entropy, to derive the exact formulas

for the typical G-local entanglement entropy for the group G = SU(2).

The average entanglement entropy for a random symmetry-resolved state in

H(j)
N = H(j)

sym ⊗H
(j)
G , restricted to a G-local subsystem of NA spin-1/2 particles is

given by the formula (3.32), specialized to the SU(2) case:

⟨SGA⟩j =
ℓmax∑

ℓ=ℓmin

ϱℓ φℓ , (6.81)

where ϱℓ and φℓ are given in terms of the dimensions dℓ, bjℓ, Dj de�ned in (6.16),
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(6.40), (6.41). The �rst quantity is

ϱℓ =
dℓ bjℓ
Dj

, (6.82)

and the second is

φℓ = Ψ(Dj+1)−Ψ(max(dℓ, bjℓ)+1)−min
(
dℓ−1
2bjℓ

,
bjℓ−1

2dℓ

)
. (6.83)

The variance (∆SGA)
2 = ⟨S2

GA⟩j − ⟨SGA⟩2j can be written as

(∆SGA)
2 =

1

D + 1

( ℓmax∑
ℓ=ℓmin

ϱℓ
(
φ2
ℓ+χℓ

)
−
( ℓmax∑
ℓ=ℓmin

ϱℓ φℓ

)2)
, (6.84)

where ϱℓ and φℓ are given above and χℓ is de�ned as

χℓ = (dℓ + bjℓ)Ψ
′(max(dℓ, bjℓ) + 1)− (Dj + 1)Ψ′(Dj + 1)+ (6.85)

− (min(dℓ, bjℓ)− 1)(dℓ + bjℓ +max(dℓ, bjℓ)− 1)

4 max(d2ℓ , b
2
jℓ)

. (6.86)

The formulas for average (6.81) and the variance (6.84) of the symmetry-resolved

entanglement entropy of a random state are exact and can be computed from the

expressions of the dimensions of the Hilbert spaces dℓ, bjℓ, and Dj.

In Fig. 6.1(a), we show the average and variance compared to the statistical

distribution of a sample of symmetry-resolved random states with N = 6, j = 1,

m = +1 restricted to NA = 3. For this sample of random states, we report the

histograms for the probability distributions P (SGA) and P (SKA), which are shown

to be distinct, Fig. 6.1(a). The statistical average µGA and variance σ2
GA match

numerically the exact formulas ⟨SGA⟩ and (∆SGA)
2 that we derive in this paper for

the G-local entanglement entropy. The K-local entanglement entropy with SU(2)

symmetry is studied in [99] where asymptotic formulas at large N are derived for

⟨SKA⟩ and (∆SKA)
2 using a combination of analytical and numerical methods. To

date, there is no analytical result for the average K-local entanglement entropy

⟨SKA⟩ at �nite N . We note that, because of the contribution of the rotational

degrees of freedom |j,m⟩, we have that typically, the kinematical entanglement

entropy SKA is larger than the symmetry-resolved entanglement entropy SGA of a
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Figure 6.2. (a) Page curve for the SU(2) symmetry-resolved entanglement entropy in

a system consisting of N = 10 spins. The average entanglement entropy ⟨SGA⟩j and its

dispersion (∆SGA)j are computed using the exact formulas (6.81)�(6.84) and reported

as a function of the number of spins NA in the subsystem. The Page curve with j = 1
has the largest peak entropy. The curves with j = 2, j = 0, j = 3 and j = 4 follow. The

maximum spin j = 5 has SGA = 0. The ordering of the curves re�ects the dimension

of the Hilbert spaces Dj . For NA = 1, the G-local subsystem is trivial, dℓ = 1, and the

entropy SGA = 0 vanishes. The Page curve is generally not symmetric under the exchange

NA ↔ N−NA, except in the special case j = 0 where this exchange symmetry is present.

(b) Leading order of the symmetry-resolved entanglement entropy in the thermodynamic

limit. At this order, the entanglement entropy is symmetric under exchange f ↔ 1− f .
We plot the Page curve for spin densities s = 0, s = 0.4, s = 0.6, s = 0.8, s = 0.9,
s = 0.95, s = 0.99, and s = 1, which corresponds to curves from the top to the bottom.

random state. However, the relation between the two is non-trivial as shown in

Fig. 6.1(b) where we consider a speci�c (non-random) family of states for which

SGA is instead larger than SKA. Moreover, in the superposition (|ψ1⟩ + |ψ2⟩)/
√
2

we have that SGA is larger than SKA, which shows that the relation between the

two is non-trivial.

In Fig. 6.2(a), we show the exact average and variance for N = 10 and di�erent

values of j as a function of the subsystem size NA, i.e., the Page curve [21,69] for a

symmetry-resolved system. Note the asymmetry under exchange NA → N −NA,

due to the asymmetry in the dimensions dℓ and bjℓ in (6.40)�(6.41), which is a

generic feature of non-Abelian symmetry-resolved entanglement (see Sec. 5.4).

As discussed in (5.22)�(5.26), one can also decompose the total symmetry-

resolved entanglement entropy ⟨SGA⟩j in a con�gurational ⟨S(conf)
GA ⟩j and a number

contribution ⟨S(num)
GA ⟩j.
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Chapter 7 |

Large N asymptotics of the
SU(2) typical entropy

7.1 Introduction

Building upon the work in Chapter 6, in this chapter, we focus on the symmetry-

resolved entanglement entropy in a lattice of spin-1
2
particles, with special emphasis

on its behavior in the thermodynamic limit. To extract the asymptotic behavior,

we introduce intensive quantities that enable us to systematically analyze the scal-

ing of entanglement as the number of particles N grows to in�nity. Using these

asymptotic techniques, we derive explicit expressions for the dimensions of the

symmetry-resolved Hilbert spaces and their complements. These expressions allow

us to convert the sums over subsystem spins into integrals over probability distri-

butions which we use to extract asymptotic formulas for the average entanglement

entropy and its variance. We �nd that the variance around the average entan-

glement entropy is exponentially suppressed in N , which implies that the average

entropy becomes typical in the thermodynamic limit. In addition, we compare the

asymptotics of the G-local and K-local entropies for the extremal cases of �xed

spin density, maximum spin (j = jmax) and minimum spin (j = jmin). For j = jmax,

the symmetry-resolved state is essentially factorized, leading to zero G-local entan-

glement entropy, while for j = jmin nontrivial entanglement arises via a O(logN)

and O(1) contributions. These results help us explicitly observe the di�erences

between the K-local and G-local notions of entanglement. We summarize these

comparisons in a tabular form to underscore how symmetry and locality a�ect the
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scaling behavior of entanglement. The results presented in this chapter are based

on Sec. 6 of [5].

7.2 Fixed spin density

The symmetry-resolved entanglement entropy (6.81) depends on the system size

N , the total spin j, and the subsystem size NA. Moreover, the expression contains

a sum over the subsystem spin ℓ. We introduce intensive quantities representing

the subsystem fraction f , the system spin density s, and the subsystem spin density

t:

f =
NA

N
, s =

2j

N
, t =

2ℓ

NA

. (7.1)

The thermodynamic limit is de�ned as the limitN →∞ while keeping the intensive

quantities f and s �xed. We compute the average entropy (6.81) and its variance

(6.84) in this limit up to terms of order one, O(1).

First, we derive the asymptotic expressions of the dimensions dℓ, bjℓ, and Dj

in the thermodynamic limit. We use the asymptotic expansion of the binomial

coe�cients for n→∞ with λ �xed,(
n

n
2
(1 + λ)

)
=

√
2 |β′′(λ)|
πn

enβ(λ)
(
1− 1

12n

3 + λ2

1− λ2 +O(n−2)

)
(7.2)

where the function β(s) is de�ned by

β(s) = −1− s
2

log

(
1− s
2

)
− 1 + s

2
log

(
1 + s

2

)
, (7.3)

and its derivatives are

β′(s) = −1

2
log
(1 + s

1− s
)
, β′′(s) = − 1

1− s2 . (7.4)

The approximation (7.2) holds for λ = O(1) and is useful for deriving the large-N

asymptotics of the dimensions at �xed 0 < s < 1. This approximation is invalid

in the extremal cases j = jmin and j = jmax de�ned in (6.4), and we will deal with

them separately in the next section. The asymptotic form of the dimensions in
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terms of intensive quantities are

Dj =
2s

1 + s

√
2 |β′′(s)|
πN

eNβ(s)

(
1 +

1

12N

12− s(9− s)(3− s)
s(1− s2) +O(N−2)

)
, (7.5)

dℓ =
2t

1 + t

√
2 |β′′(t)|
πfN

efNβ(t)

(
1 +

1

12fN

12− t(9− t)(3− t)
t(1− t2) +O(N−2)

)
, (7.6)

bjℓ =

√
2 |β′′( s−tf

1−f
)|

πN (1− f) e(1−f)Nβ( s−tf
1−f

)

(
1− 1

12(1− f)N
3 +

(
s−tf
1−f

)2
1−

(
s−tf
1−f

)2 +O(N−2)

)
.

(7.7)

Note that, in the asymptotic formula for bjℓ, the second term in the exact ex-

pression (6.41) is exponentially small, and therefore it does not contribute to the

asymptotics for 0 < s < 1 and large N . On the other hand, this approximation is

invalid for s = 0, that is, when j = jmin which is not compatible with the scaling

assumed in (7.1), and will be treated separately in the next section. In the thermo-

dynamic limit, the sum over the spin ℓ becomes an integral over the spin density∑
ℓ →

∫ 1

0
f N

2
dt and the probability distribution (6.82) is given by a continuous

probability distribution

ϱ(t)dt =
dℓbjℓ
Dj

f
N

2
dt = ϱ0(t)

(
1 +

ϱ1(t)

N
+O(N−2)

)
eN
(
fβ(t)+(1−f)β

(
s−ft
1−f

)
−β(s)

)
dt ,

(7.8)

where

ϱ0(t) = f
N

2

√
2

πf(1− f)N
(s+ 1)t

s(t+ 1)

√
|β′′(t)| |β′′

(
s−ft
1−f

)
|

|β′′(s)| , (7.9)

ϱ1(t) =
1

12f

12− t(9− t)(3− t)
t(1− t2) − 1

12(1− f)
3 +

(
s−tf
1−f

)2
1−

(
s−tf
1−f

)2 − 1

12

12− s(9− s)(3− s)
s(1− s2) .

(7.10)

The limit of function φℓ (6.83) is given by the lower bound (3.39),

φ(t) = logmin
(Dj

bjℓ
,
Dj

dℓ

)
− 1

2
min

(
dℓ
bjℓ
,
bjℓ
dj

)
, (7.11)
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and the average entanglement entropy at �xed s is given by the integral

⟨SGA⟩s =
∫ 1

0

ϱ(t)φ(t) dt . (7.12)

We evaluate the integral over t using the Laplace approximation for large N (see

App. A). The integral is concentrated at the critical point t = s de�ned as the

maximum of the exponent of (7.8). If f < 1
2
, at the critical point the dimension

bjℓ is exponentially larger than dj. Therefore, we can ignore the second term in

(7.11) as it is exponentially small. Similarly, at the critical point, the min in the

logarithm in (7.11) selects the ratio Dj/bjℓ, which allows us to write

φ(t) = N
(
β(s)− (1− f) β

(
s−ft
1−f

))
+ 1

2
log
(

β′′(s)

β′′
(

s−ft
1−f

))+ log
(
2s

√
1−f

1+s

)
+O(N−1) .

(7.13)

At half-system size, f = 1/2, extra care is necessary because of a discontinuity in

the integral. The dimensions satisfy the inequalities bjℓ > dℓ for t < s, but bjℓ < dℓ

for t > s. The logarithm in (7.11) is discontinuous at the critical point t = s,

and we have to resort to a Laplace approximation that allows for discontinuities

(see App. A). There are additional contributions at order O(
√
N) and at order

O(1). Note that, at f = 1/2, the second term in (7.11) is not exponentially small,

but detailed analysis shows that it is of order O(1/
√
N) and therefore does not

contribute to the thermodynamic limit. Summarizing, the average entanglement

entropy for f ≤ 1/2 is:

⟨SGA⟩s = β(s)fN − |β′(s)|√
2π|β′′(s)|

√
N δ

f,
1
2
+ f+log(1−f)

2
+
(
1− 1

2
δ
f,

1
2

)
log
(

2s
1+s

)
−
(
1− f − 1

2
δ
f,

1
2

)
1−s
2s

log
(
1+s
1−s

)
+O(N− 1

2 ) for f ≤ 1
2
,

(7.14)

and for f > 1/2

⟨SGA⟩s = β(s)(1−f)N+ (1−f)+log f
2

+(1−f)1−s
2s

log
(
1+s
1−s

)
+O(N− 1

2 ) for f > 1
2
.

(7.15)

Note that the leading order O(N) and the subleading order O(
√
N) are symmetric

under exchange of the subsystem with its complement. However, the order O(1)
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term is not symmetric, f ←↛ (1 − f). The leading order and its dependence on

the spin density s via the function β(s) (7.3) is displayed in Fig. 6.2(b).

Using the same technique, we �nd that the variance is:

(∆SGA)
2
s =

√
π
2

(
f(1−f)− 1

2π
δf, 1

2

) (1−s)3/2(s+1)5/2

8s

(
log 1+s

1−s

)2
N

3
2 e−Nβ(s)

(
1+O(N−1)

)
.

(7.16)

We note that the variance is exponentially small in N . Moreover, at the order

considered, the variance is invariant under the symmetry f ↔ (1− f).

7.3 Extremal cases: jmax and jmin

In the extremal case of maximum spin, j = jmax = N/2, the Hilbert space H(jmax)
G

contains only one state and the dimension (6.16) is Djmax = 1. Moreover, the

composition of angular momenta constrains the spin of the subsystem A to be

maximal, i.e., ℓ = ℓmax, and the dimensions (6.40) and (6.41) of the factors are

dℓmax = 1, bjmaxℓmax = 1. Therefore, the unique symmetry-resolved state with

j = jmax is factorized, as the exact formula of the average and variance of the

entanglement entropy con�rm:

⟨SGA⟩jmax = 0 , (∆SGA)
2
jmax

= 0 . (7.17)

The other extremal case, j = jmin, is non trivial. Let us assume that N is even

so that jmin = 0. In this case, the relevant asymptotic formula for the binomial

coe�cient is (
n

n
2
+ x

)
=

√
2

nπ
en log 2 e−

2x2

n

(
1 +O(n−1)

)
, (7.18)

that is valid for x = O(
√
n) and n → ∞.1 In the sum (6.81), we �rst assume

ℓ = O(
√
N), motivated by the fact that it corresponds to the subsystem with the

largest dimension. We then check this hypothesis a posteriori. In this limit, the

dimensions of the Hilbert spaces are

D0 =

√
8

π

1

N3/2
eN log 2

(
1 +O(N−1)

)
, (7.19)

1Note that here we cannot use (7.2) where λ = O(1)
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dℓ =

√
2

π

4ℓ

(fN)3/2
efN log 2 e−2 ℓ2

fN
(
1 +O(N−1)

)
. (7.20)

Note that, for j = 0, the dimensions b0ℓ and dℓ are mapped into each other by

sending f ↔ 1 − f . This is an exact property of (6.40) and (6.41) which in the

asymptotic limit results into the expression

b0ℓ =

√
2

π

4ℓ

((1− f)N)3/2
e(1−f)N log 2 e−2 ℓ2

(1−f)N
(
1 +O(N−1)

)
. (7.21)

It is useful to introduce the rescaled variable

u =
√

2
f(1−f)N

ℓ , (7.22)

which simpli�es the calculation of the integral. The probability distribution (6.82)

in the thermodynamic limit becomes the continuous distribution

ϱ(u) du =
4√
π
u2 e−u2 (

1 +O(N−1)
)
du . (7.23)

The sum over the spin ℓ becomes an integral over the positive real line in the ther-

modynamic limit. It is worth noticing that (7.23) is independent of the system's

parameters N and f at the leading order and is normalized at all orders. The

calculation of the average entropy is straightforward. If f < 1
2
, the dimension b0ℓ is

exponentially larger than dℓ, therefore (7.11) is just given by the logarithmic term.

If f = 1
2
, then b0ℓ = dℓ and the second term in (7.11) contributes a −1

2
correction.

Therefore,

φ(u) = fN log 2−1

2
logN−1

2
log f−1

2
log 2+log(1−f)+u2f−log u−1

2
δ
f,

1
2
+O(N−1) .

(7.24)

We obtain the average entanglement entropy by performing the integral

⟨SGA⟩0 =
∫ ∞

0

ϱ(u)φ(u) du , (7.25)

keeping all terms up to O(1). Summarizing, the average entanglement entropy for
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f ≤ 1
2
is

⟨SGA⟩0 = fN log 2− 1
2
logN − 1

2
log f + log(1− f)

+ (1
2
− f) log 2 + 3

2
f − 1− γE

2
− 1

2
δ
f,

1
2
+O(N−1) .

(7.26)

The average entropy for f > 1/2 can be obtained via the exact symmetry f ↔
(1− f) that applies to the case of j = 0. The calculation for the variance (6.84) is

similar, and we �nd

(∆SGA)
2
0
=

√
2π
4

(
f(3

2
f − 1) + π2

8
− 1 + 1

4
δf, 1

2

)
N

3
2 e−N log 2 (1 +O(N−1)) , (7.27)

for f ≤ 1/2, and the formula for f > 1/2 can again be obtained via the exact

symmetry f ↔ (1− f) that applies to the case of j = 0.

Furthermore, we comment on the equipartition (or lack of equipartition) of

entanglement entropy in the thermodynamic limit for the non-Abelian symme-

try SU(2), generalizing the discussion in [27] and [14] for the U(1) case. By

equipartition of entanglement, one means that the entropy ⟨S(ℓ)
GA⟩j is indepen-

dent of ℓ in some limit. For generic spin j (Sec. 7.2), we found in (7.13) that

at the leading order at �xed subsystem charge ℓ, the entanglement entropy is

⟨S(ℓ)
GA⟩j ≈ N

(
β(s) − (1 − f) β

(
s−ft
1−f

))
with s = 2j/N and t = 2ℓ/NA. Therefore,

we conclude that there is no equipartition of entanglement entropy, as the lead-

ing order in N depends explicitly on the subsystem charge ℓ. This result extends

the observation of [14] of lack of equipartition in the thermodynamic limit to the

non-Abelian case. Furthermore, following the argument in [14], we emphasize the

importance of the order of limits. If ℓ is �xed before taking the limit N → ∞,

using the expansion β
(
s−ft
1−f

)
= β( s

1−f
) − β′( s

1−f
) f t
1−f

+ O(t2), we obtain instead

⟨S(ℓ)
GA⟩j ≈ N

(
β(s)− (1− f) β

(
s

1−f

))
. This result matches the behavior found [27]

for the U(1) case, with the leading order independent of ℓ and the equipartition of

entanglement entropy restored.

Interestingly, in the j = 0 case, using (7.22) and (7.24), we �nd that at the

leading order the entanglement entropy at �xed subsystem charge ℓ is ⟨S(ℓ)
GA⟩0 ≈

fN log 2. As this quantity is independent of the subsystem charge, we conclude

that in this case, there is equipartition of entanglement for all ℓ.
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7.4 Comparison ofG-local andK-local asymptotics

The asymptotics of the average K-local entanglement entropy was studied in [99].

The system considered is the same as the one described here in Sec. 6.3, with the

additional assumption of vanishing magnetization, m = 0, to select symmetry-

resolved states. Using a combination of analytical and numerical methods, asymp-

totic formulas for the thermodynamic limit N →∞ at �xed f and s were studied.

We compare these results for the ones obtained here in Sec. 7.2�7.3 for the G-local

entanglement entropy of the same symmetry-resolved states.

For maximal spin jmax = N/2, i.e., for the case s = 1, the Hilbert space takes

the form

H(jmax)
N = H(jmax)

sym ⊗H(ℓmax)
GA ⊗H(jmax,ℓmax)

GB , (7.28)

i.e., in the decomposition (6.37) there is a single allowed value of ℓ, and the di-

mensions are dimH(ℓmax)
GA = 1, dimH(jmax,ℓmax)

GB = 1, and dimH(jmax)
sym = N + 1.

As a result, the average G-local entropy necessarily vanishes (7.17) because any

symmetry-resolved state in this sector has zero entanglement between G-local de-

grees of freedom. On the other hand, the K-local entanglement entropy also mea-

sures the entanglement in magnetic degrees of freedom mA at �xed m = mA+mB

in H(jmax)
sym , which are not G-local. This K-local entanglement results in an average

entropy that scales as 1
2
logN . The comparison of the two di�erent scalings found

in [99] and in Sec. 7.3 is shown in the table:

Table 7.1. Comparison of large N asymptotics: SGA vs SKA for j = jmax

j = jmax N
√
N δf, 1

2
logN 1 δf, 1

2

⟨SGA⟩jmax 0 0 0 0 0

⟨SKA⟩jmax,m=0 0 0 1
2

1
2
log πef(1−f)

2
0

For minimum spin, j = 0 (assuming N even), i.e., for the case s = 0, the

leading order O(N) of the K-local and G-local average entropies coincide. There

is again a di�erence at order O(logN) and at order O(1) (�rst computed in [100]
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for the K-local entropy). A comparison of the contributions found in [99] and in

Sec. 7.3 is shown in Table 7.2

Table 7.2. Comparison of large N asymptotics: SGA vs SKA for j = 0

j = 0 N
√
N δf, 1

2
logN 1 δf, 1

2

⟨SGA⟩0 f log 2 0 −1
2

aGA(f) −1
2

⟨SKA⟩0 f log 2 0 0 aKA(f) −1
2

where

aKA(f) =


3
2
f + 3

2
log(1− f) f ≤ 1/2 ,

f ←→ (1− f) f > 1/2 ,

(7.29)

aGA(f) =


3
2
f + log(1− f)− 1

2
log f + (1

2
− f) log(2)− 1− γE

2
f ≤ 1/2 ,

f ←→ (1− f) f > 1/2 .

(7.30)

We note the symmetry f ↔ (1− f), which is an exact symmetry for j = 0.

For spin j of order O(N), i.e., �xed spin density s = 2j/N with 0 < s < 1, the

asymptotics of the K-local average entropy studied in [99] and the G-local average

entropy derived in Sec. 7.2 agree at order O(N) and O(
√
N). A di�erence again

arises at order O(logN) and O(1), as summarized in Table 7.3

Table 7.3. Comparison of large N asymptotics: SGA vs SKA for 0 < s = 2j
N < 1

0 < s < 1 N
√
N δf, 1

2
logN 1 δf, 1

2

⟨SGA⟩s β(s) f − |β′(s)|√
2π |β′′(s)|

0 bGA(f, s) cGA(s)

⟨SKA⟩s,m=0 β(s) f − |β′(s)|√
2π |β′′(s)|

1
2

bKA(f, s) 0

82



where β(s), β′(s), β′′(s) are given by (7.3)�(7.4), and

bKA(f, s) =


f+log(1−f)

2
− 1−2f(1−s)

2s
log
(
1+s
1−s

)
+ log 2s3/2√

1−s2
+ 1

2
log πef(1−f)

2
f ≤ 1/2 ,

f ←→ (1− f) f > 1/2 ,

(7.31)

bGA(f, s) =


f+log(1−f)

2
− (1− f)1−s

2s
log
(
1+s
1−s

)
+ log

(
2s
1+s

)
f ≤ 1/2 ,

(1−f)+log f
2

+ (1− f)1−s
2s

log
(
1+s
1−s

)
f > 1/2 ,

(7.32)

cGA(f, s) =
1
2
1−s
2s

log
(
1+s
1−s

)
− 1

2
log
(

2s
1+s

)
. (7.33)

We note that the asymmetry of the G-local average entropy under subsystem

exchange, f ←↛ (1 − f), discussed in Sec. 6.8 and Sec. 7.2 arises only at order

O(1), as shown explicitly in (7.32).

Additionally, we observe that in all the cases considered here, we �nd that the

average K-local entropy studied in [99] and the average G-local entropy derived

here satisfy:

⟨SKA⟩ − ⟨SGA⟩ = 1
2
logN +O(1) . (7.34)

The di�erence can be attributed to the entanglement in the magnetic degrees of

freedom probed by K-local observables, as discussed in Table 7.1.
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Chapter 8 |

Conclusion & Outlook

8.1 Summary

This thesis presents a rigorous mathematical formulation for symmetry-resolved

entanglement in systems possessing a non-Abelian symmetry. The results pre-

sented are entirely general and do not rely on the speci�cs of any Hamiltonian;

they depend solely on the structure of the Hilbert space and the representation of

the symmetry group G.

In Chapters 3 and 4, we began developing our framework based on an opera-

tional de�nition of a subsystem, characterized through a subalgebra of observables

(Chapter 3). In the presence of non-Abelian symmetry, the G-invariant, symmetry-

resolved observables de�ne states (see Eq. (4.23)) that are both preparable and

measurable, leading to the Hilbert space decomposition in Eq. (4.21), that gener-

alized the standard direct-sum decomposition over Abelian charges and the tensor

product structure associated with independent subsystems. Moreover, in analyses

of symmetry-resolved entanglement [25�27] for an Abelian symmetry, the block-

diagonal structure of the reduced density matrix under U(1) symmetry has played

a crucial role. In the non-Abelian symmetry case, the block-diagonal structure

given by (4.24) emerged once we identi�ed the generalized symmetry-resolved sub-

systems as in (4.21). Using this, we then obtained exact formulas for the average

and variance of the entanglement entropy distribution for random pure states with

a non-Abelian symmetry group G, as expressed in (3.32)�(3.33)�(4.25).
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In Chapter 5, we began by noting that our framework is entirely general and does

not presuppose any inherent notion of locality or a speci�c Hamiltonian. When a

locality criterion was introduced, we distinguished between K-local (Eq. (5.6)) and

G-local observables (Eq. (5.9)): while the kinematical observables of a many-body

system are naturally local, they are typically not invariant under the action of G;

in contrast, invariant observables tend to be non-local. Observables that are both

local and G-invariant�termed G-local�often represent the only accessible opera-

tors de�ning a symmetry-resolved subsystem. In this context, symmetry-resolved

entanglement entropy was de�ned as the entropy SGA of the symmetry-resolved

state, restricted to a symmetry-resolved subsystem. We then showed that, in the

case of an Abelian symmetry, G = U(1), our framework recovered established re-

sults [13�16].

In Chapters 6 and 7, we examined in detail an SU(2)-invariant system as a con-

crete example. We analyzed particular cases to illustrate the di�erences between

the G-local and K-local notions of entropy (see Fig. 6.1). We derived the exact av-

erage entanglement entropy and its variance for random symmetry-resolved states

(Chapter 6) and then analyzed the probability distribution for SGA and compared

it to that for SKA. We plotted the Page curve in Fig. 6.2 for the exact average

entanglement entropy and observed an asymmetry in the curve. This was con-

�rmed when we discussed the thermodynamic limit (Chapter 7) for this system.

At O(1) in the thermodynamic limit, an asymmetry under subsystem exchange

emerged, f ←↛ (1− f), where f = VA/V denotes the subsystem volume fraction.

This new feature of non-Abelian symmetry-resolved entanglement was discussed

in Sec. 5.4 for a general group G and was illustrated in (6.79) for small systems

and in (7.32) for many-body systems in the thermodynamic limit. As observed in

the Abelian case, a global non-Abelian symmetry such as SU(2) also produces a

leading volume-law entanglement entropy along with a square-root-volume correc-

tion at half-system size, as �rst reported in [99] and derived in Chapter 7 through

asymptotic analysis of the exact formulas (see (7.3) for comparison). The coe�-

cient in the volume-law scaling, de�ned in (7.3), depends on the spin density j/V

and can be generalized to densities qk/V for the non-Abelian charges, namely the

rank(G) Casimir operators of a general compact semisimple Lie group G.
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Figure 8.1. Quantum polyhedra provide a concrete example of SU(2) symmetry-

resolved states that can be probed only using G-local observables that measure their

intrinsic geometry. Each spin corresponds to a quantum plane of �xed area, and the

SU(2) invariance in the coupling of angular momenta corresponds to the closure of the

faces of the polyhedron.

8.2 Future Research Directions

8.2.1 Quantum Gravity and Quantum Polyhedra

In the quantization of gravity, physical states can exist as superpositions of quanta

of geometric regions, which can be understood as quantum polyhedra [92,93,101].

Analogous to a classical polyhedron where the normal area vectors of its N faces

sum to zero, a quantum polyhedron is visualized as a system of N spins con-

strained so that their total spin is zero. G-local observables are central to the

study of quantum geometry in polyhedral models [92,93], where operators such as

S⃗a · S⃗b (illustrated in Fig. 1.1) measure the angles between the faces of a quan-

tum polyhedron, as depicted in Fig. 8.1 for various spin j sectors. Unlike the

uncorrelated faces of a classical polyhedron, the faces in a quantum polyhedron,

represented by spins, are inherently correlated. This correlation prompts the ques-

tion of how to quantify the entanglement between one region of the polyhedron and

the rest. Equivalently, how is one region of space entangled with another in quan-

tum gravity? Conventional entanglement measures falter here due to the system's

constraints altering the accessible Hilbert space. To overcome this, we propose

using the rede�ned entanglement measures obtained in this thesis.
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Additionally, in the thermodynamic limit of many faces the quantum polyhe-

dron approximates a spherical region, and semiclassical states are suitable here for

studying quantum �uctuations of the classical metric. Here, entanglement scaling

between regions is conjectured to serve as a probe of the state's nature [69,102�104]:

it scales with the volume (number of spins) of a region in truly quantum states,

and with the area in semiclassical states. The observation of these entanglement

characteristics have important consequences in the context of the thermalization

of isolated systems [13], which is why an analogous study of such states in the

context of quantum gravity will shed light on the thermodynamic properties of

geometric regions of space.

8.2.2 Symmetries, Locality and Non-Abelian ETH

The Eigenstate Thermalization Hypothesis (ETH) [1�3] describes how isolated

quantum systems reach thermal equilibrium through their own unitary dynamics,

a phenomenon not immediately intuitive given the nature of quantum mechanics.

Recently, preliminary ideas regarding quantum thermodynamics and ETH in sys-

tems having a non-Abelian symmetry have been laid out in [98, 100, 105�108].

By means of work carried out in this thesis, we conjecture that the distribu-

tion P (SGA), with its average and variance as given in (3.32)�(3.33)�(4.25) (see

Fig. 6.1(a)), corresponds to the entanglement entropy distribution of energy eigen-

states of quantum-chaotic Hamiltonians with a non-Abelian symmetry G, when

restricted to G-local subsystems. Testing this conjecture numerically�by ex-

tending exact diagonalization studies [17�20] to quantum-chaotic Hamiltonians

with a non-Abelian symmetry, such as the random Heisenberg model (1.2) and

lattice-based Heisenberg models with local interactions [67] (as in [98,99])�would

be highly signi�cant in the context of emerging insights in non-Abelian eigen-

state thermalization [98, 99, 108], thermodynamics with noncommuting conserved

charges [100, 105�107], and quantum many-body scars [109, 110]. As the ETH is

formulated in terms of the expectation values of operators, understanding non-

Abelian ETH through this framework will enable a deeper understanding of the

interplay between symmetries and thermalization. Additionally, ETH makes an as-

sumption about the locality of the operators which undergo thermalization, which

makes it interesting to see how the notions of K-locality and G-locality laid out
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in in our work can be distinguished on the basis of the in�uence they have on

eigenstate thermalization.

8.2.3 Page Curve and Entanglement Puri�cation

This avenue of research is also relevant to black hole physics, speci�cally concern-

ing the Page Curve hypothesis [4] presented in Chapter 2. Quantum mechanical

toy models with unitary dynamics governed by random Hamiltonians have been

employed to model this behavior, but they typically fail to replicate the decreasing

phase of the entanglement entropy, as the entanglement entropy merely saturates

rather than declines. However, this challenge was recently overcome for a partic-

ular setup involving a free fermion chain [111]. This discrepancy leads to critical

questions: what properties should such toy models have for the entanglement en-

tropy to decrease in time after reaching a maximum value? Under which conditions

can the entanglement decrease at a faster rate? Can these models be extended to

open quantum systems? And can such systems help address the problem of deco-

herence in practical setups? We believe these questions can be answered through

methods developed in Appendix B by �ne tuning the initial state as well as well

as the parameters of the random Hamiltonians.

8.2.4 Other Directions

� We derived the average and variance of the probability distribution P (SGA)

and compared it to the average and variance of the numerically obtained dis-

tribution. Similarly, deriving exact expressions for the average and variance

of the probability distribution P (SKA) for K-local observables (see Fig. 6.1)

would be insightful.

� Our framework can be directly applied to lattice systems with a gauge

symmetry [80�82, 112] and spin-network systems in loop quantum gravity

[96, 97, 113�116]. Finding new phenomena in these systems through the

lens of non-abelian, symmetry-resolved subsystems and entanglement will

be worthwhile.

� Another promising direction is extending our framework to study systems

with a in�nite-dimensional Hilbert space, like those encountered in quan-
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tum �eld theory [69, 76�78, 117, 118]. While our analysis has been carried

out within a �nite-dimensional Hilbert space, the results apply directly to

each symmetry-resolved sector even when these sectors are �nite-dimensional

subspaces of an in�nite-dimensional Hilbert space.
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Appendix A|

Laplace approximation and dis-
continuities

In this section, we review the asymptotic expansion of integrals using the Laplace

method [119] and extend this method to the presence of discontinuities. We derive

an asymptotic expansion for N ≫ 1 of integrals of the form

I =

∫
K

h(x) eNg(x) dx , (A.1)

where K ⊂ R and h(x) and g(x) are two real-valued functions de�ned on K such

that the integral is well de�ned for large enough N . We �rst assume that the

functions h and g are smooth on K. Then, we present the formula for the case

with h continuous but with a discontinuous �rst derivative at a point. We assume

that the function g has a global maximum at x0 in K where the gradient vanishes,

g′(x0) = 0, and the function also vanishes at the maximum g(x0) = 0. The integral

is approximated asymptotically by

I = h(x0)

√
− 2π

Ng′′(x0)

(
1 +

C1

N
+ o

(
1

N

))
, (A.2)

where

C1 = −
1

2

h′′(x0)

h(x0)g′′(x0)
+
1

8

g′′′′(x0)h(x0)

h(x0)g′′(x0)2
+
1

2

g′′′(x0)h
′(x0)

h(x0)g′′(x0)2
− 5

24

g′′′(x0)
2h(x0)

h(x0)g′′(x0)3
. (A.3)

The approximation (A.2) relies on three main observations.
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1. Only the immediate neighborhood of x0 contributes to the integral.

2. We expand the function g(x) around x0, and we approximate the exponential

part of the integrand with a narrow Gaussian e−
N
2
g′′(x0)(x−x0)2 . This con�rms

the �rst assumption.

3. We expand the remaining part of the integrand around x0 and extend the

integral to the whole real line.

The integrals of terms of the expansion with the Gaussian (x0 is a maximum, so

g′′(x0) < 0) are given by

M (p) =

∫ ∞

−∞
(x− x0)p eN

g′′(x0)
2

(x−x0)2dx =

0 p odd,
√
2π(p− 1)!!

(
− 1

Ng′′(x0)

) p+1
2

p even.

(A.4)

If we are interested in the leading order or (A.2), expanding the integrand up to

order O(1) and combining with M0 is su�cient

h(x0)M
(0) = h(x0)

√
− 2π

Ng′′(x0)
. (A.5)

However, to compute the next-to-leading order (A.3), we have to expand the inte-

grand up to order O(x− x0)6. The relevant terms are

h′′(x0)M
(2) = − 1

N
1
2
h′′(x0)
g′′(x0)

√
− 2π

Ng′′(x0)
,

N
(

1
24
g′′′′(x0)h(x0) +

1
6
g′′′(x0)h

′(x0)
)
M (4) = 1

N

(
1
8
g′′′′(x0)
g′′(x0)2

+ 1
2
g′′′(x0)h′(x0)
h(x0)g′′(x0)2

)√
− 2π

Ng′′(x0)
,

N2 1

72
g′′′(x0)

2h(x0)M
(6) = − 1

N
5
24

g′′′(x0)2

g′′(x0)3

√
− 2π

Ng′′(x0)
.

Collecting them together, we obtain (A.3).

In the derivations in Chapter 7, we need to compute integrals of the form (A.1)

with a function h that is not continuous in x0. For simplicity, we will assume that

g(x) is still smooth in x0. We follow the same strategy, expanding the integrand

around x0 and separating the integrals in x < x0 and x > x0. The split Gaussian
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integrals are such that∫ ∞

x0

(x− x0)p eN
g′′(x0)

2
(x−x0)2dx = (−1)p

∫ x0

−∞
(x− x0)p eN

g′′(x0)
2

(x−x0)2dx , (A.6)

and

M̃ (p) =

∫ ∞

x0

(x− x0)p eN
g′′(x0)

2
(x−x0)2dx =


1
2

√
2π(p−1

2
)!
(
− 1

Ng′′(x0)

) p+1
2

p odd,

1
2

√
2π(p− 1)!!

(
− 1

Ng′′(x0)

) p+1
2

p even.

(A.7)

The leading order of the Laplace approximation is similar to the one found earlier,

(
h(x−0 ) + h(x+0 )

)
M̃ (0) =

h(x−0 ) + h(x+0 )

2

√
− 2π

Ng′′(x0)
. (A.8)

Here, we denote with h(x±0 ) the right/left limit of the function h in x0. If h is

continuous in x0, the formula (A.8) reduces to (A.5). The next-to-leading order

term is (
h′(x−0 )− h′(x+0 )

)
M̃ (1) =

h′(x−0 )− h′(x+0 )
2

√
2π

−1
Ng′′(x0)

, (A.9)

which is, in general, non-vanishing if the �rst derivative of h is discontinuous in x0.

The calculation for the next-to-next-leading order term is similar. To summarize, if

the function h is discontinuous at the maximum x0 of g, the Laplace approximation

for the integral (A.1) is

I =
h(x−0 ) + h(x+0 )

2

√
− 2π

Ng′′(x0)

(
1 +

C̃1/2√
N

+
C̃1

N
+ o

(
1

N

))
, (A.10)

where

C̃1/2 =
h′(x−0 )− h′(x+0 )
h(x−0 ) + h(x+0 )

√
− 2

Nπg′′(x0)
, (A.11)

and

C̃1 =
h(x−0 )C1(x

−
0 ) + h(x+0 )C1(x

+
0 )

h(x−0 ) + h(x+0 )
, (A.12)

where we denote by C1(x
±
0 ) the expression (A.3) computed (as a limit) in x

±
0 . Thus,

a discontinuity results in a O(1/
√
N) correction in the asymptotic expansion.
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Appendix B|

Entanglement Entropy Evo-
lution and Random Matrices

B.1 Introduction

In this chapter, we discuss the time-evolution of the entanglement entropy in an iso-

lated quantum system prepared in a factorized state. We focus on random-matrix

Hamiltonians from the GUE ensemble, and compare the entropy of the average

density matrix to the probability distribution of the entropy over the ensemble of

random Hamiltonians. While the �rst captures correctly the saturation value of

the entropy only at the leading order, the second captures also sub-leading orders,

�uctuations around the average and the short time behavior of the entanglement

entropy. We discuss also the relation to other random matrix ensembles, such as

GOE. We also derive analogous results for gaussian states of random quadratic

fermionic systems, which have been recently studied in [120].

B.2 EE Evolution: Random Matrix Hamiltonians

B.2.1 Entanglement Entropy of Eigenstates of a Random

Matrix Hamiltonian

Let |ψn⟩ be one eigenstate of a random matrix Hamiltonian H. We de�ne ρA,n =

TrB|ψn⟩⟨ψn| to be a normalized dA×dA density matrix. It is helpful to separate this

density matrix into diagonal and non-diagonal parts by writing it as ρA,n =
(

I
dA

+
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ϵXA,n

)
+ϵYA,n, where

I
dA

+ϵXA,n is the diagonal part and ϵYA,n is the non-diagonal

part of ρA,n. Here we use ϵ as a yet to be calculated small parameter, to help identify

the leading order terms in susbsequent calculations. Tr(YA,n) = 0 by construction,

and using the normalization of the density matrix we can conclude that Tr(XA,n) =

0. Then using statistics of eigenvector components (see Appendices C and D),

〈 I

dA
+ ϵXA,n

〉
=
〈
(ρA,n)ii

〉
=

dB∑
b

〈
|cnib|2

〉
= dB.

1

dAdB
=

1

dA
,

〈
ϵYA,n

〉
=
〈
(ρA,n)ij

〉
i ̸=j

=

dB∑
b

〈
cnibc

∗
njb

〉
i ̸=j

= 0.

To calculate the average entanglement entropy for an eigenstate, we need to cal-

culate the ensemble average of

Tr(ρ2A,n) =
1

dA
+ ϵ2Tr(X2

A,n) + ϵ2Tr(Y 2
A,n) + ϵ2Tr(XA,nYA,n)

Now,

ϵ2Tr(XA,nYA,n) =

dA∑
i,j

dB∑
b,c

|cnib|2cnjcc∗nicδij(1− δji) = 0,

while the following averages can be calculated using properties derived in Ap-

pendix D〈
1

dA
+ ϵ2Tr(X2

A,n)

〉
=

dA∑
i

dB∑
b,c

⟨|cnib|2|cnic|2⟩ =

 dB+2
dAdB+2

GOE

dB+1
dAdB+1

GUE
,

and

ϵ2⟨Tr(Y 2
A,n)⟩ =

dA∑
i,j;i ̸=j

dB∑
b

⟨|cnib|2|cnjb|2⟩ =

 dA−1
dAdB+2

GOE

dA−1
dAdB+1

GUE
.

This gives the average purity of an eigenstate of a random Hamiltonian as

⟨Tr(ρ2A,n)⟩ =

dA+dB+1
dAdB+2

GOE

dA+dB
dAdB+1

GUE
. (B.1)
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The variance around this average purity can also be calculated. Following a de-

tailed derivation, we obtain

(∆(Tr[ρ2A,n]))
2 =


2(dA−1)(dB−1)(dAdB+4dA+4dB+6)

(dAdB+2)2(dAdB+4)(dAdB+6)
GOE

2(d2A−1)(d2B−1)

(dAdB+1)2(dAdB+2)(dAdB+3)
GUE

(B.2)

For comparison, the variance for a Haar-random state was calculated in [69] as

⟨
(
Tr(ρ2)

)2⟩Haar − ⟨Tr(ρ2)⟩2Haar =
2 (d2A − 1)(d2B − 1)

(dAdB + 1)2 (dAdB + 2) (dAdB + 3)
(B.3)

The average entanglement entropy, ⟨S(ρA,n)⟩ = −Tr(ρA,n log ρA,n), follows from

the average purity using

⟨S(ρA,n)⟩ = log(dA) +
1

2
− dA

2
⟨Tr(ρ2A,n)⟩+O(ϵ3),

which gives us,

Ensemble ⟨S(ρA,n)⟩ ⟨Tr(ρ2A,n)⟩

GOE log(dA)− d2A+dA−2

2dAdB
+O

(
1
d2B

)
dA+dB+1
dAdB+2

GUE log(dA)− d2A−1

2dAdB
+O

(
1
d2B

)
dA+dB
dAdB+1

We observe that the formula for the typical entanglement entropy in the GUE case

is the same as that of Page [21] upto an order of O
(

1
d2B

)
, but the corresponding

formula in the GOE case is di�erent at this orde. We can now assert that the small

parameter ϵ can be de�ned through

ϵ2 =
1

dB
. (B.4)

The variance around the average entanglement entropy of ρA,n can be calculated

as

(∆S(ρA,n))
2 ≈ d2A

4

[〈
(Tr[ρ2A,n])

2
〉
−
〈
Tr[ρ2A,n]

〉2]
=
d2A
4
(∆(Tr[ρ2A,n]))

2 (B.5)

=


d2A(dA−1)(dB−1)(dAdB+4dA+4dB+6)

2(dAdB+2)2(dAdB+4)(dAdB+6)
GOE

d2A(d2A−1)(d2B−1)

2(dAdB+1)2(dAdB+2)(dAdB+3)
GUE

(B.6)
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=
d2A − 1

2d2Ad
2
B

++O

(
1

d3B

)
, (B.7)

with

∆(S(ρA,n)) =

√
d2A − 1

2d2A

1

dB
+O

(
1

d2B

)
. (B.8)

This formula matches the variance for typical entanglement in Haar-random states

calculated in in [69].

B.2.2 Entropy Evolution of the Average Density Matrix

We consider a system with Hilbert space H = HA ⊗ HB and a random matrix

Hamiltonian H. We assume without loss of generality that dA(= dim(A)) < dB(=

dim(B)). Given a pure state |ψ0⟩ of the system, its time evolution is |ψt⟩ =

e−iHt/ℏ|ψ0⟩ and the reduced density matrix of subsystem A is ρA(t) = TrB|ψt⟩⟨ψt|.
We now work towards characterizing the evolution of the ensemble averaged density

matrix,

We study the entanglement entropy SA(t) = −TrA(ρA(t) log ρA(t)) for a state

that is initially un-entangled, i.e., |ψ0⟩ = |ϕA⟩|χB⟩.

B.2.2.1 Average density matrix

We compute the reduced state of the system, ⟨ρA(t)aa′⟩, averaged over the GUE,

using the correlations derived in Appendix D

⟨ρA(t)aa′⟩ =
dAdB∑
n,m

dB∑
b

⟨e−i(En−Em)t⟩⟨cn00c∗m00c
∗
nabcma′b⟩

=
1

dAdB + 1
[(dB + 1)δa0δa′0 + dBδaa′(1− δa0)]

+
⟨e−i(En−Em)t⟩
dAdB + 1

[(dAdB − dB)δa0δa′0 − dBδaa′(1− δa0)],

where

⟨e−i(En−Em)t⟩ = 1

N(N − 1)

∫ ∞

−∞
dx

∫ ∞

−∞
dye−i(x−y)t(σN(x, x)σN(y, y)− σ2

N(x, y)),

(B.9)
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with N = dAdB and σN(x, y) are the cluster functions of the GUE ensemble

σN(x, y) =
N−1∑
p=0

Hp(x)Hp(y). (B.10)

Hn(x) are the Hermite polynomials. Using properties of Hermite polynomials, we

can obtain the following expression for the average time-evolution coe�cient

⟨e−i(En−Em)t⟩ = 1

N(N − 1)

N−1∑
m=0

N−1∑
n=0

(sm,m(t)s
∗
n,n(t)− |sm,n(t)|2), (B.11)

where

sm,n(t) =

∫ ∞

−∞
Hn(x)Hm(x)e

−itxdx = e−
t2

4

min(n,m)∑
j=0

√
m!n!

j!(m− j)!(n− j)!

(
− i√

2
t

)n+m−2j

,

(B.12)

Note that these formulas are for the GUE case in which the variance of Hamiltonian

elements {⟨|Hnn|2⟩ = 1, ⟨|Hmn|2 = 1
2
⟩}. For the general case with {⟨|Hnn|2⟩ =

γ2, ⟨|Hmn|2⟩ = γ2

2
⟩}, we have

sm,n(t) = e−
γ2t2

4

min(n,m)∑
j=0

√
m!n!

j!(m− j)!(n− j)!

(
− i√

2
γt

)n+m−2j

, (B.13)

As we are interested in the early and late time characteristics of the entanglement

entropy, the important limits to evaluate are:

1. At t→ 0: To evaluate average density matrix near t = 0, we note that only

sn,n(t) and sn+1,n(t) contribute to the O(t
2) terms. This enables us to obtain

⟨e−i(En−Em)t⟩ = 1− N + 1

2
γ2t2 +O(t4).

This gives the average density matrix close to t = 0 as

⟨ρA(t = 0+)aa′⟩ = δa0δa′0

[
1− dB(dA − 1)

2
γ2t2

]
− δaa′(1− δa0)

dB
2
γ2t2 +O(t4).

(B.14)
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2. At t→∞:

lim
t→∞
⟨e−i(En−Em)t⟩ = 0,

which gives us the average density matrix at late times as

lim
t→∞
⟨ρA(t)aa′⟩ =

1

N + 1
[(dB + 1)δa0δa′0 + dBδaa′(1− δa0)]. (B.15)

B.2.2.2 Purity and von Neumann of the average

Once we have the expression for the average density matrix at early and late

times, it is straightforward to calculate the corresponding limits for the purity and

the entanglement entropy of this average density matrix. We can evaluate the

entanglement entropy for the average state as

S(⟨ρA(t)⟩) =−
(dA − 1)dB
dAdB + 1

⟨e−i(En−Em)t⟩ log
(
dB⟨e−i(En−Em)t⟩

dAdB + 1

)
−
(
1− dB(dA − 1)

dAdB + 1
⟨e−i(En−Em)t⟩

)
log

(
1− dB(dA − 1)

dAdB + 1
⟨e−i(En−Em)t⟩

)
.

Then,

1. At t→ 0:

Tr[⟨ρA(t)⟩2] = 1− dB(dA − 1)γ2t2 +O(t4),

and

S(⟨ρA(t)⟩) = −
(dA − 1)dB

2
γ2t2 log

(
dB
2e
γ2t2

)
+O(t4) (B.16)

.

2. At t→∞:

lim
t→∞

Tr[⟨ρA(t)⟩2] =
dB

dAdB + 1
+

dB + 1

(dAdB + 1)2
=

dA + dB
dAdB + 1

+
dB + 1− dA(dAdB + 1)

(dAdB + 1)2
,

and

lim
t→∞

S(⟨ρA(t)⟩) = log(dA)−
dA − 1

2d2Ad
2
B

+O

(
1

d3B

)
. (B.17)
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Figure B.1. Average Linear Entropy vs time. The blue curve represents the linear

entropy of the average density matrix and the black dashed line denotes the analytical

formula for the same at early times.
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Figure B.2. Average Entanglement Entropy vs time. The blue curve represents the

entanglement entropy of the average density matrix and the black dashed line denotes

the analytical formula for the same at early times.

B.2.3 Typical Purity: Late Times

We now move towards our main objective, characterizing the early and late evo-

lution of the purity and entanglement entropy of a system in an initially pure and

factorized state and governed by a random matrix Hamiltonian.

B.2.3.1 Purity: Long-time Behavior

We begin by splitting the time-dependent reduced density matrix into time-independent

and time-dependent parts,

ρA(t) =
I

dA
+ ϵ(XA + YA(t)), (B.18)
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where
I

dA
+ ϵXA =

∑
n

|cn00|2 TrB(|ψn⟩⟨ψn|), (B.19)

ϵYA(t) =
∑
n̸=m

cn00c
∗
m00 e

−i(En−Em)t TrB(|ψn⟩⟨ψm|). (B.20)

Following a detailed derivation, we obtain the average purity at long times as

⟨Tr(ρ2A(t))⟩ =

 dA+dB
dAdB+1

+ (dA−1)(dB−1)(9dAdB+48)
(dAdB+1)(dAdB+2)(dAdB+4)(dAdB+6)

GOE

dA+dB
dAdB+1

+ 2(dA−1)(dB−1)
dAdB(dAdB+1)(dAdB+3)

GUE
, (B.21)

along with the variance about this mean value

∆(Tr[ρ2A(t)]) =

√
2
d2A − 1

d4A

1

dB
+O

(
1

d2B

)
. (B.22)

Here we have made the assertion that our small parameter can be de�ned as

ϵ2 =
1

dB
(B.23)

B.2.3.2 Linear Entropy: Short-time Behavior

The time dependence of the dA eigenvalues of ρA(t) can be written in the form

λi(t) =

1− α t2

2!
− β t3

3!
− ... i = 1

αi
t2

2!
+ βi

t3

3!
+ ... i = 2, 3, ..., dA

,

where
dA∑
i=2

αi = α;

dA∑
i=2

βi = β; ... (B.24)

We can calculate α as

α = −Tr[ρA(0)ρ̈A(0) + ρ̇2A(0)] =
2

ℏ2
[
⟨H2⟩+ ⟨H⟩2 − ⟨HPAH⟩ − ⟨HPBH⟩

]
,

(B.25)

where, PA = |ϕA⟩⟨ϕA|⊗IB and PB = IA⊗|ϕB⟩⟨ϕB|. First, we see that the expres-
sion for α is symmetric in A←→ B. Secondly, for a non-interacting Hamiltonian
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Figure B.3. Average Linear Entropy vs time.

(H = HA +HB), α = 0, which is the expected result.

Then

Tr[ρ2A(t)] =
∑
i

λ2i (t) = 1− αt2 +O(t3). (B.26)

B.2.4 Typical Entanglement Entropy: Late Times

B.2.4.1 Entanglement Entropy: Long-time Behavior

We can calculate

−Tr(ρA(t) log ρA(t)) = log(dA) +
1

2
− dA

2
Tr
(
ρ2A(t)

)
+O(ϵ3), (B.27)

which gives us,

⟨SA(t)⟩ = log(dA) +
1

2
− dA

2
⟨Tr
(
ρ2A(t)

)
⟩+O(ϵ3). (B.28)

Using the results of the previous section, we can show that

⟨SA(t)⟩ =

log(dA)− d2A−1

2(dAdB+1)
− dA(dA−1)(dB−1)(9dAdB+48)

2(dAdB+1)(dAdB+2)(dAdB+4)(dAdB+6)
+O(ϵ3) GOE

log(dA)− d2A−1

2(dAdB+1)
− dA(dA−1)(dB−1)

dAdB(dAdB+1)(dAdB+3)
+O(ϵ3) GUE

,

(B.29)

which can be simpli�ed to

⟨SA(t)⟩ = log(dA)−
d2A − 1

2dAdB
+O

(
1

d2B

)
, (B.30)
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for both the GOE and the GUE. We can also calculate the standard deviation

about this mean value as

∆SA ≈
dA
2
∆(Tr[ρ2A(t)])) =

√
d2A − 1

2d2A

1

dB
+O

(
1

d2B

)
. (B.31)

We observe that the formula for the time-averaged entanglement entropy and its

variance for both the GUE and GOE cases is the same as that for Haar-random

states [21, 69] upto an order of O
(

1
d2B

)
.

B.2.4.2 Short Time Behavior

By construction, the entanglement entropy at the initial time vanishes, SA(0) = 0.

Determining the behavior of SA(t) for small t as a function of the Hamiltonian

H and the initial state can provide useful information on the time-scale τ of

entanglement production. One might expect that a Taylor expansion SA(t) =

ṠA(0) t+
1
2
S̈A(0) t

2 + . . . around t = 0 would provide a detailed description of the

early-time behavior of the entanglement entropy and an estimate of the time-scale

τ of early entanglement production. It is easy to show that the �rst order vanishes,

ṠA(0) = 0. However the second derivative of the entanglement entropy turns out

to diverge, S̈A(0) =∞, and the function SA(t) is not analytic at t = 0. Because of

that, we take an alternative route and study the time dependence of the spectrum

of the density matrix ρA(t).

We can expand the entanglement entropy as a function of time,

SA(t) = −
dA∑
i=1

λi(t)log(λi(t)) =

[
(1 + log2)α−

dA∑
i=2

αilog(αi)

]
t2

2
− αt2logt+O(t3),

where

dA∑
i=2

αilog(αi) =

dA∑
i=2

(
αilog

(αi

α

)
+ αilogα

)
= αlogα + α.

dA∑
i=2

(αi

α

)
log
(αi

α

)
.

It is not possible to get an exact expression for (6) in terms ofH and ρ(0). However,

we can obtain a bound on SA(t) as t → 0, given by Smin
A (t) ≤ SA(t) ≤ Smax

A (t),
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Figure B.4. Average Entanglement Entropy vs time.

where

Smax
A (t) =

α t2

2
log
(
(dA − 1)

2 e

α t2

)
+ O(t3) , (B.32)

Smin
A (t) =

α t2

2
log
( 2 e

α t2

)
+ O(t3) . (B.33)

For systems governed by random Hamiltonians, we can de�ne the timescale of

entanglement, τ , as the point in time for which Smax
A (t) �rst equals SPage, we �nd

its expression as

τ =

[
−2⟨SA(t)⟩

α.W−1

(
− ⟨SA(t)⟩

e.dA

)
] 1

2

. (B.34)

B.3 EE Evolution: Random Quadratic Fermionic

Hamiltonians

We consider a fermionic system with Hilbert space H = HA⊗HB and a quadratic,

fermionic, random matrix Hamiltonian H. The dimensions of the subspaces A and

B are respectively dA = 2NA and dB = 2NB where NA and NB are the number

of fermions in systems A and B. Given a factorized gaussian state |ψ0⟩ of the
system, its time evolution is |ψt⟩ = e−iHt/ℏ|ψ0⟩ and the reduced density matrix of

subsystem A is ρA(t) = trB|ψt⟩⟨ψt|. This fermionic system can also be written

in the Fock space given by HFock =
⊕N

i=1Hi where N = NA + NB is the total

number of fermions in the composite system. In this Fock space, the state of the

system can be represented by a complex structure J satisfying J 2 = −I. The

103



Hamiltonian in this picture can be written as

H =
1

2
habξ

aξb, (B.35)

where h is a 2N×2N antisymmetric matrix. The dynamics of the system, in terms

of the initial state J0 can be written as J (t) = M(t)J0M
−1(t) where M(t) = eht

is time evolution operator. The reduced complex structure for the subsystem A is

denoted by JA which is de�ned through the block structure of J as follows

J =

(
JA JAB

JBA JB

)
. (B.36)

The entanglement entropy of the subsystem A is then given by

SA =
1

2

2NA∑
i=1

[
−
(1 + xi

2

)
log
(1 + xi

2

)
−
(1− xi

2

)
log
(1− xi

2

)]
, (B.37)

where xi's are the singular values of JA(t).

B.3.1 Preliminaries

Let {ψm} be the eigenvectors of hab with eigenvalues iEm and {ϕm} be the eigen-
vectors of the initial factorised state J0 with eigenvalues iPm where Pm takes the

values ±1. These can be expanded in the computational basis {em} as

ψm =
∑
i

cmiei ; ϕm =
∑
i

dmiei. (B.38)

As hab and J0 are both 2N × 2N antisymmetric matrices, the following properties

are satis�ed

E2n−1 = −En ; E2n = +En ; ψ2n−1 = ψ∗
2n, (B.39)

P2n−1 = −1 ; P2n = +1 ; ϕ2n−1 = ϕ∗
2n. (B.40)

The set of eigenvectors {ψm}2Nm=1 and {ϕm}2Nm=1 can therefore be expressed as

{ψm, ψ
∗
m}Nm=1 and {ϕm, ϕ

∗
m}Nm=1 respectively. The following equations can then

104



be derived using orthogonality of eigenvectors:

⟨ψ∗
m, ψm⟩ =

∑
i

c2mi = 0, (B.41)

⟨ψm, ψ
∗
m⟩ =

∑
i

c∗2mi = 0, (B.42)

⟨ϕ∗
m, ϕm⟩ =

∑
i

d2mi = 0, (B.43)

⟨ϕm, ϕ
∗
m⟩ =

∑
i

d∗2mi = 0. (B.44)

Then, we can write the eigendecomposition of hab and the initial state J0 as

hij =
N∑

n=1

[
(iEn)c2n,ic

∗
2n,j + (−iEn)c

∗
2n,ic2n,j

]
, (B.45)

(J0)ij =
N∑

n=1

[
(i)d2n,id

∗
2n,j + (−i)d∗2n,id2n,j

]
. (B.46)

It is also possible to write down the following useful inner products

⟨ψm, ϕn⟩ = ⟨ϕ∗
n, ψ

∗
m⟩ =

∑
i

dnic
∗
mi = bmn, (B.47)

⟨ψm, ϕ
∗
n⟩ = ⟨ϕn, ψ

∗
m⟩ =

∑
i

d∗nic
∗
mi = bmn̄, (B.48)

⟨ψ∗
m, ϕn⟩ = ⟨ϕ∗

n, ψm⟩ =
∑
i

dnicmi = bm̄n = b∗mn̄, (B.49)

⟨ψ∗
m, ϕ

∗
n⟩ = ⟨ϕn, ψm⟩ =

∑
i

d∗nicmi = bm̄n̄ = b∗mn. (B.50)

B.3.2 Average Fermionic Gaussian State and its EE

Assuming dA ≤ dB, we compute the reduced state of the system, ⟨J (t)ij⟩, averaged
over the ensemble of gaussian distributed real, antisymmetric matrices. To do that
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it would helpful to �rst note that the initial state J0 can be written as

(J0)ij =
∑
k=1

(iPk)dkid
∗
kj = −

∑
k=1

(iPk)dkjd
∗
ki. (B.51)

Then we �nd,

⟨J (t)ij⟩ =
N∑

n,m,q

(iPq)⟨ei(Em−En)t⟩⟨bmpb
∗
npcmic

∗
nj⟩

=
1

2N − 1

[
1 + 2(N − 1)⟨ei(Em−En)t⟩m ̸=n,n̄

]
(J0)ij,

where

⟨e−i(En−Em)t⟩ = 1

N(N − 1)

∫ ∞

−∞
dx

∫ ∞

−∞
dye−i(x−y)t(σ2N(x, x)σ2N(y, y)− σ2

2N(x, y)),

(B.52)

with σ2N(x, y) given as in (Mehta & Rosenzweig 1967)

σ2N(x, y) =
N−1∑
p=0

H2p(x)H2p(y). (B.53)

Hn(x) are the Hermite polynomials. Using the product formula

Hm(x)Hn(x) =

min(m,n)∑
j=0

j!

(
m

j

)(
n

j

)
Hm+n−2j(x), (B.54)

and the formula,

Hn(x+ y) =
n∑

j=0

(
n

j

)
Hj(x)(2y)

n−j, (B.55)

we can show

sm,n(t) =

∫ ∞

−∞
Hn(x)Hm(x)e

−itxdx = e−
t2

4

min(n,m)∑
j=0

√
m!n!

j!(m− j)!(n− j)!

(
− i√

2
t

)n+m−2j

,

(B.56)
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and

⟨e−i(En−Em)t⟩ = 1

N(N − 1)

N−1∑
m=0

N−1∑
n=0

(s2m,2m(t)s
∗
2n,2n(t)− |s2m,2n(t)|2) (B.57)

Note that these formulas are for the case in which the variance of Hamiltonian

elements ⟨|Hmn|2⟩ = 1. For the general case with ⟨|Hmn|2⟩ = γ2, we have

sm,n(t) = e−
γ2t2

4

min(n,m)∑
j=0

√
m!n!

j!(m− j)!(n− j)!

(
− i√

2
γt

)n+m−2j

, (B.58)

To evaluate average density matrix near t = 0, we use

sn,n(t) = e−
γ2t2

4

n∑
j=0

n!

j!(n− j)!(n− j)!

(
− i√

2
γt

)2n−2j

= 1− 2n+ 1

4
γ2t2 +O(t4),

(B.59)

Some important cases are:

1. At t→ 0:

⟨e−i(En−Em)t⟩ = 1

N(N − 1)

[
N−1∑

n,m=0;n̸=m

s2m,2m(t)s
∗
2n,2n(t) +O(t4)

]

=
1

N(N − 1)

[
N−1∑

n,m=0;n̸=m

(
1− 4m+ 1

4
γ2t2

)(
1− 4n+ 1

4
γ2t2

)
+O(t4)

]

= 1− 1

2
γ2t2 − 1

N(N − 1)

N−1∑
n,m=0;n̸=m

(m+ n)γ2t2 +O(t4)

= 1− 2N − 1

2
γ2t2 +O(t4)

This gives us at t close to 0

⟨J (t)ij⟩ =
[
1− (N − 1)γ2t2

]
(J0)ij (B.60)

2. At t→∞:

lim
t→∞
⟨e−i(En−Em)t⟩ = 0 and lim

t→∞
⟨J (t)ij⟩ =

1

2N − 1
(J0)ij
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B.3.2.1 Entanglement entropy of the average state

The entanglement entropy is given by the von Neumann entropy of the average

state ⟨JA(t)⟩ of subsystem A with singular values a(t)

S
(
⟨JA(t)⟩

)
=

1

2

2NA∑
i=1

[
−
(1 + a(t)xi0

2

)
log
(1 + a(t)xi0

2

)
−
(1− a(t)xi0

2

)
log
(1− a(t)xi0

2

)]
,

where xi0 = 1 for an initially factorised state. For early times, t → 0, we have

a(t) = 1− (N − 1)γ2t2 which gives us

S
(
⟨JA(t)⟩

)
= NA

N − 1

2
γ2t2

[
1− log

(
N − 1

2
γ2t2

)]
+O(t4). (B.61)

B.3.3 Typical Entanglement Entropy and Variance: Late Times

The entanglement entropy for fermionic gaussian states can be expressed as [120,

121]

SA.f = NA log 2−
∞∑
n=1

Tr
[
(iJA)

2n
]

4n(2n− 1)
,

where the series converges absolutely. For a fermionic system with a random

quadratic Hamiltonian, the the entanglement entropy as a function of time can be

written as

SA.f (t) = NA log 2−
∞∑
n=1

ϵ2n
Tr
[
(iJA(t))

2n
]

4n(2n− 1)
,

where ϵ is a small, yet to be determined parameter. The series can then be trun-

cated at the lowest order which gives us

SA.f (t) = NA log 2 + ϵ2
Tr
[
J 2

A(t)
]

4
+O(ϵ4). (B.62)

We begin by noting that the time-dependent reduced fermionic state can be split

into two parts, one time-independent one, and the other time-dependent,

JA(t) = JXA + J YA(t), (B.63)
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where

(JXA)ij =
2N∑

n,m=1

iPm|bnm|2cnic∗nj, (B.64)

(J YA)ij(t) =
2N∑

n,m;n ̸=m

2N∑
q=1

iPqbmqb
∗
nqcmic

∗
nje

i(Em−En)t. (B.65)

The average of any function, f(t) = f(JA(t)), for a system governed by a random

matrix Hamiltonian is given by

⟨f(t)⟩ =
〈
f(e−iHt|ψ0⟩)

〉
=

〈
lim
t→∞

1

T

∫ T

0

f(JA(t))dt

〉
, (B.66)

where the average is evaluated both over time and over the random matrix ensem-

ble. Then, 〈
Tr
(
J 2

A(t)
)〉

=
〈
Tr
(
JX2

A

)〉
+
〈
Tr
(
J Y 2

A(t)
)〉
. (B.67)

Following a long derivation where we use the statistical properties of components

of eigenvectors of random matrices we �nd,〈
Tr
(
J Y 2

A(t)
)〉

= −NA(2NA − 1)

N
+O

(
1

N2

)
, (B.68)

〈
Tr
(
JX2

A

)〉
= O

(
1

N2

)
, (B.69)

which leads us to〈
SA.f (t)

〉
= NA log 2− NA(2NA − 1)

4N
+O

(
1

N2

)
. (B.70)

We can also calculate the variance of the purity as

∆2(SA,f (t)) =
〈
(SA,f (t))2

〉
−
〈
SA,f (t)

〉2
=
ϵ4

16

[〈
(Tr[J Y 2

A(t)])
2
〉
−
〈
Tr[J Y 2

A(t)]
〉2]

+O(ϵ6).
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Following a detailed derivation, we obtain

∆2(SA,f (t)) =
N2

A

4N2

(
1− 1

2NA

)
+O

(
1

N3

)
. (B.71)

B.3.4 Entanglement entropy: Short-time behavior

We prepare the system in the state |0⟩A ⊗ |0⟩B. The time dependence of the NA

singular values of JA(t) can be written in the form

ji(t) = 1− At
2

2!
−Bt

3

3!
− ...

Then, using (B.37), we �nd the expression for the entanglement entropy at small

times as

SA(t) =

[
(1 + log2)

NA∑
i=1

Ai

2
−

NA∑
i=1

Ai

2
log
(Ai

2

)]t2
2
−

NA∑
i=1

Ai

2
t2logt+O(t3),

Comparing with B.25 we �nd that

NA∑
i=1

Ai

2
= α. (B.72)

Moreover, similar to the procedure in the previous section, we can obtain a bound

on SA(t) as t→ 0, given by Smin
A (t) ≤ SA(t) ≤ Smax

A (t), where

Smax
A (t) =

α t2

2
log
(
NA

2 e

α t2

)
+ O(t3) , (B.73)

Smin
A (t) =

α t2

2
log
( 2 e

α t2

)
+ O(t3) . (B.74)

To help with the computations, we de�ne a structure Cµ,ν as

Cµ,ν =
1

2

(
δµ,ν + iΩµ,ν

)
, (B.75)
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where δµ,ν is the 2N × 2N identity matrix, and Ωµ,ν is the 2N × 2N fundamental

sympletic matrix,

Ωµ,ν =
N⊕
i=1

(
0 1

−1 0

)
. (B.76)

It should be noted that Cµ,ν = ⟨ξµξν⟩, is a correlation matrix for the fermionic

operator, ξµ, in the initial state. Then, in terms of this structure, using (B.25) we

can get the expression for α as

α = 2
∑
µ,ρ∈A

∑
ν,σ∈B

hµ,νhρ,σCµ,ρCν,σ. (B.77)

For a random, quadratic, fermionic, matrix Hamiltonian hµ,ν with ⟨hµ,ν⟩random h =

∆2 for µ ̸= ν and ⟨hµ,ν⟩random h = 0, we can compute

⟨α⟩random h = 2∆2NANB. (B.78)

De�ning the timescale of entanglement, τ , as the point in time for which Smax
A (t)

�rst equals SGauss, we �nd its expression as

τ =

[
−2SGauss

α.W−1

(
− SGauss

e.NA

)] 1
2

. (B.79)
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Appendix C|

Exact PDF for Eigenvectors
of GUE and GOE Random
Matrices

The probability distribution function, PM,d(v1, . . . , vd), of d out of the M indepen-

dent components of one eigenvector, v, of a random matrix has been well studied.

For instance,

PM,d(v1, . . . , vd) =
1

π
d
2

Γ(M
2
)

Γ(M−d
2

)
(1− v21 − . . .− v2d)

M−d−2
2 ,

where M = N for the GOE ensemble, M = 2N for the GUE and GSE ensembles.

However, the PDF corresponding to the components of two or more eigenvectors

of a random matrix has not been studied in detail. In the following discussion,

we aim to calculate the PDF of the components of two eigenvectors, P (v̄, w̄), of

random matrices belonging to various ensembles.

C.1 GOE

For the GOE ensemble, P (v̄, w̄) has the form

PGOE(v̄, w̄) = CNδ(1− v̄2)δ(1− w̄2)δ(v̄.w̄) (C.1)

= CN

∮
ds1
2πi

e+s1t1

∮
ds2
2πi

e+s2t2

∮
ds3
2πi

e+s3t3e−|v̄2|s1e−|w̄2|s2e−v̄.w̄s3

(C.2)
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where CN is the normalization constant, t1 = t2 = 1 and t3 = 0. The �rst task is

to calculate CN . Normalisation of this PDF requires that

1 =

∫
dNv

∫
dNwPGOE(v̄, w̄)

= CN

∫
dNv

∫
dNw

∮
ds1
2πi

e+s1t1

∮
ds2
2πi

e+s2t2

∮
ds3
2πi

e+s3t3e−|v̄2|s1e−|w̄2|s2e−v̄.w̄s3 .

Expressing |v̄2|s1 + |w̄2|s2 + v̄.w̄s3 = V̄ TMV̄ where M is a 2N × 2N matrix of the

form

M =

(
s1I

s3
2
I

s3
2
I s2I

)
. (C.3)

This gives us ∫
d2NV e−V̄ TMV̄ =

π
2N
2√

det(M)
=

πN

(s1s2 − s23
4
)
N
2

.

Then, the normalisation condition simpli�es to

1 = CN

∮
ds1
2πi

e+s1t1
1

(s1 − s23
4s2

)
N
2

∮
ds2
2πi

e+s2t2

∮
ds3
2πi

e+s3t3
πN

s
N
2
2

= CN

∮
ds2
2πi

e+s2t2

∮
ds3
2πi

e+s3t3
πN

s
N
2
2

1

Γ(N
2
)
t
N
2
−1

1 e
s23
4s2 θ(t1),

where θ(x) is the heaviside function. Setting t1 = 1 in eq(1),

1 =
CNπ

N

Γ(N
2
)

∮
ds2
2πi

e+s2t2
1

s
N
2
2

∮
ds3
2πi

e+s3t3e
s23
4s2

=
CNπ

N

Γ(N
2
)

∮
ds2
2πi

e+s2t2
1

s
N
2
2

√
4πs2

=
CNπ

N− 1
2

Γ(N
2
)Γ(N−1

2
)
,

which gives us

CN =
Γ(N

2
)Γ(N−1

2
)

πN− 1
2

. (C.4)
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C.1.1 4-component PDF

The main PDF of interest to us is, PGOE(x1, x2, y1, y2), where xi = |vi|2 and

yi = |wi|2.

PGOE(x1, x2, y1, y2)

= CN

∫
dNv dNw

∮
ds1
2πi

e+s1t1

∮
ds2
2πi

e+s2t2

∮
ds3
2πi

e+s3t3e−|v̄2|s1−|w̄2|s2−v̄.w̄s3

× δ(x1 − |v1|2)δ(x2 − |v2|2)δ(y1 − |w1|2)δ(y2 − |w2|2).

Writing v̄⊥ = (v3, . . . , vN) and w̄⊥ = (w3, . . . , wN),

PGOE(x1, x2, y1, y2)

= CN

∮
ds1
2πi

e+s1t1

∮
ds2
2πi

e+s2t2

∮
ds3
2πi

e+s3t3

∫
dv̄⊥ dw̄⊥e

−|v̄2⊥|s1−|w̄2
⊥|s2−v̄⊥.w̄⊥s3

× e−s1(x1+x2)−s2(y1+y2)(e−s3
√
x1y1 + es3

√
x1y1)(e−s3

√
x2y2 + es3

√
x2y2)

4
√
x1y1x2y2

.

Using the same method as in the previous section, we simplify this to

PGOE(x1, x2, y1, y2)

=
CN

4
√
x1y1x2y2

∮
ds1
2πi

e+s1(1−x1−x2)

∮
ds2
2πi

e+s2(1−y1−y2)

∮
ds3
2πi

e+s3t3

× (e−s3
√
x1y1 + es3

√
x1y1)(e−s3

√
x2y2 + es3

√
x2y2)

=
CNπ

N−2

Γ(N
2
− 1)

(1− x1 − x2)
N−4

2

4
√
x1y1x2y2

θ(1− x1 − x2)
∮
ds2
2πi

e+s2(1−y1−y2)

s
N−2

2
2

∮
ds3
2πi

e+s3t3

× (e−s3
√
x1y1 + es3

√
x1y1)(e−s3

√
x2y2 + es3

√
x2y2)e

s23
4s2

(1−x1−x2)

= fracCNπ
N−2Γ(

N

2
− 1)

(1− x1 − x2)
N−5

2

2
√
x1y1x2y2

θ(1− x1 − x2)
∮
ds2
2πi

e+s2(1−y1−y2)

s
N−3

2
2

× (e
−s2

(
√
x1y1+

√
x1y1)

2

1−x1−x2 + e
−s2

(
√
x1y1−

√
x1y1)

2

1−x1−x2 ),

�nally giving us the 4-component PDF as

PGOE(x1, x2, y1, y2) =
Γ(N

2
)Γ(N−1

2
)

Γ(N−2
2

)Γ(N−3
2

)

1

2π2
√
x1y1x2y2

θ(1− x1 − x2)
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×
[(

1− x1 − x2 − y1 − y2 + (
√
x1y2 −

√
x2y1)

2
)N−5

2

× θ
(
1− x1 − x2 − y1 − y2 + (

√
x1y2 −

√
x2y1)

2
)

+
(
1− x1 − x2 − y1 − y2 + (

√
x1y2 +

√
x2y1)

2
)N−5

2

× θ
(
1− x1 − x2 − y1 − y2 + (

√
x1y2 +

√
x2y1)

2
)]
.

C.1.2 4-Point Correlations

⟨x1 x2 y1 y2⟩GOE

=

∫
dx1dx2dy1dy2 x1x2y1y2P

GOE(x1, x2, y1, y2)

= CN

∫
dx1dx2dy1dy2 x1x2y1y2

∮
ds1
2πi

e+s1t1

∮
ds2
2πi

e+s2t2

∮
ds3
2πi

e+s3t3

× e−|v̄2|s1−|w̄2|s2−v̄.w̄s3δ(x1 − |v1|2)δ(x2 − |v2|2)δ(y1 − |w1|2)δ(y2 − |w2|2)

= CN

∮
ds1
2πi

e+s1t1

∮
ds2
2πi

e+s2t2

∮
ds3
2πi

e+s3t3
πN−2

(s1s2 − s23
4
)
N−2

2

× π2

64

(2s1s2 + s23)
2

(s1s2 − s23
4
)5

=
CNπ

N

16
(I1 + I2 + I3).

Here

I1 =

∮
ds1
2πi

e+s1t1

∮
ds2
2πi

e+s2t2

∮
ds3
2πi

e+s3t3
1

(s1s2 − s23
4
)
N+4

2

=
π− 1

2

Γ(N+3
2

)Γ(N+4
2

)
(C.5)

I2 =

∮
ds1
2πi

e+s1t1

∮
ds2
2πi

e+s2t2

∮
ds3
2πi

e+s3t3
3s23

2(s1s2 − s23
4
)
N+6

2

=
−3π− 1

2

Γ(N+3
2

)Γ(N+6
2

)

(C.6)

I3 =

∮
ds1
2πi

e+s1t1

∮
ds2
2πi

e+s2t2

∮
ds3
2πi

e+s3t3
9s43

16(s1s2 − s23
4
)
N+8

2

=
27π− 1

2

4Γ(N+3
2

)Γ(N+8
2

)
.

(C.7)
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This gives us

⟨x1 x2 y1 y2⟩GOE =
1

N2 − 1

N2 + 4N + 15

N(N + 2)(N + 4)(N + 6)
. (C.8)

C.2 GUE

For the GUE ensemble, P (v̄, w̄) = P (v̄R, v̄I , w̄R, w̄I) has the form

PGUE(v̄, w̄) = CNδ(1− v̄2R − v̄2I )δ(1− w̄2
R − w̄2

I )δ(v̄R.w̄R + v̄I .w̄I)δ(v̄R.w̄I − v̄I .w̄R)

= CN

∮
ds1
2πi

e+s1t1

∮
ds2
2πi

e+s2t2

∮
ds3
2πi

e+s3t3

∮
ds4
2πi

e+s4t4

× e−(v̄2R+v̄2I )s1e−(w̄2
R+w̄2

I )s2e−(v̄R.w̄R+v̄I .w̄I)s3e−(v̄R.w̄I−v̄I .w̄R)s4 ,

where CN is the normalization constant, t1 = t2 = 1 and t3 = t4 = 0. The �rst

task is to calculate CN . Normalisation of this PDF requires that

1 =

∫
d2Nv

∫
d2NwPGOE(v̄, w̄)

= CN

∫
d2Nv

∫
d2Nw

∮
ds1
2πi

e+s1t1

∮
ds2
2πi

e+s2t2

∮
ds3
2πi

e+s3t3

∮
ds4
2πi

e+s4t4

× e−(v̄2R+v̄2I )s1e−(w̄2
R+w̄2

I )s2e−(v̄R.w̄R+v̄I .w̄I)s3e−(v̄R.w̄I−v̄I .w̄R)s4

= CN

∫
d4NV

∮
ds1
2πi

e+s1t1

∮
ds2
2πi

e+s2t2

∮
ds3
2πi

e+s3t3

∮
ds4
2πi

e+s4t4e−V̄ TMV̄ .

Here M is a 4N × 4N matrix of the form

M =

(
s1I2N IN ⊗ A2

IN ⊗ AT
2 s2I2N

)
, (C.9)

where

A2 =

(
s3
2

s4
2

− s4
2

s3
2

)
. (C.10)

This gives us ∫
d4NV e−V̄ TMV̄ =

π
4N
2√

det(M)
=

π2N

(s1s2 − (s23+s24)

4
)N
.
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Then, the normalisation condition simpli�es to

1 = CN

∮
ds1
2πi

e+s1t1
1

(s1 − (s23+s24)

4s2
)N

∮
ds2
2πi

e+s2t2

∮
ds3
2πi

e+s3t3

∮
ds4
2πi

e+s4t4
π2N

sN2

= CN

∮
ds2
2πi

e+s2t2

∮
ds3
2πi

e+s3t3

∮
ds4
2πi

e+s4t4
π2N

sN2

1

Γ(N)
tN−1
1 e

(s23+s24)

4s2 θ(t1).

Setting t1 = 1,

1 =
CNπ

2N−1

Γ(N)

∮
ds2
2πi

e+s2
1

sN−1
2

=
CNπ

2N−1

Γ(N)Γ(N − 1)
,

which gives us

CN =
Γ(N)Γ(N − 1)

π2N−1
. (C.11)

C.2.1 4-Point Correlations

⟨x1 x2 y1 y2⟩GUE

=

∫
dx1dx2dy1dy2 x1x2y1y2P

GUE(x1, x2, y1, y2)

= CN

∫
dx1dx2dy1dy2 x1x2y1y2

∮
ds1
2πi

e+s1t1

∮
ds2
2πi

e+s2t2

∮
ds3
2πi

e+s3t3

∮
ds4
2πi

e+s4t4

× e−(v̄2R+v̄2I )s1e−(w̄2
R+w̄2

I )s2e−(v̄R.w̄R+v̄I .w̄I)s3e−(v̄R.w̄I−v̄I .w̄R)s4

× δ(x1 − v21)δ(x2 − |v2|2)δ(y1 − |w1|2)δ(y2 − |w2|2)

= CN

∮
ds1
2πi

e+s1t1

∮
ds2
2πi

e+s2t2

∮
ds3
2πi

e+s3t3

∮
ds4
2πi

e+s4t4

× π2N−4

(s1s2 − (s23+s24)

4
)N−2

× π4 (s1s2 +
(s23+s24)

4
)2

(s1s2 − (s23+s24)

4
)6

= CNπ
2N(I1 + I2 + I3).

Here

I1 =

∮
ds1
2πi

e+s1t1

∮
ds2
2πi

e+s2t2

∮
ds3
2πi

e+s3t3

∮
ds4
2πi

e+s4t4
1

(s1s2 − (s23+s24)

4
)N+2
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=
π−1

Γ(N + 1)Γ(N + 2)

I2 =

∮
ds1
2πi

e+s1t1

∮
ds2
2πi

e+s2t2

∮
ds3
2πi

e+s3t3

∮
ds4
2πi

e+s4t4
(s23 + s24)

(s1s2 − (s23+s24)

4
)N+3

=
−4π−1

Γ(N + 1)Γ(N + 3)

I3 =

∮
ds1
2πi

e+s1t1

∮
ds2
2πi

e+s2t2

∮
ds3
2πi

e+s3t3

∮
ds4
2πi

e+s4t4
(s23 + s24)

2

4(s1s2 − (s23+s24)

4
)N+4

=
8π−1

4Γ(N + 1)Γ(N + 4)
.

This gives us

⟨x1 x2 y1 y2⟩GUE =
N2 +N + 2

(N − 1)N2(N + 1)(N + 2)(N + 3)
. (C.12)
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Appendix D|

Eigenvector Statistics of a Ran-
dom Hamiltonian

The eigenvectors of a random Hamiltonian H =
∑N

n En|ψn⟩⟨ψn| can be written in

terms of a known or preferred basis, {|ab⟩}, of the hilbert space, HA ⊗HB, of the

composite system A+B. Then we can write |ψn⟩ =
∑

n,a,b cnab|ab⟩. The statistics
of the components cnab can then be obtained for various random matrix ensembles.

We will derive some of these statistics for the GOE and GUE ensembles. Using

the PDF of the components of one eigenvector, we can calculate

⟨|cma|2r⟩ =


Γ(r+ 1

2
)Γ(N

2
)

√
πΓ(N

2
+r)

GOE

Γ(r+1)Γ(N)
Γ(N+r)

GUE
, (D.1)

⟨(|cma|2 + |cmb|2)r⟩ =


Γ(r+1)Γ(N

2
)

Γ(N
2
+r)

GOE

Γ(r+2)Γ(N)
Γ(N+r)

GUE
, (D.2)

⟨(|cma|2 + |cmb|2 + |cmc|2)r⟩ =


2Γ(r+ 3

2
)Γ(N

2
)

√
πΓ(N

2
+r)

GOE

Γ(r+3)Γ(N)
2Γ(N+r)

GUE
. (D.3)

From these results, we can derive the following averages,

⟨|cma|2|cmb|2⟩ =

 1
N(N+2)

GOE

1
N(N+1)

GUE
, (D.4)
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⟨|cma|2|cmb|4⟩ =

 3
N(N+2)(N+4)

GOE

2
N(N+1)(N+2)

GUE
, (D.5)

⟨|cma|2|cmb|2|cmc|2⟩ =

 1
N(N+2)(N+4)

GOE

1
N(N+1)(N+2)

GUE
, (D.6)

⟨|cma|2|cmb|6⟩ =

 15
N(N+2)(N+4)(N+6)

GOE

6
N(N+1)(N+2)(N+3)

GUE
, (D.7)

⟨|cma|4|cmb|4⟩ =

 9
N(N+2)(N+4)(N+6)

GOE

4
N(N+1)(N+2)(N+3)

GUE
, (D.8)

⟨|cma|4|cmb|2|cmc|2⟩ =

 3
N(N+2)(N+4)(N+6)

GOE

2
N(N+1)(N+2)(N+3)

GUE
. (D.9)

Moreover, from the result obtained in Appendix C, we can calculate

⟨|cma|2|cmb|2|cna|2|cnb|2⟩ =

 N2+4N+15
(N−1)N(N+1)(N+2)(N+4)(N+6)

GOE

N2+N+2
(N−1)N2(N+1)(N+2)(N+3)

GUE
, (D.10)

⟨|cma|2|cmb|2|cna|2|cnc|2⟩ =

 N2+6N+9
(N−1)N(N+1)(N+2)(N+4)(N+6)

GOE

N+1
(N−1)N2(N+2)(N+3)

GUE
, (D.11)

From the orthogonality of the two bases, we have∑
a

〈
cnac

∗
ma

〉
n̸=m

= 0

=⇒
∑
a

∑
a′

〈
cnac

∗
mac

∗
na′cma′

〉
n̸=m

= 0

=⇒ N
〈
|cna|2|cma|2

〉
n ̸=m

+N(N − 1)
〈
cnac

∗
mac

∗
na′cma′

〉
a̸=a′,m ̸=n

= 0

=⇒
〈
cnac

∗
mac

∗
na′cma′

〉
a̸=a′,m ̸=n

=

 −1
(N−1)N(N+2)

GOE

−1
(N−1)N(N+1)

GUE
. (D.12)
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On similar lines, we can derive

⟨|cna|2|cma|2cnac∗mac
∗
nbcmb⟩a̸=b,m ̸=n =

− 9
(N−1)N(N+2)(N+4)(N+6)

GOE

− 4
(N−1)N(N+1)(N+2)(N+3)

GUE
, (D.13)

⟨|cna|2|cma|2cnbc∗mbc
∗
nccmc⟩a̸=b ̸=c,m ̸=n =

− N−3
(N−1)N(N+1)(N+2)(N+4)(N+6)

GOE

− 1
N2(N+1)(N+2)(N+3)

GUE
.

(D.14)

121



Bibliography

[1] Deutsch, J. M. (1991) �Quantum statistical mechanics in a closed system,�
Phys. Rev. A, 43(4), p. 2046.

[2] Srednicki, M. (1994) �Chaos and Quantum Thermalization,� Phys. Rev.
E, 50, cond-mat/9403051.

[3] Rigol, M., V. Dunjko, and M. Olshanii (2008) �Thermalization and its
mechanism for generic isolated quantum systems,� Nature, 452(7189), pp.
854�858, 0708.1324.

[4] Page, D. N. (1993) �Information in black hole radiation,� Phys. Rev. Lett.,
71, pp. 3743�3746, hep-th/9306083.

[5] Bianchi, E., P. Dona, and R. Kumar (2024) �Non-Abelian symmetry-
resolved entanglement entropy,� SciPost Phys., 17, p. 127.
URL https://scipost.org/10.21468/SciPostPhys.17.5.127

[6] Nielsen, M. A. and I. L. Chuang (2010) Quantum Computation and
Quantum Information: 10th Anniversary Edition, Cambridge University
Press.

[7] Kaufman, A. M.,M. E. Tai, A. Lukin,M. Rispoli, R. Schittko, P. M.
Preiss, and M. Greiner (2016) �Quantum thermalization through entan-
glement in an isolated many-body system,� Science, 353(6301), p. aaf6725.

[8] Bohigas, O., M. J. Giannoni, and C. Schmit (1984) �Characterization
of chaotic quantum spectra and universality of level �uctuation laws,� Phys.
Rev. Lett., 52, pp. 1�4.

[9] D'Alessio, L., Y. Kafri, A. Polkovnikov, andM. Rigol (2016) �From
quantum chaos and eigenstate thermalization to statistical mechanics and
thermodynamics,� Adv. Phys., 65(3), pp. 239�362, 1509.06411.

[10] Mondaini, R. andM. Rigol (2017) �Eigenstate thermalization in the two-
dimensional transverse �eld Ising model. II. O�-diagonal matrix elements of
observables,� Phys. Rev. E, 96(1), p. 012157.

122



[11] Richter, J., A. Dymarsky, R. Steinigeweg, and J. Gemmer (2020)
�Eigenstate thermalization hypothesis beyond standard indicators: Emer-
gence of random-matrix behavior at small frequencies,� Phys. Rev. E, 102(4),
p. 042127, 2007.15070.

[12] Schönle, C., D. Jansen, F. Heidrich-Meisner, and L. Vidmar (2021)
�Eigenstate thermalization hypothesis through the lens of autocorrelation
functions,� Phys. Rev. B, 103(23), p. 235137, 2011.13958.

[13] Bianchi, E., L. Hackl, M. Kieburg, M. Rigol, and L. Vidmar (2022)
�Volume-Law Entanglement Entropy of Typical Pure Quantum States,� PRX
Quantum, 3(3), p. 030201, 2112.06959.

[14] Murciano, S., P. Calabrese, and L. Piroli (2022) �Symmetry-resolved
Page curves,� Phys. Rev. D, 106(4), p. 046015, 2206.05083.

[15] Lau, P. H. C., T. Noumi, Y. Takii, and K. Tamaoka (2022) �Page curve
and symmetries,� JHEP, 10, p. 015, 2206.09633.

[16] Cheng, Y., R. Patil, Y. Zhang, M. Rigol, and L. Hackl (2023) �Typ-
ical entanglement entropy in systems with particle-number conservation,�
2310.19862.

[17] Kliczkowski, M., R. �wi¦tek, L. Vidmar, and M. Rigol (2023) �Av-
erage entanglement entropy of midspectrum eigenstates of quantum-chaotic
interacting Hamiltonians,� Phys. Rev. E, 107(6), p. 064119, 2303.13577.

[18] �wi¦tek, R., M. Kliczkowski, L. Vidmar, and M. Rigol (2024)
�Eigenstate entanglement entropy in the integrable spin-1/2 XYZ model,�
Phys. Rev. E, 109(2), p. 024117, 2311.10819.

[19] Rodriguez-Nieva, J. F., C. Jonay, and V. Khemani (2023) �Quantify-
ing quantum chaos through microcanonical distributions of entanglement,�
2305.11940.

[20] Langlett, C. M. and J. F. Rodriguez-Nieva (2024) �Entanglement
patterns of quantum chaotic Hamiltonians with a scalar U(1) charge,�
2403.10600.

[21] Page, D. N. (1993) �Average entropy of a subsystem,� Phys. Rev. Lett., 71,
pp. 1291�1294, gr-qc/9305007.

[22] Vidmar, L. and M. Rigol (2017) �Entanglement Entropy of Eigenstates
of Quantum Chaotic Hamiltonians,� Phys. Rev. Lett., 119(22), p. 220603,
1708.08453.

123



[23] Hawking, S. W. (1976) �Breakdown of Predictability in Gravitational Col-
lapse,� Phys. Rev. D, 14, pp. 2460�2473.

[24] Marolf, D. (2017) �The Black Hole information problem: past, present,
and future,� Rept. Prog. Phys., 80(9), p. 092001, 1703.02143.

[25] Laflorencie, N. and S. Rachel (2014) �Spin-resolved entanglement spec-
troscopy of critical spin chains and Luttinger liquids,� J. Phys. A, 2014(11),
p. P11013.

[26] Goldstein, M. and E. Sela (2018) �Symmetry-resolved entanglement in
many-body systems,� Phys. Rev. Lett., 120(20), p. 200602, 1711.09418.

[27] Xavier, J. C., F. C. Alcaraz, and G. Sierra (2018) �Equipartition of
the entanglement entropy,� Phys. Rev. B, 98(4), p. 041106, 1804.06357.

[28] Bartlett, S. D. and H. M. Wiseman (2003) �Entanglement Con-
strained by Superselection Rules,� Phys. Rev. Lett., 91, p. 097903,
quant-ph/0303140.
URL https://link.aps.org/doi/10.1103/PhysRevLett.91.097903

[29] Bartlett, S. D., T. Rudolph, and R. W. Spekkens (2007) �Reference
frames, superselection rules, and quantum information,� Rev. Mod. Phys.,
79, pp. 555�609, quant-ph/0610030.

[30] Barghathi, H., C. M. Herdman, and A. D. Maestro (2018) �Rényi
Generalization of the Accessible Entanglement Entropy,� Phys. Rev. Lett.,
121(15), p. 150501, 1804.01114.

[31] Barghathi, H., E. Casiano-Diaz, and A. Del Maestro (2019) �Opera-
tionally accessible entanglement of one-dimensional spinless fermions,� Phys.
Rev. A, 100(2), p. 022324, 1905.03312.

[32] de Groot, C., D. T. Stephen, A. Molnar, and N. Schuch (2020)
�Inaccessible entanglement in symmetry protected topological phases,� J.
Phys. A, 53(33), p. 335302, 2003.06830.

[33] Monkman, K. and J. Sirker (2020) �Operational entanglement of
symmetry-protected topological edge states,� Phys. Rev. Res., 2(4), p.
043191, 2005.13026.

[34] Casini, H., M. Huerta, J. M. Magán, and D. Pontello (2020) �En-
tanglement entropy and superselection sectors. Part I. Global symmetries,�
JHEP, 02, p. 014, 1905.10487.

124



[35] Tan, M. T. and S. Ryu (2020) �Particle number �uctuations, Rényi entropy,
and symmetry-resolved entanglement entropy in a two-dimensional Fermi
gas from multidimensional bosonization,� Phys. Rev. B, 101(23), p. 235169,
1911.01451.

[36] Bonsignori, R., P. Ruggiero, and P. Calabrese (2019) �Symmetry
resolved entanglement in free fermionic systems,� J. Phys. A, 52(47), p.
475302, 1907.02084.

[37] Murciano, S., G. Di Giulio, and P. Calabrese (2020) �Symmetry re-
solved entanglement in gapped integrable systems: a corner transfer matrix
approach,� SciPost Phys., 8, p. 046, 1911.09588.

[38] Azses, D. and E. Sela (2020) �Symmetry-resolved entanglement in
symmetry-protected topological phases,� Phys. Rev. B, 102(23), p. 235157,
2008.09332.

[39] Murciano, S., P. Ruggiero, and P. Calabrese (2020) �Symmetry re-
solved entanglement in two-dimensional systems via dimensional reduction,�
J. Stat. Mech., 2008, p. 083102, 2003.11453.

[40] Estienne, B., Y. Ikhlef, and A. Morin-Duchesne (2021) �Finite-
size corrections in critical symmetry-resolved entanglement,� SciPost Phys.,
10(3), p. 054, 2010.10515.

[41] Murciano, S., R. Bonsignori, and P. Calabrese (2021) �Symmetry
decomposition of negativity of massless free fermions,� SciPost Phys., 10(5),
p. 111, 2102.10054.

[42] Oblak, B., N. Regnault, and B. Estienne (2022) �Equipartition of
entanglement in quantum Hall states,� Phys. Rev. B, 105(11), p. 115131,
2112.13854.

[43] Neven, A. et al. (2021) �Symmetry-resolved entanglement detection using
partial transpose moments,� npj Quantum Inf., 7, p. 152, 2103.07443.

[44] Vitale, V., A. Elben, R. Kueng, A. Neven, J. Carrasco, B. Kraus,
P. Zoller, P. Calabrese, B. Vermersch, and M. Dalmonte (2022)
�Symmetry-resolved dynamical puri�cation in synthetic quantum matter,�
SciPost Phys., 12(3), p. 106, 2101.07814.

[45] Ares, F., S. Murciano, and P. Calabrese (2023) �Entanglement asym-
metry as a probe of symmetry breaking,� Nature Commun., 14(1), p. 2036,
2207.14693.

125



[46] Jones, N. G. (2022) �Symmetry-Resolved Entanglement Entropy in Critical
Free-Fermion Chains,� J. Stat. Phys., 188(3), p. 28, 2202.11728.

[47] Piroli, L., E. Vernier, M. Collura, and P. Calabrese (2022) �Ther-
modynamic symmetry resolved entanglement entropies in integrable sys-
tems,� J. Stat. Mech., 2022(7), p. 073102, 2203.09158.
URL https://dx.doi.org/10.1088/1742-5468/ac7a2d

[48] Scopa, S. and D. X. Horváth (2022) �Exact hydrodynamic description of
symmetry-resolved Rényi entropies after a quantum quench,� J. Stat. Mech.,
2208(8), p. 083104, 2205.02924.

[49] Parez, G. (2022) �Symmetry-resolved Rényi �delities and quantum phase
transitions,� Phys. Rev. B, 106(23), p. 235101, 2208.09457.

[50] Rath, A., V. Vitale, S. Murciano, M. Votto, J. Dubail, R. Kueng,
C. Branciard, P. Calabrese, and B. Vermersch (2023) �Entangle-
ment Barrier and its Symmetry Resolution: Theory and Experimental Ob-
servation,� PRX Quantum, 4(1), p. 010318, 2209.04393.

[51] Feldman, N., J. Knaute, E. Zohar, and M. Goldstein (2024)
�Superselection-Resolved Entanglement in Lattice Gauge Theories: A Tensor
Network Approach,� 2401.01942.

[52] Belin, A., L.-Y. Hung, A. Maloney, S. Matsuura, R. C. Myers, and
T. Sierens (2013) �Holographic Charged Renyi Entropies,� JHEP, 12, p.
059, 1310.4180.

[53] Caputa, P., G. Mandal, and R. Sinha (2013) �Dynamical entangle-
ment entropy with angular momentum and U(1) charge,� JHEP, 11, p. 052,
1306.4974.

[54] Feldman, N. and M. Goldstein (2019) �Dynamics of Charge-Resolved
Entanglement after a Local Quench,� Phys. Rev. B, 100(23), p. 235146,
1905.10749.

[55] Fraenkel, S. and M. Goldstein (2020) �Symmetry resolved entangle-
ment: Exact results in 1D and beyond,� J. Stat. Mech., 2003(3), p. 033106,
1910.08459.

[56] Zhao, S., C. Northe, and R. Meyer (2021) �Symmetry-resolved entan-
glement in AdS3/CFT2 coupled to U(1) Chern-Simons theory,� JHEP, 07,
p. 030, 2012.11274.

[57] Chen, H.-H. (2021) �Symmetry decomposition of relative entropies in con-
formal �eld theory,� JHEP, 07, p. 084, 2104.03102.

126



[58] Horvath, D. X., L. Capizzi, and P. Calabrese (2021) �U(1) symmetry
resolved entanglement in free 1+1 dimensional �eld theories via form factor
bootstrap,� JHEP, 05, p. 197, 2103.03197.

[59] Gaur, H. and U. A. Yajnik (2023) �Symmetry resolved entanglement
entropy in hyperbolic de Sitter space,� Phys. Rev. D, 107(12), p. 125008,
2211.11218.

[60] Ghasemi, M. (2023) �Universal thermal corrections to symmetry-resolved
entanglement entropy and full counting statistics,� JHEP, 05, p. 209,
2203.06708.

[61] Capizzi, L., O. A. Castro-Alvaredo, C. De Fazio, M. Mazzoni, and
L. Santamaría-Sanz (2022) �Symmetry resolved entanglement of excited
states in quantum �eld theory. Part I. Free theories, twist �elds and qubits,�
JHEP, 12, p. 127, 2203.12556.

[62] Capizzi, L., C. De Fazio, M. Mazzoni, L. Santamaría-Sanz, and
O. A. Castro-Alvaredo (2022) �Symmetry resolved entanglement of ex-
cited states in quantum �eld theory. Part II. Numerics, interacting theories
and higher dimensions,� JHEP, 12, p. 128, 2206.12223.

[63] Gaur, H. and U. A. Yajnik (2024) �Multi-charged moments and
symmetry-resolved Rényi entropy of free compact boson for multiple disjoint
intervals,� JHEP, 01, p. 042, 2310.14186.

[64] Di Giulio, G. and J. Erdmenger (2023) �Symmetry-resolved modu-
lar correlation functions in free fermionic theories,� JHEP, 07, p. 058,
2305.02343.

[65] Castro-Alvaredo, O. A. and L. Santamaría-Sanz (2024) �Symmetry
Resolved Measures in Quantum Field Theory: a Short Review,� 2403.06652.

[66] Sachdev, S. (2023) Quantum Phases of Matter, Cambridge University
Press.

[67] Tasaki, H. (2020) Physics and Mathematics of Quantum Many-Body Sys-
tems, Graduate Texts in Physics, Springer Cham.

[68] Iniguez, F. andM. Srednicki (2023) �Microcanonical Truncations of Ob-
servables in Quantum Chaotic Systems,� 2305.15702.

[69] Bianchi, E. and P. Dona (2019) �Typical entanglement entropy in the
presence of a center: Page curve and its variance,� Phys. Rev. D, 100(10),
p. 105010, 1904.08370.

127



[70] Foong, S. K. and S. Kanno (1994) �Proof of Page's conjecture on the
average entropy of a subsystem,� Phys. Rev. Lett., 72(8), p. 1148.

[71] Sánchez-Ruiz, J. (1995) �Simple proof of Page's conjecture on the average
entropy of a subsystem,� Phys. Rev. E, 52, pp. 5653�5655.
URL https://link.aps.org/doi/10.1103/PhysRevE.52.5653

[72] Sen, S. (1996) �Average entropy of a subsystem,� Phys. Rev. Lett., 77, pp.
1�3, hep-th/9601132.

[73] Lloyd, S. and H. Pagels (1988) �COMPLEXITY AS THERMODY-
NAMIC DEPTH,� Annals Phys., 188, p. 186.

[74] Petz, D. (2007) Quantum Information Theory and Quantum Statistics,
Theoretical and Mathematical Physics, Springer Berlin Heidelberg.

[75] Moretti, V. (2019) Fundamental Mathematical Structures of Quantum
Theory: Spectral Theory, Foundational Issues, Symmetries, Algebraic For-
mulation, Springer International Publishing.

[76] Hollands, S. and K. Sanders (2018) Entanglement measures and their
properties in quantum �eld theory, SpringerBriefs in Mathematical Physics,
Springer Nature Switzerland, 1702.04924.

[77] Witten, E. (2018) �On entanglement properties of quantum �eld theory,�
Rev. Mod. Phys., 90(4), p. 045003, 1803.04993.

[78] Casini, H. and M. Huerta (2023) �Lectures on entanglement in quantum
�eld theory,� PoS, TASI2021, p. 002, 2201.13310.

[79] Sorce, J. (2024) �Notes on the type classi�cation of von Neumann algebras,�
Rev. Math. Phys., 36(02), p. 2430002, 2302.01958.

[80] Casini, H.,M. Huerta, and J. A. Rosabal (2014) �Remarks on entangle-
ment entropy for gauge �elds,� Phys. Rev. D, 89(8), p. 085012, 1312.1183.

[81] Huang, X. and C.-T. Ma (2020) �Analysis of the Entanglement with Cen-
ters,� J. Stat. Mech., 2005, p. 053101, 1607.06750.

[82] Lin, J. and D. Radi£evi¢ (2020) �Comments on de�ning entanglement
entropy,� Nucl. Phys. B, 958, p. 115118, 1808.05939.

[83] Langenscheidt, S., D. Oriti, and E. Colafranceschi (2024)
�Channel-State duality with centers,� 2404.16004.

[84] Moudgalya, S. and O. I. Motrunich (2022) �Hilbert Space Fragmenta-
tion and Commutant Algebras,� Phys. Rev. X, 12, p. 011050, 2108.10324.

128



[85] ��� (2023) �Numerical methods for detecting symmetries and commutant
algebras,� Phys. Rev. B, 107(22), p. 224312, 2302.03028.

[86] Nielsen, M. A. and I. L. Chuang (2010) Quantum Computation and
Quantum Information, Cambridge University Press.

[87] Gilmore, R. (2008) Lie Groups, Physics, and Geometry: An Introduction
for Physicists, Engineers and Chemists, Cambridge University Press.

[88] Georgi, H. (2018) Lie algebras in particle physics, CRC Press, Boca Raton.

[89] Fuchs, J. and C. Schweigert (2003) Symmetries, Lie algebras and rep-
resentations: A graduate course for physicists, Cambridge University Press.

[90] Racah, G. Group theory and spectroscopy, CERN, Geneva (1961),
Reprinted in: Ergebnisse der exakten Naturwissenschaften, Bd. 37 (1965),
Springer Berlin Heidelberg.

[91] Perelomov, A. M. and V. S. Popov (1968) �Casimir operators for
semisimple Lie groups,� Mathematics of the USSR-Izvestiya, 2(6), p. 1313.
URL https://dx.doi.org/10.1070/IM1968v002n06ABEH000731

[92] Bianchi, E., P. Dona, and S. Speziale (2011) �Polyhedra in loop quan-
tum gravity,� Phys. Rev. D, 83, p. 044035, 1009.3402.

[93] Bianchi, E. and H. M. Haggard (2011) �Discreteness of the volume of
space from Bohr-Sommerfeld quantization,� Phys. Rev. Lett., 107, p. 011301,
1102.5439.

[94] Amico, L., R. Fazio, A. Osterloh, and V. Vedral (2008) �En-
tanglement in many-body systems,� Rev. Mod. Phys., 80, pp. 517�576,
quant-ph/0703044.

[95] Varshalovich, D. A., A. N. Moskalev, and V. K. Khersonskii (1988)
Quantum Theory of Angular Momentum, World Scienti�c, Singapore.

[96] Rovelli, C. and F. Vidotto (2014) Covariant Loop Quantum Gravity,
Cambridge Monographs on Mathematical Physics, Cambridge University
Press.

[97] Ashtekar, A. and E. Bianchi (2021) �A short review of loop quantum
gravity,� Rept. Prog. Phys., 84(4), p. 042001, 2104.04394.

[98] Noh, J. D. (2023) �Eigenstate thermalization hypothesis in two-dimensional
XXZ model with or without SU(2) symmetry,� Phys. Rev. E, 107(1), p.
014130, 2210.14589.

129



[99] Patil, R., L. Hackl, G. R. Fagan, and M. Rigol (2023) �Average pure-
state entanglement entropy in spin systems with SU(2) symmetry,� Phys.
Rev. B, 108(24), p. 245101, 2305.11211.

[100] Majidy, S., A. Lasek, D. A. Huse, and N. Yunger Halpern (2023)
�Non-Abelian symmetry can increase entanglement entropy,� Phys. Rev. B,
107(4), p. 045102, 2209.14303.

[101] Bianchi, E. and R. C. Myers (2014) �On the architecture of spacetime
geometry,� Classical and Quantum Gravity, 31(21), p. 214002.
URL https://dx.doi.org/10.1088/0264-9381/31/21/214002

[102] Livine, E. R. and S. Speziale (2007) �New spinfoam vertex for quantum
gravity,� Phys. Rev. D, 76, p. 084028.
URL https://link.aps.org/doi/10.1103/PhysRevD.76.084028

[103] Bianchi, E., J. Guglielmon, L. Hackl, and N. Yokomizo (2016) �Loop
expansion and the bosonic representation of loop quantum gravity,� Phys.
Rev. D, 94, p. 086009.
URL https://link.aps.org/doi/10.1103/PhysRevD.94.086009

[104] Freidel, L. and E. R. Livine (2010) �The �ne structure of SU(2) inter-
twiners from U(N) representations,� Journal of Mathematical Physics, 51(8),
p. 082502.
URL https://doi.org/10.1063/1.3473786

[105] Yunger Halpern, N., P. Faist, J. Oppenheim, and A. Winter (2016)
�Microcanonical and resource-theoretic derivations of the thermal state of a
quantum system with noncommuting charges,� Nature Communications, 7,
p. 12051.
URL https://doi.org/10.1038/ncomms12051

[106] Yunger Halpern, N., M. E. Beverland, and A. Kalev (2020) �Non-
commuting conserved charges in quantum many-body thermalization,� Phys.
Rev. E, 101(4), p. 042117, 1906.09227.

[107] Majidy, S., W. F. Braasch, A. Lasek, T. Upadhyaya, A. Kalev,
and N. Yunger Halpern (2023) �Noncommuting conserved charges in
quantum thermodynamics and beyond,� Nature Rev. Phys., 5(11), pp. 689�
698, 2306.00054.

[108] Murthy, C., A. Babakhani, F. Iniguez, M. Srednicki, and
N. Yunger Halpern (2023) �Non-Abelian Eigenstate Thermalization Hy-
pothesis,� Phys. Rev. Lett., 130(14), p. 140402, 2206.05310.

130



[109] O'Dea, N., F. Burnell, A. Chandran, and V. Khemani (2020) �From
tunnels to towers: quantum scars from Lie Algebras and q-deformed Lie
Algebras,� Phys. Rev. Res., 2(4), p. 043305, 2007.16207.

[110] Moudgalya, S., B. A. Bernevig, and N. Regnault (2022) �Quantum
many-body scars and Hilbert space fragmentation: a review of exact results,�
Rept. Prog. Phys., 85(8), p. 086501, 2109.00548.

[111] Kehrein, S. (2024) �Page curve entanglement dynamics in an analytically
solvable model,� Phys. Rev. B, 109, p. 224308.
URL https://link.aps.org/doi/10.1103/PhysRevB.109.224308

[112] Ebner, L., A. Schäfer, C. Seidl, B. Müller, and X. Yao (2024) �En-
tanglement Entropy of (2 + 1)-Dimensional SU(2) Lattice Gauge Theory,�
2401.15184.

[113] Bianchi, E. and E. R. Livine �Loop Quantum Gravity and Quantum In-
formation,� in �Handbook of Quantum Gravity� (Eds. C. Bambi, L. Modesto
and I.L. Shapiro), Springer Nature, Singapore (2023),, 2302.05922.

[114] Bianchi, E., L. Hackl, and N. Yokomizo (2015) �Entanglement entropy
of squeezed vacua on a lattice,� Phys. Rev. D, 92(8), p. 085045, 1507.01567.

[115] Bayta³, B., E. Bianchi, and N. Yokomizo (2018) �Gluing polyhedra
with entanglement in loop quantum gravity,� Phys. Rev. D, 98(2), p. 026001,
1805.05856.

[116] Bianchi, E., P. Donà, and I. Vilensky (2019) �Entanglement entropy
of Bell-network states in loop quantum gravity: Analytical and numerical
results,� Phys. Rev. D, 99(8), p. 086013, 1812.10996.

[117] Bianchi, E. and A. Satz (2019) �Entropy of a subalgebra of observables
and the geometric entanglement entropy,� Phys. Rev. D, 99(8), p. 085001,
1901.06454.

[118] Agullo, I., B. Bonga, P. Ribes-Metidieri, D. Kranas, and S. Nadal-
Gisbert (2023) �How ubiquitous is entanglement in quantum �eld theory?�
Phys. Rev. D, 108(8), p. 085005, 2302.13742.

[119] Erdélyi, A. (1956) Asymptotic Expansions, Dover Books on Mathematics,
Dover Publications.

[120] Bianchi, E., L. Hackl, andM. Kieburg (2021) �Page curve for fermionic
Gaussian states,� Phys. Rev. B, 103(24), p. L241118, 2103.05416.

131



[121] Vidmar, L., L. Hackl, E. Bianchi, andM. Rigol (2017) �Entanglement
Entropy of Eigenstates of Quadratic Fermionic Hamiltonians,� Phys. Rev.
Lett., 119(2), p. 020601, 1703.02979.

132



Vita

Rishabh Kumar

Rishabh joined the Indian Institute of Technology, Delhi (IIT Delhi) for his under-
graduate studies in July 2014. He completed a bachelor's degree in Engineering
Physics in July 2018, following which he joined The Pennsylvania State University
to pursue his graduate studies at the Department of Physics. He worked under the
guidance of Prof. Eugenio Bianchi at the Institute for Gravitation and the Cosmos
between 2019 and 2025 on topics covering quantum entanglement, symmetries and
random Hamiltonians. He defended his dissertation in February 2025.


