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Abstract

Entanglement lies at the heart of quantum mechanics, serving as a defining fea-
ture that sets quantum systems apart from their classical counterparts. When two
or more subsystems interact, the resulting correlations cannot be fully explained
by conventional classical theories, a phenomenon quantified by the concept of en-
tanglement entropy. Many physical systems possess additional structures in the
form of symmetries—ranging from simple charge conservation (Abelian) to more
sophisticated gauge or rotational symmetries (non-Abelian). These symmetries
impose constraints on both the dynamics and the entanglement structure. The
study of properties of entanglement in such systems is grouped under the name
symmetry-resolved entanglement. In Abelian cases, the total charge of a system
splits neatly between subsystems and the reduced density matrix for a subsystem is
block diagonal in the symmetry labels, making the analysis of symmetry-resolved
entanglement straightforward. For non-Abelian symmetries, though, charges need
not simply add or subtract, and this enriches the structure of entanglement con-
siderably.

This thesis explores the role of entanglement in isolated quantum systems,
focusing particularly on those systems which possess a rich symmetry structure,
namely a non-Abelian symmetry. We introduce a general framework for under-
standing such symmetry-resolved states, showing how the Hilbert space decom-
poses into irreducible representations that carry distinct symmetry labels. A cru-
cial idea here is the notion of subalgebras of observables that respect the underlying
symmetry. For a given non-Abelian symmetry group G, this subset of observables
remains invariant under its actions. This helps in redefining the notion of a sub-
system in a manner that respects the symmetry and eventually leads to a reduced
density matrix that is block-diagonal in the symmetry labels but continues to
reflect internal entanglement. This leads to the concept of symmetry-resolved en-
tanglement entropy, which quantifies accessible entanglement in an isolated quan-
tum system in the presence of a symmetry. Focusing on compact, semisimple Lie
groups, we derive exact formulas for the average and the variance of the typical
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entanglement entropy for the ensemble of random pure states with fixed non-
Abelian charges. By developing exact formulas for symmetry-resolved entropy and
studying their asymptotic behavior for typical symmetry-resolved states, we offer
a unifying perspective on how entanglement intertwines with the notions of eigen-
state thermalization and chaos in quantum systems with nontrivial symmetries.
Compared to the Abelian scenario, the local structure and non-Abelian symme-
try together give rise to new phenomena. In particular, we find an asymmetry
in the entanglement entropy upon interchanging the subsystems, which we illus-
trate explicitly through the calculation of the Page curve in an SU(2)-symmetric
many-body model.

This framework deepens our understanding of the universal features of entangle-
ment and opens new avenues for exploring how symmetry constrains and structures
quantum correlations—relevant not only for fundamental theory but also for ex-
perimental platforms aiming to harness entangled states for quantum technologies.
We propose multiple future applications ranging from quantifying entanglement in
quantum gravity to studying the role of symmetry-resolved entanglement in the
context of non-Abelian eigenstate thermalization.
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Chapter 1
Introduction

Entanglement can be seen as the hallmark of complex quantum systems. When
the constituents of a system come into contact, they establish correlations that
cannot be explained in terms of classical physics: they become entangled. This
phenomenon has been put to use in many areas of interest like the study of thermal-
ization in isolated quantum systems [1-3| and, as we will see in the next chapter,
entanglement has been a central tool in the attempts to understand question of
information loss in the evaporation process of black holes through Hawking radi-
ation [4]. Remarkably, new phenomena arise from the interplay of entanglement,
symmetries and constraints that a system can have [5]. In this thesis, we investigate

these aspects in detail.

1.1 Entanglement and Typical States

The Hilbert space of any complex quantum system composed of multiple subsys-
tems can be expressed as a tensor product of the Hilbert spaces corresponding to
each subsystem. For simplicity, consider a bipartite system with two subsystems
A and B. Then its Hilbert space can be expressed through the decomposition
H = Has® Hp, where H, and Hp are the Hilbert spaces of subsyems A and B
respectively. Given a pure state |¢)) of the system, we can quantify the entangle-
ment of this state by considering the reduced density matrix, ps = trg(|i)(¥|)
and evaluating its von Neumann entropy, given by Sa = —tra(palogpa). Sa is
often referred to as the entanglement entropy of the state. Interestingly, one can

show that S, = Sp for a bipartite system in a pure state [6].



It is important to note that here we assume we know the complete structure of the
system through the structure of its Hilbert space H and through that of its con-
stituents H 4 and Hp. When such a system evolves without any interaction with its
external environment, it is called an isolated quantum system. In such a system,
the dynamics is governed by the Schrédinger equation, leading to unitary evolu-
tion that preserves the system’s total energy as well as its quantum information.
A key area of study in isolated quantum systems is the approach of its observ-
ables to thermal equilibrium, a process known as thermalization [1-3]. In classical
systems, thermalization is often explained through ergodic dynamics, where the
system explores all accessible microstates over time. However, in isolated quan-
tum systems, the mechanism of thermalization is more intricate, where systems
starting in a non-thermal state can end up in a thermal state under the influence
of certain types of Hamiltonians. In these systems, the late-time properties of the
entanglement entropy of pure states has been argued to be key to understanding
thermalization in quantum systems [7], as it assumes the role the thermodynamic
entropy for these systems. A related phenomenon is that of quantum chaos, where
one studies quantum systems whose classical analogs exhibit chaotic behavior [8].
While classical chaos is characterized by sensitive dependence on initial conditions
and exponential divergence of nearby trajectories, quantum systems do not have
trajectories in phase space due to the uncertainty principle. As a result, quantum
chaos explores how chaotic dynamics manifest in the underlying quantum regime,
often focusing on the statistical properties of observables, energy levels, and eigen-
states [9-12].

One of the ideas central to these phenomena is that of typical states and their
entanglement [13-20]. For a given (high-dimensional) Hilbert space, a typical state
is one which is randomly sampled from a known probability distribution on this
space. The behavior of entanglement entropy in typical eigenstates of quantum-
chaotic hamiltonians is consistent with Page’s formula [21] and is characterized by
the volume-law, i.e. the leading contribution to the entanglement entropy scales
linearly with volume of the subsystem [13,22|. An effective way to see the trend in
the entanglement of typical states for multiple bipartitions of the same system is
through the Page curve. The notion of Page curve for random states without con-

straints was first introduced in [21] motivated by the information puzzle in black



hole evaporation [4,23,24]. We look at Page’s formula and curves in more detail
in Chapter 2.

1.2 Symmetry-resolved Entanglement:

Abelian Symmetries

So far, the discussion has hovered around general isolated quantum systems. How-
ever, physically motivated systems often possess additional structure in the form of
symmetries. The role of symmetries in understanding the fundamentals of physical
systems has been instrumental. Symmetry-breaking in quantum field theory, solu-
tions to Einstein’s equations argued on the basis of symmetries in general relativity
and the study of topological materials in condensed matter physics are only a few
examples of many such successful endeavors. In the context of isolated quantum
systems, symmetries play a fundamental role as they result in conservation laws
and constraints for physical quantities, including the entanglement entropy. The
study of entanglement for quantum systems with a symmetry has been given the
name of symmetry-resolved entanglement, and was introduced in [25-27]. A simi-
lar notion, the accessible entanglement entropy in the presence of symmetries and

superselections rules, has been discussed in [28-34|

Most of the work in this area has been focused on quantum systems with Abelian
symmetries like number conservation or charge conservation [35-64|, (see [65] for
a review). Consider a system composed of two parts A and B, with the total
charge operator Q = Q4 + Qp. We define the eigenstates |t¢,) of the charge Q
as symmetry-resolved states satisfying Q|¢,) = ¢|),). For Abelian symmetries, as
the total charge ¢ is conserved, for every eigenvalue g4 of ()4 the corresponding
eigenvalue of Qg is fixed as qg = ¢ — qa, which is why the Hilbert space for this

system can be decomposed in the following manner

H(Q) — ®q,4 (HE&IA) ® HSB‘I—QA)> _ (11)

Note that, as [|1pq><z/1q], Q} = 0, we can show that the reduced density matrix com-



mutes with the charge in A, i.e., [pa, Q4] = 0. Note that the number of possible
values of g4 is bounded by dim(H,), which is why Q4 has a degenerate spec-
trum and can be decomposed into sectors corresponding to different charges as
Qa = Dy, qal, ) where nl44) is the degeneracy of the eigenvalue g4. Therefore,
the reduced density matrix takes the block-diagonal form ps4 = @, plaa) p(XA) with
each block of definite charge g4 having probability p(94),

1.3 Symmetry-resolved Entanglement:

Non-Abelian Symmetries

For non-Abelian symmetries the condition ¢ = g4 + ¢p is not satisfied and the
reduced state p4 has non-vanishing correlations for different values of q4. This pre-
vents us from using the above methodology to arrive at a block diagonal structure
for the reduce state ps. To illustrate the new aspects that arise in the presence of
a non-Abelian symmetry, consider, for instance, a composite system that is invari-
ant under the non-Abelian symmetry group SU(2), with generators J=Js+ Jg.
Clearly, here a symmetry-resolved state cannot be a simultaneous eigenstate of
the components J*, JY, J* as these observables do not commute. The only simul-
taneous eigenstates have J2 = 0. Even if we were to diagonalize only a set of
commuting observables such as J? and J*, we still face the issue that the non-

Abelian charges are not additive over subsystems as, for instance, J2 # J_Z + fB?

To facilitate understanding of the ideas that follow, we use a concrete example
of a system of NV spin-1/2 particles with SU(2) invariant Hamiltonian. Our math-
ematical analysis only requires the symmetry group G, and the Hamiltonian is
used here simply to provide a physical motivation. For instance, we can consider

the random Heisenberg Hamiltonian [66, 67|



where the coupling constants ¢, are assumed to be normally distributed with zero
average and unit variance, S, are the individual spin operators, and p is a coupling

constant. The system is invariant under global SU(2) rotations generated by j,

[H, J]=0. (1.3)

1.3.1 Hilbert Space Decomposition

This brings us to the first of the many defining questions around which this thesis

is centered:

How does the Hilbert space of an isolated quantum system with a non-Abelian

symmetry decompose?

This question can also be reworded as: What is a suitable basis for the Hilbert space
that respects the additional structure of a non-Abelian symmetry in our system? To
begin, let us note that given any symmtery group G there are two types of operators
that immediately come to mind: (i) the generators of the symmetry {Os,,}, and
(ii) the symmetry-resolved operators, i.e. operators {Og} that commute with the
generators, satisfying [Og, Ogym] = 0 for all Ogyp,. For the example at hand, {Ogy, }
will be the observables acting on the rotational degrees of freedom, the J¢. While
{O¢} will be the observables which commute with all observables in J* and can
be called the rotationally invariant observables. Finally, the observables which are
key to figuring out the decomposition of the Hilbert space are those that belong
to the intersection {Ogym} N {Og}. These observables are of course the Casimir
operators for the group G, and the decomposition of the Hilbert space then takes
the form of a direct sum over the eigenvalues of the Casimirs,

sym
which for our example is

Hy = @,HY = @,(HI, o HY) . (1.5)

(9)

sym

@q ”H(Gq), making it convenient to eventually express the reduced state in a block

For an Abelian group, dim(H,!’ ) = 1, which simplifies the decomposition H =



diagonal form.

1.3.2 Symmetry-resolved Observables and States

Now that we have the form of the Hilbert space, we can ask the question:
How do we define a symmetry-resolved state for this system?

In our example, each spin-j sector H%) contains (2j + 1) x dim Hg) mutually or-
thogonal states. The factor (2j -+ 1) accounts for the rotational degrees of freedom,
which are spanned by the states |j, m) € ’Héﬁn The remaining degrees of freedom
are rotationally invariant states, |7, xg) € ’Hg). Fig. 1.1 illustrates this structure.
By definition, symmetry-resolved observables cannot create entanglement between
the rotational and internal parts. Consequently, a symmetry-resolved state |1;)

must factorize as

[V5) = 17,8 13 xa) — with [5,6) =32, &mld,m). (1.6)

To see why this is relevant, consider a situation in which the parameter p in
Eq. 1.2 is large. In that case, the energy gap separating different spin-j sectors
becomes quite large, making it impossible for the observables Og (which are both
rotationally invariant and symmetry-resolved) to induce high-energy transitions.
Their matrix elements connecting different spin-j sectors vanish, and they also
obey the selection rule Am = 0. As a result, states that can be prepared or mea-
sured by these Og observables necessarily take the factorized form above, ensuring

that rotational and internal degrees of freedom remain unentangled.

1.3.3 Symmetry-resolved Subsystems and the Notion of Lo-
cality

The usual bipartitioning of the Hilbert space can also be done here, but that does
not incorporate the presence of a symmetry in our system. Any definition of a
subsystem will have to be compatible with Eq. (1.4) and should know about the

symmetry of the system. So, it is crucial to ask:
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Figure 1.1. Energy spectrum of the SU(2)-invariant random Heisenberg Hamiltonian
(1.2) with N = 6. On increasing the parameter p, the spectrum splits in symmetry-

resolved blocks H%) of fixed spin 7, (1.5), with each block consisting of (2j+1) x dim ”Hg)
states as shown in the table. We show also the transitions induced by the local observable
S7S55 and by the G-invariant local observable S7 - Ss.

Can we redefine the notion of a subsystem in a manner suitable to a quantum

system with a non-Abelian symmetry?

We define Ax as the algebra of observables defined at the kinematical level.
Inside it, there is a subalgebra Ag C Ak consisting of those observables that re-
spect the symmetry group G. This means that Ag contains all operators that
remain invariant under the symmetries of the dynamics. By contrast, Ax simply
includes all possible observables we can construct without imposing that symmetry

requirement.

A spin system such as the one described by Eq. (1.2) naturally provides a notion of
locality because it is built out of individual spins S.,. When we choose two subsets
of spins, A and B, we can decompose the total Hilbert space as H = Ha ® Hp.
Observables O, acting solely on the spins in A form a kinematically local subal-
gebra Ax 4 C Ag. However, these K-local operators are not required to preserve

the symmetries of the dynamics. If we want operators that are both local to A
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Figure 1.2. Matrix elements of the K-local observable STS3 (1a)-(2a), of its SU(2)-
projected version } . P;S7S5P; (1b)-(2b), and of the G-local observable S1-Sy (1¢)- (2¢).
Block-diagonal matrix elements in the spin-lattice basis (1a) highlight the local or non-
local nature of the observable, while the off-diagonal matrix elements in the energy basis
(2a) determine the possible transitions between energy levels. While the SU(2)-projected
observable allows only SU (2)-invariant transitions (€ Ag) (2b), it is not a local observable
(¢ Ak ) (1b). Hence, the SU(2)-projected observable is not G-local, (1.7). On the other
hand, the observable S| - Sy € Aga is both local (1¢) and induces only SU(2)-invariant
transitions (2c).

and invariant under GG, we must look instead at
Aca = ArgaNAg. (1.7)

This intersection captures observables that act only on spins in A and remain un-
changed by the symmetry.

To see the difference, consider two example operators that act on spins 1 and 2.
The operator ST S5 belongs to Ak 4 because it only involves spins 1 and 2, but it is
not in Ag 4 since it breaks the rotational symmetry (it induces transitions between
spin multiplets). On the other hand, Si - S, is both local to spins 1 and 2 and
rotationally invariant, so it belongs to Ag4. This is depicted pictorially in Fig. 1.1
and through matrix elements in Fig. 1.2. Thus, this subalgebra of observables



enables us to define the notion of a subsystem compatible with the non-Abelian

symmetry of the subsystem.

A symmetry-resolved state |1;) restricted to these G-local observables is described
by the density matrix pg4. Because all operators in Ags commute with the gen-
erators J% of the symmetry within subsystem A, the density matrix pga also
commutes with J%. This commutation means pga is block-diagonal in the spin

sectors labeled by ja:
pGA = @p(“) pas. (1.8)
Ja

Such a structure also facilitates the decomposition of H%), the total Hilbert space

of spin j, into a direct sum over all possible spins j4 in subsystem A:

HY =M © P (HaY @ HGZY). (1.9)
ja

This decomposition differs from the simpler one we would get in an Abelian sym-
metry scenario (such as total charge), where the labels merely add or subtract.
Here, the rotational part Héﬁn cannot be factored away so simply, and the comple-
ment subsystem B depends on both j and j4 and not just on the difference j — j4.
If instead of the above procedure we took the usual approach of tracing out spins
in B to get a reduced density matrix px 4, we would be restricting the state to the
subalgebra Ag 4. That choice would break the symmetry structure because pg
does not have to commute with J4. For this reason, in a non-Abelian symmetry
setting, K-local observables can connect different spin sectors j4 as depicted pic-

torially in Fig. 1.1 and through matrix elements in Fig. 1.2.

One way to avoid these transitions and induce G-locality in K-local observables is
through introducing projectors PY) to forbid such transitions [68], but this comes
at the price of losing strict locality as shown in Fig. 1.2. Defining a subsystem
through Ag4 avoids this problem because it ensures that any observable in that
subsystem is both local and G-invariant. As a result, it provides a natural way to

analyze parts of the system while consistently respecting the underlying symmetry.



1.3.4 Symmetry-resolved Entanglement Entropy and Typi-
cality

How do we define the entanglement entropy for a symmetry-resolved state for

isolated quantum systems with a non-Abelian symmetry?

We now have all the tools to obtain a closed form for the entanglement entropy
for such a case. When we only have access to observables in the subsystem A
that respect the symmetry group G, it means we can only measure operators
in the subalgebra Ag4. The entanglement we can observe in that situation is
captured by the “accessible entanglement entropy,” which comes from restricting
the state to Aga. If the state of the system is a symmetry-resolved state |¢);), this
accessible entropy is precisely the symmetry-resolved entanglement entropy Sga.
Mathematically, S 4 is the von Neumann entropy of the density matrix pg 4, and it
decomposes into two parts. One term reflects the entropy within each block pgf‘),
weighted by its probability pl4), while the other term accounts for the classical

entropy associated with the different spin sectors labeled by j4.

Saa(ly) = —tr(paalogpea) = — Y p" tr(pdy log pia)) = pia) logptin).
ja ja

(1.10)

It is important to emphasize that this G-invariant notion of entanglement entropy,

Saa, is different from the usual kinematical entanglement entropy Sk 4. The latter,

defined as —tr (pKA log pKA), also captures the rotational degrees of freedom |j, m)

that are not G-invariant.

Finally, after having developed methods to help us evaluate the symmetry-resolved

entanglement entropy, we can ask the question

Given a random, symmetry-resolved state |1;), what is the probability of

obtaining a specific entanglement entropy, denoted by Sga?

We wish to analytically compute an estimate of the probability distribution of Sg 4,
P(Sga), through its mean and variance and then compare it to the numerical

estimate of the probability distribution. If its variance scales inversely in the
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subsystem size and vanishes in the thermodynamic limit, we would be able to argue
that the average entanglement is also the typical entanglement. Remarkably, the
exact formulas for the average (Sga) and the variance (ASga)? derived in [69] for
a general subalgebra of observables remain valid when one uses the dimensions of
the Hilbert spaces appearing in the decomposition (1.9). For a system composed
of N > 1 spins, we expect to see that the typical entanglement entropy (Sga)
completely characterizes the Page curve of subsystems [21,69] since the variance

of the probability distribution P(Sg4) is exponentially small in N.

1.4 Thesis Outline

This thesis is structured as follows:

e Chapter 2 goes through a pedagogical discussion covering the Page curve and

the calculation of the typical entanglement entropy for a Haar-random state.

e In Chapter 3, we explain how to operationally define a subsystem by means
of a subalgebra of observables, and we establish the fundamental expression
for the typical entanglement entropy in full generality. The results presented

in this chapter are based on Sec. 2 of [5].

e Then, in Chapter 4, we introduce a non-Abelian symmetry group and derive
the decomposition (1.8)—(1.9) for an arbitrary group G, without imposing
any locality constraints. The results presented in this chapter are based on
Sec. 3 of [5].

e In Chapter 5, we address the role of locality and propose the concept of G-
local observables in many-body systems, based on the definition (1.7). The

results presented in this chapter are based on Sec. 4 of [5].

e We turn to many-body spin systems featuring SU(2) symmetry in Chapter 6,
where we obtain the exact expressions for the SU(2) symmetry-resolved en-
tanglement entropy of typical states. The results presented in this chapter
are based on Sec. 5 of [5].

e In Chapter 7, we derive the large-system asymptotics of the SU(2) symmetry-
resolved typical entropy (see also App.A). The results presented in this

11



chapter are based on Sec. 6 of [5].

In addition to this, Appendix B contains findings of a paper in progress,
focused on studying the temporal behaviour of the entanglement entropy
in systems governed by random matrix Hamiltonians. Starting from a fac-
torized state, we characterize the short-time and late-time behaviors of the
entanglement entropy and compute the typical entanglement entropy in time.
We also extend our analysis to gaussian states in random quadratic fermionic

Hamiltonians.

Finally, Chapter 8 provides a summary of our findings and elaborates on

potential research directions.
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Chapter 2
Page Curves

2.1 Motivation: Black Hole Information Puzzle

Black holes have long been objects of study in general relativity. A puzzle arises
when one considers black holes alongside the fundamental principles of quantum
mechanics. Quantum physics with its principle of unitarity tells us that informa-
tion in any isolated quantum system’s initial state must be preserved. However,
taking a look at black hole evaporation, first described by Hawking 23], suggests
that radiation emerging from the black hole is featureless (or “thermal”) and ap-
pears to carry little information of what formed the black hole in the first place.
This question of whether, and how, black holes preserve information is known as

the black hole information puzzle [4,24].

One leading framework, hypothesized by Page [4], treats the black hole and its
surroundings as two subsystems of a single, larger isolated quantum system. The
black hole itself is described by an entropy known as the Bekenstein-Hawking en-
tropy, which is proportional to its horizon area. Additionally, any radiation in a
box around the black hole has its own thermodynamic entropy. In a typical anal-
ysis, each subsystem has a Hilbert space whose dimension depends on its entropy:
a subsystem with entropy s has a Hilbert-space dimension roughly e¢*. When the
black hole subsystem (entropy s, =~ logn) and the radiation subsystem (entropy
s, =~ logm) are combined into an isolated quantum system, the overall state is
assumed to be pure. As a result of this construction, it is possible for the the black

hole and radiation to be entangled.

13



In quantum physics, entropy can be understood as a measure of uncertainty of
measurement, outcomes: given an observable O which can result in measurement
outcomes {o;} with probabilities {p;}, the entropy of measurement for O is given
by — >, pilogp;. Within this framework, one defines the von Neumann entan-
glement entropy to measure how mixed or thermal each subsystem appears when
looked at individually. Specifically, if the radiation subsystem has a density matrix
pr, the von Neumann entropy is S, = —tr(p,logp,). A closely related measure,
known as the information in the radiation, is I, = s, — S, ~ logm — S,. This
quantity gauges the extent to which the radiation retains details of the overall
state, as opposed to looking completely thermal. When [, is small, the radiation
carries little discernible information; when I, is large, it encodes more of the black

hole’s microscopic state.

An especially important concept here is that of typicality, which states that, for
large Hilbert spaces, a randomly chosen pure state is very nearly maximally en-
tangled, with the difference from maximal entanglement scaling inversely with the
Hilbert space dimension. Consequently, given a randomly chosen pure state, any
single subsystem of such a large system usually appears thermal if its dimension
is significantly smaller than that of the complement. Page conjectured the fol-
lowing form for the typical entanglement entropy of a subsystem [21| under the

assumption m < n
«x 1 m-1
S, = - — , 2.1
k 2n (2.1)
k=n-+1

which was later proven in [70-72|. Additionally, it was proven that for 1 < m <n
this reduces to the form

m
S, ~1 -, 2.2
ogm — 2. 22)

which tells us that the information in the smaller subsystem is

m 1
Lo U Zesen, 2.3
on "~ 2° (2:3)
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In the regime m > n, when the radiation subsystem becomes the bigger subsystem,

we use the fact that S, = S}, to calculate
Irzlogm—logTH—[hzlogm—logn%—%. (2.4)
m

For the black hole + radiation system, if the black hole has a large entropy and the
radiation entropy is initially small, using Eqs. (2.2) and (2.3) we can observe that
early Hawking radiation is expected to look almost thermal and carry minimal
information. However, as the black hole evaporates, it loses mass and its entropy
decreases. Meanwhile, the radiation entropy grows as more quanta accumulate
outside. Eventually, once the radiation becomes the larger subsystem, typicality
arguments through Eq. (2.4) suggest that it can carry a significant portion of the
overall quantum information. This phenomenon is depicted in Fig. 2.1.

It is this plot for the typical entanglement entropy vs. the subsystem size that
has been of importance in studies of typical entanglement in condensed matter
theory, and has been named the Page curve. In the next section, we look at
a more technical derivation of the formula for the typical entanglement entropy

whose approximate form Page conjectured in 1993.

2.2 Derivation of the Page Formula

We begin with a bipartite quantum system composed of two subsystems A and B.
Subsystem A has a Hilbert-space dimension d 4, and subsystem B has a Hilbert-
space dimension dg. Consequently, the combined system resides in a Hilbert space
H =Hs®Hp of dimension d = ds x dg. We consider a pure state |¢)) € H, chosen
at random according to the uniform (Haar) measure on the unit sphere in C44%5,
Our objective is to determine the typical (or average) entanglement between A
and B quantified via the von Neumann entropy of the reduced density matrix of
subsystem A. Although there are multiple ways in which one can derive Page’s
formula, we are going to be looking at one in particular. The derivation is centered
around the idea that the typical entanglement entropy of such a system can be

expressed in the form

(Sa) = —(txpalog pa) = lim &, (tx(})). (2.5)
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Typical Entanglement/Information vs. Thermodynamic Entropy (Subsystem Size)
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Figure 2.1. For the black hole + radiation system of dimension mn = 291600. If
the black hole has a large entropy and the radiation entropy is initially small, using
Egs. (2.2) and (2.3) we can observe that early Hawking radiation is expected to look
almost thermal and carry minimal information. However, as the black hole evaporates,
it loses mass and its entropy decreases. Meanwhile, the radiation entropy grows as more
quanta accumulate outside. Eventually, once the radiation becomes the larger subsystem,
typicality arguments through Eq. (2.4) suggest that it can carry a significant portion of
the overall quantum information.

For this reason, our goal is to evaluate the average (tr(p})), where pa = trp ([0 )X¢|).

2.2.1 Defining the Measure Over Haar Random States
Starting with a fixed orthonormal basis {|n)} of H, we write

dadp dadp

V) = Zzﬁn\n), where Z a2 = 1.
n=1 n=1
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Because [¢) is assumed to be uniformly distributed (the Haar or uniform mea-
sure on the unit sphere in C%92), the probability distribution over the complex

coefficients {1, } is given schematically by

ap(¥) o< 6(1= Y [val?) T d(Rewsn) d(im ). (2.6)

To proceed, we observe that every state in [¢)) = Z?;‘ g cijlai)|b;) where dy < dp,

can be rewritten as |1) = 32 yi;a;)[b)), where || = ); and

da
Z vl* = 1. (2.7)
i=1

This set of normalized states have 2d dg — 1 free parameters, incorporating for 2

free parameters for every complex entry in the state and also for the normalization

da,dp |c- ,|2
ij

constraint Z = 1. Moreover, a particular sample of the ¢;;’s fixes the

v;’s as follows
dAde

Y=Y ey (aglas) (blby). (2.8)

ij=1
This along with Eq. (2.7) results in an additional m — 1 constraints. Therefore,
the number of free parameters in our space is actually 2d dg — ds. The measure

over the state du(1)) can then be transformed into a measure over the eigenvalues
of the reduced state {\;}%4, [73] as

() = dp(h, -, Aay) o<(5( Z/\)A2 Mocoday) [ AEdadn, (2.9)
1<k<dp

where

A
A1y hay) = [T 1Aa = Al (2.10)

n<m

is the squared Vandermonde determinant. Then, we want to evaluate

(i) = | (iA:)du<A1,...,AdA> (2.11)
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Performing a change of variables q, = (A, where ¢, € [0, c0) results in the integral

da

0 = ey | () o) [T al e an, 212)

(dadp +r i1 1<k<ds

where Z includes all undermined factors including normalization constants. Noting

that the integral does not distinguish between the ¢;’s allows us to drop the sum

((5) =

— =2 g A¥q,... dp—dao=ak g, 2.13
dAdB+T) /Qz (q17 7QdA) H 4 € dk ( )

1<k<da

2.2.2 Simplifying Using Generalized Laguerre Polynomials

Next, we use the fact that the value of a determinant does not change if the
multiple of any one row is added to a different row, to rewrite the Vandermonde
determinant in terms of generalized Laguerre polynomials |72]. The generalized

Laguerre polynomials are defined as

k
(dp—da), \ ! k+dp—da\ (1) ¢
L) (g) = (1)K ;:O: (r+d3—dA e (2.14)

Then, we can write

Ul i s Eii
r(on)) = 142 dd, ©J172--Jd,
< (pA)> ikakzo F(dA dB + 7,)

da
r ds—d dg—d dr—da —
X /Q1 HLE,C A)(qk)LE-,f A)(Qk)qu ek dqy,,
k=1
where ¢ is a fully antisymmetric tensor with d,4 indices satisfying

g Eirig..ig, Eguig...iq, X Oijr - (2.15)

22500y td 5

Using this along with the orthonormality condition for Laguerre polynomials

/ L= () L9299 (g) o4 c0g = T(i + 1)T(ds — da +i + )5y, (2.16)
0
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leads to a simplified esxpression for the integral

od da—1

(tr(o1)) = ﬁ S X(r), (2.17)

where Z is the modified prefactor and

1

X. —
) = DTy —da s it 1

o0 2
(@) e, s
0

Using the orthonormality condition we note that X;(0) = 1, which when combined
with Eq. (2.17) leads us to
Zdy

(tr(p)) = da = T(dadp)

(2.19)

giving us Z = T'(dadp). We recall that the (generalized) Laguerre polynomials
L,(f‘)(q) admit the generating function

— (D" o (dpa 1 -5
F(t7 Q) = Z k! tk Li: . A)(q> = (1 t) 1+d37dAe 1_tq7 (220)
=0 ! —

From this, one obtains

L0 (g) — (1) [—F(tm] . (2.21)

Using Egs. (2.20) and (2.21), we get
1
P(i+ 1) (dp — da+i+1)

dd dp—da+r,—q
- — Te I F d
dri dyl/o q € (xaCJ) (yaQ) q

[(dg —da+r+1)
P(i+ 1) (dp —da+i+1)

R xw]

Xi (7”) =

X

x=0,y=0

X

dxt dy

z=0,y=0
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Typical Entanglement vs Subsystem fraction
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Figure 2.2. Page curve for a system with dimensions: d = 2'°. The plot shows the
variation of the typical entanglement entropy (S4) vs the subsystem fraction.

T(i+ 1)D(r+1) 9= I(dg —ds+r+p+1)

D(dp—da+i+1) = T(p+ 1) —p+1)20(r—i+p+1)*

p

Finally, we evaluate the typical entanglement entropy as

da—1

(S4) = = lim D, (tx(p7})) = — lim ), [% Y xe)], e

which after evaluating the derivatives gives us for dy < dp

da—1,
2dp

(Sa) =V(dadp+1) —V(dg+1) — (da < dp). (2.23)
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To get the other half of the Page curve (d4 > dp), we exchange d4 and dp

dp—1,
2d,

<SA> :\I/(dAdB+1) —\If(dA+1) - (dA >dB). (2.24)
We can also extend this derivation to calculate (S%) and ASy, as well as the
average of other higher moments of S4. A plot of (S4) against subsystem fraction
log(da)

Toa(d) 1 shown in Fig. 2.2.

2.3 Incorporating Symmetry Constraints

So far, the discussion on typical entanglement in this chapter has been for general
quantum systems. However, many physical systems have constraints sometimes
in the form of symmetries of the system. In this case, it is expected that the
observables and states accessible to a subsystem will change and that will have an
effect on the typical entanglement of a random state in such a system. A frame-
work for incorporating constraints through the language of algebra of observables
has been presented in [69]. Here, a closed form for the average entanglement in
such systems was obtained and it was shown that the variance around this aver-
age scales inversely with the Hilbert space sector dimension and vanishes in the
thermodynamic limit proving that the average entanglement is indeed the typical
entanglement. However, this framework does not deal with non-Abelian symme-
tries any quantum system might have. For this reason, we are motivated to build
on the roadmap provided by this framework and extend it in a manner such that
it takes into account the effect a non-Abelian symmetry might have on the observ-
ables and states accessible to a subsystem and also on the amount of entanglement

in a state of such a system.
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Chapter 3
Subsystems from Subalgebras
and Typical Entropy

3.1 Introduction

In this chapter, we lay the foundation for a rigorous treatment of entanglement
in isolated quantum systems by adopting an operational approach based on sub-
algebras of observables. Traditionally, the study of entanglement has relied on
the tensor product structure of a composite Hilbert space; however, many physi-
cally relevant situations call for a more general perspective where the notion of a
subsystem is defined through the observables that one can actually access. The
motivation for this approach is twofold. First, many experimental and theoretical
contexts do not naturally present a pre-defined tensor product structure; instead,
we must characterize the subsystem by the specific set of measurements available.
Second, the algebraic formulation provides a flexible and general framework that
can be extended to incorporate additional features present in our system such as
symmetries and constraints. In our setup, a subsystem is defined via a subalge-
bra of accessible observables. The key concepts of commutant and center of an
algebra then naturally allow us to decompose the Hilbert space into sectors that
are adapted to this subalgebra. This decomposition is central to our treatment
as it allows us to define the restriction of any pure state to this subalgebra and
thereby to construct the corresponding reduced density matrix. The entanglement
entropy is then given by the von Neumann entropy of this reduced density matrix

and can be expressed as the sum of the average entropy within each sector and the
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Shannon entropy of the sector probabilities.

An important result of this chapter is the derivation of explicit expressions for
the average entanglement entropy and its variance over the ensemble of random
pure states. These expressions generalize Page’s seminal result [21] to the context
of subalgebra-defined subsystems. Moreover, we establish rigorous bounds on the
average entropy and show that the variance vanishes in the limit of large Hilbert
space dimension, thereby affirming that the average value represents the typical en-
tanglement entropy. In subsequent chapters, this framework will serve as the basis
for exploring more refined aspects of entanglement, including symmetry-resolved
entanglement and its implications in locality in quantum many-body physics. The

results presented in this chapter are based on Sec. 2 of [5].

3.2 Setup

We consider an isolated quantum system with Hilbert space H of finite dimension
D = dim#H < oo. Pure states of the system, [¢)) € H, can be understood as
vectors in CP and observables O as D x D hermitian matrices. The algebra of

observables of the system,
A=L(H)~ Mp(C), (3.1)

is the set L(#H) of linear operators on H or equivalently the algebra Mp(C) of
matrices on CP.

In general, a Von Neumann algebra on CP is an algebra of matrices that is
closed under (i) hermitian conjugation, (ii) addition, (iii) multiplication, and (iv)
contains all C multiples of the identity operator. In particular, the algebra A of

observables of the system is a Von Neumann algebra [74,75]." Here we are inter-

!While observables of the system are represented by hermitian matrices, linear combinations
are assumed to be over C and therefore the Von Neumann algebra of observables contains also
anti-hermitian matrices and, more importantly, unitary transformations. We note also that here
we have assumed that the Hilbert space of the system is finite-dimensional, and therefore in
the definition of a Von Neumann algebra reduces to the one of a matrix algebra [75], with no
additional requirement about topological closure. For a discussion of the infinite-dimensional
case and the classification of Von Neumann algebras of observables in quantum field theory, we
refer to [76-79].
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ested in Von Neumann subalgebras of A. We say that a subalgebra is generated
by the set of hermitian matrices K; (with i« = 1,...,n) if it can be obtained by

their closure under (i)—(iv), which we denote by
CK]={M e Mp(C)|M = al+) bKi+> c;KiKj+...}, (32
i ij

with coefficients a,b;,¢;; ... in C. The notion of commutant will play a central

role. The commutant of a set of matrices is defined as
{Kl,...,Kn}’z {M e Mp(C)|MK; —K; M =0,i=1,...,n}. (3.3)

There are two useful results that we will use multiple times: the first relates the
double commutant of a set of matrices to the algebra they generate, { Ky, ..., K, }" =
Cl[K, ..., K,]; the second result relates the intersection of commutants to the

union of the sets of generators:

Note that the commutant of a Von Neumann algebra As C A is also a Von

Neumann algebra (As)" C A, and the double commutant coincides with the algebra

itself, (As)” = As.

3.3 Hilbert space decomposition adapted to a sub-

algebra of observables

Given our physical system, we define a subsystem S operationally, in terms of a
set of observables {O1, O,, ...} that we have access to or that we can probe with
measuring devices available to us. These observables generate a Von Neumann
algebra Ag on H,

As = C[04,0,,...], (3.5)

that is a subalgebra of the algebra of observables A of the system, As C A. The

two notions of commutant and center allow us to decompose the Hilbert space H
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in sectors adapted to the subalgebra of observables Ag.?

We start with the notion of commutant. We denote by S the complement of the
subsystem & and define it in terms of the subalgebra of observables that commute

with Ag, i.e., the commutant of As in A,
As=(As) ={M e A|[M,N]=0, VN € As}. (3.6)

Next, we consider the center Zgs of the subalgebra. Note that in general there are
observables Ry, R,, ... that can be measured both from S and from S, i.e. the

subalgebra As can have a non-trivial center Zg,
Zs=AsNAgs = C[Ry,Ry,...]. (3.7)

These structures allow us to decompose the Hilbert space H as a direct sum of
tensor products. The construction can be understood concretely in terms of an
orthonormal basis of H adapted to the subsystem S. We first consider the ob-
servables Ry, R, ... in the center Zs. By definition, the center Zs is an Abelian
algebra and, therefore, we can diagonalize these observables simultaneously. We
denote by r the eigenvalues of the observables in the center Zs. Then, we can select
a maximal commuting set of observables in Ag with simultaneous eigenvalues a,
and a maximal commuting set of observables in Ag with simultaneous eigenvalues

(. As a result, we obtain an orthonormal basis of H,

‘T,Oz,6> = ’Tv Oé>|7na ﬂ) ) (38)

that is adapted to the subalgebra Ags. This basis gives a concrete meaning to the

direct sum decomposition
=P (HY e ny), (3.9)

where |r, @) is an orthonormal basis of Hg), and |r, ) an orthonormal basis of Hg).

Note that when the center is trivial, i.e., Zg = {1}, this decomposition reduces to

2We refer to Ch. 11.8 in [74] for a pedagogical introduction, to [80-82] for applications to
lattice systems, to [83] for applications to information transport, and to [84,85] for applications
to Hilbert space fragmentation.
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the familiar tensor product structure H = H, ® Hp of a composite system.

We call d, and b, the dimensions of the sectors appearing in the direct-sum

decomposition associated with a subalgebra As,

d,=dimHy, b =dmHY, D=dmH = ¥ db,. (3.10)

These dimensions play a central role in the expression of the typical entropy of a

subsystem.

3.4 Pure states restricted to a subalgebra and en-

tanglement entropy

Using the decomposition (3.9), observables of the subsystem S take the direct-sum

form

OcAsCA = 0=POFe1y). (3.11)

It is useful to introduce a notion of Hilbert space Hs of the subsystem, defined as

the direct sum of the subsystem sectors:
Hs = PHS. (3.12)

The restriction of an operator O € Ags to the Hilbert space of the subsystem is
given by
OcAsCA = 0s=@P0Y € LHs). (3.13)

We can write this map from O to Og concretely as

Te(-Ig):  L(H) — L(Hs) (3.14)

O +— Os=Tr(Olly)
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where Tr is the trace over H and Trg is the trace over Hg.? In the adapted basis
Ir,a, ) € H and |r,a) € Hgs, the map IIg takes the form

Ms = > (Y Ira, ), 8l) @ [r,o)(ryal (3.15)
B

r  ao

With these definitions, we can now write the restriction of a pure state |¢)) € H to

the subsystem S as a density matrix ps,

p=0)w| = ps="Tr(plls), (3.16)

so that the expectation value of an observable on the subsystem § is given by
OceAsC A — (Y|OY) = Trs(Os ps) - (3.17)

We note that the map p — ps is completely positive and trace preserving (CPTP)
86], as can be seen by writing it in the operator sum form Tr(pIls) =} 4 Y;TB pY,s
with Kraus operators Y3 =>"_ |r, o, B)(r, .

We are now ready to define the entanglement entropy S of the pure state
|1) € H restricted to a subalgebra of observables As C A = L(H): the entropy of
the triple (|¢>, A, .,43) equals the von Neumann entropy Synx(ps) of the restricted

state, i.e.,

S(Jv), A, As) = —Trs(pslog ps) with  pg = (Y|ILs|) . (3.18)

It is useful to express the entanglement entropy in the basis (3.8) adapted to a
subalgebra As. We introduce first the projector P = > ap T, B)(r, a, Bl to the
sector r of the Hilbert space decomposition. Using this projector, we can define

the probability p, that the pure state is found to be in the sector r, together with

3Traces over the Hilbert spaces H, Hs and ’Hg) are defined as

Tr(-) = (o, fl-Ira By, Trs(-) =D Y (ral-lna),  T(-)=> (ral-|ra).

raf

[e3%

Similarly, one can define traces for Hg) and for Hg = P, ”Hg) in term of the basis |r, 8).
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the (normalized) projected state |¢)("):

pr = (Y|P Z! ra, By’ (3.19)

P .
ﬁ =3 et inaing) (3.20)

Any pure state 1)) € H can then be expressed in the basis adapted to the subal-

9) =

gebra of observables As as
Z me&B Ir,a)lr, B) - (3.21)
The definition (3.16) of reduced density matrix takes then the direct sum form
ps= @D r ol (322)

with pg) simply defined as the partial trace over Hg), ie

o8 = (O wOl) = D (D wlhuly) Inainal. (323)
aa’ B
Using the decomposition (3.22) and expanding
T 1 — T (r) (r) 1 (r)
rs(pslog ps) rs’ (prps log(pr ps’)),
we can write the entanglement entropy as the sum of two terms,

S(‘¢>>Aa AS = Zpr tI‘ ps)logps Zpr 10gpr7 (324)

where the first term is the average over sectors of the entanglement entropy in
each sector, and the second piece is the Shannon entropy of the distribution over

sectors.

We summarize some useful properties of the entanglement entropy of a subsys-

tem defined in terms of a subalgebra:
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Minimum — The entanglement entropy is non-negative and vanishes if and
only if the restriction of the state to the subalgebra is pure. For this to happen,

the state has to belong to a definite sector r and have a product form, i.e.,
S(W)%A, As) =0 — dr: )= Ins|m X)s, (3.25)

with [r,§)s = >_, Salr, @) and [r, x)5 = >4 Xglr, B). As a special case, if we don’t
restrict the state to any subalgebra, then the entanglement entropy of a pure state
vanishes, S(|¢), A, A) = 0.

Maximum — We can determine the maximum entanglement entropy by vary-

ing the Lagrangian L = — > p, > .(Ailog Ai) — > prlogp, + po (1= py)+
oot (=27, Ar), with probabilities p, and A,;, and Lagrange multipliers y, and

1. At the stationary point, we obtain the maximum entropy

Smax = log (ET min(d,., br)). (3.26)

The maximally-entangled state can be written as

min(d;,by)

min(d,, b,) 1 . N
Z\/Z mlIl d , b, ) Z m ‘r72>$’r72>3- (3.27)

i=1

Commutant Symmetry — Note that the entanglement entropy of a sub-
system is symmetric under the exchange of the subsystem with its commutant,
ie.,

S(lv), A, Ag) = S(|¢), A, As). (3.28)

This notion of commutant symmetry generalizes the familiar subsystem symmetry

S, = Sp of the entanglement entropy of pure states in a tensor product H,4 ® Hp.

29



3.5 Typical entanglement entropy: average and

variance

Consider the ensemble of random pure states [0) € H. Given a function of the

state, f(|1)), we can define the average over the ensemble as

(), = /H dp() F(I0)) = / dU f(Ulo)) (3.29)

where dju(¢)) is the uniform measure over the unit sphere in C” or, equivalently, dU
is the Haar measure over the unitary group U(D) that allows us to write a random
state |10) = Ulg) in terms of a reference state |1)y) and a random unitary U. The
function f can be a linear function of [¢))(1)|, such as the expectation value of a
subsystem observable in Ag, or a non-linear function as the entanglement entropy
S(|v), A, As) of the state restricted to a subalgebra of observables. We note that
the result of this average can be expressed purely in terms of the dimensions (3.10)
of the sectors of the Hilbert space decomposition (3.9). For instance, the average

density matrix of a pure state and of its restriction to a subsystem § is

1 db 1
(3.30)

which results in the von Neumann entropy of the average state
Sex({pshn) = —Trs((ps)uloglps)n) = 32, 5= log () - (3.31)

While in general, the average < f >H alone does not characterize the typical value
of a function f(|¢)) for a random state, computing its moments (/" >H allows us
to characterize the probability distribution. We are interested in the probability
P(S)dS that a random pure state |¢)) has entropy S when restricted to the sub-
algebra As. When the dispersion around the average is small, AS < (S), we can
simply use the average entropy (S) to characterize the entropy. In this case, we

say that the typical entanglement entropy of a random pure state is (5).

In [69], the exact formulas for the average entanglement entropy (S) and its

variance (AS)? for a pure random state restricted to a subalgebra of observables
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corresponding to the Hilbert space decomposition (3.9) were found to be:

(S) = (S(I¢), A As)),, = D orer, (3.32)

(AS)? = (S%) —(S)? = D#H(ZQT (97 4+ xr) — (Zawr)Q), (3.33)

with the quantities o,., ¢, X, expressed in terms of the dimensions d,., b, D (3.10)

given by
d, b,
T - ) . 4
0 D (3.34)
( d, —1
UV(D+1)—¥(b+1)— 57 d. <b,,
or = ' (3.35)
\ b, +— d, d, > b, ,
d, — 1)(d, +2b, — 1
(dy + b))V (b, +1) — (D+1)¥'(D +1) — (dr )(4’; ) d. < by,
Xr = r
| Or < d, d, > b, ,
(3.36)

where I'(z) is the gamma function, ¥(z) = I'(z)/T'(z) is the digamma function and
U’(z) its derivative. This formula in terms of the dimensions (3.10) generalizes a
seminal result of Page [21] that applies to the special case of an a priori factorization

of the Hilbert space into subsystems.

It is useful to determine bounds on the average entropy and its variance that do
not rely on any special choice of system and subsystem or on any asymptotic limit.

We use the following inequalities for the digamma function and its derivative:

log(z) + 577 < ¥(z+1) < log(z) + 55, (3.37)
. 235214-1 < V(r+l) < ;- g2 (3-38)

We start with the average (S). For any choice of non-trivial subsystem and for
all r we have b, < D =", d,b,. Using (3.37) we can then put a tight bound on
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Pr

D D) —lmin(d—’“ b_r) < p, < logmin(D D). (3.39)

logmin(i?, 2) — 5 bood) = o d

It follows that the average entropy is bounded from above and from below by

> & (logmin(2, 2) = dmin(f, %)) < (S) < Y S logmin(2, 2).
3

T T

(3.40)
We note that, as min(“bl—:, Z—:) < 1, we have also the exact inequality
‘ (S)y—=>_, d’g’ log min(l% %> ’ < % ’ (3.41)

which is useful for extracting the asymptotics of the average entropy in the limit of
large dimension D, up to terms of order one. We note also that, because of the min,
the upper bound is tighter than the entropy of the average (3.31), consistently with
the inequality (Syn(ps)) < Syn({(ps)). Clearly, the average entropy is also smaller
than the maximum entropy (3.26).%

We consider then the variance (AS)?. Here we use two (rather loose, but useful)

inequalities for the functions ¢, and x,,
0<¢, <logD, 0<xr <2. (3.42)

It is immediate then to show that the variance of the entanglement entropy is

bounded from above by a decreasing function of the dimension D,

(log D)* + 2

(As) <

(3.43)
This bound shows that, independently of the details of the system and of the
subsystem, the variance of the entropy vanishes in the large dimension of the
Hilbert space limit, i.e., AS — 0 as D — oco. Therefore, if the average (S) is finite
and non-vanishing in this limit, then its value represents the typical entanglement

entropy of a random pure state restricted to the subsystem.

“In fact Y, %= logmin(£,£2) < log (3, min(d,, b,)) because log is concave and (log-) <
log(-).
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Chapter 4
Non-Abelian Symmetry-resolved
States and Entropy

4.1 Introduction

Symmetry plays a central role in modern physics, shaping the dynamics and struc-
ture of physical systems from elementary particles to complex many-body systems.
In this chapter, we develop a comprehensive framework to analyze entanglement in
systems that exhibit nontrivial symmetry properties, focusing particularly on the
case where the symmetry group G leaves the Hamiltonian invariant. This invari-
ance implies that the Hilbert space H carries a (reducible) unitary representation
of G. We call the physical observables, including the Hamiltonian, that commute
with the action of G as G-invariant observables. In this context, it becomes natu-
ral to restrict attention to G-invariant observables and, correspondingly, to define
symmetry-resolved states as those pure states that remain pure when confined
to the subalgebra of G-invariant observables. While the entanglement properties
of systems with an Abelian symmetry (such as U(1)) are well understood, non-
Abelian symmetry groups, in particular semisimple Lie groups, i.e., continuous
groups that do not have any Abelian invariant subgroup [87-89], like SU(2) or
SU(3), introduce novel features. In these cases, the non-commuting nature of the
generators leads to a richer structure in the Hilbert space and a more intricate
interplay between symmetry and entanglement. For this reason, the conventional
methods of defining subsystems and the entanglement entropy are meaningless in

this setting.
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To address these challenges, we note that for semisimple Lie groups, the pres-
ence of nontrivial Casimir operators—which are constructed from the generators
and remain invariant under G—allows us to label irreducible representations. As
a consequence, the Hilbert space admits a symmetry-resolved decomposition with
sectors corresponding to the eigenvalues of the Casimir operators. After estab-
lishing the Hilbert space decomposition, we introduce the notion of a symmetry-
resolved subsystem using a subalgebra of accessible observables. Furthermore, we
derive explicit expressions for the symmetry-resolved entanglement entropy. Us-
ing the adapted basis from the symmetry-resolved decomposition, we express a
generic state as a direct sum over sectors and show that the entanglement entropy
decomposes into two contributions: the average of the entropies in each sector
and a Shannon entropy associated with the distribution of the sectors. Finally,
we obtain bounds on the entropy in terms of the dimensions of the subspaces,
generalizing Page’s result to the symmetry-resolved setting. The results presented

in this chapter are based on Sec. 3 of [5].

4.2 Symmetry-resolved decomposition of the Hilbert

space

A compact Lie group G is defined by the Lie algebra of its generators T'* with real
structure constants f,,
[T, T =i f*, T°. (4.1)

We say that the finite-dimensional Hilbert space H carries a unitary representation
of the group G if the generators T are realized as D x D Hermitian matrices that
satisfy the commutation relations (4.1), with D = dimH. A group element with
real parameters o, acts on the Hilbert space as the unitary transformation U given
by

U =elod”, (4.2)

This representation of the group is, in general, reducible. It is useful to introduce
the Cartan-Killing metric 7% = tr(7%7°) where 7¢ are the generators in the adjoint

representation, [79]°. = —i f%®.. Here we restrict attention to the case of real
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compact semisimple Lie groups, for which the metric n% is positive definite!. We

use this metric and its inverse 1y, with % ny = 0%, to raise and lower indices.

The symmetry generators 7 generate a subalgebra Ay, of the algebra of
observables A = L(H) of the system,

Agym = C[T]. (4.3)
The commutant of this subalgebra defines the algebra of G-invariant observables,
Ag = (Agm) = {M € A|[M,T] =0}. (4.4)

Observables in Ag commute with the generators T¢ and therefore satisfy the G-
invariance condition

U(r-ouT* = o. (4.5)

The rank of a semisimple Lie group G is the dimension rank(G) of any one
of the Cartan subalgebras of its Lie algebra. The number of linearly independent
Casimir operators Q) is exactly given by rank(G) [90,91]. The Casimir operators
are obtained by listing all the completely-symmetric G-invariant tensors 1,,...q, of

order p, and then contracting them with the generators:
Qr = Nayaygy T T70 k=1,... rank(G). (4.6)

These operators generalize the familiar quadratic Casimir operator Q = 1q, T°T°
defined in terms of the Cartan-Killing metric. They belong to the G-invariant
subalgebra A¢ as they are invariants, and they belong to the algebra Ay, as they
are expressed in terms of the generators. Therefore, they belong to the center
Zsym of the algebra. In fact, for semisimple Lie groups (that is, Lie groups that
have no Abelian subgroup), a much stronger result holds [90,91]: these R linearly

independent Casimir operators generate the center,

Zsym = Asym N AG = C[Qk] ) (47)

INote that in this case, by rescaling the generators, the metric 7% can be brought to the
Euclidean form §%°. Here, we use the standard tensorial notation, where we keep track of upper

and lower indices, and repeated indices are contracted. As usual, the symbols () and [""] stand
for complete symmetrization or anti-symmetrization of the tensor.
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and characterize completely the irreducible representations of the group.
Using the results of Sec. 3.3, and denoting collectively ¢ the eigenvalues of the
Casimir operators, we obtain a symmetry-resolved decomposition of the Hilbert

space:

H=EP HD oH), (4.8)
q

where ’Hgg)m carries the irreducible representation (¢) of the symmetry generarators,
and H(C?) is the space of G-invariant degrees of freedom of the system defined as

HY = Inve(HD @ H) (4.9)

sym

where Invg denotes the G-invariant subspace in the tensor product and (g) is the
conjugate representation [88,89].

The symmetry-resolved decomposition (4.8) is a decomposition of the Hilbert
space H into a direct sum of irreducible representations labeled by the quantum

numbers ¢ that label the eigenvalues of the Casimir operators. Furthermore, each
(9)

sym

forms under an irreducible representation of the group, and the G-invariant Hilbert

irreducible representation is a tensor product of the sym factor H_ that trans-
space ”Hg) of internal degrees of freedom defined by (4.9). A generic state |¢) in

‘H can be expanded on the orthonormal basis adapted to this decomposition:
q m )

where m in the basis |¢, m)sym denotes collectively the eigenvalues of the Cartan
generators of the group G, and 7 in the basis |q, )¢ labels the internal G-invariant

degrees of freedom of the system.

We give three examples of the symmetry-resolved Hilbert space for semisimple Lie

groups:

G = SU(2) — This is the simplest non-trivial case illustrated in Chapter 1. The
generators are the spin operators J = (J%) with i = 1,2, 3, the structure constants
are €75, the Cartan-Killing metric d;;. The rank of the group is one, and therefore,
the decomposition is in terms of a single Casimir operator, the quadratic Casimir

Q = 6; J'J* = J2. As usual, the eigenvalues of the Casimir operator are written
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as j(j + 1) with 5 = 0, %, 1,... half-integer, and the eigenvalues of the Cartan

subalgebra operator J* are m = —j,...,+j. The Hilbert space decomposes as
H=0, (Hg)rn(@%g)), with Héﬁn of dimension dim ’Hg)m = 2741 and orthonormal

basis |7, m)sym. In Chapter 6 we discuss a concrete example of symmetry-resolved
spin system where the G-invariant Hilbert space of internal degrees of freedom H(Gj)
is the space of SU(2) intertwiners of a spin system, which can also be interpreted

geometrically as quantum polyhedra [92,93].

G = SU(3) — Starting from the 3 x 3 Gell-Mann matrices \* (with a = 1,...,8)
and using the textbook normalization A\*/2 of the generators in the fundamen-
tal representation [88,89], we can express the Cartan-Killing metric as 7% =
Ltr(A?AY) = 169, the structure constants as f®¢ = —1 tr(Al*APA]) (which is com-
pletely antisymmetric when all indices are raised), and the completely symmetric
tensor d¢ = %tr(/\(“/\b)\c)). The rank of the group is 2, and therefore, there are
two linearly independent Casimir operators ()1 and )>. The quadratic Casimir op-
erator ()1 = %nabT“Tb has eigenvalues %(q2 +p?+qp+3q+3p). The cubic Casimir
operator Qs = gdape T*T°T* has eigenvalues +<(¢ — p)(q + 2p + 3)(p + 2¢ + 3)
sometimes called the anomaly coefficient. The quantum numbers ¢,p =0,1,2, ...
label the irreducible representations and the decomposition as a direct sum over
the center is H = P, (H(q’p) ® H(Gq’p)). The dimension of the sym factor is

sym

dim M =g+ 1)(p+ (g +p+2).

sym

G = SO(4) — The algebra of the group is the same as the algebra of SU(2), x
SU(2)x with generators given by the spin operators .J; and Jz [87]. The group
has rank 2, and the two linearly independent Casimir operators can be taken as
QL = ff and Qr = J_}% The half-integer quantum numbers j;, and jg label
the irreducible representations, and the symmetry-resolved decomposition of the
Hilbert space is H = B, ;. (Hgfr;m) ® H(GjL’jR)). The dimension of the sym factor
is dim HYZ®) = (2, + 1)(2jg + 1).

sym

In general, for the classical compact matrix groups A, = SU(n + 1), B, =
SO(2n + 1) and C,, = Sp(2n) of rank n, the list of the n linearly independent
Casimir operators is given by Qr = 74,4, 7" --- T with the invariant tensor
Nay..ap, = tr(7(@ .. 7%)) defined using where 7¢ in the fundamental representa-

tion [91|. If one took 7% in the adjoint representation instead, one could not
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distinguish the representation (¢,p) from its conjugate (p,q) in SU(3), for in-
stance. In the case D, = SO(2n), one can construct the invariant tensors from
the spinor representation or, equivalently, one can take the (n — 1) Casimir oper-
ators of even order, ()9, with £ =1,...,n — 1, together with the order-n Casimir
invariant @ = €prvn o S JEPr where JM are the generators. The Casimir
operator @) allows us to distinguish the two mirror representations of SO(2n).
In the case of SO(4), this construction reduces to the two quadratic invariants
Q = JuJ" = A(JE+ J2) and Q = €pvpe I I = 8(J2 — J2). A similar
construction applies to the exceptional Lie groups G, Fy, Eg, E7, Eg, with the
invariant tensors 7, ., built from the generators in an irreducible representation

that is non-degenerate.

Finally, let us comment on the Abelian case using the compact Lie group U(1)

or many copies of it:

G=U(1l) X:--xU(1) — We note that the symmetry-resolved decomposition
(4.8) becomes trivial. In fact, in this case the structure constants f°. vanish
because the generators T commute, and therefore their algebra coincides with the
center, Asym = Zgym = C[T%]. As a result, we have a decomposition of the form
H=6D,, ’H(Gm ) where the eigenvalues of the commuting generators T (sometimes
called charges or particle numbers) are collectively denoted as m. The sym factor
in the decomposition is trivial, dim Hé;"rr)l = 1, and can be reabsorbed into a phase

in each sector ’H(Gm).

4.3 Symmetry-resolved states and subsystems

The symmetry-resolved decomposition of the Hilbert space (4.8) allows us to write

G-invariant observables as

OcAde = 0=P@Y 20Y¥). (4.11)
q

Given a pure state 1)) € H, we can write the restriction of the state to the G-
invariant observables as pg = (¢|llg|¢), where the map Il is defined concretely
by (3.15). A symmetry-resolved state is defined as a pure state that remains pure

when restricted to the G-invariant subalgebra of observables Ag. As shown in
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Chapter 3, Eq. (3.25), this implies that it belongs to an irreducible representation
¢ and has the product form:

[)  symmetry-resolved state in H — dq : |Y) =1¢,E)sym 1€, X) e -

(4.12)
In other words, symmetry-resolved states have no entanglement between internal
G-invariant degrees of freedom and sym degrees of freedom that change under

transformations of the group G.

A symmetry-resolved subsystem is defined by a set Oq, O,, ... of G-invariant

observables that we have access to. The algebra Ags that they generate is
Ags = C[Ol] C A with 0, € Ag, l=1,...,L. (4.13)

We are interested in the restriction of a state [¢)) to this subalgebra, pgs =
(Y|gs|). To build the map Ilgs, we follow the steps discussed in Chapter 3.

First, we define the rest of the system using the commutant algebra,
A@ = (.Ags)/ = {M c A| [M, Ol} =0, A Ol c AGS}- (4.14)

Note that Agg also contains observables that are not G-invariant. The center of
the subalgebra is generated by a set of commuting G-invariant observables R; in

the intersection of the two,

By diagonalizing first the commuting observables R; and calling collectively their

eigenvalues r, we obtain the direct sum decomposition
H=E H oHE) . (4.16)

This decomposition allows us to define the map Ilgs. As we are interested in the
restriction of a symmetry-resolved state to a symmetry-resolved subsystem, it is
useful to have a decomposition of the Hilbert space and an orthonormal basis that
is adapted to both decompositions (4.8) and (4.16). We show that this is possible

in general with a concrete construction.
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We introduce a decomposition adapted to symmetry-resolved states and
symmetry-resolved subsystems. Let us consider the algebra Agymas generated by
the symmetry generators T* and by the G-invariant observables O; that generate
the subsystem,

Asymas = C[T*, 0] . (4.17)

The commutant of this algebra, is?
AG§ = (Asymgg)/ = C[Ta, Ol}/ = (C[Ta], N C[Ol]/ (4.18)
= (.Asym)/ N (Ags)/ = AG N A@ (4.19)

Note that, because of the presence of the symmetry generators 7% in Agymas, the
algebra A 5 contains only the G-invariant observables in A5g. We can now define
the center

Zymas = Agmas NAgs = ClQu, Ri]. (4.20)

Note that the center of the algebra Agymas is generated by the elements of the
center R; of the symmetry-resolved subsystem and by the Casimir operators Q)
of the group G. The fact that the two commutes, [R;, Qx] = 0, follows immedi-
ately from the fact that R; are G-invariant observables, i.e., [R;, 7] = 0, and the
Casimir operators (4.6) are functions of the symmetry generator. By diagonalizing
simultaneously the commuting set {Qy, R;} with eigenvalues denoted collectively

by g and r, we obtain the decomposition
_ (a) (r) (a,r)
H=P (1" o @ UL oH)). (4.21)
q T

The decomposition comes with an orthonormal basis adapted simultaneously to

symmetry-resolved states and to the symmetry-resolved subsystems,

|Q7r7 05>B> = ‘Q7m>sym ‘T7O‘>G8 ’CJ7T75>G§' (422)

Note that the basis elements |r, a)gs of the symmetry-resolved system depend on
the eigenvalues r of R; but not on the eigenvalues ¢ of the Casimirs Q). This

feature can also be understood by considering the two decompositions H(Gq) =

*In the first line we used the relation (3.4) that applies to any set of observables H; and K.
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D, (Hg; ® H(qu)) and ’H% =P, (Higiﬂ ® ’H(qu)), that relate the formulas (4.8),
(4.16) and (4.21).

4.4 Symmetry-resolved entanglement entropy

The entanglement entropy of a symmetry-resolved state [¢)) restricted to a symmetry-
resolved subsystem can be defined and computed using the tools introduced above.
The symmetry-resolved state can be first written in the basis adapted to the sub-

system:
B (ng g, m sym) (Zﬂ’_ Z Xag ), ) s la. ,6>GS> (4.23)

with p,, the probability of finding the state in the sector is r. The state belongs
to a definite sector ¢, it does not have entanglement between internal G-invariant
degrees of freedom and sym degrees of freedom, and, in general, can have en-
tanglement between the G-invariant degrees of freedom in the subsystem and its

complement. The restriction to the subsystem can be written as
pas = (Yasle) = Epr pls with  (plh) e = ZXag Or. (4.24)

The entanglement entropy S(|¢), A, Ags) can then be computed using (3.18),
(3.24). Bounds on the entanglement entropy can be written in terms of the dimen-

sions of the sectors:

d, =dimHEy, by =dimH S D, =dimHT = Y dby. (4.25)

In particular a symmetry-resolved state [1)?) in the sector ¢ has entanglement

entropy bounded from above by

0 < S(j'), A Ags) < log (D min(d,,b,)). (4.26)

Note that here, the sector ”Hgg%n is simply an ancilla, and the entropy is independent
of &,,.
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A random symmetry-resolved state with fixed ¢ can be defined starting from
a reference state of the symmetry-resolved form |g, &)sym ¢, X), and acting on it
with a random unitary of the form @q(Us(ggn(@Uéq)), where Us(yqr)][1 and U are Haar-
measure distributed on Higin and Hgl) respectively. The average entanglement

entropy and its variance are then given by the expressions (3.32) and (3.33), with

the dimensions d, and by, given above.
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Chapter 5
ocality, Many-body Systems
and G-local Entanglement

5.1 Introduction

In certain quantum systems, the inherent notion of locality, stemming from the
spatial arrangement of particles or sites, provides a natural way of selecting a
subset to define subsystems. This chapter explores how the presence of a global
symmetry group G further refines this picture. In many-body systems, the stan-
dard tensor-product structure based solely on spatial locality (often referred to as
the K-local decomposition) does not capture the full physical content when global
symmetries are present. While the K-local subalgebra of observables is associated
with a spatial region A, such observables do not necessarily respect the symmetry
of the system. Extending the work in Chaper 4, we introduce a G-local subalgebra
which comprises those observables that are both local (acting solely on region A)
and invariant under the action of G. Unlike the K-local case, the G-local observ-
ables (illustrated in Chapter 1 in Figs. (1.1) and (1.2)) are not, in general, mutually
commuting with those on the complementary region, a fact that leads to subtle

differences in the entanglement structure.

In this chapter we develop a formalism to decompose the symmetry-resolved Hilbert
space further into subsystems defined by the G-local algebra. In particular, by in-
troducing Casimir operators associated with the subgroup acting on region A, we

obtain an additional decomposition intp sectors labeled by the eigenvalues of the
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subsystem Casimir operators. This refined decomposition enables us to define
a symmetry-resolved entanglement entropy that quantifies the entanglement of a
state when restricted to the G-local observables in region A. The chapter presents
exact formulas for the average symmetry-resolved entanglement entropy and its de-
composition into configurational and number entropy contributions. For random
symmetry-resolved states, these formulas are expressed in terms of the dimensions
of the various sectors. In the Abelian case, illustrated with G = U(1), the analysis
simplifies considerably, and we recover known results, including the equivalence
between G-local and K-local entropies and the expected equipartition behavior
under specific limits. This chapter sets the stage for the analysis of typical entan-
glement for non-Abelian symmetry groups where the two notions are expected to
differ, highlighting the nontrivial interplay between symmetry and locality. The

results presented in this chapter are based on Sec. 4 of [5].

5.2 Setup

In a lattice many-body system, there is a built-in notion of locality associated with
the NV bodies, or particles, at the sites of the lattice. We assume that the Hilbert
space at each site n is a copy of a finite-dimensional Hilbert space Hg ~ C? that
carries a unitary (reducible) representation of a compact Lie group G. Therefore,
the kinematical Hilbert space H  of the system is the tensor product of the Hilbert
spaces at sites [67,94]:

Hy = Hi® - QHq . (5'1)

-

N

Calling T the d-dimensional (reducible) representation of the generators of the
group GG at each site n, we have that the generator of global transformation for

the group G acting on Hy is simply given by the sum

N
TC=>"T:. (5.2)
n=1

We can then use the results of Chapter 4, and in particular (4.8)—(4.9), to decom-

pose the Hilbert space in symmetry-resolved sectors

Hy =@,HY = @, (HY, o HY) (5.3)

sym
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where the quantum number ¢ labels the irreducible representations of the group
G, i.e., the eigenvalues of the Casimir operators for a semisimple Lie group. The
representation space Hﬁgln is the one already described in Sec. 4.2 and the invariant
space is

HY =g (HD, @M@ - ©Hy ), (5.4)
~—_——

sym
N

where ¢ is the conjugate representation.

5.3 K-local decomposition of the Hilbert space

Let us consider a subset n € A of the nodes of the many-body lattice, for instance,
the ones defining a local region A of the lattice and excluding its complement

B [94]. This subsystem corresponds to the standard tensor-product decomposition

Hy =HaQ Hp , with HA=®Hd, HB:®7'[CI- (5.5)

neA neB

This decomposition is associated with a K-local subalgebra of observables. Let
us define first the kinematical algebra of observables Ax = L£L(Hy). The K-local

subalgebra in A is
.AKA:{OG.AK | O=0,4®1p with OAéﬁ(HA)} (56)

Clearly we have that the K-local subalgebra in B coincides with the commutant
of A, ie., Axp = (Aka)’, and that the center is trivial Axa N Agp = 1.
We note that the operator (5.2) that generates global unitary transformations

for the group G takes the form
T =Tl + 1,75, (5.7)
which is additive over the subsystems A and B. The operator T} given by

Th@l, =Y To € Aga, (5.8)

neA
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and generates unitary transformations for the group G in A.!

5.4 G-local decomposition and symmetry-resolution

G-invariant observables O of the many-body system belong to the algebra Ag
defined in (4.4). G-local observables in the subsystem A are observables that are
both G-invariant and belong to the subsystem A. They are, therefore, elements of

the intersection of the two algebras,

Aga = AgaNAg. (5.9)
We can similarly define G-local observables in B,

Acp = Ak N Ag . (5.10)

Note that in general, for a non-Abelian group, the two subalgebras are not the
commutant of each other, Agp # (Aga)’. In fact, using Ag = (Agym)’ and the

intersection formula (3.4), we find
(Aga) = (AgaNAg) = ((Agp) N (Agm)) =Clla® Op, T @ 1p5]. (5.11)
We can now determine the center of the subalgebra,
Zaa = Aca N (Aga) =C[QY,..., Q5" ], (5.12)
which is generated by the Casimir operators in the subsystem A,
fo) = Tay-ay T:l o -T:W) , kE=1,... rank(G), (5.13)
with the symmetric tensors 7,..q,, defined in (4.6). Denoting collectively ga

the eigenvalues of the subsystem Casimir operators in A, and using the results of

(9)
N

Sec. 4.3, we obtain a decomposition of the Hilbert space sector Hy’ in G-local

!Note that we are using the same notation for the generator acting on the Hilbert space of
a single site T* € L£(H4) and for the generator acting on a single site of the many-body Hilbert
space, T4 =1, - QTR - - @1y € L(Ha® - @ Ha).
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subsystems:
HY = 1 o P (1 @ n). (5.14)
qgA

where the factors are defined as

HEID = Invg(H?. @ H9Y @ Hy) . (5.15)

sym sym

sym ) )

H(Gqfl) = Invg(H

This decomposition provides us with an orthonormal basis of ’H%) adapted to the
subalgebra Ag4. It is then immediate to compute the entanglement entropy Sga
of a state |1)) restricted to the G-local subalgebra in A,

Saa = S(|Y), A, Aga) . (5.16)

It is interesting to compare the properties of the G-local entanglement entropy Sga

to the ones of the familiar K-local entanglement entropy Sga,
Ska=S(|Y), A Aka) - (5.17)

In general, the two entropies do not coincide because the G-local subalgebra can
be understood as a coarse-graining of the K-local one [74], i.e., Aga C Axa.
They both probe local properties of the many-body system and can be understood
as functions of the number of bodies N, in the subsystem A. However, there is

a crucial difference between the two. Commutant symmetry (3.28) implies that

Ska(|¥)) = Skp(|1)), but in general Sga(|v))) # Sap(|1)) because Agp # (Aga)'

Bringing together the results of Chapter 3, Chapter 4, and the decomposition
(5.14), we obtain the exact formulas for the typical G-local symmetry-resolved en-
tanglement entropy that apply to a compact Lie group GG. For a random symmetry-
resolved state |W>> with total charge ¢, the total symmetry-resolved entanglement

entropy has average value

d, b d,, — 1
(Sa)g = Z qAquA <\I}<D +1) = U(bgg, +1) — ;Ab—> (5.18)
g4

qal qu quqA

dg,b Dogs — 1
+ ) e (\IJ(D +1) = U(dy, +1) — ?T) . (5.19)

qal dq s >bgq
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where the dimensions of the sectors are defined as
dyy = HEY | by =dimHEGY . D=dimHEH = 3 dybe, . (5.20)

Note that the formula takes into account the fact that, in the sum over subsystem
charges ¢4, the dimensions of the subsystem sectors can satisfy either d,, < by,
or dg, > bgg,-

The symmetry-resolved entanglement entropy Sga(|¢;)) can be understood as
the sum of two terms, SGCZM and S(num) One first defines the symmetry-resolved

entanglement entropy at fixed system and subsystem charges S(Jg) as the von

Neumann entropy of the density matrix p(“)

in each sector j4. Then the configu-
rational entropy SG A is given by its average over the probability pl4) of finding
the state in the sector j4, and the number entropy ng;m) is the Shannon entropy
of the probability pt4). The table below summarizes the definitions commonly

used in the literature:

Total symmetry-resolved entanglement entropy Sca(|v;))

Symmetry-resolved entanglement entropy ;
Sea’ = —tr(pdd log ped)
at fixed system & subsystem charges

Configurational entropy S(Conf > plia) ng)
Number entropy (Shannon) S(num) == pUa) log plia)

(5.21)
The average symmetry-resolved entanglement entropy at fixed subsystem charge,
(Sg]j))q, i.e., the entanglement entropy of a random symmetry-resolved state [1)())
projected to the sector with subsystem charge ¢4, is given by the standard Page
formula [21,69]

d,, — 1
‘Ij<qubqqA + 1) - \Ij<bqqA + 1) - ;Ab— qu < bqqA )
(SG4))q = 444 (5.22)
bgga > dq, gy > Dgq, -
The average over the subsystem sectors ¢4, weighted with the probability
dg, b
Oqu = quA (5.23)
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of the state [1)(?) being found in each sector, is given by the configurational entropy
conf
(564" ) = D_ 00 {SEA)a (5.24)
qA

The average Shannon entropy of the probability distribution (5.23) defines the

number entropy
(564™)a =D 0au (VD +1) = W(dy,byg, + 1) (5.25)
qA

Finally, the total symmetry-resolved entanglement entropy can be written as the

sum
(Sca)e = (Sea™)g + (Soy™), . (5.26)

5.5 U(1) symmetry-resolved entanglement

In the case of an Abelian symmetry group there are significant simplifications that
we illustrate here with the example of G = U(1) and charge conservation [13-20].

We consider a lattice many-body system with nodes carrying a copy of the
two-dimensional Hilbert space Hy = C? of a spin-1/2 particle, and transforming

under a reducible representation of the group U(1), i.e.,

Hy=Ho® - @Hy  with Hy= ) HI =span(|1/2, £1/2)).
—_——
N m/=+1/2
(5.27)

The generator of the U(1) symmetry at each site is the spin operator S? = 0%/2,

and the generator of global U(1) transformations is

N
J =Y "8, (5.28)
n=1

which generates global rotations that preserve the direction of the axis z. The
Hilbert space of the system decomposes as a direct sum over irreducible represen-

tations of the group U(1) labeled by the quantum number m, the eigenvalue of J*
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or the total charge,

+N/2 +N/2
Hy = P HILeoHE) = P HE (5.29)
m=—N/2 m=—N/2

We note that, as the group is Abelian, the sym factor H™ g trivial, it has

sym

dimension dimH™ = 1 and the pure phase e associated to each irreducible

sym
representation m can be reabsorbed in the U(1)-invariant part of the state in
’H(Gm). Moreover, as for U(1) the conjugate representation is simply m = —m, the

invariant Hilbert space is given by

sym

HY =Twve (M oHy) = @ H™W @ - aH™. (5.30)
mitAmy=m

To define a G-local subsystem with N, bodies, we define the generator of U(1)

transformations in A,

ED I (5.31)

neA

with eigenvalues m 4. The decomposition in G-local subsystems is then given by

W DO uE™) - DG eusy).

ma ma,mp
ma+mp=m

where we used the relation H\™) @ ™) = 1 mAT™mE) that holds only in the

sym sym sym

Abelian case, together with the definitions

HEY = Inve (K™ @ Hy) (5.33)

sym

™ @HT @ Hp) = Inva(H T @ Hy) = HIET)

;L[ ) - IHVG (Hsym sym sym
(5.34)

Note that, in the Abelian case, for a symmetry-resolved state [1)(™) € Hgn), the
G-local and the K-local entropy coincide,

G=U(1) = Seallp™)) = Ska(lp'™)), (5.35)
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and the commutant symmetry (3.28) implies the subsystem symmetry

G=U1) = Sap(p™)) = Sealls™)). (5.36)

Applying the general formulas (5.18)—(5.26) to the Abelian Lie group G = U(1),
we see that the total symmetry-resolved entanglement entropy in the sector of

charge m has the average value

dm bmm dm -1
<SGA>m = Z ATA <\I/(D + 1) — qj(bmmA -+ 1) — #)
mma

mAl dnLA Sbrn m

(5.37)

+ Y %(\IJ(D%—l)—\IJ(dW%—l)—ﬁ),

mAl dmA>bmmA

(5.38)

where the dimensions of the sectors are given by

N

D,, = dimH"™ = 5.39
w7, (539

Ny
d,, . =di (ma) _ 5.40
A imH gy (% +m,4) ( )

. m,m N — NA

Note that the formula takes into account the fact that, in the sum over subsystem
charges g4, the dimensions of the subsystem sectors can satisfy either d,,,, < b,
Or Ay > by -
We can also decompose the total symmetry-resolved entanglement entropy into
different components. The average symmetry-resolved entanglement entropy at
(ma)

fixed subsystem charge, (S; "' )m, i.e., the entanglement entropy of a random

symmetry-resolved state |¢(m)> projected to the sector with subsystem charge m 4,
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is given by the standard Page formula [21,69]

A, — 1
U(dp bmmy +1) = Vb, +1) — —— Ay < by
(ma) 2 bmm
<SGA Ym = 4
bm, < dm, Ay > by -
(5.42)
The average over the subsystem sectors m 4, weighted with the probability
dm bmm
Om, = —AD = (5.43)

of the state [1)(™) being found in each sector, is given by the configurational

entropy
conf m
(SET N m = oma (S )m (5.44)

ma

The average Shannon entropy of the probability distribution (5.23) defines the

number entropy
(S =3 o, (\I/(D 1) — U(dy, by + 1)) (5.45)
mA

Finally, the total symmetry-resolved entanglement entropy can be written as the

sum
(Sca)m = (SeaVm 4+ (SGA™ . (5.46)

To compare to the literature on the thermodynamic limit [13-16] and on equipar-
tition of entanglement [27], we introduce intensive quantities and study the be-
havior of subsystem entropy in the limit N — oo at fixed intensive properties.
Specifically, we define the subsystem fraction f, the system U(1) charge density s,

and the subsystem charge density t as follows:

NA 2m t_2mA

N Y

and we restrict here to f < 1/2. At the leading order in N, the symmetry-resolved

entanglement entropy at fixed system and subsystem charge reduces to

(i)Y =logd,,, +0(1) = fNB(t) — %logN +0(1), (5.48)
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where we used the property (3.37) that allows us to write the digamma function

U(z) as a logarithm at the leading order, and we have defined the function S(t)

ﬁ(t):—lgtlog(1;t>—1_2|—t10g(1—2i_t) . (5.49)

This result corresponds exactly to the one found in [14].2 We then compute the

as:

configurational entropy, number entropy, and total symmetry-resolved entropy in
the thermodynamic limit. In this limit, the probability o,,, (5.43) is approxi-
mated by a discrete Gaussian probability with mean m, = N f5 and variance
04 = N @. In terms of intensive quantities, this translates into a continu-
ous probability density function o(t) with mean { = s and variance o = lf_—Nf
We evaluate the configurational entropy at leading order in N using saddle-point
techniques. This is equivalent to computing the symmetry-resolved entanglement

entropy at fixed system and subsystem charge (5.48) at the mean t =t = s:
con ]_
(65" )m = INB(s) = 5log N + O(1) (5.50)

The computation of the number entropy is straightforward. The Shannon entropy
of a discrete Gaussian probability is simply given by 1 log(2mc?) + 5 where o4 is
the variance. Hence, the number entropy is:

mfA-f), 1

D)y Lro0) = JlesN 0y (551)

num 1
(5G4™)m = 5 log(V 5

We note that when we sum the configurational entropy and the number entropy
to obtain the total symmetry-resolved entanglement entropy, the logarithmic con-

tributions cancel, resulting in the formula

(Sga)m = fNB(s) +0(1), (5.52)

with no logarithmic corrections.

Finally, we comment on the equipartition (or lack of equipartition) of entan-

glement entropy in the thermodynamic limit, as discussed in [27] and [14]. By

equipartition of entanglement, one means that the entropy <S(GTZA)>m is indepen-

2A note about conventions. In [14], the U(1) charges are defined as positive quantities. To
compare the formulas, one can use the relations M =m + N/2 and Q@ = ma + Na/2.
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dent of m 4 in some limit. As we found that (S7%),, ~ fNB(t) with t = 2m,/Na,
we conclude that there is no equipartition of entanglement entropy, as the lead-
ing order in NV depends explicitly on the subsystem charge my, as already found
in [14]. Furthermore, following the argument in [14], we emphasize the importance
of the order of limits. If my is fixed before taking the limit N — oo, using the
expansion S(t) = log 2 — 3¢* + O(t*), we obtain instead <S(G"AA))m ~ fNlog2. This
result matches that of [27], where the leading order is independent of m,4 and the

equipartition of entanglement entropy is restored.
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Chapter 6
SU(2) symmetry-resolved en-
tanglement in a spin system

6.1 Introduction

In certain quantum systems like the lattice models composed of spin—% particles, the
natural tensor product structure of the Hilbert space provides a standard frame-
work to study entanglement via the division of the system into spatially localized
regions. However, when the system is endowed with a non-Abelian symmetry—in
our case, the group G = SU(2)—this conventional approach must be refined. The
presence of a global non-Abelian symmetry (group G) imposes additional con-
straints on the system, reduces the number of accessible observables respecting the
symmetry, and naturally leads to a symmetry-resolved decomposition of the Hilbert
space as seen in Chapter 4. This chapter is devoted to developing the theoretical
tools needed to analyze entanglement in such symmetry-resolved sectors and to
distinguish between two notions of locality: the standard K-local observables and
the more restrictive G-local observables, which are invariant under the symmetry
group. While the standard K-local subalgebra is generated by observables acting
on a spatial region A (and leads to the familiar tensor-product decomposition, it
does not respect the symmetry constraints imposed by G. In contrast, as seen in
Chapter 5, the G-local subalgebra is defined as the intersection of the K-local sub-
algebra with the algebra of G-invariant observables. This refinement is essential
because we are interested in quantifying the entanglement of symmetry-resolved

states which are prepared and measured by G-invariant observables. The resulting
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G-local entanglement entropy, computed by restricting a symmetry-resolved state
to the G-local subalgebra, can differ significantly from the conventional K-local

entropy.

This chapter systematically develops the framework to compute the G-local en-
tanglement entropy for our spin system with a SU(2) symmetry. We first review
the symmetry-resolved decomposition of the Hilbert space and construct the corre-
sponding G-invariant subalgebra along with its center. We obtain explicit formulas
for the dimensions of the internal spaces, and we illustrate how symmetry-resolved
states can be written in a factorized form for the particular system at hand. We
then construct G-local subsystems and compute the symmetry-resolved entangle-
ment entropy. Several examples with small numbers of spins are presented to
highlight the differences between K-local and G-local entanglement. In particular,
we show that for some states the G-local entropy vanishes even though the K-local
entropy is nonzero, reflecting the loss of information when only rotationally invari-
ant operators are accessible. Finally, by combining these ideas with statistical
techniques developed in earlier chapters, we derive exact formulas for the average
and variance of the G-local entanglement entropy for random symmetry-resolved
states. These results, which are expressed in terms of the dimensions of the various
sectors, allow us to characterize the Page curve in symmetry-resolved systems. The
analysis reveals features unique to a non-Abelian symmetry, including an asym-
metry of entanglement under the exchange of subsystems. The results presented

in this chapter are based on Sec. 5 of [5].

6.2 Setup

We consider a system consisting of N spin—% particles. Each particle has Hilbert
space H(1/?) ~ C2, and the Hilbert space of the system comes with a built-in tensor

product structure,

Hy = HYD & ... {2 (6.1)
N
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The spin operators S, = (S%,5Y,5%) generate SU(2) rotations of each particle,

n’ n? n

satisfy the algebra

(S8 187, = 16 €7, SE n,n' =1,...,N, (6.2)

n o ~n/

and can be represented in terms of Pauli matrices ¢ as E’n =1hR®..® % ®...®1,.

We also introduce the total spin operator j,

N
T=> 8., (6.3)
n=1

which generates SU(2) rotations of the full system, i.e., [J¢ Si] = ie¥, Sk, As
usual, we write the eigenvalues of J? as j(7 +1). There is a minimum and a

maximum spin of the system, which depends on the number N of particles:

N even = Juin=0, jnx=75

, J integer, (6.4)

N odd = jun= %, Jmax = %, j half-integer. (6.5)

6.3 Symmetry-resolved decomposition of the Hilbert

space

We start with the algebra of observables of the system, which we call the kinemat-
ical algebra Ak to distinguish it from the group-invariant algebra Ag discussed
later. The kinematical algebra of observables of the system is generated by the

spin operators S,
Ag =L(Hy)=C[S,], with n=1,... N, (6.6)

where £(Hx) =~ My~ (C) is the set of linear operators on Hy, and C[S.] denotes
the algebra generated by S! as defined in (3.2). The subalgebra generated by the
SU(2) symmetry generators J' is

Agm =C[J] . (6.7)
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We can introduce then the commutant (Asym)’, wWhich defines the algebra Ag of

group-invariant observables,

—

Ag = (Agm) = {M € Ag | [M,J] =0} = C[S,-S.]. (6.8)

This is the algebra of observables that commute with the symmetry generators J*

or, equivalently, that are invariant under rotations:
OcAds < UOU'=0 with U=e/" (6.9)

The center of the subalgebra is generated by the Casimir operator J 2

-,

Zoym = Asym N Ag = C[J?]. (6.10)

The symmetry-resolved decomposition of the Hilbert space is then given by a direct

sum over the eigenvalues of the elements in the center,

Jmax
Hy = D (Ho o M) (6.11)
J=Jmin

that is a sum over the irreducible representations j, with each j-sector consisting
of a tensor product of the Hilbert spaces for rotational symmetry degrees of free-
dom and for internal (rotationally invariant) degrees of freedom. The rotational-
symmetry degrees of freedom span a Hilbert space of dimension dim ”ngn =27+1,

with an orthonormal basis given by the spin-j states

g.m) € e (6.12)
where m = —j,...,+7 are the eigenvalues of J?. The internal degrees of freedom

can be understood as the SU(2)-invariant tensors in the tensor product of N spin—%

representations and one spin-j representation, which form the intertwiner space

ng) — IHVG(H(j) ® 7_[(1/2) R--® 7—[(1/2)) . (613)

~
N

Note that we have used Eq. (5.4) with the conjugate representation j = j for
the group SU(2). An orthonormal basis of this space is given by the recoupling
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basis [95],

kl /ﬁ,‘Q
’j7k17"'7kN—2> = m c H(G]) (614)
N spin 1/2
The quantum numbers kq, ..., ky_o label the eigenvalues k,(k, + 1) of the recou-

pling operators ]?3 These operators form a maximal set of commuting observables

defined in terms of the operators
K, =) S, r=1,...,N—2 (6.15)
n=1

which are the generator of SU(2) rotations of the first r spins.
The dimension of the Hilbert space ”Hg) of the internal degrees of freedom can

be computed using the general formula for the dimension of SU(2) intertwiner

space between the representations ji,...,Jjr, (see App. 6.5 for a detailed deriva-
tion):
; 25+ 1 N
D;=dmH = T (N ) : (6.16)
J+ 5+ 1 \3 1+
where (Z) = Wik), is the binomial coefficient. The sum of the dimensions of

symmetry-resolved sectors matches the dimension 2 of the Hilbert space of N
spin—% particles, i.e., dim Hy = Zj(Qj +1)D; =2V,

Symmetry-resolved states are states of N spin—% particles that transform in
a spin-j representation of the total spin and have no entanglement between its

rotational and its internal degrees of freedom, i.e., states of the form:

1) =17, )sym 7, X)e € Hu (6.17)

with

15, sym = D _ &m 7. m) € M, (6.18)
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5.X)6 = D ks iK1 kv o) € HE (6.19)

ie.,

) = D Ln Chrvna ) G, K1, hva) (6.20)

6.4 Symmetry-resolved subsystems: K-local vs G-

local observables

A system of N-particles often comes with a built-in notion of locality. For instance,
the particles might be distributed at the nodes of a lattice, therefore inducing a
notion of first-neighbors and regions. Local observables of the system can then be
expressed in terms of the spin operators §n of a subset of spins belonging to the
region. The kinematical algebra of observables A is generated by the complete
set of spin operators (6.6), while the subalgebra of observables in a region A is

generated by the N4 spin operators in the region,
Aga=C[S.], with a=1,...,Na (6.21)

We call Ax 4 the K-local subalgebra of observables for the region A. Note that
this subalgebra induces the standard decomposition of the Hilbert space as a tensor
product Hy = Ha Q@ Hp over the region A and its complement B. In fact one finds
that the commutant of Ag 4 is generated by the observables in the complementary
region B, with Ny + Ng = N and

AKBE(AKA)/:C[SQ y with b:NA—I—l,,NA—f—NB (622)

Moreover, note that the center of the subalgebra is trivial, Ax4 N Agp = 1, which

results in the familiar tensor product structure with no direct sum.

Observables that are invariant under the group G = SU(2) form the algebra
Ag, (6.8). To identify a local subalgebra of G-invariant observables we take the

intersection with Ag 4,

—

Aca = AgNAga = C[Sa-ga,] , with  a,d’ =1,...,Ny. (6.23)
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We call Agq the G-local subalgebra of observables for the region A. Note that
this subalgebra is generated by the scalar products S, - Sy of spins in A. The

commutant of Ag, in Ak is

Az = (Aca)' = (Ae N Aka) = ((Aym) N (Axs)')’ (6.24)
— (C[J T[S ) = C[J', 81 = C[J, I, 1] , (6.25)

where we have used the intersection formula (3.4). Note that Ag7 is not a subal-
gebra of Agp as it contains also the total symmetry generator .J'. Note also that
Az is not the same as Agp. As we have highlighted in the last equality above,
it is useful also to introduce the operator L’ that measures the total spin of the

particles in A,

Na
L=) 5., (6.26)
a=1
and generates rotations of the spins in A. Note that [L%, J] = 0 because .J'

generates global rotations and L2 s rotationally invariant. Therefore, the center

of the subalgebra is non-trivial
Zaa = Ags N Agz = C[LY, (6.27)

and is generated by the Casimir operator L? of A. We denote its eigenvalues £(¢+1)
with

Ny even = Llupin=0, lpax = %, ( integer, (6.28)

Ny odd = lypin=13, lpax =22, (¢ half-integer. (6.29)

Using the results of Chapter 4 on subsystems from subalgebras, we find the de-

composition
émax
Hy= D (MY, o HL). (6.30)
ézgmin

This decomposition is useful for computing the reduction of a generic pure state
of the system to the G—local subalgebra. We are interested in the reduction of a

special class of states—symmetry-resolved states—and it is useful to introduce a
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decomposition adapted to them.

We prepare a symmetry-resolved state |¢)) = |7, &)sym |J, X) and we are inter-
ested in measurements of G-local observables in A. In order to build a basis adapted
to both the decomposition associated with Ag,, = C[J'| and Aga = (C[ga . §GI]7

we consider the algebra generated by the union of the generating sets,
AsymGA = C[Jz7 ga : §a’] . (631)

Note that, using (3.4), this algebra can also be written in terms of the intersection

of commutants,

AsymGA = ((»Asym)/ N (AGA)/)/ . (632)

To build the decomposition, we need its commutant and center. The commutant
Of AsymGA in .AK is

(Asymea)” = (Aym) N (Aga)” = Ag N Agz (6.33)

—

=C[S, Sy nC[J, L', S]] = C[J* L* S, - Sy]. (6.34)
The center of Agymaa is then non-trivial,
ZsymGA = ASymGA N (AsymGA)/ = (C[j27 I_:Z] . (635)

Note that the observables J2 and L2 commute,’ which is always the case for the
center as it is an Abelian algebra by definition. Simultaneously diagonalizing the
observables J 2 and [7, we find the decomposition of the Hilbert space as a sum

over j and /¢
Hv=P P (Hg)m 2 HY, ® %gﬁ) , (6.36)

which can be reorganized as

jmax Zmax
Hy= @D Y win  HY =D @ P (Hheul), (37

J=Jmin £=Lmin

!The fact that the commutator [fz, Ez] = 0 vanishes can be quickly shown by noticing that
[J¢, L% =0 as J* generates rotations of the full system and L? is a scalar.

62



which provides a derivation of the expression (1.9) in the introduction. The Hilbert

spaces appearing in (6.37) are defined by

HE, =T (HO 2 HYD - o HI2 ) | (6.38)
Na
Hgﬁ) — IDVG(H(j) ® H(@ ® '3_[(1/2) R---® 7—[(1/2) ) . (639)
Np

Their dimensions can be computed using the general formula for the dimension of

SU(2) intertwiner space (see App. 6.5 for a detailed derivation):

, 20+1 [ Na
dy = dimHE), = —<N ) (6.40)
a0+ 1\ G+

N — Ny )_ NNa i —o ( N — Ny )
N—QNA_i_j_g N—QNA+j+€+1 N—QNA+]+£
(6.41)

by = dimHIy = (

These formulas are derived in the next section.

6.5 Dimensions of SU(2) intertwiner spaces

In this section we give a derivation of the dimension of the Hilbert spaces H(GE)A,
Hgﬁ), and Hg) based on the calculation of the dimension of the SU(2) invariant

spaces
v(ji,. ., jo) = dimInvg (KU @ - - @ HUV) | (6.42)

These invariant spaces, also known as intertwiners, are well studied in loop quan-
tum gravity [96,97], where they are the fundamental building blocks for describ-
ing quantum geometries [92,93|. Using techniques typical of intertwiner calcula-

tions [95], we write the projector to intertwiner space

P:HDg...nl InvG(H(jl) R ® H(jL)) (6.43)
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via group averaging
P :/ D(g)®---® DV (g) dg, (6.44)
SU(2)

where DY) (g)™,, are Wigner matrices for the representation with spin j and dg
is the Haar measure for the group SU(2). The dimension of the SU(2)-invariant
space can then be computed as the trace of the identity in this space or, equiva-

lently, the trace of the projector TrP, i.e., v is given by the integral
v(jr, - dn) = / X9 (g)---xU(g) dg, (6.45)
SU(2)

where xU)(g) = TrDU)(g) is the character of the representation with spin j. We

compute the integral using the class-angle parametrization ¢ = he'%:h~! of a

sin(25j41)6

group element, which results in the character x()(g) = =

expressed as a
function of the class angle §. The Haar measure for class functions ¥ (g) = f(0)

reduces to [dg = 2 027T(sin 6)2d6.

This paper uses the dimension v with N spin-1/2 and one spin-j. After a few
manipulations with elementary trigonometric identities, we find

2N 21T
(L, L) = —/ (sin) (cos )N (sin (2j + 1)6) df.  (6.46)
T Jo
Using the residue theorem, we evaluate the integral (6.46) as a contour integral on
the unit circle of the complex plane. The only contribution to the integral comes

from the pole in the origin

oo hd) = —HResa (L2 2) (=) (042)Y) L (047

We expand the binomial (1 -+ z)N = >y (1)2%N and read the residue from

the coefficient of é If N + 27 is odd, the integral vanishes. If N + 275 is even, we
find 0t 1 N
+
v, 1 :j—( ) 6.48
Goob =y (6.48)
This is the expression also found, for instance, in [98,99] and derived via combi-

natorial methods.
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Using the intertwiner methods discussed above, we can now compute the di-
mension v with N — N4 spin-1/2, one spin-j, and one spin-¢ which appears in the

formula for the non-Abelian symmetry-resolved entanglement entropy. We find

ON-Na+1 f2r
1/(%, . %,j,ﬁ) = T/o (cos §)N N4 (Sin(2j + 1)0)(sin(2€+ 1)0) do
(6.49)
_( N — Na )_ N =t ( N — Ny )
(6.50)

We note that this formula reduces to the expression (6.48) for £ =0 or j = 0.

To summarize, we have

Dy =dimHY =v(i,.... L)), (6.51)
dy= dimHS, =v(i,..., 10, (6.52)
b= dimHIy =v(k,... 15,0, (6.53)

6.6 Symmetry-resolved State

If we compare the decomposition (6.11) with (6.37), we obtain the decomposi-

tion of the Hilbert space of G-invariant degrees of freedom at fixed total angular
momentum,

elnax

HY = P (HEL@HL) . (6.54)
0={min

with the adapted orthonormal basis [95]

N4 spin 1/2 Np spin 1/2

(6.55)

65



which coincides with (6.14), |J, k,.) with k, equal to k, for r = 1,..., Nsg — 2, equal
to ¢ for r = Ny — 1, and equal to hy for » = Na,...,Ng + Np — 2. From this

decomposition, we also derive the relation between the dimensions dy, bj, and D,
D; = % ,dibje. (6.56)

We can now compute the density matrix pga of a symmetry-resolved state [))
reduced to Aga. Following the general construction described in Chapter 4, the

generic symmetry-resolved state in this basis is:

) =15, voe D X, 16 ka6 ) (6.57)
¢

kavhb

The density matrix of the symmetry-resolved state reduced to Aga is

pPGA = @pz Pe; (6.58)
¢
where
L £)*
Pe= DD i X, |6k (LR (6.59)
karkl,

This is the expression used in the next section to compute the G-local entanglement
entropy Sga.

We conclude this section with a few observations. By direct comparison of the
decomposition (6.30) and (6.36), we see that the decomposition of the complement
of the GA-Hilbert space is not the G B-Hilbert space as

0 _ () (3:0)
Her =D, Mo @ HIE) - (6.60)
Moreover, differently from what happens in the Abelian case discussed in Sec. 5.5,
we note that here states in Hgﬁ) are eigenstates of the total angular momentum
J2 and of the angular momentum of A, i.e., L2, but they are not in an eigenstate

of the angular momentum of B, i.e., JZ = (3, )% unless J2 = 0 in which case
Joo I
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6.7 G-local entanglement entropy of symmetry-

resolved states

Given a symmetry-resolved state, i.e., a state of the form (6.57), we can compute
its density matrix reduced to the G-local subalgebra of observables Ag4 using the
techniques of the previous section. The G-local entanglement entropy is then given

by the general formula (3.18),

SGA = S(|¢>,AG,AGA> = —tr(pGA longA) (661)

= —Zpgtr(pglogpg) - Zpglogpg, (6.62)
¢ ¢

where py is the reduced density matrix in the sector ¢ and p, the probability of
the sector, as defined in (6.58). We give a few examples to illustrate how Sga is

computed and its differences from Sk 4:

N =2, j = 0 — This is the singled state |s) of two spin-1/2 particles,

RS
NG

As K-local subsystem with N4 = 1, we can take the first particle with the algebra

|s) (6.63)

of observables Ax4 = C[S)]. As usual [86], the associated entanglement entropy
is Ska(|s)) = log2. On the other hand, if we consider the algebra of G-local
observables of the first particle we find that it is trivial as there is no rotational

invariant observable besides 52 = s34+ 1)1, ie, Aga = {1} and Sga(|s)) = 0.

N =4, j = 0 — The recoupling of N = 4 spin-1/2 particles into a scalar (j = 0)

defines a two-dimensional Hilbert space spanned by the two orthogonal states

o) = [s)als)p, (6.64)
)= > B ) a [tom)s (6.65)
m=0,%1

where we have denoted A = (1,2) and B = (3,4) the coupling of the four particles.
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The K-local and the G-local entanglement entropies of the subsystem A are

Ska(|to)) =0, Saa(lto)) =0,
Ska(|t1)) =log3, Saa(ltr)) =0.

(6.66)

Note that the K-local entropy measures the entanglement in the magnetic degrees
of freedom m, which results in the log3 above. On the other hand, the G-local
entanglement entropy for each of the two states vanishes as they are eigenstates of
(§1 + 52)2, which is the only non-trivial observable in Ag4 = C[gl . 5_"2] In fact,
using the basis (6.55), we see that |1;) is factorized. To show a non-trivial G-local

entropy, we consider the superposition

[¥) = /1 —plyo) + /e [¢1) (6.67)

for which we can easily compute the reduced density matrices

pra=L=p)[s)sl+p D &ltm)(tuml. (6.68)
m=0,£1
paa = (1—p)[0){0] + p|1)(1], (6.69)

where the states |0) and |1) are the eigenstates with ¢ = 0,1 of the G-local observ-
able L2 = (S; 4+ S,)2. It follows that the entanglement entropies for the K-local

and the G-local subalgebras are
Ska(|)) = —(1 = p)log(1 —p) — plog(p/3), (6.70)
Saa([¥)) = —=(1 —p)log(l —p) — plogp. (6.71)

In this simple case, the G-local entanglement entropy is purely due to the Shannon
entropy of the sector, i.e., the last term in (6.62), because the subalgebra coincides
with the center, Ags = Agp = Z.

N =4,j =1, m = 41 — The recoupling of N = 4 spin-1/2 particles into a
vector (j = 1) defines the Hilbert space HY = 1 HS) of dimension 3 x 3.
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We consider a (m = +1) symmetry-resolved state

) =/ 1=plm) + Vpe?|n) (6.72)

given by the superposition of the two orthogonal basis states with m = +1

m) =ls)alts)s . I} =5 (It+)alto)s —Ito)alts)s) , (6.73)

where |s) and |t,,) are the singlet state and the triplet state (with the magnetic
number m = 0,£1) obtained by coupling two spin-1/2 particles. The K-local

density matrix for the two spins in A, defined as usual as px4 = Trg|)(¢], is

prca = (L=p)ls)(s| + 5 (|t0)(Ee] + [t} (to]) — \/ B52 (e7]s) {to] + "*[t0) (s]) -
(6.74)

£,1—"L}. Therefore, K-local entangle-

The non-vanishing eigenvalues of px 4 are {5

ment entropy is

Ska(l¥)) = —§log§ — (1 —§)log(l—%). (6.75)

On the other hand, if we have only access to the rotational invariant observable of
the particles in subsystem A = (1,2), that is only the observable S, - S5, then the
accessible entropy is given by the probability of outcomes {p,1 — p},

Saa(|¥)) = —plogp — (1 —p)log(l —p). (6.76)

We note that, for % < p <1, we have that the G-local entropy is smaller than the
K-local entropy, Sca(|¢)) < Ska(|t)), while for 0 < p < 2 the G-local entropy
is larger Sga(|Y)) > Ska(]1)). We note also another difference compared to the
Abelian case (1.1) where the reduced density matrix is shown to be black diagonal.
From (6.74), we see that the density matrix pg4 is not block diagonal as it has
non-vanishing matrix elements |s)(to| that connect blocks with different ¢. This is
a generic feature of SU(2)-symmetry-resolved states.

N =6,j =1, m=+1 — The Hilbert space H" = H{), @ ") has dimen-
sion 3 x 9. We consider the subsystem of the first N4 = 3 particles. The G-local

entanglement entropy is associated to the restriction of the state to the subalge-
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bra Aga = (C[gl . §2, S, - 53, 52 . §3] which now is a non-commutative algebra
and therefore allows intertwiner entanglement, i.e., the first term in (6.62). The

associated Hilbert space decomposition is

HY = P HE oHE) . (6.77)
38

We consider the two orthogonal states |i1) and [i5) with j = 1, m = +1 obtained
from the coupling of the angular momentum of six spin-1/2 particles as described
by the diagrams below [95]:

+1 +1

2y W [¥2) —/rﬁ% (6.78)

my o ms my ms me my Mo ms my ms me

These two states are simultaneous eigenstates of the observables (51 + 52)2 and
(§1 + 5'2 + 53)2. As a result, when restricted to G-invariant observables of the first
three spins, they have vanishing G-local entropy Sga(|¢1)) = 0 and Sga(|¢2)) =
0. On the other hand, because of the entanglement in the rotational degrees of
freedom, we have that the K-local entropies are Sk 4(|1)1)) = 0 and non-vanishing
Ska(|the)) # 0. Next, we consider the symmetry-resolved state with m = +1
described in Fig. 6.1(b),

) = J5([en) + [v2)) (6.79)

given by the superposition of the two orthonormal |¢) and [i) introduced in
(6.78). As shown in Fig. 6.1(b) for p = 1/2, the G-local entropy of this state is
Sca(|i)) = log 2 while the K-local entropy is Sga(|1)) = —3log 3 — 2log 2. This
example allows us to comment on the symmetry under the exchange of A with B.
Clearly Ska(|t)) = Skp(]¥)). On the other hand, we note that the restriction to
the subalgebra Agp = C[§4 . §5, S, - 5’6, §5 . 5'6] is associated with Hilbert space
decomposition

He' = @ (M e HG™) . (6.80)

and Sep([Y)) = 0 because 1) is an eigenstate of (S5 + S5)2 = 0 and (S, + S5 +
Se)2 = (3 +1). This example shows concretely that, in the non-Abelian case, the

commutant symmetry (3.28) allows an asymmetry under subsystem exchange in
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— Sga

Ska

S

19) = V=P [tn) + Vi e[y}

. . .
0.5 10 15 0 1/2 2/3 1
S = Entanglement entropy of a random state

p = One-parameter family of states

Figure 6.1. For a system of N = 6 spins with total spin j = 1, magnetization m = +1
and subsystem size Ny = 3, we show: (a) the probability distribution of the G-local
(purple) and the K-local (yellow) entanglement entropies Sga and Sk of a sample
of random symmetry-resolved states, including a comparison of the numerical values
(ga,0ca) and the exact values ((Sga), ASga) of the average and variance of P(Sga);

(b) the entanglement entropy of a superposition of the two states (6.78), which highlights

the non-trivial relation between Sga and Sk a; at p = 0: Sga = Sxa =0, at p = %:

Saa > Ska,and at p=1: Sga > Sga = 0.

the G-local entanglement entropy, Scg(|1Y)) # Sca(|)).

6.8 Typical G-local entanglement entropy: exact

formulas

We combine the results of Sec. 3.5 on the typical entanglement entropy of a sub-
system defined in terms of a subalgebra of observables, together with the results of
Sec. 4.4 on symmetry-resolved entanglement entropy, to derive the exact formulas
for the typical G-local entanglement entropy for the group G = SU(2).

The average entanglement entropy for a random symmetry-resolved state in
H%) = Hé;in ® ’Hg), restricted to a G-local subsystem of N, spin-1/2 particles is

given by the formula (3.32), specialized to the SU(2) case:

emax

(Sca); Ot pe (6.81)

£=Liin

where g, and ¢, are given in terms of the dimensions dy, bj, D; defined in (6.16),
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(6.40), (6.41). The first quantity is

dy b
= 6.82
O¢ DJ ) ( )
and the second is
o = W(D;+1) =T (max(dy, bje)+1)—min (%=1, %) (6.83)

The variance (ASga)* = (SZ4); — (Saa); can be written as
1 lrmax Lrmax 2
(ASga)® = D—H( > o (vitxe) - ( > o W) ), (6.84)
ézgmin ézgmin

where oy, and ¢, are given above and Yy, is defined as

Xe = (dg + bjg) ‘Ill(max(dg, bjg) + 1) - (D] + 1) \I//(Dj + 1)+ (685)

B (min(de, bje) — 1)(de + bje + max(de, bje) — 1)
4 max(dj, b3,) '

(6.86)

The formulas for average (6.81) and the variance (6.84) of the symmetry-resolved
entanglement entropy of a random state are exact and can be computed from the
expressions of the dimensions of the Hilbert spaces d, bjs, and D;.

In Fig. 6.1(a), we show the average and variance compared to the statistical
distribution of a sample of symmetry-resolved random states with N =6, j = 1,
m = +1 restricted to Ny = 3. For this sample of random states, we report the
histograms for the probability distributions P(Sg4) and P(Ska), which are shown
to be distinct, Fig. 6.1(a). The statistical average uga and variance ¢, match
numerically the exact formulas (Sg4) and (ASg4)? that we derive in this paper for
the G-local entanglement entropy. The K-local entanglement entropy with SU(2)
symmetry is studied in [99] where asymptotic formulas at large N are derived for
(Ska) and (ASka)? using a combination of analytical and numerical methods. To
date, there is no analytical result for the average K-local entanglement entropy
(Ska) at finite N. We note that, because of the contribution of the rotational
degrees of freedom |7, m), we have that typically, the kinematical entanglement

entropy Sk a is larger than the symmetry-resolved entanglement entropy Sga of a
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Figure 6.2. (a) Page curve for the SU(2) symmetry-resolved entanglement entropy in
a system consisting of N' = 10 spins. The average entanglement entropy (Sga); and its
dispersion (ASga); are computed using the exact formulas (6.81)-(6.84) and reported
as a function of the number of spins N4 in the subsystem. The Page curve with j =1
has the largest peak entropy. The curves with j =2, j =0, j = 3 and j = 4 follow. The
maximum spin j = 5 has Sga = 0. The ordering of the curves reflects the dimension
of the Hilbert spaces D;. For N4 = 1, the G-local subsystem is trivial, dy = 1, and the
entropy Sga = 0 vanishes. The Page curve is generally not symmetric under the exchange
Ny <+ N — Ny, except in the special case j = 0 where this exchange symmetry is present.
(b) Leading order of the symmetry-resolved entanglement entropy in the thermodynamic
limit. At this order, the entanglement entropy is symmetric under exchange f <> 1 — f.
We plot the Page curve for spin densities s = 0, s = 0.4, s = 0.6, s = 0.8, s = 0.9,
s =0.95, s =0.99, and s = 1, which corresponds to curves from the top to the bottom.

random state. However, the relation between the two is non-trivial as shown in
Fig. 6.1(b) where we consider a specific (non-random) family of states for which
Sca is instead larger than Sx 4. Moreover, in the superposition (|i1) + |12))/v/2
we have that Sg, is larger than Sk 4, which shows that the relation between the
two is non-trivial.

In Fig. 6.2(a), we show the exact average and variance for N = 10 and different
values of j as a function of the subsystem size Ny, i.e., the Page curve [21,69] for a
symmetry-resolved system. Note the asymmetry under exchange Ny — N — Ny,
due to the asymmetry in the dimensions dy and bj, in (6.40)—(6.41), which is a
generic feature of non-Abelian symmetry-resolved entanglement (see Sec. 5.4).

As discussed in (5.22)—(5.26), one can also decompose the total symmetry-

resolved entanglement entropy (Sga); in a configurational (SS9™); and a number

contribution <Sg;{m)> j
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Chapter 7
Large N asymptotics of the
SU(2) typical entropy

7.1 Introduction

Building upon the work in Chapter 6, in this chapter, we focus on the symmetry-
resolved entanglement entropy in a lattice of Spin—% particles, with special emphasis
on its behavior in the thermodynamic limit. To extract the asymptotic behavior,
we introduce intensive quantities that enable us to systematically analyze the scal-
ing of entanglement as the number of particles N grows to infinity. Using these
asymptotic techniques, we derive explicit expressions for the dimensions of the
symmetry-resolved Hilbert spaces and their complements. These expressions allow
us to convert the sums over subsystem spins into integrals over probability distri-
butions which we use to extract asymptotic formulas for the average entanglement
entropy and its variance. We find that the variance around the average entan-
glement entropy is exponentially suppressed in /N, which implies that the average
entropy becomes typical in the thermodynamic limit. In addition, we compare the
asymptotics of the G-local and K-local entropies for the extremal cases of fixed
spin density, maximum spin (j = juax) and minimum spin (j = juin). FOr j = jmax,
the symmetry-resolved state is essentially factorized, leading to zero G-local entan-
glement entropy, while for j = j;, nontrivial entanglement arises via a O(log N)
and O(1) contributions. These results help us explicitly observe the differences
between the K-local and G-local notions of entanglement. We summarize these

comparisons in a tabular form to underscore how symmetry and locality affect the
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scaling behavior of entanglement. The results presented in this chapter are based
on Sec. 6 of [5].

7.2 Fixed spin density

The symmetry-resolved entanglement entropy (6.81) depends on the system size
N, the total spin j, and the subsystem size N4. Moreover, the expression contains
a sum over the subsystem spin /. We introduce intensive quantities representing
the subsystem fraction f, the system spin density s, and the subsystem spin density
t: N . 0

The thermodynamic limit is defined as the limit N — oo while keeping the intensive

(7.1)

quantities f and s fixed. We compute the average entropy (6.81) and its variance
(6.84) in this limit up to terms of order one, O(1).

First, we derive the asymptotic expressions of the dimensions dy, bj,, and D;
in the thermodynamic limit. We use the asymptotic expansion of the binomial

coefficients for n — oo with A fixed,

n Y 2] sy 134N .
(%(1“‘)\))_ ™ e (1_12711—)\2 +0(n™?) (7.2)

where the function [(s) is defined by

5(8)2—1;Sbg<1;8)—1—5810g(1—£8) : (7.3)

and its derivatives are

Fs) = —glos (12) ) =~y (7.4

12

The approximation (7.2) holds for A = O(1) and is useful for deriving the large- N
asymptotics of the dimensions at fixed 0 < s < 1. This approximation is invalid
in the extremal cases j = jmin and j = jmax defined in (6.4), and we will deal with

them separately in the next section. The asymptotic form of the dimensions in
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terms of intensive quantities are

D, — 2s  [2]6"(s)| N5 (1 1 12—-5(9—5)(3—29)
7 1+s TN 12N s(1 —s?)

_2t 20p()] © 1 12—t(9-1t)(3-1) -
de = 141 mfN oA (1 + 12fN t(l _ t2) + O(N 2)) ) (76)

+ O(N2)> . (7.5)

B 2[5//(%)‘ (- NBE=L) 1 3+ (51—_15]{)2 .
bje = NI 7 (1_12(1—f)N1_(81—_t;‘) +O(N 2)).
(7.7)

Note that, in the asymptotic formula for bj,, the second term in the exact ex-
pression (6.41) is exponentially small, and therefore it does not contribute to the
asymptotics for 0 < s < 1 and large N. On the other hand, this approximation is
invalid for s = 0, that is, when j = j,;, which is not compatible with the scaling
assumed in (7.1), and will be treated separately in the next section. In the thermo-
dynamic limit, the sum over the spin ¢ becomes an integral over the spin density
Yo — fol f %dt and the probability distribution (6.82) is given by a continuous
probability distribution

o(t)dt = —dg)gf gdt = oo(t) (1 Lo, O(N*2)> N o0ra-ns(524) -5) gy
’ (7.8)
where
N 2 s+t 187018 ()]
Q(](t) — f_ ( ) \/ — (1 f) : (79)
2\ mf(1— N s(t+1) 18" ()]
s—tf\2
= L 12-t9-HB-1 1 3+(%F) 112-509-5)(3-5)
o = T - RI-H1- (247 12 s1-) '
(7.10)
The limit of function ¢, (6.83) is given by the lower bound (3.39),
p(t) = logmin (2, 92) — Lmin (i, ) (7.11)



and the average entanglement entropy at fixed s is given by the integral

(Sca)s = / olt)p(t) dt (7.12)

We evaluate the integral over ¢ using the Laplace approximation for large N (see
App. A). The integral is concentrated at the critical point ¢t = s defined as the
maximum of the exponent of (7.8). If f < 3, at the critical point the dimension
bj¢ is exponentially larger than d;. Therefore, we can ignore the second term in
(7.11) as it is exponentially small. Similarly, at the critical point, the min in the

logarithm in (7.11) selects the ratio D,/b;,, which allows us to write

P(t) = N (3s) = (L= 1) B(E)) + 3w (S5 ) + los(347EE) + OV )

- (7.13)
At half-system size, f = 1/2, extra care is necessary because of a discontinuity in
the integral. The dimensions satisfy the inequalities b;, > dy for t < s, but bj, < d
for t > s. The logarithm in (7.11) is discontinuous at the critical point ¢ = s,
and we have to resort to a Laplace approximation that allows for discontinuities
(see App. A). There are additional contributions at order O(v/N) and at order
O(1). Note that, at f = 1/2, the second term in (7.11) is not exponentially small,
but detailed analysis shows that it is of order O(1/v/N) and therefore does not
contribute to the thermodynamic limit. Summarizing, the average entanglement
entropy for f < 1/2is:

(SGA)s:B(s)fN—\/lfl%\/_é L SHesEh (1 - 15 1) log(£2)

—(1-f- éafé) s og(£2) 4 O(N~2) for f<

and for f > 1/2

(Sca)s = B(s)(1— f)N+ U8l 4 (1 fyLslog (L) LO(N75)  for f> 1.
(7.15)
Note that the leading order O(N) and the subleading order O(v/N) are symmetric

under exchange of the subsystem with its complement. However, the order O(1)
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term is not symmetric, f </ (1 — f). The leading order and its dependence on
the spin density s via the function 5(s) (7.3) is displayed in Fig. 6.2(b).

Using the same technique, we find that the variance is:

T —5)3/2(541)5/2 s _NA(s

(ASea)? = \/F(F(1— )= ;) S (g ) N2 N30) (14 O(N 1)),
(7.16)

We note that the variance is exponentially small in N. Moreover, at the order

considered, the variance is invariant under the symmetry f < (1 — f).

7.3 Extremal cases: jJmax and Jmin

In the extremal case of maximum spin, j = juax = N/2, the Hilbert space ’H(]"“”‘

contains only one state and the dimension (6.16) is D, . = 1. Moreover, the

,]max
composition of angular momenta constrains the spin of the subsystem A to be
maximal, i.e., { = .y, and the dimensions (6.40) and (6.41) of the factors are
de,... = 1, b;

max ]lnax max

= 1. Therefore, the unique symmetry-resolved state with
7 = Jmax 18 factorized, as the exact formula of the average and variance of the
entanglement entropy confirm:

(S6A)jmae =0, (ASga)i,. =0. (7.17)

]max

The other extremal case, j = juin, is non trivial. Let us assume that NV is even

so that j,im = 0. In this case, the relevant asymptotic formula for the binomial

(1) =VmermeF ooy, a

that is valid for = O(y/n) and n — oo.! In the sum (6.81), we first assume
(= O(\/N), motivated by the fact that it corresponds to the subsystem with the
largest dimension. We then check this hypothesis a posteriori. In this limit, the

coeflicient is

dimensions of the Hilbert spaces are

8 1

Dy = T N3/2

eMe (1+0(NTY), (7.19)

"Note that here we cannot use (7.2) where A = O(1)
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2 4/ 02
_ “ * _fNlog2 —2+% -1
dy = \/;<fN)3/2 e e I (1+O(N). (7.20)
Note that, for j = 0, the dimensions by, and d, are mapped into each other by
sending f <» 1 — f. This is an exact property of (6.40) and (6.41) which in the

asymptotic limit results into the expression

2 4/ 2
— < =  (1-=f)Nlog2 _2(1—f)N 1
boe \/;((1 “ Ny © ¢ (1+0(N) . (7.21)

It is useful to introduce the rescaled variable

2

u=\/fpw

(7.22)

which simplifies the calculation of the integral. The probability distribution (6.82)

in the thermodynamic limit becomes the continuous distribution

o(u)du = %uz e (1+O(N™")du. (7.23)
The sum over the spin ¢ becomes an integral over the positive real line in the ther-
modynamic limit. It is worth noticing that (7.23) is independent of the system’s
parameters N and f at the leading order and is normalized at all orders. The
calculation of the average entropy is straightforward. If f < %, the dimension by, is
exponentially larger than dy, therefore (7.11) is just given by the logarithmic term.
If f= %, then by, = dy and the second term in (7.11) contributes a —% correction.
Therefore,

1 1 1
o(u) = fN log 2—5 log N—§ log f—§ log 2-+log(1—f)+u? f—log u—%éf 1+O(NY).
2
(7.24)

We obtain the average entanglement entropy by performing the integral

(Sea)g = / " o(u)o () du, (7.25)

keeping all terms up to O(1). Summarizing, the average entanglement entropy for
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f<yis

(Sga), = leog2—%logN —%logf + log(1 — f)
+ (32— fllog2+3f-1-22—-15
(7.26)

The average entropy for f > 1/2 can be obtained via the exact symmetry f <>
(1 — f) that applies to the case of j = 0. The calculation for the variance (6.84) is

similar, and we find
) 5 v .
(ASea)? = Y2 (F3F 1)+ % — 14 16, ) N2 V2 (14 O(N 7)), (7.21)

for f < 1/2, and the formula for f > 1/2 can again be obtained via the exact
symmetry f <> (1 — f) that applies to the case of j = 0.

Furthermore, we comment on the equipartition (or lack of equipartition) of
entanglement entropy in the thermodynamic limit for the non-Abelian symme-
try SU(2), generalizing the discussion in [27] and [14] for the U(1) case. By
equipartition of entanglement, one means that the entropy (Sé%j is indepen-
dent of ¢ in some limit. For generic spin j (Sec. 7.2), we found in (7.13) that
at the leading order at fixed subsystem charge ¢, the entanglement entropy is

(Sg,)4>j ~ N (B(s) — (1 - f)ﬁ(sl__éf)) with s = 2j/N and t = 2¢/N,4. Therefore,

we conclude that there is no equipartition of entanglement entropy, as the lead-

ing order in N depends explicitly on the subsystem charge ¢. This result extends
the observation of [14] of lack of equipartition in the thermodynamic limit to the
non-Abelian case. Furthermore, following the argument in [14], we emphasize the
importance of the order of limits. If ¢ is fixed before taking the limit N — oo,
using the expansion 5(3'1__?) = B(:%) — 6’(1ff)1f_—tf + O(t?), we obtain instead
(S(ngj ~ N (B(s) — (1 = f) B(:%5)). This result matches the behavior found [27]
for the U(1) case, with the leading order independent of ¢ and the equipartition of

entanglement entropy restored.

Interestingly, in the j = 0 case, using (7.22) and (7.24), we find that at the
leading order the entanglement entropy at fixed subsystem charge ¢ is <S§f34>0 ~
fNlog2. As this quantity is independent of the subsystem charge, we conclude

that in this case, there is equipartition of entanglement for all /.
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7.4 Comparison of G-local and K-local asymptotics

The asymptotics of the average K-local entanglement entropy was studied in [99].
The system considered is the same as the one described here in Sec. 6.3, with the
additional assumption of vanishing magnetization, m = 0, to select symmetry-
resolved states. Using a combination of analytical and numerical methods, asymp-
totic formulas for the thermodynamic limit N — oo at fixed f and s were studied.
We compare these results for the ones obtained here in Sec. 7.2-7.3 for the G-local

entanglement entropy of the same symmetry-resolved states.

For maximal spin jn.x = N/2, i.e., for the case s = 1, the Hilbert space takes
the form
H%rﬂax) H(]mdx ® tH mdx) ® H ]mdx max) , (728)

sym

i.e., in the decomposition (6.37) there is a single allowed value of ¢, and the di-
mensions are dim Hm = 1, dim HIpo=) = 1, and dim ’Hi;m‘”‘ = N+ 1.
As a result, the average G-local entropy necessarily vanishes (7.17) because any
symmetry-resolved state in this sector has zero entanglement between G-local de-
grees of freedom. On the other hand, the K-local entanglement entropy also mea-

sures the entanglement in magnetic degrees of freedom my4 at fixed m = m4 +mp
in Hbj’gf") which are not G-local. This K-local entanglement results in an average

entropy that scales as %log N. The comparison of the two different scalings found
in [99] and in Sec. 7.3 is shown in the table:

Table 7.1. Comparison of large N asymptotics: Sga vs Ska for j = jmaz

j = jmax N \/N(Sfy% IOgN 1 5f7%
<SGA>jmax O O O O 0
<SKA>jmax,m:0 0 0 % 1 IOg 7ref mef(1—f) 0

For minimum spin, j = 0 (assuming N even), i.e., for the case s = 0, the
leading order O(N) of the K-local and G-local average entropies coincide. There

is again a difference at order O(log N) and at order O(1) (first computed in [100]
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for the K-local entropy). A comparison of the contributions found in [99] and in
Sec. 7.3 is shown in Table 7.2

Table 7.2. Comparison of large N asymptotics: Sga vs Siga for j =0

j=0 N | VNéps [logN | 1 |4
<SGA>0 f10g2 0 —% GGA(f) —%
(Ska)y || flog2 0 0 | aka(f) | —3

where
aKA(f) =

Fes )
aga(f) =

|Fe— -

(374 3108(1— 1) f<1/2,

f>1/2,

(4F +1og(1— )~ Slog f +

(7.29)

5~ flog(2) —1-%¢ f<1/2,

f>1/2.
(7.30)

We note the symmetry f <> (1 — f), which is an exact symmetry for j = 0.

For spin j of order O(N), i.e., fixed spin density s = 2j/N with 0 < s < 1, the
asymptotics of the K-local average entropy studied in [99] and the G-local average
entropy derived in Sec. 7.2 agree at order O(N) and O(v/N). A difference again
arises at order O(log N) and O(1), as summarized in Table 7.3

Table 7.3. Comparison of large N asymptotics: Sga vs Skga for 0 < s = %ﬂ <1

0<s<1 N VN1 | logN 1 0f1
(Sca)s B(s) f —% 0 baa(f,s) | caa(s)
(Ska)s,m=0 || B(s) f —% 3 bra(f,s) 0
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where (s ), 5”(s) are given by (7.3)—(7.4), and

[Hogof) _ 127028) 14 (145 4 Jog %—F Mog ™IU=D f<1/2,
breal(f
f>1/2,
(7.31)
f+log(1  _ f)l Slog(li) +log(12—js) f<1/2,
boalf (7.32)
(1 1) +logf _|_ f)l s log(1+s) f > 1/27
caalf,s) = 552 log(12) — 5log(£2%) (7.33)

We note that the asymmetry of the G-local average entropy under subsystem
exchange, f </ (1 — f), discussed in Sec. 6.8 and Sec. 7.2 arises only at order
O(1), as shown explicitly in (7.32).

Additionally, we observe that in all the cases considered here, we find that the
average K-local entropy studied in [99] and the average G-local entropy derived
here satisfy:

(Ska) — (Sca) = 31og N +O(1). (7.34)

The difference can be attributed to the entanglement in the magnetic degrees of

freedom probed by K-local observables, as discussed in Table 7.1.
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Chapter 8
Conclusion & Outlook

8.1 Summary

This thesis presents a rigorous mathematical formulation for symmetry-resolved
entanglement in systems possessing a non-Abelian symmetry. The results pre-
sented are entirely general and do not rely on the specifics of any Hamiltonian;
they depend solely on the structure of the Hilbert space and the representation of
the symmetry group G.

In Chapters 3 and 4, we began developing our framework based on an opera-
tional definition of a subsystem, characterized through a subalgebra of observables
(Chapter 3). In the presence of non-Abelian symmetry, the G-invariant, symmetry-
resolved observables define states (see Eq. (4.23)) that are both preparable and
measurable, leading to the Hilbert space decomposition in Eq. (4.21), that gener-
alized the standard direct-sum decomposition over Abelian charges and the tensor
product structure associated with independent subsystems. Moreover, in analyses
of symmetry-resolved entanglement [25-27] for an Abelian symmetry, the block-
diagonal structure of the reduced density matrix under U(1) symmetry has played
a crucial role. In the non-Abelian symmetry case, the block-diagonal structure
given by (4.24) emerged once we identified the generalized symmetry-resolved sub-
systems as in (4.21). Using this, we then obtained exact formulas for the average
and variance of the entanglement entropy distribution for random pure states with

a non-Abelian symmetry group G, as expressed in (3.32)—(3.33)—(4.25).
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In Chapter 5, we began by noting that our framework is entirely general and does
not presuppose any inherent notion of locality or a specific Hamiltonian. When a
locality criterion was introduced, we distinguished between K-local (Eq. (5.6)) and
G-local observables (Eq. (5.9)): while the kinematical observables of a many-body
system are naturally local, they are typically not invariant under the action of Gj
in contrast, invariant observables tend to be non-local. Observables that are both
local and G-invariant—termed G-local—often represent the only accessible opera-
tors defining a symmetry-resolved subsystem. In this context, symmetry-resolved
entanglement entropy was defined as the entropy Sga of the symmetry-resolved
state, restricted to a symmetry-resolved subsystem. We then showed that, in the
case of an Abelian symmetry, G = U(1), our framework recovered established re-
sults [13-16].

In Chapters 6 and 7, we examined in detail an SU(2)-invariant system as a con-
crete example. We analyzed particular cases to illustrate the differences between
the G-local and K-local notions of entropy (see Fig. 6.1). We derived the exact av-
erage entanglement entropy and its variance for random symmetry-resolved states
(Chapter 6) and then analyzed the probability distribution for Sga and compared
it to that for Skx4. We plotted the Page curve in Fig. 6.2 for the exact average
entanglement entropy and observed an asymmetry in the curve. This was con-
firmed when we discussed the thermodynamic limit (Chapter 7) for this system.
At O(1) in the thermodynamic limit, an asymmetry under subsystem exchange
emerged, f </ (1 — f), where f = V4 /V denotes the subsystem volume fraction.
This new feature of non-Abelian symmetry-resolved entanglement was discussed
in Sec. 5.4 for a general group G and was illustrated in (6.79) for small systems
and in (7.32) for many-body systems in the thermodynamic limit. As observed in
the Abelian case, a global non-Abelian symmetry such as SU(2) also produces a
leading volume-law entanglement entropy along with a square-root-volume correc-
tion at half-system size, as first reported in [99] and derived in Chapter 7 through
asymptotic analysis of the exact formulas (see (7.3) for comparison). The coeffi-
cient in the volume-law scaling, defined in (7.3), depends on the spin density j/V
and can be generalized to densities g /V for the non-Abelian charges, namely the

rank(G) Casimir operators of a general compact semisimple Lie group G.
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Figure 8.1. Quantum polyhedra provide a concrete example of SU(2) symmetry-
resolved states that can be probed only using G-local observables that measure their
intrinsic geometry. Fach spin corresponds to a quantum plane of fixed area, and the
SU(2) invariance in the coupling of angular momenta corresponds to the closure of the
faces of the polyhedron.

8.2 Future Research Directions

8.2.1 Quantum Gravity and Quantum Polyhedra

In the quantization of gravity, physical states can exist as superpositions of quanta
of geometric regions, which can be understood as quantum polyhedra [92,93,101].
Analogous to a classical polyhedron where the normal area vectors of its NV faces
sum to zero, a quantum polyhedron is visualized as a system of N spins con-
strained so that their total spin is zero. G-local observables are central to the
study of quantum geometry in polyhedral models [92,93|, where operators such as
S, - S, (illustrated in Fig. 1.1) measure the angles between the faces of a quan-
tum polyhedron, as depicted in Fig. 8.1 for various spin j sectors. Unlike the
uncorrelated faces of a classical polyhedron, the faces in a quantum polyhedron,
represented by spins, are inherently correlated. This correlation prompts the ques-
tion of how to quantify the entanglement between one region of the polyhedron and
the rest. Equivalently, how is one region of space entangled with another in quan-
tum gravity? Conventional entanglement measures falter here due to the system’s
constraints altering the accessible Hilbert space. To overcome this, we propose

using the redefined entanglement measures obtained in this thesis.
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Additionally, in the thermodynamic limit of many faces the quantum polyhe-
dron approximates a spherical region, and semiclassical states are suitable here for
studying quantum fluctuations of the classical metric. Here, entanglement scaling
between regions is conjectured to serve as a probe of the state’s nature [69,102-104]:
it scales with the volume (number of spins) of a region in truly quantum states,
and with the area in semiclassical states. The observation of these entanglement
characteristics have important consequences in the context of the thermalization
of isolated systems [13], which is why an analogous study of such states in the
context of quantum gravity will shed light on the thermodynamic properties of

geometric regions of space.

8.2.2 Symmetries, Locality and Non-Abelian ETH

The Eigenstate Thermalization Hypothesis (ETH) [1-3] describes how isolated
quantum systems reach thermal equilibrium through their own unitary dynamics,
a phenomenon not immediately intuitive given the nature of quantum mechanics.
Recently, preliminary ideas regarding quantum thermodynamics and ETH in sys-
tems having a non-Abelian symmetry have been laid out in [98, 100, 105-108|.
By means of work carried out in this thesis, we conjecture that the distribu-
tion P(Sga), with its average and variance as given in (3.32)—(3.33)—(4.25) (see
Fig. 6.1(a)), corresponds to the entanglement entropy distribution of energy eigen-
states of quantum-chaotic Hamiltonians with a non-Abelian symmetry G, when
restricted to G-local subsystems. Testing this conjecture numerically—by ex-
tending exact diagonalization studies [17-20] to quantum-chaotic Hamiltonians
with a non-Abelian symmetry, such as the random Heisenberg model (1.2) and
lattice-based Heisenberg models with local interactions [67] (as in [98,99])—would
be highly significant in the context of emerging insights in non-Abelian eigen-
state thermalization [98,99,108], thermodynamics with noncommuting conserved
charges [100,105-107], and quantum many-body scars [109,110]. As the ETH is
formulated in terms of the expectation values of operators, understanding non-
Abelian ETH through this framework will enable a deeper understanding of the
interplay between symmetries and thermalization. Additionally, KTH makes an as-
sumption about the locality of the operators which undergo thermalization, which

makes it interesting to see how the notions of K-locality and G-locality laid out
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in in our work can be distinguished on the basis of the influence they have on

eigenstate thermalization.

8.2.3 Page Curve and Entanglement Purification

This avenue of research is also relevant to black hole physics, specifically concern-
ing the Page Curve hypothesis [4] presented in Chapter 2. Quantum mechanical
toy models with unitary dynamics governed by random Hamiltonians have been
employed to model this behavior, but they typically fail to replicate the decreasing
phase of the entanglement entropy, as the entanglement entropy merely saturates
rather than declines. However, this challenge was recently overcome for a partic-
ular setup involving a free fermion chain [111]. This discrepancy leads to critical
questions: what properties should such toy models have for the entanglement en-
tropy to decrease in time after reaching a mazximum value? Under which conditions
can the entanglement decrease at a faster rate? Can these models be extended to
open quantum systems? And can such systems help address the problem of deco-
herence in practical setups? We believe these questions can be answered through
methods developed in Appendix B by fine tuning the initial state as well as well

as the parameters of the random Hamiltonians.

8.2.4 Other Directions

e We derived the average and variance of the probability distribution P(Sga)
and compared it to the average and variance of the numerically obtained dis-
tribution. Similarly, deriving exact expressions for the average and variance
of the probability distribution P(Sk ) for K-local observables (see Fig. 6.1)
would be insightful.

e Our framework can be directly applied to lattice systems with a gauge
symmetry [80-82,112| and spin-network systems in loop quantum gravity
|96, 97, 113-116]. Finding new phenomena in these systems through the
lens of non-abelian, symmetry-resolved subsystems and entanglement will

be worthwhile.

e Another promising direction is extending our framework to study systems

with a infinite-dimensional Hilbert space, like those encountered in quan-
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tum field theory [69,76-78,117,118]. While our analysis has been carried
out within a finite-dimensional Hilbert space, the results apply directly to
each symmetry-resolved sector even when these sectors are finite-dimensional

subspaces of an infinite-dimensional Hilbert space.
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Appendix A
Laplace approximation and dis-
continuities

In this section, we review the asymptotic expansion of integrals using the Laplace
method [119] and extend this method to the presence of discontinuities. We derive

an asymptotic expansion for N > 1 of integrals of the form

I= / h(z)eN9@ dg | (A1)
K

where K C R and h(z) and g(z) are two real-valued functions defined on K such
that the integral is well defined for large enough N. We first assume that the
functions h and ¢g are smooth on K. Then, we present the formula for the case
with h continuous but with a discontinuous first derivative at a point. We assume
that the function g has a global maximum at zy in K where the gradient vanishes,
g (xo) = 0, and the function also vanishes at the maximum g(zo) = 0. The integral

is approximated asymptotically by

where
Cy = 1 h" () 19””(950)]1(%) lglll(xo)h/(l’o) igm(mo)%(fﬂo) (A.3)

2h(70)g"(z0)  8N(w0)g"(20)2 2 N(wo)g"(w0)? 24 h(wo)g"(wo)®

The approximation (A.2) relies on three main observations.
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1. Only the immediate neighborhood of xy contributes to the integral.

2. We expand the function g(x) around x(, and we approximate the exponential
part of the integrand with a narrow Gaussian e~ 29" @)@=20)*  This confirms

the first assumption.

3. We expand the remaining part of the integrand around z, and extend the

integral to the whole real line.

The integrals of terms of the expansion with the Gaussian (z( is a maximum, so

g"(x0) < 0) are given by

oo (g 0 Odd,
M©® — / (z — x0)? er(ﬂc—xg)QdI _ - p
2
—00 V2r(p— 1! <—Ng+(mo)> p even.
(A.4)

If we are interested in the leading order or (A.2), expanding the integrand up to

order O(1) and combining with A is sufficient

h(zo) M© = (o) 4 /—ﬁ?xo) . (A.5)

However, to compute the next-to-leading order (A.3), we have to expand the inte-

grand up to order O(x — z()%. The relevant terms are

l/(

7 (2 _ _11h"(x0) [/ _ 2n
W (o) M'™ = =55 G\ ~ Na(ao) -
1 1 4 - 1 1 /lll(l, ) 1 ///(x )hl(I ) 271_
N (519" (o) h(wo) + 59" (wo) W' (o)) MW = 5 (53//(xo§2 5%@0)3"@0?2) TNy (@)
1 111 2
2 2 6) __ 15 (z 27
N Eg///(xo) h(ZEQ)M( ) — _Nﬂgg”(xg)?’ Ng'(z0)

Collecting them together, we obtain (A.3).

In the derivations in Chapter 7, we need to compute integrals of the form (A.1)
with a function h that is not continuous in xo. For simplicity, we will assume that
g(x) is still smooth in xy. We follow the same strategy, expanding the integrand

around zy and separating the integrals in x < xg and x > xy. The split Gaussian
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integrals are such that

/ (x — z0)? er(%’m)de = (—1)p/ (x — x0)? er(m*xO)zdx . (A.6)

o) —0o0

and
pit
M@ — /Oo(x — 2)" eN@(gﬂ_mo)z’dx _ %\/%(p%l)' <—Ng+(ro)> " p odd,
" %\/%(p - <—Ng+(mo)> ’ p even.

(A7)

The leading order of the Laplace approximation is similar to the one found earlier,

(h(zy) + h(a)) MO = h(zqy) —g h(zg) /_Ng%(;o) ‘ (A.8)

Here, we denote with h(z7) the right/left limit of the function h in 2. If h is

continuous in xg, the formula (A.8) reduces to (A.5). The next-to-leading order

term is

1o — 1o+ r(l) h/($6> _h,(xa_) —1
(h (xy) — W (zg )) MO = 5 \/%Ng”(xo) , (A.9)

which is, in general, non-vanishing if the first derivative of h is discontinuous in x.
The calculation for the next-to-next-leading order term is similar. To summarize, if

the function h is discontinuous at the maximum z( of g, the Laplace approximation
for the integral (A.1) is

B h(zy) + h(xa“) B 27 % g l
I= 5 ey ot elw) ) (A.10)
where
~ W(xg) =W (xg) 2
Cljo = - , All
V2= h(ag) +hiag) \| Nag(e) (A-11)
and

& _ Me)Cilag) + hag)Cr(xg)
! h(wg) + h(xg) ’

where we denote by C) () the expression (A.3) computed (as a limit) in z3. Thus,

(A.12)

a discontinuity results in a O(1/v/N) correction in the asymptotic expansion.
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Appendix B
Entanglement Entropy Evo-
lution and Random Matrices

B.1 Introduction

In this chapter, we discuss the time-evolution of the entanglement entropy in an iso-
lated quantum system prepared in a factorized state. We focus on random-matrix
Hamiltonians from the GUE ensemble, and compare the entropy of the average
density matrix to the probability distribution of the entropy over the ensemble of
random Hamiltonians. While the first captures correctly the saturation value of
the entropy only at the leading order, the second captures also sub-leading orders,
fluctuations around the average and the short time behavior of the entanglement
entropy. We discuss also the relation to other random matrix ensembles, such as
GOE. We also derive analogous results for gaussian states of random quadratic

fermionic systems, which have been recently studied in [120].

B.2 EE Evolution: Random Matrix Hamiltonians

B.2.1 Entanglement Entropy of Eigenstates of a Random

Matrix Hamiltonian

Let [¢,) be one eigenstate of a random matrix Hamiltonian H. We define py, =
Trp|vn) (1,| to be a normalized d4 x d 4 density matrix. It is helpful to separate this

density matrix into diagonal and non-diagonal parts by writing it as pa, = (% +
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eXA,n> +€Yy , where é +eX 4, is the diagonal part and €Y, is the non-diagonal
part of pa . Here we use € as a yet to be calculated small parameter, to help identify
the leading order terms in susbsequent calculations. Tr(Y,,) = 0 by construction,
and using the normalization of the density matrix we can conclude that Tr(Xy4,) =

0. Then using statistics of eigenvector components (see Appendices C and D),

dp

<é N 6XAn> _ <<pA,n)ii> — Z <|Cm‘b|2> — dB'dAldB _ $>

b

dp

€Y, n> :< n z> = <an Cn > = 0.
< A, (Pan)ij ” ; Wnsp ),

To calculate the average entanglement entropy for an eigenstate, we need to cal-

culate the ensemble average of

1
Tr(ph,) = — + €Te(X5,) + ETe(YZ ) + E€Tr(XanYan)

d
Now,
da dp
€ Tl" XA nYAn E E |Cmb| anccmc Z]( 51) =0,
1,j  be

while the following averages can be calculated using properties derived in Ap-

pendix D
da dp dp+2
1 2 dadp 12 GOE
— + € Tr( XA > ZZ |nin|?|Cnic|*) = { 498t
d n dp+1 ’
< 4 i dA§B+1 GUE
and
da dp da—1 GOE
2(Te( YAn Z Z |Cuin|® |Can| dade 2 .
-1 GUE
6,J3i#] b dadp+1

This gives the average purity of an eigenstate of a random Hamiltonian as

da+dp+1 GOE
(Tr(ph,)) = “a%e*? : (B.1)

da+dp
Taintt GUE
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The variance around this average purity can also be calculated. Following a de-

tailed derivation, we obtain

Q(dA—1)(dB—1)(dAdB+4dA+4dB+6) GOE
(A(Tx| 2 ]))2 _ (dadp+2)2(dadp+4)(dadp+6) (B.2)
Panl)) = 2(d ~1)(d3 1) GUE ‘
(dAdB+1)2(dAdB+2)(dAdB+3)

For comparison, the variance for a Haar-random state was calculated in [69] as

2(d4 —1)(dj — 1)
(dadp + 1) (dadp + 2) (dadp + 3)

(Te(p?))*Vttaar — (T0(P?)) ot = (B.3)

The average entanglement entropy, (S(pan)) = —Tr(panlogpan), follows from

the average purity using

(S(pan)) = loa(da) + 5 — SHTr(2,)) + O(),

which gives us,

Ensemble (S(pan)) (TT(P,%;,n»
GOE  log(dy) - 4= +0(F) L)
d —1 da+d
GUE  log(da) — gops + O(g) okl

We observe that the formula for the typical entanglement entropy in the GUE case

is the same as that of Page [21]| upto an order of O(diz), but the corresponding
B

formula in the GOE case is different at this orde. We can now assert that the small

parameter € can be defined through
€ =—. (B.4)

The variance around the average entanglement entropy of p4, can be calculated

as
d,24 2 d,24 2 2
(AS(pan))? ~ z Tl" pAn > <T1" pAn > ] = Z(A(TT[PA@D) (B.5)
d2 dA 1 (dB 1)(dAdB+4dA+4dB+6)
2(dadp+2)?(dadp—+4)(dadp+6) GOE (B 6)
dg(cﬂ -1)(d%-1) CUE :
2(dadp+1)2(dadp+2)(dadp+3)
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1
= O = B.7
o) (7

ASlan) =1 +0( ) (B.3)

This formula matches the variance for typical entanglement in Haar-random states

with

calculated in in [69].

B.2.2 Entropy Evolution of the Average Density Matrix

We consider a system with Hilbert space H = Ha ® Hp and a random matrix
Hamiltonian H. We assume without loss of generality that da(= dim(A)) < dp(=
dim(B)). Given a pure state [¢p) of the system, its time evolution is |¢;) =
e~ Ht/"|4hy) and the reduced density matrix of subsystem A is p4(t) = Trg|vy) (¥
We now work towards characterizing the evolution of the ensemble averaged density
matrix,

We study the entanglement entropy Sa(t) = —Tra(pa(t)logpa(t)) for a state
that is initially un-entangled, i.e., |[¢)g) = |0a)|XB)-

B.2.2.1 Average density matrix

We compute the reduced state of the system, (pa(t)aar), averaged over the GUE,

using the correlations derived in Appendix D

dadp dp
<pA(t)aa’> - Z Z<e_l(En_Em)t> <CnOOC:n()ocrmbcma’b>
nm b
1
= W[(dfa + 1)da0dar0 + dBbaar (1 — 0ao)]
<e—i(En—Em)t>
+ m[(dAdB - dB)(SaOéa’O - dB5aa’(]- - 6a0)]7

where

e = b [ e [ e ot )~ )
(B.9)

96



with N = dadp and oy(x,y) are the cluster functions of the GUE ensemble
ox(a.y) = 3 Hy@)Hy(y). (B.10)

H,(x) are the Hermite polynomials. Using properties of Hermite polynomials, we

can obtain the following expression for the average time-evolution coefficient

N—-1N-1

(7 (BnmBm)t) = Z Y Smn()s50() = [sma()), (B.11)

m:O n=0

where

00 2 min(n,m) -~ ) ntm—2;
so®) = [ @) o) e =Y (—%t) ,
—00 - J! —J7)\n—=7
Jj=0

(B.12)
Note that these formulas are for the GUE case in which the variance of Hamiltonian
clements {(|Hnn|?) = 1, (|Hma|* = 3)}. For the general case with {(|H,,|*) =
72, (| Hyn|?) = )}, we have

Smnlt) = e (B.13)

e min(n,m) Vminl ( i )n+m—2j
D DN - st ,
= lm ==\ V2

As we are interested in the early and late time characteristics of the entanglement

entropy, the important limits to evaluate are:

1. At t — 0: To evaluate average density matrix near ¢t = 0, we note that only

Snn(t) and s,y1.,(t) contribute to the O(#?) terms. This enables us to obtain

‘ N+1
(e i(EBn=Bm)ty — 1 _ Ter?tQ + O(t").

This gives the average density matrix close to t = 0 as
d
— Gaar (1 — Ga0) 12+ O(t).

dp(da — 1
B( A ) 2t2 5
(B.14)

<PA(t = O+)aa’> = 5a05a’0 1 9
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2. At t = oo

lim (e~ IEn—Emlty —
t—o00

which gives us the average density matrix at late times as

. 1
tli}r&(pA(t)aaO = N——I—l[(dB + 1)5a0(5a/0 + dB(Saa/(l — 5(10)]- (B15)

B.2.2.2 Purity and von Neumann of the average

Once we have the expression for the average density matrix at early and late
times, it is straightforward to calculate the corresponding limits for the purity and
the entanglement entropy of this average density matrix. We can evaluate the

entanglement entropy for the average state as

_ ‘ (e i (En—Em)t
S((pa®))) = — GVl o py 1o (d < >)

dadp + 1 dadp + 1
dp(da—1), _p dp(da—1), _(p _
— 1=~/ i(En—Em)t 1 1 B\a 7 i(En—Em)t ‘
( dads +1 ) ) o dadp 71 )
Then,
1. At ¢t — 0:
Tr[(pa(t))?] = 1 — dp(da — 1)7*¢* + O(t"),
and
dy—1)d d
S(lpal) =~ g (P07 ) o) (o)
2. At t — oo
. dp dg +1 da+dp dp+1—da(dadp +1)
lim T )2 = -
A Tl ea) ] = o T ady T 17 dadp 1 (dadp + 12
and
. dy—1 1
lim S({pa(t))) = log(da) — ~o5—= + O = . (B.17)
t—o0 2dA B dB
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t t
Figure B.1. Average Linear Entropy vs time. The blue curve represents the linear
entropy of the average density matrix and the black dashed line denotes the analytical
formula for the same at early times.

0.20

o S[{pa®)]

0.15 ==~ S[{pa(t)] short time approximation

o)

:\: 0.10

S

0.05 i

0.00®-~-=~

0.00 0.01 0.02 0.03 0.04 0.05 0.0 02 0.4 0.6 0.8 1.0
¢ t

Figure B.2. Average Entanglement Entropy vs time. The blue curve represents the
entanglement entropy of the average density matrix and the black dashed line denotes
the analytical formula for the same at early times.

B.2.3 Typical Purity: Late Times

We now move towards our main objective, characterizing the early and late evo-
lution of the purity and entanglement entropy of a system in an initially pure and
factorized state and governed by a random matrix Hamiltonian.

B.2.3.1 Purity: Long-time Behavior

We begin by splitting the time-dependent reduced density matrix into time-independent

and time-dependent parts,

pA(t) = é—FE(XA—l—YA(t)), (B18)
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where

1
q, TeXa= > lenool* Tra((vn) (nl), (B.19)
Ya(t) = Y canochoo € Tep([4hn) (). (B.20)
n#m

Following a detailed derivation, we obtain the average purity at long times as

da+dp (da—1)(dp—1)(9d Adp+48) GOE
(Tr(p2 (t))) _ ) dadp+1 (dadp+1)(dadp+2)(dadp+4)(dadp+6) (B 21)
A da+dp 2(da—1)(dp—1) GUE ’ '

dadp+1 ' dadp(dadp+1)(dadp+3)

along with the variance about this mean value

A(Trlpi(1)]) = 4 /2d124d£ 1% +0 (%) (B.22)

Here we have made the assertion that our small parameter can be defined as

2= — (B.23)

B.2.3.2 Linear Entropy: Short-time Behavior

The time dependence of the d, eigenvalues of p4(t) can be written in the form

D IR R P
L+ L+ .. i=2,3,....d4

where
da da
Zoz,-:oz; Zﬂizﬁ;... (B.24)
i=2 i=2

We can calculate « as

.. ) 2
o = ~Telpa(0)pa0) + AO)) = 5 [(H2) + (H)? — (HP,H) — (HPsH)),

(B.25)

where, Py = |¢pa){¢pa|®@Zp and Pgp = ZTo®|dp)(dp|. First, we see that the expres-

sion for «a is symmetric in A <— B. Secondly, for a non-interacting Hamiltonian
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Figure B.3. Average Linear Entropy vs time.

(H = Hjs+ Hp), a =0, which is the expected result.
Then
Te[p4 (1) = > N (t) = 1 — at® + O(t%). (B.26)

B.2.4 Typical Entanglement Entropy: Late Times

B.2.4.1 Emntanglement Entropy: Long-time Behavior

We can calculate

~Tr(pa(t)log palt) = los(da) + 5 — DI(AWD) +OC),  (B21)
which gives us,
S 1 dy ,
(5a(0) = los(da) + 5 — T (WD) + O). (B.28)

Using the results of the previous section, we can show that

d4—1 da(da—1)(dp—1)(9dsadp+48)
(Sa(t)) = log(d) = 5@adas1) ~ Fdads +D(dadn+2)dadn +@rzzre) T O€) GOE
d2—1 da(ds—1)(dp—1) ’
log(dA) - 2(dAélB+1) - dAdB?dA?lB'i‘l)(gAdB'f‘?’) T 0(63) GUE
(B.29)
which can be simplified to
—_— d4 —1 1
Sa(t)) = log(da) — -2 O = B.30
(a0 = towtd) - 52—+ 0( ). (B.30)
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for both the GOE and the GUE. We can also calculate the standard deviation

about this mean value as

ASy ~ %A(Tr[pi(t)])) =4/ dgdélé + O(%). (B.31)

We observe that the formula for the time-averaged entanglement entropy and its

variance for both the GUE and GOE cases is the same as that for Haar-random
states [21,69] upto an order of O(d%).
B

B.2.4.2 Short Time Behavior

By construction, the entanglement entropy at the initial time vanishes, S4(0) = 0.
Determining the behavior of S4(¢) for small ¢ as a function of the Hamiltonian
H and the initial state can provide useful information on the time-scale 7 of
entanglement production. One might expect that a Taylor expansion Sa(t) =
SA(0)t+ %5,4(0) t? 4 ... around ¢t = 0 would provide a detailed description of the
early-time behavior of the entanglement entropy and an estimate of the time-scale
7 of early entanglement production. It is easy to show that the first order vanishes,
S 4(0) = 0. However the second derivative of the entanglement entropy turns out
to diverge, S4(0) = oo, and the function S, (¢) is not analytic at t = 0. Because of
that, we take an alternative route and study the time dependence of the spectrum
of the density matrix pa(t).

We can expand the entanglement entropy as a function of time,

da da 2
t 2 3
Sat) = — 2; Xi(DlogX(t) = |(1+log2)a — X; ailog(ai)] 5 — ot’logt + O(t),
where
dA dA o dA O O
;ailog(ai) = ZZ:; (aﬂog(E) + ailoga) = aloga + a. ; <E>log<g>.

It is not possible to get an exact expression for (6) in terms of H and p(0). However,
we can obtain a bound on S4(t) as t — 0, given by ST"(t) < Sa(t) < ST™(t),
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Figure B.4. Average Entanglement Entropy vs time.

where
max /e at? 2e 3
S3™(1) = - log ((dA . 1)W) + o), (B.32)
Smin(p) = ol (ﬁ) + O(t%) (B.33)
4 Ty B \Lpe ’ '

For systems governed by random Hamiltonians, we can define the timescale of
entanglement, 7, as the point in time for which S7**(¢) first equals Spage, we find

its expression as

S [ _2<SA(t)> ] % (B34)
a. )

B.3 EE Evolution: Random Quadratic Fermionic

Hamiltonians

We consider a fermionic system with Hilbert space H = H 4 ® Hp and a quadratic,
fermionic, random matrix Hamiltonian H. The dimensions of the subspaces A and
B are respectively dy = 2V4 and dp = 28 where N4 and Np are the number
of fermions in systems A and B. Given a factorized gaussian state [¢y) of the
system, its time evolution is [1/;) = e **/"|¢)y) and the reduced density matrix of
subsystem A is pa(t) = trg|ty)(¢y|. This fermionic system can also be written
in the Fock space given by Hpoer = @fil H; where N = N4 + Npg is the total
number of fermions in the composite system. In this Fock space, the state of the

system can be represented by a complex structure J satisfying J? = —Z. The
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Hamiltonian in this picture can be written as
1 a¢b
H = Shat"¢", (B.35)

where h is a 2N x 2N antisymmetric matrix. The dynamics of the system, in terms
of the initial state Jy can be written as J(t) = M (t)JoM ~*(t) where M(t) = e
is time evolution operator. The reduced complex structure for the subsystem A is
denoted by J4 which is defined through the block structure of J as follows

7 Ja | Jas . (B.36)
Ia | J

The entanglement entropy of the subsystem A is then given by
2N,

S35 (5 (52) - (5w e

i=1

where x;’s are the singular values of J4(¢).

B.3.1 Preliminaries

Let {¢,,} be the eigenvectors of hg, with eigenvalues iE,, and {¢,,} be the eigen-
vectors of the initial factorised state [Jy with eigenvalues iP,, where P,, takes the

values £1. These can be expanded in the computational basis {e,,} as

i

As hg, and Jy are both 2N x 2N antisymmetric matrices, the following properties

are satisfied
E2n—1 - _En ; EQn - _I'En ) ,lvb?n—l - 7/’;7” (B39)

P2n—1 =-1 ; P2n =+1 ) ¢2n—1 = an (B4O)

The set of eigenvectors {w, }2Y, and {¢,}?, can therefore be expressed as

{hm, WEIN_ 1 and {¢n, o7} V_, respectively. The following equations can then
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be derived using orthogonality of eigenvectors:

(W ) = Z . =0, (B.41)

(thm, Z 2 = (B.42)
(Ds Dm) = Z dz, (B.43)

(G O, Z a2 = (B.44)

Then, we can write the eigendecomposition of h,, and the initial state Jy as

N
= Z [(iEn>02n,iC;n7j + (_iEn>C;nﬂ'02n,j]a (B45)
n=1
N
(Jo)i = > _ [(1)dan,ids, ; + (—1)d3, idon ;] (B.46)
n=1

It is also possible to write down the following useful inner products

(ms bn) = (D5 V) decml— s (B.47)
(Cm, B3) = (G, 00 de Croi = by (B.48)
(U On) = (S V) = decmz = by = U, (B.49)
(Vs &) = (Dns Ym) = decmz = bin = b (B.50)

B.3.2 Average Fermionic Gaussian State and its EE

Assuming d4 < dg, we compute the reduced state of the system, (7 (¢);), averaged

over the ensemble of gaussian distributed real, antisymmetric matrices. To do that
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it would helpful to first note that the initial state [J, can be written as

()i = Y _(APx)dridy; = = > (1Px)di;dy,. (B.51)
k=1 k=1
Then we find,
N
(T (1) =3 (P E ) (bl i)
n,m,q
_ — 1V{el(Em—En)t ] )

ON — 1 [1 + 2(N 1)(6 >m7£n,n (\70>’LJ7

where

. 1 o o0 .
<€_1(E”_Em)t> = m/ d$/ dye_l(x_y)t(amv(x, r)oan(y,y) — U%N(x, Y)),

(B.52)
with oon(x,y) given as in (Mehta & Rosenzweig 1967)
N-1
02N(£7y) = HQp(x)HQp(y)‘ (B53)
p=0

RETACI S (") () Hosns o), (B.54)

and the formula,

Hoot9) =3 (1) Hy e (5.55)

we can show

Smm(t) = /OO Hn(x)Hm(:L’)e_itxdx = e_§ Z
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and

(7 (Bn=Emity — m Z 0(32m,2m(t)3§n,2n(t) = [52m,20(8)[) (B.57)

=0 n=

—_

Note that these formulas are for the case in which the variance of Hamiltonian

elements (| H,,,|?) = 1. For the general case with (|H,,,|*) = +?, we have

Smn(t) =€~

min(n,m) . ntm—2;
'yzt2 "
Y () e

, . —| ——F=1
= HMm=e =D V2
To evaluate average density matrix near ¢ = 0, we use

2,2 n

(M)=ec"5 Y " ARk P o(t")
Sn.n =€ 4 . . . - T = = - )
’ ==\~ V2! i

(B.59)

Some important cases are:

1. At t — O:

N-1

<e—i(En—Em)t> _ N(N;—l) Z $2m72m(t)$;n72n(t) +O(th)

L n,m=0;n#m

N-1

B 1 CAm41 4, Cdn+1 5, 4
b i > (1 7 7t>(1 — ) + 0

L n,m=0;n#m

N-1

1 T a242 1 2,2 4
=1- 77t NN T > (m+n) 4O

n,m=0;n#m

N -1
=1- T’}/th + O(t4)

This gives us at t close to 0

(T0) = [1= (N = 19%] (T (B.60)
2. At t — oo
. 1
: —(En—Em)t\ _ ; N = -
Jim (e )=0 and Jim (T (1)) = 5 (o)
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B.3.2.1 Entanglement entropy of the average state

The entanglement entropy is given by the von Neumann entropy of the average

state (Ja(t)) of subsystem A with singular values a(t)

2N 4

S(<5A(t>>> _ %Z [_ (1 + a2(t):cio>log<1 + az(t)ZEm) B <1 - az(t)xw)lOg(l - aQ(t)xi())}’

i=1

where x;0 = 1 for an initially factorised state. For early times, ¢ — 0, we have
a(t) =1— (N — 1)7*t* which gives us

+O(th). (B.61)

5(1aey) = v e [1 ~log (%W)

B.3.3 Typical Entanglement Entropy and Variance: Late Times

The entanglement entropy for fermionic gaussian states can be expressed as [120,

121]
o0 T j 2n
SA.f:NAlogZ—Z%,

n=1
where the series converges absolutely. For a fermionic system with a random
quadratic Hamiltonian, the the entanglement entropy as a function of time can be

written as [( ( ))2 }
> Tr|(iTa(t))="
— _ E 2n
SA.f(t) —NAlogQ n:1€ 4n<2n—1) s

where € is a small, yet to be determined parameter. The series can then be trun-

cated at the lowest order which gives us

Tr[TA(1)]

1 + O(e). (B.62)

SA,f(t) = NA10g2—|—62

We begin by noting that the time-dependent reduced fermionic state can be split

into two parts, one time-independent one, and the other time-dependent,

Ta(t) = TXa+ TYa(t), (B.63)
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where

2N
(jXA)ij = Z 1P |bnm| CnZCnJ7 (B64)
n,m=1
(jYA zj Z ZIP bmqb leC e E")t_ (B65)

n,m;n#m q=1

The average of any function, f(t) = f(Ja(t)), for a system governed by a random

matrix Hamiltonian is given by

T = (Fle o)) ) = <gggo 7/ f(JA<t>>dt>, (B.66)

where the average is evaluated both over time and over the random matrix ensem-
ble. Then,

(Te(T30) ) = (Tr(7X3) ) + (T (TVZ0) ). (B.67)

Following a long derivation where we use the statistical properties of components

of eigenvectors of random matrices we find,

(m(TVEW0) ) = —% + 0(%), (B.68)
(T(7X3)) = 0(%), (B.69)

which leads us to
<Tf(t)> = Nalog2— % + O(%). (B.70)

We can also calculate the variance of the purity as

A2(5(0)) = (TG 00 ) — (Sas )

4

6
=1 + O(e).

(IVONE) — (TITVI])
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Following a detailed derivation, we obtain

A2(Sas(t)) = 4%2 (1 _ ﬁ) + o(jég) (B.71)

B.3.4 Entanglement entropy: Short-time behavior

We prepare the system in the state |0)4 ® |0)p. The time dependence of the Ny

singular values of J4(t) can be written in the form

Then, using (B.37), we find the expression for the entanglement entropy at small

times as

Sa(t) = (1 +log2) Z——Z—l g< )

Comparing with B.25 we find that

Na

t? Ai o 3
5 —2715 logt + O(t?),

=1

Z 7 —a. (B.72)

Moreover, similar to the procedure in the previous section, we can obtain a bound
on SA< ) ast — 0, glVGIl by Smm( ) < SA( ) < Smax( )7 where

ST (1) = a—ﬁlog <NA—> + O, (B.73)
S5 (1) = - log (%) + O (B.74)

To help with the computations, we define a structure C,,,, as

Crw == (0uw + 1), (B.75)

N)I»—t
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where 0,,, is the 2NV x 2N identity matrix, and €2, , is the 2N x 2N fundamental

sympletic matrix,
Sofo0 |1
Q,, = . B.76
&) (.70

It should be noted that C),, = (£,§,), is a correlation matrix for the fermionic
operator, £, in the initial state. Then, in terms of this structure, using (B.25) we

can get the expression for « as

a=2>" > hushpoCpyCus. (B.77)

w,pEAV,0EB

For a random, quadratic, fermionic, matrix Hamiltonian h,,, with (A, .)random h =

A? for p # v and (h,,)random n = 0, We can compute
<04>random h — 2A2NANB. (B78)

Defining the timescale of entanglement, 7, as the point in time for which S{**(t)

first equals Sgquss, we find its expression as

[N

T:[ 2 )] . (B.79)

_ SGa,uss
Oé.W_l ( —e.NA
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Appendix C
Exact PDF for Eigenvectors

of GUE and GOE Random
Matrices

The probability distribution function, Py q(vy,. .., ve), of d out of the M indepen-
dent components of one eigenvector, v, of a random matrix has been well studied.

For instance,

1 (&) M-d-2
PM,d(vl,...,vd):—i MQ_d (l—vf—...—vg) z
T2 F(T)

where M = N for the GOE ensemble, M = 2N for the GUE and GSE ensemb]es.
However, the PDF corresponding to the components of two or more eigenvectors
of a random matrix has not been studied in detail. In the following discussion,
we aim to calculate the PDF of the components of two eigenvectors, P(v,w), of

random matrices belonging to various ensembles.

C.1 GOE

For the GOE ensemble, P(v,w) has the form

PYOE(5,w) = Cy6(1 — 0%)6(1 — w?)o(v.w) (C.1)
_ d51 +s1t1 j{ dSQ +s2t2 f d$3 +s3t3 ,—|02|s1 ,—|W?|s2 ,—D.Ws3
- CN}[ o o omi. o ¢
(C.2)
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where Cy is the normalization constant, ¢t; = t, = 1 and t3 = 0. The first task is

to calculate C'y. Normalisation of this PDF requires that
1 :/de/dePGOE(v,w)

dSl d32 d83 =2 —2 =
= CN/dN’U/def 5 'e+s1t1 5 'e+s2t2 5 ‘e+83t3e—|v \sle—|w \sge—v.wsg.
Tl Tl Tl

Expressing [0%|s; + |@0?|sy + 0.10s3 = VI MV where M is a 2N x 2N matrix of the

form
T 2]
M= l2) (C.3)
5531 821

This gives us

2N
/d2NVeVTMV S
det(M)  (sysy — 2)2

Then, the normalisation condition simplifies to

N

1= CN dSl e+51t1 1 ng e+82t2 ng e+53t3 ™
2mi (s, — 2)% J 2mi 2mi 7

1 45 S

2

dss dss 7N 1 N ]

— ON % .e+52t2 f - e+83t3_ t12 e 2 Q(t1)7
2mi 2mi 32% F(%)

where 6(z) is the heaviside function. Setting t; = 1 in eq(1),

N 2
1= CN_W 7{ @eﬂ‘mi 7{ @eﬂstseﬁ

F(%) 27 32% 27l
Cym [ d 1
= N—g j{ iz,e+82t2_N\/47T32
F(i) 27Tl 827
. ONWN_%
L(3)0(%5Y)
which gives us
INEA e =Y
BRI -
aN"3
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C.1.1 4-component PDF

The main PDF of interest to us is, PSCF(xy,z9,11,%2), where z; = |v;> and

Yi = ‘wi|2'

PGOE($1>$273/1,IU2)

dSl d82 d83 152 e 1052 e 75 0
_ CN dNU de : e+s1t1 : e+52t2 ‘ e+53t3e |0%|s1—|w*|s2—D.Ws3
2mi 2mi 2mi

X 8(x1 — [0n]*)d(w2 — [val*) (3 — [wn[*)d(y — |wal?).
Writing v, = (vs,...,vy) and W, = (w3, ..., wy),

PGOE(I1,$2;y1ay2)

d81 d82 ng _ 152 1y —152 lse—F 1 D s
— CN —,6+81t1 _‘e-‘rsztz _‘e+s3t3 dUJ_ dwle |09 [s1—|w? [s2—D1 W1 83
27 2mi 2mi

6—81(w1+x2)—82(y1+y2)(6—83\/w1y1 + 683\/x1y1)(e—53\/ﬂc2y2 + eng/xzyz)
4\/T1y122Y2 '

Using the same method as in the previous section, we simplify this to

X

PGOE(%J%%;%)

%dsl +s1(1— a:l—a/:Q)f@e+82(1—y1—y2)%@e+83t3
41/1’13/11}2@/2 2mi 2mi 2mi

X (6—83\/$1y + 853\/$1y )(6—83\/$2y2 + 653\/$2y2)

N—-4

N-2 == 1—y—
_ ij\;r (1 -z — 1'2) 2 9(1 L xQ) @e-&-m( y21 y2) %@64‘53753
L(5—1) 4/T1y1729s 27i

. N—
2mi 7
2
53
X (e S5VEI 4 oSV (o= s3V/aR0r esax/myz)eg(l*ml*w)

N—-5

N (1 — T — xQ)T dss ets2(l—y1—y2)

= fracCyn¥T(= —1) 01—y —x2) ¢ —— N3
2 2,/T1y1%2Y2 2mi Sy 2
_ g WAV _ gy WV —yEITT)?
X(e l—z1)—x9 +e l1—z1—x9 ,

finally giving us the 4-component PDF as

N N—
=)= 1
PGOE(xlax2uylay2) = (2,) ( 2,

2
F( 2)F(N—) 27T2‘/I’1y1I2y2

9(1 — T — IQ)
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N-5
2

X [(1—w1—x2—y1—y2+(\/@—@)2)
><9(1—m1—3?2—y1_92+(\/m—m>2
+<1—$1—I2—y1—y2+(\/ﬁy2+\/ﬁyl)2>1\l25

x0@—44—xy—m—yy+@@ﬁa+¢ﬁﬁfﬂ-

C.1.2 4-Point Correlations

(5761 T2 Y1 yQ>GOE

= /d$1d$2dy1dy2 $1I2y1y2PGOE(x17xzayly?h)

d d d
— C’N/dxldedyldyg T1T2Y1Yo 7{ ie+slt1 f ﬁe+szt2 % §e+53t3

271 271 27

x e Pt s g — o [2)5(wa — Jual*)S (g1 — |wi )3 (g2 — |wal?)

N-2 2 2)\2
— CN% d81 e+s1t1 j{ d82e+szt2 f d83e+s3t3 T % 71—_(25182 + 83)

271 2mi 2mi (s159 — %)% 64 (s159 — %)5
CymN
= % (I + I + I3).
Here
d81 dSQ d53 ot 1 7]'7%
I, = _e+81t1f_e+82tzj{_e+53ts — .5
1 7{ i 2mi 2mi (s159 — %)% F(T+3)F(T+4) (C.5)

I2 — %@e+sltl f @e+82t2 % @eJrS:‘sts 38% — _371-_%
2mi 2mi 2mi (5159 — %)% D3 (2A6)

(C.6)
I3 — fﬁe-i-suh % @e—&—sgtg % @64_53153 93§ _ 277’[’7% .
2mi 2mi 2mi 16(s159 — %)% 41‘(%)11(%8)

(C.7)
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This gives us

1 N2 4+ 4N + 15
N2 —1N(N +2)(N +4)(N +6)’

<IE1 T2 Y1 y2>GOE =

C.2 GUE

For the GUE ensemble, P(v,w) = P(vg, 07, Wg,wr) has the form

POVE (5, w) = Cn6(1 — 0% — 09)8(1 — wh — w2)0(Vg.WR + V7.1 )0(Vg.Wy — V. 0R)

. C dSl +s1t1 d82 +sata d83 +s3t3 d84 +s4t4
= UN — € —€ — € — €
271 271 27 27

— (0% +02)s1 ,— (0% +w2) s ,—(Vr.WR+Vr .07 )83 ,— (DR WD~V DR)S4
X e VRTUP e WRTHI 2 e e ,

where C'y is the normalization constant, t; = t, = 1 and t3 = t4 = 0. The first

task is to calculate Cy. Normalisation of this PDF requires that

1= /d2Nv/d2NwPGOE(TJ,@)
— CN/dQN /d2N %dsl +81t1%@e+82t2%@e+83t3f@e+54t4
2mi 2mi 27 2mi

’UR+’UI)81 (wRerI Sge ’UR WR+V7. w1)83e7(ﬁR.1I}]717[.’LTIR)S4

d81 dSQ d83 d84 _UT AT
— C d4NV f\ +81t1 % _e+82t2 f _e+83t3 % _e+34t4e \%4 MV.
N / o ori ori ori

Here M is a 4N x 4N matrix of the form

M— / silon ‘ IN®A2\
\IN ®Ag ‘ SQIQN /

@:(Eﬁi). (C.10)
2 2

, (C.9)

where

This gives us

4N
/d4NVe—\7TM\7 __ T2 _ w2

2 2 ‘

det(M) (5159 — (331‘54) )N
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Then, the normalisation condition simplifies to

2N
1=Cy dsy ottty 1 dsy ootz ds; otsats dsy otsata T
27l _ GEsD\v 27 27l 2mi s
(s1 ) 2

52

N S S
=Cy @eﬂm @e“ﬁ3 @e““t4 —Wg . tN_le( %:1;2) 0(t1)
2m 27 27 Sé\f F(N) 1 )

Setting t; = 1,

which gives us

Oy = . (C.11)

C.2.1 4-Point Correlations

(5171 T2 U1 y2>GUE

= /ditld@dyldyz $1$2y1y2PGUE(fU1,1’27%;3/2)

d d d d
= CN/d$1d$2dyld92 1‘1$291y27{il.€+31t1]{i2.e+82t2 % 58 sty 7{ 25 st
2mi 2mi 2mi 2mi

« e—(ﬁ%-m%)sle—(wg-s—w%)sz e—(ﬁR.wR-s—ﬁI.wI)s;;e—(ﬁR.wI—m.wR)54

X 0wy — v)d(ws — [v2*)0(yr — fwr]*)o(ya — fws]?)

o C dSl +s1t1 d82 +sata ng +s3t3 d84 +s4t4
— UN — € —€ —€ €
271 27 27 271

_ 52452
T2N—4 4(5152 (34 4))2
% (s3+s3) \N—2 xT (s3+57) \6
(5132 4 ) (5132 4 )

= CN7T2N([1 + IQ + [3)

Here

I, = j{ dsle+s1t1 ]{ d82€+52t2 7{ d83€+83t3 f d54e+54t4 1
A . . . (s2+s2)
2mi 2mi 2mi 2mi (s189 — i YN+2
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71'_1

I'(N+1I'(N +2)

2 2
_[2 — dSl e+$1t1 d82 e-l—sztz dSS e+$3t3 dS4 e+84t4 (83 + 84)
2mi 2mi 27i 27i (s3+si) )+
4

(8182 -
—4r1
I'(N 4+ DI'(N +3)

2 2\2
]’3 — f dSle+S1t1 % d82e+52t2 f d83e+83t3 f d84e+54t4 <S3 + 84)
. . . . (82+82)
27 27 2mi 2mi 4(s189 — Eaa )N+

8r~t
4T(N + 1)I(N +4)

This gives us

N2+ N+2
N —1)N2(N + 1)(N 4+ 2)(N +3)°

(212291 Y2)our = ( (C.12)
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Appendix D
Eigenvector Statistics of a Ran-
dom Hamiltonian

The eigenvectors of a random Hamiltonian H = >~ E, [4,,) (4| can be written in
terms of a known or preferred basis, {|ab)}, of the hilbert space, Ha ® Hp, of the

composite system A+ B. Then we can write [¢,) = > . chap|ab). The statistics

n,a,b

of the components ¢, can then be obtained for various random matrix ensembles.
We will derive some of these statistics for the GOE and GUE ensembles. Using

the PDF of the components of one eigenvector, we can calculate

Lo+
<|Cma |2r> _ \/EF?% +;) GOE

T(r+1)I(N) ’
“tven . GUE

(D.1)

r(r+1)I'(%) GOE

N
((lemal® + lemsl*)y = 4 L1 :
I(r+2)T(N)
“rvin o GUE

(D.2)

zr(r+g)r(g) GOE
((Iemal® + |empl? + leme2)7) = { VLG . (D.3)

T(r+3)I(N)
“roven. GUE

From these results, we can derive the following averages,

1 __ GOE
{Cmal* cml?) = VOV , (D.4)

N(]\17+1) GUE
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3 GOE

(|emal *lemp|*) = ¢ NVFDEED , (D.5)
2
NN+ (N+2) GUE
1
L GOE
{Icmal*lcmpl*|cme|?) = VY , (D.6)
N(N+1)(N+2) GUE
15 GOE
(|emal *lemp|®) = ¢ NAVFDEFDNEE) , (D.7)
6
N(N+1)(N+2)(N+3) GUE
9
<’cma|4|cmb‘4> _ N(N+2)(N+4)(N+6) GOE ’ (DS)
4
N(N+1)(N+2)(N+3) GUE
2 GOE
(lemal*|cml*|emel?) = N(N”’(Z*“)(N%) . (D.9)
Ny CUE

Moreover, from the result obtained in Appendix C, we can calculate

N24+4N+15 GOE

<|C |2|C |2|C |2|C |2> _ (N=1)N(N+1)(N+2)(N+4)(N+6) (D 10)
ma mb na nb N24N42 GUE s .
(N—D)NZ(N+1)(N+2)(N+3)
N24+6N+9
<|Cma’2‘cmb’2‘cna‘2’Cnc‘2> _ (N=1)N(N+1)(N+2)(N+4)(N+6) GOE : (D.ll)

N+1
N DN (NN T3) GUE

From the orthogonality of the two bases, we have

*
Z <Cnacma> =0
- n#m
e Z Z <Cnac'>rknac;km’cma’> =0
a a’

n#m

I N<|C”a|2|cma|2> + N(N - 1)<Cna0:na0:m’6ma/> =0
n#Em a#a’ ;m#n
-1
= <cmc:‘nac’;a,cma/> _ ) N=-DN(N+2) GOE' (D.12)
a#a’ m#n -1 GUE

(N-DN(N+1)

120



On similar lines, we can derive

— : GOE
<|Cna|2|Cma|2Cna,c>:nac>:Lmeb>a7éb,m7én - (N_l)N(N+24)(N+4)(N+6) 5 (D13)
T (N-DN(N+1)(N+2)(N+3) GUE
- A GOE
<|Cna|2|0ma|20nb6fnbcfwcmc)a¢b¢c,m¢n — (N—=1)N(N+1)(N+2)(N+4)(N+6) ‘
\ GUE

T NZ(N+1)(N+2)(N+3)
(D.14)
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