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Abstract

We present an approach for detection of anomalous behav-
ior of magnet power supplies (PSs) in storage rings, which
may serve as an early indication of an impending PS trip.
In this new method, we train a Long Short-Term Memory
(LSTM) neural network to predict the temperature of several
components of a PS (transistors, capacitors) based on the PS
current, PS voltage, room temperature, and cooling water
temperature. For training and testing, years of historical
data are used from the Advanced Photon Source (APS). The
neural network is trained on the data corresponding to the
normal operation of the PSs. Anomalous behavior of a PS
can be detected when the observed PS temperature starts to
deviate significantly from the LSTM prediction. This may
allow for preemptive action by the operators or PS group.

INTRODUCTION

There are 1320 power supplies (PSs) for the corrector,
quadrupole, and sextupole magnets in the Advanced Pho-
ton Source (APS) storage ring [1, 2]. On average, PS trips
caused about seven complete beam losses per year of opera-
tion [3], which resulted in unexpected interruptions of users’
experiments. More than 15 years of historical data for PS pa-
rameters in APS can be used to explore various techniques
for detection of trip precursors. Previously, we reported
[4] on several unsupervised anomaly detection techniques,
such as autoencoders [5—7] and saliency detection [8] for
PS temperatures, currents, and voltages. These methods
were successful in detecting precursors for some PS trips,
but produced many false positives. Here we present a new
method for anomaly detection in PS temperature data, based
on the Long Short-Term Memory (LSTM) [9] neural net-
works. This new method is more readily interpreted, which
allows assessing the severity of the detected anomalies and
filtering out clear false positives.

METHOD DESCRIPTION

Historical data for APS power supplies are available at
a 64 second interval from May 2008 to April 2023. In this
contribution, we focus on PS currents and temperatures.
Changes in PS current result in changes in PS temperature—
see the blue points in Fig. 1 (observations)—which can be
used to detect anomalies in PS temperatures. Namely, one
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can create a model that predicts the PS temperature based
on recent values of the PS current. If the prediction deviates
significantly from the observation, an anomaly is declared.
Figure 1 and Table 1 compare three possible implementa-
tions of such predictive models. In this example, by PS
temperature we mean the temperature of one of two transis-
tors of a bipolar horizontal corrector PS. The ten-day training
data interval included one intentional full-range PS ramp,
followed immediately by a one-month-long test interval.

< 2022-06-28 Hor. Corr. S19A:H1
= —e— PS Current
S ~1001
O
(7)) T T T T T T
o
_ 311 [
9 i
— Shian 2T o
o 307 [ iR
S Iy
LRI
g— 28 1 ! —e— Observations
2 1 N —-—- Memoryless Model
g 27 '. Thermal Capacity Model
26 - o LSTM Model
18:40 18:50 19:00 19:10 19:20 19:30

Figure 1: Prediction performance comparison. Short part
of a one-month-long test interval.

Table 1: Mean Squared Error (MSE) comparison.

Model Train MSE [C] Test MSE [C]
Memoryless 3.12x 1072 2.73 x 1072
Thermal Capacity 1.06 x 1072 1.18 x 1072
LSTM 6.98 x 1073 731 x1073

First, we consider a polynomial memoryless model,
which assumes that the PS is always in thermodynamic quasi-
equilibrium, i.e., the PS temperature is a polynomial function
of PS current at the same moment in time,

T(t) =B+ Z L)+ P+ B, (1)
i=1,2
where i = 1,2 corresponds to the positive and negative
currents of the bipolar corrector PS.
Figure 1 shows that the assumption of quasi-equilibrium
does not hold. The memoryless model fails to adequately
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describe the regions with quick changes in PS current. There-
fore, next, we considered a thermal capacity model,
dr
CE = Pin — Puiss, (2
where C is the effective thermal capacity of the PS, Pj;, is
the heating power generated inside the PS, and Pyjgs is the
power dissipated to the surrounding environment and the
cooling water. As an example, consider the following model
for the dissipated power,

Pyiss = a X (T = Tamp), 3)

where « is a constant and Tynp is the ambient temperature.
Eq. (2) can then be solved using Laplace transforms, giving

t
n 1
T(t) = T(O)e*“+/ xe <=1 (—Pin(z’) + Tanp (') | A2’
a
0
“)
where k = @/C. The heating power term can be approxi-
mated by a polynomial, similar to Eq. (1),
1 (@) (i) 2 (i) 3
—Pun(t) = lez a1 +d" (0 +aP B (@) )
=1,

The optimal value of «, learned from the training data, was
k =4.7x1073s~!, One can see in Fig. 1 that the thermal ca-
pacity model accounts for the transitory effects and performs
significantly better than the memoryless model. However,
a PS cannot be accurately represented by a single effective
thermal capacity C, since there is heat exchange among dif-
ferent components of the PS. Also, the temperature reading
corresponds to only one point on the PS and the exact model
for the dissipated power is unknown.

While one could continue to refine the thermal capacity
model, we elected to use recurrent neural networks, namely,
Long Short-Term Memory (LSTM) networks [9, 10]. Here
the only input to the LSTM is the sequence of PS current
values. The initial PS temperature is not used, because the
system quickly forgets about initial conditions, as can be seen
in the first term of Eq. (2). The chosen number of units in the
LSTM cell is six and hyperbolic tangent activation is used
for the cell output. As can be seen in Fig. 1 and Table 1, the
LSTM model outperforms the thermal capacity model. The
LSTM model is also more flexible, since its complexity can
be changed by simply changing the number of parameters
in the LSTM cell, as opposed to re-writing the assumptions
of the underlying physical processes [Egs. (2-5)].

Apart from the PS current, the PS temperature is also
affected by the cooling water temperature, room tempera-
ture, and humidity. We have limited historical data for these
parameters. When they are included in the LSTM model
input, the prediction performance improves, see Fig. 2(c), as
opposed to Fig. 2(b). Figure 2 presents predictions for the
temperature of the capacitor of a corrector PS. The transistor
temperature is less sensitive to changes in the environment.
For this reason, hereafter, we focus on predicting PS transis-
tor temperatures, based solely on PS currents.
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Figure 2: Prediction performance comparison. (a) PS cur-
rent; (b) Model 1, based on PS current; (c) Model 2, based
on PS current, room temperature, and cooling water temper-
ature.

ANALYSIS OF ALL HISTORICAL DATA

We applied the LSTM-based approach to all the historical
data from 2008 to 2023. The models for all 1320 PSs were
retrained every other year, using a ten-day interval, which in-
cluded intentional full-range PS ramps (performed regularly
by the PS group). A part of one such interval is shown in
Fig. 3(a) along with the LSTM-based temperature prediction
(dashed lime line). During training, we used a weighted cost
function, which emphasised regions with more activity in PS
currents and temperatures. MinMax scaler [11] was chosen.
The optimal parameters of the weight function and the opti-
mal number of units in LSTM cells (six) were determined
by running a hyperparameter optimization with RayTune
[12]. For unipolar (quadrupole and sextupole) PSs, the in-
put and output sequences were one-dimensional, while for
bipolar corrector PSs, they were two-dimensional—positive
and negative polarity currents in the input, temperatures of
positive and negative polarity transistors in the output.

There were some outliers (defined as temperatures below
15 C or above 80C) in the training data, as well as some
missing data. If the fraction of outliers and missing data
exceeded 5 %, the PS was deemed unsupported. If the frac-
tion was less than 5 %, the outliers and missing data points
were filled with linearly interpolated values. More than 90 %
of the PSs were supported at any point in time. To review
the predictions and the detected anomalies for all the 15
years of historical data, a graphical user interface applica-
tion was created. Some examples of the detected anomalies
are shown in Fig. 3(b)—(f) as the red shaded regions, where
observations deviate from predictions by more than 3 C. In
panels (a),(b), and (f) of Fig. 3, corresponding to bipolar PSs,
only the temperatures of the positive polarity transistors are
shown.

THPLOO5
4425

e=ga Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.




14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-THPL005

MC6.A27: Machine Learning and Digital Twin Modelling

4425

THPL: Thursday Poster Session: THPL

THPL005

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.


@2z Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

14th International Particle Accelerator Conference,Venice, Italy

ISBN: 978-3-95450-231-8

(3)  2019-09-20 Hor. Corr. S1A:H2

ISSN: 2673-5490

(b) 2019-07-07 Hor. Corr. 533A:H2

JACoW Publishing
doi: 10.18429/JACoW-IPAC2023-THPL0O05

(C) 2013-06-07 Sextupole S16B:52
200

100 A 0 1
0_ Il

-100 | =50

BN

36 A

35 A

> \ \ 30 -

30 A : 3\/] 25 ]
. AV &

25 1 comn S

40 A
A 35 4 J\’_’w—A
W —

08:00 12:00

—_

T T T T T T T T T T T T
16:00  20:00 00:00 02:00 04:00 06:00 08:00  14:00 16:00 18:00 20:00 22:00
€) 2015-06-03 Quadrupole 518:Q1 (f

2019-10-14 Ver. Corr. S13A:V3

d 12- .
200(_ ) 2021-12-13 Quadrupole S4A:Q1 200

SN .

)
T

=== r . - 28 q = [y 8 A oo s e e
20 A L -
26 V—‘V V—-P 20 A
L_J 10 A
0 L T T T T 24 T T T T T T T
16:00 16:30 17:00 17:30 16:00 16:30 17:00 17:30 06:00 12:00 18:00

—— PS Current [A] —— PS Temperature [C]

Predicted PS Temperature [C]

[ Detected Anomaly Regions

Figure 3: Examples of anomalies detected with the LSTM-based method in the historical APS data from 2008 to 2023.

DISCUSSION AND CONCLUSIONS

The example in Fig. 3(b) corresponds to a stuck mixing
valve for the cooling water (two incidents). When cooling
water stopped circulating, the temperatures of multiple PSs
increased quickly. When one of them reached 50 C, it tripped
(by design). Of course, other less sophisticated methods
could detect this too, such as an alarm on a fixed temperature
threshold. However, the LSTM-based method can provide a
much earlier warning.

Figure 3(c) shows a peculiar anomaly in one PS, which
tripped shortly after. It is noteworthy that this unusual be-
havior of the PS temperature would not be detected with
a simple threshold method, for example, since the PS tem-
perature was not particularly high. However, it did deviate
from what it is expected to be at this PS current, and the
LSTM-based method immediately detected it.

The anomalies detected in Fig. 3(d),(e), and (f) do not
immediately lead to a PS trip. In Fig. 3(d), the tempera-
ture and current readings briefly went to zero, which could
be a network problem. In Fig. 3(e), the anomalies flag a
very noisy signal from the temperature sensor. Perhaps the
contact between the sensor and the surface was poor. The
anomaly type shown in Fig. 3(f), may be observed when a
water pump is reset and the water flow encounters a step
change, or when a PS is replaced by a new one during the
run. It is possible to retrain the LSTM model whenever PSs
are swapped out. However, the PS maintenance records in
APS do not appear to be reliable enough, and we cannot try
this approach on the historical data. Still, it is possible to
implement this retraining strategy in the future in the APS
Upgrade [13].
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Even though some kinds of detected anomalies
[Fig. 3(b),(c)] led to PS trips within several minutes or
hours, the majority of the anomalies [Fig. 3(d)—(f)] can be
on-going for months without causing a trip. However, they
still remain true anomalies. According to the PS group
experts, any unexpected deviation beyond 3—4 C must be
reported. This makes it difficult to quantitatively summarize
the method’s performance on the entire historical data
set. In the future, it may be possible to train a classifier to
automatically assign a priority to the detected anomalies,
so that Fig. 3(b),(c) would receive higher priority than
Fig. 3(d),(e),(f). Perhaps a more important metric is by
how much the proposed anomaly detection method could
improve the cost efficiency. In this regard, it may be
acceptable to use a method with low precision of trip
prediction but high recall [14], because the cost of checking
a PS is about 1/300 the cost of an hour of beam time.

The historical data collected during the operation of APS
provided a unique opportunity to test anomaly detection
techniques for the storage ring PSs. The lessons learned will
help shape the methods used for the APS Upgrade, which
promise to be more accurate thanks to higher data rates
and better monitoring of the parameters of the PSs, cooling
systems, and the tunnel.
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