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Abstract: A hypercomplex manifold is a manifold equipped with three complex structures /, J, K satisfying the quaternionic
relations. Let M be a 4-dimensional compact smooth manifold equipped with a hypercomplex structure, and E
be a vector bundle on M. We show that the moduli space of anti-self-dual connections on E is also hypercom-
plex, and admits a strong HKT metric. We also study manifolds with (4,4)-supersymmetry, that is, Riemannian
manifolds equipped with a pair of strong HKT-structures that have opposite torsion. In the language of Hitchin’s
and Gualtieri’'s generalized complex geometry, (4,4)-manifolds are called "generalized hyperkéhler manifolds”.
We show that the moduli space of anti-self-dual connections on M is a (4,4)-manifold if M is equipped with a
(4,4)-structure.
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1. Introduction

1.1. Instanton moduli and stable holomorphic bundles

Ever since it was established by Donaldson and Uhlenbeck-Yau, the correspondence between instantons and stable
holomorphic vector bundles on Kéhler manifolds has been a constant source of new information about both instantons
and holomorphic vector bundles.

One of the most immediate applications of this correspondence is the following. Let (X, g) be a compact Riemannian
4-dimensional manifold admitting complex structures /;, I, such that the metric g is Kéhler with respect to both /; and
L. This happens, for instance, when X is a hyperkahler 4-manifold, that is, a K3 surface or a compact complex torus.
The moduli space M of instantons on X depends only on a metric. From the Donaldson-Uhlenbeck-Yau theorem, we
obtain that M, as a topological space, is identified with the moduli of stable holomorphic bundles E with ¢i(E) =0 on
(X, h) and on (X, k). Therefore, M is equipped with a pair of complex structures, one induced from /, another from /.
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When X is hyperkahler, this can be used to show that the moduli of instantons is hyperkahler as well. This result was
obtained by A. Tyurin ([30]) and generalized in [31] to hyperkahler manifolds of arbitrary dimension.

For non-Kéhler complex manifolds, a version of the Donaldson-Uhlenbeck-Yau theorem was obtained by Buchdahl [6] for
surfaces and by Li and Yau [25] for general Hermitian manifolds. In this context, the correspondence between instantons
and stable holomorphic vector bundles is usually called the Kobayashi-Hitchin correspondence. This result is not new,
but the full impact of the Buchdahl-Li-Yau theorem in the geometry of non-Kahler manifolds is still not completely
realized, though a book by Liibke and Teleman ([26]) studies it in wonderful detail.

Let (X,/,g) be a compact complex Hermitian manifold, and w € A"'(X) its Hermitian form. If d0(w®™X~") = 0, then the
Hermitian metric on X is called a Gauduchon metric. P. Gauduchon ([12]) has proven that such a metric exists in each
conformal class, and is unique up to a constant.

When (X, /, g) is equipped with a Gauduchon metric, the Li-Yau theorem identifies the instanton moduli space with the
space of stable holomorphic bundles (see Section 3 for details).

In this context, an instanton is a Hermitian bundle E with a connection A whose curvature 2-form F, is of type (1,1)
and is pointwise orthogonal to the Hermitian form:

FaeN"(X), Falw.

When X is a complex surface, these conditions are equivalent to the anti-self-duality of A (see Section 3).

Now, assume that (X, g) is a Riemannian manifold admitting two complex structures /;, I, such that g is Hermitian and
Gauduchon with respect to both /; and /,. Then the Buchdahl-Li-Yau theorem implies that the moduli M of anti-seld-
dual connections on X is equipped with two complex structures, induced by / and . It is not generally known how
these complex structures relate to each other. However, if X is equipped with an additional geometric structure (HKT-
or bi-Hermitian), then it is possible to recover a similar structure on the moduli space.

1.2. Bismut connection and HKT-structures

Definition 1.1.

Let (M, 1, g) be a complex Hermitian manifold. A connection V : TM — TM®A'M is called Hermitian it VI = Vg = 0.
Consider its torsion T; € A>’Q TM, and let T € A2®A'M be the tensor obtained from T via the isomorphism TM = A'M
provided by g. A Hermitian connection is called a Bismut connection, or a connection with skew-symmetric torsion, if
T is skew-symmetric, that is, lies in A’M C A> @ A'"M. The 3-form T is called the torsion form of Bismut connection.

Theorem 1.1.
Let (M, 1, g) be a complex Hermitian manifold. Then M admits a Bismut connection ¥V, which is unique. Moreover, its
torsion form is equal to Idw.

Proof. See [3], [9]. O

Remark 1.1.
Clearly, if dw = 0, then the Bismut connection is torsion-free, and thus coincides with the Levi-Civita connection.
Theorem 1.1 can therefore be used to show that the Levi-Civita connection on a Kahler manifold satisfies V/ = 0.

Connections with skew-symmetric torsion play an important role in string physics (see for example [21]). In the physics
literature, a complex Hermitian manifold (M, /, g) with a Bismut connection is called @ KT-manifold (K&hler torsion
manifold). If, in addition, the torsion 3-form is closed, then (M, /, g) is called a strong KT-manifold. By Theorem 1.1, a
manifold is therefore strong KT if and only if 3dw = 0. For complex surfaces, this is equivalent to g being a Gauduchon
metric.

There are several other structures based on Bismut connections which are even more important.

Definition 1.2.
Let (M, g) be a Riemannian manifold, and /_, [, be Hermitian complex structures. Consider the corresponding Bismut
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connections, and suppose that their torsion 3-forms satisfy T, = —7T_, d7. = 0. Then (M, g,/;,[_) is called bi-
Hermitian.

Bi-Hermitian structures appear naturally in several different (and seemingly unrelated) contexts. In differential geometry,
these were studied by Apostolov, Gauduchon and Grantcharov ([1]), who obtained classification results in the case when
dimg M = 4; they showed in particular that if M is of Kéhler type, then it is a rational surface, a torus or a K3 surface.
In physics, such structures were studied as early as 1984 by Gates, Hull and RoZek ([10]), in connection to D = 2,
N = 4 supersymmetric o-models. More recently, bi-Hermitian manifolds have appeared both in mathematics and in
string physics, due to the work of N. Hitchin and M. Gualtieri on generalized complex geometry. In his Ph. D. thesis,
[16], Gualtieri explored the notion of generalized complex manifold, which was first developed by Hitchin ([17]). He
defined generalized Kéhler manifolds, and described them in terms of more classical differential-geometric structures.
More precisely, Gualtieri found that a generalized Kahler structure on a manifold M is uniquely determined by a bi-
Hermitian structure on M whose torsion form T, (called flux by physicists) is exact. There is also a slight generalization
of generalized Kahler structures, called twisted generalized Kdhler structures, and these are equivalent to bi-Hermitian
structures with arbitrary (not necessarily exact) torsion form.

In this sense, the notions of generalized Kéhler structure and bi-Hermitian structure are synonymous.

Another notion, also due to physicists, is the notion of HKT-manifold, which was suggested by Howe and Papadopoulos
in [19] and has been much studied since then.

Definition 1.3.

Let (M, g) be a Riemannian manifold, and /,J, K be complex structures on (M, g) which are Hermitian and satisfy the
quaternionic relations I/ = —JI = K. Then (M, g,1,/,K) is called a quaternionic Hermitian hypercomplex manifold. f,
in addition, the Bismut connections associated to /, / and K coincide, then (M, g, 1, J, K) is called an HKT-manifold; and
if the Bismut torsion is closed, then (M, g,/,J, K) is called strong HKT.

For more details and examples of hypercomplex manifolds and HKT-geometry, please see Section 2.

Remark 1.2.
An orthogonal connection is uniquely determined by its torsion (see for example [9]). Therefore, the Bismut connections
associated to /, J, K are equal if and only if the corresponding torsion forms are equal:

ldw, :jdwj = Kda)/(.

Consequently, a hypercomplex Hermitian structure /,/, K on a Riemannian manifold (M, g) is HKT with respect to g if
and only if the torsion 3-forms corresponding to /, J, K are equal.

We finally consider (4,4)-supersymmetry structures on Riemannian manifolds. These structures were also introduced by
Gates, Hull and Rotek in [10], and can be formulated in Hitchin's and Gualtieri's language as generalized hyperkdhler
structures. These structures were explored in more detail in [7]; also see [20] and [14].

Definition 1.4.

Let (M, g) be a Riemannian manifold, and let /., /., K, and /-, J_, K_ be two triples of complex structures on (M, g)
which are hypercomplex Hermitian and HKT with respect to g. Denote by T, T_ the corresponding torsion forms. Then
M, g, 1, )4, Ki, 1=, J-, KZ) is called a (4,4)-manifold, or a generalized hyperkdhler manifold if the torsion forms T, are
closed and satisfy T, = —T_.

Remark 1.3.

Note that (4,4)-manifolds are equipped with a plethora of bi-Hermitian structures. Indeed, take a complex structure
V. induced by the first quaternion action, and a complex structure U_ induced by the second one. Then the Bismut
torsion of V, is equal to T, and the Bismut torsion of U, is equal to T_, implying that (M, g, V., U-) is a bi-Hermitian
structure.
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A trivial (and not very interesting) example of a (4,4)-manifold can be obtained starting from a hyperkéhler manifold
M, 1,1,K,g). LetI',J', K be another hyperkahler structure on (M, g); such a triple /', /', K’ can be obtained, for instance,
by twisting /,J, K by a non-zero quaternion. Since M is Kahler, the Bismut connection coincides with the Levi-Civita
connection, and its torsion vanishes. Then (M, g,/,J,K,I',J,K’) is a (4,4)-manifold. Clearly, all (4,4)-manifolds with
trivial torsion are obtained this way.

There are not many examples of (4,4)-manifolds with non-trivial torsion. In fact, all known examples (except those
provided by Theorem 1.3) are homogeneous or the product of a homogeneous (4,4)-manifold and a hyperkéhler manifold.
Examples of homogeneous (4,4)-manifolds are not very difficult to obtain. Let G be a semisimple Lie group admitting
a left-invariant hypercomplex structure I, /J;, K (such hypercomplex structures were constructed and completely
classified by D. Joyce in [22]). Replacing the left multiplication by the right one, we may also choose a right-invariant
hypercomplex structure /_,J_, K_ on G. The Killing metric g on G is HKT (see for example [15]), and its torsion T
is equal to the fundamental 3-form of G. In particular, T is closed. If we replace the left group multiplication by the
right one, then the fundamental 3-form of G becomes the opposite of the previous one. The torsion form 7_ of /_,J_, K_
therefore satisfies T_ = —T,, and (G, g,/.,/J+, Ky, -, /-, K_) is a (4,4)-manifold.

The main results of the paper are the following. Consider a bi-Hermitian manifold X of real dimension 4. It was then
shown in [18] that the moduli space of anti-self-dual connections on X is also a bi-Hermitian space. We prove similar
results for hypercomplex, HKT, and (4,4)-structures:

Theorem 1.2.

Let (X,1,J,K, g) be a compact strong HKT-manifold of real dimension 4, and E be a smooth complex vector bundle on
X. Denote by M the moduli space of gauge-equivalence classes of anti-self-dual connections (instantons) on E. Then
M is equipped with a natural strong HKT-structure.

Proof. See section 3.2. O

Remark 1.4.

Compact hypercomplex 4-manifolds were classified in [4], where it was shown that a compact hypercomplex 4-manifold is
either a torus, a K3-surface, or a special type of Hopf surface (see section 2.2). Each of these manifolds admits a strong
HKT-structure (see section 2.2). Therefore, the moduli of stable holomorphic SL(n, C)-bundles on a given hypercomplex
surface is again hypercomplex.

From Theorem 1.2, we deduce the following theorem.

Theorem 1.3.

Let (X, 1., )i, Ky, g) be a compact (4,4)-manifold of real dimension 4, and E be a smooth complex vector bundle on X.
Denote by M the moduli space of gauge-equivalence classes of anti-self-dual connections (instantons) on E. Then M
is equipped with a natural (4,4)-structure.

Proof. See section 2.2. O

2. Hypercomplex structures and HKT-metrics

2.1.  Hypercomplex manifolds

A smooth manifold M equipped with three complex structure operators /,/, K : TM — TM that satisfy the quaternionic
identities
IJ=—JI=K (1)

is said to be hypercomplex or to admit a hypercomplex structure. The complex structures /, J, and K induce other almost
complex structures on M of the form L := al+ bJ + cK for all real numbers a, b, ¢ such that a® + b% + ¢? = 1; that these
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almost complex structures are in fact integrable follows from Obata [23, 28]. Given such a complex structure L on M, we
will denote by (M, L) the manifold M considered as a complex manifold with respect to L.

In this paper, we study the moduli spaces of instantons (solutions to the anti-self-dual Yang-Mills equations) on compact
hypercomplex 4-manifolds; we show, in particular, that these moduli spaces admit a natural hypercomplex structure which
is induced from the hypercomplex structure on the 4-manifolds.

Compact hypercomplex 4-manifolds were classified by Boyer who showed that if (X, /,/, K) is a compact hypercomplex
4-manifold, then X is either a torus, a K3 surface, or a quaternionic Hopf surface (see [4], Theorem 1). Recall that
a quaternionic Hopf surface X can be defined as the quotient of the non-zero quaternions H — {0} by a cyclic group
generated by some g € H with |g| > 1, where (g) acts on H — {0} by right multiplication:

X = (H - {0})/{q). (2)

Note that the action of left multiplication by i, j, and k commutes with the action of right multiplication by g; hence, the
hypercomplex structure {/,/, K} on H induced by left multiplication by i, j, k, respectively, descends to a hypercomplex
structure on the Hopf surface. Furthermore, any quaternionic Hopf surface in Ma. Kato's classification ([24], Proposition
8) is isomorphic to a finite cover of a Hopf surface of the form (2), thus acquiring the same hypercomplex structure from
H.
It has been known for some time that instanton moduli spaces on tori and K3 surfaces admit hypercomplex structures.
In this article, we show that this is true for hypercomplex Hopf surfaces; this is done by identifying the instanton moduli
spaces with moduli spaces of stable bundles, implying, in particular, that we will consider metrics on these 4-manifolds
which are Hermitian' with respect to every complex structure (see section 3.1).
In [22], page 747, D. Joyce suggested that the space of instantons on quaternionic Hopf surfaces can be obtained through
quaternionic reduction. Similar results were obtained independently by Oliver Nash and Gil Cavalcanti in unpublished
papers [27] and [8], using the methods of hypercomplex reduction (Nash) and reduction of Courant algebroids applied to
generalized K&hler geometry (Cavalcantt).
A Riemannian metric g on a hypercomplex manifold (M, /,J,K) is called hyperhermitian or quaternionic Hermitian if
it is Hermitian with respect to every complex structure L on M induced by /,/, K. In addition, if a hyperhermitian
metric g is Kahler? for all complex structures on M, then it is called hyperkdhler; the Euclidean metric on H is an
example of a hyperkahler metric. Note that hyperhermitian metrics exist on all hypercomplex manifolds (M, /, J, K);
indeed, one can construct a hyperhermitian metric on M by taking any Riemannian metric on M and averaging it over
the natural SU(2)-action on M (induced by multiplication by the quaternions). However, hyperkahler metrics only exist
if the underlying manifold admits Kahler metrics; for instance, quaternionic Hopf surfaces do not admit Kéhler metrics
since they have odd first Betti number, implying that they do not admit K&hler structures.
One can endow tori and K3 surfaces with hyperkédhler metrics (for details, see [2]); quaternionic Hopf surfaces are
therefore the only compact hypercomplex 4-manifolds on which hyperhermitian metrics are never hyperkahler. One can
nonetheless construct hyperhermitian metrics on quaternionic Hopf surfaces which are Gauduchon® with respect to every
complex structure. Consider, for instance, a quaternionic Hopf surface of type (2). Let r be the Euclidean length on H
and let ¢ := r?. The 2-forms
_ ddie

o

wy

where df denotes the twisted differential, are then (g)-invariant, and descend to 2-forms on X which induce the same
metric g on X, that is, g(-,-) = wy(-, L-) for all complex structures L. The metric g is thus hyperhermitian. Moreover, a

' A Riemannian metric g on a smooth manifold M with complex structure L is called Hermitian if g(LX, LY) = g(X,Y)
for all vector fields X and Y on M.

2 One can associate to any Hermitian metric g on (M, L) the 2-form wy(-,-) := g(L-, ), called the Hermitian form of g.
A Hermitian metric g is then said to be Kéhler if its Hermitian form w; is d-closed.

3 A Hermitian metric g on an n-dimensional complex manifold (M, L) is called Gauduchon if the (n — 1)-th power its
Hermitian form w; is dd{-closed, where df is the twisted differential which acts as (—=1)"L o d o L on m-forms. Note
that although Kdhler metrics are Gauduchon, the converse is in general not true.
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direct computation shows that

d,cw, = djw/ = chu)K = H,
where H is a d-closed 3-form, implying that g is Gauduchon with respect to every complex structure on X induced by
1,J,K.

2.2. HKT-metrics and (4,4)-symmetry
Consider a hypercomplex manifold (M, /, J, K). A hyperhermitian metric g on M is then called an HKT-metric if
dfw, = d/cw, = chwK = H,

for some 3-form H, where w; is the Hermitian form of g and df is the twisted differential, corresponding to the complex
structures L =/, /, K. Moreover, if H is d-closed, then g is said to be a strong HKT-metric. Note that for any complex
structure L on M, the skew-symmetric torsion of the Bismut connection on (M, L) is equal to the 3-form —2H (see [19],
or [15] Proposition 1). Furthermore, an HKT-metric g is hyperkahler if and only if H = 0 (hyperkahler metrics are in
fact strong HKT). However, on a manifold that does not admit Kahler metrics, one has H # 0, hence the terminology
HKT which stands for "hyperkahler metric with torsion”.

There exists another characterisation of HKT-metrics. Let g be a hyperhermitian metric on (M, /,/, K) and let w;, wy,
and wk be its Hermitian forms for /, J, and K, respectively. Set

Q:=w + V-1wk.

Then Q is a (2,0)-form on (M, [), which can be used to determine whether the metric is HKT. Indeed, one can show
that the metric g is HKT if and only if it satisfies the condition dQ = 0, where 8 = 1(d + V—1df) (see [19] and [15],
Proposition 2). Consequently, since 9Q is a (3,0)-form on (M, /), if M is a 4-manifold, any hyperhermitian structure is
an HKT-structure. This implies that on hypercomplex 4-manifolds, strong HKT-metrics are equivalent to hyperhermitian
metrics that are Gauduchon with respect to all complex structures. Every hypercomplex compact 4-manifold therefore
admits a strong HKT-metric: referring to section 2.1, tori and K3 surfaces admit hyperkéhler metrics, and quaternionic
Hopf surfaces admit metrics which are Gauduchon with respect to every complex structure.

Let us now consider the quaternionic Hopf surface

X = (H—{0})/q)

with g € R. One can then endow X with two natural hypercomplex structures. We have seen that left multiplication by
i, j, and k on H induces a hypercomplex on X, which we now denote /., J;, Ki. The other hypercomplex structure on X
corresponds to right multiplication by i, j, and k on H (since g is real, its action on H commutes with the action of right
multiplication by i, k, and k); we will denote this second hypercomplex structure /_, J_, K_. Note that any hypercomplex
structure on X induced by one of these two hypercomplex structures is orientation preserving. Moreover, one can verify
that the 2-forms (dd¢¢)/¢p, where @ = r? and r is the Euclidean length on H, induce the same metric on X which is a
strong HKT-metric for both hypercomplex structures I, /,, K} and /_,J_, K_. In fact,

c _ AC — c —
d,+w,+ = dj+w]+ = d,(+w,<+ = H,

and

df w_ =dj w =dy wg =—H,
for some d-closed 3-form H. Finally, the two families of hypercomplex structures are independent, in the sense that
no complex structure induced by /., J;, K} can be written as a linear combination of /=, /=, K~, and vice-versa. Hence,
every pair (L;, L_) with L =/, J, or K defines a bi-Hermitian structure X. A pair of strong HKT structures that satisfy the
above properties is known as a (4, 4)-structure (see Definition 1.4). The Hopf surface endowed with its two hypercomplex
structures I, J, Ky and /I, J_, K_ is then an example of (4, 4)-symmetry.
It then follows from Theorems 1.2 and 3.4 that the natural L?-metric g;2 on the instanton moduli space M is strong HKT
with respect to the hypercomplex structures induced by both /;,J,, K} and /_,J_, K_. Moreover, a result of Hitchin's
[18] shows that each pair (L, L_) induces a bi-Hermitian structure on M with respect to the L2 metric g,2. This implies
that the instanton moduli space also admits a (4, 4)-structure.
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3. Instanton moduli spaces

3.1. Hermitian-Einstein connections and stable bundles

Let X be a compact complex surface with fixed Gauduchon metric g and Hermitian form w; in particular, we have ddw = 0.
Consider a smooth vector bundle E on X and let h be a Hermitian metric in E. The space of h-unitary connections in
E is denoted A(E, h).
Recall that a connection A in A(E, h) is called g-Hermitian-Einstein if its curvature 2-form F, is of type (1,1) and
satisfies

V=N Fa = ya-ide

for some y4 € R, where A, is the contraction of 2-forms by w. Note that all Hermitian-Einstein connections are
integrable and therefore induce holomorphic structures in E. Moreover, irreducible g-Hermitian-Einstein connections
give rise to g-stable holomorphic structures in E, where g-stability is defined as follows.

Stability with respect to Gauduchon metrics is an extension of Mumford-Takemoto stability and thus requires the notion
of degree. Given the Gauduchon metric g on X, the degree of a holomorphic line bundle L on X is defined, up to a

multiplicative constant, by
1
degl:=— | FAw,
eg P /M w

where F is the curvature of a Hermitian connection on L, compatible with d;. Since any two such forms F differ by a
00-exact form and ddw = 0, the degree does not depend on the choice of connection.

Note that flat line bundle have degree zero since the curvature of any connection on such bundles is zero; in particular,
the trivial line bundle has degree zero. Furthermore, if the metric g is Kéhler, then we get the usual topological degree;
otherwise, the degree is not a topological invariant, as it can take continua of values in R.

The degree of a torsion-free coherent sheaf £ on X is given by

deg(€) := deg(det&),
where det€ is the determinant line bundle of £, and the slope of £ is defined as
u(€) = degq(&)/rk(&).

A torsion-free coherent sheaf £ on X is then said to be g-(semi)stable if and only if for every proper coherent subsheaf
S C &€ we have

u(S) < p(€),

with strict inequality for g-stable bundles. One can then show that a holomorphic vector bundle £ is g-stable if and only
if it admits an irreducible g-Hermitian-Einstein connection; this was done by Buchdahl [6] for surfaces and Li and Yau
[25] for all Hermitian manifolds. The one-to-one correspondence between irreducible Hermitian-Einstein connections and
stable holomorphic structures in a smooth vector bundle is known both as the Donaldson-Uhlenbeck-Yau correspondence
and the Kobayashi-Hitchin correspondence; a comprehensive reference on the subject is the book [26].

Recall that a connection A on E is called anti-self-dual (ASD) if its curvature F4 satisfies the equation:
*FA = 7FA,

or equivalently, if F4 is a matrix of anti-self-dual 2-forms. Since the anti-self-dual forms on a Hermitian 4-manifold
(M., ], g) consist of (1, 1)-forms which are orthogonal to the Hermitian form w of g, a connection A is ASD if and only if it is
g-Hermitian-Einstein and AyF4 = 0. Irreducible anti-self-dual connections in E therefore induce g-stable holomorphic
structures of degree zero in E.

Let us now consider a compact hypercomplex 4-manifold (X, /,J, K) equipped with a strong HKT-metric g. Let £ be a
smooth complex vector bundle on X and h be a Hermitian metric in E. An h-unitary connection A in E is said to be
hyperholomorphic if it is integrable with respect to every complex structure L on X. Note that anti-self-dual forms on
X are of type (1,1) with respect every complex structure L on X induced by /, J, K. Anti-self-dual connections in E are
therefore hyperholomorphic. The converse is also true:
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Theorem 3.1.
Let E be a vector bundle with Hermitian metric h on a compact strong HKT 4-manifold (X, 1,/J, K, g). Then, an h-unitary
connection A in E is hyperholomorphic if and only if A is anti-self-dual.

Proof. See for example [31], sections 1 and 2, for a proof in the case where (X, /,/, K) admits a hyperkahler metric.
The arguments used in [31] extend, however, to all hypercomplex 4-manifolds. O

Consequently, since anti-self-dual forms on a hyperhermitian 4-manifold (X, /,/, K, g) are orthogonal to the Hermitian
form w; of g for all complex structures L on X, we see that a connection in E induces a g-stable holomorphic structure
in E with respect to all complex structures on X if and only if it is anti-self-dual.

In the next section, we study moduli spaces of connections on compact strong HKT 4-manifolds (X, /,/, K, g). We show
in particular that these moduli spaces admit hypercomplex structures; this is done by identifying these moduli spaces
with moduli spaces of g-stable holomorphic structures, for all complex structures on the 4-manifolds. We therefore only
consider connections that induce g-stable holomorphic structures for all complex structures on X, ie., anti-self-dual
connections.

3.2. Hypercomplex structures and HKT-metrics

Let (X,/,J,K, g) be a compact strong HKT 4-manifold and let £ be a smooth complex vector bundle on X. The space
A?SD of all irreducible anti-self-dual connections (instantons) in E is then a G-principal bundle, where G is the group
of gauge transformations of E. The quotient space

M = AMP g

is the moduli space of gauge equivalence classes of anti-self-dual connections in £. Moreover, the [? metric
(ar,az) = —/ tr(a1 A *as) 3)
M

on A*°P descends to a metric g, on the moduli space M.

Referring to the previous section, instantons correspond to connections in E that are integrable with respect to every
complex structure on X induced by the quaternions. The moduli space M can therefore be identified via the Kobayashi-
Hitchin correspondence with the moduli space M3' of isomorphism classes of g-stable holomorphic structures in E,
for any complex structure L on X. The moduli space M thus inherits a natural complex structure from Mj’, for every
complex structure L on X, which can be described as follows.

Recall that the tangent space to the moduli space M at any point [A] can be identified with the horizontal subspace at
A of any connection on the principal G-bundle

Pi= AMD 5 M.

Moreover, since the difference between any two connections in E is a 1-form with values in sl(E), where sl denotes
trace-free endomorphisms, then every element of A*P is of the form A + a for some a € A'(sl(E)). Suppose that one
fixes a complex structure L on X. The horizontal subspace at A is then chosen to be the set of 1-forms @ such that
Ngdia = 0 (where the subscript A in df is suppressed for clarity), whereas the vertical subspace is the tangent space
of the G-orbit through A, giving us the following local model:

TwM = {a € A'(sl(E)) | dfa =0 and A\;d{a = 0} (4)

(see for example [26] for more details).
The advantage of using this particular connection on the G-bundle P is twofold. The complex structure I on M induced
from the natural complex structure on Mj3" has a very simple expression at any given point [A]. Indeed, note that the
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complex structure L on X decomposes A¢(sl(E)) into components A”9(sl(E)) with p + g = d; given this decomposition,
the complex structure [ on M is the operator

L(a) := V=1 (a"" —a"?), (5)
for any a € TgM. Furthermore, the metric g,2 on M is Hermitian with respect to L, and has the following properties:

Theorem 3.2 (Liibke-Teleman).

The natural 2 metric g2 on (M, L) is Hermitian and its Hermitian form w; is such that:

(i) Let 8 be the curvature of the connection on the principal G-bundle P which has horizontal subspaces (4), and
denote by a; any horizontal lift of a; € TyM to AASD - Then,

&)1(01,02) Z/ wL/\tl’([M /\(_12),
M

and :
dE(Z)(Uhaz,ag) = § Z(_1)sign0/ fw/\tr(9((10(1),&0(2))60(3)) . (6)
0ES3 M
(ii) dd<io; = 0.
Proof. For details see [26], Theorem 5.3.6 and Lemma 5.3.7. O

Remarks 3.1.
Given any element a € A'(sl(E)) we have:

dha = Ngdja + x(djw; A a).
The horizontal slices (4) can then be described as
{a € A'(sU(E)) | dfa =0 and da = *(dfw; A a)}, (7)

which implies the following.
(i) If the metric g is K&hler with respect to L, then we have

dha = Nydia
since dfw = 0; in this case (7) reduces to
{a € A'(sl(E)) | dfa =0 and d%a = 0},

so that (4) is the usual local model for the tangent space to M (namely the orthogonal complement in A*P to the
tangent space of the gauge orbit at A, with respect to the [? metric (3)).
(it) If the metric g is strong HKT, then

dfw, = djw/ = dCKwK =H (8)

for some d-closed 3-form H on X. Consequently, given the description (7) of the horizontal spaces, we see that the
tangent space to M at [A] is the same for all complex structures L; one can therefore compose the complex structures [
on M. Moreover, our choice of connection on P is independent of the complex structure, so that its connection matrix
0 is the same for all complex structures L. This, combined with (8), (6), and Theorem 3.2 (ii), gives us that

dfw; = djcw] = d,‘~<w,~< =H,

where H is a d-closed 3-form.
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Referring to Remark 3.1 (i), the complex structures 7, ], and K on M can be composed; moreover, these complex structures
satisfy the quaternionic identities (1), since we have the following:

Lemma 3.1.
The complex structures | and | on X induce complex structures | and | on M that anti-commute.

Proof. A section a of A'(sl(E)) can be written locally as
a=xXa;,®s;
with a; € A'(X) and s; € sl(E). For any complex structure L on X, one therefore has
[(o) = —ZL(a) ®s;,

which is independent of the local trivialisation. Hence, since // = —JI, we have that [j(a) = —Ji(a) for all @ €
Al(sl(E)). O

We therefore have the following results:

Theorem 3.3.

Let (X,1,J,K) be a compact hypercomplex 4-manifold and let g be a strong HKT-metric on X. Let E be a fixed smooth
complex vector bundle on X. The moduli space M of gauge-equivalence classes of anti-self-dual connections on E then
admits a hypercomplex structure. |

Theorem 3.4.
Let (X,1,J,K) be a compact hypercomplex 4-manifold and let g be a strong HKT-metric on X. Fix a smooth complex

vector bundle E on X and consider the moduli space M of gauge-equivalence classes of anti-self-dual connections on
E. The L? metric on M is then strong HKT.

Proof. This follows from Theorem 3.2 and Remark 3.1 (ii). O
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