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Abstract: A hypercomplex manifold is a manifold equipped with three complex structures I, J, K satisfying the quaternionic
relations. Let M be a 4-dimensional compact smooth manifold equipped with a hypercomplex structure, and E
be a vector bundle on M. We show that the moduli space of anti-self-dual connections on E is also hypercom-
plex, and admits a strong HKT metric. We also study manifolds with (4,4)-supersymmetry, that is, Riemannian
manifolds equipped with a pair of strong HKT-structures that have opposite torsion. In the language of Hitchin’s
and Gualtieri’s generalized complex geometry, (4,4)-manifolds are called ”generalized hyperkähler manifolds”.
We show that the moduli space of anti-self-dual connections on M is a (4,4)-manifold if M is equipped with a
(4,4)-structure.
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1. Introduction
1.1. Instanton moduli and stable holomorphic bundles
Ever since it was established by Donaldson and Uhlenbeck-Yau, the correspondence between instantons and stableholomorphic vector bundles on Kähler manifolds has been a constant source of new information about both instantonsand holomorphic vector bundles.One of the most immediate applications of this correspondence is the following. Let (X, g) be a compact Riemannian4-dimensional manifold admitting complex structures I1, I2 such that the metric g is Kähler with respect to both I1 and
I2. This happens, for instance, when X is a hyperkähler 4-manifold, that is, a K3 surface or a compact complex torus.The moduli space M of instantons on X depends only on a metric. From the Donaldson-Uhlenbeck-Yau theorem, weobtain thatM, as a topological space, is identified with the moduli of stable holomorphic bundles E with c1(E) = 0 on(X, I1) and on (X, I2). Therefore, M is equipped with a pair of complex structures, one induced from I1, another from I2.
∗ E-mail: moraru@math.uwaterloo.ca
† E-mail: verbit@mccme.ru
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When X is hyperkähler, this can be used to show that the moduli of instantons is hyperkähler as well. This result wasobtained by A. Tyurin ([30]) and generalized in [31] to hyperkähler manifolds of arbitrary dimension.For non-Kähler complex manifolds, a version of the Donaldson-Uhlenbeck-Yau theorem was obtained by Buchdahl [6] forsurfaces and by Li and Yau [25] for general Hermitian manifolds. In this context, the correspondence between instantonsand stable holomorphic vector bundles is usually called the Kobayashi-Hitchin correspondence. This result is not new,but the full impact of the Buchdahl-Li-Yau theorem in the geometry of non-Kähler manifolds is still not completelyrealized, though a book by Lübke and Teleman ([26]) studies it in wonderful detail.Let (X, I, g) be a compact complex Hermitian manifold, and ω ∈ Λ1,1(X ) its Hermitian form. If ∂∂̄(ωdimX−1) = 0, then theHermitian metric on X is called a Gauduchon metric. P. Gauduchon ([12]) has proven that such a metric exists in eachconformal class, and is unique up to a constant.When (X, I, g) is equipped with a Gauduchon metric, the Li-Yau theorem identifies the instanton moduli space with thespace of stable holomorphic bundles (see Section 3 for details).In this context, an instanton is a Hermitian bundle E with a connection A whose curvature 2-form FA is of type (1, 1)and is pointwise orthogonal to the Hermitian form:
FA ∈ Λ1,1(X ), FA⊥ω.

When X is a complex surface, these conditions are equivalent to the anti-self-duality of A (see Section 3).Now, assume that (X, g) is a Riemannian manifold admitting two complex structures I1, I2, such that g is Hermitian andGauduchon with respect to both I1 and I2. Then the Buchdahl-Li-Yau theorem implies that the moduli M of anti-seld-dual connections on X is equipped with two complex structures, induced by I1 and I2. It is not generally known howthese complex structures relate to each other. However, if X is equipped with an additional geometric structure (HKT-or bi-Hermitian), then it is possible to recover a similar structure on the moduli space.
1.2. Bismut connection and HKT-structures
Definition 1.1.Let (M, I, g) be a complex Hermitian manifold. A connection∇ : TM −→ TM⊗Λ1M is called Hermitian if∇I =∇g = 0.Consider its torsion T1 ∈ Λ2⊗TM, and let T ∈ Λ2⊗Λ1M be the tensor obtained from T1 via the isomorphism TM ∼= Λ1Mprovided by g. A Hermitian connection is called a Bismut connection, or a connection with skew-symmetric torsion, if
T is skew-symmetric, that is, lies in Λ3M ⊂ Λ2 ⊗ Λ1M. The 3-form T is called the torsion form of Bismut connection.
Theorem 1.1.
Let (M, I, g) be a complex Hermitian manifold. Then M admits a Bismut connection ∇, which is unique. Moreover, its
torsion form is equal to Idω.

Proof. See [3], [9].
Remark 1.1.Clearly, if dω = 0, then the Bismut connection is torsion-free, and thus coincides with the Levi-Civita connection.Theorem 1.1 can therefore be used to show that the Levi-Civita connection on a Kähler manifold satisfies ∇I = 0.
Connections with skew-symmetric torsion play an important role in string physics (see for example [21]). In the physicsliterature, a complex Hermitian manifold (M, I, g) with a Bismut connection is called a KT-manifold (Kähler torsionmanifold). If, in addition, the torsion 3-form is closed, then (M, I, g) is called a strong KT-manifold. By Theorem 1.1, amanifold is therefore strong KT if and only if ∂∂̄ω = 0. For complex surfaces, this is equivalent to g being a Gauduchonmetric.There are several other structures based on Bismut connections which are even more important.
Definition 1.2.Let (M,g) be a Riemannian manifold, and I−, I+ be Hermitian complex structures. Consider the corresponding Bismut
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connections, and suppose that their torsion 3-forms satisfy T+ = −T−, dT± = 0. Then (M,g, I+, I−) is called bi-
Hermitian.
Bi-Hermitian structures appear naturally in several different (and seemingly unrelated) contexts. In differential geometry,these were studied by Apostolov, Gauduchon and Grantcharov ([1]), who obtained classification results in the case whendimR M = 4; they showed in particular that if M is of Kähler type, then it is a rational surface, a torus or a K3 surface.In physics, such structures were studied as early as 1984 by Gates, Hull and Roček ([10]), in connection to D = 2,
N = 4 supersymmetric σ-models. More recently, bi-Hermitian manifolds have appeared both in mathematics and instring physics, due to the work of N. Hitchin and M. Gualtieri on generalized complex geometry. In his Ph. D. thesis,[16], Gualtieri explored the notion of generalized complex manifold, which was first developed by Hitchin ([17]). Hedefined generalized Kähler manifolds, and described them in terms of more classical differential-geometric structures.More precisely, Gualtieri found that a generalized Kähler structure on a manifold M is uniquely determined by a bi-Hermitian structure on M whose torsion form T+ (called flux by physicists) is exact. There is also a slight generalizationof generalized Kähler structures, called twisted generalized Kähler structures, and these are equivalent to bi-Hermitianstructures with arbitrary (not necessarily exact) torsion form.In this sense, the notions of generalized Kähler structure and bi-Hermitian structure are synonymous.Another notion, also due to physicists, is the notion of HKT-manifold, which was suggested by Howe and Papadopoulosin [19] and has been much studied since then.
Definition 1.3.Let (M,g) be a Riemannian manifold, and I, J, K be complex structures on (M,g) which are Hermitian and satisfy thequaternionic relations IJ = −JI = K . Then (M,g, I, J, K ) is called a quaternionic Hermitian hypercomplex manifold. If,in addition, the Bismut connections associated to I, J and K coincide, then (M,g, I, J, K ) is called an HKT-manifold; andif the Bismut torsion is closed, then (M,g, I, J, K ) is called strong HKT.
For more details and examples of hypercomplex manifolds and HKT-geometry, please see Section 2.
Remark 1.2.An orthogonal connection is uniquely determined by its torsion (see for example [9]). Therefore, the Bismut connectionsassociated to I, J, K are equal if and only if the corresponding torsion forms are equal:

IdωI = JdωJ = KdωK .

Consequently, a hypercomplex Hermitian structure I, J, K on a Riemannian manifold (M,g) is HKT with respect to g ifand only if the torsion 3-forms corresponding to I, J, K are equal.
We finally consider (4,4)-supersymmetry structures on Riemannian manifolds. These structures were also introduced byGates, Hull and Roček in [10], and can be formulated in Hitchin’s and Gualtieri’s language as generalized hyperkähler
structures. These structures were explored in more detail in [7]; also see [20] and [14].
Definition 1.4.Let (M,g) be a Riemannian manifold, and let I+, J+, K+ and I−, J−, K− be two triples of complex structures on (M,g)which are hypercomplex Hermitian and HKT with respect to g. Denote by T+, T− the corresponding torsion forms. Then(M,g, I+, J+, K+, I−, J−, K−) is called a (4,4)-manifold, or a generalized hyperkähler manifold if the torsion forms T± areclosed and satisfy T+ = −T−.
Remark 1.3.Note that (4,4)-manifolds are equipped with a plethora of bi-Hermitian structures. Indeed, take a complex structure
V+ induced by the first quaternion action, and a complex structure U− induced by the second one. Then the Bismuttorsion of V+ is equal to T+, and the Bismut torsion of U+ is equal to T−, implying that (M,g, V+, U−) is a bi-Hermitianstructure.
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A trivial (and not very interesting) example of a (4,4)-manifold can be obtained starting from a hyperkähler manifold(M, I, J, K , g). Let I′, J ′, K ′ be another hyperkähler structure on (M,g); such a triple I′, J ′, K ′ can be obtained, for instance,by twisting I, J, K by a non-zero quaternion. Since M is Kähler, the Bismut connection coincides with the Levi-Civitaconnection, and its torsion vanishes. Then (M,g, I, J, K , I ′, J ′, K ′) is a (4,4)-manifold. Clearly, all (4,4)-manifolds withtrivial torsion are obtained this way.There are not many examples of (4,4)-manifolds with non-trivial torsion. In fact, all known examples (except thoseprovided by Theorem 1.3) are homogeneous or the product of a homogeneous (4,4)-manifold and a hyperkähler manifold.Examples of homogeneous (4,4)-manifolds are not very difficult to obtain. Let G be a semisimple Lie group admittinga left-invariant hypercomplex structure I+, J+, K+ (such hypercomplex structures were constructed and completelyclassified by D. Joyce in [22]). Replacing the left multiplication by the right one, we may also choose a right-invarianthypercomplex structure I−, J−, K− on G. The Killing metric g on G is HKT (see for example [15]), and its torsion T+is equal to the fundamental 3-form of G. In particular, T+ is closed. If we replace the left group multiplication by theright one, then the fundamental 3-form of G becomes the opposite of the previous one. The torsion form T− of I−, J−, K−therefore satisfies T− = −T+, and (G, g, I+, J+, K+, I−, J−, K−) is a (4,4)-manifold.
The main results of the paper are the following. Consider a bi-Hermitian manifold X of real dimension 4. It was thenshown in [18] that the moduli space of anti-self-dual connections on X is also a bi-Hermitian space. We prove similarresults for hypercomplex, HKT, and (4,4)-structures:
Theorem 1.2.
Let (X, I, J, K , g) be a compact strong HKT-manifold of real dimension 4, and E be a smooth complex vector bundle on
X. Denote by M the moduli space of gauge-equivalence classes of anti-self-dual connections (instantons) on E. Then
M is equipped with a natural strong HKT-structure.

Proof. See section 3.2.
Remark 1.4.Compact hypercomplex 4-manifolds were classified in [4], where it was shown that a compact hypercomplex 4-manifold iseither a torus, a K3-surface, or a special type of Hopf surface (see section 2.2). Each of these manifolds admits a strongHKT-structure (see section 2.2). Therefore, the moduli of stable holomorphic SL(n,C)-bundles on a given hypercomplexsurface is again hypercomplex.
From Theorem 1.2, we deduce the following theorem.
Theorem 1.3.
Let (X, I±, J±, K±, g) be a compact (4,4)-manifold of real dimension 4, and E be a smooth complex vector bundle on X.
Denote by M the moduli space of gauge-equivalence classes of anti-self-dual connections (instantons) on E. Then M
is equipped with a natural (4,4)-structure.

Proof. See section 2.2.
2. Hypercomplex structures and HKT-metrics
2.1. Hypercomplex manifolds
A smooth manifold M equipped with three complex structure operators I, J, K : TM → TM that satisfy the quaternionicidentities

IJ = −JI = K (1)
is said to be hypercomplex or to admit a hypercomplex structure. The complex structures I, J, and K induce other almostcomplex structures on M of the form L := aI+bJ+ cK for all real numbers a, b, c such that a2 +b2 + c2 = 1; that these
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almost complex structures are in fact integrable follows from Obata [23, 28]. Given such a complex structure L on M, wewill denote by (M, L) the manifold M considered as a complex manifold with respect to L.In this paper, we study the moduli spaces of instantons (solutions to the anti-self-dual Yang-Mills equations) on compacthypercomplex 4-manifolds; we show, in particular, that these moduli spaces admit a natural hypercomplex structure whichis induced from the hypercomplex structure on the 4-manifolds.Compact hypercomplex 4-manifolds were classified by Boyer who showed that if (X, I, J, K ) is a compact hypercomplex4-manifold, then X is either a torus, a K3 surface, or a quaternionic Hopf surface (see [4], Theorem 1). Recall thata quaternionic Hopf surface X can be defined as the quotient of the non-zero quaternions H − {0} by a cyclic groupgenerated by some q ∈ H with |q| > 1, where 〈q〉 acts on H− {0} by right multiplication:
X := (H− {0})/〈q〉. (2)

Note that the action of left multiplication by i, j , and k commutes with the action of right multiplication by q; hence, thehypercomplex structure {I, J, K} on H induced by left multiplication by i, j, k , respectively, descends to a hypercomplexstructure on the Hopf surface. Furthermore, any quaternionic Hopf surface in Ma. Kato’s classification ([24], Proposition8) is isomorphic to a finite cover of a Hopf surface of the form (2), thus acquiring the same hypercomplex structure from
H.It has been known for some time that instanton moduli spaces on tori and K3 surfaces admit hypercomplex structures.In this article, we show that this is true for hypercomplex Hopf surfaces; this is done by identifying the instanton modulispaces with moduli spaces of stable bundles, implying, in particular, that we will consider metrics on these 4-manifoldswhich are Hermitian1 with respect to every complex structure (see section 3.1).In [22], page 747, D. Joyce suggested that the space of instantons on quaternionic Hopf surfaces can be obtained throughquaternionic reduction. Similar results were obtained independently by Oliver Nash and Gil Cavalcanti in unpublishedpapers [27] and [8], using the methods of hypercomplex reduction (Nash) and reduction of Courant algebroids applied togeneralized Kähler geometry (Cavalcanti).A Riemannian metric g on a hypercomplex manifold (M, I, J, K ) is called hyperhermitian or quaternionic Hermitian ifit is Hermitian with respect to every complex structure L on M induced by I, J, K . In addition, if a hyperhermitianmetric g is Kähler2 for all complex structures on M, then it is called hyperkähler; the Euclidean metric on H is anexample of a hyperkähler metric. Note that hyperhermitian metrics exist on all hypercomplex manifolds (M, I, J, K );indeed, one can construct a hyperhermitian metric on M by taking any Riemannian metric on M and averaging it overthe natural SU(2)-action on M (induced by multiplication by the quaternions). However, hyperkähler metrics only existif the underlying manifold admits Kähler metrics; for instance, quaternionic Hopf surfaces do not admit Kähler metricssince they have odd first Betti number, implying that they do not admit Kähler structures.One can endow tori and K3 surfaces with hyperkähler metrics (for details, see [2]); quaternionic Hopf surfaces aretherefore the only compact hypercomplex 4-manifolds on which hyperhermitian metrics are never hyperkähler. One cannonetheless construct hyperhermitian metrics on quaternionic Hopf surfaces which are Gauduchon3 with respect to everycomplex structure. Consider, for instance, a quaternionic Hopf surface of type (2). Let r be the Euclidean length on Hand let φ := r2. The 2-forms

ωL := ddcLφ
φ ,

where dcL denotes the twisted differential, are then 〈q〉-invariant, and descend to 2-forms on X which induce the samemetric g on X , that is, g(·, ·) = ωL(·, L·) for all complex structures L. The metric g is thus hyperhermitian. Moreover, a
1 A Riemannian metric g on a smooth manifold M with complex structure L is called Hermitian if g(LX, LY ) = g(X, Y )
for all vector fields X and Y on M.2 One can associate to any Hermitian metric g on (M, L) the 2-form ωL(·, ·) := g(L·, ·), called the Hermitian form of g.
A Hermitian metric g is then said to be Kähler if its Hermitian form ωL is d-closed.3 A Hermitian metric g on an n-dimensional complex manifold (M, L) is called Gauduchon if the (n − 1)-th power its
Hermitian form ωL is ddcL-closed, where dcL is the twisted differential which acts as (−1)mL ◦ d ◦ L on m-forms. Note
that although Kähler metrics are Gauduchon, the converse is in general not true.
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direct computation shows that
dcIωI = dcJωJ = dcKωK = H,where H is a d-closed 3-form, implying that g is Gauduchon with respect to every complex structure on X induced by

I, J, K .
2.2. HKT-metrics and (4,4)-symmetry
Consider a hypercomplex manifold (M, I, J, K ). A hyperhermitian metric g on M is then called an HKT-metric if

dcIωI = dcJωJ = dcKωK = H,

for some 3-form H, where ωL is the Hermitian form of g and dcL is the twisted differential, corresponding to the complexstructures L = I, J, K . Moreover, if H is d-closed, then g is said to be a strong HKT-metric. Note that for any complexstructure L on M, the skew-symmetric torsion of the Bismut connection on (M, L) is equal to the 3-form −2H (see [19],or [15] Proposition 1). Furthermore, an HKT-metric g is hyperkähler if and only if H = 0 (hyperkähler metrics are infact strong HKT). However, on a manifold that does not admit Kähler metrics, one has H 6= 0, hence the terminologyHKT which stands for ”hyperkähler metric with torsion”.There exists another characterisation of HKT-metrics. Let g be a hyperhermitian metric on (M, I, J, K ) and let ωI , ωJ ,and ωK be its Hermitian forms for I, J, and K , respectively. Set
Ω := ωJ +√−1ωK .

Then Ω is a (2, 0)-form on (M, I), which can be used to determine whether the metric is HKT. Indeed, one can showthat the metric g is HKT if and only if it satisfies the condition ∂Ω = 0, where ∂ = 12 (d +√−1dcI ) (see [19] and [15],Proposition 2). Consequently, since ∂Ω is a (3, 0)-form on (M, I), if M is a 4-manifold, any hyperhermitian structure isan HKT-structure. This implies that on hypercomplex 4-manifolds, strong HKT-metrics are equivalent to hyperhermitianmetrics that are Gauduchon with respect to all complex structures. Every hypercomplex compact 4-manifold thereforeadmits a strong HKT-metric: referring to section 2.1, tori and K3 surfaces admit hyperkähler metrics, and quaternionicHopf surfaces admit metrics which are Gauduchon with respect to every complex structure.Let us now consider the quaternionic Hopf surface
X := (H− {0})/〈q〉

with q ∈ R. One can then endow X with two natural hypercomplex structures. We have seen that left multiplication by
i, j , and k on H induces a hypercomplex on X , which we now denote I+, J+, K+. The other hypercomplex structure on Xcorresponds to right multiplication by i, j , and k on H (since q is real, its action on H commutes with the action of rightmultiplication by i, k , and k); we will denote this second hypercomplex structure I−, J−, K−. Note that any hypercomplexstructure on X induced by one of these two hypercomplex structures is orientation preserving. Moreover, one can verifythat the 2-forms (ddcLφ)/φ, where φ = r2 and r is the Euclidean length on H, induce the same metric on X which is astrong HKT-metric for both hypercomplex structures I+, J+, K+ and I−, J−, K−. In fact,

dcI+ωI+ = dcJ+ωJ+ = dcK+ωK+ = H,

and
dcI−ωI− = dcJ−ωJ− = dcK−ωK− = −H,for some d-closed 3-form H. Finally, the two families of hypercomplex structures are independent, in the sense thatno complex structure induced by I+, J+, K+ can be written as a linear combination of I−, J−, K−, and vice-versa. Hence,every pair (L+, L−) with L = I, J, or K defines a bi-Hermitian structure X . A pair of strong HKT structures that satisfy theabove properties is known as a (4, 4)-structure (see Definition 1.4). The Hopf surface endowed with its two hypercomplexstructures I+, J+, K+ and I−, J−, K− is then an example of (4, 4)-symmetry.It then follows from Theorems 1.2 and 3.4 that the natural L2-metric gL2 on the instanton moduli spaceM is strong HKTwith respect to the hypercomplex structures induced by both I+, J+, K+ and I−, J−, K−. Moreover, a result of Hitchin’s[18] shows that each pair (L+, L−) induces a bi-Hermitian structure onM with respect to the L2 metric gL2 . This impliesthat the instanton moduli space also admits a (4, 4)-structure.
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3. Instanton moduli spaces
3.1. Hermitian-Einstein connections and stable bundles
Let X be a compact complex surface with fixed Gauduchon metric g and Hermitian form ω; in particular, we have ∂∂̄ω = 0.Consider a smooth vector bundle E on X and let h be a Hermitian metric in E . The space of h-unitary connections in
E is denoted A(E, h).Recall that a connection A in A(E, h) is called g-Hermitian-Einstein if its curvature 2-form FA is of type (1, 1) andsatisfies √

−1ΛgFA = γA · idEfor some γA ∈ R, where Λg is the contraction of 2-forms by ω. Note that all Hermitian-Einstein connections areintegrable and therefore induce holomorphic structures in E . Moreover, irreducible g-Hermitian-Einstein connectionsgive rise to g-stable holomorphic structures in E , where g-stability is defined as follows.Stability with respect to Gauduchon metrics is an extension of Mumford-Takemoto stability and thus requires the notionof degree. Given the Gauduchon metric g on X , the degree of a holomorphic line bundle L on X is defined, up to amultiplicative constant, by deg L := 12π
∫
M
F ∧ ω,

where F is the curvature of a Hermitian connection on L, compatible with ∂̄L. Since any two such forms F differ by a
∂∂̄-exact form and ∂∂̄ω = 0, the degree does not depend on the choice of connection.Note that flat line bundle have degree zero since the curvature of any connection on such bundles is zero; in particular,the trivial line bundle has degree zero. Furthermore, if the metric g is Kähler, then we get the usual topological degree;otherwise, the degree is not a topological invariant, as it can take continua of values in R.The degree of a torsion-free coherent sheaf E on X is given by

deg(E ) := deg(det E ),
where det E is the determinant line bundle of E , and the slope of E is defined as

µ(E ) := deg(E )/rk(E ).
A torsion-free coherent sheaf E on X is then said to be g-(semi)stable if and only if for every proper coherent subsheaf
S ⊂ E we have

µ(S) ≤ µ(E ),with strict inequality for g-stable bundles. One can then show that a holomorphic vector bundle E is g-stable if and onlyif it admits an irreducible g-Hermitian-Einstein connection; this was done by Buchdahl [6] for surfaces and Li and Yau[25] for all Hermitian manifolds. The one-to-one correspondence between irreducible Hermitian-Einstein connections andstable holomorphic structures in a smooth vector bundle is known both as the Donaldson-Uhlenbeck-Yau correspondenceand the Kobayashi-Hitchin correspondence; a comprehensive reference on the subject is the book [26].Recall that a connection A on E is called anti-self-dual (ASD) if its curvature FA satisfies the equation:
∗FA = −FA,

or equivalently, if FA is a matrix of anti-self-dual 2-forms. Since the anti-self-dual forms on a Hermitian 4-manifold(M, J, g) consist of (1, 1)-forms which are orthogonal to the Hermitian form ω of g, a connection A is ASD if and only if it is
g-Hermitian-Einstein and ΛgFA = 0. Irreducible anti-self-dual connections in E therefore induce g-stable holomorphicstructures of degree zero in E .Let us now consider a compact hypercomplex 4-manifold (X, I, J, K ) equipped with a strong HKT-metric g. Let E be asmooth complex vector bundle on X and h be a Hermitian metric in E . An h-unitary connection A in E is said to be
hyperholomorphic if it is integrable with respect to every complex structure L on X . Note that anti-self-dual forms on
X are of type (1, 1) with respect every complex structure L on X induced by I, J, K . Anti-self-dual connections in E aretherefore hyperholomorphic. The converse is also true:
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Theorem 3.1.
Let E be a vector bundle with Hermitian metric h on a compact strong HKT 4-manifold (X, I, J, K , g). Then, an h-unitary
connection A in E is hyperholomorphic if and only if A is anti-self-dual.

Proof. See for example [31], sections 1 and 2, for a proof in the case where (X, I, J, K ) admits a hyperkähler metric.The arguments used in [31] extend, however, to all hypercomplex 4-manifolds.
Consequently, since anti-self-dual forms on a hyperhermitian 4-manifold (X, I, J, K , g) are orthogonal to the Hermitianform ωL of g for all complex structures L on X , we see that a connection in E induces a g-stable holomorphic structurein E with respect to all complex structures on X if and only if it is anti-self-dual.In the next section, we study moduli spaces of connections on compact strong HKT 4-manifolds (X, I, J, K , g). We showin particular that these moduli spaces admit hypercomplex structures; this is done by identifying these moduli spaceswith moduli spaces of g-stable holomorphic structures, for all complex structures on the 4-manifolds. We therefore onlyconsider connections that induce g-stable holomorphic structures for all complex structures on X , i.e., anti-self-dualconnections.
3.2. Hypercomplex structures and HKT-metrics
Let (X, I, J, K , g) be a compact strong HKT 4-manifold and let E be a smooth complex vector bundle on X . The space
AASD of all irreducible anti-self-dual connections (instantons) in E is then a G-principal bundle, where G is the groupof gauge transformations of E . The quotient space

M := AASD/G

is the moduli space of gauge equivalence classes of anti-self-dual connections in E . Moreover, the L2 metric
(a1, a2) = −∫

M
tr(a1 ∧ ∗a2) (3)

on AASD descends to a metric gL2 on the moduli spaceM.Referring to the previous section, instantons correspond to connections in E that are integrable with respect to everycomplex structure on X induced by the quaternions. The moduli spaceM can therefore be identified via the Kobayashi-Hitchin correspondence with the moduli space Mst
L of isomorphism classes of g-stable holomorphic structures in E ,for any complex structure L on X . The moduli space M thus inherits a natural complex structure from Mst

L , for everycomplex structure L on X , which can be described as follows.Recall that the tangent space to the moduli spaceM at any point [A] can be identified with the horizontal subspace at
A of any connection on the principal G-bundle

P := AASD →M.

Moreover, since the difference between any two connections in E is a 1-form with values in sl(E), where sl denotestrace-free endomorphisms, then every element of AASD is of the form A + a for some a ∈ A1(sl(E)). Suppose that onefixes a complex structure L on X . The horizontal subspace at A is then chosen to be the set of 1-forms a such thatΛgdcLa = 0 (where the subscript A in dcL is suppressed for clarity), whereas the vertical subspace is the tangent spaceof the G-orbit through A, giving us the following local model:
T[A]M = {a ∈ A1(sl(E)) | d+

Aa = 0 and ΛgdcLa = 0} (4)
(see for example [26] for more details).The advantage of using this particular connection on the G-bundle P is twofold. The complex structure L̃ onM inducedfrom the natural complex structure on Mst

L has a very simple expression at any given point [A]. Indeed, note that the
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complex structure L on X decomposes Ad(sl(E)) into components Ap,q(sl(E)) with p + q = d; given this decomposition,the complex structure L̃ onM is the operator
L̃(a) := √−1 (a0,1 − a1,0) , (5)

for any a ∈ T[A]M. Furthermore, the metric gL2 onM is Hermitian with respect to L̃, and has the following properties:
Theorem 3.2 (Lübke-Teleman).
The natural L2 metric gL2 on (M, L̃) is Hermitian and its Hermitian form ω̃L̃ is such that:

(i) Let θ be the curvature of the connection on the principal G-bundle P which has horizontal subspaces (4), and
denote by āi any horizontal lift of ai ∈ T[A]M to AASD . Then,

ω̃L̃(a1, a2) = ∫
M
ωL ∧ tr(ā1 ∧ ā2),

and
dcL̃ω̃(a1, a2, a3) = 13 ∑

σ∈S3
(−1)signσ ∫

M
dcLω ∧ tr (θ(āσ (1), āσ (2))āσ (3)) . (6)

(ii) ddcL̃ω̃L̃ = 0.

Proof. For details see [26], Theorem 5.3.6 and Lemma 5.3.7.
Remarks 3.1.Given any element a ∈ A1(sl(E)) we have:

d∗Aa = ΛgdcLa+ ∗(dcLωL ∧ a).
The horizontal slices (4) can then be described as

{a ∈ A1(sl(E)) | d+
Aa = 0 and d∗Aa = ∗(dcLωL ∧ a)}, (7)

which implies the following.(i) If the metric g is Kähler with respect to L, then we have
d∗Aa = ΛgdcLa

since dcLω = 0; in this case (7) reduces to
{a ∈ A1(sl(E)) | d+

Aa = 0 and d∗Aa = 0},
so that (4) is the usual local model for the tangent space to M (namely the orthogonal complement in AASD to thetangent space of the gauge orbit at A, with respect to the L2 metric (3)).(ii) If the metric g is strong HKT, then

dcIωI = dcJωJ = dcKωK = H (8)for some d-closed 3-form H on X . Consequently, given the description (7) of the horizontal spaces, we see that thetangent space toM at [A] is the same for all complex structures L; one can therefore compose the complex structures L̃on M. Moreover, our choice of connection on P is independent of the complex structure, so that its connection matrix
θ is the same for all complex structures L. This, combined with (8), (6), and Theorem 3.2 (ii), gives us that

dcĨωĨ = dcJ̃ωJ̃ = dcK̃ωK̃ = H̃,

where H̃ is a d-closed 3-form.
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Referring to Remark 3.1 (i), the complex structures Ĩ, J̃, and K̃ onM can be composed; moreover, these complex structuressatisfy the quaternionic identities (1), since we have the following:
Lemma 3.1.
The complex structures I and J on X induce complex structures Ĩ and J̃ on M that anti-commute.

Proof. A section a of A1(sl(E)) can be written locally as
a = Σai ⊗ si,

with ai ∈ A1(X ) and si ∈ sl(E). For any complex structure L on X , one therefore has
L̃(a) = −ΣL(ai)⊗ si,

which is independent of the local trivialisation. Hence, since IJ = −JI, we have that Ĩ J̃(a) = −J̃Ĩ(a) for all a ∈
A1(sl(E)).
We therefore have the following results:
Theorem 3.3.
Let (X, I, J, K ) be a compact hypercomplex 4-manifold and let g be a strong HKT-metric on X. Let E be a fixed smooth
complex vector bundle on X. The moduli space M of gauge-equivalence classes of anti-self-dual connections on E then
admits a hypercomplex structure. �

Theorem 3.4.
Let (X, I, J, K ) be a compact hypercomplex 4-manifold and let g be a strong HKT-metric on X. Fix a smooth complex
vector bundle E on X and consider the moduli space M of gauge-equivalence classes of anti-self-dual connections on
E. The L2 metric on M is then strong HKT.

Proof. This follows from Theorem 3.2 and Remark 3.1 (ii).
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[7] Bredthauer A., Generalized Hyperkähler Geometry and Supersymmetry, preprint available at http://arxiv.org/abs/hep-th/0608114[8] Cavalcanti G.R., Reduction of metric structures on Courant algebroids, preprint[9] Thomas F., Ivanov S., Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math.,2002, 6(2), 303–335[10] Gates S.J.,Jr., Hull C.M., Roček M., Twisted multiplets and new supersymmetric nonlinear σ-models, Nuclear Phys.B, 1984, 248(1), 157–186[11] Gauduchon P., Le théorème de l’excentricité nulle, C. R. Acad. Sci. Paris Sér. A-B, 1977, 285, 387–390 (in French)[12] Gauduchon P., La 1-forme de torsion d’une variete hermitienne compacte, Math. Ann., 1984, 267, 495–518 (in French)[13] Gauduchon P., Hermitian connections and Dirac operators, Boll. Un. Mat. Ital. B (7), 1997, 11, 257–288[14] Goto R., On deformations of generalized Calabi-Yau, hyperKähler, G2 and Spin(7) structures I, preprint available athttp://arxiv.org/abs/math/0512211[15] Grantcharov G., Poon Y.S., Geometry of hyper-Kähler connections with torsion, Comm. Math. Phys., 2000, 213(1),19–37[16] Gualtieri M., Generalized complex geometry, Ph.D. thesis, Oxford University , available at http://arxiv.org/abs/math/0401221[17] Hitchin N., Generalized Calabi-Yau manifolds, Q. J. Math., 2003, 54(3), 281–308[18] Hitchin N., Instantons, Poisson structures and generalized Kähler geometry, Comm. Math. Phys., 2006, 265(1),131–164[19] Howe P.S., Papadopoulos G., Twistor spaces for hyper-Kähler manifolds with torsion, Phys. Lett. B, 1996, 379(1-4),80–86[20] Huybrechts D., Generalized Calabi-Yau structures, K3 surfaces, and B-fields, Int. J. Math., 2005, 16[21] Ivanov S., Papadopoulos G., Vanishing theorems and string backgrounds, Classical Quantum Gravity, 2001, 18(6),1089–1110[22] Joyce D., Compact hypercomplex and quaternionic manifolds, J. Differential Geom., 1992, 35(3), 743–761[23] Kaledin D., Integrability of the twistor space for a hypercomplex manifold, Selecta Math. (N.S.), 1998, 4, 271–278[24] Kato Ma., Compact Differentiable 4-folds with quaternionic structures, Math. Ann., 1980, 248, 79–86[25] Li J., Yau S.-T., Hermitian Yang-Mills connections on non-Kähler manifolds, In: Mathematical aspects of stringtheory, World Scientific, 1987[26] Lübke M., Teleman A., The Kobayashi-Hitchin correspondence, World Scientific Publishing Co., Inc., River Edge,NJ, 1995[27] Nash O., Differential geometry of monopole moduli spaces, Ph.D. Thesis, University of Oxford, 2006[28] Obata M., Affine connections on manifolds with almost complex, quaternionic, or Hermitian structures, Jap. J. Math.,1956, 26, 43–77[29] Pedersen H., Poon Y.S., Deformations of hypercomplex structures, J. Reine Angew. Math., 1998, 499, 81–99[30] Tyurin A.N., The Weil-Petersson metric in the moduli space of stable vector bundles and sheaves over an algebraicsurface, Math. USSR-Izv., 1992, 38(3), 599–620[31] Verbitsky M., Hyperholomorphic vector bundles over hyperkähler manifolds, J. Algebraic Geom., 1996, 5(4), 633–669

337


	Introduction
	Hypercomplex structures and HKT-metrics
	Instanton moduli spaces
	Acknowledgements
	References



