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Abstract We consider chiral Schwinger model with Fad-
deevian anomaly, and carry out the quantization of both the
gauge-invariant and non-invariant version of this model has
been. Theoretical spectra of this model have been determined
both in the Lagrangian and Hamiltonian formulation and a
necessary correlation between these two are made. BRST
quantization using BFV formalism has been executed which
shows spontaneous appearance of Wess—Zumino term during
the process of quantization. The gauge invariant version of
this model in the extended phase space is found to map onto
the physical phase space with the appropriate gauge fixing
condition.

1 Introduction

Chiral Schwinger model is an exactly solvable lower dimen-
sional field theoretical model [1-5]. Initially, it was derived
from Schwinger model [6,7] replacing the vector interaction
of it by by chiral interaction. This chiral generation was ini-
tially attempted in the article [8], however it failed to receive
much attention because of the non-unitarity associated with it
stood as an obstacle in the way to be physically sensible. The
long suffering of this model was cured by Jackiw and Rajara-
man in their seminal work [1] prescribing a very effective
as well as compelling term by hand allowing electromag-
netic current to take anomalous nature. It was later shown
in [9] that it was the fascinating one loop correction term
that entered during regularization. The model then became
a fertile field of investigation in the regime of lower dimen-
sional anomalous gauge theory [2,3,5,10-23] and extension
of this model started in different direction [1-3,5,9-12] like
the extension of its ancestor the celebrated Schwinger model
[7,13,14]. Plenty of investigations on this model were car-
ried out in connection with the confinement-de-confinement
aspect of fermion, renormalization, [1-3,5,9-12] regenera-
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tion of the lost symmetry due to the compelling electromag-
netic anomaly [24-26], BRST invariant reformulation etc.
[29-31].

Mitra in his seminal work [5] however showed that this
model remained physically sensible in all respect with a
very special type of anomaly which was termed by Mitra as
Faddeevian anomaly [32-35]. It does not belong to Jackiw—
Rajaraman’s one parameter class of anomaly. The most sur-
prising aspect of this model with the Faddeevian anomaly is
the maintenance of physical Lorentz invariance despite the
Lorentz non-covariant structure of this anomaly. Photon here
too acquires mass via kind of dynamical symmetry breaking,
but unlike the Jackiw—Rajaraman version of chiral Schwinger
model the fermion which remains unconfined has a definite
chirality. Another attraction of this model is the admissibility
of description of this model in terns of chiral boson [36—38]
which is the basic ingredient of the heterotic string theory. In
fact, it leads to the gauged model of Flurenini—Jackiw type
of chiral bosom [26,39].

This model with these two independent physically sensi-
ble one loop correction (Counter term) and their ancestor, viz,
the celebrated Schwinger model are so fascinating with so
many interesting surprise [2,3,5,10-23,26-28] that till now
it remains as a field of several investigations in the exactly
solvable regime of lower dimensional field theoretical mod-
els. This article is an extension of chiral Schwinger model
with Faddeevian type of anomaly due to Mitra towards its
quantization in both the gauge invariant as well as gauge
non-invariant manner along with the BRST invariant refor-
mulation with an attempt to derive the appropriate Wess—
Zumino term. How the the exact solution of the gauge invari-
ant version maps onto the solution with the usual gauge non-
invariant version has also been explored.

The paper is organized as follows. Sect. 2, contains a
brief review of the chiral Schwinger model with Faddee-
vian anomaly due to Mitra. In Sect. 3, the physical spectrum
is determined in the Lagrangian formulation. Section 4 is
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devoted with constrained quantization of this model in a and
transparent as well as desired manner such that it enables
to make a correlation with the spectrum obtained in Sect. 3.
In Sect. 5 we give a brief introduction of Batalin, Fradkin,
Viilcovisky (BFV) formulation. In Sect. 6 we carry out the
BRST quantization of this model with BVF formulation with
an effort to generate the appropriate Wess—Zumino term. Sec-
tion 7. deals with quantization of the gauge invariant version
of the model. How the gauge invariant model with Wess—
Zumino term maps onto the usual gauge invariant version of
the model is shown in Sect. 8. Final Sect. 9. holds a brief
summary and discussion over the work.

2 A brief review of the chiral Schwinger model with
Mitra type Faddevian anomaly

Replacing the vector interaction between matter and gauge
field of the Schwinger model by chiral interaction the chiral
Schwinger model was described by the action

- 1
Scr = fdzx[ilﬂ[iy +ieA(1+ys)lY — ZF’”FW]' ey

In (1+1) dimension left and right handed fermionic part
can be decoupled and the integration over the right handed
fermion of the action (1) contributes a field independent con-
stant term which can be absorbed within the normalization.
Therefore the effective action gets simplified to

Sp = /d%[ih(&/ﬂkﬁﬂ)% - %FWF”“”:|. 2)

The generating functional of the above theory defined by the
action (2) can be expressed as

Z[A] = / dge'Scs, ©)
where S¢p is the the bosonized version of the action (2):
Scn = / PxLen, )
with

1
Lcy = /dx,CCH = /dx |:§3M¢a“¢
+em" +€")dpA,
1 1
+ Eez(A% —3A7 —2A1Ap) — ZFIWF“"] 6))

From the article [S] we have learned that the study of chiral
fermion in presence of the obstacle posed by the gravita-
tional anomaly is tractable with the bosonized version and
the process of bosonization is crucially tied up with the reg-
ularization. When one wants to integrate out the left handed
fermion it drives us to incorporate the intriguing one loop
correction term in order to get rid of the divergence cropped
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up during the computation of the fermionic determinant. Dif-
ferent correction terms may get involved depending on the
choice of regularization. The matter that has to be taken care
of during regularization with a serious measure indeed be the
maintenance of physical Lorentz invariance. In this context,
we must remember that apparent Lorentz non-covariance not
always pose any obstruction in the way of sustaining physical
Lorentz invariance [5,10,11]. Here we choose the Faddee-
vian type of anomaly [32,33] which was developed, and stud-
ied as well, in the articles [5,10,11]. With this Faddeevian
anomaly the bosonized action reads

1
Scp = /dzx [§8M¢8”¢ +em"” +e")opA,
Lo o 2 1 v
+3€7 (A =347 = 2A41A9) — JFvF™ | (6)

The action in Eq. (6) was initially formulated in [5] where the
author termed it as chiral Schwinger model with Faddeevian
anomaly. Note that there is no Lorentz co-variance at the
action level however in due course we will find that this will
not in any way hinders the process of preservation of the
physical Lorentz invariance of the theory.

The Levicivita symbol in (1 + 1) dimension is chosen
as €% = —¢y; = —1 and the Minkowski metric gy =
diag (1, —1) as usual. The indices u and v takes the value 0
and 1 in two dimensional space time. The advantage of using
the bosonized version is that the anomaly gets subsumed
within within the theory during the process of bosonization.
So the tree level bosonized theory acquires the effect of one
loop correction. In the following section we will proceed to
study the theoretical spectrum of this model in Lagrangian
formulation.

3 Solution in the Lagrangian formulation

To find out the theoretical spectrum we compute the equa-
tions of motion of the fields describing the Lagrangian (6).
The Euler-Lagrange equations for the field ¢,A and A that
results from the Lagrangian (6) are

O¢ + (Muv + €0)3" A* =0, @)
Al — Ay +e(d+9¢) +e*(Ag+341) =0, (8)
Af— Al —e(d+¢) — e*(Ag — A1) = 0. )

To simplify the above equations we introduce the following
ansatz for the field A, and ¢:

1

A, = 52 [€400" F + €0 H] (10)
1

¢=—F+H. (11)
2e
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A straightforward calculation leads us to the following two
decoupled equations of motion.

[0+ 4e210F = 0, (12)
a4 H =0. (13)

Here 04 = 99 + 91. So it indicates that the theoretical spec-
trum contains a massive boson with mass 2e and a massless
chiral boson. Note that 71 = —e,,0"* = OF. To corre-
late these fields to the scalar and gauge fields describing the
Lagrangian (1) we need to consider the solution of this model
in the Hamiltonian formulation.

4 Solution in the Hamiltonian formulation

We now turn towards the Hamiltonian analysis of the theory
in order to obtain the theoretical spectrum in a transparent
manner which will enable us to to correlate the fields F, H
to the fields used in the description of the Lagrangian. We
should mention that the Hamiltonian analysis was already
done in [5]. We will, in fact, describe it in more detail and
transparent manner which will help us to make the necessary
correlation. It will indeed make this article self contained.
We will proceed to find out the theoretical spectra of this
model in the Hamiltonian formulation which necessities to
pursue with the constraint analysis of this theory. From the
standard definition the canonical momenta corresponding to
the matter field ¢, the gauge field components Ag and A are
found out.

L .

CH — 15 =+ e(Ao — Ay, (14)
¢
0LcH . ,

CH _ ) = (A, — AD), 15
BA; 1= (4 0) (15)
Y

CH _ 1o ~0. (16)
d0Ap

Here 7y represents the momentum corresponding to the
scalar field ¢, and 7; and m( stand for the momenta cor-
responding to gauge fields Ag and A. The canonical Hamil-
tonian of the theory is computed using Eqs. (14), (15) and
(16) which reads

1
He = /dx |:§(7112 +5+ ¢
+m1 Ay — e(Ag — A1)y + @) + MA%} - A7

The right hand side of the expression of momentum 7y =~ 0
does not contain any time derivative, so it is the primary
constraint of the theory. The preservation of this constraint
leads to the secondary constraint:

G=mn|+e(my+¢)~0, (18)

which is generally termed as the Gauss law of the theory.
The Lagrange multipliers # and v are having the dimension
of velocity.

Hgpp = [dx [He +umo +v(m| +e(mg +¢)]. (19
Now we can determine the velocity v which comes out to be
v=¢ —e(Ay— A}). (20)

Plugging in the velocity v in (19) the consistency criteria of
the constraints lads to the final constraint

—26%(A] + Ap) ~ 0. 1)

The velocity u gets fixed from the preservation of the final
constraint (21):

u=—m — Ap). (22)

Therefore the theory under consideration contains three con-
straints in its phase space and these constraints precisely are

Q) =m~0, (23)
Q=A0+ A =0, (24
Q3 = 7| + (g + ') ~ 0. (25)

According to the Dirac terminology these constraints are all
weak conditions at this stage. It is also found that the Poisson
bracket between G (x) and G(y) is

[G(x), G(y)] =2e*5(x — y)'. (26)

In the chiral Schwinger model [1] this Poisson bracket (26)
corresponding to the Gauss law constraint was found to
gave vanishing contribution. Faddeev initially noticed that
anomaly might make Poisson bracket between G(x) and
G (y) nonzero [32,33], and the constraint acquires second
class nature and consequently gauge invariance gets lost. He,
however, showed that a systematic quantization of the theory
would be possible in that situation too, but the system might
posses extra degrees of freedom.

This is a system endowed with three constraints in the
phase space. So ordinary Poisson bracket becomes inade-
quate and for the determination of the phase space structure
of this system one does need the Dirac bracket [40], which
is defined by

(AW, BO* =140, B0 = [ 1400, 200
;' 0. 912, Bpldndz,  @7)

where C i Yx, y) s computed using the following equation

[ €5t o190, 2z =50 - s @9
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The system under consideration described by the Lagrangian
(5), has the following C;;(x, y):

0 —85(x —y) 0
S(x —y) 0 =Sx—-y) |. 29
0  —8(x—y) 2% (x —y)

Cij(x,y) =

The nonsingular nature of the matrix C;; indicates that by all
means it has an inverse which is given by

— 528/ (x = ¥) 8(x — ) 5:28(x — y)
—5(x —y) 0 0

Cjly) = :
-y 0

rex —y)
(30)

The reduced Hamiltonian density is obtained after the impo-
sition of the constraints (23), (24) and (25) in Eq. (17) treating
these constraints as strong conditions.

1 1
Hp = E(nf +¢7) + 2—627r{2 — A + 7p¢’ + 267 A2.
(31)

From the definition (27), the Dirac brackets of the fields con-
stituting the reduced Hamiltonian (31) are calculated as fol-
lows.

[A1(x), Ai(D)]* = —2—228’(36 -, (32)
[A1(x), Ti]* = 8(x — y), (33)
[A1(x), o))" = —éc?(x =) (34)
[1(x), i (N]* =0, (35)
[p(x), p(W]" = %e(x - . (36)

Here the superscript () stands for indicating Dirac Bracket.
The Hamiltonian (31) along with the Dirac brackets leads to
the following three first order differential equations of motion

7y =] —4e* A, (37

Ay =m — A}, (38)

, 1

¢ =—¢ — —m| +2eA;. (39)
e

After a little algebra the above three equations render two
second order and one first order differential equation which
represent the theoretical spectra of the model.

O+ 4e5HA; =0, (40)

(O +4e*)m =0, 41)

a+[¢+2im} = a+[¢+i(/&1 +A/1)] =0. (42)
e 2e

Here 04 = 9y + 9;. Note that all the these equations of
motion are Lorentz invariant. So Physical Lorentz invari-
ance is preserved in spite of the presence of the Lorentz
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non-covariant term in the bosonized action. The two sec-
ond order Egs. (40) and (41) correspond to the free mas-
sive boson and its momentum, respectively and Eq. (42) is
representing a self dual (chiral) boson. The theoretical spec-
trum therefore contains a massive boson with mass 2e¢ and
an massless chiral boson [38,39]. The extra degrees of free-
dom as predicted by Faddeev [32,33] is emerging here in the
form of this very chiral boson. In (1 + 1) dimension, it can
be thought of in terms of a chiral fermion too. So the fermion
which remains unconfined has a definite chirality. It is in con-
trast with the de-confinement scenario of chiral Schwinger
model with Jackiw—Rajaraman type of regularization where
a composite fermion having both the chiralities was uncon-
fined. Now let us focus on the process of making a correlation
which we have mentioned in Sect. 2.

We have seen in Sect. 2 that 71 = —e€,, = OF. So
we can immediately land on the conclusion that the field
corresponds to LJF which the massive free field as we have
seen in both the Lagrangian and Hamiltonian formulation.
Equations (10) and (42) show that H = ¢ + zl—em. So the
spectrum obtained in the Lagrangian formulation and in the
Hamiltonian formulation are in exact agreement with each
other.

5 Brief introduction of the BFV formalism

BRST symmetry is the symmetry of a gauge fixed action in
the enlarged Hilbert space. BRST quantization is subject of
huge interest [29,30,41-46,48-50]. Field dependent BRST
has added a new flavor in the arena of BRST quantization
[51,52]. There are different formalism to get BRST invari-
ant effective Lagrangian, however the combined formalism
due to Batalin, Fradkin and Vilkovisky [41-43] for obtain-
ing it is interesting and very effective in the context of having
BRST invariant reformulation of a given model. It is based
on the idea that a system with a set of second class con-
straints can be effectively converted to a first class set in
the extended phase space which finally offers its service to
construct BRST invariant effective action with the proper
choice of gauge conditions. From the improved contribution
of Fugiwara, Igarashi and Kubo (FIK) [44] in this regard we
find that the field needed for this transmutation ultimately
turns into the Wess—Zumino scalar. What follows next is a
brief description of the general BFV formalism for obtaining
a BRST invariant action.

If the Hamiltonian of a physical system is described by
the canonical pairs (pk,qk),k = 1,2,..., N, where the
canonical variables are endowed with a set of constraints
Qy ~ 0,0 =1,2...., N, and if it is assumed that the con-
straints satisfy the following algebra

[Q0, Qpl =iQ, U}

7. (43)
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[He, Q4] =iQpV/, (44)

then N numbers of additional condition ®, =~ 0, with
det[ Py, Q] # 0 are beneficial to imposed into the phase
space of the system in order to identify the physical degrees
of freedom. At this state, the constraints 2, ~ 0 and
®, ~ 0, together with Hamiltonian equations of motion
will be resulted out from the effective action

s= / AtTprd® — He(prs 45 — A%Qu + T, %], (45)

where A and I, are Lagrange multiplier fields those which
satisfy the canonical relation [A%, TIg] = i§%.

Furthermore the launching of a pair of canonical ghost
field (C*, Py) and a pair of canonical anti-ghost field
(P%, Cy) for each pair of constraints enables us to build up
an equivalence between the initial theory with constraints
in the reduced phase space. So the quantum theory can be
described by the partition function [41-43,45,46] which is
holding the action

Sor = / dilprg" + 7% Ao + P*Cq
+C* Py — Hprst +i[0, T1l, (46)

within its exponent. In Eq. (46), Hy, is the minimal Hamil-
tonian [41,42] as termed by Batalin and Fradkin, is defined
by

HMZHc—i-ﬁanCﬂ. 47)

Consequently, the fermionic gauge fixing function I is given
by

[ =Cyx®+ P*AY, (48)
and the BRST charge Q is by the expression

1 _
0 =C" — zcacyUgﬂP/’ + POT,. (49)

The gauge fixing conditions x,’s are ultimately defined
through expression

Dy = Aa + Xa- (50)

6 Study BRST symmetry with the evolution of
appropriate Wess—Zumino term

Let us focus on the BRST invariant reformulation of the
Lagrangian (5). In order to do that we need to know the
constraint structure of the theory. The details of which is
available in [5], but it is discussed in detail in Sect. 3 in a
transparent manner for the shake of constancy and also for
making this article self contained. Here we are giving the
relevant portion as required for the present purpose.

We have seen that 7y = 0 is the primary constraint of the
theory and the canonical Hamiltonian of the theory is

1
He = /dx[—(n% +5+ 97
2
+ 1Ay — e(Ag — A1)y +¢') + 2e2A%}. (51)
The full set of constraints are evaluated in Sect. 3. Ata glance,

the set of constraints those which are embedded in phase
space of the theory are

w1 =my ~ 0, (52)
wy =] +e(my +¢')~0 (53)
w3 = 2¢*(Ag + Ay) ~ 0, (54)

These three constraints form a second class set and the
closures of the constrains with respect to the Hamiltonian
(19) are found to be

0] = wy + 0}, (55)
3 = wh, (56)
w3 = —2e ). (57)

According to the BVF prescription to wards BRST invariant
reformulation, we now take an attempt to construct a first
class set from the available set of second class constraints.
We, therefore, introduce two pairs of canonical auxiliary
fields n, m; and 6, 7y and insert the appropriate combina-
tion of these fields in the the second class set of constraint in
such a manner that it can convert this second class set of con-
straints into first class set. These pair of fields are generally
known as Batalin—Fradkin (BF) fields. The following are the
converted first class constraints with the help of BF fields.

(I)l =TTy — Ty, (58)
@y =7| +e(my+¢) —e(ry —V —m)), (59)
@3 =2e%(Ag + A1) +2¢%. (60)

The above three first class constraints will be found consistent
with the first class Hamiltonian (to be found out) if these new
first class set follow the identical closures as their second
class partner did with the Hamiltonian (19). Precisely, the
conditions are

@ = @ + @, (61)
oy = &, (62)
w3 = —262a, (63)

First class Hamiltonian is acquired by the appropriate place-
ment of the BF fields within the Hamiltonian (19) which is
given by H= Hc + Hpr. Here HpF is constituted with the
polynomial of 6 , n, g and 7, that extend the phase space
respecting the closures (61), (62) and (63). The first class

@ Springer



79 Page 6 of 10

Eur. Phys. J. C (2020) 80:79

Hamiltonian HpF ultimately results out to
L 5 2 2 ’
Hpr = | dx 5(7‘[,7 + g +¥7) —e(men —n¥') |. (64)

Three pairs of canonical ghost (C;, P'), and three pairs of
canonical anti-ghost (P;, C') fields along with four pairs of
canonical multiplier fields (N?, B;) are now brought into the
system. The canonical relations for the fields are

e 7] =[re) =[]
=8 8(x—y),i=1273 (65)

In the present environment, we can write down BRST invari-
ant Hamiltonian from the definition

Hy = Hy —i[Q,T'], (66)

where Hy is the unitarizing Hamiltonian, Q is the BRST
charge and I'’s are the gauge fixing functions. To define
BRST charge Q nilpotency must be protected. The nilpo-
tency is given by the condition

0* =10, 01=0. (67)

The definition of Q in this formalism is

0= /(BiPi + Cioh)dx, (68)
and the definition of gauge fixing function I" is

r = /(C’iéi + P;N')dx, (69)

where indices as usual take the values i = 1,2,3. The
BRST invariant Hamiltonian for this theory therefore can
be expressed as

Hy = Hp + Hyr +/dx[(no )N

(] +e(my +¢') — e(ry — V') —1)))N?

+2¢%((Ag + A1) =0 )N’ = C'C

—C2Cy —26°C5C}

—P'P — P2P, — P3P; + By (=N — Ag)
B , ,

+Bz<7 + Al) + B3(my — V')

+(Py + P))C — 2¢* P{Cy — 262 P{C3). (70)

It would be helpful to write down the generating functional
that ultimately leads to an effective action with the elimina-
tion of unwanted fields by Gaussian integration. The gener-
ating functional for the system now reads

Z= /[Du]eis. (71)

@ Springer

Here the expression of S:

S = /d2X[JT¢<i3 +m Ay + moAo + e + i

VBG4 CP 4 BN — Hy), (72)

where [ D] is the Liouville measure in the extended phase
space which is given by

1

[Du] = [dplldmy] Y _[dAlldmi)[dnlldm, [d¥]ldmy]
i=0

3
Y [dNMI[dBAIACH dC I PFId ). (73)
k=1
We are now in a position to fix up the gauge conditions.
We see that the following conditions will serve our purpose
effectively.

£ = —N2 + Ao, (74)
B ,

b= A, (75)

£y =g + W (76)

Our next task is now to simplify the action (1) through the
elimination of undesired fields by Gaussian integration to
reach to our desired result. A careful look reveals that here
exists a simplification

/de(BiNi +C; PH = —i[0Q, /dzx(é,-N")] (77)
with be Legendre transformation Bl — B + N, However,
the simplification corresponding to i = 1 only suffices in
this situation. More simplification follows from the elimi-
nation of the fields mo, 71, 7y, mphi,m,si By, Bz, Ao, N,
N3, P, P!, Py, P2, P, P', C,C',C3, and C? through
Gaussian integration with the absorption of the constant
contribution of the integrals within the normalization. Ulti-
mately, we obtain a very simplified generating functional that
contains the following effective action within its exponent.

Sey = fdzx[%@sz —¢”) +e(d+¢)(Ag— A))
+%62(A% —2A0A; —3A%)
3 Ay A2
—WW — W2 200 (A + Ag) + 9, A"B
FhaB aﬂéaﬂc]. (78)

To get the simplified expression (78) we have used few redef-
inition of fields: Ny = A and P? = C'z. Since after elimi-
nation there is no other B’s and C’s except B and C, we are
free to call these two as B and C, respectively. A little alge-
bra shows that the action (78) is invariant under the BRST
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transformation

SgA; = A1C', 8549 = 1C, 8¢ = AC,
8pW = —1C,85C = AB, 85C = 0,838 = 0. (79)

At this stage we can easily recognize that the terms appearing
in the action (78) which are constituted with the field W is the
appropriate Wess—Zumino term [47] for this theory. It reads

Lwz=—WW —W? 20 (Ag+ A)). (80)

It is exiting to see this automatic emergence of this Wess—
Zumino term during the process BRST quantization. The
role of gauge fixing is pivotal to get this appropriate Wess—
Zumino action. If it is not properly chosen one may fail to
get appropriate Wess—Zumino term.

7 Quantization of the gauge invariant action

We now turn to the quantization of the gauge invariant action
of this theory. The gauge symmetric version of the theory
is no more than the original bosonized gauge no-invariant
Lagrangian added with the Wess—Zumino term.

Los=Lss+ Lwz. (81)

To study the theoretical spectrum with this gauge symmetric
version we need to fix the gauge redundancy of the theory
[22,23,53,54]. In this context, we chose the Lorentz gauge,
and the gauge fixing term with this gauge is

1
Lor =3, A B+ 5“32‘ (82)

Therefore the Lagrangian with which we will set out for
obtaining the theoretical spectrum is

Lror = Lgs + LgF. (83)

The Euler-Lagrange equations of motion that arise from the
Lagrangian 83 are

O¢ + (nuw + €,0)0"A* =0, (84)
Al — Af+e(d—¢') +e*(Ag +341) =0, (85)
Al — Af +e(@ —¢') +e*(Ag — A =0, (86)
U — W —e(Ag+ A1) =0. (87)

These set of coupled equations get decoupled if the following
ansatz are taken for the fields A;, ¢ and W.

1 -~ -

AM = FBM]—--I- 3uB + aMH - 8M/C, (88)
1

p=—5 F+K-H+B (89)
1

V=——F-K-—H+B. 90)
2e

With the above ansatz, we have the simplification as follows

(O+4H0OF =0, o1
0_H =0, (92)
0B =0, (93)
OK — eaB = 0. (94)

Therefore the system is described by four free fields F, H, B,
and /C. Our next task is to express these four fields in terms of
the field with which the theory under investigation is defined.
After a few steps of algebra we find that

OF ~ F =7, (95)
H=¢+ éﬂ’ (96)
B = m, (97)
K= %@_m. (98)

Therefore the field 7 = 7 corresponds to a massive field
with mass 2e, and the field H corresponds to a massless chiral
boson. These two fields replicates the spectrum as obtained in
Sect. 3. The equations involving B enters into picture because
Lorentz gauge fixing term holds the auxiliary field B. Note
that the field B and K give vanishing commutation with the
physical field 7 and H. So these two fields do not have any
influence on the physical sector of the theory. The field K
stands for the zero mass dipole field playing the role of gauge
degrees of freedom which can be readily eliminated by oper-
ator gauge transformation. So the theoretical spectra are in
exact agreement with the theoretical spectra obtained in [5]
in the Hamiltonian formulation.

8 Mapping of the gauge symmetric action onto the
usual gauge non-invariant action

Equation (78) is the BRST invariant effective action corre-

sponding to the chiral Schwinger model with Faddeevian
anomaly. The U(1) gauge symmetric part of this action is

2 1 2 2 ; /
Segsea = [ d°x §(¢ —¢)+e(d+¢)(A— A
1
+§e2(A§ —2A0A;| —3A%)
1 . 1 .
5 (A1 = 497 + S (A1 = 45
—UW — W2 200 (A + Ao)] (99)
It is the usual action of this theory along with the Wess—
Zumino action as developed in Sect. 4. during the BRST
invariant reformulation of this model. It would be instruc-

tive to show that this gauge symmetric action is equivalent to
the gauge non-invariant action. In other words, the physical
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contents of both the gauge invariant and gauge non-invariant
action is identical, and the Wess—Zumino field has no impact

zZ= f [Dulldet[Cp. Cul12e' | ¥ Artmodotmedtmod—Heasls (C,) (C,)8(C3)8(C4)8(Cs)

From the above inputs we can straight away write down the
the generating functional.

(110)

to the physical sector of the theory. To make the equivalence
appropriate gauge fixing is needed which we have learned
from the edifying article [55]. So we have chosen gauge con-
dition which will be well suited to project this gauge sym-
metric action onto the gauge non-invariant action. We will
follow the path integral formulation in this regard with that
befitting gauge.

To proceed with this purpose we need the momenta cor-
responding to the fields ¢, Ap, A; and W those which are
obtained from the action (99):

0SGsEA

: =9~ 0, 100
34 0 (100)
0SGSEA . p
. =m; = (A — Ap), 101
DAL 1= (4 0) (101)
a5 .
TOGSEA — 7y = ¢ +e(Ag — A)), (102)
¢
0SGsEA ,
0 w ¥ (103)

The Egs. (100) and (103) are independent of velocities so
these two equations represent the primary constraints of the
gauge symmetric action. Explicitly, these two are

C]=JT()%O,
C=mg+ V¥ ~0.

(104)
(105)
The Egs. (100), (101), (102) and (103), along with a

Legendre transformation lead to the canonical Hamiltonian
Hcgs:

1
Hegs = /dx[iorf + 73+ ¢ + M Ay — ey + ) (Ao — A1)

+262 A2 + W% 4 2e(Ag + AV]. (106)

The preservation of the constraint of C; provides with a new
constraint

Cy=mn|+e(my+¢)—2e¥) ~0. (107)

The articles [55,56], render necessary insight for choosing
legitimate gauge to make the equivalence between the gauge
symmetric and gauge nonsymmetric theories. The conditions
those which have been found beneficial to make this equiv-
alence in the present situation are

Cy =V ~0,
Cs =my +e(Ag+ Ay) = 0.

(108)
(109)

@ Springer

where the Liouville measure [Du] = drgdpdnidAdmod
Aodmed6, and m and n run from 1 to 5. After integrating out
of the field ¥ and my, we find that the generating functional
turns into

7 = N/[dﬁ]ei [ d>x[m Ay +roAg+rpd+—HensHel

x8(10)8 (1] + e(mmy + ¢)3(Ag + A1),

where [Dji] = drngdpdmidArdnodAp and N is a normal-
ization constant having no significant physical importance,
and Hcys is given by

(111)

~ 1
Hens = 5(7[12 +¢/2 +7T£) +7T1A(/)

+e(y + @) (Ag — Ap) + 2eAT. (112)

We land onto the required result after integrating out of the
momenta 7, 771 and 7g:

Z = /dAldAodqbeiSCB (113)

So the theory of the gauge symmetric action in extended
phase space and the gauge non-symmetric action in the usual
phase space are equivalent. So it is evident that the physical
sector remain unperturbed in presence of the Wess—Zumino
field. It will be more transparent if we look carefully to the
Dirac Brackets of the fields. We, therefore, proceed to com-
pute the Dirac brackets of the fields using the definition (27).
The matrix C;; which is constituted with Poisson bracket
among the constraints with each other is

0 0 0 0 —ed(x —y)
0 —28'(x —y) 2e8'(x —y) §'(x —y) §(x—y)
Cij = 0 2e8' (x —y) 2e8 (x —y) 0 ed (x —y)
0 8(x —y) 0 0 S(x —y)
edx—y) Fx—y) 28—y Fx—y 0
(114)

Using the definition (27), it is kids’ stuff to compute
the Dirac brackets between the different fields and their
momenta:

[A1(x), Ai()]* = 6%3/(96 =), (115)
[A1(x), TN = 8(x — y), (116)
[A1(x), ¢(N]" = —ics(x =), (117)
[1(x), i (M]* =0, (118)
[¢(x), p(N]" = —ié(x -y, (119)
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[¢(x), T (N]* = 8(x — ),
1
[Ao(x), p(N]I* = 25(16 - ).

(120)
(121)

The superscript () in this case symbolizes the Dirac bracket.
The Dirac Brackets computed here are found to be identi-
cal with the Dirac Brackets computed in Sect. 3. The Dirac
bracts of the Wess—Zumino field and its canonical momenta
give vanishing contribution with the physical field. This indi-
cates that the physical fields remains unperturbed in presence
of the Wess—Zumino fields. In fact, the Wess—Zumino field
allocates themselves in the un-physical sector of the theory.

9 Summary and discussion

In this article we have considered the chiral Schwinger model
with Faddeevian anomaly coined by Mitra in his seminal arti-
cle [5]. The theoretical spectrum of this gauge non-invariant
model has been determined here using Lagrangian as well as
Hamitonian formulation. The spectra come in exact agree-
ment with the spectra determined by Mitra in [5].

The BRST quantization has been carried out using BVF
based improved formulation by FIK. It is exiting to mention
that during the process of BRST quantization Wess—Zumino
term has evolved out spontaneously. However it should be
kept in mind that gauge fixing plays a crucial role in order to
obtain the appropriate Wess—Zumino term.

Quantization of the gauge invariant version of this model
also has been carried out in this article in the Lagrangian
formulation with Lorentz gauge. How the fields get cor-
related with physical fields that describe the usual gauge
non-invariant Lagrangian has been clearly explored. The un-
physical fields has been found to have no influence to the
physical sector since these fields have vanishing Poisson
bracket with the physical fields. The auxiliary (un-physical)
fields appearing in the gauge symmetric version allocate
themselves in the un-physical sector of the theory.

An attempt has been made to show how the Gauge invari-
ant version gets mapped onto the gauge non-invariant version
with the proper choice of gauge fixing condition. Gauge fix-
ing has a pivotal role for this transmutation too.
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