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Abstract. I present an application of a convolutional neural network (CNN) to separate muons
and pions in the Belle II electromagnetic calorimeter (ECL). The ECL is designed to measure
the energy deposited by charged and neutral particles. It also provides important contributions
to the particle identification (PID) system. Identification of low-momenta muons and pions in
the ECL is crucial if they do not reach the outer muon detector. Track-seeded cluster energy
images provide the maximal possible information. The shape of the energy depositions for
muons and pions in the crystals around an extrapolated track at the entering point of the ECL
is used together with crystal positions in θ− φ plane and transverse momentum of the track to
train a CNN. The CNN exploits the difference between the dispersed energy depositions from
pion hadronic interactions and the more localized muon electromagnetic interactions. Using
simulation, the performance of the CNN algorithm is compared with other PID methods at
Belle II which are based on track-matched clustering information. The results show that the
CNN PID method improves muon-pion separation in low momentum.

1. Introduction
The Belle II experiment at the SuperKEKB e+e− collider belongs to the next generation of B
factories and is the upgraded version of the Belle experiment. Among the main goals of the
Belle II experiment there are the search of New Physics and the high precision measurements of
the Standard Model parameters in the flavour sector [1]. Belle II intends to collect data samples
with an integrated luminosity of 50 ab−1 at predominantly the Υ(4S) resonance. SuperKEKB’s
goal for instantaneous luminosity is 6 × 1035 cm−2 s−1, which is 40 times larger than that of
KEKB. This luminosity can be achieved due to a significant decrease in the beam sizes by a
factor of 20 at the interaction point based on the nano-beam collision scheme and by doubling the
beam currents in both rings [2, 3]. With the above-mentioned improvements, Belle II encounters
higher beam background level. The physics reach of Belle II can be enhanced if a better muon-
pion separation can be achieved. A better muon-pion separation for low-momenta tracks is
advantageous for B physics with leptonic τ decays, since this can reduce the number of pions
misidentified as muons at low momentum. It is crucial to rely on the information in the ECL
because low-momentum muons (p . 0.6 GeV/c) cannot reach the dedicated, outermost detector
K0
L-and-muon detector (KLM).

2. The ECL
The ECL consists of 8736 thallium-doped caesium iodide CsI(Tl) crystals projected to the
vicinity of the interaction point. It is immersed in a 1.5 T magnetic field and composed of
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a barrel and two endcaps with polar angle coverage of 12.4◦ – 155.1◦. The dimension of each
crystal is ∼ 5×5 cm2 with a length of 30 cm corresponding to 16.2 X0 (radiation length). The
barrel has 6624 crystals positioned in 46 rings of crystals distributed in the θ-plane and each
ring consists of 144 crystals in the φ-plane [1, 3]. In this study, tracks are extrapolated into the
ECL. Then, at the entry point of the track into the ECL, a window of 7×7 crystals with the
measured deposited energy therein is selected. Since the number of crystals in the barrel in each
θ-plane is equal to 144, the 7×7 crystal images are symmetrical. Typical patterns of energy
depositions for muons and pions are shown in figure 1. Muons and pions both deposit energy
by ionization in the matter. Additionally, pions can undergo hadronic interactions. Therefore,
crystal images of muons are generally more localized than pions.

Figure 1. Patterns of energy depositions for muons (blue) and pions (red) inside the ECL
barrel.

3. Charged particle identification at Belle II
There are two charged PID methods available in the Belle II analysis software framework [4]. The
first method is standard PID which is based on a combination of measurements from different
sub-detectors. For each charged particle hypothesis (i) in each PID system, a likelihood LPIDi
is determined. It is a function of the probability density function parameters for a given set
of observables. These likelihoods can be used to construct a combined likelihood ratio for a
particular sub-detector. A binary likelihood ratio for the ECL system between muon and pion

is defined as RECL
µ/π =

LECL
µ

LECL
µ +LECL

π
which is used as benchmark for comparison in the study, and

is indicated as default. The standard PID in the ECL (LECL) defines a univariate likelihood as
a function of E/p i.e., the ratio of reconstructed cluster energy over the momentum. The E/p
distribution is not very powerful for muon-pion separation specifically for low momentum tracks
(figure 2). The second method is based on boosted decision trees (BDTs) [5]. It uses the shower-
shape information in the ECL combined with likelihood information from other sub-detectors
to train BDTs.

4. Convolutional neural network (CNN)
A convolutional neural network (CNN) is a type of deep neural network which is used to recognize
visual patterns from pixel images [6]. In this study, two CNNs are trained with 7×7 pixel images
of muons and pions together with crystal positions and transverse momentum of the track in the
laboratory frame (each pixel is a ∼ 5×5 cm2 crystal). Separate CNNs are trained for positive and
negative charged tracks. This is due to the geometry of the ECL i.e. the direction of the crystals.
Approximately 1 million single muon and pion candidates are generated with a flat distribution
of transverse momentum between 0.2 and 1.0 GeV/c. Each track is first reconstructed in the
inner tracking detectors, and then extrapolated into the ECL with Geant4 [7].
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Figure 2. The distribution of the ratio of cluster energy over momentum (E/p) for simulated
single track candidates of muons (blue) and pions (red) inside the ECL barrel for low (left) and
high (right) momentum range.

4.1. Inputs, pre-processing, and training
There are two types of inputs for the CNN. One is the energy depositions in the 7×7 pixel images
and the other is a set of inputs which are fed after the convolutional layers that includes pT , θID,
and φID of the extrapolated tracks. The θID and φID represent integer numbers corresponding to
the location of the crystal in the ECL. The energies in the pixel images are given as they are, i.e.,
without any scaling applied since they already have small values. However, there are very large
values in a few pixel images of pions which have energies more than 1 GeV. This is due to pion
inelastic interaction with nuclei producing protons. These large values are replaced with 1 GeV.
Since there are very few of these pixels, this adjustment is negligible since it affects the standard
deviation and mean of the energy depositions by 0.09 % and 0.005 %, respectively. A threshold
value of 1 MeV on the energy depositions in the pixels is applied, so that pixels below this
threshold are assigned zero energy. The pT is already in the range of 0.2 – 1.0 GeV/c, therefore
no scaling is applied. The θID and φID are used as categorical variables which are implemented
as an embedding in the network. An embedding is a distributed representation for categorical
variables where each category is mapped to a distinct vector that a neural network can learn
during training. The number of simulated events is identical for signal and background. The
equal size of the sample is important to avoid bias against a particular type of particle or charge.

The CNN includes two parts. In the first part, the 7×7 pixel images of muons and pions are
used as inputs for a convolutional layer. During convolution, a window of 3×3, called kernel,
goes through each image. A padding and stride of (1, 1) is used for the images. The padding
adds one pixel with value zero on the edge of the image which is beneficial to capture more
information on the edges. The stride refers to the amount of kernel movement over the image.
The feature map is set to 64. The second part of the training involves a feed-forward neural
network (FNN). In this part, the results from the convolutional layer must be flattened and
added on top of pT , θID, and φID. The number of neurons in the first and second layer of FNN
are 3295 and 128, respectively. The dropout layer with a value of 0.1 is used between the first
and second layer of the FNN. An Adam optimizer is used during the training with a learning rate
of 0.001. The loss used in this study is CrossEntropy which is suitable for binary classification
problems. The number of epochs is set to 100. The model is saved based on the lowest validation
loss value in the corresponding epoch. A schematic of the network is shown in figure 3.

4.2. Performance
The performance of the CNN is evaluated on a test dataset with an equal number of muons
and pions. The test dataset is generated and reconstructed with the exact same conditions as
the training dataset. The CNN is compared with two other methods (default and BDT). The
performance of all methods for both charged tracks in a range of transverse momentum (0.52 ≤
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Figure 3. Neural network architecture. See text for details.

pT < 0.76 GeV/c) are shown in figure 4. The µ efficiency is defined as the ratio of the number
of correctly identified muons over the total number of muons. The π fake rate is defined as
the ratio of the number of pions identified as muons over the total number of pions. The CNN
method outperforms the other methods with AUC (Area Under the Curve) scores of 0.836 and
0.841 for positive and negative charged tracks, respectively.

Figure 4. Comparison of CNN, BDT, and default PID. The left and right plots show positive
and negative charged tracks, respectively. The value in front of each method shows the area
under the curve (AUC).

There are cases (mostly pions) that the software framework does not match a track with
a cluster in the ECL. Since the CNN method does not rely on clustering, a comparison is
made among all tracks and tracks with and without matched cluster in the inference phase. The
comparison is shown in figure 5 in which the blue ROC curves, representing the CNN (all tracks),
can be considered as an average between the red and green curves, which represent tracks with
and without matched clusters, respectively. The large difference between red and green ones is
due to statistics. The green ROC curve is roughly 2.8% and 3.5% of the test dataset in the pT
range of 0.52 – 0.76 GeV/c for positive and negative charged tracks, respectively.

Due to the higher beam background level at Belle II, a higher minimal energy threshold for
crystals may reduce the pile-up from beam background. In order to check the robustness of
the CNN method against different levels of beam background, different energy thresholds for
crystals of 0, 1, 2, 5, and 8 MeV are tested and the results are shown in figure 6 (zero means no
threshold). Results show the CNN is robust against the choice of different energy thresholds.
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Figure 5. Comparison of CNN performance for all tracks, tracks with and without matched
cluster. The left and right plots show positive and negative charged tracks, respectively.

Figure 6. Comparison of CNN performance for different thresholds. The left and right plots
show positive and negative charged tracks, respectively.

5. Summary and outlook
This study shows that by using patterns of energy depositions in the ECL, muon-pion separation
can be improved for low-momenta tracks. The pion fake rate is 4.2% and 6.7% larger at a typical
working point of 90% muon identification efficiency for positive and negative charged tracks,
respectively. The CNN method is available in the Belle II analysis software framework and will
be integrated as part of the standard Belle II reconstruction software. This study can be extended
to include additional low-level ECL crystal information, e.g., pulse-shape discrimination [8, 9]
which is useful to separate hadronic and electromagnetic interactions. In order to validate the
CNN method on data, clean samples of muons and pions are selected using e+e− → µ+µ−γ and
D∗+ → D0 [→ K+ π−]π+, respectively. These results are underway.
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