
General Relativity and Gravitation (2011)
DOI 10.1007/s10714-007-0596-y

RESEARCH ARTICLE

E. N. Glass

Acceleration and classical electromagnetic
radiation

Received: 16 December 2006 / Accepted: 22 February 2007
c© Springer Science+Business Media, LLC 2008

Abstract Classical radiation from an accelerated charge is reviewed along with
the reciprocal topic of accelerated observers detecting radiation from a static charge.
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1 Introduction

It is generally accepted by all physicists that when a charge is accelerated in an
inertial frame, observers in that frame detect the emission of electromagnetic radi-
ation. During the first half of the twentieth century, measurements and theory com-
bined to form a complete framework for this part of classical electrodynamics. The
radiated power of an accelerated charge is expressed by the Larmor formula and
goes as the square of the charge times the square of the acceleration. A clear anal-
ysis leading to the Larmor formula is given in Jackson’s text [1] and in Rohrlich’s
text [2], to cite only two of many. Classical radiation from an accelerated charge
is reviewed in Part I.

Radiation can be observed when the relative acceleration between charge and
observer is non-zero. Part II reviews the issue of accelerated observers detecting
radiation from static charges. Mashhoon [3; 4] has emphasized the concept of
locality and its role in measurements made by noninertial observers.

For a different view of radiation detected by accelerating observers, free fall
in a Reissner-Nordström (RN) manifold is studied. Details of the RN metric are
presented in Appendix A, and a radial free fall frame is developed in Appendix B.
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Fig. 1 Forward null cone

2 Part I

The conformal symmetry of Maxwell’s equations in Minkowski spacetime allows
a motionless Coulomb charge to be mapped to uniformly accelerated hyperbolic
motion. (For finite times this is a special case of general bounded accelerations).
This motion satisfies Rohrlich’s local criterion [2] for electromagnetic radiation
which requires projecting the electromagnetic stress–energy 4-momentum of a
point charge into an inertial observer’s rest frame. The Lorentz scalar obtained by
projection is then integrated over a 2-sphere whose radius can be much smaller
than the radiation wavelength. The integral provides the relativistic Larmor for-
mula for radiated power (Gaussian units, metric signature −2)

R =−2
3

q2

c3 aµ aµ (1)

where aµ is the 4-acceleration of charge q. An accelerating charge satisfies this
criterion and has non-zero R.

In the following, a brief derivation of the field and energy–momentum of a
charge moving on a curved path in Minkowski spacetime is given.

2.1 Radiative field

Charge q has 4-current

jµ(x) = q
+∞∫
−∞

vµ(s) δ
(4)[x− z(s)]ds

where s is the proper time along the worldline of q with tangent vµ(s) = dzµ/ds,
vµ vµ = c2 (c = 1 hereafter).

Maxwell’s equations (and the Lorenz gauge) provide

�Aµ(x) = 4π jµ(x).

Green’s identity gives the retarded vector potential in terms of the 4-current

Aµ

ret(x) = 4π

∫
4-vol

Dret(x− x′) jµ(x′)d4x′

(note that µ is a Cartesian index which passes through the integral). Dret is the
retarded Jordan-Pauli function [5].

Dret(x− z) =
1

2π
θ(τ)δ [(xν − zν)(xν − zν)] (2)
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where τ = x0− z0, with step function θ(τ) :=
{1 τ>0

0 τ<0.

Aµ

ret(x) = 2q
+∞∫
−∞

vµ(s)δ [(xν − zν)(xν − zν)]ds. (3)

Since a forward null cone can emanate from each point on the worldline, we label
the worldline points with u, such that s > u. Let f 2(s) be the square of the spacelike
distance between null cone field point xν and worldline point zν : f 2(s) =−(xµ −
zµ)(xν − zν)ηµν (Fig. 1). It follows that

[
2 f

d f
ds

]
s=u

= 2vν(u)(xν − zν),

which motivates the definition R := vν(xν − zν), the distance along the null cone
(the retarded distance between xν and zν ). Note that, in the rest frame of the
charge, R = x0− z0. From Eq. (3) we obtain

Aµ

ret(x) = 2q
+∞∫
−∞

vµ δ (s−u)
2vα(u)(xα − zα)

ds = q
vµ(u)

R
(4)

the retarded Lienard–Wiechart potential.
The worldline is now parametrized by u, i.e. zα(u). The distance between

points on the null cone is zero. (xα − zα)(xα − zα) = 0. The gradient ∂/∂xµ of
the zero product yields
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(
δ

α
µ −

dzα

du
∂µ u

)
(xα − zα) = 0

(δ α
µ − vα

∂µ u)(xα − zα) = 0

(xµ − zµ)−R∂µ u = 0.

The null vector kµ along which the radiation propagates on the forward light cone
is defined as

kµ := ∂µ u = (xµ − zµ)/R. (5)

From the definition of R it follows that

∂µ R = Rkµ(aα kα)+ vµ − kµ

where aα := dvα/du is the acceleration along the worldline. A unit spacelike vec-
tor is defined as n̂α := kα − vα such that

n̂α n̂α = −1, n̂α vα = 0, n̂α kα =−1, kα vα = 1,

vα vα = 1, kα kα = 0.

It is convenient to define a curvature scalar κ := aα kα . The gradient of R can be
rewritten as

∂µ R = κRkµ − n̂µ .

Differentiation of the Lienard-Wiechart potential (4) provides

Aν ,µ
ret (x) =

q
R

kµ(aν −κvν)+
q

R2 n̂µ vν .

Define spacelike yν := aν −κvν , orthogonal to kν . The electromagnetic field is

Fµν

ret = 2A[ν ,µ]
ret

= 2
q
R

k[µ yν ] +2
q

R2 n̂[µ vν ] (6)

showing the 1/R radiation field and the 1/R2 velocity field [6].

2.2 Energy–momentum

The symmetric energy–momentum tensor, for signature [+,−,−,−], is

4πT µν =−Fµα Fν
α +

1
4

η
µν Fαβ Fαβ .

The radiation part of Fµν

ret has energy–momentum

4πT µν =
q2

R2 (yα yα)kµ kν . (7)

Consider a 4-volume bounded by two null cones N1 and N2 and two timelike
R = const surfaces Σ1 and Σ2 with normal nα (Fig. 2). The limit R→ ∞ slides Σ1
and Σ2 to null infinity while maintaining a finite radial separation. Since ∂ν T µν =
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Fig. 2 4-Volume bounded by N1, N2, Σ1, Σ2

0, integration of T µν is cast onto the boundaries Σ1 and Σ2 at null infinity. The
volume between Σ1 and Σ2 is R2dΩdu (with dΩ = sinϑdϑdϕ). The energy and
momentum radiated to null infinity in the interval between N1 and N2 is

dE µ

du
= lim

R→∞

1
4π

∮
T µν nν R2dΩ

= −q2(yα yα)kµ =−q2(aα aα +κ
2)kµ (8)

Since k0 > 0, it follows that dE 0/du≥ 0 in all inertial frames. Therefore dE µ/du
is a timelike vector, which implies there is no inertial observer for whom the total
momentum decreases without a corresponding energy loss.

3 Part II

Since an electric charge accelerating in an inertial frame emits electromagnetic
radiation, the reciprocal question is whether an accelerated observer in an iner-
tial frame, moving past a static charge (i.e. moving through an electrostatic field)
detects electromagnetic radiation? We review the arguments for this question.

It is known that observers who accelerate through empty Minkowski space
observe a heat bath [7; 8]. This supports the notion that such observers can see
radiation in an electrostatic field, but this is a quantum effect, outside the scope of
this review.

Rohrlich [9], in a study of the equivalence principle, asks and answers the
question “does radiation from a uniformly accelerated charge contradict the equiv-
alence principle?” The equivalence principle can be defined as the existence of a
local spacetime region where gravitational tidal forces vanish, i.e. Rµναβ δxµ δxν δxα δxβ ∼
0. He then shows that in such a region, a charge in hyperbolic motion satisfies a
local criterion [2] for radiation. Rohrlich further concludes that a uniformly accel-
erating detector will absorb electromagnetic energy from a static charge. Fugmann
and Kretzschmar [10] have generalized Rohrlich’s results to arbitrary acceleration.

Mould [11] has provided invariant criteria to identify the absorption charac-
teristics of such detectors. Mould constructs a simple antenna and computes the
absorbed energy from a radiating charge on a hyperbolic trajectory. He shows that
a freely falling detector will absorb energy from a static electric field.

Taken together, Rohrlich and Mould have fully answered the question of whether
accelerated observers detect radiation from static charges. In the following, we
affirm their answer from a different perspective.

3.1 Free fall

A freely falling observer is attached to a family of local inertial reference frames,
isomorphic to the frames in which Maxwell’s equations are expressed and verified.
Although Newtonian gravity is completely adequate for this topic, we introduce
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the complexity of Einstein’s gravitation in order to have analytic expressions for
observers freely falling in a static electric field with non-uniform acceleration.

The RN metric gRN describes an electrostatic, spherically symmetric, space-
time. Inside the RN trapped surface the source has parameters (m0,q), with q the
source of a static Coulomb field. The inertial frame which exists at asymptotic spa-
tial infinity can be used to span the RN spacetime. We ask whether an accelerated
observer in this spacetime can see electromagnetic radiation?

Details of the RN spacetime are given in Appendix A.

3.2 Maxwell field seen from free fall

The Maxwell tensor for the RN Coulomb field, from Eq. (A3), is

FRN
αβ

=−
( q

r2

)
2t̂[α r̂β ]

with basis vectors which span the RN metric in curvature coordinates. Since the
RN spacetime is constructed with its source (m0,q) a priori trapped, an infalling
observer cannot see the charge itself. The observer can only take local samples
of the surrounding static Coulomb field which can be projected on a forward or
backward light cone emanating from the observer’s position. Here we will use a
forward cone. An expansion of Rq(r) from Eq. (B7) provides
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Rq =
(

m2
0

2q3

)
r2 +O(r3).

Thus

r2 = 2
(

q3

m2
0

)
Rq +O(R2

q). (9)

From Appendix B, we find the relationship between the static RN frame and the
radial free fall null frame

t̂α = [(1+A1/2
q )/2]Lα +(1+A1/2

q )−1Nα , (10)

r̂α = (1+A1/2
q )−1Nα − [(1+A1/2

q )/2]Lα . (11)

It follows that

2t̂[α r̂β ] = L[α Nβ ].

The free fall Maxwell tensor is

FRN-ff
αβ

=
[
−1

2
(m2

0/q2)
Rq

+O(1/R2
q)

]
L[α Nβ ], (12)

and so, to first order, a free fall observer views the Coulomb field as a 1/Rq wave
zone radiation field.

4 Summary

Classical radiation from an accelerating charge has been reviewed in Part I, and
falls within the framework of standard Maxwell theory. Part II treats the recip-
rocal question of accelerated observers detecting radiation from a static charge.
Rohrlich and Mould have shown that such radiation is detectable. Their answer
has been affirmed here by studying a freely falling observer in the static Reissner–
Nordström spacetime. The topic of radiation reaction has been omitted, but there
exists voluminous literature about the Lorentz–Dirac equation. Within the cita-
tions at the end of this work, the interested reader can find additional references to
all related topics.

Acknowledgments We thank Fritz Rohrlich for enlightening correspondence.

Appendix A: Reissner–Nordström spacetime

The RN metric in curvature coordinates has the standard form

ds2
RN = (1−Aq)dt2− (1−Aq)−1dr2− r2dΩ

2 (A1)

where Aq = 2m0/r−q2/r2 and dΩ 2 = dϑ 2 + sin2
ϑ dϕ2.



8 E. N. Glass

Basis vectors, which span the RN metric and coincide with a Minkowski frame
in the r → ∞ limit, are

t̂α dxα = (1−Aq)1/2dt, (A2a)

r̂α dxα = (1−Aq)−1/2dr, (A2b)

θ̂α dxα = r dϑ , (A2c)
ϕ̂α dxα = rsinϑ dϕ, (A2d)

with

gRN
αβ

= t̂α t̂β − r̂α r̂β − θ̂α θ̂β − ϕ̂α ϕ̂β .

This frame spans the RN metric outside the trapped surface located at 1−Aq = 0.
The static Coulomb field has Maxwell tensor

FRN
αβ

=−(q/r2)(t̂α r̂β − r̂α t̂β ) (A3)

and trace-free Ricci tensor

RRN
αβ

=−(q2/r4)(t̂α t̂β − r̂α r̂β + θ̂α θ̂β + ϕ̂α ϕ̂β ). (A4)

Killing observers kβ ∂β = (1−Aq)−1/2∂t find a radial electric field Eα = Fαβ kβ =

(q/r2)δ (r)
α . The RN charge is given by the integral of Fαβ over any closed t =

const, r = const, two-surface S2 beyond the trapped surface:∮
S2

Fαβ

RN dSαβ = 4πq.

Appendix B: Free fall frame

For observers falling from rest at infinity along radial geodesics, the RN metric can
be written in terms of the free fall proper time τ [12] where dt = dτ −A1/2

q (1−
Aq)−1dr with Aq = 2m0/r−q2/r2.

ds2
RN-ff = (1−Aq)dτ

2−2A1/2
q dτdr−dr2− r2dΩ

2. (B1)

gRN-ff is spanned by

τ̂α dxα = (1−Aq)1/2dτ−
(

Aq

1−Aq

)1/2

dr, τ̂
α

∂α = (1−Aq)−1/2
∂τ ,

r̂α dxα = (1−Aq)−1/2dr, r̂α
∂α =−

[
1−Aq

(1−Aq)1/2

]
∂r−

(
Aq

1−Aq

)1/2

∂τ ,

ϑ̂α dxα = r dϑ , ϕ̂α dxα = sinϑ dϕ

such that
gRN-ff

αβ
= τ̂α τ̂β − r̂α r̂β − ϑ̂α ϑ̂β − ϕ̂α ϕ̂β . (B2)
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The radial free fall geodesics along radial lines ℜ have unit tangent

v̂α
∂α = ∂τ −A1/2

q ∂r, v̂α dxα = dτ (B3)

which satisfy v̂α

;β v̂β = 0. This can be written as

dv̂α

dτ
+Γ

α

βν
v̂β v̂ν = 0, (B4)

with radial acceleration
r̈ =− 1

r2 (m0−q2/r). (B5)

Electromagnetic energy diminishes the gravitational effect of m0.
A null frame [L,N,M,M̄] along ℜ is constructed from the orthonormal frame.

L is given by

Lα dxα =

[
(1−Aq)1/2

1+A1/2
q

]
dτ− (1−Aq)−1/2dr, (B6)

dRq = (1−Aq)−1/2dr,

where Rq is distance from the observer along the outgoing null direction.

Rq =
r∫

0

[1−2m0/r′+q2/(r′)2]−1/2dr′ (B7)

= (r2−2m0r +q2)1/2 +m0 ln[r−m0 +(r2−2m0r +q2)1/2]
−q−m0 ln(q−m0)

with constraint m2
0 > q2. The other null vectors are

2Nα dxα = (1−Aq)1/2[(1+A1/2
q )dτ−dr], (B8)

Mα dxα = −(r/
√

2)(dϑ + isinϑdϕ). (B9)
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