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Abstract Classical radiation from an accelerated charge is reviewed along with
the reciprocal topic of accelerated observers detecting radiation from a static charge.
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1 Introduction

It is generally accepted by all physicists that when a charge is accelerated in an
inertial frame, observers in that frame detect the emission of electromagnetic radi-
ation. During the first half of the twentieth century, measurements and theory com-
bined to form a complete framework for this part of classical electrodynamics. The
radiated power of an accelerated charge is expressed by the Larmor formula and
goes as the square of the charge times the square of the acceleration. A clear anal-
ysis leading to the Larmor formula is given in Jackson’s text [1/] and in Rohrlich’s
text [2], to cite only two of many. Classical radiation from an accelerated charge
is reviewed in Part I.

Radiation can be observed when the relative acceleration between charge and
observer is non-zero. Part II reviews the issue of accelerated observers detecting
radiation from static charges. Mashhoon [3; 4] has emphasized the concept of
locality and its role in measurements made by noninertial observers.

For a different view of radiation detected by accelerating observers, free fall
in a Reissner-Nordstrom (RN) manifold is studied. Details of the RN metric are
presented in Appendix A, and a radial free fall frame is developed in Appendix B.
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Fig. 1 Forward null cone

2 Part1

The conformal symmetry of Maxwell’s equations in Minkowski spacetime allows
a motionless Coulomb charge to be mapped to uniformly accelerated hyperbolic
motion. (For finite times this is a special case of general bounded accelerations).
This motion satisfies Rohrlich’s local criterion [2]] for electromagnetic radiation
which requires projecting the electromagnetic stress—energy 4-momentum of a
point charge into an inertial observer’s rest frame. The Lorentz scalar obtained by
projection is then integrated over a 2-sphere whose radius can be much smaller
than the radiation wavelength. The integral provides the relativistic Larmor for-
mula for radiated power (Gaussian units, metric signature —2)

2
%=--La,a" (1)

where a* is the 4-acceleration of charge ¢g. An accelerating charge satisfies this
criterion and has non-zero Z%.

In the following, a brief derivation of the field and energy—momentum of a
charge moving on a curved path in Minkowski spacetime is given.

2.1 Radiative field

Charge g has 4-current

75 =g [ v4(5) 8 x—z(s)lds

where s is the proper time along the worldline of ¢ with tangent v¥ (s) = dz" /ds,
vy, = ¢? (¢ = 1 hereafter).
Maxwell’s equations (and the Lorenz gauge) provide

DA (x) = 47" (x).

Green’s identity gives the retarded vector potential in terms of the 4-current

Afet(x) =4n / Dyer(x — x') j* (xl)d4x/
4-vol

(note that u is a Cartesian index which passes through the integral). Dy is the
retarded Jordan-Pauli function [J5]].

1

Dret(x _Z) = o

6(7)8[(x" —2") (xv —2zv)] (2)
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where 7 = x” — 70, with step function 0(7) := {(1) izg.
~+oo
Al x) =2 [ W (5)81 — ) — z)lds. )

—oo

Since a forward null cone can emanate from each point on the worldline, we label
the worldline points with u, such that s > u. Let f2(s) be the square of the spacelike
distance between null cone field point x¥ and worldline point z: f2(s) = —(x* —
) (¥ —2¥) Ny (Fig.[1). It follows that

2 — v -2,
2l

which motivates the definition R := vy (x” —z"), the distance along the null cone
(the retarded distance between x¥ and 7). Note that, in the rest frame of the
charge, R = x — z°. From Eq. (3) we obtain

+oo
O(s—u) vH (u)
H - ue_ TN T o= g
Apet (%) 244" 2ve (1) (X% — 29) ds=q R “4)

the retarded Lienard—Wiechart potential.

The worldline is now parametrized by u, i.e. z*(u). The distance between
points on the null cone is zero. (x* —z%)(xq — z¢) = 0. The gradient d/dx* of
the zero product yields
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d o
(6% - ;u%u) (xq —2a) =0
(0% —v*duu)(xq —za) = 0
(xu —2zu) —RIyu = 0.

The null vector ky; along which the radiation propagates on the forward light cone
is defined as

k” = (9uu:(x“*Zu)/R- (5)
From the definition of R it follows that

auR = Rk‘u ((l(xka) + V” - k'u

where a% := dv* /du is the acceleration along the worldline. A unit spacelike vec-
tor is defined as iy := kg — v such that

Agh® = —1, Agv® =0, fAgk®=—1, k%q=1,
V(Z

Vo = 1, kaka - 0

It is convenient to define a curvature scalar Kk := aqk®. The gradient of R can be
rewritten as

Differentiation of the Lienard-Wiechart potential (4) provides

Avt(x) = %k“ (@ —xv¥)+ % Aty

ret

Define spacelike y" := a" — xv", orthogonal to kY. The electromagnetic field is

FAY =24t
N PAITIRY S AN TIRY
=2 2
Rk YW+ ol (6)

showing the 1/R radiation field and the 1/R? velocity field [6]).

2.2 Energy—momentum

The symmetric energy—momentum tensor, for signature [+, —, —, —], is
1
ARTHY = —FHeFY 4 Zn“"F“ﬁFaﬁ.
The radiation part of Frgtv has energy—momentum
e
AgTHY = ﬁ(yaya)k”kv. 7

Consider a 4-volume bounded by two null cones .#] and .45 and two timelike
R = const surfaces Xy and X, with normal n* (Fig. . The limit R — oo slides X;
and X to null infinity while maintaining a finite radial separation. Since d, T*¥ =
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Fig. 2 4-Volume bounded by .41, 43, X1, X,

0, integration of THV is cast onto the boundaries X; and X, at null infinity. The
volume between X; and X, is R?dQdu (with dQ = sin ®d¥d ). The energy and
momentum radiated to null infinity in the interval between .41 and .45 is

d&r 1
o= lim — 7( T n,R*dQ
= —* (oYM )kH = —¢*(aga® + K )kH (8)

Since k° > 0, it follows that d6° /du > 0 in all inertial frames. Therefore d&* /du
is a timelike vector, which implies there is no inertial observer for whom the total
momentum decreases without a corresponding energy loss.

3 Part Il

Since an electric charge accelerating in an inertial frame emits electromagnetic
radiation, the reciprocal question is whether an accelerated observer in an iner-
tial frame, moving past a static charge (i.e. moving through an electrostatic field)
detects electromagnetic radiation? We review the arguments for this question.

It is known that observers who accelerate through empty Minkowski space
observe a heat bath [7} [8]]. This supports the notion that such observers can see
radiation in an electrostatic field, but this is a quantum effect, outside the scope of
this review.

Rohrlich [9], in a study of the equivalence principle, asks and answers the
question “does radiation from a uniformly accelerated charge contradict the equiv-
alence principle?” The equivalence principle can be defined as the existence of a
local spacetime region where gravitational tidal forces vanish, i.e. Ry, o5 6x* 8x¥ 6x* SxB ~
0. He then shows that in such a region, a charge in hyperbolic motion satisfies a
local criterion [2]] for radiation. Rohrlich further concludes that a uniformly accel-
erating detector will absorb electromagnetic energy from a static charge. Fugmann
and Kretzschmar [[10] have generalized Rohrlich’s results to arbitrary acceleration.

Mould [[11] has provided invariant criteria to identify the absorption charac-
teristics of such detectors. Mould constructs a simple antenna and computes the
absorbed energy from a radiating charge on a hyperbolic trajectory. He shows that
a freely falling detector will absorb energy from a static electric field.

Taken together, Rohrlich and Mould have fully answered the question of whether
accelerated observers detect radiation from static charges. In the following, we
affirm their answer from a different perspective.

3.1 Free fall

A freely falling observer is attached to a family of local inertial reference frames,
isomorphic to the frames in which Maxwell’s equations are expressed and verified.
Although Newtonian gravity is completely adequate for this topic, we introduce
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the complexity of Einstein’s gravitation in order to have analytic expressions for
observers freely falling in a static electric field with non-uniform acceleration.

The RN metric gRN describes an electrostatic, spherically symmetric, space-
time. Inside the RN trapped surface the source has parameters (myg,q), with ¢ the
source of a static Coulomb field. The inertial frame which exists at asymptotic spa-
tial infinity can be used to span the RN spacetime. We ask whether an accelerated
observer in this spacetime can see electromagnetic radiation?

Details of the RN spacetime are given in Appendix A.

3.2 Maxwell field seen from free fall

The Maxwell tensor for the RN Coulomb field, from Eq. (AJ), is

Fay == (%) 2hafy

with basis vectors which span the RN metric in curvature coordinates. Since the
RN spacetime is constructed with its source (mg,q) a priori trapped, an infalling
observer cannot see the charge itself. The observer can only take local samples
of the surrounding static Coulomb field which can be projected on a forward or
backward light cone emanating from the observer’s position. Here we will use a
forward cone. An expansion of R, (r) from Eq. provides
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m2
R, = (2‘103> ?+0(r).

Thus
q3
rr=2 (2> R,+O(RY). 9)
my

From Appendix B, we find the relationship between the static RN frame and the
radial free fall null frame

fo = (1444 /2)Le + (1+AY?) "N, (10)
Fo = (14 A Ny — [(1+A4%) /2] Lg. (11)
It follows that
2iafp) = LiaNp)-
The free fall Maxwell tensor is
Fag = —;(mi/qqz) +O(1/R}) | LigNp), (12)

and so, to first order, a free fall observer views the Coulomb field as a 1/ R, wave
zone radiation field.

4 Summary

Classical radiation from an accelerating charge has been reviewed in Part I, and
falls within the framework of standard Maxwell theory. Part II treats the recip-
rocal question of accelerated observers detecting radiation from a static charge.
Rohrlich and Mould have shown that such radiation is detectable. Their answer
has been affirmed here by studying a freely falling observer in the static Reissner—
Nordstrom spacetime. The topic of radiation reaction has been omitted, but there
exists voluminous literature about the Lorentz—Dirac equation. Within the cita-
tions at the end of this work, the interested reader can find additional references to
all related topics.

Acknowledgments We thank Fritz Rohrlich for enlightening correspondence.

Appendix A: Reissner-Nordstrom spacetime
The RN metric in curvature coordinates has the standard form
dsin = (1—Ay)dt> — (1 —A,) " 'dr* — r*dQ? (A1)

where A, = 2mq/r — q*/1? and dQ? = d®? + sin*> ¥ d¢>.
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Basis vectors, which span the RN metric and coincide with a Minkowski frame
in the r — oo limit, are

fodx® = (1 —A,)"2d1, (A2a)
Padx® = (1—A,)" " dr, (A2b)
Oudx® = rd?, (A2¢)
Podx® = rsind do, (A2d)

with

This frame spans the RN metric outside the trapped surface located at 1 —A, = 0.
The static Coulomb field has Maxwell tensor

Fg = —(q/r")fafg — Fulp) (A3)

and trace-free Ricci tensor

RN = —(¢?/r*) (Futp — Fufp + 0o Bp + Pup). (A4)

Killing observers kP dg = (1 —A,)~1/29, find a radial electric field Eq = Fopkf =

(q/ r2)50(f>. The RN charge is given by the integral of Fyg over any closed ¢ =
const, r = const, two-surface S? beyond the trapped surface:

]{ Fb dSop = 47q.
S2

Appendix B: Free fall frame

For observers falling from rest at infinity along radial geodesics, the RN metric can
be written in terms of the free fall proper time 7 [12]] where dt = dt —A}/ 2(1 —

Ag)"ldr with Ay =2mo/r — ¢* /1.
st = (1—Ag)dt> —2A)dtdr — d* — PdQ>. (B1)
g™V is spanned by
A 1/2
%adxa = (1 _Aq)l/zdf_ <1‘f4> dr, i o = (1 —Aq)_l/zara
g

1-A A, \'?
A _ —1/2 A _ q q
radxa B (] _Al]) / dr’ raaa o |:(1 —Aq)1/2:| ar_ <1 —Aq) aﬁ

Bpdx® = rd®, @odx* =sinddo
such that

2oy = Tatp — Falp — Dadp — PuPp. (B2)
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The radial free fall geodesics along radial lines R have unit tangent
P99y = 0y — Ay %0y, Vudx® =dt (B3)

which satisfy ﬁofﬁ P = 0. This can be written as

dav® @ o oV

ﬁ +I%VV Vv = O7 (B4)
with radial acceleration |

== (mo—q?/r). (BS)

Electromagnetic energy diminishes the gravitational effect of m.
A null frame [L,N,M,M] along R is constructed from the orthonormal frame.
L is given by

1—A 1/2
et = | A =1 @0
144}

dR, = (1—A,)~"dr,
where R, is distance from the observer along the outgoing null direction.

R, = /[1 —2mo/r' +¢* /(¥ ar B7)
0
= (2 =2mor+¢*)'? + moln[r — mo + (> —2mor+¢*)'/?]
—qg—moln(q—mg)

with constraint m% > ¢°. The other null vectors are

INgdx® = (1—A)2[(1+AYP)dt—dr], (B8)
Modx® = —(r/V/2)(d® +isinddg). (B9)
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