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ABSTRACT

We study the fields produced by a beam circulating in a smooth toroidal
chamber with walls of finite conductivity. At high frequencies the beam can
excite resonant modes of the chamber having phase velocity equal to the particle
velocity. The frequencies of these synchronous modes are widely spaced, and
depend sensitively on the revolution frequency w,. The associated longitudinal
coupling impedance, Z(n,nw,), has relatively broad peaks as a function of the
azimuthal mode number n. In typical cases ReZ(n,nw,)/n reaches values of
several Ohms in the lowest modes. The lowest mode has n somewhat greater
than = R3/2 / w!/2h, where R is the trajectory radius, and the cross section of the
chamber is a rectangle of width w and height h. Although the frequencies are
typically quite high, it is not excluded that the large coupling impedance could

lead to fast microwave instabilities of a short bunch.
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1. INTRODUCTION

We discuss the fields produced by an arbitrary particle beam following a
circular trajectory inside a toroidal vacuum chamber. The torus has rectangular
cross section, as shown in Fig. 1, and the walls have finite conductivity. Our
interest in this problem stems from a general concern about the sources of beam
coupling impedance at high frequencies, well beyond the beam tube cutoff. The
trend toward shorter particle bunches in storage rings and linacs encourages such

concern.

It has been known for a long time that classical synchrotron radiation, shielded
by conducting surfaces, would entail a large self-force on the beam at sufficiently
high frequencies. Several models led to quantitative results, for instance a system
of two parallel plates with circular beam orbit in a plane midway between the
gla.tes. In this model, the self-force leads to energy loss which is characterized by

a coupling impedance Z(n,w) such that

ReZ(n,nw,) g
= ~300% 0, (1.1)

where the distance between the plates is 2g, and R is the orbit radius. Here n
is the azimuthal mode number and w, = B¢/R is the revolution frequency. The

value of n at which ReZ/n achieves the maximum (1.1) is roughly (R/g)3/2.

The open structure of two parallel plates allows radiation of energy to infinity.
The analogous phenomenon in the closed toroidal structure is radiation into
resonant modes of the chamber. If the walls have infinite conductivity, the energy
remains forever in the resonant field mode; otherwise it is dissipated in wall
heating. Nonresonant loss of beam energy is usually negligible by comparison,
being of the same magnitude as the usual resistive wall effect in a straight beam
tube; hence it is zero for infinite conductivity. The frequency of the first resonance
in Z(n,nw,) is comparable to the frequency of maximum radiation for the open
parallel plate system. For typical wall materials, the peak values of ReZ /n exceed

substantially the value (1.1).



For the lowest resonant mode the dispersion relation of the toroidal structure

is approximated closely at large n by

1/2

w(n) = %[(%9)2“% (3’41)2/37#/3] , (1.2)

where b is the outer radius and h is the height of the chamber, as defined in
Fig. 1. The synchronism condition, the requirement that the phase velocity of
the longitudinal field be equal to the particle velocity, is won = fen/R. In order
that a synchronous mode exist at some n, the asymptotic slope of the curve w(n),
which is ¢/b, must be less than the slope of the line w = w,n, so that the curve

and the line may intersect. Thus,

_ B >1. (1.3)
Typically the curve w(n) and the line w = won intersect at a very small angle, so
that n at the point of intersection is a sensitive function of w,. The synchronous
resonant frequency is therefore a sensitive function of the orbit radius R. A
related circumstance is that resonance peaks in Z(n,nw,), the latter regarded as
a function of n, are much broader than the natural line width of the resonance.

‘When n changes by one unit, w(n) changes by an amount dw/dn = ¢/b, which
is close to w,. Therefore Z(n + 1,(n + 1)w,) is close to Z(n,nw,); the peak is
thereby broadened.

Because of the peculiar features of the impedance, we defer any comments
on the implications of our results for beam stability. We do not recommend an
uncritical application of conventional formulas for the threshold of instability. A
reexamination of the Vlasov analysis of bunched beam stability seems called for

in the present case.

Since the theory of classical synchrotron radiation has evolved over many

years, there are numerous points of contact between our work and earlier efforts.!-1®
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Schwinger? and Schiff® discussed shielded coherent radiation in 1945 and 1946.
Neil’s Ph.D. thesis® (1960) was concerned with exactly the problem that we
treat. Laslett and Lewish® (1960) studied relevant properties of Bessel functions,
and stated formulas for the quality factor of a toroidal chamber. Faltens and
Laslett!® (1973, 1975) and J. Bisognano (private communication) did much to
encourage our work, by emphasizing the result (1.1) and its probable general
import. Bart’s technique!® for treating planar resistive walls was essential to
our results. L. Smith (unpublished notes, 1985) sketched a treatment of the
toroidal chamber, using methods similar to those of Neil. Recent work!6=%9 on
the transverse self-force of particles on curved orbits involves some of the same
calculations that we have pursued. After this work was completed, we learned of

a recent analysis of our problem by K.-Y. Ng (Ref. 24).

~ Of the various works, those of Neil and Ng are most similar to ours in scope.
We use different techniques at several points, usually chosen for mathematical
clarity, and discuss some physical points and parameter ranges not covered in the
other papers. Most of the previous discussions have been based on an expansion
in eigenfunctions of the structure. We prefer a Fourier—Bessel expansion which
does not employ eigenfunctions. This expansion, which appears along with the
eigenfunction development in Neil’s thesis, leads to a relatively transparent for-
‘mula for the impedance, and is much easier to evaluate in nonresonant regions.
Near a resona.ncé, the two expansions lead to roughly the same calculations. We
also differ from other authors in the treatment of wall resistance. All other au-
thors have treated wall resistance perturbatively, by integrating an approximate
expression for the Poynting vector over the metallic surfaces. This yields definite
formulas for the quality factor @, but gives no indication about the importance
of higher order effects. We prefer to solve the field equations subject to the
resistive wall boundary condition, so as to incorporate the higher order effects
completely. This method reveals shortcomings in the treatment of planar walls
(top and bottom of the chamber) that are not apparent in the usual treatment.

Our formulation shows how to overcome the difficulties through a coupled mode



treatment, but we have not carried the computation that far in the present work.

For checks of numerical results, we are greatly indebted to Dr. Ng, who was

able to reproduce the results of Table 1 by his methods, to adequate accuracy.

The case of a beam circulating in a cylindrical “pill box” chamber is similar
to the toroidal case in most important respects, but somewhat easier to analyze.
To make our story simple we first treat the cylindrical problem in Section 2, and
then give the obvious generalizations to handle the torus in Section 3. Sections
2 and 3 end with formulas for the longitudinal coupling impedance in terms of
Bessel functions. In Section 4 we evaluate the impedance at low frequency, finding
a very small value. In Section 5 we employ appropriate asymptotic expansions
of Bessel functions to locate resonance poles at high frequencies, and to find the
pole residues which determine R/Q. We find a rather accurate explicit formula
for the frequency of synchronous resonant modes. Provided that the beam is not
;oo close to the inner wall of the torus, the results for the pill box and torus are

nearly identical.

For studies of beam stability, it is important to account for resistance of the
vacuum chamber walls. In Section 6 we give a treatment of wall resistance which
is valid close to the resonances. At frequencies away from the resonances, it is
difficult to include resistance on the planar walls (top and bottom). Since our

impedance is dominated by the resonances, this is not a great drawback.

In Section 7 we give numerical results for the impedance of the toroidal cham-
ber with wall resistance, and try to explain peculiar features of the impedance in

terms of the dispersion relation.

Our notation for special functions follows Ref. 21, Abramowitz and Stegun.

We refer to equation numbers in that book following this example: A.-S. 9.3.35.

We hope to treat beam stability and transverse impedances in later papers.



2. FIELDS AND LONGITUDINAL COUPLING
IMPEDANCE FOR A CYLINDRICAL CHAMBER

In this section, we find expressions for the fields produced by a beam cir-
culating in a cylindrical pill box chamber, assuming that the wall conductivity
is infinite. In solving this preliminary problem we set down the definitions and
apparatus required for the rest of the work, and provide a useful way of viewing

the full problem of the torus.

We put @ = 0 in the picture of Fig. 1 to obtain a cylindrical chamber of radius
b and height h = 2g. We use cylindrical coordinates (r, 0, z) with z-axis along
the symmetry axis of the cylinder, and origin at the centroid of the chamber;
thus the plane surfaces are at z = +¢g. We use m.k.s. units, and adopt the usual
definition of Z,, the “impedance of free space”:

T—

5o\ 1/ 1
Z, = <—°) = poc = — = 12070} . (2.1)
€ €oC

We shall first express the fields produced by an arbitrary charge-current distri-
bution, and then specialize for the particle beam of interest. All components
of the fields may be expressed in terms of Fourier amplitudes of H, and E,.

Accordingly, we begin with the Fourier expansions,

o0

o0 oo}
H,(r,0,z,t) = / dwe " Z e""oz sin ap(z + g) Honp(r,w) , (2.2)

oo n——00 p=1

o0 00 )
E.(r,0,2,t) = / dwe™ "t Z ei”oz cos ap(z2+ g)Eenp (r,w),  (2.3)
—00

n=—0co p=0

where the wave number for the z-direction is
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The other components will have similar expansions. In each component the z-

dependent factor is either sin ap(z + g) or cos ap(z+ g), chosen according to the

following scheme:
(E,, Hy,H,, Ey) «— (sin,cos,cos,sin) . (2.5)
The forms of H,, E,, and E,; were chosen to meet the boundary conditions
H, =0, E, = Eg =0, z = *g, (2.6)

term-by-term in the Fourier developments. The forms of the other fields were
selected so that the source-free Maxwell equations would also be satisfied term-
by-term. For a consistent term-by-term satisfaction of the Maxwell equations
with sources, we must also expand the current and charge in Fourier series, with

z-dependent factor sin ap(z + g) or cos ap(z + g) chosen as follows:
(J,,Jg,J,;p) +—— (sin,sin, cos,sin) , (2.7)

One might inquire as to whether our Fourier series in z actually represent general
_solutions of Maxwell’s equations, since one usually expects both sines and cosines
to be present in a generally valid expansion. By considering an artifical odd or
even extension of each field to an interval of twice the length h, one can show

that the expansions are indeed general.

After substituting the series in Maxwell’s equations, and taking Fourier trans-
forms with respect to t, 8, and z, one gets a set of equations for the r-dependent
Fourier amplitudes. The equations may be solved algebraically to express all

amplitudes in terms of H;np and E;np. The calculation yields

_ -1 aEznp w n .
Ernp = ;2_ [ap or +:Zo (:Hznp“}“Jrnp):' ’ (28)
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i w 1 aEznp n .

Honp —_ "7_'2’ [:Z ar +ap (;Hznp +1Jrnp) ’ (2.9)
1 fwiln oH,
—i[ n w oH,

'Eoﬂp = ’7—‘2) ap;‘Egnp'*':Zo( ainp +J0np)] 3 (2-11)

where the “radial wave number”, v,, is defined by

2 w2 2
¥ = (;) ey (2.12)

Here and in much of the following we use abbreviated notation in which the
dependence of amplitudes on r and w is not indicated. Maxwell’s equations also

imply the radial wave equations, which serve to determine Hnp and Epyp:

19 [ 8Hnp , n? 13 "
ror (r ar" ) + (7,, — g ) Hemp =~ 5~ (rJonp) + i—Jrnp » (2.13)

18 ( 8E n? W
;‘5‘; (r__.a._z’..ﬂf.) + (’7: - r—2) Eznp = Zo ('—t‘c—JznP + apcpnp) . (2.14)

When the sources J,p are zero, the general solution of (2.13) or (2.14) is a
'linear combination of Jy,(vpr) and Yn(7pr), linearly independent Bessel functions.
Equivalently, it is a linear combination of In(I'pr) and Ky(Tpr), the modified

Bessel functions, where
W\ 2
2= - =a-(2) . (2.15)

It is convenient to use the former representation when '712, > 0 and the latter
when I‘; > 0, so that we always deal with functions of real argument. Since
our discussion emphasizes resonances, for which '73 > 0, we give our general
formulas in terms of J,,Y,, and provide some translations to the I, K, basis

where appropriate.



In the presence of sources, the general solution is the sum of the general
solution of the source-free equation and any particular solution of the equation

with sources. Thus we may write the general solutions of (2.13). (2.14) as

Eonp(r) = AnpJn(pr) + BrpYa(pr) + €znp(r) ) (2.16)

Henp(r) = CrpJa(Vpr) + DapYa(pr) + hanp(r) (2.17)

where e, and h, are particular solutions of the inhomogeneous equations.

In the present pill box problem, the solutions (2.16), (2.17) must be bounded
at r = 0. Let us choose e, and h, 80 that €,,p(0) = 0, hznp(0) = 0; we shall see
how to do this presently. With that choice we must have Bnp = Dyp = 0, since
Y. (7pr) is unbounded at r = 0. In the torus problem, the Yy, term is allowed and

necessary.

Particular solutions of the inhomogeneous equations are derived easily by the
method of variation of parameters (equivalently, by finding the Green function

of the Bessel differential operator). A calculation yields

r r
eznp(r) = — g Jn(7p7) / udu Yp(vpu) — Ya(qpr) / udu Jn(ypu)
a a

(2.18)
X Zo [=5 2 Junpl(u) + apopnpl(u)]
[ r r
hanp(r) = — Zrz— Jn(vp1) / udu Yo () — Ya(pr) / udu Jp(vpu)
- a a (2.19)

x [-%% [ onp ()] +5 J,,,,,(u)] .



It is easy to check that these are indeed solutions, if one recalls the value of the

Wronskian,
W (Jn,Yn) = Ju(z) Yo(z) — Ya(z) Ji(z) = — (2.20)

We choose the lower limit, a, so that all charges are located at points with r > a,
and a > 0. In the work of Section 3, a will be the inner torus radius. Now for
r = 0 the integrals in {2.19), (2.20) will not encompass any points where charge

or current is nonzero, and e,np(0) = 0, hznp(0) = O as promised above.

In addition to the boundary conditions (2.6) on the planar surfaces, we have

conditions on the cylindrical surfaces,

H =0, E,=EFE =0, r=2». (2.21)

Referring to (2.10) and (2.11), we see that these conditions will be met provided
that

aHznp

Eznp(b) = 0, or

() =0. (2.22)

Now (2.22) determines App, Cpp in (2.16), (2.17), since Bpy = Dypp = 0. Thus the

.determination of E,np, and H,yp is complete:

Eanp(r) = —5—:((:7,% eznp(b) + €znp(r) ; (2.23)

Jn (Vp7)

Honp(r) = T d (1)

h,znp(b) + hznp(r) , (2.24)

where primes denote derivatives.
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Having found the solution for general sources, we now take a particular source
to compute the longitudinal coupling impedance. We describe a rigid bunch of
particles with total charge ¢, following a circular trajectory of radius R in the

median plane of the chamber, z = 0, and having angular revolution frequency

wo = % . (2.25)
’_I‘he charge density is taken to be
p(r,0,2z,t) = gA(0 —wot) H(z)W(r) , (2.26)

where A(6 + 27) = A(9), and H(z) and W (r) are concentrated near z = 0 and
r = R, respectively. The corresponding current, which with (2.26) satisfies the

continuity equation, is

(Jr,Jo,Jz) = (0,Bcpr/R,0) . (2.27)

The functions in (2.26) are normalized so that

2r - g b
o/ AB)do = 1, _/, dzH(z) = 1, / rdW(r) = 1. (2.28)

The Fourier transform of (2.26) with respect to 8, z,t gives

Prp(r,w) = qAné(w — won) HW(r) , (2.29)
Ber prp(r,w)
Jonp(",w) = —“——_R s (2.30)
with
27
1 iy
dn = o= / e )(8)d0 . (2.31)
o
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Recall that by (2.7) the functions p and Jj are to be expanded in sin ap(z + g),
so that V

g
H, = i/dz sin ap(z + g)H(z2) . (2.32)
-9

We assume for simplicity that the beam profile is symmetrical about the median

plane, H(z) = H(—z), in which case

g
H, = —sin {/dz cos ayzH(z) , (2.33)

-9

which is nonzero only for odd p. Consequently, only odd-p modes of the fields are
excited, and we may forget the rest. To obtain explicit formulas for the integrals

of (2.18), (2.19), we take a vertical ribbon beam,

W(r) = &;;ﬂ. (2.34)

The generalization to allow an arbitrary W(r) is not difficult, but in general

requires numerical integration of (2.18), (2.19).

Using (2.29), (2.30), (2.34) in (2.18), (2.19), we find the particular solutions

w
enp(r) = —3 Rope Z pn(Vpr, pR) 6(r — R) , (2.35)

T
henp(r) = —5 @ Be an(mr, W) 6(r — R) , (2.36)

and their derivatives

ef,mp(r) = :571 ®ayp Yp Zo ra(Ypr, pR)O(r — R) , (2.37)
znp(r) Y Q'Ypﬂc Sn (’71’7" PR) 0(7‘ - R)
(2.38)
_gplr—R) 6(r — R) ,

12



where
® =gqH, A\ 6(w — nw,) ,

1, z>0
0(:1:)={
0, <0

and, in the notation of Abramowitz and Stegun,?! the Bessel function cross-

products are

Pa(z,9) = Ju() Yal¥) — Ya(z) July) » (2.39)
tn(z,9) = Ja(z) Yi(¥) — Ya(z) J(0) , (2.40)
ra(z,9) = J(2) Yaly) = Y2(2) Jn(y) , (2.41)
i enlz,y) = Ji(2) ¥i(v) — ¥i(z) Jh(v) - (2.42)

The longitudinal coupling impedance, Z(n,w), is defined by
—27 R(Eg,(w)) = Z(n,w) Ijn(w) , (2.43)

where the brackets denote an average over the beam cross section. Supposing

that the beam is confined to a rectangle of area 6w X 6h we have

R+é6w/2 6h/2

1
(Bon()) = 5os / dr / dz Eon(r,2,w) - (2.44)
R-Sw/2  —6k/2
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Some authors take the value of the field at the center of the beam rather than
this average; the difference is usually not important. The Fourier amplitude of

the current, Iy, (w), is given in the model of (2.30) as

b g
Beg Ap 6(w — nw,)

Ipn(w) = / dr / dz Jon(r, 2,w) = ¢ . (2.45)

a —g

We can now assemble the longitudinal electric field from (2.11), (2.23), (2.24),
(2.35), and (2.38). The result is

o0
. )
Epp(r,w) = 4 3 gBc Ap 6(w — nwo) Z, E sin ap(z + g) Hp
p=1

N . {%l:— j’;:gi;; Sn(Vpb, YpR) + sn(7pr,VpR) 0(r — R)]

l /o 2 n _Jn(’Y r) |
+3 (7—:> = [ Jn(vz ) Pn(Vpb, YpR) + pn(¥pr, VpR) O(r — R)]} -

(2.46)
Notice that the term Jynp, has been cancelled by the second term of h;np. The
terms in (2.46) with factor 6(r — R) tend to zero as r tends to R from above.
Therefore E, is continuous in r at r = R, but has a discontinuous derivative.
The derivative would be continuous if (2.34) were replaced by an r-distribution

of finite width.

From (2.43)-(2.46), we calculate the impedance, divided by n:

Z(n,w . R
—(—n—) = 17|'2 Zoz Z Ap
p(odd)>1

wkhR '] 2
L€ Inllip 1fap . R
[ n J,'l ('7pb) Sn ('7Pb, 'YpR) + 3 P _———Jn (’)’pb) DPn (’7pb, Tp ) ,
| (2.47)
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where

v rr/!

H{z) is rectangular (i.e., constant over a widt

oo g
Qn
o
o
=
ou
(]
[e]
]
o]
']
p—
7]
(4]

(2.49)

We use this model of H(z) for specific evaluations of the impedance. Smoother
functions will lead to faster convergence of the sum over p, but that feature is
not very significant. The most important contributions, far and away, are from

resonances in modes with p = 1.
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3. FIELDS AND LONGITUDINAL COUPLING IMPEDANCE
FOR A TOROIDAL CHAMBER

We now modify the work of the previous section to treat fields in the toroidal
chamber shown in Figure 1, with @ # 0. The only new feature concerns the
boundary conditions on the inner cylindrical wall, r = a. As in (2.21), (2.22),
these conditions are satisfied if

OHnp(a)

Eznp(a) = 0, T = 0. (3.1)

The four conditions of (2.22) and (3.1) serve to determine the four coefficients
Anp, Bnp, Cnp, Dnp in the general solutions (2.16), (2.17) of the radial wave

equations. The function Y, (v,r) is now allowed, because its singularity at r =0

is outside the chamber.

Through (2.18) and (2.19) we have constructed the particular solutions so
that eznp(a) = 0,h},,(a) = 0. This simplifies solution of the equations for the

coefficients, and we find

[A,,,,] _ eanp(b) [Yn('rpa) ] , (3.2)

Brp _Pn('Vpa”Ypb) _Jn(’Ypa)

[c,.,,] _ hn(0) [Y,:('rpa)], (3.3)

Dy ’7p3n(’7paa ’7pb) —Jr'z(’Yp“)

where the Bessel function cross-products, p, and s,, are as defined in (2.39),

(2.42). Hence the solution for general sources, analogous to (2.23), (2.24), is

Bunglr) = Z0E 00 (0) + eonglr) (34
Homplr) = 22000t () 4 hmg(r) (3.5

YpSn (Vpa, Ypb)
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These fields tend properly to the values (2.23), (2.24) in the limit @ — 0, as is
seen by applying the asymptotes

(:C/Z)n 1 F(n)
A tern O TR (3:6)
r — 0 ’ n>0 ?

and corresponding asymptotes of J!(z), Y!(z).

Now comparing (3.4), (3.5) with (2.23), (2.24), we see that to write the

longitudinal field Ey,, we only have to replace factors in (2.46) as follows:

“Ia(r) _, en(nmme) (3.7)
Jh(pb) sn(pa, vpd)
- —Jn(wr) _, Palvpr, W)

Tn(1pb) P s I (3.8)

Thus, for the vertical ribbon beam with r-distribution (2.34), the longitudinal

coupling impedance of the toroidal chamber is given by

R
Z(n,w) = —in? Z, R Z A, [QE_ sn(1p R, pa) sn(’ZPb"VPR)
n , Wer @ 8n(vpa, Ypb)
(3.9)
1 (ap)2 Pn(’YpRa Pa’) pn('7pbv PR)
+_ —_— .
B \ p Pr(Ypa, 1pb)

Not only does (3.9) reduce to (2.47) in the limit @ — 0; it has similar charac-

teristics even when (b — a)/b < 1, as we shall see in the following section.

17



4. EVALUATION OF IMPEDANCE AT LOW FREQUENCY

We are interested in the coupling impedance Z(n,w) primarily for w = nw,,
since beam stability is affected mostly by waves with phase velocity close to the
particle velocity. Therefore we first study Z(n,nw,) as a function of n. Later
we shall look at Z(n,w) in the (n,w) plane, in a band about the line w = nw,.
That will clarify the properties of the function, and will perhaps be important in

a careful study of stability based on the Vlasov equation.

Let us first evaluate Z(n,nw,)/n at low frequency, which is to say in the
limit n — 0. In this limit, I‘f, of (2.15) is positive for all p, which means that
it is best to rewrite the impedance in terms of modified Bessel functions before

proceeding. Since

. I(iz) = i"Ja(2) ,

i (4.1)
Ka(iz) = 5 (=)™ [Jn(2) —iYa(2)] ,
we have, in view of '73 = —1‘3, that
-7
In(Tpa) Kn(Tpb) — Kn(Tpa) In(Tpd) = 5 Pu(Ypa, 1) = Pn(Tpa, Tpd) ,
I,(Tpa) Kh(Tpb) — Kn(Tpa) Io(Tp) = 3 sn(vpe,7b) = Sa(Tpa,Tpb) .
(4.2)

Extending the notation of (2.39)-(2.42), we use capital letters for cross products
of modified Bessel functions. The pill box impedance of (2.47) becomes

Z(n,nw,) _ . R I (TpR)
ST = 2in 7, Y A, [ﬂ S A) Sn(Tpb, Ty R)
p(odd)>1 (4 3)

1 In(T,R)
5 (n) FAI) P"‘PP”’P”R’] !
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while the torus impedance of (3.9) is

n s,,(r,,a, r,,b)
p(odd)>1 (4 4)
L1 (gﬂ> Po(TpR,Tya) Py(Tpb,TpR)
B\T, Pn(Tpa,Tpb) :

where

- (7) - () )
P h R ) )
To evaluate these expressions at n = 0, we need only the elementary asymp-
totic expansions of I, and K, for large argument. We assume, of course, that
R, a, and b are all of the same order of magnitude, and much bigger than w and
h, as in a typical accelerator vacuum chamber; w is similar to kA in magnitude.
Then TR = wpR/h is large compared to one, even at p = 1, which means that

all of the Bessel functions can be evaluated by means of the asymptotic series
(A.-S., 9.7.1-9.74),

I(2) ~ (2n2) /2 e [1 - =1y, (4.6)
K,(z) ~ (2:1:/7r)—1/2 e * [1 + 4—&;-;—1- + ] ) (4.7)

1'(z) ~ (27z)" /2 [ L ] , (4.8)
Ki(z) ~ — (2z/m) V7 er 14 40k 3y ] (4.9)

The two terms in the square bracket of (4.3) are as follows at n =0, I'y = ay:

, , K!(opb) I'(apR)] B 3
Bl(apR) Ko(apR) [1 - I{,(a,,;) K[,(a:R)] " 2a,R (1 ~ 8(epR)?

o [(aler]) [1“—“’“'3) 0”[««%&])] !

(4.10)
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5 lle®) Koleom) [1- gl - 5 ot (4 sy
+0 |Gy 1o <1+°[<—a—;‘w]2j_m

The terms indicated by the O symbol are negligible, since 1/(apR)? = (h/7 pR)?
< 1. Also, the terms with the exponential factor exp{—2ap(b — R)} are usually
small, certainly if 2(b — R)/h > 1 as is the case in our later examples. Dropping

the exponential terms, we find

iZ, A 1 382+1/( h \?
=5 3 _pz.[?+ < (wa)}' (4.12)

n=0 p(odd)>1

Z(n,nw,)

The corresponding result for the torus impedance (4.4) is exactly the same as
(4.12). The exponential terms that we have deleted are different in the two cases;

for high accuracy they should be reinstated, at least for p = 1.

The first term in (4.12), which vanishes in the relativistic limit as 1/42,
corresponds to the familiar coupling impedance of a smooth straight tube without
wall resistance. It is sometimes called the “space charge” contribution to the
impedance. Notice that the 1/4% was produced by a close cancellation between
‘the two terms in Ey, one of which arises from H,np, the other from E.np. The
second term in (4.12) is due to curvature of the particle trajectory, which spoils

the perfect cancellation of electric and magnetic effects at large 7.

The total low frequency impedance (4.12) is positive imaginary (capacitive
in a common convention), and, except for nonrelativistic particles, quite small
by usual standards. For instance, for §h/h = 0.05, the sums occurring in (4.12)

have the approximate values

ﬂ = 4.044; 1 A, = 0.1061, 4.13
P

1
5 -
p(odd)>1 p 2m P

where A, is given by (2.49).

20



Then, in this example with 8 = 1, we have

4.044 h\?
= iZ 1061  — 4.
n=0 ' o[ ’72 + (R)] ’ ( 14)

which is typically a very small fraction of an Ohm.

Z(n,nw,)
n

The same analysis holds at somewhat higher frequencies, so long as I'yR
is large compared to one. Moreover, the behavior of the impedance is not so
very different until very high frequencies are reached, at which resonances of
the structure are first excited. An analysis of the intermediate region up to
the resonances, in which the order of magnitude of the impedance is much the
same as at zero frequency, requires more powerful asymptotic expansions than
(4.6)—(4.9). The analysis is somewhat complicated, and will not be recounted
here. We shall be content with the claim that direct numerical evaluation of the
Olver asymptotic expansions (Section 5) leads to values of the impedance that
are negligible until the high frequency resonant values are reached. Of course, in
this statement we suppose that 42 is large compared to one, so that the space
charge term is of no importance. Also, we neglect the resistive wall effect, which
can be treated easily only at frequencies near resonances. Presumably it has the

same order at magnitude as in the case of a straight beam tube.
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5. RESONANCE POLES OF THE IMPEDANCE
AT HIGH FREQUENCY

Let us now turn to the more interesting topic of high frequency resonances,
first in connection with formula (2.4) for the pill box chamber. The resonances
correspond to zeros of the denominators, J}(vpb) and Ju(7pb), and poles of the
impedance. As can be seen from the discussion of Section 2, the resonances
correspond to solutions of the homogeneous Maxwell equations that satisfy the

boundary conditions. There are two classes of such solutions:

(¥) TE modes : E, =0, H,#0, Ji(vpb) = 0, (5.1)

(¢2) TM modes : H,=0, E.#0, Jn(vpd) = 0, (5.2)

The designation TE (TM) refers to a mode with electric (magnetic) field trans-
verse to the z-axis, not transverse to the beam, which moves in the # direction.
This nomenclature is natural in our peculiar coordinate system, but contrary to
the convention of wave guide theory if the torus is viewed as a wave guide. As
is seen from (2.8)—(2.12), in a pure TE (TM) mode, all fields except E.(H;) are

Nnonzero.

Although the TE and TM modes are independent solutions of the homoge-
neous Maxwell equations, our circulating beam is simultaneously a source for
both E, and H, (through p and Jy, respectively), so that the fields driven by the
beam always have both TE and TM components. Nevertheless, at a resonance
frequency, one component or the other dominates, in fact becomes infinite for a

chamber of perfect conductivity.

As we shall see presently, near a resonance frequency w, the impedance for
the perfectly conducting chamber has the form
1§

Z(n,w) ~ . w — wy, (5.3)
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where the factor ¢ is real and positive, and w, is real. When resistivity of the
chamber walls is introduced, the pole moves off the real w axis into the lower half

complex plane:

W — wr (1—%) . | (5.4)

The quantity @ may be identified with the usual quality factor. With resistivity,
the factor ¢ also picks up a small imaginary part but stays predominantly real.

To a good approximation, (4.17) takes the form

: s, (5.5)

with real part of Lorentzian form

5l & ,
(w—wr)2+ (-g—)2

R = Re Z(n,w) ~ (5.6)

having half-width at half-maximum of I'/2 = w,/2Q. The value of R/Q at the

resonance is

R _ Re Z(n,w;) _ 2]
Q Q Wy
(5.7)
~ X

Thus R/Q may be computed from the two parameters ¢ and w, which charac-
terize the chamber with infinite conductivity. Also, the area under the curve of

Re Z(n,w), in the limit @ — oo, is

Wy

s
2 Q’

lim | dwRe Z(n,w) = ¢ = (5.8)
Q-0

where the integral covers a small neighborhood of wy.
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Our task for the rest of this section is to find the resonance frequencies wy,

and residues ¢ (equivalently w, and R/Q) for the perfectly conducting chamber.

The values of Q are discussed in Section 6.

The above discussion of TE and TM resonances holds as well for the torus

problem, except that the resonance conditions are replaced by

Sn(vpa,vpd) = 0, (TE) , (5.9)

pn(vpa,vpb) = 0, (T™) . (5.10)

Again, these equations just guarantee the boundary conditions on solutions of

the homogeneous Maxwell equations.

The impedance Z(n,w) has a dense forest of poles in the (n,w) plane, but
we are interested only in the subset of poles sufficiently close to points of the
form (n,w,) to have some effect on beam stability. Except for isolated values of
w, such points (n,nw,) do not fall exactly on poles. To locate relevant poles,
we let w, be arbitrary, and treat n as a continuous variable, not restricted to
integer values. This is permissible as a trick to find poles, since the impedance
is analytic in n. Having found a pole for noninteger n = n,, which will be very
large compared to 1, we can then look at Z(n, nw,) for neighboring integer values

of n and as a function of w,.

The first zero of the Bessel function J,(z) (or of J}(z)) occurs at z slightly

bigger than the order n. The reason for this is almost apparent in the Bessel

2
% ’aaE (;%) + (1_%) f=o0. (5.11)

By analogy to the harmonic oscillator, it seems reasonable that the solutions

equation itself:

should have oscillatory character only if 1 — n?/z? is positive. In a region with
1 — n?/z? negative, there should be one increasing solution and one decreasing

solution.
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With this observation we can immediately set the scale of interesting values

of n. At w = wyn,

pn 2 mp 2] /2
Putting vypb = n we find
7pb\?
“h
n? = —%E—T)—— (5.13)
(%) -1

Since b/ R is close to one, this means first of all that 8 must be close to one, in
order that n? be positive; compare (1.3). Nonrelativistic particles cannot excite
the resonances of interest. If we then put # = 1, and suppose that b = R + z/2,

with z < R, we can expand the denominator in (5.13) as

Bb\?2 _z oz T
Then by (5.13),
1/2
7pb (R oz
n>— (z) , b R—2 (5.15)

is a lower bound for resonant values of n for each p. The value goes up without
bound as the beam approaches the outer wall, z — 0. We shall find that this

same lower bound applies to the torus resonances.

To illustrate, we take chamber dimensions that are nominal values for two
electron storage rings, the SLAC damping ring, and the forthcoming Berkeley
light source. Henceforth these examples are called (1) and (2):

(1) w=h=2cm, R = 57m (SLAC) ,
(5.16)
(2) w=25cm, h=25cm, R =30m (Berkeley) .
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If the beam is centered in the chamber, then z = w in (5.15), and

(1) n>15141xp,

(5.17)
(2) n>92420xp.

The values of n are so large that well known asymptotic expansions of Bessel
functions for large order give precise results when only the initial terms of the

asymptotic series are used. We write

Wb = nz, (5.18)

and use expansions of Jp(nz) et al. that hold at large n. The biggest value of z

that occurs is obtained from (5.12):

Zmaz — lim _ = = . (5.19)

In the resonance region, 2 in (5.18) is never less than one but we have to deal also
with Ja(7pa), Ja(1pR) et al., a < R < b. To cover all cases in the resonance region
‘we therefore need Jp(nz), Yn(nz), Ji(nz), Y, (nz), where z may be restricted to
the interval

a b

The behavior of the high-order Bessel-functions varies drastically within this
seemingly narrow interval of z, a circumstance which leads us to employ expan-

sions which are uniformly accurate throughout the interval.

We use the remarkable asymptotic expansions of Olver, which are uniform in
a much bigger domain, the whole complex 2-plane minus a narrow wedge about
the negative real axis, i.e., | argz| < 7 — ¢, for any € > 0. The Olver expansions

are given in A.-S. (9.3.35, 9.3.36, 9.3.43, 9.3.44) and, in a more sophisticated

26



form with error bounds, in Refs. 22 and 23. The expansion of Jp, accurate

uniformly in z at large n, is

Jn(nz) ~ (1 i‘zz)

Ai(n?/3¢) & Z a(c) Ai'(n2/3¢) i bk(g)]

T plz n2k n5/3 n2k
(5.21)
where Ai(z) is the Airy function (A.-S 10.4) and ¢ is defined by
_ 2\1/2
%;3/2 ~ g 1T 7)) / — (1 - 22)1/2
z - ) (5.22)
— (12322 L2 12y D — .22
(1—2%) [3-’:-5(1 z)+7(1 z)+...}.
We have ao(¢) = 1, and the higher coefficients a;y and by are given in

A-S. but in a form difficult to evaluate numerically owing to cancellations among
‘terms that are singular at z = 1. Actually, these coefficients are analytic near
z = 1, and may be computed easily from their Taylor series about z = 1. Conve-
niently, Decker!® has provided numerical values for the coefficients of the Taylor

series.

The Airy functions Ai, Ai’ in (5.21) may be expressed in terms of Bessel
“functions of small fractional orders (+ 1/3, + 2/3, respectively). Consequently,
they may be evaluated by using asymptotic series at large arguments, and power
series at small arguments. Since n2/3¢ is large and positive for z in the lower end
of the interval (5.20), large and negative in the upper end, and zero in between
at 2z = 1, we have to use three different means of calculating the Airy functions;
namely A.-S. 10.4.59 and 10.4.60 for large positive and negative arguments, re-

spectively, and the power series A.-S. 10.4.2 near z = 1.

We have written a computer program which makes these evaluations of Airy
functions and uses Decker’s form of the coefficients to evaluate the Olver formulas
for Jn, Yy, J! and Y. It allows 2 to be complex, since complex z arises later in

the study of wall resistance. To validate the program, we have checked the Airy
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functions aga.inst; published tables, and have verified that the Bessel functions
satisfy recursion relations and the Wronskian identity. Also, the Bessel functions
agree with simpler but less comprehensive asymptotic formulas at large n. In
Figs. 2-5 we show the Bessel functions near z = 1 for n = 23051, the value of n

corresponding to the lowest resonance with w = wyn in example (1) of (5.16).

Although the program was used for all numerical work, it is possible to see
how the resonant frequencies are determined by looking just at the leading terms.
In fact, most of the program was hardly necessary for our main results, since
leading terms dominate strongly. For Bessel functions of b we have 2 > 1, and

n2/3¢ large and negative. The leading terms for this case are, with Ypb = nz,

Iu(nz) ~

1/2
Ya(nz) ~ — (l) (2 - 1)~Y4 cos (nx+ %) +O(n=3?

7rn1/2 2 1/4 (5.23)
Jp(nz) ~ (;2";) (= zl) cos (nx+-}) +O(n"3/2) )
1/2 (2 _ 1\1/4
Yo(nz) ~ (;?7;) (z—zl)*— sin (nx+§) +0(n™3%),
where
_ 2, 32 _ g2 32|l l o ey 1o e ]
x—3(§) = (2*—-1) 3+5(1 z)+7(1 22+, . (5.24)

For Bessel functions of ypa we have z < 1, and n?/3¢ large and positive. The

leading terms for this case are, with ypa = nz,
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\ 1/2

Jn(nz) ~ ( 1 )

) - e o

9 \ 1/2

, /1 \1/? (1—22)1/4 _ ) (5.25)
Jn(nz) ~ (271'77, . e "€+O(n 3/2) ,
Y (nz) ~ (:_n)l/z Q;E:_)___l/: ™t + 0(n~%/?) |
where
¢ = § S = (12 [% +% (1-2%)+ ; (1-—2%)2 + —] . (5.26)

Equations (5.25) are in agreement with the claim made above, that the Bessel
functions do not have zeros for argument less than n. The oscillatory functions

of (5.23) do have zeros, which we shall now try to locate.

By (5.23) and (5.1), (5.2), the resonances for the pill box should be close to

the values of n for which

nx—(%-}-s)w, s = 0,1, 2, s
1 for TE des ,
¢ = { or modes (5.27)
3 for TM modes .

where x = x(n,p) is given by (5.24) with

G RIORETC R

The condition w = w,n = Ben/R has been imposed in (5.28).

We first find an approximate solution of (5.27) by analytic means. We

then take that approximation as the starting point for a precise solution of the
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resonance conditions (5.1), (5.2) by Newton’s method, using the full Bessel func-
tion program. The derivative required in Newton’s method is adequately approx-
imated by a simple divided difference. The resulting precise resonant frequencies
agree with those obtained from the analytic approximation to about 3% in the

examples (5.16).

To find the approximate solution of (5.27), we put u = 22 — 1 and retain just

the first term in the series (5.24) for x:
1
X3 ud/?, (5.29)

By (5.19) the largest possible value of u is (b/R)? — 1, which is usually small
compared to 1; hence, the higher terms in x have little effect. Solving (5.28) for

n as a function of u, we find

7pb
n =" . : (5.30)

Putting (5.29) and (5.30) in (5.27), we obtain a cubic equation,
v+Ad =1, (5.31)

where

R

[y - ad (5.5 | RO

This equation clearly has one, and only one, positive solution which is less than

one. The solution determines the resonant value of n by (5.30). Applying the
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Cardan formulas for roots of a cubic, we find

4 \1/2 1/3 4 \1/2 1/3
Y - <1+m) +1 _ (1+—27x) -1 (533)
2\ 2\ ) )

To find the resonances of the torus, we first observe that they are very close
to the resonances of the pill box, hence very close to the frequencies determined
b-y (5.31). Thus, we can use the latter as a starting point for a Newton solution
of the torus resonances condition (5.9), (5.10), just as in the pill box problem.
To see why the torus resonances are close to those of the pill box, note that the

torus resonance condition (TM modes) is

Yn(7pa)

W Jn(vpd) — Yn(ypd) = 0. (5.34)

By (5.23), (5.25), this is nearly equivalent to
€™ sin (nx +7/4) —cos (nx+7/4) = 0. (5.35)

The factor e2*¢ ~ Y,(vpa)/Jn(7pa) is large compared to one at the value of n
corresponding to the pill box resonance. In example (1) of (5.16), in the lowest
vpill box TM mode we have

Ypb Yp@

z = — = 1.001526 , 2 = = 0.99802 , n = 42282
n

n

(1-22)3%%, &~ 1124. (5.36)

|

£ =~

Since e2™¢ is so large, the solution of (5.35) is very close to the pill box resonance,
where sin (nx + 7/4) = 0,cos (nx + n/4) = 1. The Bessel functions evaluated
at ypa are in their region of exponential behavior, where |Yy(7pa)| >> |Jn(vpa)l-
This is illustrated in Figs. 6 and 7 where we plot Jy(nz) and Yy(nz) for a/b <
z < b/R for the first TM mode of the pill box.
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Having located the poles, we next must calculate the pole residues to find
R/Q. We find analytic formulas for the residues in terms of Bessel functions,
and then evaluate them numerically. Near each pole we write the impedance as
Z(n,w) = t+N(w)/D(w), D(w) =~ D'(w,)(w —wy), and then simplify N(w,)/D’(w,)
by using the identities (2.20), (4.25). From (5.7) and (4.21) we obtain the

following:

(A) Cylindrical Pill Box

R c(7pR)2 [Yy (7pb) Jr'u(’YpR)]z

=l =32, A , 5.37
] 1-7° (537
5 cp’ (R 2 2
=7Zo Ay — | =— ) [Yn(7pd) J, R)|* , 5.38
=z T (5) Dalh) Jalp ) (5:38
(B) Torus
2 1 ! _ vt ' 2
E — 7l'3Zo Ap c('YPR) [’Jn('YPb) Yn(WPR) Yn(’yl’b) Jn(qpf)] (5.39)
Qles wh 1— 22— (1—27% Y, (%)
b * 7 [ Yal(pa)
2 2 — 2
E =n%Z, Ay e (_Ii) [Jn(1p0) Yn(¥pR) Yn(%g) Jn(pR)] , (5.40)
Q ™™ w ﬂh 1— Yn(qpb)
Yni'y,,ai
where w = w,, A, is defined in (2.48), and
TpQ '7pb
Za:—n—'<1, Zb=7>1. (5.41)

In Table 1, we show results for the first few resonances in the two examples
of (5.16), with A, as in (2.49). The beam is centered in the toroidal chamber:
R = (a + b)/2. We give the integer closest to the resonant value of n, the

corresponding frequency f in GHz (f = won/27), and the value of v = 22 — 1,
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where 22 is defined in (5.28). The frequencies for the torus and pill box are the
same to better than 6 significant figures; consequently the integer values of n are
the same. Table 1 also gives R /Q for the torus and pill box. The near agreement
of the R/Q values for torus and pill box is not surprising, in view of (5.37)-(5.40)
and the near equality of frequencies. For instance, the equality of frequencies
means that the term involving J}, (y,b) in the numerator of (5.39) is small. Also,
the term in the denominator involving Y, is small (see Fig. 7). Thus, (5.39) and

(5.37) are approximately equal.

The physical similarily of the torus and pill box problems is apparent in
plots of the radial wave functions corresponding to solutions of the homoge-
neous Maxwell equations at resonance. At resonance, the latter are close to
solutions of the inhomogeneous equations; the initial terms in (2.23), (2.24),
(3.4), (3.5) dominate. In Fig. 8 we plot the torus wave function sp(vpr,vpa) =
JL (7)Y (pa) — Ya(vpr)Jh(7pa) versus r at the lowest TE resonance; it van-
ishes at r = a,b as required. Figure 9 shows the pill box wave function J}, (7pr)
at the same frequency. It is remarkably similar to the torus wave function. The
similarity is even greater in higher radial modes. In Fig. 10 we show the torus
wave function for the p = 1,s = 2 TE mode, which is indistinguishable by eye
from the corresponding pill box wave function. The pill box wave function al-
‘most automatically satisfies the boundary condition J}(ypa) = 0, because of the

exponential decrease of J),(nz) with decreasing z < 1.

The similarity of the torus and pill box resonant modes naturally disappears

if the trajectory radius R is very close to the inner torus radius a.
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6. RESISTIVE WALL BOUNDARY
CONDITIONS AND COMPUTATION OF Q

To account for electrical resistance of the vacuum chamber walls, we adopt

the conventional resistive-wall boundary condition:

—twy

1/2
E” (w) = [ ] n X H" (w) (6.1)

0 — twe
where quantities written in boldface type are vectors. The fields E“ and H”
are the components of E and H parallel to the wall, and n is the unit vector
normal to the wall, pointing away from the wall (into the vacuum). Within
the wall material J = oE, D = ¢E, B = yH. For the derivation of (7.1) it is
assumed that the surface of the wall is planar, and that the fields within the wall
have negligible variation in directions parallel to the surface. The assumption of
planarity is justified in our case, because of the large radius of curvature of our
cylindrical walls. The second assumption is not well justified near the corners,
where planar and cylindrical walls of the vacuum chamber meet. We are forced

to ignore that difficulty, since a correct treatment of fields near the corners would

be terribly complicated.

We put p = f,,€ = €,, as is approximately true for usual metal walls. The
displacement current term, —twe,, is negligible compared to o, even at the rel-
atively high frequencies of our resonances. When the time variation of fields is
given by a factor e~ as we have assumed, the correct branch of the square root

in (7.1) is specified as follows:

Ejw) = (1-1)

(%’f)ml nxHy(w), w>0. (6.2)

This choice guarantees that the fields decay exponentially as the point of obser-

vation moves from the surface to a point within the material.
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It is convenient to introduce a dimensionless complex parameter n, propor-

tional to the square root of the resistivity; namely,

) N (WHo\V/2 14+ 1wé
oo ()t
" o( ) 20 2 ¢’

5 = ( 2 )1/2; Inl = [ J(GHz) )]1/2, =2 (63)

owlo 180(N1~1m—1 27

The parameter 6 is the skin depth. Although # increases with frequency as w1/,
it is typically small compared to 1 even at the high frequencies of our resonances
(a few hundred GHz). For aluminum, o ~ 3.5 x 1070"1m ™1, whereas for stainless
steel, 0 ~ 10Q~!m~!, Thus for aluminum at 200 GHz, |n| = 5.6 x 10™*; for
stainless steel at 600 GHz, |n| = 5.8 x 1073,

On the cylindrical surfaces of our toroidal chamber, the boundary conditions

are

Eo = q:in Zo Hz ’ (6.4)

Ez == :tifl Zo Ha 9 (6.5)

where the upper (lower) sign is for the surface at r = b(a), respectively. On the

planar surfaces,

E, = +in 2, Hy (6.6)
E0 = q:iﬂ Zo Hr 3 (6.7)

where the upper (lower) sign is for the surface at z = g(—g), respectively.

Recalling the form of our Fourier developments (2.2), (2.3), (2.5), we see that
(6.4), (6.5) might be satisfied term-by-term in the Fourier series. That is, Ey
and H, are both expanded in sin ap(z+ g), while E; and Hy are both expanded
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in cos ap(z + g). On the other hand, (6.6) and (6.7) cannot be satisfied term-
by-term, since fields on the left sides of the equations are expanded in sines,
while those on the right are expanded in cosines. To accommodate the boundary

conditions on planar walls, we shall have to modify the Fourier developments.

The problem can be understood in the simplest terms by considering first
the solutions of the homogeneous Maxwell equations subject to resistive wall
boundary conditions. Further, it is best to look first at solutions in which either
the cylindrical walls or the planar walls are resistive, but not both at once. We
thereby find that resistance of the cylindrical walls mainly effects the TE modes,

while resistance of the planar walls mainly effects the TM modes.

We now discuss solutions of the homogeneous Maxwell equations, restricting
attention to the pill box chamber. As usual, the results are almost the same for
the torus. We first treat cylindrical resistive walls, retaining infinite conductivity
on the planar walls. In view of (2.9), (2.11), (2.16), (2.17), the conditions (6.4),

7(6.5) at r = b imply the following equations for Fourier components:

a, n w Z,
—5 7 Anp Jn(1pb) + = == Cnp Jo(pb) = 1 Cup Jn(b) ,
7 b c Y
(6.8)
1 w . apZ, n
Anp Jn(pb) = —n ’Y—p - Anp Jn(pb) + 2 b Crnp Jn(7pb)| -
P

These homogeneous equations for A,y, Z,Cpnp have a solution only at frequencies

such that their determinant D(w) is zero. The determinant is

D) = — — 2 Ju(1pb) J()

T €

+n {[1+(%;§-)2] it~ (L)’ [J:.(vpb)lz} (69)

1l w
+ 1% — — Ja(pd) Jn(vpb) .
Tp €
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When 7 is zero, D(w) has zeros where Jn(7pb) = 0 (TM modes) and where
J.(7pd) = O (TE modes). These zeros move into the complex plane when 7 is

turned on.

To find the complex zero for TM modes, write

Jn(vpd) = [JL('ypb) d(zw—pb)] _ (w—wy), (6.10)

v-vhere wy is the frequency of the unperturbed TM mode. Then (6.9) has the form

Dw) = —[Ji(1p0)]” 1w "o
n\Ip Tp € ¢
(6.11)
b
X {w—w,+n§+0 [nz (w—w,)z] +0 [nz(w—w,-)]} .
With neglect of terms O(n?), the perturbed zero is at &, = w, — nec/b or
. 1+t 6
Wr = wr (1 2 3) . (6.12)
The corresponding Q is
_ Rew, _ b

(effect of cylindrical wall, TM mode).

The calculation to find the complex zero for the TE modes is much the same,
if we use the Bessel equation (5.11) to eliminate the second derivative J"(yyb).

That is, the formula analogons to (6.10) is

1 d(~pb
Jy(pb) = [(1 - —5> Jn(71pd) (3(5 )] (w—wy), (6.14)
z wW—Wwy
where, as usual, z = qp,b/n. This yields a perturbed zero at

Wy : Wy (1_“ 2 zz—l—b_) 3 (6.15)
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and
Q = (-1 % : (6.16)

(effect of cylindrical wall, TE mode).

The quantity 22 —1 = u is given in terms of n by (5.28), and is somewhat smaller
than z/R = 2(b — R)/R. Typical values of u are given in Table 1. Comparing
(6.13) and (6.16), we see that the Q due to cylindrical walls is a great deal smaller
in TE modes than in TM.

To handle resistive planar walls, we extend a method due to Bart!®. Since we
need more flexibility in meeting boundary conditions, we replace the 2-dependent

wave functions of (2.2), (2.3) with

a1 sin ap(z+g) +azcos op(2+g) for H;, (6.17)

by cos Bz +g) + bzsin Bp(z+g) for E;. (6.18)

Here ap and f, are new wave numbers, to be determined by the boundary con-
ditions. Since it will turn out that o, is very nearly equal to our old e, of (2.4),
‘we take the liberty of denoting it by the same letter. The forms (6.17), (6.18)

are equivalent to

H! cos apz+ H?sin apz, (6.19)

E! sin Bpz + EZcos fpz . (6.20)

In the limit of infinite conductivity, only the E}, H! terms survive, and only for
odd p with ap, = B, = mp/2g; (the restriction to odd p comes from our assumption
that the charge distribution is symmetric about z = 0). Note that the role of
superscripts one and two is reversed with respect to Ref. 15, since our charge

distribution excites odd p rather than the even p emphasized there.
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Let us now look for a pure TM mode, a solution of the homogeneous Maxwell
equations with H, = 0, with resistive planar walls but cylindrical walls of infinite

conductivity. The wave function of E; is
Jn(3pr) [EL sin Bpz + E2 cos fpz] , (6.21)

where 4y is defined by
. w2
= (%) -8 (6.22)

The other fields are constructed from (6.22) and the formulas (2.8) - (2.11) with
H, = 0. It is easy to check that the full set of Maxwell’s equations is satisfied,

separately for terms involving sin fp2 and cos fpz.

To determine f,, substitute in the planar wall boundary conditions (6.6),

(6.7). The boundary conditions are satisfied provided that

(z cos £—nv sin z) E} — (z sin z+nv cos ) E2 = 0
z cos z—nv sin z E! + (z sin Z+nv cos EZ =0, 6.23
F4
wg
z = Ppg , v = —.

c

This homogeneous system has solutions if and only if its determinant D is zero:
D = 2(z cos z—nv sin z) (z sin z+nv cos ) = 0. (6.24)

It follows that the solutions of (6.23) are
E} arbitrary , EZ =0 for zcosz—nuvsinz =0, (6.25)

E! =0, E? arbitrary for zsinz+nvcosz = 0. (6.26)

The nonlinear equations of (6.25), (6.26) determine the wave number ;. Since

|nv| is small compared to one, provided that the frequency is not too high, (6.25)
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has a solution z close to 7p/2 for p odd, and (6.26) a solution close to 7p/2 for
p even. By expanding the solutions in powers of nv, we find that one and the
same function of p and nv satisfies (6.25) for odd p > 1 and (6.26) for even p > 2;

namely, the complex function

P nv (nv)?

= = — — - cer e 6.27
i T A o0
There is also a special solution of (6.26) near zero; namely,
. 1
z, = —i(nv)!/? (1 tgmvt- ) . (6.28)

The negative of each solution is also a solution, but it leads to the same wave

function (6.21), and is therefore redundant.

Since H, = 0, the boundary conditions on the perfectly conducting cylindrical

wall are satisfied if

Ju(4%) = 0. (6.29)

This equation is satisfied at complex w, owing to the fact that 8, and 4, are

complex. To find the complex root, expand (6.29) about jn,, the root of Jy,:
Tu(Apb) % T4 (jns) (3pb = jns) = 0. (6.30)

Let w, be the frequency of the unperturbed mode, so that

web 2 . nwpb 2
( " ) = Jus + (T) - (6.31)

Then (6.30) and (6.31) give the perturbed frequency @, as

(:)fb 2 -2 2
- = Jns t (ﬂpb) ’

[+
wb\* _ (7b\*  pa(mp 4w\
\ ¢ h h  wph
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or, to lowest order in 7,

(6.33)
= w, [1——(1+i) %] .

We have evaluated nv at w, since the correct evaluation at &, gives the same

answer to lowest order in n. Thus, the quality factor is
Q = — (6.34)
(Effect of planar walls, TM mode).

The ratio of (6.34) to (6.13) is h/2b, which is typically small compared to one.

The calculation for TE modes follows the same lines. In place of (6.25),
(6.26) we find

H! arbitrary , H: =0 for vcosz—nzrsinz =0, (6.35)

H! =0, H? arbitrary for vsinz+nzcosz = 0. (6.36)

wg
x_——apg, V—_—“;—,

One and the same function of p and nv solves (6.35) for odd p and (6.36) for

even p, namely

2
z =z, = %’—’[1—%+(%) +] : (6.37)
With
N w)? 2
Ap = (?) -a, (6.38)



the solution of the resonance condition
Jn(3pb) = 0O, (6.39)

gives the following

2
Oy = wy [1— (é—r@) (1+i)%} : (6.40)

wrh h
(Effect of planar walls, TE Modes)

The ratio of (6.41) to (6.34) is typically very big. One can ignore the effect of

planar walls in lowering the @ of TE modes.

To find the combined effects of cylindrical and planar surfaces, one can, to a
first approximation, add the corresponding values of Im®,, then take reciprocals
to find Q. The result is that resistive effects of cylindrical (planar) walls are
negligible in TM(TE) modes, respectively, provided that h < b. To summarize,

a good approximation is
2 b
Q = (2°-1) 5 (TE) , (6.42)

h
Q=5 (T™), (6.43)

where 2% — 1 is given by (5.28) in terms of n = wR/fec.

In Table 1, we list the values of @ obtained from (6.42) and (6.43) for the
examples (5.16), assuming that the chamber is made of aluminum, with conduc-

tivity o = 3.54 x 10’ 07! m~L.
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It is a relatively difficult problem to find solutions of the inhomogeneous
Maxwell equations with full resistive wall boundary conditions. If only the cylin-
drical walls are resistive, the inhomogeneous problem can be solved by the method
of Section 2. In the case of the torus, this leads to four simultaneous equations
to determine the four coefficients of (2.16), (2.17); for the pill box, two simulta-
neous equations suffice. If the planar walls are resistive, there is an impediment
to solving the inhomogeneous equations, whether or not the cylindrical walls
are resistive. The problem is that the TE and TM fields are both excited by
the sources, which means that expansions in [cos apz,sin fp2z] get mixed with
expansions in [cos PBpz,sin fpz|. Since ap # fBp, the Maxwell equations with
sources do not separate; i.e., they are not solved term-by-term in the Fourier
developments. They do separate to a certain approximation, however, since oy,

and 3, are both very close to mp/h.

For the numerical calculations of the following section, we take ap = fp =
71rp/ h in deriving expressions for the impedance, but finally replace 7p/h by Sy,
as given by (6.27), in the TM terms only. (Since ap as given by (6.37) is so close
to wp/h, there is no reason to alter the TE terms). The full cylindrical resistive
wall boundary cénditions for the torus are imposed, by solving numerically the
4 x 4 system to determine the coefficients of (2.16), (2.17). We are fairly confident
‘that this approximate treatment is accurate, at least near the resonances and for
good conductors such as copper and aluminum. Our confidence is based on the
fact that, near resonance, the solutions of the inhomogeneous equations closely
resemble the eigenmodes that we have analyzed above, and should have nearly
the same Q. Indeed, we find that the products of R/Q by Q in Table 1, obtained
entirely from eigenmodes, agree rather well with the peak values of R from the
full numerical calculation. The latter are shown in Figs. 11 and 13. Far from
resonances, where the impedance is negligible anyway, our calculation is clearly
wrong, since it sometimes gives small negative values of ReZ. This can be traced
to a violation of charge conservation that arises from treating the nonseparable

equations as though they were separable.
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A more accurate treatment could be devised by expanding the functions
(6.19) in the functions (6.20), which is possible due to the completeness and
orthogonality of the functions proved in Ref. 14. One would then get equations
in which different values of p would be weakly coupled. A truncation of the
equations to allow only a few neighboring values of p would probably lead to a

satisfactory solution.
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Table 1

Example 1: SLAC Damping Ring

R/Q(Q) R/Q(N)

p s n f(GHz) |u=22-1 Torus Pill box Q
TE10 23025 193 1.99-1072% | 14.167 14.514 5.91 - 10*
TE11 61841 518 3.33-10"3 | 4.8540 4.8554 1.62 - 10°
TE12 | 105157 881 3.44-1073% | 2.4296 2.4296 2.18 -10°
TE 30 55002 461 1.12-10~% | 0.29234 0.29366 5.12-10%
TE 31 88788 744 2.59-10"3 | 1.0319 1.0320 1.51-10°
TM10 | 42286 354 3.06-10"3 | 3.1982 3.1990 7.04 - 104

1| T™11 | 83665 701 3.34-1073 | 0.70394 0.70276 9.90 - 104
T™ 12 | 127595 | 1069 3.46-1073 | 0.24870 0.24828 1.22-10°
TM30 | 72536 607 2.14-1073 | 0.57762 0.57700 9.21-10*
TM 31 | 107102 897 2.88-1073 | 0.81308 0.81192 1.12-10°

Example 2: Berkeley Light Source
TE10 |119317 190 6.67-10"% | 2.9212 2.9236 1.03 - 10°
TE11 | 226279 360 1.39-1073 | 3.7536 3.7536 2.96 - 10°
TE 12 |347361 553 1.55-1073 | 2.6816 2.6816 4.09-10°
TE 30 | 312047 497 3.52-10"% | 6.1348-10"% | 9.9134-10"* | 8.79-10*
TE 31 | 415723 662 9.26-10"% | 2.4424-10"% | 2.4492-1072 | 2.67-10°
TM 10 | 173425 276 1.19-1073 | 2.6824 2.6810 7.76 - 104
TM 11 | 286529 456 1.49-1073 | 1.6449 1.6437 9.98 - 104
TM 12 | 412078 656 1.58-1073 | 0.84784 0.84718 1.20 - 10°
TM 30 | 368261 586 7.23-10~* | 6.8362-10"3 | 6.8278-10"% | 1.13-10°
TM 31 | 466669 743 1.08-103 | 5.0546-10"2 | 5.0510-10"2 | 1.27-10°
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7. GRAPHS OF COUPLING IMPEDANCE AND DISCUSSION

In this section we discuss the longitudinal coupling impedance Z(n,nw,) as
a function of n. This function is needed for stability studies based on the Vlasov
equation for bunched beams. The so-called “wake potential” V(w,7) is con-

structed from the same function, as a Fourier sum:

(s e]
V(wor) = —27RE(wor) = % Z e"T Z(n,nwo) An . (7.1)

n=—oo

Here the wake field £ (w,7) is the longitudinal field at an angular distance w,r
ahead of a rigid bunch, averaged in time over one revolution period 27 /w,, and

Ap is the Fourier transform of the bunch form A(8), as in (2.31).

In Figs. 11 to 16, we show graphs of the real and imaginary parts of Z(n, nw,)/n
versus n. The abscissa is labeled by the frequency f equivalent to n,
nw,

f=<-- (7.2)

The results are for resistive toroidal chambers with the conductivity of aluminum,
o = 3.54 x 107 07! m™!, with dimensions as specified in (5.16). The beam is
as specified in (2.26) and (2.34), where the vertical profile H(z) = H(-2) is
constant over a width 6k and zero elsewhere. The value of 6§h/h, not a critical

parameter, is 0.05, and 8 = 1.

At frequencies lower than those shown in the graphs, the impedance is so
small that it does not show up on graphs of the same scale; see Section 4. The
peak of lowest frequency is a TE mode, and henceforth peaks due to TM and TE
modes alternate. (Here, as throughout the paper, the designation as TE or TM
refers to the axis of symmetry of the torus, not the beam direction.) The graphs
were plotted from the p = 1 contribution alone; i.e., from the impedance due to
fields excited by the lowest axial mode of the source. The contributions of higher

p are negligible in the domain of frequencies plotted. At a fixed instant of time,
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the fields corresponding to the resonance peaks shown have tens or hundreds
of thousands of oscillations in the 8 direction, and no or few oscillations in the

transverse directions, z and r.

The peak values of Z(n,nw,)/n, up to 3611, are large by the standards that
are usual for storage rings at lower frequencies. For instance, |Z|/n for the SLAC
damping ring is estimated to have a broad band value of around 2.5{2 up to a few
GHz, and is bigger than one would like. At first sight, it would seem that large
impedances at frequencies of a few hundred GHz would be harmless regarding
beam stability, since even bunches that are quite short by current standards are
thought to have negligible Fourier components at such high frequencies. Thus,
Z(n,nw,) )y in the wake potential (7.1) would be small for all n, even if Z achieves
high values. This argument is not totally convincing, however, since small scale
oscillations in charge density within the bunch could give high frequency com-
ponents A, much bigger than those for a smooth bunch. One needs a careful
examination of the bunched-beam Vlasov equation to see whether such small
wiggles might build up in an unstable manner. Another point of interest is that
extremely short bunches, down to 50 microns, are being considered for future lin-
ear colliders. The short bunches would occur after the damping rings, but their
coherent synchrotron radiation while going through bends could be analyzed by

-present methods.

There are two novel features of our impedance that may be important in
stability questions. First, the peaks in ReZ(n,nw,) as a function of n are quite
broad, with width much greater than the natural width of a single resonance.
Second, the location of the peaks is a very sensitive function of the revolution
frequency w, (equivalently, of the trajectory radius R). These features can be un-
derstood in terms of an analytic formula for the resonant frequency as a function

of n.

We return to Eq. (5.27) which determines the resonant frequencies. Previ-

ously, this equation was used to find poles of Z(n,w) such that w = nw, exactly.
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We now apply it to find poles such that w is merely close to nw,. Putting

2 = [(w/c)znz— o] bz, (7.3)

and applying the approximation (5.29), we can solve (5.27) to get w as a function

of n in the form
c q 2/3 1/2
w(n) = 3 {(a,,b)2 +n? + [37r (Z + s)] n4/3} . (7.4)

In its region of validity (large n, small 22 — 1), this equation is the dispersion

relation of the system. From (7.4) we compute the derivative

b {1t (G o)

SO

(7.5)

R

=

= Wp .

Since dw/dn is close to w,, the function Z (n,nw,) will not change very much
when n changes by a few units. This is illustrated in Fig. 17, in which we plot
ReZ(n,nw,) at increments of 15 in n, around the lowest peak in Example 1. In
this example, An/n ~ 7.5- 1073, where An is the full width at half-maximum.
By contrast, if we plotted ReZ(n,w) versus w at fixed n, we would see a much
narrower peak with Aw/w = 1/Q =~ 1.7 10~5; here Aw is the “natural line

width” of the resonance.

The order of magnitude of the width An can be explained in terms of the
linear part of w(n), and the difference between dw/dn and w,. The impedance

near the resonance pole may be represented approximately as

i¢(n,w)

Z(n,w) = — »
w — w(n) (1 — 2—’Q—)

(7.6)
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where ¢ is real. Define n, so that n,w, = w(n,). If we expand w(n) about n,,

and treat the numerator and Q as constant, we see that for n = n, + An/2,
i{(n, s nrwo)

(n'+é2ﬂ)w°—[w(nr)+ﬂ1’2)ﬂ] (1_2_,'6) ’

ig‘(n,- ’ nrwo)

Z(n,nw,) ~

(7.7)

B tw(n
[wo — wi(ns)] B + X5
We throw away the small term of order An/Q. Now ReZ(n,nw,) will reach

one-half its maximum value where

An n
[wo —w'(nr)] 5| = wz(Qr) (7.8)
Using (7.5) for w', retaining only the dominant first term, we find
c
wo — w'(n,) = Ec -3~ _2£Rc_2 , (7.9)

where b = R+ w/2; w is the width of the chamber if the beam is centered. Thus,
(7.7) gives the following for the full width An at half maximum:
An 2R 1
Al 7.10
= (7.10)
For the lowest peak in Example 1, we take Q from Table 1, and R/w from (5.16)
to get An/n = 9.6 - 103, This agrees well enough with the value from the
exact calculation, 7.5-1073, to convince us that the linear part of w(n) is mainly
responsible for the width An. The discrepancy is probably due to treating the

numerator in (7.6) as constant.

Although the peaks of ReZ(n,nw,) are broad compared to 1/Q, they are
fairly narrow compared to a typical bunch spectrum A, and they are widely

separated. These features should simplify the Vlasov analysis of stability.
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In Fig. 18 we illustrate the sensitivity of the resonant frequencies to the
value of w,. Changing the trajectory radius R by 0.1 mm out of 5.7 m shifts
the resonance peaks by almost 2 GHz. This behavior is due to the feature noted
above, that the slope of the resonance curve w(n) at large n is just slightly smaller
than the slope of the line w = wyn. The angle of intersection of the curve and the
line is small, so that a small change in the slope w, will produce a big change in
the point of intersection, which is to say a big change in the resonant frequency
that satisfies w = won. To find the change in frequency due to a small change in

R, put w = won in (8.4), and differentiate with respect to R. The result is

an _an (%)

= ok . (7.11)

n R 2 2/3
b 213n(q/4+s
() -1 -]

The factor multiplying dR/R lies in the range 350-1600 for the first few reso-

nances of our examples.
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FIGURE CAPTIONS

Toroidal vacuum chamber with cylindrical cross section of width w
and height 2 = 2g. The inner (outer) torus radius is a (b). The origin
for cylindrical coordinates is at the midplane of the torus.

Bessel functions and their derivatives at large order, with argument
close to the order. The order n = 23051 corresponds to the lowest TE
mode (Example 1).

Jn(nz) and Yp(nz) over the full range of z relevant for resonances:
a/b < z < b/R (Example 1).

Radial wave function s, (vpr,7pa) in the lowest TE mode of the torus
(Example 1).

Radial wave function J}(4pr) in the lowest TE mode of the pill box
(Example 1).

Radial wave function for torus or pill box, in TE mode with p =
1, s = 2 (Example 1).

ReZ(n,nw,)/n versus n for SLAC damping ring.

ImZ(n,nw,)/n versus n for SLAC damping ring.

ReZ(n,nw,)/n versus n for Berkeley light source.

ImZ(n,nw,)/n versus n for Berkeley light source.

ReZ(n,nw,)/n versus n near lowest resonance, SLAC damping ring.
ImZ(n,nw,)/n versus n near lowest resonance, SLAC damping ring.

ReZ(n,nw,)/n versus n near lowest resonance, SLAC damping ring.
The increment in n between plotted points is An = 15.

The shift in the peak of Figure 16 when R is changed by 0.1 mm out
of 5.7 m.
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