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ABSTRACT 

We study the fields produced by a beam circulating in a smooth toroidal 

chamber with walls of finite conductivity. At high frequencies the beam can 

excite resonant modes of the chamber having phase velocity equal to the particle 

velocity. The frequencies of these synchronous modes are widely spaced, and 

depend sensitively on the revolution frequency wO. The associated longitudinal 

coupling impedance, Z(n,nw,), has relatively broad peaks as a function of the 

azimuthal mode number n. In typical cases ReZ(n,nw,)/n reaches values of 

several Ohms in the lowest modes. The lowest mode has n somewhat greater 

than sR3i2/w1i2h, where R is the trajectory radius, and the cross section of the 

chamber is a rectangle of width w and height h. Although the frequencies are 

typically quite high, it is not excluded that the large coupling impedance could 

lead to fast microwave instabilities of a short bunch. 
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1. INTRODUCTION 

We discuss the fields produced by an arbitrary particle beam following a 

circular trajectory inside a toroidal vacuum chamber. The torus has rectangular 

cross section, as shown in Fig. 1, and the walls have finite conductivity. Our 

interest in this problem stems from a general concern about the sources of beam 

coupling impedance at high frequencies, well beyond the beam tube cutoff. The 

trend toward shorter particle bunches in storage rings and linacs encourages such 

concern. 

It has been known for a long time that classical synchrotron radiation, shielded 

by conducting surfaces, would entail a large self-force on the beam at sufficiently 

high frequencies. Several models led to quantitative results, for instance a system 

of two parallel plates with circular beam orbit in a plane midway between the 

plates. In this model, the self-force leads to energy loss which is characterized by 

-ccoupling impedance Z(n,w) such that 

ReZ(n, nw,) 
n. 

w 300; n , 
(llQI 

(14 

where the distance between the plates is 2g,. and R is the orbit radius. Here n 

is the azimuthal mode number and w,, = @z/R is the revolution frequency. The 

.value of n at which ReZ/n achieves the maximum (1.1) is roughly (R/g)3/2. 

The open structure of two parallel plates allows radiation of energy to infinity. 

The analogous phenomenon in the closed toroidal structure is radiation into 

resonant modes of the chamber. If the walls have infinite conductivity, the energy 

remains forever in the resonant field mode; otherwise it is dissipated in wall 

heating. Nonresonant loss of beam energy is usually negligible by comparison, 

being of the same magnitude as the usual resistive wall effect in a straight beam 

tube; hence it is zero for infinite conductivity. The frequency of the first resonance 

in Z(n, nw,) is comparable to the frequency of maximum radiation for the open 

parallel plate system. For typical wall materials, the peak values of ReZ/n exceed 

substantially the value (1.1). 
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For the lowest resonant mode the dispersion relation of the toroidal structure 

is approximated closely at large n by 

w(n) = i [ (%)l+n2+ (:)2'3n4/3]1'2 , (1.2) 

where b is the outer radius and h is the height of the chamber, as defined in 

Fig. 1. The synchronism condition, the requirement that the phase velocity of 

the longitudinal field be equal to the particle velocity, is won = @n/R. In order 

that a synchronous mode exist at some n, the asymptotic slope of the curve w(n), 

which is c/b, must be less than the slope of the line w = w,n, so that the curve 

and the line may intersect. Thus, 

i &>l. (1.3) 

Typically the curve w(n) and the line w = won intersect at a very small angle, so 

that n at the point of intersection is a sensitive function of wO. The synchronous 

resonant frequency is therefore a sensitive function of the orbit radius R. A 

related circumstance is that resonance peaks in Z(n, nw,), the latter regarded as 

a function of n, are much broader than the natural line width of the resonance. 

When n changes by one unit, w(n) changes by an amount &/dn NN c/b, which 

is close to wO. Therefore Z(n + 1, (n + l)w,) is close to Z(n,nw,); the peak is 

thereby broadened. 

Because of the peculiar features of the impedance, we defer any comments 

on the implications of our results for beam stability. We do not recommend an 

uncritical application of conventional formulas for the threshold of instability. A 

reexamination of the Vlasov analysis of bunched beam stability seems called for 

in the present case. 

Since the theory of classical synchrotron radiation has evolved over many 

years, there are numerous points of contact between our work and earlier efforts.‘-l8 
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Schwinger2 and Schiffs discussed shielded coherent radiation in 1945 and 1946. 

Neil’s Ph.D. thesis*. (1960) was concerned with exactly the problem that we 

treat. Laslett and Lewishg (1960) studied relevant properties of Bessel functions, 

and stated formulas for the quality factor of a toroidal chamber. Faltens and 

Laslett13 (1973, 1975) and J. Bisognano (private communication) did much to 

encourage our work, by emphasizing the result (1.1) and its probable general 

import. Bart’s technique l5 for treating planar resistive walls was essential to 

our results. L. Smith (unpublished notes, 1985) sketched a treatment of the 

toroidal chamber, using methods similar to those of Neil. Recent work16-20 on 

the transverse self-force of particles on curved orbits involves some of the same 

calculations that we have pursued. After this work was completed, we learned of 

a recent analysis of our problem by K.-Y. Ng (Ref. 24). 

Of the various works, those of Neil and Ng are most similar to ours in scope. i 
We use different techniques at several points, usually chosen for mathematical 

clarity, and discuss some physical points and parameter ranges not covered in the 

other papers. Most of the previous discussions have been based on an expansion 

in eigenfunctions of the structure. We prefer a Fourier-Bessel expansion which 

does not employ eigenfunctions. This expansion, which appears along with the 

eigenfunction development in Neil’s thesis, leads to a relatively transparent for- 

mula for the impedance, and is much easier to evaluate in nonresonant regions. 

Near a resonance, the two expansions lead to roughly the same calculations. We 

also differ from other authors in the treatment of wall resistance. All other au- 

thors have treated wall resistance perturbatively, by integrating an approximate 

expression for the Poynting vector over the metallic surfaces. This yields definite 

formulas for the quality factor Q, but gives no indication about the importance 

of higher order effects. We prefer to solve the field equations subject to the 

resistive wall boundary condition, so as to incorporate the higher order effects 

completely. This method reveals shortcomings in the treatment of planar walls 

(top and bottom of the chamber) that are not apparent in the usual treatment. 

Our formulation shows how to overcome the difficulties through a coupled mode 
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treatment, but we have not carried the computation that far in the present work. 

For checks of numerical results, we are greatly indebted to Dr. Ng, who was 

able to reproduce the results of Table 1 by his methods, to adequate accuracy. 

The case of a beam circulating in a cylindrical “pill box” chamber is similar 

to the toroidal case in most important respects, but somewhat easier to analyze. 

To make our story simple we first treat the cylindrical problem in Section 2, and 

then give the obvious generalizations to handle the torus in Section 3. Sections 

2 and 3 end with formulas for the longitudinal coupling impedance in terms of 

Bessel functions. In Section 4 we evaluate the impedance at low frequency, finding 

a very small value. In Section 5 we employ appropriate asymptotic expansions 

of Bessel functions to locate resonance poles at high frequencies, and to find the 

pole residues which determine R/Q. We find a rather accurate explicit formula 

@r the frequency of synchronous resonant modes. Provided that the beam is not 

too close to the inner wall of the torus, the results for the pill box and torus are 

nearly identical. 

For studies of beam stability, it is important to account for resistance of the 

vacuum chamber walls. In Section 6 we give a treatment of wall resistance which 

is valid close to the resonances. At frequencies away from the resonances, it is 

difficult to include resistance on the planar walls (top and bottom). Since our 

impedance is dominated by the resonances, this is not a great drawback. 

In Section 7 we give numerical results for the impedance of the toroidal cham- 

ber with wall resistance, and try to explain peculiar features of the impedance in 

terms of the dispersion relation. 

Our notation for special functions follows Ref. 21, Abramowitz and Stegun. 

We refer to equation numbers in that book following this example: A.-S. 9.3.35. 

We hope to treat beam stability and transverse impedances in later papers. 
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2. FIELDS AND LONGITUDINAL COUPLING 
IMPEDANCE FOR A CYLINDRICAL CHAMBER 

In this section, we find expressions for the fields produced by a beam cir- 

culating in a cylindrical pill box chamber, assuming that the wall conductivity 

is infinite. In solving this preliminary problem we set down the definitions and 

apparatus required for the rest of the work, and provide a useful way of viewing 

the full problem of the torus. 

We put a = 0 in the picture of Fig. 1 to obtain a cylindrical chamber of radius 

b and height h = 29. We use cylindrical coordinates (r, 8, z) with z-axis along 

the symmetry axis of the cylinder, and origin at the centroid of the chamber; 

thus the plane surfaces are at z = fg. We use m.k.s. units, and adopt the usual 

definition of Z,, the “impedance of free space” : 
-- 

&= E ( > 
l/2 

= pot = & = i20d. 
0 

(24 

We shall first express the fields produced by an arbitrary charge-current distri- 

bution, and then specialize for the particle beam of interest. All components 

of the fields may be expressed in terms of Fourier amplitudes of Hz and E,. 

Accordingly, we begin with the Fourier expansions, 

00 

/ 

00 ccl 

&(r,ht) = dwe-iwf c eine c sin ap(z + g) Hznp(r,w) , (2.2) 
--00 n=-w p=l 

co 

&(r, 0, z,t) = duemiwf 2 eine 2 cos ap(z + g)Eznp (r,w) , (2.3) 
n=-co p=o 

where the wave number for the z-direction is 

rrp ap = -. 
29 

(24 
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The other components will have similar expansions. In each component the z- 

dependent factor is either sin c+(z + g) or cos cyP (z + g) , chosen according to the 

following scheme: 

(E,,H~,H,,E~) t--) (sin,cos,cos,sin) . (2.5) 

The forms of H,,E,, and I30 were chosen to meet the boundary conditions 

Hz = 0, EI = E(j = 0 , z = fg, (2.6) 

term-by-term in the Fourier developments. The forms of the other fields were 

selected so that the source-free Maxwell equations would also be satisfied term- 

by-term. For a consistent term-by-term satisfaction of the Maxwell equations 

with sources, we must also expand the current and charge in Fourier series, with 

z-dependent factor sin cy,,(z + g) or cos CY~(Z + g) chosen as follows: 

(J,, Jo, Je, p) c--) (sin, sin, cos, sin) , (2.7) 

One might inquire as to whether our Fourier series in z actually represent general 

solutions of Maxwell’s equations, since one usually expects both sines and cosines 

to be present in a generally valid expansion. By considering an artifical odd or 

even extension of each field to an interval of twice the length h, one can show 

that the expansions are indeed general. 

After substituting the series in Maxwell’s equations, and taking Fourier trans- 

forms with respect to t, 8, and z, one gets a set of equations for the r-dependent 

Fourier amplitudes. The equations may be solved algebraically to express all 

amplitudes in terms of Hz,,p and Eznp. The calculation yields 

E 
-1 

rnp = 2 
7, 

ap% + Fzo (TEl,np + iJrnp)] , (2.8) 
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i 
Henp = 2 

w 1 aEznp 

7P 
;z- o at + ap 

(THznp + iJrnp)] 3 

H Tnp = ff$FEznp + ap aHznp 
7 + Jenp p 

0 

-i 
&np = 2 

7, 
alp r ‘Ennp + :Zo aHznp 7 + Jenp I , 

where the “radial wave number”, 7p, is defined by 

w 2 2= - 
7, ( > 

-a2 
C P * 

(2-g) 

(2.10) 

(2.11) 

(2.12) 

Here and in much of the following we use abbreviated notation in which the 

dependence of amplitudes on r and w is not indicated. Maxwell’s equations also 

imply the radial wave equations, which serve to determine H=np and Eznp: 
-- 

i& (r%) + (5-~)H*np=-~~(rJsnp) +iFJ,np , (2.13) 

i$ (r?) + (7~-~)E~np=zo(-~~J*np+op~pnp) . (2.14) 

When the sources J,p are zero, the general solution of (2.13) or (2.14) is a 

linear combination of Jn (ypt) and Yn(‘ypr), linearly independent Bessel functions. 

Equivalently, it is a linear combination of In(Ipr) and Kn(Ipr), the modified 

Bessel functions, where 

w 2 r; = -7; = a; - ; . 
( 1 

(2.15) 

It is convenient to use the former representation when 7; > 0 and the latter 

when I’; > 0, so that we always deal with functions of real argument. Since 

our discussion emphasizes resonances, for which 7: > 0, we give our general 

formulas in terms of Jn, Yn, and provide some translations to the In, Kn basis 

where appropriate. 
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In the presence of sources, the general solution is the sum of the general 

solution of the source-free equation and any particular solution of the equation 

with sources. Thus we may write the general solutions of (2.13). (2.14) as 

Eznp(r) = Anp Jn (7pr) + BnpYn(7pr) + eznp(r) , (2.16) 

Hznp(r) = GpJn(7pr) + hpYn(7pr) + bnp(r) , (2.17) 

where e, and h, are particular solutions of the inhomogeneous equations. 

In the present pill box problem, the solutions (2.16), (2.17) must be bounded 

at r = 0. Let us choose ez and h, so that eznp(0) = 0, hznp(0) = 0; we shall see 

how to do this presently. With that choice we must have B,, = D,, = 0, since 

Yn(ypr) is unbounded at r = 0. In the torus problem, the Yn term is allowed and 

necessary. 

Particular solutions of the inhomogeneous equations are derived easily by the 

method of variation of parameters (equivalently, by finding the Green function 

of the Bessel differential operator). A calculation yields 

eznp(r) = - i Jn(7pr) 1 udu Yn(7pu) - Yn(7pr) 1 udu Jtt(7pu) 

a a I 

x 20 [ -i ’ Jznp(u) + QIpCPnp (u)] 3 
C 

hap(r) = - i Jn(ypr) 1 udu Yn(7pU) - Yn(7pr) ] udu Jn(7pu) 

a a 1 

(2.18) 

(2.19) 

X -t& [uJonp(u)] +i i Jrnp(u)] * 
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It is easy to check that these are indeed solutions, if one recalls the value of the 

Wronskian, 

W(Jn,Yn) = Jn(z) Y;(S) - Yn(s) J;(Z) = $ . (2.20) 

We choose the lower limit, a, so that all charges are located at points with r > a, 

and a > 0. In the work of Section 3, a will be the inner torus radius. Now for 

P = 0 the integrals in (2.19), (2.20) will not encompass any points where charge 

or current is nonzero, and eZnp(0) = 0, hZnP(0) = 0 as promised above. 

- 

In addition to the boundary conditions (2.6) on the planar surfaces, we have 

conditions on the cylindrical surfaces, 

Hr = 0, Ez = EB = 0, r = b. (2.21) 

Referring to (2.10) and (2.11), we see that these conditions will be met provided 

that 

Eznp(b) = 0, * (b) = 0 . (2.22) 

Now (2.22) determines Anp,Cnp in (2.16), (2.17), since B,, = D,, = 0. Thus the 

determination of Eznp and Hznp is complete: 

Jn(7pr) &p(r) = -in eenp (b) + eznp(r) 9 

Hznp(r) = - Jn(7pr) h:,,(b) + hznp(r) , 
7P JZ7Pb) 

(2.23) 

(2.24) 

where primes denote derivatives. 
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Having found the solution for general sources, we now take a particular source 

to compute the longitudinal coupling impedance. We describe a rigid bunch of 

particles with total charge q, following a circular trajectory of radius R in the 

median plane of the chamber, z = 0, and having angular revolution frequency 

PC wo = -. 
R (2.25) 

The charge density is taken to be 

p(r, 8, z,t) = q+ - wet) H(z)W(r) , (2.26) 

where A(0 + 2x) = X(0), and H(z) and W( r are concentrated near z = 0 and ) 
r = R, respectively. The corresponding current, which with (2.26) satisfies the 

continuity equation, is 

(Jr, Je, Jz) = (O,bvr/R,O) . (2.27) 

The functions in (2.26) are normalized so that 

2s B b 

/ 
X(e)de = 1, 

/ 
dzH(z) = 1, 

/ 
rdrW(r) = 1 . (2.28) 

0 -Q i3 

The Fourier transform of (2.26) with respect to 0, z, t gives 

Pnp(r, w) = qXnb(w - won) HpW(r) , 

Jenp(r, W) = Per P&r, W) , R 

with 

(2.29) 

(2.30) 

(2.31) 
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Recall that by (2.7) th e f unctions p and Jo are to be expanded in sin CK~(Z + g), 

so that 

HP = i / dz sin op(z+ g)H(z) . (2.32) 

-I 

We assume for simplicity that the beam profile is symmetrical about the median 

plane, H(z) = H(-z), in which case 

B 
HP = 1 sin 7 

/ 
dz cos apzH(z) , (2.33) 

9 
-g 

- which is nonzero only for odd p. Consequently, only odd-p modes of the fields are 

excited, and we may forget the rest. To obtain explicit formulas for the integrals 

of (2.18), (2.19), we take a vertical ribbon beam, 

pqr) = SC’- RI 
R ’ 

(2.34) 

The generalization to allow an arbitrary W(r) is not difficult, but in general 

requires numerical integration of (2.18), (2.19). 

Using (2.29), (2.30), (2.34) in (2.18), (2.19), we find the particular solutions 

Cenp(T) = -: @ apt z. pn(7pr, rpR) e(r - R) 9 (2.35) 

hmp(r) = -i Q’YP P c qn(cYpr, rpR) e(r - R) , 

and their derivatives 

eLnp(r) = $ Qap rp z. rn(-tpwpR)e(r - R) , 

(2.36) 

(2.37) 

hknp(r) = - i +Y~Pc Sn(Vpr, ‘YpR) e(r - RI 

_ gpce - RI 
R ’ 

(2.38) 
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where 
Cp = qHp An S(W - TWO) 9 

e(x) = { 
1, x20 
o , x<o ’ 

and, in the notation of Abramowitz and Stegun,21 the Bessel function cross- 

products are 

pn(x,y) = Jn(x) K(Y) - G(X) Jnb) 7 (2.39) 

qn(X,Y) = Jn(s) C(Y) - K(z) J:(Y) 3 (2.40) 

rn(x,y) = J:(X) h(Y) - C(X) Jnb) 3 (2.41) 

sn(x,Y) = J;(X) C(Y) -K(S) J;(Y) * (2.42) 

The longitudinal coupling impedance, Z(n, w), is defined by 

-27r R(&n(w)) = z(n,W) &n(w) 7 (2.43) 

-where the brackets denote an average over the beam cross section. Supposing 

that the beam is confined to a rectangle of area 6w x 6h we have 

R+6w/2 6hf2 

(Ee&J)) = & / ’ dr / dz Een(r, ~3 W) - 
R-6w/2 -6h/2 

(2.44) 
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Some authors take the value of the field at the center of the beam rather than 

. 
this average; the difference is usually not important. The Fourier amplitude of 

the current, IO,(w), is given in the model of (2.30) as 

b g 

49n(W) = dz Jen(r,z,w) = Pcq &I +J - nwo) 
R - 

(2.45) 
a --P 

. We can now assemble the longitudinal electric field from (2.11)) (2.23)) (2.24)) 

(2.35), and (2.38). The result is 

- Eon(r,W) = i 5 qpc An S(W - TZW,) 2, 2 sin CX~(Z + 9) HP 
p=l 

J,: (7Pr) 

Jk(7Pb) 
Sn(7pb,7pR) + Sn(Tpr,YpR) ‘(r - RI 1 

Pn(7ph 7pR) + Pn(rpr, 7pR) e(r - RI . 

(2.46) 

Notice that the term Jenp has been cancelled by the second term of h:,,. The 

terms in (2.46) with factor e(r - R) tend to zero as r tends to R from above. 

Therefore Eo is continuous in r at r = R, but has a discontinuous derivative. 

The derivative would be continuous if (2.34) were replaced by an r-distribution 

of finite width. 

From (2.43)-(2.46), we calculate the impedance, divided by n: 

z(n, 4 R 
= ix2 z,- 

h c AP n 
P(odd)a 

2 Jn(7pR) 

Jn(7pb) 
Pn (7pb, 7pR) 

I 
7 

(2.47) 
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where 

-1 527 sin 7r 6h 
A, = (-1) + h ~ zh Hp. 

+ 2 

(2.48) 

If H(z) is rectangular (i.e., constant over a width 6h and zero elsewhere) then 

rp6h 2 
A, = 2 

sin ‘2h [ 1 rpbh - 
2h 

(2.49) 

- 

We use this model of H(z) for specific evaluations of the impedance. Smoother 

functions will lead to faster convergence of the sum over p, but that feature is 

not very significant. The most important contributions, far and away, are from 

resonances in modes with p = 1. 
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3. FIELDS AND LONGITUDINAL COUPLING IMPEDANCE 
FOR A TOROIDAL CHAMBER 

. 

We now modify the work of the previous section to treat fields in the toroidal 

chamber shown in Figure 1, with a # 0. The only new feature concerns the 

boundary conditions on the inner cylindrical wall, r = a. As in (2.21), (2.22), 

these conditions are satisfied if 

Eznp(a) = 0, aHy’(u) = 0 . (3.1) 

The four conditions of (2.22) and (3.1) serve to determine the four coefficients 
- Anp, Bnp, Cnp, Dnp in the general 

equations. The function Yn(7pr) is 

is outside the chamber. 

solutions (2.16), (2.17) of the radial wave 

now allowed, because its singularity at r = 0 

Through (2.18) and (2.19) we have constructed the particular solutions so 

that e znp(a) = 0, hLnp(a) = 0. Th is simplifies solution of the equations for the 

coefficients, and we find 

eznp(b) 
Pn (7pu, 7pb) [ Yn(7pa) I ’ - Jn (7p.I 

c 
[ I 

np = hLbp(b) 
D np 

[ yL(7p”) ] , 
7p%(7p”9 7pb) -JA(7pu) 

(3.2) 

(3.3) 

where the Bessel function cross-products, pn and sn, are as defined in (2.39), 

(2.42). Hence the solution for general sources, analogous to (2.23), (2.24), is 

Eznp(r) = u, b ~~~~r’~~ emp(b) + eznp(r) , 
n (3.4 

Hznp(r) = qn(7pr’7pu) h’ (b) + hznp(r) . 
7pSn (7pa, 7pb) snp 
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. 

These fields tend properly to the values (2.23), (2.24) in the limit a + 0, as is 

seen by applying the asymptotes 

- 

K(X) - -is 9 

x + 0, n>O, 

and corresponding asymptotes of JL (x) , Y;(z). 

W-3 

Now comparing (3.4), (3.5) with (2.23), (2.24), we see that to write the 

longitudinal field Eon we only have to replace factors in (2.46) as follows: 

- Jk hpr) ~ sn(7pr, 7pa) 
J,: (7Pb) sn (7pu, 7pb) ’ 

- Jn(7pr) --) Pn (7pr, 7pa) 
Jn (7~ b, Pn (7pa, 7pb) ’ 

Thus, for the vertical ribbon beam with r-distribution 

coupling impedance of the toroidal chamber is given by 

(3.7) 

(3.8) 

(2.34)) the longitudinal 

Zh 4 R Sn(7pR, 7pa) sn(7ph 7pR) =- i7r2 z, - 
n h Sn(7p”t 7pb) 

2 Pn (7pRt 7pa) Pn(7ph 7pR) 
Pn (7pa, 7pb) I 

. 

(3.9) 

Not only does (3.9) reduce to (2.47) in the limit a + 0; it has similar charac- 

teristics even when (b - u)/b < 1, as we shall see in the following section. 
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4. EVALUATION OF IMPEDANCE AT LOW FREQUENCY 

We are interested in the coupling impedance Z(n, w) primarily for w = nw,, 

since beam stability is affected mostly by waves with phase velocity close to the 

particle velocity. Therefore we first study Z(n, nw,) as a function of n. Later 

we shall look at Z(n, w) in the (n, w) plane, in a band about the line w = nw,. 

That will clarify the properties of the function, and will perhaps be important in 

a careful study of stability based on the Vlasov equation. 

Let us first evaluate Z(n, nw,)/ n at low frequency, which is to say in the 

limit n --) 0. In this limit, I’: of (2.15) is positive for all p, which means that 

it is best to rewrite the impedance in terms of modified Bessel functions before 

proceeding. Since 

In(iZ) = inJn(z) , 

Kn(iz) = a (7i)“” [Jn(z) - iYn(z)] , 
(4.1) 

we have, in view of 7; = -I’$ that 

L(rpa) Wrpb) - JL(rpa) L(rpb) = $ Pn(rpa, qpb) = &(rpa, rpb) , 

W,4 Xdr,b) - C(r,u) Ur,b) = % 47pu,7pb) = sn(rpa, rpb) . 
(4.2) 

Extending the notation of (2.39)-(2.42), we use capital letters for cross products 

of modified Bessel functions. The pill box impedance of (2.47) becomes 

Z(n, nwo) = 2i7r z, g 
= [ 

1; FPR) 

n AP 

P(Odd)ll 

P IL(rpb) Sn(rpb9rpR) 

2 h#pR) 
Intrpb) 

K(rpb, rpR) y 
3 

(4.3) 
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while the torus impedance of (3.9) is 

. 
Z(n, nwo) = - 2ilr zof p W’pR,rp4 WpbJpR) 

n Sn(rpa, rpb) 

2 Pn(rpR, rpa) Pn(rph rpR) Pn(rpu, rpb) I , 
P-4) 

where 

r; = (y)?- ($)’ . (4.5) 

- 
To evaluate these expressions at n = 0, we need only the elementary asymp- 

totic expansions of In and Kn for large argument. We assume, of course, that 

R, a, and b are all of the same order of magnitude, and much bigger than w and 

h, as in a typical accelerator vacuum chamber; w is similar to h in magnitude. 

Then r,R = ?rpR/h is large compared to one, even at p = 1, which means that 

all of the Bessel functions can be evaluated by means of the asymptotic series 

(A.-S., 9.7.1-9.74), 

In(x) - (27r~)-‘/~ ez [ 1 - 4+ + . . .] , (4.6) 

Kn(X) N (2X/T)-li2 edz [ 1 + +j+ + . . .] , P-7) 

IL(x) - (27rx) --1/Z Ed 1 _ 4n2 [ -++...I, (4.8) 

G (4 - - (2x/7r)-‘/2 emz [l+ QQ-3 + . ..] . (4.9) 

The two terms in the square bracket of (4.3) are as follows at n = 0, lYp = cyp: 
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$ lo(apR) Ko(apR) l- Ko(a,b) Io(apR) 1 1 1 -- 
Io(apb) Ko(apR) = /3 2apR 

I 
’ + ~(cx~R)~ 

+o[(obR)4]) [1--L-2ap(b-R)(l+O[(ap;J2])] 

(4.11) 

The terms indicated by the 0 symbol are negligible, since l/(c~~R)~ = (h/r PR)~ 

< 1. Also, the terms with the exponential factor exp{-2ap(b - R)} are usually 

small, certainly if 2(b - R)/h 2 1 as is the case in our later examples. Dropping 

the exponential terms, we find 

Z(n, nwo) iZo =- c 
AP -. 

n (4.12) 
n=0 P p(oW21 P 

The corresponding result for the torus impedance (4.4) is exactly the same as 

(4.12). The exponential terms that we have deleted are different in the two cases; 

for high accuracy they should be reinstated, at least for p = 1. 

The first term in (4.12), which vanishes in the relativistic limit as 1/r2, 

corresponds to the familiar coupling impedance of a smooth straight tube without 

wall resistance. It is sometimes called the “space charge” contribution to the 

impedance. Notice that the 1/72 was produced by a close cancellation between 

the two terms in Ee, one of which arises from Hznp, the other from Eznp. The 

second term in (4.12) is due to curvature of the particle trajectory, which spoils 

the perfect cancellation of electric and magnetic effects at large 7. 

The total low frequency impedance (4.12) is positive imaginary (capacitive 

in a common convention), and, except for nonrelativistic particles, quite small 

by usual standards. For instance, for &h/h = 0.05, the sums occurring in (4.12) 

have the approximate values 

c AL4044. - 1 

’ 
c ?e A, = 0.1061 , 

’ ’ 2=2 p(odd)>l ’ 

(4.13) 

p(oWll 

where A, is given by (2.49). 
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Then, in this example with p M 1, we have 

Z(n, nwo) 
1 [ 

2 

= iZo 
4.044 
- 

n n=O r2 
+.1061 ; , 

( )I 
(4.14) 

which is typically a very small fraction of an Ohm. 

The same analysis holds at somewhat higher frequencies, so long as I’,R 

is large compared to one. Moreover, the behavior of the impedance is not so 

very different until very high frequencies are reached, at which resonances of 

the structure are first excited. An analysis of the intermediate region up to 

the resonances, in which the order of magnitude of the impedance is much the 

same as at zero frequency, requires more powerful asymptotic expansions than 

(4.6)-(4.9). Th e analysis is somewhat complicated, and will not be recounted 

here. We shall be content with the claim that direct numerical evaluation of the 

Olver asymptotic expansions (Section 5) leads to values of the impedance that 

are negligible until the high frequency resonant values are reached. Of course, in 

this statement we suppose that r2 is large compared to one, so that the space 

charge term is of no importance. Also, we neglect the resistive wall effect, which 

can be treated easily only at frequencies near resonances. Presumably it has the 

same order at magnitude as in the case of a straight beam tube. 
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5. RESONANCE POLES OF THE IMPEDANCE 
AT HIGH FREQUENCY 

Let us now turn to the more interesting topic of high frequency resonances, 

first in connection with formula (2.4) for the pill box chamber. The resonances 

correspond to zeros of the denominators, Jh(31pb) and Jn(7@), and poles of the 

impedance. As can be seen from the discussion of Section 2, the resonances 

correspond to solutions of the homogeneous Maxwell equations that satisfy the 

boundary conditions. There are two classes of such solutions: 

(i) TE modes : E*GO, Hz#O, 4(7pb) = cl , (5.1) 
- 

(ii) TM modes : H,=O, Ez#O, Jn(7pb) = 0 , (5.2) 

The designation TE (TM) re ers to a mode with electric (magnetic) field trans- f 

verse to the z-axis, not transverse to the beam, which moves in the 0 direction. 

This nomenclature is natural in our peculiar coordinate system, but contrary to 

the convention of wave guide theory if the torus is viewed as a wave guide. As 

is seen from (2.8)-(2.12), in a pure TE (TM) mode, all fields except E,(H,) are 

nonzero. 

Although the TE and TM modes are independent solutions of the homoge- 

neous Maxwell equations, our circulating beam is simultaneously a source for 

both Ez and Hz (through p and Jo, respectively), so that the fields driven by the 

beam always have both TE and TM components. Nevertheless, at a resonance 

frequency, one component or the other dominates, in fact becomes infinite for a 

chamber of perfect conductivity. 

As we shall see presently, near a resonance frequency wr the impedance for 

the perfectly conducting chamber has the form 

Z(n,w) - A- 
w-wr ’ w + w , (5.3) 
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where the factor c is real and positive, and wr is real. When resistivity of the 

chamber walls is introduced, the pole moves off the real w axis into the lower half 

complex plane: 

wr + wr (5.4) 

The quantity Q may be identified with the usual quality factor. With resistivity, 

the factor c also picks up a small imaginary part but stays predominantly real. 

To a good approximation, (4.17) takes the form 

- 
Qhw) - ilcl [w - wr (qj)] 

(3) 
2 (w - wr)2 + 2” 

with real part of Lorentzian form - 

, 

R = Re Z(n,w) - Id 5 

(w -wr)2 + (a)” ’ 

(5.5) 

F-6) 

having half-width at half-maximum of I’/2 = w,/2Q. The value of R/Q at the 

resonance is 
R Re z(n,w) = 2 Id 
s= Q W 

% B- . 
wr m=oo 

(5.7) 

Thus R/Q may be computed from the two parameters c and wr which charac- 

terize the chamber with infinite conductivity. Also, the area under the curve of 

Re Z(n,w), in the limit Q + 00, is 

lim 
?~wr R 

8~oo 
/ 

duReZ(n,w) = ~rf = 2 s, 

where t-he integral covers a small neighborhood of wr. 

(5.8) 
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Our task for the rest of this section is to find the resonance frequencies wr 

and residues < (equivalently wr and R/Q) for the perfectly conducting chamber. 

The values of Q are discussed in Section 6. 

The above discussion of TE and TM resonances holds as well for the torus 

problem, except that the resonance conditions are replaced by 

47po,7$) = 0 , P-E) 9 (5.9) 

Pn(7#47pb) = 0 , (TM) * (5.10) 

Again, these equations just guarantee the boundary conditions on solutions of 

the homogeneous Maxwell equations. 

The impedance Z(n, w) has a dense forest of poles in the (n, w) plane, but 

we are interested only in the subset of poles sufficiently close to points of the 

form (n, wO) to have some effect on beam stability. Except for isolated values of 

wO such points (n,nw,) do not fall exactly on poles. To locate relevant poles, 

we let wO be arbitrary, and treat n as a continuous variable, not restricted to 

integer values. This is permissible as a trick to find poles, since the impedance 

is analytic in n. Having found a pole for noninteger n = nr, which will be very 

large compared to 1, we can then look at Z( n, nw,) for neighboring integer values 

of n and as a function of wO. 

The first zero of the Bessel function Jn(z) (or of J;(z)) occurs at z slightly 

bigger than the order n. The reason for this is almost apparent in the Bessel 

equation itself: 

;g(zg)+(l-$)f = 0. (5.11) 

By analogy to the harmonic oscillator, it seems reasonable that the solutions 

should have oscillatory character only if 1 - n2/z2 is positive. In a region with 

1 - n2/z2 negative, there should be one increasing solution and one decreasing 

solution. 
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With this observation we can immediately set the scale of interesting values 

of n. At w = won, 

7$ = [ (q2 - (yq2]i/la. 
Putting 7+ = n we find 

rpb 2 
n2 - ( > -K- - 

(5.12) 

(5.13) 

Since b/R is close to one, this means first of all that p must be close to one, in 

order that n2 be positive; compare (1.3). N onrelativistic particles cannot excite 

the resonances of interest. If we then put p = 1, and suppose that b = R + x/2, 

with x < R, we can expand the denominator in (5.13) as 

Then by (5.13), 

b-R=; 

(5.14) 

(5.15) 

is a lower bound for resonant values of n for each p. The value goes up without 

bound as the beam approaches the outer wall, x + 0. We shall find that this 

same lower bound applies to the torus resonances. 

To illustrate, we take chamber dimensions that are nominal values for two 

electron storage rings, the SLAC damping ring, and the forthcoming Berkeley 

light source. Henceforth these examples are called (1) and (2): 

(1) w = h = 2cm, R = 5.7 m (SLAC) , 

(2) w- = 5 cm , h = 2.5 cm , R = 30m (Berkeley) . 
(5.16) 
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< If the beam is centered in the chamber, then x = w in (5.15), and 

(1) n > 15141X p , 
(5.17) 

(2) n > 92420 x p . 

The values of n are so large that well known asymptotic expansions of Bessel 

functions for large order give precise results when only the initial terms of the 

asymptotic series are used. We write 

- ypb = nz, (5.18) 

and use expansions of Jn(nz) et al. that hold at large n. The biggest value of z 

that occurs is obtained from (5.12): 

Zmaz .= 
lim ‘Pb pb - = -. 

n-boo n R 
(5.19) 

In the resonance region, z in (5.18) is never less than one but we have to deal also 

with Jn(rpa), Jn(rpR) et al., a < R < b. To cover all cases in the resonance region 

we therefore need J,,(m), Yn(nz), Jk(nz), Yi( nz ), h w ere z may be restricted to 

the interval 
a b 
bCZCR- 

(5.20) 

The behavior of the high-order Bessel-functions varies drastically within this 

seemingly narrow interval of z, a circumstance which leads us to employ expan- 

sions which are uniformly accurate throughout the interval. 

We use the remarkable asymptotic expansions of Olver, which are uniform in 

a much bigger domain, the whole complex z-plane minus a narrow wedge about 

the negative real axis,. i.e., 1 argzl 5 x - q for any e > 0. The Olver expansions 

are given in A.-S. (9.3.35, 9.3.36, 9.3.43, 9.3.44) and, in a more sophisticated 
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form with error bounds, in Refs. 22 and 23. The expansion of Jn, accurate 

uniformly in 2 at large n, is 

Jn(nz) N (&)lir [ Ai2yL3S) c $ + AizF;‘3’) g ~1 , 

(5.21) 

where Ai (x) is the Airy function (A.-S 10.4) and c is defined by 

i c3i2 = kfn 1 + (1 - z2)1/2 - (1 - ~~)1/2 

= (1 - .,,,,:[ ;+; (l-22)+; (l-22)2+... 1 . 
(5.22) 

We have ao(<) = 1, and the higher coefficients ak and bk are given in 

A-S. but in a form difficult to evaluate numerically owing to cancellations among 

terms that are singular at z = 1. Actually, these coefficients are analytic near 

z = 1, and may be computed easily from their Taylor series about z = 1. Conve- 

niently, Decker l8 has provided numerical values for the coefficients of the Taylor 

series. 

The Airy functions Ai, Ai’ in (5.21) may be expressed in terms of Bessel 

functions of small fractional orders (ZIZ l/3, f 2/3, respectively). Consequently, 

they may be evaluated by using asymptotic series at large arguments, and power 

series at small arguments. Since n2i3( is large and positive for z in the lower end 

of the interval (5.20), large and negative in the upper end, and zero in between 

at z = 1, we have to use three different means of calculating the Airy functions; 

namely A.-S. 10.4.59 and 10.4.60 for large positive and negative arguments, re- 

spectively, and the power series A.-S. 10.4.2 near z = 1. 

We have written a computer program which makes these evaluations of Airy 

functions and uses Decker’s form of the coefficients to evaluate the Olver formulas 

for Jn, Yn, JL and Yi. It allows z to be complex, since complex z arises later in 

the study of wall resistance. To validate the program, we have checked the Airy 
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functions against published tables, and have verified that the Bessel functions 

satisfy recursion relations and the Wronskian identity. Also, the Bessel functions 

agree with simpler but less comprehensive asymptotic formulas at large n. In 

Figs. 2-5 we show the Bessel functions near z = 1 for n = 23051, the value of n 

corresponding to the lowest resonance with w = won in example (1) of (5.16). 

. 

- 

Although the program was used for all numerical work, it is possible to see 

how the resonant frequencies are determined by looking just at the leading terms. 

In fact, most of the program was hardly necessary for our main results, since 

leading terms dominate strongly. For Bessel functions of ypb we have z > 1, and 

n2i3c large and negative. The leading terms for this case are, with ypb = nz, 

(z2 - 1)-‘i4 sin (nx + :) + O(nm3/2) , 

(Z2 ; 1)-'i4 cos (nx + :) + O(n-3/2) , 
(5.23) 

cos (nx + f> + O(ne3i2) , 

sin (nx + i) + O(ns3i2) , 

where 

x = f (-p = (z2 - 1)3/2 [f + ; (1 - z2) + f (1 - z2)’ + . . .] . (5.24) 

For Bessel functions of rpu we have z < 1, and n2i3c large and positive. The 

leading terms for this case are, with rpa = nz, 
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(1 - z2)-‘14 e-“e + O(n-3/2) , 

(1 - ,Z2)-1,4 f.# + O(nw312) , 

eFne + O(n-3/2) , 

en( + 0(~-3/2) 
, 

(5.25) 

where 

6 = 5 c312 = (1 - z2)3/2 [; + f (l- z2)+ + (1 - z2)2 + -1 . (5.26) 

Equations (5.25) are in agreement with the claim made above, that the Bessel 

functions do not have zeros for argument less than n. The oscillatory functions 

of (5.23) d o h ave zeros, which we shall now try to locate. 

By (5.23) and (5.1), (5.2), th e resonances for the pill box should be close to 

the values of n for which 

nx = ( > ;+s T, s = 0, 1, 2, . . . , 

1 for TE modes , 
!l= 

3 for TM modes . 

where x = x(n,p) is given by (5.24) with 

g = (y2 = (E!>‘-$ (T$)’ . (5.28) 

The condition w = won = pm/R has been imposed in (5.28). 

We first find an approximate solution of (5.27) by analytic means. We 

then take that approximation as the starting point for a precise solution of the 
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resonance conditions (5.1), (5.2) by Newton’s method, using the full Bessel func- 

tion program. The derivative required in Newton’s method is adequately approx- 

imated by a simple divided difference. The resulting precise resonant frequencies 

agree with those obtained from the analytic approximation to about 3% in the 

examples (5.16). 

To find the approximate solution of (5.27), we put u = z2 - 1 and retain just 

the first term in the series (5.24) for x: 

’ 312 B-U . 
x 3 (5.29) 

By (5.19) the largest possible value of u is (b/R)2 - 1, which is usually small 

compared to 1; hence, the higher terms in x have little effect. Solving (5.28) for 

nas a function of u, we find 

n = ~[(Pg)~-hl~u]“2 - 
Putting (5.29) and (5.30) in (5.27), we obtain a cubic equation, 

u + Au 3=1 , 

(5.30) 

(5.31) 

where 

Pb 2 tL= K) 3 R 
-1 u, A= (5.32) 

This equation clearly has one, and only one, positive solution which is less than 

one. The solution determines the resonant value of n by (5.30). Applying the 
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Cardan formulas for roots of a cubic, we find 

- 

u = [ ‘l+2$Y2+~]‘;‘~ [ “+$~,2-‘# 1 
113 . (5.33) 

To find the resonances of the torus, we first observe that they are very close 

to the resonances of the pill box, hence very close to the frequencies determined 

by (5.31). Th us, we can use the latter as a starting point for a Newton solution 

of the torus resonances condition (5.9), (5.10), just as in the pill box problem. 

To see why the torus resonances are close to those of the pill box, note that the 

torus resonance condition (TM modes) is 

yn (7pa) 
Jn(7pa) 

Jn(7pb) - Yn(7pb) = 0 * (5.34) 

By (5.23), (5.25); this is nearly equivalent to 

e2nt sin (nx + ?r/4) - co6 (nx + 7r/4) = 0. (5.35) 

The factor e2”t 53 Yn(7pa)lJn(7pu) is large compared to one at the value of n 

corresponding to the pill box resonance. In example (1) of (5.16), in the lowest 

pill box TM mode we have 

z=clpb = 1.001526 , Za = y = 0.99802 , n = 42282 
n n 

E ,2nt w 1124 . (5.36) 

Since ezne is so large, the solution of (5.35) is very close to the pill box resonance, 

where sin (nx + 7r/4) = 0,cos (nx + 7r/4) = fl. The Bessel functions evaluated 

at rPa are in their region of exponential behavior, where IYn(rpa) I >> I Jn(7pu) I. 

This is illustrated in Figs. 6 and 7 where we plot J,(w) and Y,(m) for u/b < 

z < b/R for the first TM mode of the pill box. 
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Having located the poles, we next must calculate the pole residues to find 

R/Q. We find analytic formulas for the residues in terms of Bessel functions, 

and then evaluate them numerically. Near each pole we write the impedance as 

Z(n, W) = iN(w)/D(w), D(W) m D’(wr)(w -wr), and then simplify N(wr)/D’(wr) 

by using the identities (2.20), (4.25). From (5.7) and (4.21) we obtain the 

following: 

(A) Cylindrical Pill Box 

R = 7r3zo A, 47~R)~ [y,:(rpb) J;(rpR)12 
G  TE 

wh 1-q , 

R 
’ TM 

(5.37) 

(5.38) 

(B) Torus 

R 
G TE 

= r3Zo A, 47PR)2 iJ:,(r,b) Yi(7PR) - Y37Pb) J:,(7PR)12 , 
wh 

(5 39) . 

R 2 

’ TM 

= r5Zo A, 5 2 lJn(7pb) K(7pR) - K(7pb) Jn(7pR)12 , l5 40) 
Yn(7pb) 2 

. 

l- K&q [ 1 
where w = wr, A, is defined in (2.48), and 

Za = , zb = . 
n n 

In Table 1, we show results for the first few resonances in the two examples 

of (5.16), with A, as in (2.49). The beam is centered in the toroidal chamber: 

R = (a + b)/2. We -give the integer closest to the resonant value of n, the 

corresponding frequency f in GHz (f = w,n/2m), and the value of u = z2 - 1, 
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where z2 is defined in (5.28). The frequencies for the torus and pill box are the 

same to better than 6 significant figures; consequently the integer values of n are 

the same. Table 1 also gives R/Q for the torus and pill box. The near agreement 

of the R/Q values for torus and pill box is not surprising, in view of (5.37)-(5.40) 

and the near equality of frequencies. For instance, the equality of frequencies 

means that the term involving JL(rpb) in the numerator of (5.39) is small. Also, 

the term in the denominator involving YA is small (see Fig. 7). Thus, (5.39) and 

(5.37) are approximately equal. 

The physical similarily of the torus and pill box problems is apparent in 

plots of the radial wave functions corresponding to solutions of the homoge- 

neous Maxwell equations at resonance. At resonance, the latter are close to 

solutions of the inhomogeneous equations; the initial terms in (2.23), (2.24), 

(3.4), (3.5) d ominate. In Fig. 8 we plot the torus wave function Sn(rpr, ypa) = 

Jia(7PdW7P4 - U7PdJ:,(7P ) a versus r at the lowest TE resonance; it van- 

ishes at r = a, b as required. Figure 9 shows the pill box wave function JL(ypr) 

at the same frequency. It is remarkably similar to the torus wave function. The 

similarity is even greater in higher radial modes. In Fig. 10 we show the torus 

wave function for the p = 1, s = 2 TE mode, which is indistinguishable by eye 

from the corresponding pill box wave function. The pill box wave function al- 

most automatically satisfies the boundary condition JL(qpa) = 0, because of the 

exponential decrease of J;(m) with decreasing z < 1. 

The similarity of the torus and pill box resonant modes naturally disappears 

if the trajectory radius R is very close to the inner torus radius a. 
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6. RESISTIVE WALL BOUNDARY 
CONDITIONS AND COMPUTATION OF Q 

To account for electrical resistance of the vacuum chamber walls, we adopt 

the conventional resistive-wall boundary condition: 

q(w) = u-J;c [ * I 
112 

nxq#4 7 (64 

where quantities written in boldface type are vectors. The fields El1 and HII 

are the components of E and H parallel to the wall, and n is the unit vector 

normal to the wall, pointing away from the wall (into the vacuum). Within 

the wall material J = aE, D = EE, B = PH. For the derivation of (7.1) it is 

assumed that the surface of the wall is planar, and that the fields within the wall 

have negligible variation in directions parallel to the surface. The assumption of 

planarity is justified in our case, because of the large radius of curvature of our 

cylindrical walls. The second assumption is not well justified near the corners, 

where planar and cylindrical walls of the vacuum chamber meet. We are forced 

to ignore that difficulty, since a correct treatment of fields near the corners would 

be terribly complicated. 

We put p = po,e = co, as is approximately true for usual metal walls. The 

displacement current term, -iwco, is negligible compared to u, even at the rel- 

atively high frequencies of our resonances. When the time variation of fields is 

given by a factor e -iwt as we have assumed, the correct branch of the square root 

in (7.1) is specified as follows: 

El$“) = (l-+$?j”‘l nxH11 (w), w>o. 

This choice guarantees that the fields decay exponentially as the point of obser- 

vation moves from the surface to a point within the material. 
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It is convenient to introduce a dimensionless complex parameter II, propor- 

tional to the square root of the resistivity; namely, 

q = $(1-i) (~)1’2-‘;~w,“, 
0 

Id = [I&$-34)] ‘I2 5 f=$ (6.3) 

The parameter 6 is the skin depth. Although 7 increases with frequency as w112, 

it is typically small compared to 1 even at the high frequencies of our resonances 

(a few hundred GHz). For aluminum, Q = 3.5 x 107~-1m-1, whereas for stainless 

steel, 0 k: 106W'm-'. Thus for aluminum at 200 GHz, 1~1 = 5.6 x 10s4; for 

stainless steel at 600 GHz, 1~1 = 5.8 x 10s3. 

On the cylindrical surfaces of our toroidal chamber, the boundary conditions 

are 

Ee = #rl Zo Hz , (64 

Ez = fiq Z, He, (6.5) 

where the upper (lower) sign is for the surface at r = b(u), respectively. On the 

planar surfaces, 

Er = fiq Zo He 3 (6.6) 

Ee = ~:iq Zo Hr 3 (6.7) 

where the upper (lower) sign is for the surface at z = g(-g), respectively. 

Recalling the form of our Fourier developments (2.2), (2.3), (2.5), we see that 

(6.4), (6.5) might b e satisfied term-by-term in the Fourier series. That is, Eo 

and Hz are both expanded in sin LY~(Z + g), while Ez and HB are both expanded 
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in cos ap(z + g). On the other hand, (6.6) and (6.7) cannot be satisfied term- 

by-term, since fields. on the left sides of the equations are expanded in sines, 

while those on the right are expanded in cosines. To accommodate the boundary 

conditions on planar walls, we shall have to modify the Fourier developments. 

The problem can be understood in the simplest terms by considering first 

the solutions of the homogeneous Maxwell equations subject to resistive wall 

boundary conditions. Further, it is best to look first at solutions in which either 

the cylindrical walls or the planar walls are resistive, but not both at once. We 

thereby find that resistance of the cylindrical walls mainly effects the TE modes, 

while resistance of the planar walls mainly effects the TM modes. 

We now discuss solutions of the homogeneous Maxwell equations, restricting 

attention to the pill box chamber. As usual, the results are almost the same for 

the torus. We first treat cylindrical resistive walls, retaining infinite conductivity 

on the planar walls. In view of (2.9), (2.11), (2.16), (2.17), the conditions (6.4), 

(6.5) at r = b imply the following equations for Fourier components: 

CyP n w zo 
- - Anp Jn(7pb) + - - 
7; b 

c 7p Cnp JA(7pb) = t7 Cnp Jn(7pb) 9 

(6.8) 
Anp Jn(7pb) = -V - - ’ w Amp JL(7pb) + 7 f Gp Jn(7pb) - 

7P = 1 
These homogeneous equations for Anp, ZoCnp have a solution only at frequencies 

such that their determinant D(w) is zero. The determinant is 

+ v { [l+ (~1~1 [Jn(7pb)12 - (k i>’ K(h”)]lJ (6-g) 
P 

+ ?I2 ’ ’ Jn(7pb) JA(7pb) * 
7P c 
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When q is zero, D(w) h as zeros where Jn(rpb) = 0 (TM modes) and where 

J,:(7pb) = 0 (TE modes). These zeros move into the complex plane when q is 

turned on. 

To find the complex zero for TM modes, write 

Jn(7pb) = 
[ 

d(7Pb) 
JL(7pb) -&y 

I 
(w - wr) 9 

w = WI 
(6.10) 

where wr is the frequency of the unperturbed TM mode. Then (6.9) has the form 

D(w) = - [JX7Pb)12 ($ i>’ f 

- 

x 
1 

w-w,+(+o g (W-Wr)2 
[ 

] + 0 [v2 (w - wr)]} - 

With neglect of terms O(v2), the perturbed zero is at cj, = wr - r]c/b or 

& ? wr(l-q;) . 

(6.11) 

(6.12) 

The corresponding Q is 

Q= 
Re Ljr b 

2lI&,I = s ’ 

(effect of cylindrical wall, TM mode). 

(6.13) 

The calculation to find the complex zero for the TE modes is much the same, 

if we use the Bessel equation (5.11) to eliminate the second derivative J”(‘ypb). 

That is, the formula analogons to (6.10) is 

J;(-ypb) = d(7Pb) Jn(7pb) 7 
I 

(w - wr) , (6.14) 
w--WI 

where, as usual, z = ypb/n. This yields a perturbed zero at 

Ijr = wr 
l-l+i 1 6 --- 

2 S-lb > ’ 
(6.15) 
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and 

- 

Q = (2’ - 1) f , 

(effect of cylindrical wall, TE mode). 

(6.16) 

The quantity s2 - 1 = u is given in terms of n by (5.28), and is somewhat smaller 

than z/R = 2(b - R)/R. Typ ica values of u are given in Table 1. Comparing 1 

(6.13) and (6.16), we see that the Q due to cylindrical walls is a great deal smaller 

in TE modes than in TM. 

To handle resistive planar walls, we extend a method due to Bart15. Since we 

need more flexibility in meeting boundary conditions, we replace the z-dependent 

wave functions of (2.2), (2.3) with 

al sin ap(z+g)+U2COS op(z+g) for Hz 1 (6.17) 

bl cos &(z + 9) + b2 sin PP (Z + g) for J% . (6.18) 

Here cyP and & are new wave numbers, to be determined by the boundary con- 

ditions. Since it will turn out that oP is very nearly equal to our old cyP of (2.4), 

we take the liberty of denoting it by the same letter. The forms (6.17), (6.18) 

are equivalent to 

Hi cos apz + H,” sin cypz , (6.19) 

Ej sin ppz + E,” cos ppz . (6.20) 

In the limit of infinite conductivity, only the Ej, Hj terms survive, and only for 

odd p with cyp = pp = mp/2g; (the restriction to odd p comes from our assumption 

that the charge distribution is symmetric about z = 0). Note that the role of 

superscripts one and two is reversed with respect to Ref. 15, since our charge 

distribution excites odd p rather than the even p emphasized there. 

38 



Let us now look for a pure TM mode, a solution of the homogeneous Maxwell 

equations with Hz z.0, with resistive planar walls but cylindrical walls of infinite 

conductivity. The wave function of E, is 

Jn(9pr) [El sin Ppz + Ez cos Ppz] , (6.21) 

where 9p is defined by 

A2 w 2 
7, = ; 0 -Pp2 - (6.22) 

The other fields are constructed from (6.22) and the formulas (2.8) - (2.11) with 

Hz = 0. It is easy to check that the full set of Maxwell’s equations is satisfied, 

separately for terms involving sin ppz and cos ppz. 

To determine BP, substitute in the planar wall boundary conditions (6.6), 

(6.7). The boundary conditions are satisfied provided that 

(x cos x - qu sin x) Ei - (5 sin x + qv cos x) Et = 0 , 

( x cos x - vu sin x) Ei + ( x sin x + q)v cos x) Ez = 0 , (6.23) 

x = Ppg, v=ws. c 
This homogeneous system has solutions if and only if its determinant D is zero: 

D = 2(x cos x - t/u sin x) (x sin x + vv cos x) = 0 . (6.24) 

It follows that the solutions of (6.23) are 

EJ arbitrary , E; = 0 for x cos x - l/V sin x = 0 , (6.25) 

El = 0, Ei arbitrary for x sin x + qv cos x = 0 . (6.26) 

The nonlinear equations of (6.25), (6.26) determine the wave number pp. Since 

1~~1 is small compared to one, provided that the frequency is not too high, (6.25) 
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has a solution x close to 7rp/2 for p odd, and (6.26) a solution close to ~rp/2 for 

. 
p even. By expanding the solutions in powers of VV, we find that one and the 

same function of p and vv satisfies (6.25) for odd p 1 1 and (6.26) for even p 2 2; 

namely, the complex function 

=rp rlv 
x =xP = ---- 

o.Id2 

2 xp/2 (7rp/2)3 + ** * * 
(6.27) 

There is also a special solution of (6.26) near zero; namely, 

x0 = -i(qv)‘i2 ++... . 
> 

(6.28) 

- The negative of each solution is also a solution, but it leads to the same wave 

function (6.21), and is therefore redundant. 

Since Hz = 0, the boundary conditions on the perfectly conducting cylindrical 

wall are satisfied if 

Jn(qb) = 0 . (6.29) 

This equation is satisfied at complex w, owing to the fact that pp and ‘ip are 

complex. To find the complex root, expand (6.29) about j,,,, the root of J,,: 

Jn(?~b) M Jk(jn8) (qpb - jnb) = o . (6.30) 

Let wr be the frequency of the unperturbed mode, so that 

2 
(6.31) 

Then (6.30) and (6.31) g ive the perturbed frequency &, as 

= j,“, + (PpbJ2 , 

(6.32) 

=(T)2- (r)2+b2(y-$+...)2 , 
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or, to lowest order in q, 

I wr = wr l- 4Qy 
( > 
a2 ’ 

C 1 (6.33) 

= wr 
[ 
I-(l+i) f 1 . 

We have evaluated q~ at wr since the correct evaluation at &, gives the same 

answer to lowest order in v. Thus, the quality factor is 

Q=$ (6.34) 

(Effect of planar walls, TM mode). 

The ratio of (6.34) to (6.13) is h/2b, which is typically small compared to one. 

The calculation for TE modes follows the same lines. In place of (6.25), 

(6.26) we find 

Hi arbitrary , Ii,” = 0 for y cos x - qx sin x = 0 , (6.35) 

H; = 0, Hz arbitrary for u sin x + t7x cos x = 0 . (6.36) 

w 
x = apg, u = -, 

C 

One and the same function of p and t/u solves (6.35) for odd p and (6.36) for 

even p, namely 

x = zp = y[1-;+(;)2+...] . (6.37) 

With 

62 w2 2 7, = ; - ap , 0 (6.38) 
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the solution of the resonance condition 

J:(“jlpb) = 0 , 

gives the following 

& = wr [l- ($J2U+i$] , 

(6.39) 

(6.40) 

(6.41) 

(Effect of planar walls, TE Modes) 

The ratio of (6.41) to (6.34) is typically very big. One can ignore the effect of 

planar walls in lowering the Q of TE modes. 

To find the combined effects of cylindrical and planar surfaces, one can, to a 

first approximation, add the corresponding values of Imt&, then take reciprocals 

to find Q. The result is that resistive effects of cylindrical (planar) walls are 

negligible in TM(TE) modes, respectively, provided that h < b. To summarize, 

a good approximation is 

Q = (2’ - 1) f WI 9 (6.42) 

Q=$ (TM) 9 (6.43) 

where z2 - 1 is given by (5.28) in terms of n = wR/@. 

In Table 1, we list the values of Q obtained from (6.42) and (6.43) for the 

examples (5.16), assuming that the chamber is made of aluminum, with conduc- 

tivity 0- = 3.54 x 10’ 12-l m-l. 
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It is a relatively difficult problem to find solutions of the inhomogeneous 

Maxwell equations with full resistive wall boundary conditions. If only the cylin- 

drical walls are resistive, the inhomogeneous problem can be solved by the method 

of Section 2. In the case of the torus, this leads to four simultaneous equations 

to determine the four coefficients of (2.16), (2.17); for the pill box, two simulta- 

neous equations suffice. If the planar walls are resistive, there is an impediment 

to solving the inhomogeneous equations, whether or not the cylindrical walls 

are resistive. The problem is that the TE and TM fields are both excited by 

the sources, which means that expansions in [cos cypz,sin ppz] get mixed with 

expansions in [cos ppz,sin ppz]. Since cyp # BP, the Maxwell equations with 

sources do not separate; i.e., they are not solved term-by-term in the Fourier 

developments. They do separate to a certain approximation, however, since cyp 

and pp are both very close to rp/h. 

For the numerical calculations of the following section, we take cyp = pp = 

Irp/h in deriving expressions for the impedance, but finally replace vrp/h by pp, 

as given by (6.27), in the TM terms only. (Since op as given by (6.37) is so close 

to rp/h, there is no reason to alter the TE terms). The full cylindrical resistive 

wall boundary conditions for the torus are imposed, by solving numerically the 

4 x 4 system to determine the coefficients of (2.16), (2.17). We are fairly confident 

that this approximate treatment is accurate, at least near the resonances and for 

good conductors such as copper and aluminum. Our confidence is based on the 

fact that, near resonance, the solutions of the inhomogeneous equations closely 

resemble the eigenmodes that we have analyzed above, and should have nearly 

the same Q. Indeed, we find that the products of R/Q by Q in Table 1, obtained 

entirely from eigenmodes, agree rather well with the peak values of R from the 

full numerical calculation. The latter are shown in Figs. 11 and 13. Far from 

resonances, where the impedance is negligible anyway, our calculation is clearly 

wrong, since it sometimes gives small negative values of ReZ. This can be traced 

to a violation of charge conservation that arises from treating the nonseparable 

equations as though they were separable. 
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A more accurate treatment could be devised by expanding the functions 

(6.19) in the functions (6.20), which is possible due to the completeness and 
. 

orthogonality of the functions proved in Ref. 14. One would then get equations 

in which different values of p would be weakly coupled. A truncation of the 

equations to allow only a few neighboring values of p would probably lead to a 

satisfactory solution. 

44 



Table 1 

- 

Example 1: SLAC Damping Ring 

R/QP) R/Q(n) 
PS n f(GHz) u = z2 - 1 Torus Pill box Q 

TE 10 23025 193 1.99.10-3 14.167 14.514 5.91 * lo4 
TE 11 61841 518 3.33 * 10-3 4.8540 4.8554 1.62 - lo5 
TE I 2 105157 881 3.44 - 10-3 2.4296 2.4296 2.18. lo5 
TE30 55002 461 1.12 - 10-3 0.29234 0.29366 5.12 . lo4 
TE 3 1 88788 744 2.59 - 1o-3 1.0319 1.0320 1.51. lo5 

TM10 42286 354 3.06. 1O-3 3.1982 3.1990 7.04 * lo4 
TM11 83665 701 3.34 - 10-3 0.70394 0.70276 9.90 * lo4 
TM 1 2 127595 1069 3.46 - 1O-3 0.24870 0.24828 1.22 - 105 
TM30 72536 607 2.14 - 1O-3 0.57762 0.57700 9.21 . lo4 
TM 3 1 107102 897 2.88 - 1O-3 0.81308 0.81192 1.12 * 105 

Example 2: Berkeley Light Source 

TE 10 119317 190 6.67. 1O-4 2.9212 2.9236 1.03 * 105 
TE 11 226279 360 1.39 * 10-3 3.7536 3.7536 2.96 - lo5 
TE 12 347361 553 1.55 * 10-3 2.6816 2.6816 4.09 - lo5 
TE30 312047 497 3.52 - 1O-4 6.1348. 1O-4 9.9134. 1o-4 8.79 - lo4 
TE 3 1 415723 662 9.26 - 1O-4 2.4424 - 1O-2 2.4492 - 10-2 2.67 - 10’ 

TM 1 0 173425 276 1.19 * 1o-3 2.6824 2.6810 7.76 - lo4 
TM 1 1 286529 456 1.49 * 10-3 1.6449 1.6437 9.98 - lo4 
TM 1 2 412078 656 1.58 - 1O-3 0.84784 0.84718 1.20 - 105 
TM 3 0 368261 586 7.23 - 1O-4 6.8362 - 1O-3 6.8278. 1O-3 1.13 * 105 
TM 3 1 466669 743 1.08 - 1O-3 5.0546 - 1O-2 5.0510 * 10-2 1.27.10’ 
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7. GRAPHS OF COUPLING IMPEDANCE AND DISCUSSION 

In this section we discuss the longitudinal coupling impedance Z(n, nw,) as 

a function of n. This function is needed for stability studies based on the Vlasov 

equation for bunched beams. The so-called “wake potential” U(wor) is con- 

structed from the same function, as a Fourier sum: 

U(W~T) = -27rRl(w,~) = 9 2 einwor Z(n,nw,) A, . (7-l) 
t&=-m 

Here the wake field & ( w r is the longitudinal field at an angular distance war o ) 

ahead of a rigid bunch, averaged in time over one revolution period 27r/wo, and 

X, is the Fourier transform of the bunch form X(e), as in (2.31). 

In Figs. 11 to 16, we show graphs of the real and imaginary parts of Z(n, nw,)/n 

versus n. The abscissa is labeled by the frequency f equivalent to n, 

f=F. (7.2) 

The results are for resistive toroidal chambers with the conductivity of aluminum, 

0 = 3.54 x lo7 iI-' m-l with dimensions as specified in (5.16). The beam is 

as specified in (2.26) and (2.34), where the vertical profile H(z) = H(-z) is 

constant over a width 6h and zero elsewhere. The value of 6h/h, not a critical 

parameter, is 0.05, and /3 = 1. 

At frequencies lower than those shown in the graphs, the impedance is so 

small that it does not show up on graphs of the same scale; see Section 4. The 

peak of lowest frequency is a TE mode, and henceforth peaks due to TM and TE 

modes alternate. (Here, as throughout the paper, the designation as TE or TM 

refers to the axis of symmetry of the torus, not the beam direction.) The graphs 

were plotted from the p = 1 contribution alone; i.e., from the impedance due to 

fields excited by the lowest axial mode of the source. The contributions of higher 

p are negligible in the domain of frequencies plotted. At a fixed instant of time, 

46 



- 

the fields corresponding to the resonance peaks shown have tens or hundreds 

of thousands of oscillations in the 8 direction, and no or few oscillations in the 

transverse directions, z and r. 

The peak values of Z(n, nw,) / n, up to 36R, are large by the standards that 

are usual for storage rings at lower frequencies. For instance, 121/n for the SLAC 

damping ring is estimated to have a broad band value of around 2.50 up to a few 

GHz, and is bigger than one would like. At first sight, it would seem that large 

impedances at frequencies of a few hundred GHz would be harmless regarding 

beam stability, since even bunches that are quite short by current standards are 

thought to have negligible Fourier components at such high frequencies. Thus, 

Z(n, nw,)X, in the wake potential (7.1) would be small for all n, even if 2 achieves 

high values. This argument is not totally convincing, however, since small scale 

oscillations in charge density within the bunch could give high frequency com- 

ponents X, much bigger than those for a smooth bunch. One needs a careful 

examination of the bunched-beam Vlasov equation to see whether such small 

wiggles might build up in an unstable manner. Another point of interest is that 

extremely short bunches, down to 50 microns, are being considered for future lin- 

ear colliders. The short bunches would occur after the damping rings, but their 

coherent synchrotron radiation while going through bends could be analyzed by 

present methods. 

There are two novel features of our impedance that may be important in 

stability questions. First, the peaks in ReZ(n,nw,) as a function of n are quite 

broad, with width much greater than the natural width of a single resonance. 

Second, the location of the peaks is a very sensitive function of the revolution 

frequency w. (equivalently, of the trajectory radius R). These features can be un- 

derstood in terms of an analytic formula for the resonant frequency as a function 

of n. 

We return to Eq. (5.27) which determines the resonant frequencies. Previ- 

ously, this equation was used to find poles of Z(n, w) such that w = nwo exactly. 
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We now apply it to find poles such that w is merely close to nw,. Putting 

z2 _ [w42 - $1 b2 - 
n2 , (7.3) 

and applying the approximation (5.29), we can solve (5.27) to get w as a function 

of n in the form 

n2 + [3* (! + s)]2’3n4i3}1’2 . (7.4 

- 

In its region of validity (large n, small z2 - l), this equation is the dispersion 

relation of the system. From (7.4) we compute the derivative 

$T~{l+~[3n(f+5)]2’3 n-2/3+0(,-4/3)} , 
(7.5) 

Since du/dn is close to wo, the function Z(n,nw,) will not change very much 

when n changes by a few units. This is illustrated in Fig. 17, in which we plot 

ReZ(n, nw,) at increments of 15 in n, around the lowest peak in Example 1. In 

this example, An/n = 7.5 . 10s3, where An is the full width at half-maximum. 

By contrast, if we plotted ReZ( n, w) versus w at tied n, we would see a much 

narrower peak with Aw/w = l/Q k: 1.7 . 10m5; here Aw is the “natural line 

width” of the resonance. 

The order of magnitude of the width An can be explained in terms of the 

linear part of w(n), and the difference between du/dn and wo. The impedance 

near the resonance pole may be represented approximately as 

iS(n, 4 

z(n7 w) = w - w(n) (I- &) ’ 
(7.6) 
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where 5 is real. Define n, so that nrwo = w(n,). If we expand w(n) about n,, 

and treat the numerator and Q as constant, we see that for n = n, + An/2, 

Z(n,nw,) m i&h nrwo) 

(n,++)wo- [w(nr)+*] (1-h) ’ 

(7.7) 

= [w. - w’(n,)] 4f + +$Jfl ’ 

We throw away the small term of order An/Q. Now ReZ(n,nw,) will reach 

one-half its maximum value where 

- 

[ 
44 w. - w’(n,)] 9 = 29 . 

Using (7.5) f or w’, retaining only the dominant first term, we find 

PC = w. - w.‘(n,) = R - 7; w 2 , 

P-8) 

(7-g) 

where b = R + w/2; w is the width of the chamber if the beam is centered. Thus, 

(7.7) gives the following for the full width An at half maximum: 

An 2R 1 - = --. (7.10) 
n wQ 

For the lowest peak in Example 1, we take Q from Table 1, and R/w from (5.16) 

to get An/n = 9.6 - 10m3. This agrees well enough with the value from the 

exact calculation, 7.5. 10S3, to convince us that the linear part of w(n) is mainly 

responsible for the width An. The discrepancy is probably due to treating the 

numerator in (7.6) as constant. 

Although the peaks of ReZ(n,nw,) are broad compared to l/Q, they are 

fairly narrow compared to a typical bunch spectrum X,, and they are widely 

separated. These features should simplify the Vlasov analysis of stability. 
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In Fig. 18 we illustrate the sensitivity of the resonant frequencies to the 

value of wo. Changing the trajectory radius R by 0.1 mm out of 5.7 m shifts 

the resonance peaks by almost 2 GHz. This behavior is due to the feature noted 

above, that the slope of the resonance curve w(n) at large n is just slightly smaller 

than the slope of the line w = won. The angle of intersection of the curve and the 

line is small, so that a small change in the slope w. will produce a big change in 

the point of intersection, which is to say a big change in the resonant frequency 

that satisfies w = won. To find the change in frequency due to a small change in 

R, put w = won in (8.4), and differentiate with respect to R. The result is 

dn dR -=- 
n R 

The factor multiplying dR/R lies in the range 350-1600 for the first few reso- 

nances of our examples. 

50 



ACKNOWLEGEMENTS 

We wish to thank R. Ruth and S. Chattopadhyay for following this work 

closely and making many valuable suggestions. K.-Y. Ng and L. Smith kindly 

pointed out errors in a first draft of this paper, and Dr. Ng verified the results 

in Table 1, using his own formalism. Several other people were generous with 

encouragement, advice, and bibliographical information. In particular we thank 

G. Baumgartner, J. Bisognano, P. Chen, G. Decker, T. Erber, A. Faltens, and 

B. Zotter. After this work was completed, we learned of similar work by K.-Y. 

Ng, Fermi National Accelerator Laboratory Report SSC-163. 

51 



REFERENCES 

- 

1. G. A. Schott, UElectromagnctic Radiation,” (Cambridge University Press, 

Cambridge, 1912). 

2. J. Schwinger, “On Radiation by Electrons in a Betatron,” unpublished re- 

port, 1945. 

3. L. I. Schiff, Rev. Sci. Instr. 17, 6 (1946). 

4. L. A. Artsimovich and I. Ya. Pomeranchuk, Zh. Eksp. Teor. Fiz. 16, 379 

(1946). 

5. J. Schwinger, Phys. Rev. 75, 1912 (1949). 

6. A. A. Sokolov and I. M. Ternov, =Radiation from Relativistic Electrons,” 

Amer. Inst. Phys. Translation Series, 1986. 

7. J. S. Nodvick and D. S. Saxon, Phys. Rev. 96, 180 (1954). 

8. V. K. Neil, “A Study of Some Coherent Electromagnetic Eflects in High- 

Current Particle Accelerators, R Ph.D. thesis, University of California, Berke- 

ley, 1960. 

9. L. J. Laslett and W. Lewish, “Evaluation of the Zeros of Cross-Product 

Bessel Functions, n Ames Laboratory Report IS-189, Iowa State University, 

1960; partially reproduced in Selected Works of L. Jackson Laslett., Vol. 3, 

Lawrence Berkeley Laboratory Report PUB-616 (1987). 

10. L. V. Iogansen and M. S. Rabinovich, Sov. Phys. JETP 35, 708. (1959); 

ibid. 37, 83 (1960); ibid. 11, 856 (1960). 

11. J. Vaclavik, Czech. J. Phys. 12, 432 (1962). 

12. A. G. Bench-Osmolovsky, Dubna Report JINR-P9-6318,1972. 

13. A. Faltens and L. J. Laslett, Particle Accelerators 4,152 (1973); Brookhaven 

National Laboratory Report BNL-20550 (1975). 

52 



14. V. Brady, A. Faltens and L. J. Laslett, Lawrence Berkeley Laboratory 

Report LBID-536,198l. 

15. R. L. Warnock, G. R. Bart, and S. Fenster, Particle Accelerators 12, 179 

(1982). 

16. A. Piwinski, CERN Report CERN/LEP-TH/185-43, 1985. 

17. R. Talman, Phys. Rev. Lett. 56, 1429 (1986). 

-18. M. Bassetti and D. Brandt, CERN/LEP-TH/8604, CERN/LEP-TH/83- 

1; M. Bassetti, CERN/LEP-TH/8614. 

19. G. A. Decker, ‘The Centrifugal Space Charge Force in Circular Accelera- 

tors,” Ph.D. Thesis, Cornell University, 1986. 

20. E. P. Lee. Lawrence Berkeley Laboratory report LBID-1376 HIFAN-386, 

to be published in Accelerator Physics. 

21. “Handbook of Mathematical Functions, B M. Abramowitz and I. A. Stegun, 

editors (Dover, New York, 1965). 

22. F. W. J. Olver, “Asymptotics and Special Functions” (Academic Press, New 

York, 1974). 

23. G. Baumgartner, YJnijorm Asymptotic Approzimations for the Whittaker 

Function M+(z),” Ph.D. Thesis, Illinois Institute of Technology, 1980. 

24. K.-Y. Ng, SSC Central Design Group Report SSC-163 (1988), 

53 



- 

Fig. 1. 

Figs. 2-5. 

Figs. 6-7. 

Fig. 8. 

Fig. 9. 

Fig. 10. 

Fig. 11. 

Fig. 12. 

Fig. 13. 

Fig. 14. 

Fig. 15. 

Fig. 16. 

Fig. 17. 

Fig. 18. 

FIGURE CAPTIONS 

Toroidal vacuum chamber with cylindrical cross section of width w 
and height h = 29. The inner (outer) torus radius is a (b). The origin 
for cylindrical coordinates is at the midplane of the torus. 

Bessel functions and their derivatives at large order, with argument 
close to the order. The order n = 23051 corresponds to the lowest TE 
mode (Example 1). 

J,(nz) and Y,(nz) over the full range of z relevant for resonances: 
a/b < z < b/R (Example 1). 

Radial wave function sn(Tpr,ypa) in the lowest TE mode of the torus 
(Example 1). 

Radial wave function Jh(ypr) in the lowest TE mode of the pill box 
(Example 1). 

Radial wave function for torus or pill box, in TE mode with p = 
1, s = 2 (Example 1). 

ReZ(n, nw,)/n versus n for SLAC damping ring. 

ImZ(n, nw,)/n versus n for SLAC damping ring. 

ReZ(n, nw,)/n versus n for Berkeley light source. 

ImZ(n, nw,)/n versus n for Berkeley light source. 

ReZ(n, nw,)/n versus n near lowest resonance, SLAC damping ring. 

ImZ(n, nw,)/n versus n near lowest resonance, SLAC damping ring. 

ReZ(n, nw,)/n versus n near lowest resonance, SLAC damping ring. 
The increment in n between plotted points is An = 15. 

The shift in the peak of Figure 16 when R is changed by 0.1 mm out 
of 5.7 m. 
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