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1 Introduction

Motivated by the work from de Rham and Gabadadze for the generalization of the Fierz-
Pauli action for a massive graviton [1], we investigate here the generalization of the Proca
action for a massive vector field with derivative self-interactions. We will be addressing the
natural question of what is the Lagrangian for a self-interacting vector field with second
order equations of motion yielding three propagating physical degrees of freedom. We will
call them the ”vector Galileons”, since they contain derivative self-interactions for the vector
field and the longitudinal mode corresponds to a Galileon [2].

In the standard relativistic quantum field theory we describe particles with local covari-
ant field operators like scalars, vectors, tensors. . . etc. The finite-dimensional representation
of the Lorentz group dictates to us the number of propagating degrees of freedom. For a
massless spin-1 field the theory needs to have the gauge symmetry in order to have the
Lorentz invariance manifestly built in. The theory describes then a massless spin-1 field with
two propagating degrees of freedom h = ±1. On the other hand, for a massive spin-1 field
we have (2s+ 1), i.e three, propagating physical degrees of freedom. The Proca action is the
theory describing a massive vector field, which propagates the corresponding three polariza-
tions (two transverse plus one longitudinal) . The mass term breaks explicitly the U(1) gauge
invariance such that the longitudinal mode propagates as well. However, the zero component
of the vector field does not propagate. So therefore it is a natural question to investigate also
the existence of derivative interactions for the vector field with still only three propagating
degrees of freedom. This is exactly what we aim in this paper: we want to find the gener-
alization of the Proca action for a massive vector field with derivative self-interactions. The
standard Proca action is given by

SProca =

∫
d4x

[
−1

4
F 2
µν +

1

2
m2A2

]
(1.1)

where Fµν = ∂µAν − ∂νAµ. In this theory, the temporal component of the vector field
does not propagate and generates a primary constraint. The consistency condition of this
primary constraint generates a secondary constraint, whose Poisson bracket with the primary
constraint is proportional to the mass so that only in the massless case it corresponds to a
first class constraint generating a gauge symmetry. Gauge invariance is just a redundancy

– 1 –



J
C
A
P
0
5
(
2
0
1
4
)
0
1
5

in the description of massless particles describing the same physical state. Therefore, we
can use the Stueckelberg trick to restore the gauge invariance. In the case of the standard
Proca action we can restore the gauge invariance by adding an additional scalar field via
Aµ → Aµ + ∂µπ. This trick does not change the number of propagating physical degrees of
freedom. We add one additional scalar degree of freedom but we restore the gauge invariance
which guaranties the existence of only two physical degrees of freedom for the vector field,
making it in total three physical degrees of freedom. When we now take the mass going zero
limit m→0 the Lagrangian results in a theory of a massless scalar field completely decoupled
from a massless vector field for a conserved source. This is the reason why there is no
vDVZ discontinuity in the case of the Proca field for conserved sources. This is different
for the massive graviton. There, the helicity-0 degree of freedom does not decouple and
gives rise to an additional fifth force which has to be screened via Vainshtein mechanism.
In the case of the vector field, we do not need any Vainshtein mechanism since there is no
observational difference between a massless and massive vector fields for conserved sources.
In the generalized Proca action that we construct here, the longitudinal mode of the vector
field has exactly the same interactions as a Galileon scalar field for a specific choice of the
overall functions. The Galileon theory is an important class of infra-red modifications of
general relativity . The Galileon interactions were introduced as a natural extension of the
decoupling limit of the DGP model [2]. It is constructed as an effective field theory for a scalar
field by the restriction of the invariance under internal Galilean and shift transformations
and second order equations of motion. This effective action is local and contains higher order
derivatives. Nevertheless, these interactions come in a very specific way such that they only
give rise to second order equations of motion. The allowed interactions for the Galileon were
originally determined order by order by writing down all the possible contractions for the
derivative scalar field interactions and finding the proper coefficients giving rise to second
order equations of motion. However, de Rham and Tolley could construct an unified class of
four dimensional effective theories starting from a higher dimensional setup and show that
these effective theories reproduce successfully all the interaction terms of the Galileon in the
non-relativistic limit [3]. In a similar way we wonder whether or not one could construct
the generalized Proca action that we are proposing here from a higher dimensional set-up
which we will investigate in a future work. Naively, we would think, that, starting from
a higher dimensional set-up with manifestly covariant Lovelock invariants, one would only
construct terms which are gauge invariant after dimensional reduction. There is only one
possible non-minimal interaction which fulfills this requirement, namely the contraction of
two field strength tensors with the dual Riemann tensor. Therefore, this specific interaction
with gauge invariance could be easily constructed from a higher dimensional set-up. However,
it would be worth to study, if the other not gauge invariant non-minimal couplings could be
constructed by dimensional reduction.

The Galileon interactions present a subclass of Horndeski interactions which describe
scalar-tensor interactions with at most second order equations of motion on curved back-
grounds [4]. Interestingly, a subclass of Horndeski scalar-tensor interactions [5] can also be
constructed by covariantizing the decoupling limit of massive gravity [6]. In the literature
there has been some attempts to find a theory for vector fields which is equivalent to scalar
Galileons, i.e. to find the ”vector Galileons” besides the Maxwell kinetic term with second
order equations of motion on flat space-times [7]. There, the authors were interested in
derivative self-interactions for the vector field with gauge symmetry yielding only two propa-
gating degrees of freedom. They concluded that the Maxwell kinetic term is the only allowed
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interaction and wrote a no-go theorem for generalized vector Galileons.1 However, on curved
background there only exists one term respecting the gauge symmetry, which is given by the
non-minimal coupling between the field strength tensor and the dual Riemann tensor [9, 10].
However, if one gives up on the gauge invariance meaning that we allow for terms which are
not invariant under Aµ → Aµ + ∂µθ then one can indeed construct ”vector Galileons” on
flat-spacetimes or Horndeski vector interactions on curved backgrounds giving rise to three
propagating physical degrees of freedom with second order equations of motion. We will
illustrate this in this work.

We will use the (+,−,−,−) notation for the signature of the metric and furthermore
the conventions ∂ ·A = ∂µA

µ, (∂ ·A)2 = ∂µA
µ∂νA

ν . . . etc. throughout the paper.

2 The theory of generalized Proca field

Now we want to generalize the Proca action (1.1) to include derivative self-interactions of
the vector field, but without changing the number of propagating degrees of freedom. When
we construct the derivative self-interactions, we will be applying one derivative acting on the
vector field at a time. If we would apply more derivatives on the vector field, this would give
rise to ghost degrees of freedom. In other words, when we write the vector field in terms of
the Stueckelberg field Aµ = ∂µπ, second derivatives applied on the vector field would give
rise to higher order derivatives applied on the scalar Stueckelberg and hence rendering it
to a ghost. In order to obtain such interactions, we will analyze all the possible Lorentz
invariant terms that can be built at each order and constrain the interactions to remove
the ghost-instabilities. The Lagrangian for the generalized Proca vector field with derivative
self-interactions is given by

Lgen.Proca = −1

4
F 2
µν +

5∑
n=2

αnLn (2.1)

where the self-interactions of the vector field are

L2 = f2

L3 = f3 ∂ ·A
L4 = f4

[
(∂ ·A)2 + c2∂ρAσ∂

ρAσ − (1 + c2)∂ρAσ∂
σAρ

]
L5 = f5

[
(∂ ·A)3 − 3d2(∂ ·A)∂ρAσ∂

ρAσ − 3(1− d2)(∂ ·A)∂ρAσ∂
σAρ

+2

(
1− 3d2

2

)
∂ρAσ∂

γAρ∂σAγ + 2

(
3d2

2

)
∂ρAσ∂

γAρ∂γA
σ

]
(2.2)

with ∂ · A = ∂µA
µ and where the functions f2,3,4,5 are arbitrary functions. Let us first

emphasize the dependences of these functions. First of all, they all can depend on A2 =
AµA

µ. Nevertheless, the function f2 is special in the sense that it is the only function which
is not multiplied by any term with derivatives acting on the vector field. Therefore, this
function f2 can also have dependence on all the possible terms which have U(1) symmetry
like F 2 = FµνFµν , FF ∗ = FµνF ∗µν . . . etc (where F ∗ is the dual of F). Furthermore, the
function f2 can depend on terms which does not contain any time derivative applying on the

1A similar no-go theorem has been also studied in [8] in the context of massive graviton
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temporal component A0 of the vector field like for instance AµAνF
µρF νρ . This is not true for

the remaining functions f3,4,5.

f2 = f2(A2, A · F, F 2, FF ∗) f3,4,5 = f3,4,5(A2) (2.3)

where A · F encodes all the possible contractions between A’s and F ’s. For instance the
function f2 can naturally depend on terms like A2F 2, A2F 4, A4F 4, AµAνF

µρF νρ . . . etc while
the remaining functions f3,4,5 can only depend on A2 since these functions are multiplied by
terms which contain derivatives acting on the vector field. These functions do not change the
number of propagating physical degrees of freedom since they do not contain any dynamics
for the temporal component of the vector field. We will comment more on that in section 4.
The second Lagrangian L2 naturally contains the mass 1

2m
2A2 and potential terms V (A2)

for the vector field in the function f2. In the next section we will illustrate order by order
why these interactions give rise to only three propagating degrees of freedom and illustrate
the absence of ghost instabilities. Note also the appearance of the two free parameters c2 and
d2. It means that the ”vector Galileons” contain more free parameters then the usual scalar
Galileon theory. The interactions can be also expressed in terms of the Levi-Civita tensors

L2 = − f2

24
EµναβEµναβ = f2

L3 = −f3

6
EµναβEρ ναβ∂µAρ = f3 ∂ ·A

L4 = −f4

2

(
EµναβEρσαβ∂µAρ∂νAσ + c2EµναβEρσαβ∂µAν∂ρAσ

)
= f4

[
(∂ ·A)2 + c2∂ρAσ∂

ρAσ − (1 + c2)∂ρAσ∂
σAρ

]
L5 = −f5

[
(1− 3

2
d2)EµναβEρσγβ∂µAρ∂νAσ∂αAγ +

3

2
d2EµναβEρσγβ∂µAρ∂νAσ∂γAα

]
= f5

[
(∂ ·A)3 − 3d2(∂ ·A)∂ρAσ∂

ρAσ − 3(1− d2)(∂ ·A)∂ρAσ∂
σAρ

+2

(
1− 3d2

2

)
∂ρAσ∂

γAρ∂σAγ + 2

(
3d2

2

)
∂ρAσ∂

γAρ∂γA
σ

]
(2.4)

The Lagrangians L2,L3,L4,L5 in (2.2) propagate only three degrees of freedom. Higher
order interactions beyond the quintic order are trivial in four dimensions, being just total
derivatives, hence the serie stops here. Expressed in terms of the Levi-Civita tensors this
means that we run out of the indices.

When we wrote the derivative self-interactions in terms of the Levi-Civita tensors, the
indices of the potential interactions were always contracted with each other. Without loss
of generality consider for example the special choice for the functions f2,3,4,5 = (A2) and
the special choice for the parameters c2 = 1 and d2 = 1, then in this case, we could either
consider contractions in the functions as AµA

µ or contract the indices of these two vector
fields with the Levi-Civita tensor as well. One might wonder, if it yields different interactions
once the indices of the term (A2) for example are contracted with the Levi-Civita tensors as

– 4 –



J
C
A
P
0
5
(
2
0
1
4
)
0
1
5

well.

Lal2 = −1

6
EµναβEρ ναβAµAρ = (A2)

Lal3 = −1

2
EµναβEρσαβAµAρ∂νAσ = (A2)(∂ ·A)−AµAν∂νAµ

Lal4 = −EµναβEρσδβAµAρ∂νAσ∂αAδ
= (A2)

[
(∂ ·A)2 − ∂ρAσ∂σAρ

]
− 2AµAν∂νAµ(∂ ·A) + 2AµAν∂νAρ∂

ρAµ

Lal5 = EµναβEρσδγAµAρ∂νAσ∂αAδ∂βAγ
= (A2)

[
−(∂ ·A)3 + 3(∂ ·A)∂ρAσ∂

σAρ − 2∂ρAσ∂
γAρ∂σAγ

]
+3AµAν∂νAµ(∂ ·A)2 − 6AµAν∂νAρ∂

ρAµ(∂ ·A) + 6AµAν∂νAρ∂
ρAγ∂

γAµ

−3AµAν∂νAµ∂ρAσ∂
σAρ (2.5)

But on closer inspection one can see that they give rise to exactly the same interactions once
integrations by part are performed. In the following we will start with the general interactions
order by order with arbitrary coefficients and demonstrate that imposing the absence of the
unphsical degree of freedom gives rise to the above Lagrangian with only three propagating
physical degrees of freedom.

3 The propagation of three degrees of freedom

The simplest modification of the Proca action (1.1) is of course promoting the mass term
to an arbitrary function f2 which contains amongst others the mass term and the potential
interactions for the vector field f2 ⊃ V (A2), since this trivially does not modify the number
of degrees of freedom. As we already emphasized, this function can also contain gauge
invariant interactions which are invariant under the U(1) transformations and terms which
do not contain any dynamics for the temporal component of the vector field, i.e. terms of the
form f2 ⊃ F 2 + FF ∗ +A2F 2 +A2FF ∗ +AµAνF

ρµF νρ + · · · .
The first term that we can have to the next order in the vector field is simply

L3 = f3 ∂ ·A (3.1)

with f3 an arbitrary function of the vector field norm f3(A2). It is a trivial observation that
in (3.1) the temporal component of the vector field A0 does not propagate, even if we include
the Maxwell kinetic term, and it acts as a lagrange multiplier. The easiest way to see it is by
computing the corresponding Hessian, which vanishes trivially. Also notice that the presence
of the function f3 is crucial since if it was simply a constant, that term would be a total
divergence and, thus, with no contribution to the field equations.

To next order, the independent interaction terms that we can have are given by

L4 = f4

[
c1(∂ ·A)2 + c2∂ρAσ∂

ρAσ + c3∂ρAσ∂
σAρ

]
(3.2)

with a priori free parameters c1, c2 and c3 and f4 an arbitrary function depending on f4(A2).
Now, we need to fix the parameters such that only three physical degrees of freedom prop-
agate, i.e., such that we still have a second class constraint. In order to eliminate one
propagating degree of freedom, we need a constraint equation, which is guaranteed if the
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determinant of the Hessian matrix vanishes. The Hessian matrix for (3.2) is given by

Hµν
L4 =

∂2L4

∂Ȧµ∂Ȧν
= f4


2(c1 + c2 + c3) 0 0 0

0 −2c2 0 0
0 0 −2c2 0
0 0 0 −2c2

 (3.3)

For a vanishing determinant of the Hessian matrix we have two possibilities. First possibility
corresponds to choosing c2 = 0. In this case the Hessian matrix contains three vanishing
eigenvalues corresponding to three constraints. Therefore, if we choose c2 = 0, only the
zero component of the vector field propagate while the other three degrees of freedom do
not propagate. This is not what we are looking for, therefore we disregard this choice. The
other possibility for a vanishing determinant of the Hessian matrix corresponds to c1 + c2 +
c3 = 0. Without loss of generality we can set c1 = 1 and therefore c3 = −(1 + c2). In
this case the Hessian matrix only contains one vanishing eingenvalue and hence only one
propagating constraint. This case corresponds to three propagating degrees of freedom with
the Lagrangian at this order given by:

L4 = f4

[
(∂ ·A)2 + c2∂ρAσ∂

ρAσ − (1 + c2)∂ρAσ∂
σAρ

]
(3.4)

Note that we can write these interactions also as

L4 = f4

[
(∂ ·A)2 − ∂ρAσ∂σAρ + c2F

2
ρσ

]
(3.5)

which then in principal could be absorbed into f2 ⊃ F 2 since the function f2 depends in
general on the gauge invariant quantities which do not contain any dynamics for the A0 degree
of freedom and therefore will not change the number of propagating degrees of freedom. One
can either include the interaction c2F

2
ρσ into the function f2 or leave it at the order of L4, but

not both at the same to avoid redundancy. The vanishing of the determinant of the Hessian
matrix guaranties the existence of a constraint. To find the expression for the constraint, we
have to compute the conjugate momentum Πµ

L4 = ∂L4
∂Ȧµ

. The zero component of the conjugate

momentum is given by
Π0
L4 = −2f4 ∇A (3.6)

As one can see, the zero component of the conjugate momentum does not contain any time
derivative yielding the constraint equation

C1 = Π0
L4 + 2f4 ∇A. (3.7)

This constraint equation will generate a secondary constraint given by

{H, C1} =
∂H

∂Aµ

∂C1

∂Πµ
− ∂H

∂Πµ

∂C1

∂Aµ
(3.8)

or equivalently one can obtain the secondary constraint by calculating the time derivative
of the conjugate momentum Π̇µ and use the Hamiltonian equations ∂H

∂Aµ
= −Π̇µ and ∂H

∂Πµ =

Ȧµ. We have checked explicitly the existence of the secondary constraint and therefore the
Lagrangian L4 possesses only three propagating degrees of freedom.

For the next order interactions we write down all the possible contractions between the
derivative self-interactions which gives:

L5 = f5

[
d1(∂ ·A)3 − 3d2(∂ ·A)∂ρAσ∂

ρAσ − 3d3(∂ ·A)∂ρAσ∂
σAρ

+2d4∂ρAσ∂
γAρ∂σAγ + 2d5∂ρAσ∂

γAρ∂γA
σ] (3.9)
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with a priori the arbitrary parameters d1, d2, d3, d4 and d5 and function f5 depending only on
A2. In this quintic Lagrangian (3.9) the additional possible term ∂σAρ∂

γAρ∂γA
σ is actually

equal to ∂ρAσ∂
γAρ∂γA

σ since ∂γAρ∂γA
σ is symmetric under the exchange of ρ and σ. The

Hessian matrix for this quintic Lagrangian is giving by

H00
L5 = −6(d1 − d2 − d3)(∇A) + 6(d1 − 3d2 − 3d3 + 2(d4 + d5))Ȧt

H0i
L5 = H i0

L5 = (6d3 − 2(3d4 + d5))At,i + 2(3d2 − 2d4)Ai,t

H11
L5 = −6d2A

2
α(Az,z +Ay,y)− 2(3d2 − 2d4)(Ax,x −At,t)

H12
L5 = H21

L5 = 2d5(Ax,y +Ay,x)

H13
L5 = H31

L5 = 2d5(Ax,z +Az,x)

H22
L5 = 2(−3d2Az,z + (−3d2 + 2d5)Ay,y − 3d2Ax,x + (3d2 − 2d5)At,t)

H23
L5 = H32

L5 = 2d5(Ay,z +Az,y)

H33
L5 = (−6d2 + 4d5)Az,z − 6d2(Ay,y +Ax,x) + 2(3d2 − 2d5)At,t (3.10)

In order to have only three propagating degrees of freedom the parameters need to fulfill the
following conditions

d1 − d2 − d3 = 0, d1 − 3d2 − 3d3 + 2(d4 + d5) = 0,

3d3 − 3d4 − d5 = 0, 3d2 − 2d5 = 0 (3.11)

which are fulfilled by choosing (again without loss of generality we can choose d1 = 1)

d3 = 1− d2, d4 = 1− 3d2

2
, d5 =

3d2

2
(3.12)

Hence, the quintic Lagrangian with only three propagating physical degrees of freedom is
given by

L5 = f5

[
(∂ ·A)3 − 3d2(∂ ·A)∂ρAσ∂

ρAσ − 3(1− d2)(∂ ·A)∂ρAσ∂
σAρ

+2

(
1− 3d2

2

)
∂ρAσ∂

γAρ∂σAγ + 2

(
3d2

2

)
∂ρAσ∂

γAρ∂γA
σ

]
(3.13)

Analogously, we can write these interactions also as

L5 = f5

[
(∂ ·A)3 − 3(∂ ·A)∂ρAσ∂

σAρ + 2∂ρAσ∂
γAρ∂σAγ

−3d2

2
(∂ ·A)F 2

ρσ + 3d2∂σAγF
σ

ρ F ργ
]
. (3.14)

The Hessian matrix with this chosen parameters then becomes

Hµν
L5 = f5(A2)


0 0 0 0
0 −6d2(Az,z +Ay,y) 3d2(Ax,y +Ay,x) 3d2(Ax,z +Az,x)
0 3d2(Ax,y +Ay,x) −6d2(Az,z +Ax,x) 3d2(Ay,z +Az,y)
0 3d2(Ax,z +Az,x) 3d2(Ay,z +Az,y) −6d2(Ay,y +Ax,x)

 (3.15)

with a vanishing determinant det (Hµν
L5 ) = 0. As required, the Hessian matrix only contains

one vanishing eingenvalue and hence only one propagating constraint which is again given
by the corresponding zero component of the conjugate momentum Πµ

L5 = ∂L5
∂Ȧµ

Π0
L5 =−3f5(A2)(d2(A2

x,z+A2
y,z+A2

x,y)−2Az,zAy,z−2(−1+d2)Ay,zAz,y+d2A
2
z,y+d2A

2
z,x

−2(Az,z+Ay,y)Ax,x+2Ax,yAy,x−2d2Ax,yAy,x+d2A
2
y,x−2(−1+d2)Ax,zAz,x) (3.16)
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As you can see, there is no time derivatives appearing in the expression of the zero compo-
nent of the conjugate momentum, representing the constraint equation. Associated to this
constraint, there will be a secondary constraint guarenting the propagation of the constraint
equation and removing the unphysical degree of freedom.

Our construction guaranties the existence of the constraint system which removes one
of the four degrees of freedom and the remaining physical degrees of freedom possess only
second order equations of motion which ensures that they are not ghostlike degrees of freedom.
One distinguishes two types of ghost degrees of freedom. The one we removed here in our
construction is like the Boulware-Deser ghost in massive gravity representing the unphysical
degree of freedom of the vector field. However, the remaining three physical degrees of
freedom might not always behave healthy around some given specific backgrounds. Once
we construct our Lagrangian for the three physical propagating degrees of freedom, it would
be interesting to study them around specific backgrounds like cosmological backgrounds or
spherically symmetric backgrounds and constraint further the parameters to avoid ghost
and/or Laplacian instabilities for these three physical degrees of freedom.

4 Special case of the functions f2,3,4,5 = A2

In this section we will pay attention to the special case where the arbitrary functions are
chosen to be f2,3,4,5 = A2. In this case the four Lagrangians L2,3,4,5 in (2.2) simply become

L2 = A2

L3 = A2(∂ ·A)

L4 = A2
[
(∂ ·A)2 + c2∂ρAσ∂

ρAσ − (1 + c2)∂ρAσ∂
σAρ

]
L5 = A2

[
(∂ ·A)3 − 3d2(∂ ·A)∂ρAσ∂

ρAσ − 3(1− d2)(∂ ·A)∂ρAσ∂
σAρ

+2

(
1− 3d2

2

)
∂ρAσ∂

γAρ∂σAγ + 2

(
3d2

2

)
∂ρAσ∂

γAρ∂γA
σ

]
(4.1)

We can restore the U(1) gauge symmetry using the Stueckelberg trick by adding an additional
scalar field via Aµ → Aµ + ∂µπ. To zeroth order in Aµ we extract out only the longitudinal
mode of the vector field and recover exactly the Galileon interactions

L2 = (∂π)2

L3 = (∂π)2�π

L4 = (∂π)2
[
(�π)2 − (∂µ∂νπ)2

]
L5 = (∂π)2

[
(�π)3 − 3�π(∂µ∂νπ)2 + 2(∂µ∂νπ)3

]
(4.2)

Note that after introducing the gauge symmetry the dependence of the free parameters c2 and
d2 disappears. Similarly, to first order in Aµ we obtain the following scalar-vector interactions

L2 = 2Aµ∂µπ

L3 = (∂π)2(∂ ·A) + 2�π∂µπA
µ

L4 = 2(∂π)2�π(∂ ·A) + 2(�π)2∂µπA
µ − 2(∂π)2∂µ∂νπ∂

νAµ − 2(∂µ∂νπ)2∂ρπA
ρ

L5 = 6(∂π)2∂σ∂βπ∂α∂
σπ∂βAα+2Aα∂απ(�π)3+3(∂ ·A)(∂π)2(�π)2−6∂α∂βπ∂

βAα(∂π)2�π

+4Aα∂απ∂
ρ∂βπ∂σ∂βπ∂

σ∂ρπ−3(2Aα∂απ�π+(∂ ·A)(∂π)2)(∂ρ∂σπ)2 (4.3)
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This is another way of observing that the interactions we found for the vector field indeed only
propagate three degrees of freedom, since when we plug in the longitudinal mode, we obtain
the Galileon interaction with at most second order equations of motion. The terms for the
vector field ∂ρAσ∂

ρAσ and ∂ρAσ∂
σAρ are not the same, but when we replace Aµ = ∂µπ, they

are since the derivatives acting on the scalar field commute ∂µ∂νπ = ∂ν∂µπ on flat space-time.
This has a huge concequence: the interactions for the vector field have more free parameters
than the Galileon interactions. It means that if we had started with the Galileon interactions
and performed the replacement ∂µπ → Aµ we would have been missing some of the interac-
tions which also yield three propagating degrees of freedom. The vector interaction have two
more free parameters (namely what we called c2 and d2 in (4.1)). In fact, an alternative way
of finding our generalized Proca action is by restoring the U(1) gauge invariance and impos-
ing that the Stueckelberg field propagates only one degree of freedom, i.e., it satisfies second
order field equations. One must be careful though, since in addition to the pure Stueckelberg
sector, it is also necessarily to analyse the terms mixing the Stueckelberg field and the vector
field. For L4, no additional constraints arise from the mixing terms, since we obtain terms of
the general form Kµν(Aµ)∂µπ∂νπ, which automatically leads to second order contributions
for π. However, for L5 we obtain terms like Kαβγδ(Aµ)∂α∂βπ∂γ∂δπ so we need to impose
the tensor Kαβγδ(Aµ) to have the correct structure. It is also worth to emphasize one more
time that the arbitrary functions f2,3,4,5 appearing in our generalized Proca action have been
chosen to be A2 in this section to be able to relate them to the Galileon interactions. In
the Stueckelberg language, this is so in order to guarantee the second order nature of the
field equations with respect to π. There are however additional contributions upon which the
functions might depend without altering the number of degrees of freedom. Such terms are
those for which the Stueckelberg field give a trivial contribution, i.e., those which are U(1)
gauge invariant. Therefore, the function f2 could actually depend also on the combinations
F 2 or FF ∗. It can naturally also depend on any possible contraction between Aµ and Fµν
as well, in a way like for example AµAνF

µαF ν
α . . . etc. From the vector field perspective,

these terms do not contain time derivatives of A0, so that it will not spoil the existence of
the constraints. Indeed, if you look at the interactions in L4 which are proportional to the
parameter c2 then you trivially recognize that these terms are just c2F

2. Since function f2

also depends on F 2 then the term for instance in L4 could be absorbed into f2(A2, F 2). One
must be cautious however, since arbitrary functions of such invariants typically give rise to
violations of the hyperbolicity of the field equations and hence to superluminal propagation,
which we do not discuss in this work.

The equations of motion for the Lagrangian of the derivative self-interacting vector
field (4.1) on top of the Maxwell kinetic term are given by

E2 = 2Aµ

E3 = 2Aµ(∂ ·A)− 2Aν∂µAν

E4 = 2
(
Aµ
[
(∂ ·A)2 − (1 + c2)∂ρAσ∂

σAρ + c2∂ρAσ∂
σAρ

]
+ c2A

2(−�Aµ + ∂ν∂µA
ν)

−2c2A
ρ∂νAρ∂

νAµ − 2(∂ ·A)Aρ∂µAρ + 2(1 + c2)Aρ∂νAρ∂µA
ν
)

E5 = 2Aµ
[
(∂ ·A)3+3(−1+d2)(∂ ·A)∂ρAσ∂

σAρ−3d2(∂ ·A)∂ρAσ∂
ρAσ+(2−3d2)∂ρAσ∂

γAρ∂σAγ

+3d2∂ρA
σ∂ρAγ∂σAγ ]−3Aρ

(
−d2(4∂νAρ∂

νAµ(∂ ·A)−2(∂νAµ∂
νAσ+∂νAµ∂σAν)∂σAρ

+Aρ(∂
νAµ(∂σ∂νA

σ−�Aν)+2(∂ ·A)(�Aµ−∂σ∂µAσ)+(∂ν∂µAσ−2∂σ∂νAµ+∂σ∂µAν)∂σAν))

+2((∂ ·A)2+((−1+d2)∂νAσ−d2∂σAν)∂σAν)∂µAρ+(4(−1+d2)∂νAρ(∂ ·A)

+d2Aρ(−∂σ∂νAσ+�Aν)+2((2−3d2)∂νAσ+d2∂σAν)∂σAρ)∂µA
ν
)

(4.4)
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Note also that the equations of motion for the vector field does reproduce the equations of
motion of the Galileon field if we take the divergence of it and replace Aµ = ∂µπ.

5 Curved space-times

In the flat space-time the derivatives applied on the vector field were simply partial derivatives
which commute. When we consider a general non-flat background the derivatives become
covariant derivatives and therefore we have to add non-minimal couplings to the graviton
in order to maintain second order equations of motion and healthy propagating degrees of
freedom. When we generalize the derivative self-interactions in (5.1) on a curved space-time,
the Lagrangian for the generalized Proca field becomes

Lcurved
gen.Proca = −1

4
F 2
µν +

5∑
n=2

βnLn (5.1)

where now the self-interactions are encoded in the following Lagrangians

L2 = G2(X)

L3 = G3(X)(DµA
µ)

L4 = G4(X)R+G4,X

[
(DµA

µ)2 + c2DρAσD
σAρ − (1 + c2)DρAσD

σAρ
]

L5 = G5(X)GµνD
µAν− 1

6
G5,X

[
(DµA

µ)3−3d2(DµA
µ)DρAσD

ρAσ−3(1−d2)(DµA
µ)DρAσD

σAρ

+2

(
1− 3d2

2

)
DρAσD

γAρDσAγ + 2

(
3d2
2

)
DρAσD

γAρDγA
σ
]

(5.2)

with the short cut X = −1
2A

2
µ. These interactions give rise to the standard scalar Horndeski

interactions for the longitudinal mode of the vector field. The non-minimal coupling between
the field strength tensors and the dual Riemann tensor considered in [10] is already incor-
porated in the above interactions. Similarly the function G2 does not need to depend only
on X but can also depend on terms like GµνAµAν which does not contain any dynamics for
the temporal component of the vector field. Note again the appearance of the two additional
free parameters c2 and d2 as in flat space-time case. All these interactions give only rise to
three propagating degrees of freedom in curved background.

6 Summary and discussion

In this paper we have constructed the generalized Proca action for a vector field with deriva-
tive self-interactions with only three propagating degrees of freedom. We started our analysis
with the case of a flat Minkowksi spacetime. We successfully showed that for appropriate
choices of the coefficients of the derivative self-interactions that generalize the Proca action,
one can construct a consistent and local theory of massive vector field without the presence
of ghost-like instabilities. The resulting theory is simple and constitutes four Lagrangians
for the self-interactions of the vector field. We were able to show that the constrained coef-
ficients yield the necessary propagating constraint in order to remove the unphysical degree
of freedom. These are the ”vector Galileons” with three propagating degrees of freedom. At
each order the Lagrangian has an overall function which depends on A2 and the function
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of the quadratic Lagrangian can also depend on all the possible terms invariant under U(1)
symmetry like for instance F 2 and FF ∗. . . etc. Similarly this function can also depend on any
contractions between the vector field and the field strength tensor AµAνF

µρF νρ which does
not contain any time derivative applied on the temporal component of the vector field. The
dependence of the function f2 on the gauge invariant terms or terms in which the zero compo-
nent of the vector field does not have any dynamics, do not alter the number of propagating
degrees of freedom. We have also shown, that these interactions have more free parameters
than the corresponding scalar Galileon interactions. We then generalized our results to the
case of curved space-time and obtained the corresponding ”Horndeski vector” interactions.
In the very latest stage of this work we became aware that a similar idea has been explored
in [11] even though the interactions we constructed here are more general.
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