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FOREWORD

A theoretical physics summer school on '"Strong Interactions at High Energies!
was held at Brookhaven National Laboratory from July 23 through August 29, 1969.
This was the first such summer school to be held at Brookhaven and these notes are
the written version of its contents.

Two major aims of the school were to restrict the subject matter to a well
defined area which could be covered in depth, and to obtain a small, homogeneous
class which would interact strongly with the lecturers. Accordingly the number of
students was restricted to 20, and closed circuit TV and videotapes were used to
allow others and any non-students, to observe the lectures, without diluting the
small class. This procedure appeared to work successfully, due in no small measure
to the high calibre and enthusiasm of the students and lecturers.

These notes have been edited and in some cases extensively revised by the
lecturers from notes taken by students in the school. Much gratitude is due to them
for the amount of work put into the preparation and the gallant efforts of most to
get the job dome quickly. The herculean task of organising the preparation of the
manuscript, as well as carrying out much of the actual typing, was tackled by

Mrs. Patricia Towey with an appearance of effortlessness completely belying its

magnitude.
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SOME EXPERIMENTAL TOPICS IN HIGH ENERGY INTERACTIONS

Lectures by: D. Hywel White
Cornell University






INTRODUCTION

We have chosen a number of topics in high energy interactions in which, in our
opinion, the experiments are capable of unambiguious interpretations and moreover are
fairly precise. The topics we have chosen are: '

1 Total Cross Sections

2 Forward Elastic Scattering

3. Backward Elastic Scattering

4. Two body Inelastic Processes

5 Multiparticle Production

They have formed the body of five lectures and our mandate was taken as that we
should try to describe the experimental data with real emphasis on its strengths and
weaknesses. It is not intended as a review but as a starting point in the study of
high energy processes. 1In this vein we would write down here some appropriate expres-
sions valid at high energy which are useful in thinking about these experiments. We
shall use units in which masses and momenta are measured in GeV.

When the incident particle has a momentum pLAB,‘and the target is a proton, the

c.m. energy squared

x 2
S s PLaB

the term we miss is the sum of the squares of the masses. So even better

S = 2p,p (1)
is quite accurate in our momentum range.
The momentum of either particle in the c.m. system
2 2
2 [s+(m, m) ][s-(miﬁnp) ]
K =
4s
~ &
v7 : @)
For elastic scattering the invariant 4 momentum transfer
s
-t E(l—cos@) 3)
The invariant crossed 4 momentum transfer
s 2 mE4
u X (E-mp )(l+cosec'm') " 2. . (4)

2
If you check you will find that s+t+u # ¥m~, that is because these approximate
2
expressions are only valid where ¥m~ is not important.

At small angles
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P~ (-t) . (5)
This little expression accounts in part for the difficulty in choosing the
appropriate argument against which to plot cross sections.

The velocity of the c.m.,

W+m
Yeom. — ——~£ W the total energy of the
c.m- (s)* incident particle
At high energies
L
~ (8)°
>m (6)
p
To transform angles from c.m. to the laboratory system
psinf
tanGLAB = g M. p the momentum of the

7 (Bwt pcos@c.m.) particle in the c.m. system.

at high energies and small angles

c.m.
LAB 2y ) M

&

6

Many of the original expressions are contained in the Rosenfeld tables. We have

simply adapted them to the high energy, small angle limit.

I. TOTAL CROSS SECTIONS

The total cross section is undoubtedly the most accurate measurement in high
energy physics. This being so, we become more preoccupied with the systematic errors
in the experiment for the statistical errors are usually very small. We shall try to
indicate the problems in assessing the systematic accuracy. Measurements have been
made on all the "stable! particles that can be made at an accelerator and a start has
been made on one of the unstable particles, namely the p. The particles that are
made in beams and have their cross sections measured at high energies are

proton, antiproton

neutron

pion (+ and -)

K (+ and -).
We shall discuss some of the experiments in detail, and we plot a selected set of
accurate measurements by incident particle.

Figure 1 represents a typical experiment. It is taken from reference 11.

Notice that the diagram is not to scale in the sense that portions of the dimension
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parallel to the beam are omitted. The counters Sl’ 82 and S3 define the beam. That

is, a signal appears when a particle traverses both counters within a short time, the
resolving time of these two counters. We hypothesise in analysing the experiment

that there is one particle only present at a time in the apparatus, and we ask if the
particles leaves the beam before it reaches S4 to le' The criterion for an interaction
is that the particle suffers some angular deviation and of course that means that we
include some of the Coulomb interaction and we have to correct for this. Because the
counters 54 to 512 subtend different solid angles at the target we can extrapolate to
zero angle of deflection. 1In order to correct for the Coulomb interaction we have to
know the angular divergence of the beam and its spatial density distribution at S3.
Although Sl-SS are called defining counters and G assures us that there is no particle
in the halo associated with the beam, in fact the density distributions for particles
at S3 are primarily determined by the optics of the beam transport system and these
must be understood. These problems which are difficult in detail are coped with in
part because the corrections can be made small by designing the sizes of the counters
with care. An example of the extrapolation technique is shown in Fig. 2.

The slope of this curve comes from the angular distribution of both the elasti-
cally scattered particles and the particles produced inelastically in the target.
Typically this curve is fitted to a quadratic in the solid angle and the constant in
this polynomial gives the attentuation by strong interactions. Corrections have been
made for single and multiple Coulomb scattering and for Coulomb-nuclear amplitude
interference. The real part is estimated from dispersion relation calculations.

Examples of the estimates are given in Fig. 3.

Given the attenuation (te/tf) the cross section is given by

1
or T ¥z ,én(te/tf).

The fact that N, the number of nucleons/sqcm, and £, the length of the target, appear
directly in this formula means that they must be known to comparable accuracy to
produce a total cross section. N is controlled by controlling the pressure of the
liquid and 4 must be measured cold. te’ the attenuation of the empty target must be
the same as te for the full target when empty; this is checked in these experiments.
The reason for the three interchangeable targets is so that conditions in a particular
target vessel are stable and so the time spent in waiting for stability is saved when
the target can be moved.

The counter C is a Cerenkov counter which is sensitive to the angle 6 of the
Cerenkov radiation. A particular 0 is selected by a diaphragm in the optical system
and the effect of moving that diaphragm is shown in Fig. 4. It is clear that when
set to the K meson position the contamination of pions is very small. The Cerenkov

counter technology is such that all the stable particles, with the exception of muons



and electrons, can be separated to sufficient precision in our energy region.
Remember that the Cerenkov angle 6 is given by

cosf = ;B
n is the refractive index of the radiating material, and B the velocity of the particle.
The difference in velocity of pions and muons is so slight at high energies that
separation is too difficult. The muon and electron contamination in the beam is
measured separately and since they do not interact strongly a correction is made.
Frequently the muon contamination is measured by passing the beam through many strong
interaction lengths of material, only the muons emerge to be counted.

We are ready to review the cross section data, at least as far as the charged
particle cross sections are concerned.

1. Proton-Proton

References 1, 2, 8, 9.

The first reference, Barashenkov and Maltsev, is a suitable introduction and
represents the state of the art in 1961. Bugg et al.3 have made measurements up to
8 GeV/c; Foley8 and Galbraith9 have measured up to 30 GeV/c. The graph of Fig. 5 is
a composite plot of all the pp data of superior accuracy with cross section plotted
against the logarithm of s, the c.m. energy squared. The only feature that stands
out is the rapid rise at about 500 MeV/c followed by a levelling off to about 38 mb.
Between 16 and 22 GeV/c incident momentum the cross section is flat within the
errors of the Galbraith9 experiment. The rapid rise has been associated with the
opening of the inelastic channels, particularly N*(1236) production. The total
cross section is essentially constant above about 15 GeV/c, and as far as anybody
has been able to see there are no high mass dibaryon resonances.

2. Pion-Proton

References 4, 5, 7, 9.

Here the situation is quite different. The composite cross sections are
plotted in Figs. 6 and 7. At low energies there is a good deal of structure corres-
ponding to the excitation of baryon resonances, this has been a very fruitful method
of finding these. However, above 5 GeV/c there is little evidence for bumps in the
total cross section and the energy dependence becomes smooth. The experiments of
Foley et al.7 are very accurate and show a cross section still falling slowly at
30 GeV/c. Moreover the positive and negative pion cross sections are still different
by ~ 1.6 mb and not showing signs of becoming equal very rapidly. By fitting their
data Foley et al. came to the conclusion that the pion cross sections became energy
independent and equal at very high energies indeed. Preliminary data from
Serperkov on n—p are also shown in Fig. 7 and seem to indicate a rather dramatic

flattening of the cross section in disagreement with the fit. It is clear that the
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total cross sections at Serperkov will be very interesting indeed.

Before we leave pion-proton cross sections we should note that Foley et al.
used a method for getting the total cross section that is, in principle, more reliable
than the method we have already described. The method is described in reference 7
and we shall discuss it in detail when we discuss the measurement of the real part of
the forward scattering amplitude. Suffice to say that although the agreement is not
exact, the data of Galbraith et al.9 and Foley et al. seems to indicate the cruder
method is reliable, at least to the accuracy claimed by Galbraith.

3. Antiproton-Proton

There is discernible structure to the ;-p cross section at lower eneggies that
is attributed to the formation of boson resonances. The low energy situation is
summarised in Abrams et al.12 and the composite plot is in Fig. 8. The high energy
data comes from Galbraith9 and seem to be steadily decreasing from 10 to 20 GeV/c.
The cross section is ~ 50 mb in this region compared to 38 mb for pp. One will need
to go to very high energies indeed for these two cross sections to become equal from
the rate at which they are converging in this energy region.

4. Kaon-Proton

The K—p system is known to resonate through the Y#*, strangeness -1 baryon states.
This is reflected in the low energy structure in Fig. 9. This structure dies away
and with the new Serperkov data is seen to be quite flat above 20 GeV/c. Again as
in xt p the previous Regge pole fits would not expect the cross section to level off
as it does. The K+p system does not have strongly coupled resonances and the data
in Fig. 10 are reminiscent of the pp case. There has been a good deal of discussion
of a bump at~1.2 GeV/c incident momentum, or about 1.9 GeV/c2 total c.m. energy. It
is referred to as the Z*, we shall mention it again in the context of the energy
dependence of backward elastic K-p scattering. Apart from this structure the K+p
system settles down at a very low energy.

5. p-n

We should now discuss how to get cross sections using a deuterium target. Since
free neutrons are hard to find, many total cross sections are measured using the
neutron in deuterium., There are two difficulties.

a) There is a screening correction, originally due to Glauber, modified by
Wilkin. We mean by this that both the incoming and outgoing particles can interact
with the spectator proton and this effect reduces the effective amplitude associated
with the incoming beam.

b) Fermi motion of the nucleons. The neutron bound in a deuteron is not at
rest so that the c.m. energy of the incident particle-neutron system is not well
defined. It is equivalent to an experiment with a less well defined incident beam

momentum. This effect is not important at high energy where the cross section is
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slowly varying but it is important where there is structure. Kriesler et al.

observe that this energy spread is comparable to the energy resolution they have
achieved in a neutron beam in a direct n-p total cross section experiment. This
seems to come down in favour of a direct experiment, at least in the np case. It is
more time consuming to do a n-p experiment to the same accuracy as p-n.

The screening correction appears approximately in the form

o(c,d) = o(x,p) + o(x,n)

3 %; <t %> (o(x,p) x o(x,n) - i% Ref, (O)Ref, (0)) -

At high energies the term involving the real part is negligible.

< r_2 > is a parameter that describes the average spacing of the two nucleons
in the deuteron. This can be calculated assuming various wave functions giving
results which vary from 0.020 to 0.035 mb_z. If we measure nip and nib cross sections
and assume charge independence then since we have only two amplitudes we can deduce
a value of < r_2 > from experimental data. Such a curve is shown in Fig. 11, taken
from reference 4. 1t is clear that the variation of the screening parameter with
energy leavesone uncertain about the validity of the theory, but it is probably
alright to use this correction for other reactions at the same energy, particularly
if we can perform the p-n and n-p experiments separately and check the answer.

The p-n experiment is done by measuring the p-d total cross section exactly

6,10 The

as we have described previously. The n-p experiments we now describe.
experiment of Kriesler et al. is shown in layout in Fig. 12. A neutral beam is made
by making a carefully aligned hole in the shielding wall of the accelerator facing
the target. Charged particles are swept out and a neutron and KLO beam of wide
energy spectrum emerges. The KLO contamination is negligible for our purposes. To
measure the cross section it is necessary to measure the neutron energy. Kriesler
et al. do this with a calorimeter, this device samples the energy deposited between
slabs of iron by the strongly interacting shower. By adding together the energy
deposited in all 5 counters Tl-T5 we have a measure of the neutron energy. They
claim that the uncertainty in neutron momentum gives a comparable uncertainty in s
to that introduced by the Fermi-momentum in the "p-n'" case.

Figure 13 shows a comparison of the "p-n'" and n-p measurements. The situation
is satisfactory, but more accurate measurements of n-p cross sections are probably
called for. 1In the region above 5 GeV/c p-p, p-n and n-n total cross sections are
equal.

6. Pn

This cross section has not been plotted separately, for up to the uncertainty



of the screening correction the "pn'" cross section is equal to pp at momenta above

5 GeV/e.
SUMMARY

With the exception of the nucleon-nucleon cross sections and antinucleon nucleon
cross sections, all total cross sections are slowly varying above 10 GeV/c incident
momentum and ﬂ-p appears to be quite flat between 30 and 60 GeV/c. It is true that
in this energy region we do not appear to have particle-antiparticle cross sections
equal and it may be that this never becomes true. In the case of pions, if we
believe the present data very funny things must happen for this equality to be met.

In an even more pronounced way the Kip cross sections do not become equal even though

they seem energy independent.
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II. FORWARD ELASTIC SCATTERING

The elastic scattering of hadrons at high energy is naturally divided into two
regions. Near the forward direction the cross section is large and peaked at t=0,
The cross section for all the particles falls exponentially against t for many decades
until at-t ¥ 0.5 some deviation from this simple behavior is seen. The cross section
near 90° in the c.m. system is typically very small indeed and very energy dependent.
Near 180° the cross section rises again but is a much smaller value than in the
forward direction (about 10_3 of the forward cross section ). We shall discuss in
this section the forward and high momentum transfer region and reserve the backward
peak for the next section.

The optical theorem says kOT

Imf(0) = i ,

k the momentum of the particles in the c.m. system, O the total cross section. If

the cross section is nearly imaginary we can say

2 2
2 K op
f = 5
167
or
2 2
k
do o _ 1
da 161t2
Since

2k2(1-cose)

2

-k dg _dox_,
dt = " dQ and at a0 kz ;

1
(4
i

2
and now we must take care of the units. If we measure k2 in (Gev/c)” then

k20 2
do d T
-_— = = x 2.55
dt dt 161{2
where GT is in mb,
do _2.55 2 _ 2
at - 1ex’ o0 - 0-9°1 o

Then %% is in mb(GeV/c)z.

Since, as we have seen, the total cross section is almost constant, the forward
cross section is also constant, measured as %% .

The other general comment to repeat is that in the diffraction peak the cross

secons fall exponentially against t so that the parametrisation



do

- do
Frie dt(O) exp At

is often used.

A is a slowly varying parameter, if A gets larger as the energy increases, this
is referred to as shrinkage. For most all the elastic peaks A is of the order of
10 (GeV/c)-2 but we shall discuss this in detail later on.
1. The real part of £(0).

When the forward scattering amplitude is calculated using the optical theorem
it is found that the measured cross section is larger than this value. The difference
is accounted for by a real part. It is possible to measure the real part this way,
but a method that is not only more accurate than this, but also determines the sign
of the real amplitude involves Coulomb interference. At very small angles the Coulomb
amplitude and the elastic scattering amplitude are comparable and so the interference
term is detectable with a careful measurement of the scattering cross section.

Foley et al.1 and Belletini .et al.z’3 have performed such measurements and
Fig. 1 shows the experimental layout of the Foley experiment. The momentum resolu-
tion of the beam was better than 0.5% and pions were identified by the Cerenkov
counters CT1 and CT,. The direction of the incident pion was measured by the

2
hodoscopes HO, and HO,. The outgoing particles were measured in angle and momentum

2
to about 0.1 ;rad and %R better than 0.5%. This momentum resolution allows the
elastically scattered particles to be identified and the momentum transfer calculated
from the angular deviation. 1In addition the total cross section was measured
defining an interaction as either an angular or momentum change of the incoming
particle. With the extra constraint of momentum and the improved angular accuracy
the systematic problems of extrapolation should be minimized compared to the more
traditional methods of total cross section measurement described in Lecture 1.
Figures 2 and 3 show typical angular distributions with the single and multiple
Coulomb scattering subtracted. The real part is the same sign for positive and
negative pions since we have reversed the sign of the Coulomb amplitude and the
change of interference is clear.

The counters which identify the pion include muons also. Since muons have a
Coulomb interaction it is necessary to exclude them from the experiment and they are
identified as these particles which traverse the n absorber in Fig. 1. The electron
contamination in the beam is very small and is corrected separately.

In fitting the data Foley et al. chose a form for the nuclear amplitude of

[£(s,0) |2 = [£(s,0)|? exp(bttct?).

¢ was fixed from measurements at wider angles than in this experiment and then



Ref
Imf 2
from the total cross section and the optical theorem and X minimized to obtain a

the data fitted for b and for ¢ = The forward imaginary amplitude was calculated
and b. The fit was good and consistent with a fit in which the forward imaginary
amplitude was not constrained. It is worth noting that since the spin flip amplitude
contains a term in sin® this amplitude will have very little effect in the small
angles used in this experiment. (® 22 mrad) The values of ¢ are plotted against the
incident momentum in Fig. 4. These authors consider the systematic errors in some
detail and observe that they tend to cancel when the sum of of and @ is considered
and become relatively large in the difference. The total cross sections are included
in the plot in Figs. 6 and 7 of Lecture 1. Since the magnitude and phase of the
forward amplitude are known under the assumption of charge independence it is possible
to calculate the charge exchange cross section. The agreement is satisfactory
although the errors are fairly large so that this is not a stringent list of charge
independence since the I spin amplitudes are almost equal.

The problem in p-p scattering is that there are two nuclear amplitudes, singlet
and triplet. So a measurement of small angle scattering does not provide enough
information to determine the phase of both. Under the assumption that the amplitude
is spin independent Belletini et a1.2’3 have measured the ratio Ref/Imf. The
results are plotted in Fig. 5 together with other measurements of the same quantity.
Belletini et al. also try to fit the cross section by assuming different angular
dependencies for imaginary singlet and triplet parts only and conclude that some real
part is necessary although some compromise position between these two extremes is
allowed. Tt is amusing to notice that the sign of the real part really changes sign at
the same energy that the inelastic channels affect the total cross section behavior.

The forward peak.

We have already mentioned that up to a momentum transfer t of -0.5 (GeV/c)2 the
forward peak has a primarily exponential behavior. Foley et a1.4’5 have measured
the values of the exponent for pions, kaons and nucleons between 7 and 20 GeV/c.
These papers give values of the constants together with an elastic cross section
integrated out to -t=1. This restriction in integration involves a possible error
of Oa1 < 1%. The Fig. 6 shows some typical curves. In most of the diffraction
region the angular dependence is dominated by the b term, the energy dependence of
which is of interest. The general tendencies are summarized below.

p-p b TIncreases from 9.78 to 10.48 from 7 to 20 GeV/c

7P b Does not change in this region n+p ~ 8.9 (GeV/c)2

np™9.7 (GeV/c)2
kp b Does not change k+p ¥ 7.0 (GeV/c)2
k p = 10.0 (Gev/c)?

4

~

2
pPp If anything b decreases in this region. b ™ 12.0 (GeV/c)".
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Figure 7 shows some recent Serperkhov data (reported at the Lund Conference)
which shows the slope of pp elastic continuously increasing up to 60 GeV/c. This
discussion illustrates the fact that these diffraction peaks have little energy
dependence, and such as is present has no ready explanation.

Elastic Scattering at high momentum transfers

1. proton-proton

Elastic scattering has been measured by measuring the momentum and angle of
either one or both of the scattered particles. The conservation of momentum both
transverse to the incident beam and along the beam provides the constraints which
allow the separation of the elastic scattering from the other channels even at the
very low cross sections that have been measured. Figure 1 is a good example of a
"one arm" spectrometer, when the momentum transfer is small this is the only way,
since the momentum of the recoil proton is too small to detect. When the momentum
transfer is high the two arm spectrometer experiment has the advantage that the
momentum resolution needed in each arm becomes very much less for adequate separation
of elastic and inelastic events. Figure 9a shows a two arm spectrometer used by
Akerlof et al.7 A nice feature of this layout is the two C magnets "Left" and "Right".
For a given momentum transfer and incident energy the momenta of the two scattered
particles are known. These two magnets are used to change the angle of the scattered
particles so that they always fall on the same line. To perform an angular distri-
bution it is only necessary to change the current in the magnets and not move these
very heavy objects around on the floor.

Allaby et a1.6 have made a spectacular set of measurements in the 10-20 GeV/c
region and they are shown against t in Fig. 8. The rather featureless behavior of
the forward région gives way to a striking energy dependence as t becomes large. 1In
addition a structure at t ~ -1.0 (GeV/c)2 is apparent at the highest energies and is
reminiscent of diffraction minima. A number of people have tried to reduce the
three dimensional quality of this presentation by suitable choosing an independent
variable against which to plot the cross sections. Orear suggested sgg against

dt
d 2
pl = psinf, Krisch <9 against Bz p; where B is the proton velocity in the c.m.

dt
system. It is fair to say that the success of these approaches has varied inversely
with the accuracy of the data although Krisch's plot given in Fig. 9b is the most
successful, There are discrepancies of about a factor of two between the data and
the lines drawn in this figure, of course they don't show up in a logarithmic plot
with this many decades. One can also see how breaks are found in an experiment which
measures at a fixed angle in the c.m. as is done by Akerlof et al.7 It is most
interesting to see how this distribution changes at even higher energies. It has

been suggested that there is an asymptotic angular distribution, independent of

energy, and the structure that is appearing near -t=1 is a part of this.



Whenever a model is suggested to explain scattering the most sensitive prediction
turns out to be the polarisation. If there are two amplitudes involved the interfer
ence between these accounts for polarisation if it exists at all. Recently targets
have been made where the free protons have their spins aligned. The most popular
has been a crystal in which the free protons are contained in H20 molecules within
the lattice. When the crystal is cooled and a very uniform magnetic field applied
the energy levels of states with proton spin up or down are split. The population
of these two states is affected by an applied R.F. field and these 'free" protons are
polarised by as much as 60%. This polarisation is defined as
-N

N, H_

=2

+

p=

To reverse the polarisation of these protons it is necessary to change the
R.F. frequency only, so that the opposite spin state becomes more populated. The
experiment has to distinguish between scattering off the "free" protons and those in
the nuclei forming the crystal. An additional disadvantage is that the crystal
dimensions are those corresponding to the wavelength of the R.F. needed to populate
the polarised states, typically one inch instead of the tens of inches used in a
liquid hydrogen target. The densities of the free hydrogen in the crystal are
comparable with those .of liquid hydrogen. It is a bonus that the magnetic field
does not have to be changed when the polarisation is changed so that scattered
particle trajectories are unaltered on changing the polarisation.

The limited number of free protons and the difficultes of separation of free
proton scattering vs quasi elastic scattering on the protons in the nuclei has meant
that polarisation measurements have been performed mainly at lower energies. Meas-
urements at low momentum transfers (0.8 (GeV/c)z) have been made up to 12 GeV/c
by Borghini et al.,8 Fig. 10. At lower energy (5.15 GeV/c) Booth et al.9 have made
measurements out to -t=2.0 GeV.c, Fig. 11, complementing the measurements of Grannis
et al.lo The broad conclusions are that the maximum polarisation decreases with
measuring energy, and that near -t=0.6-0.8 (GeV.c)2 there appears to be some
structure corresponding to that in the elastic scattering at high energies. Many
models have been proposed, both Regge and more classical, but a clear decision seems
impossible at this stage.

2. Antiproton-proton

The cross section measurements for ;p elastic scattering are not nearly so
extensive as for pp. The flux of antiprotons at an accelerator is small, and
experimentally, measurements are more difficult when each antiproton in the beam is
accompanied by 100 negative pions. The antiprotons in the beam are identified with

Cerenkov counters and measurements have been made up to 16 GeV/c.



. 11
Figure 12a shows data taken with a one arm spectrometer by Birnbaum et al. at

8 and 16 GeV/c. Figure 12b shows data at 6 and 10 GeV/c in a higher momentum transfer
region reported by Owen et al.12 It is immediately clear that there is a great deal
more structure in the antiproton data than with a proton beam. As before almost all
the energy dependence appears at-t > 0.6 (GeV/c)z. It is observed by Birnbaum et al.
that the cross section in the vicinity of -t=1 divided by the cross section at t=0
has become almost energy independent above 6 or 7 GeV/c. Perhaps this feature of the
cross section is part of the "asymptotic'" cross section that should emerge even more
clearly at higher energies. 1In Fig. 12¢ we show various values for the slope of the
forward peak and it looks as if b is a steadily decreasing number (antishrinkage) up
to the highest measured energies.
3. n-p

At high energies it is necessary to measure n-p scattering by detecting both
particles. Since as with all other hadrons almost all of the cross section is con-
centrated in the forward peak, then the neutron after scattering is still of high
energy. Experimentally the neutron is detected by observing the interaction in some
dense material in the form of spark chamber plates. There is little energy informa-
tion and really the only quantitative measurement is one point, the conversion point,

13,14 also measured the proton

on the neutron trajectory. Hence the experiments have
direction as a constraint, and as a way of determining the incident neutron momentum.
The neutral beam from an accelerator contains neutrons and a very few KLO with a
momentum spectrum that is wide and peaked below the protons that produce the beam.
This energy loss depends upon the production angle. Experiments are performed with

a relatively wide acceptance in angle for the neutron and recoil proton detectors

so that data is taken simultaneously over a wide range of s and t.

If the scattering is elastic, then the plane defined by the neutron and proton
has within it the incident neutron direction. In addition, in the experiment of
Engler et al.,14 the proton velocity was measured giving an extra constraint on the
elasticity of the event. Figure 13 shows the experimental setup of Engler et al.,14
Fig. l4a,b typical angular distributions. It is clear that this data is less accurate
and complete than the p-p data. A comparison that is easy to make is that of the
equality of slope of the forward peak using incident neutrons and protons or hydrogen.
This comparison is shown in Fig. 15. The error flags are large but it seems that
the two slopes are substantially equal and moreover the n-p data shrinks in the same
way that the p-p data does. These experiments are much more painful to do than .the
p-p scattering experiments and for the foreseeable future we expect that we must be
content with the conclusion that n-p scattering is remarkably like p-p scattering
within a fairly wide uncertainty.

But there is one difference. Since the pp system is symmetrical it is



meaningless to talk of a backward peak. However, in n-p scattering, there is a
discernable backward peak where the particle that emerges with small momentum trans-
fer is the proton. The experiment of Manning et al.15 is an excellent high energy
measurement of the n-p charge exchange cross section whose principal feature is the
very narrow peak at small angles. This peak is the source of a good deal of
theoretical wonderment although its narrowness has led to interpretation concentra-
ting on pion exchange. Here more data is clearly needed.

4. np

We have already discussed the substantial real part of the forward scattering
amplitude of pions and pointed out that the real part has the same sign for both
charges. With a lifetime of 10_16 or so no scattering experiments are performed on
neutral pions. The shape of the forward peak for the charged pions is exponential
and the exponent does not seem to vary with s at all.4 The exponent is slightly
different for positive and negative particles, and since the total cross sections
are a little different (~ 2 mb out of 25 mb) then the scattering is therefore
different in the I = 1/2 and 3/2 states at the energies we have reached as yet.

This is reflected in the finite charge exchange In-p d nonl cross sectionj we shall
discuss this.

As -t increases above 0.5 (GeV/c)2 some non-exponential structure appears
which is quite energy dependent. Coffin et a1.16 show a plot reproduced in Fig. 16
which displays nicely the way that the secondary maximum dies away as the energy of
the incident pion increases. Owen et al.9 have measured a nearly complete angular
distribution at 6 and 10 GeV/c incident momentum; ‘it is reproduced in Fig. 17. The
experimental method is also discussed in some detail in this paper. It is clear
that the whole of the cross section outside -t=1 (GeV/c)2 is very energy dependent,
the dip at -t ~ 0.7 (GeV/c)2 diminishes to a shoulder at high energies and the dip
at ~t =3 (GeV/c)2 becomes quite prominent. It is probably that this dip is
prominent everywhere when -t=3 is in the physical scattering region. Booth has
observed that near where t=3 is at 180° in the laboratory (an incident momentum of
~ 2 GeV/c) there is a violent change in the cross section as we shall see in the next
section. When we have a '"map" of the cross section as we do in p-p then we shall be
able to check this conjecture. There is a real debate about which is the physically
most appropriate variable to plot the cross section. Notice that the structures seem
to remain constant against t. These dips tend to be at small angles so that -t=p
and so we cannot decide that the constancy against t is significant. The Booth
remark may be relevant to this discussion.

The interpretations of the pion scattering experiments are many and varied,
it is fair to say that semi-classical diffraction, Regge, and the quark model

incorporating the possibility of multiple scattering of the quarks are all
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possibilities. As always, a strong constraint on the theory is the polarisation
dependence. Borghini et al.8 show measurements at 6, 8, 10 and 12 GeV/c. Figure 18
shows their results. The simplest models ask that the polarisation is equal but
opposite for ni, this does not seem to be the case. Recall that the measurement of
the polarisation of the protons in the target crystal is a little hard to determine,
but since these polarisations have been measured with the same apparatus we are
inclined to believe that this discrepancy is real.

We have finally remarked that since nif and n_p scattering is different then
there should be a small charge exchange cross section. Figure 19 shows a plot of
this cross section from Sonderegger et al.l7 The cross section is quite energy
dependent and shows the dip that was apparent in the elastic scattering at -t = 0.6.
This cross section has been the focus of a good deal of attention from the Regge
fitters, largely because of the hypothesis that only one trajectory is important, the
rho. The absence of a diffraction like amplitude leads to real simplification in
the analysis. Moreover, the rho trajectory goes through a wrong signature point at
-t = 0.6 so the major structure is fitted naturally. As we might expect with the
parameters available an impressive fit was produced. This edifice has collapsed
with the detection of a non-zero polarisation in the small t region. This handsome
experiment, although lacking in accuracy, indicated a non zero polarisation which
moreover did not seem to have any energy dependence. Their results are shown in Fig.
20. The single trajectory model cannot cope with this and another trajectory or cuts
have to be invoked spoiling the pristine nature of the earlier ideas.

Experimentally,the forward charge exchange experiment does not turn out to be
as hard as it appears at first sight. There is a good signature,in that a charged
particle comes into the target and no charged particle emerges. At 6 GeV/c the
"all neutral' cross section amounts to about 450 pyb and the charge exchange (nno)
final state accounts for 100 pub of this. 8o the rejection factor needed is not too
large after the first criterion is met. The method relies on measuring the conversion
points of the y's from the decay of the no in a spark chamber made from a hi Z
material, for example stainless steel or lead. Then since the velocity of the y's
is known the experimenter can transform the events to the c.m. system where all
velastic!" events have a common momentum for the no. Then the events cluster near the
minimum opening angle as, for example, in Wahlig and Mannelli et al. 9 in Fig. 21.
When this distribution is understood by the experimenter, cross sections are extracted.
5. Kp

These cross sections, in Fig. 22, resemble the gp cross sections as do the
experiments.9 There has been little structure observed (there may be a small effect
near -t = 0.8) and the small t exponent does not vary much with s. Possibly the

cross section shrinks if anything. The experiments are lacking in accuracy because



of the lack of high flux separated K beams. The short lifetime of the K is a real
experimental handicap in designing high intensity beams. One can imagine a consid-
erable improvement in high energy elastic K data as the beam technology improves

since at low energies 1-2 GeV/c the data is already fairly extensive.

REFERENCES

1. K.J. Foley, R.S. Jones, S.J. Lindenbaum, W.A. Love, S. Ozaki, E.D. Platner,
C.A. Quarles and E.H. Willen, Phys. Rev. 181, 1775 (1969).

2. G. Bellettini, G. Cocconi, A.N. Diddens, E. Lillethun, I. Pahl, J.P. Scanlon,
J. Walters, A.M. Wetherell and P. Zanella, Physics Letters 14, 164 (1965).

3. G. Bellettini, G. Cocconi, A.N. Diddens, E. Lillethun, J.P. Scanlon and
A.M. Wetherell, Physics Letters 19, 705 (1966).

4. K.J. Foley, S.J. Lindenbaum, W.A. Love, S. Ozaki, J.J. Russell and L.C.L. Yuan,
Phys. Rev. Letters 11, 425 (1963).

5. K.J. Foley, S.J. Lindenbaum, W.A. Love, S. Ozaki, J.J. Russell and L.C.L. Yuan,
Phys. Rev. Letters 11, 503 (1963).

6. J.V. Allaby, F. Binon, A.N. Diddens, P. Duteil, A. Klovning, R. Meunier,
J.P. Peigneux, E.J. Sachardis, K. Schlupmann, M. Spighel, J.P. Stroot,
A.M. Thorndike and A.M. Wetherell, Physics Letters 28B, 67 (1968).

7. C.W. Akerlof, R.H. Hieber, A.D. Krisch, K.W. Edwards, L.G. Ratner and
K. Ruddick, Phys. Rev. 159, 1138 (1967).
8. M. Borghini, G. Coignet, L. Dick, K. Kuroda, L. di Lella, P.C. Macqg,

A. Michalawicz and J.C. Olivier, Physics Letters 24B, 77 (1966).

9. N.E. Booth, G. Conforto, R.J. Esterling, J. Parry, J. Scheid, D. Sheriden and
A. Yokosawa, Phys. Rev. Letters 21, 651 (1968).

10. R. Grannis, J. Arens, F. Betz, O. Chamberlain, B. Dieterle, C. Schultz,
G. Shapiro, H. Steiner, L. Von Rossum and D. Welson, Phys. Rev. 14B, 1297 (1966)

11. D. Birnbaum, R.M. Edelstein, N.C. Hien, T.J. McMahon, J.F. Mucci, J.S. Russ,
E.W. Anderson, E.J. Bleser, H.R. Blieden, G.B. Collins, D. Garelick, J. Menes,
and F. Turkot, Phys. Rev. Letters 23, 663 (1969).

12. D.P.Owen, F.C. Peterson, J. Orear, A.L. Read, D.J. Ryan, D.H. White, A. Ashmore,
C.J.S. Damerell, W.R. Frisken and R. Rubenstein, Phys. Rev. 181, 1794 (1969).

13. J. Cox, M.L. Perl, M.N. Kreisler, M.J. Longo and S.T. Powell,III, Phys. Rev.
Letters 21, 641 (1968).

14. J. Engler, K. Hoarn, J. KYnig, F. MYnnig, P. Schludecker, H. Schapper,
P. Sievers, H. Ullrich and K. Runge, Physics Letters 29B, 321 (1969).

15. G. Manning et al., Nuovo Cimento 41A, 167 (1966).

- 24 -



16.

17.

18.

19,

C.T. Coffin, N. Dikmen, L. Ettlinger, D. Meyer, A. Saulys, K. Terwilliger and
D. Williams, Phys. Rev. 159, 1169 (1967).

P. Sonderegger, J. Kirz, O. Quisar, P. Falk-Vairant, C. Bruneton, P. Borgeaud,
A.V. Stirling, Physics Letters 20, 75 (1966).

P. Bonamy, P. Borgeaud, C. Bruneton, P. Falk-vVairant, O. Quisar, P. Sonderegger,
C. Caverzasio, J.P. Guillaud, J. Schneider, M. Yvert, I. Mannelli,

F. Sergiampietri and L. Vincelli, Physics Letters 23, 501 (1966).

M.A. Wahlig and I. Mannelli, Phys. Rev. 168, 1515 (1968).

+ ABSORBER

LIQ. Hp TGT. 3 30072
BENDING
MOMENTUM- p, A2 A3 MAGNETS
ANALYZED
BEAM

# COUNTERS
cTl S

Figure 1.

- 25 -



DSIG/DT, ME/(GEV/C Y

lUOO-Dﬁ T —T T T 3
r 7.89 PI- .
N/—
= L i
~
=
ud
[do]
< 100.0F =
= - ]
}_‘ — —
= N
S ]
n _
a
| 1 1 1
10.05 010 020 E -040
-T, (GEV/C)
Figure 2a.

1000.0p — ] . | - 1000.0f - . . ,

- 11.89 PI- ] r 26.23 PI- ]
Nr—

” 7 ) B 7
~
>
LJ
[}

100.01 7 5100-0F .
- 1 2 - ]
T -

B ] - r ]
B 1 = B ]
~
= — D — —
&
()
l 1 1 | | 1 i
10057 Tio 020 03] 040 080 10.05 010 .0s0 030 040 050
~T, (GEV/C) -T, (GEV/C)?
Figure 2b. Figure 2c.

- 26 -



1000.0 T

TTT

T

T

100.0&

DSIG/DT. ME/(GEV/C )

T T

7.76 Pl+

[

L

{

111

L t
10-05 010

1000.0 T T T T
C 11.95PI+ ]

N/—

= L -
~

=

Lt

&

> 100.0

=

—

o

~

S

w

a

10.0 | L ! I
0 .10 .020 .930 .040
~T, (GEV/C)
Figure 3b.

| |
-020 -930
-T., (GEV/C)

Figure 3a.

1000.0

T T TT1T7

100.0

0S1G/DT. ME/(GEV/C )

T T T T
17.96 PI+

111

|

LIy

(|

I L I
.010 .020 -930 .040
=T+ (GEV/C)

Figure 3c.



DOWELL ET AL

&
T ' ' ' ' ' ' ' ' ' PRESTON ET AL v
10 »| KIRILLOVA ET AL e
| TAYLOR ET AL x
| FOLEY ET AL o
i LOHRMANN ET AL °
051 BELLETTINI ETAL °
1y PRESENT EXPERIMENT o
\
\
0 Al L ] i 1 1
T TS ) [3 F3 0
) 4 +e § - oevie
1 % LI ¢
-0 ¢
The ratio, p, of the real and imaginary parts
of the forward elastic proton-proton scattering ampli-

-0.3

8 10 12 14 16 18 20 22 24 26 tude as a function of momentum.

INCIDENT MOMENTUM, GeV/c

Figure 4.

Figure 5b.

dg
K 30,
®/sr) R, =10,11 GeV/c
(
20- d) B =10.11 GeVic
=243 ;=052
15 A6 A;=350  (GeVic)?
X
10—
08
9=0
R S B R A=104(GeVicY? | | | 0 I I
0 2 & 6 8 10 12 % 16 B 20 2 (wod : 01 02 03 04 05  [(Gevic)]
V(LAB) -t
do
£ 2! .
(blsr) R = 19,33 GeVic ,
LAB) 15, ) R =19.33 GeVic
e,
a,=222 a;=059
0 Az12 A;=300  (Gevic)?
o8
0.6
1 1 i R} 1 i 1 1 1 1 1 04 1 Il 1 1 1
0 1 2 3 4 5 6 7 8 9 10 n (od i Ot 02 03 04 05 06 HGevic)]
U(LAB) -t
P, =26 42 GeVic 15l R = 26.42 GeVic
f
) Q=217 a,=061
1ol A= A3=250 (GeWd?
08
X
06-
0.4
1 L i 1 i i i 1. 1, 1 1 1 1 03 H 1 1 1 1
0 1 2 3 4 S 6 7 8 9 10 N (mod) 0 02 04 06 08 10 [Gevio?)
V(LAB) -t

Proton-proton elastic scattering angular distributions at 10.1, 19.3 and 26.4 GeV/c.
Sections (a), (b) and (c) give the experimental cross sections plotted against scattering angle
and show fits made using a complex spin independent amplitude. In (d), (e) and (f) X is the
difference between the e)g)erimental and Coulomb cross sections, normalized to the optical

theorem value (kogoi/4m) <.

X is shown as a function of the square of the 4-momentum trans-

fer . Attempts at singlet-triplet imaginary amplitude fits are shown.

Figure 5a.



R A N E—
- a+bt
100 P-P e ®*PpT -
? | p-Bevre| a | b | 3
7.2 4.96% .09 [13.15% 0.47 -
- 8.9 504+.03 [12.8420.2| —
= T\ 10.0 507%.26 |11.8 +2.9 -
| L% |12.0 [4.99t.04|2.66%0.29 _
\
o N
© 10 |— ]
alx = \ —
e [ & \ 3
o [ \ 3
C \ _
Sz \ s -
o o L \»~—8.8 BeV/c p-p _|
— \\
QIE ~ \ o 7.2 BeV/c] MAGNETIC
olb \  ® 12.0 BeV/c[ ANALYSIS
- N\ o 7.2 BeV/c RECOIL ]
E \ w120 BeV/c} DETECTION
= \ -
- \ 7
- \ N ]
L \
N |
\
N _
N\
o — \ —
- 12.0 BeV/c =
C 3
- 7.2 BeV/c
| ! l f ! }
0 2 4 6 8 1.0
-t(Bev/)?
Figure 6a.

CE T T 1 3 COETTTT T T
-  K*-P ] - K™-P ]
_ eatbtrct? ]

&(I |p-Beva| a | b | ¢ .

NN 6.8 [2.98%.22(6.13+.88(1.362.77( __| bttt i N
E N 9.8 [2.98+.08 |6.23+.45[0.99x .55 | ) =
— — p BeV/c| a | ¢
= 12.8 [3.09%.07 |693+.38|1.18+.45 | 3
— \k 14.8 [3.10%.07|7.06+.38|1.73+ .42 | — 7.2 3.66+.30(10.2*1.2|3.97+ 92
- N — 9.0 362 +.30 [10.5%1.2| 4.2+ 1.0
— — X —

N A
L _| . I §\ B
o o
2 § = — g % 1= \E
g = 3 o 3
@ E ] I =
— — f— —
b~ [ _ - ]
| 6.8Bev/c L —
14.8 Bev/c
| ] | 7.2BeV/c |
|- *14.8 Bev/c MAGNETIC ANALYSIS — - —
|- o 6.88ev/c - - °7.2 BeV/ey RECOIL -
- 148 Bev/e | RECOIL DETECTION +9.0 Bev/cS DETECTION 9.0Bev/c
o I R R B B o I D | ,
) 2 4 6 8 1.0 12 0 2 4 6 8 1.0 1.2
—t (Bev/c)? —t (BeV/c)?
Figure 6b. Figure 6¢.



9«
dt
121 g o NV
_ S538.rss
e B 11072048
M [ra@-a
R N
0.8r t
i
r i
506F h
=
: )
&
W
w
2 {{ )
h
g !
o
M i A A i 'l A i " A A . L L
0.04 0.05 016
s
The differential elastic cross-section in the arbitrary units
at 58.1 Gev.
me/cfz ® —this expeziment
oL © = /1.6 KHPUNNOBA ¥ 0P, QUGHA (1965r)
L o ~G.8eCettint et 08 CERN (19551

4 =K.J.Fo€ey et a€. gzookhaven (1963r)

{
{
T
PR

1r

1ol

. o
/N

Lsgst. cror
73 4 6 8 10 20 30 50 | 70 ¢

The results of the measurements of the slope parameter.

xin Cati0eV)

Figure 7.

- 30 -



da/dt [cm?/ (GeV/c)]

n"‘L L L " ) L " 1
6 10

©7 %

g

8
il fGevrei’]

Proton-proton elastic scattering cross sections do/d¢ as functions of It | The curves joining the experimen-

tal points are hand-drawn to guide the eye. The loci of cross sections for fixed ¢.m.s. scattering angle are indicated
for 60°, 80° and 90°.

Figure 8.

- 31 -



ELECTRONICS MAGNET -

TRAILER ,/////}

TELESCOPE

74

SCALE IN FEET —
Experimental layout; the incident protons come down the extracted beam and strike the target. The scattered protons pass
out through the magnets and scintillation counters.

Figure 9a.

Io-zs - T T T [z Iz T T T T T T T 3
- —100B°P 7
g :
1528 i ]
% E
o7 _'1 ;
ﬁ oBNL FOLEY eT aL 24.6 GeV/c 3
h; +BERKELEY CLYDEET AL 5—7 GeV/c]

s[% °ARGONNE AKERLOFeTALS =134
107" «CERN ALLABYeraL8-~2( GeV/c 3
- *BNL COCCONIETALIO~—~32 GeV/c -
10'2"; & ;
A . z
5ol Rl ]
o y31 ; ]
W55 10 <
LE, 2 nd 3
1 0 )
B 107 E
©lo E 3
|o'33:..~ ;
103 ; ;
10’35; ;
1538 ; ;
|0'371l: I [ S B N %_{7

Plot of dol /dt vs p2P.2 for all high-energy

proton-proton elastic-scattering data. Not
all small-angle data are shown on this

plot to avoid crowding. The lines drawn are
straight-line fits to the data.

Figure 9b.

- 32 -



010F

o 59 GeVic
a 58 GeV/c
« this experiment, 60 Gevic

{gi{ {{é%} {{{ {

i%{ | |

-0.10-

0

020+

87 03 0z 0% [ l().'71 t
-t (GeV/c)?

o 9.4 GeVic
o this experiment, 0.0 Gev/c

l{f“*“**ﬂm

-010+
ok}

010

TI 1 1 1 1 i -
3 04 05 06 07 08 09

07 02
-t (GeVic)®

o this experiment , 120 GeV/c

}Hf”i{.i {.{ i

1 ] 1 ) U T
7702 03 04 05 06 Q7 lOB 09

-t (Gevic)

The polarization parameter P, versus{ in pp

elastic scattering.

Figure 10.

a4

3

p2

|
T

Ml !

I 1 I | 1 | 1

o

4 6 8 10 12 14 16
-t, {Gev/c)?

Figure 11.

- 33 -

18

20



mb/(Gev/e)®

do

dt

1000 :\ 1 0005
T 0004 (a)
100 '.-"A
- “'-AA: erte L 3| go003f %
" I- -6 %‘
100 | v . T
: 'vé‘ééééééé 318 oooz %
[ SO S }
01000 = Y I EER R o + 0001 |
C . 3 % ¢ i
F v oo i | 1 i i 4 -
o010 i § 8
E ¥ t 20
£ } f ¢ f
[ } i
00010 (b)
E 3 Borish et al 2 GeV/c f
t $ Kotz et ol 3.67 Gevk
$ Ash t ol 59 Ge/
0.0001 E ¥ P:e;nei('e :x:erimen: BcGeV/c 151
F ¢ Orear et al 10 GeV/e <0 '.\': %
o ¥ Present experiment 16 GeV/c ! 3 5 2
| 8 % ? .o
P I (O N O RN NN NS N ot ' 5
[61¢] 0.20 0.40 0.60 0.80 1.00 120 140 1.60 3 §
-1 (Gevie)® 2 Y
Differential cross sections for p-p elastic vok
scattering, For purposes of clarity, the data of
Orear et al. at 10 GeV/c and the present 16-GeV/c
data have been scaled by a factor of #.
Figure 12a.
5 1 1 i i A i 1
2 4 6 8 10 12 14 16
Pinc (GeV/C)
(a) Ratio of the p-p elastic differential cross
,02% ! ' [ section at the secondary maximum to that at£=0 as a
o 7 function of incident momentum. Solid circles are our
a © 9.7 GeV/c . i i Be i
o'l Th7s Experiment B data; (b) .Logarlthmlc sllope of the p p elas"uc‘
o D 8.9 Gev/e — differential cross section as a function of incident
ol ° Foley et al, 1963 momentum. Solid circles are our data.
0" =5 459 Gev/c -l
— Ashmore et al, 1968 — .
g Figure 12c.
-l Aan N
oL Yo .
[N

2 = _ WMEM st Ll b L LLLLEL
0o - - S LLLLLELL

- ] 3 - = Wa%
R [

do/dt mb/(Gev/c)?

NEUTRON DETECTOR

>PROTW SPARK CHAMBERS E
S’ECTROMETER

PROTON
— TRAJECTORY PROTON COUNTERS

(\W\\'T\‘<‘\\

-t (GeV/c)2
The experimental set-up.
Figure 12b.
Figure 13.



do 2
3t {mb/(GeV/c)€)

01

001

8GeV<E_ <10GeV

n 1 llllll“

el

02

do/dt mb/(Gev/e)?

do/dt mb/(Gev/c)2

04

1000

100

o

©

00!

1000

100

Ol

00l

000!

2

06 10

1t (GeVic)2

il (Gevrc)?
0 20 40
= 1000
L

;3.0 GeVre |

- 4 100
L 4 10
- 4 ol
0o 0 -0

cos 8%

Ml (Gevrc)2
0 40 80

er g 1000
£5.| Gev/c ]

! ]

E E 100
B E

0 ]

,_f -

£ 3 10
L 5 ol
Ay oy

= p g7 oo
I opol
o 0 -l

cos 6*

It} (Gev/c)?
20 40

0
2

TR AN

L 3.6 Gevic
3

=
F

Loyl
[

T T TTTTIT

Lodliil

T T T 1T

oLl

1 | i
0
cos 8*

10 -10

Il (Gev/c)2

£5.6 Geve ]

T T TTTTIT ordlen T fof THT]
)Ll

Lod ol

T T T TTTmT

|

T
——

Loy bt

|

1.0 0
cos 8*

L
o

The differential cross sections do/d|¢| versus

|£| for primary-neutron kinetic energy of 8-10 GeV.
The cross section at ¢ = 0 is normalized to the optical
theorem point. The straight line represents the fit to

exp (A+ Bi).
Figure 14a.
Il (Gevre)? It (Gev/c)?
0 20 40 60 0 2040 60
le] ET T 1 1] 0 FT 77T T3
" 4.1 Gevri | 4.6 Gevrc ]
i
100 £ 4 100} e
? 3 d E
H 1 A ]
L3 4 L i
i3
10 £ 3 10 E 3
L ] L ]
ol E . ol k£ E
g E F E
i ] L ]
00l — 00l L
10 (6] -10 10 (6] -10
cos 8% cos 6*
It (Gev/e)? It (Gev/c)2
O 40 80 0O 40 80
IOOO EV T T 11T 7 VE 'OOO Ef TTTTTTTT \:
;6.1 Geve | £ 6.8 Gevic
A | L 7
100 £ 3 100 & El
i E r B
I ] s
B 1 i a
10 ¢ E 10 & E
& 3 B E
K] ] % 2
. i R i
Ol 3 Ol ;i E
ool £ 4 ook } 5
000l Lt 000l . f‘ }‘
1.0 o} -1.0 | (6] -10
cos 6* cos 8%

Figure 14b.



12 T T T T B T T T T
T T T
p-p I

n-p
do AsBt 11 Cox etall il < 0.4 {Gevik) 2 o Foley etat® 0.2 < ItI<08 (Gevic)? _
ar c 0 v Besliu etal 3 ItI<0v3(GeV/c)2 v Clyde et al. 4 03 < It|<0.B(GcV/c)2

m This experiment 03 < il <0.8 (GeVic)? o Hating etal.® 02 < 11<08 (Gevig? |

0

T S

B [Gewc]-2
——

4=
—4-

i
L,..J - 1 1 1 | | | | | | | | Y VN IR W -
5 —7 2 6 ~8 10 12 I T

KIN. ENERGY  [Gev]

The slope B as obtained by fitting the differential cross sections by exp (4 +Bf) versus primary-neutron Kin-
etic energy. The range used for the fit is given.

Figure 15.
10 T T T T T T 3
E w¥+p Elastic Scattering ]
10 2.5 BeV/e 3
Ol .
o F ]
o ]
oS F ]
Eg 1 | T T T T 1 T
o o' ]
© ".OI E = N =
E E °
F ] 109 b= °© 9.7 Gev/c i
[ ] K 4 9.8 GeV/c>THIS EXPERIMENT
| i 413.6 GeV/e I
o ® 9.9 GeV/c
00i- =25 . 107~ o 8.9 GeV/c FOLEY et al, 1963 .
F 239 s E -\ ]
[ 240 | Experiment) k o \\
+ . L 5 -2 Ry
| ©l24 Harting efa/. 1 %’ 10 r 5\.‘\ l -
I 1 1 1 I 1 [ ol i ! -1
0 4 8 12 16 20 24 28 S . 1 / ! :
-t(Bev/c) g 10 L \ / 0 ¢
" 5.9 Gev/c / . _
i r T T T T —T T ] T , /
N .
- =~ + p Elastic Scattering] s 10tk o ,/ / 3
- 1 C NN 8.0 GeV/c ) n
L58 Bev/C ZIN # -
[ s §§§ § ~N
-SL ~
ID_— _H 10 3 - f -
- p B § \jx_ -
1 1078 { { I f =
. N | .
U — . . .
S 1 10 1 1 i 1
2= - ] 0 3 6 9 12 15 18
@ -1 (Gevre)’
ble— } | .
<l L— l?.e..o Figure 17.
oI 180 B
- 158 (Duke e al) B
| 2.0 (Damouth etal)
00— 225 .
r 328 (This Experiment} h
L 060 4
1201 ! Orear e af)
I 18.0f |(Horting ef a/) b
1 1 1 1 1 I .|

0 4 8 12 1.6 20 24 28
- t(Bev/c)

Momentum dependence of the secondary peak in #+t+p
and =~ 4-p scattering.

Figure 16.



8.0 GeVic

)
040f
aob { 60 GeVic .

* 0

Q20+ { } { {

010 { { } ;{ 010f

o087 0z 03 04] ol —e 0

(Gevic)?

anf g ! 01
oz oax
Q30+

x -

oW p

g B
0; 100 GevVic 030r
020 QxF
010

——
c . 1 L
@ 02 03 04 a6—07+-08 -t
I k*q_ (GeVlc)?

-00
)

o1

120 GeVic

0609
-t (Gevic)?

The polarization parameter P, versus{ in nip elastic scattering. The curves represent the theoretical pre-

dictions of Chiu et al.

Figure 18.

- 37 -



o GV

L]

1000, , Tp-Tn i

'AAO 4

O ode (:
ﬂ\$ 44

Ny x

BROKEN LINES*
(59 98 133 18.2 GeVic)

307 GeVk
367

483 °
585
1330 *
8.20 *

10 GeVe MIT-PISA

Lo
, 0
toy +

3

THIS EXPERIMENT

PREVIOUS DATA

1

1 15

-t [GeV/ A

+04
[A13]
+0.3

- +0.2

+0.1

-0.1

Differential cross sections for 7 p — 7°n. The
MIT-Pisa results at 10 GeV/c . The
broken lines are smooth lines through the results.

Figure 19.

- 38 -

T ="
- { 5.9 ¥/
{ 1.2 Gevle
T{% J- i
1 1 4 1
o o1 0.2 03  _y (mik)

Polarization parameter P({) at 5.9 GeV/c (open
circles) and 11.2 GeV/c¢ (black dots).

Figure 20.



T T T T T T T T
90} (a) | (b)
K] 2
S 80F 2.9 Gev/c 18 6.0 GeV/c
= L=
R 70} 1=
Q - 3 6o} ]
s ¢ // \\ 12 50 J
~ 50f / AN 1759
7 \ - o - 4
:E, 40} \\\ - § 40 ll’ \\
> N @ \ -
: 30 /! \\\ 1% 301 ! \\\
o 7 o L ~ 4
o 20} / ~d 5 ]
a - 7 =~ .
€ 1of / 1E'9 /
z S z 0 4
o] ! - I L I B 1 I ) )
0.9 1.0 .1 1.2 1.3 .4 0.9 1.0 1 1.2 1.3 1.4
T T T T
(c) (d)
'<>5 o 3201 b
£ 280 2 280 1
Q o 240} g
b 240 0
200 200 1
g 160 160} ]
)
+ 120 120} ]
g 80 80 1
E -
2 40 40&1—‘_ \-

] - b
0.9 1.0 Ll 1.2 1.3 1.4 0 0.5 1.0 1.5 2.0 25

9/ emu'n

Distributions of the 2+ opening angles 8 in the #~p c.m. system, normalized to the minimum allowed opening angle m;n for
each momentum. Note that the sharpness in the opening-angle distribution is masked here by the expanded scale and buried zero in
68/6in . The solid lines are the Monte Carlo predicted distributions, normalized to the number of experimental events in the interval
0.965<0/65ix <1.165. The dashed lines in (a) and (b) are the Monte Carlo predicted distributions for the #? in the reaction ==+ —
N*0(1236)+°, and are arbitrarily normalized. (a) The 2.9-GeV /¢ distribution is typical of all those between 2.4 and 3.8 GeV/c. (d) The
7° 8/0min distribution has two backgrounds —the tail of the #° distribution which extends under the %9 peak (dashed line) and a residual
flat background from multi-y events (shown by dash-dot line). The »° Monte Carlo calculated distribution (solid line) includes these
two backgrounds.

Figure 21.
1000 T T T T T T
K™p T
3 ® 5.8 GeV/c GEOMETRY I
3 2 5.9GeV/c GEOMETRY 2
100}~ § —
. ﬁ;
L 10
: [ f i
3
ES
.E 1
5 10f { .
o.l |- -
slo'
] ] ] 1 I 1
0.0 ] 2 3 4 5 6
-t (Gev/)?
Figure 22.

- 39 -



IIT. BACKWARD PEAKS

The motivation behind the study of the cross section near 180° has derived
largely from the fact that if exchange diagrams are postulated as the major contri-
bution, the number of particles or trajectories that contribute is small., This
represents a satisfyingly small number of parameters available (for example, in a
Regge fit) so that careful experiments are expected to reveal some understanding of
the dynamics. First we would like to show why the assumption of dominance of the
exchange diagrams is reasonable at the energies that are accessible presently.
Baryons exist of strangeness -1 and strange states with baryon number +1 do not
appear. The question of the existence of the Z* we set on one side for the moment.
In this case if s channel contributions dominate, we would expect K-p scattering to
be much larger than K+p scattering and if there is peaking at 180° it would be thought
as reflecting the high spin of the compound states of the high mass K_p system. As
is shown in Fig. 1 even at 3.5 GeV/c the backward cross section is much greater
for K+p than K_p. This, which combined with the fact that the K+p cross section is,
as we shall see, comparable with n+p leads us to claim that at momenta above 5 GeV/c
say, the baryon exchange diagrams are dominant.

There is another feature which has made this field attractive experimentally
and that is illustrated in Fig. 2.2 Here ﬂ+p and ﬁ-p scattering are plotted on the
same graph and we see that n+p near 180° has a higher cross section than n_p. Since
n-p scattering involves the exchange of a doubly charged baryon, we can deduce that
it proceeds by A exchange only. ﬂ+p on the other hand can be either nucleon exchange
or A exchange and if the A were dominant this would make the ﬂ+p 1/9 the n-p cross
section. (Clearly the nucleon is dominant and this helps us to simplify the analysis
of these experiments. Conversely,there is less the theorist can do to fix the
correspondence of theory to experiment.

It is not our place to explain the phenomenology of these data but we must
remark that the energy dependence of the cross section is a crucial parameter and
since the dip in n+p at-u = 0.2 (GeV/c)2 is explained by a zero in the A exchange
amplitude it is also important to understand the experimental behavior in the dip
region. After describing the experiments we shall try to focus on these features.

np Elastic Scattering

Perhaps the most complete measurements of nxp elastic scattering at high energy
is made by Owen et al.3 Measurements of useful accuracy were made on both charges at
6 and 10 GeV/c and on negative pions at 14 GeV/c. 1In the lower u region accurate
measurements have been made for negative pions by Anderson et al.4 at 8 and 16 GevV/c.
These data are particularly impressive in view of the small cross sections involved,

typically, the cross section integrated over the entire peak is less than 1 pbarn.
y ¥, g
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The most salient problem in these experiments is that of removing background processes.
Figure 3 shows the momentum spectrum of the forward going proton in the experiment

of Anderson et al.,4 the signal is clear and subtraction is minimal. This experiment
is shown schematically in Fig. 4, the method consists of comparing the momentum of the
incoming pion to the outgoing proton and calculating the missing mass. That the

peak at mﬂ2 is so prominent is gratifying indeed. Remember that at high energies the

dependence in the momentum of the outgoing proton and the incident pion is

The outgoing proton is slightly above the beam momentum. Owen et al used the
two arm spectrometer technique illustrated in Fig. 5 where the momenta of the
scattered pion and the recoil proton are measured. In this experiment there are a
number of parameters determining the elastic events, 5 in fact. Figure 6 illustrates
the technique.

The angle of the scattered pion in the laboratory even after passage through

the magnet M, of Fig. 5 is monotonically related to the c.m. scattering angle for an

1
elastic event. It is possible to make an algorithm which gives a c.m. scattering
angle when the angle of the track is measured in scl-sc4. With this information the
momentum of the pion is known and the trajectory can be extrapolated back through

magnet M. to the target T. The interaction point is taken as the point of closest

1
approach of this trajectory to the center of the beam. Then, the recoil proton
trajectory can be calculated and compared with the proton track in SC5,6' We can
insist that the slope of the proton track and its spatial position in two dimensions
must coincide with the expected coordinates. We insist also that the interaction
point is in the hydrogen target, Axp. In Fig. 6 we show the difference in the
horizontal displacement of the proton that is measured and that is expected from
the pion. The upper curve is this difference in all the events, the lower curve
when the other four parameters are constrained to be near their elastic values.
Again the elastic peak is gratifying and the subtraction minimal. The tail when Axp
is positive is accounted for by the emission of a “o or heavier mesons of relatively
low energy. The experiment of reference 2 is performed in a similar way to this one.
Although this method is not general, it illustrates the technique that all the
parameters that can be measured may not be in a particular experiment, if the event
signal to background is adequate.

Figure 7 shows typical data for n+p background scattering. Two features are
clear. The first is that there is a considerable energy dependence at all values
of u. The second is the very pronounced dip at -u= 0.15 (GeV/c)z. Figure 8 shows
the n-p cross section, and although the energy dependence is still pronounced, there

is no very obvious structure as there is with positive pions. As we have discussed,



since there is a good case for the dominance of the nucleon trajectory in exchange
for n+p scattering, the fact that there is a singular point q(u) = -% near -u = 0.15
(GeV/c)2 allows us to jump to the obvious conclusion that this point is associated
with the structure here. A linear nucleon trajectory is consistent with this.
Unhappily the singular point in n-p scattering occurs near.u = =-1,2 (GeV/c)2 and
nothing so spectacular is here. The simple Regge description needs some amendment.
It should be observed that at lower momenta where t and u channel effects are more
closely intermingled the dip appears. Whether this is significant remains to be
seen. In Fig. 9 we show the energy dependence of the cross section at u = 0 for
ﬁ_p scattering. We have argued that a single trajectory is dominant so that the
energy dependence of the cross section is then simply given by SZa(O)-Z. The
graph illustrates one of the difficulties of the field. It is clear that one would
expect this to be a smooth curve, in fact linear, even though the experimental errors
allow some leeway, there does seem to be an inconsistency. The slope of this curve
in rough terms corresponds to a linear trajectory, but some adjustment in the
normalization between the experiments would improve the X' .

It is not hard to see how some of this discrepancy comes about. If we look
at Fig. 3 the projected slope of the background can be seen. The experimentalists
concerned have many good reasons to believe the shape of the non-elastic distri-
bution that is sketched in the diagram. If we return to Fig. 6 we see the background
in the experiment of reference 3 and here the experimentalists have a different
prescription, the background varies smoothly under the peak. Both points of view
are defensible and only experiments which are capable of greater precision can tell
which is correct. 1In the meantime this parable is intended to convince those who
fit theoretical curves to a number of experiments that naivete in regarding the
experiments can give nonsense for conclusions.

These two experimental groups have also enjoyed themselves discussing the
existence of a possible dip near 180°. If it exists it is clearly small and near
the limit of precision of both experiments. This author feels that at best the
question is undecided and so the theorists can feel free to speculate. However,
at lower energies the dip near 180° certainly exists and it is very clearly
demonstrated by Carroll et al.5 in Fig. 10. It seems like a feature of the data
which depends slowly on s and hence not dependent on the details of the resonant
states involved. Kormanyos et a1.6 have used the two-arm spectrometer technique to
measure very carefully the variation of the 180° cross section against s in n-p
elastic scattering. The motivation was that resonances in the s channel might be
more apparent this way. The data is shown in Fig. 11. The structure is gplendid,
although Booth has observed that the dip at 2.1 GeV/c momentum may be associated with

2
the forward dip at -t=3 (GeV/c)  and not a resonance effect at all. This subject is



still cloudy. The peak at 5.1 GeV/c was hailed on Voice of America, but despite
this public relations effort, its absence in the charge exchange reaction (Fig. 14)
leaves us with fears for statistical fluctuations. More work is needed.

In summary, above 3-4 GeV/c the backward cross section becomes sufficiently
large compared with that at 90° ¢.m. say, that the peak is clear and we can argue
that u and t channel processes are separate. Moreover some of the high energy
features (for example, the dip in n+p at-u = 0.2 (GeV/c)2 can be seen in the data
at lower energies than these. The fitting of these data into simple models has
been quite successful and the measurement of the polarisation at high energies would
be very interesting indeed.

The reaction that provides a strong constraint on the theory is the backward
charge exchange. Since it is almost true that n+p is pure I=1/2 exchange and n_p
is pure I=3/2 exchange then the measurement of ﬁ_p - nno measures directly the

>” have been done up to

relative phase of these two amplitudes. These experiments
about 5 GeV/c and we describe the method. The experiment of Chase et al.7 is shown
schematically in Fig. 12. The target is surrounded by shower chambers or shower

veto counters except in the forward direction where there is a veto system for
forward showers backed up by a set of neutron converting chambers. The experimental
method consists of insisting that no charged particles leave the target region

and then that a particle appear in the neutron chamber. The ¥y rays from pizero

decay appear in the shower chamber so that their opening angle in the c.m. system

can be calculated just as it is done for forward charge exchange. Again the bisector
of these y ray angles is used as the direction of the pion. The cross sections are
shown in Fig. 13. The solid lines are the predicted cross sections using a parti-
cular Regge model that fits the charged pion data very well. The general features
are described but the details of the cross section do not seem well fit.

An experiment analagous to that of Kormanyos et al.6 has been done by
Kistiakowsky et al., the cross section at 1800 has been measured as a function of
the incident pion momentum at closely spaced intervals from 2 to 6 GeV/c. The
data is shown in Fig. 1l4. Since the experiment only measures near 180° and the
pizero momentum is essentially independent of the momentum of the beam, then this
group were able to make an annular counter hodoscope that detected the gamma rays.
The data are quite accurate and should be very useful in the understanding of the s
channel effects in particular. There is one difficulty, and that is the data
between these two experiments do not seem to agree too well at the lower energies.
Patience is called for.

Kp

We have mentioned backward scattering of kaons as a justification of the

2
absence of large s channel effects above a few GeV/c. Baker et al.” have measured



K+p at 5.2 and 6.9 GeV/c, these data are shown in Fig. 15. The peaks are clear but
it is hard to make very quantitative remarks about them. Figure 16 shows the energy
dependence at u=0 for K+ and K , it is strikingly different. The slope of the K+
energy dependence (5-4) is entirely consistent with the value of the Aa trajectory
at u=0.

K-p scattering at u=0 falls approximately as S-lo. It has been remarked that this
could be consistent with a Z* trajectory of conventional slope corresponding to the
bump observed in the total K+p cross section.

For the future, higher intensity K beams can be made, but there are serious
technological problems with doing better K experiments with them at present. It
will be some time before this data can be made as accurate as the present pion data.

»p

For the same reasons as in Kp, the Ep data is not available at high energies.
At 8 GeV/c, Birnbaum et 31.9 quote an upper limit of 0.18 ub/(GeV/c)Z. This upper
limit is very much smaller than the pion cross section at the same energy. At
lower energies this cross section has been measured between 1 and 3 GeV/c. The
structure is very pronounced due presumably to the boson states that can be produced

and it is hard to say much about the high energy behavior.
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IV. TWO BODY INELASTIC REACTIONS
Isobar Production.

The data on two body reactions are generally less accurate than the data that
we have discussed previously. There are two separate reasons for this. First, the
direct observations that are made are of the 'stable'" particles that are emitted in
an interaction. 1In a bubble chamber all the charged particles are customarily
observed and measured. Then by balancing energy and momentum the mass and momentum
of the missing object is deduced. 1If this is a known stable object (for example,
neutron, pion) then the reaction is determined. It is often true that a neutral
decays in the chamber (A, KSO) and then these events also are determined as well as
if the neutral were a charged particle. After this identification of reaction is
done the experimenter calculates the invariant mass for various combinations of
these stable particles to see if there are states of defined mass from which the
stable particles have come. Bockmann et al.l is a typical example in which a ;
beam is used in a hydrogen bubble chamber. Figure 1 shows the Dalitz plot where
the events are plotted against the mass of pﬂ+, E&_ in a two dimensional array from
the reaction

PHp > AP

It is easy to see the cluster in mass near the A(1236) in both states so that
we can argue that the primary reaction in most of the cases was

ptp = AtA
both A's being charged.

Using the events in the right mass region allows a plot of cross section
against momentum transfer to be made as is shown in Fig. 2. Notice there is a
minimum momentum transfer even at 00 because of the masses of the A. The relative
paucity of events is explained by the following calculation. A reasonable bubble

. 5 . . . .
chamber exposure is 10~ pictures with perhaps ten particles per picture. 1In a

fiducial volume of 30 cm(l) then 1 pbarn (o) of cross section gives

23
Nevents Lxpx6x10 X 0x Nparticles

30 x 0.07 x 6 x 1022 x 10729 x 10

1.2 events/ub

6

Now, it is imaginable that we can increase this by a factor of tem but not
much more. This is one of the major reasons that we have not discussed many bubble
chamber experiments so far since 1 ub is a reasonable level of cross section for
many of the processes at high energy.

The second reason that these inelastic reactions are generally less accurate,
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is that the counter-spark chamber experiments have relied on the one arm spectro-
meter technique. This means that in a reaction where one of the products is stable,

for example
0
ptp = pHN* = p+(ptr )

then if we measure the momentum spectrum of protons from this reaction we shall see
a peak corresponding to the mass of the N* together with a continuum from the protons
resulting from N# decay. In addition there is a non-resonant background where the
mass of the pno system lies under the N* peak. The experimental problem is typified
by the curves in Fig. 3. A smooth curve must be subtracted and the cross section
for the peaks deduced. The cross sections are rather dependent on the form of the
background and the widths that are assumed; this reflects into the large systematic
normalization error quoted although the t dependence and to a lesser extent the
energy dependence of these cross sections should not be so uncertain. Foley et al.
show data from pions as well as protons, and at least to the untutored eye they look
very similar. Figure 4 shows the integrated cross section for the production of

the various isobars as a function of incident momentum. The remarkable fact is

that they are rather energy independent with the exception of the N*(1236) which
decreases with incident momentum.

There is an empirical rule, suggested by Morrison,16 for those reactions which
appear to be constant with energy. The rule is that if there is a change of spin
AJ from the initial to the final state then for these "allowed" reactions the charge
in parity is given by

p = (-n%
and moreover there caennot be a change in I spin. This is explained by the diagram
in Fig. 5 where the exchanged particle is a pomeron and the mechanism of production
is that the incident particle dissociates into a nucleon and a pion and the pion
elastically scatters though the pomeron and recombines forming the isobar. Morrison
refers to these reactions as quasi elastic scattering. In the Anderson et al.
experiment the N*l/Z isobars that are seen with constant cross sections are thought
to have JP = 1/2+, 3/2_, 5/2+, so that the quasi elastic rule is satisfied, but
the N*3/2(1236) clearly does not satisfy the rule as does the N*1/2(1570) with
Jp = 1/27. This description is typical of the understanding and state of the
experimental art in isobar production. The experimental difficulties are real in
terms of the understanding of the cross section data itself and so far the crude
phenomenology is successful in classifying the reactions that keep their share of
the total cross section and those that don't. The energy dependence of those
reactions we hypothesise as one particle exchange are consistent with the Regge

picture with SZa-Z’ but the tests are not stringent.
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Recently, there have been two very careful experiments in the higher t region.
The N*(1518) and N*(1688) are two of the quasi-elastically produced resonanances that
have been studied at high t. Figures 6 and 7 show their behavior. The very flat
angular distribution at low energies seems to give way to a distribution that
resembles p-p elastic at the highest energy. Belletini6 speculates that we may be
seeing an energy independent angular distribution which resembles the elastic cross
section but one order of magnitude smaller at momenta about 20 GeV/c. The resemblance
between the distributions of the two isobars is impressive.

It is interesting to see how the I spin of a peak is established, and a nice
example is given by a 28.5 GeV/c bubble chamber exposure by Ellis et al.7 They look

at the missing mass distribution calculated from the proton in the reaction
ptp - pHX

Then they divide the X sample into 1 prong and 3 prong decays. From the 1
prong sample they separate
+
X=qx
from the rest by identifying the neutron missing mass. Additionally the 3 prong decays
have no enhancement at 1400 (MeV/c) as expected. Then if we assume that the rest of

0
the one prong decays are X = 5 +p we can compare the rates

= +
Rl = n_+n
R2 = 5 +p
If I = % these are
Rl _
g— = 2
2
If T = 3/2
R
El=1/2
2

The first is the only solution consistent with the data establishing that there
is an I = % state in this peak. This enhancement though, is a complicated structure
and more work is needed to completely resolve the situation.

Meson-Nucleon Inelastic Scattering

This subject is confused partly because the conclusions have been based on data
of limited statistical accuracy. This experimental situation is improving and the
confusion is increasing. A fine example of what we mean is shown in Fig. 8. This
data is from reference 8. Two mesons are studied K*(890) and K¥#(1420) in production
by K at 10 GeV/c. It has been thought that reactions where there is charge exchange
between incident and final kaon state then pion exchange dominates but if there is

no charge exchange than w's are responsible. This hypothesis is generated to explain
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the fact that these cross sections have either a dip near tmin or a sharp peak
depending on whether charge is exchanged or not. These structures are illustrated in
the plot for small t in Fig. 9. Analysis of the decays of the reaction product
however, do not seem to bear out the simple dominance picture. A similar situation
exists in pion initiated reactions, Fig. 10 is a fine example, from reference 9.

The difficulty in this field is that there is a great deal of data on many
reactions much of which has limited statistical accuracy. The conclusion that one
can draw, however, is that the kind of detailed structure present in elastic scattering
is present here also and the motivation for obtaining really accurate data for under-
standing the dynamics is strong.

Strange Particle Exchange
0 4 Ap(ZO)

This kind of reaction, where the inelastic products are "stable' is typified by

xp-K

the data in Fig. 11. The experimental resolution is unfortunately not sufficient to
separate Ap from ZO in the final state. Do not be confused by the ordinate, the

cross section really decreases with energy. The rate of decrease is consistent with
a simple Reggeized exchange picture. The conclusions that these reactions give angu-
lar distributions with many structural features in common is reinforced by the Stony

Brook10 data which we shall see in.the Stony Brook conference report by Kirz.
Another gross feature of these reactions is illustrated in Fig. 12, where the

slope of the forward cross section is quite different for X and Y* production from

K P.

Baryon Exchange
+
ptp = Dtx

The one arm spectrometer technique has been used to study the reaction

+
p+p — D .

. o 12
The cross section has been measured near 0 for the deuteron by Anderson et al.

and is shown in Fig. 13. The momentum of the deuteron was measured and the particle
identified. This point is worth making because of that solitary point in the figure
at high energies which relied on measuring the pion. Unfortunately this will not do
because the neutron and proton tend to go off with a low relative momentum even when
they do not bind in the deuteron so the experiment does not distinguish between these
two situations unless the deuteron is identified. Figure 14 shows a typical missing
mass distribution together with an angular distribution in Fig. 15. It is remarkable
how the slopes of these two curves are the same even though the cross section has
changed by two orders of magnitude in going from 6 GeV to 20 GeV. This kind of

violent energy dependence is characteristic of baryon exchange processes.



xp » 224k’

This reaction involving a high momentum A is typical of a baryon exchange
involving a hyperon trajectory. Fairly accurate data is available on the angular
distribution together with the polarisation of the A from its decay angular distri-
bution. The data is shown in Figs. 16 and 17 from reference 13. The Reggeized
baryon exchange model with the Za and 26 trajectories can explain these data with
much the same parametrization as in xp backward elastic.

n_p - p+B

The experiment of Anderson et al.14 shows very clearly the p_ production near

180°. The experiment as we know measures the momentum of the forward proton and then

the expression 9 9

gives the change in momentum between the beam and the proton. m is deduced thereby
for each event and the plot is shown in Fig. 18. The systematic error is still
involved with the background under the peak, it is more difficult than the elastic
reaction, as you can see from this figure. Figure 19 shows the cross section plotted
against u for both 8 and 16 GeV/c incident momentum. In addition, Anderson et-al.15
have evidence for A1 and A2 production near 180O in reference 15. It seems that all
mesons are produced in the backward peak with the A1 having a very sharp angular
distribution. Shih16 has explained the p cross sections with a Regge parametrisation

that is similar to that needed for elastic scattering.

SUMMARY
It is hard to summarise the field of two body inelastic scattering because,
as we have seen, there is a vast multiplicity of reactions that share the total cross
section, with rather few being measured well. The backward cross sections seem
presently to be well explained on the Regge model although the accuracy of the data
is such that the constraints are generally not so severe as in elastic scattering.

The presence and shape of the polarisation of the A produced backwards in
x p - MK

is a gratifying "prediction" of this model.

In the forward direction the situation is more complicated, the possible
exchanged particles are more diverse but again the gross features are explained on
the exchange picture. The energy dependence of the integrated cross sections fall
into 3 categories,

a) Pomeron exchange (quasi-elastic scattering)

b) non-strange meson exchange



c) strange meson exchange.

Broadly speaking, the energy dependence of each of these categories fits with
the first category being nearly constant given the rule that the parity change

AP = (_1)Al

Al the spin change between the two high momentum objects. The structure that
appears (forward dip or peaks) seems to hint at an explanation and further data
should allow quantitative understanding of these processes. It would seem that this
area will develop experimentally a great deal in the next few years with the planning
of two arm spectrometers to improve the systematic understanding of the reaction

cross sections.
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V. MULTIPARTICLE PRODUCTION

One could be forgiven for believing that the principal reason for studying
this subject is that physicists hate to see good data go to waste. In most of the
bubble chamber work there are a large number of events left over after the two body
events have been extracted. A large number of people have tried to understand the
dynamics of these left over events. In addition, the one arm spectrometer experi-
ments have a spectrum of '"background" when the bumps are skimmed off, this too should
reflect some dynamics. Since our prejudice has become clear by now, we shall simply
try to pick out representative sets of data, so that in case you get interested then
you will know where to start. In particular, the article of Czyzewski1 is a recent
review of the field.

The salient features of non resonant production are these:

a) Most of the momentum is carried off by the '"leading' particle.

b) The transverse momentum is independent of the multiplicity.

¢) The longitudinal momentum is strongly dependent on multiplicity, being
highest when the multiplicity is lowest.

Before we discuss each of these points in detail we need to mention the Peyrou
plot, an indispensable aid to visualisation in this field. Each particle has a
transverse momentum pL and a longitudinal momentum in the c.m. system pL*. The plot
consists of taking each particle for a given reaction and making a two dimensional
distribution as in Fig. 1. The semicircle is then the kinematic limit for the reaction.
a) In Fig. 1 we have a typical reaction k-p - pk_n+ﬁ-. The "leading particle"
concept is nicely demonstrated by the first diagram all the protons have a high and
negative value of pL*, i.e., the same as they had before the interaction in the c.m.
system. The other "leading particle!", the k , has the opposite pL* but this effect
is not so pronounced as for the proton. Then the pions in this reaction are primarily
of low pL*, although the n  is less concentrated than the ﬂ+
b) The assertion that the transverse momentum distribution is independent of the
multiplicity is a well documented empirical fact. The number of particles tends to
fall exponentially with an exponent of —pl/0.16. In order to quantify this, a function
F(t) has been defined. Figure 2 shows a diagram for np — pM where M is the mass of
the multipion state. At a particular momentum transfer there is a definite phase
space available for an object of mass M and F(t) is defined as the fraction of
particles observed compared to the phase space available. Figure 3 shows such an
F(t) distribution, it resembles remarkably the elastic scattering cross section as
you might expect.
c) The fact that the longitudinal momentum depends on multiplicity is hardly

surprising at finite energy. The distribution of the number of particles produced
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I. INTRODUCTION

The purpose of this summer school is to survey the present theories of strong
interactions at high energies. My task in these lectures is limited specifically to
a review of the rigorous bounds and other asymptotic properties of scattering ampli-
tudes at high energies. The word 'rigorous' sometimes evokes strong reactions from
many down-to-earth theorists and it would perhaps be wise to state in a few words in
what context we are using this term. By rigorous I mean generally results that
follow without any further assumptions from the Wightman axioms. One recalls that
these axioms in a direct and mathematically precise way embody the general physical
principles of relativistic invariance, causality, positivity of energy, and certain
technical assumptions which are general features of most local field theories.

It is important to keep in mind that these axioms are not God given. In fact
some of the general properties or inequalities derived from them might well turn out
to disagree with experiment. If that should happen in the future it would consist
of a very important contribution. For example, if the forward dispersion relation is
violated at high energies, we would have to face at least as fundamental a change as
that involved in CP violation. On a much less ambitious level one can say that it is
useful to follow this approach since it tells us that certain results are very much
model independent.

The logical (but not the historical) structure of a complete chain of argument
would be:

Wightman Axioms

Hepp, Haage, Ruelle

LSZ Formalism

Bogoliubov, Lehmann, Hepp, Martin, Bros,
Epstein, Glaser ---

Analyticity Properties, Crossing, Unitarity

Bounds, Inequalities, Asymptotic Relations

In these lectures we shall only concentrate on the last arrow in the diagram.
We shall only state the known analyticity and crossing results without going into
their proofs. From there we proceed to derive bounds, inequalities, and asymptotic
relations for scattering amplitudes. In both the work related to this last arrow
and the crucial analyticity results needed for this work, much of the credit goes
to A. Martin.
II. KINEMATICS AND DEFINITIONS

In the general results derived in these lectures, spin presents us only with a
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technical problem. So unless we specify otherwise we will always be dealing with two
body collisions involving equal mass, zero spin, and neutral particles shown schemati-

cally below.

Pl P3

o B8

Py P4
Fig. 1

Here we set pz = m2 and define the Mandelstam variables in the usual way,

2
s (pl + P2) 3

= (p, - p3)2, (2.1)

ct
|

2
u = (pl pa) .

The center of mass momentum k and the scattering angle ¢ are given by

s = 4m® + 4k2,
2

t = =2k“(l-cosp), (2.2)
2

u = =2k2(1+cosh)

The S-matrix element for the transition shown in Fig. 1 is defined as

SBU = <p3p4 out Iplp2 in) = <p3p4 in lSlplp2 in) (2.3)
Its relation to the T matrix is

S, =
o

. 4 4
8 oﬁ i2m s (p3+ P~ Py- p2)T (2.4)

= B’

We now define our elastic scattering amplitude as
F(s,t) = (p3p4 out |T|p2p1 in) . (2.5)
With this normalization the relation between F and the elastic differential

cross section is

2
%% =‘——l————~—5— 7|, (2.6)
léws (s-4m™)
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and the total elastic cross section is
2

0
o == [ acdEl @.7)
el 167 2
sk
4m©=g
It is sometimes convenient to work with an amplitude normalized in a slightly different

way and which we denote by f(s,t). This amplitude is chosen so that

do _ 2
a = 1% (2.8)
and clearly we have
L
f(s,t) = F(s,t)/8m(s)™. (2.9

The optical theorem for our amplitudes has the form

ImF(s,0) = Zk(S);2 o s

tot.
Kk (2.10)
Imf(s,0) = Z; Seot®
Finally, we write down the partial wave expansion for f(s,t):
@
£(s,t) = 3 ) Q) £ ()P (cose) (2.11)
40
_ )
= F(s,t)/8m(s)".

The convergence of this expansion even for nonphysical values of § is a consequence
of the analyticity of the amplitude in an ellipse in the cos@-plane.

The partial wave amplitudes fz(s) in the elastic region have as a consequence of

unitarity the simple form ,
2id .
L-l 1Sz
f (s) = s - siné ,, (2.12)
) 2i 2
i
with real 6£'S. In the inelastic region 62 becomes complex but unitarity still gives
us the restriction that
|sel | = | 142if (s)] <1 . (2.13)
£ 2
From this it is trivial to show that
0 < |fz(s)|2 < Inf(s) = 1. (2.14)

Thus, both in the elastic and inelastic regions, Imfz is positive and bounded
above by unity. This simple consequence of unitarity will turn out to be the most

crucial and important input for most of the bounds that we shall derive.
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ITI, RIGOROUS ANALYTICITY PROPERTIES
We briefly review the main analyticity properties of F(s,t) that follow
rigorously from the Wightman axioms. No effort is made here to state the best
possible results but only to give what is needed and relevant for the derivation
of bounds.

A. Lehmann Ellipsel

We will write F(s,t) and F(s,cos@) interchangeably and set z=cosg. For
fixed physical s, F(s,z) is analytic in z in an ellipse with foci at z= +1 and a

semi-major axis zo(s) given by
L
(mz- M2 272
25() = |1+ L (3.1)
0 2 i
k™s
Here M is the smallest mass for which (0]j(x)IM) # 0 and j(x) is the source current
2
for our colliding particles, (J+ m )¢(x) = j(x). Thus M = 2m for scalar bosons
and M = 3m for pions. For ImF(s,z) one has analyticity in a larger ellipse. How-
ever, the crucial property of both ellipses is the rate at which they shrink to the
line -1 <z <+ 1 as s =, In both cases we have, for large s, [zo(s) - 1] m»s_z.
In the t=-plane, t = 2k2(z-1), the foci of the ellipse are at t=0 and t= -4k2 and
the distance between the focus at t=0 and the turning point shrinks like s_1 for

large s, (see Fig., 2 below),.

Fig, 2

On the other hand, perturbation theory suggests that the nearest a singularity could
be in the t-plane is at t = 4@2 for any value of s. The existence of a finite
region of analyticity near the origin in the t-plane with minimum size independent
of s was estgblished by M’artin2 in 1965.

B. Martin Analyticity2

The input for Martin's work consisted of i) dispersion relations at fixed t,
ii) positivity and iii) the analyticity properties obtained by Bros, Epstein, and
G1aser3.

Martin proved that for fixed s near a physical point, F(s,t) is analytic
in t for |tl< R, where R is independent of s. For pion-pion scattering R=4m2.

This result also holds for ImF(s,t). We also know that ImF(s,t) is
analytic in the Lehmann ellipse with foci at t= —4k2 and t=0 and expandable in
Legendre polynomials of cosp. The Legendre expansion of ImF has positive co-

efficients as a consequence of (2.14). Therefore this expansion must have a

- 78 -



singularity at the extreme right of the largest ellipse of convergence. But ImF(s,t)
has no singularities for 0 < t < 4@2 and consequently ImF(s,t) must be analytic in an
ellipse El(s)

El(s): foci t=0 s hmz-s

(3
]

(3.2)

extremities t=4m2 s t = -s,
This region of analyticity can be further enlarged as is shown in Ref. 2., but the
results stated so far are sufficient for our purposes which are limited here to the
derivation of upper and lower bounds.

. 4
C. Dispersion Relations and Polynomial Boundedness

For fixed t, -t1 <t <0, F(s,t) satisfies a dispersion relation in s with
a fixed number of subtractions.

The crucial fact is that for "ty <t< 0, and all Isl > 1 we have a bound

|F(s,t)| < clslN. (3.3)

Martin2 showed that this was true for all t such that Itl <R and that N < 2. We
shall derive these results again below. Polynomial boundedness is to some extent
technically built into the Wightman axioms and related to the fact that the Wightman
functions are taken to be tempered distributions. However, both Jaffe's axioms and
theories based on local observables which do not require temperedness 1lead to
on-shell scattering amplitudes which are polynomially bounded.5

IV. FROISSART AND GREENBERG-LOW BOUNDS

A, Intuitive Argument
Suppose we consider scattering by a potential V(r) = g(E) e-Kr/r. A
particle with impact parameter 'a' has an interaction of order g e K2 Thus the

. . . . -Ka . .
interaction is negligible when lg e X%l «< 1. An estimate of the cross-section
K2

is given by the value of a for which g e ~1, or
1
a A,; loglgl, (4.1)
and
1 2
o ~ 73 log |g|. 4.2)
K

N
Now if g(E) is polynomially bounded in E for large E, lg(E)| < E, then

c 2
o, < KZ log™E. (4.3)

If Kmin is independent of energy this is just the Froissart bound. The existence
of a finite analyticity region in t near t=0 independent of energy is of course
closely related in the language of potential scattering to the fact that the

ran K is independent of E.
ge, ‘min’ P
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B. Derivation of the Froissart and Greenberg-Low Bounds6’7

From (2.11) we have

o
Imf(s,z) = A(s,z) = %‘ 24 (2£+1)3£(S)PL(Z) s (4.4)

£=0
where we have set Imft = al. From the results summarized in Chapters II and III we
know that
i) o<lfz|2§a£§1.
ii) ]A(s,zl)f < sN for large s and z, inside the Martin or Lehmann ellipse.
iii) A(s,z) is analytic in z in the Lehmann ellipse or the Martin ellipse. Both

ellipses have foci at z = +1. The semi-major axis is given by

£4(s)
2g(s) = 1+ —— , (4.5)
2k
with the following property for large s
o
to(s) ~ g (Lehmann),
to(s) ~ c (Martin) . (4.6)

We now pick a zl(s) of the form z, = l+(tl(5)/2k2), such that
0 < tl(s) < to(s). Using the fact that Pz(x) z 0 for x > 1 and the positivity

property i) we easily get a bound on az(s),

[e 0]
o a a, (s)
SN = \L 2+1) L (145Ey 2 (opp1y £ p (1480)y 4.7)
K Ts 2 x5y 2
= 2k 2%k
and hence for all g
< < sN'k
05 a (s) S ) (4.8)
4 (24+1)p, (1+5£82)
L0 g2

At the end of this chapter we shall prove the following inequality for x > 1

(see also reference 7):

- (-1 HE > — (1)) HE, (4.9)

(28+1)7* (24+1) ¢

P, (x) ~
Thus the bound (4.8) with (4.9) gives us

C SNk

1
N %
(24+1) 2(1+93%1L)‘

a, (s) ES (4.10)
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As s =, (t(s)/k) - 0, and we get L

PAOI
k

a,(s) S¢ Nk e ., s> (4.11)

0
We can now consider two distinct cases depending on the choice of t(s).
Case (i): (Greenberg and Low)
Here one uses the analyticity in the Lehmann ellipse only and t(s) must

-1
decrease like s as s > . We choose t(s) such that
c
t(s) = s (4.12)

Hence for s > 89> c'p

L -
a,(s) S¢ SNTE 8 (4.13)
We define L(s) to be the value of 4 for which the right hand side of (4.13) is of

order unity. Then we have
L(s) = C slns ; (C=C(N)) . (4.14)

For fixed large s and 4 < L(s) the unitarity bound, at(s) <1, is a better bound
than (4.13). However, for £ > L(s), (4.13) gives a smaller upper bound and in fact
aj(s) is negligible for £ 2 L(s)+1l. Thus L(s) gives us the number of partial waves
that effectiXely contribute to the amplitude at large s.

Let L be the smallest integer greater than L(s), then we can write

L
A(s,z) <% L (2Z+l)lPL(cose)l
£=0 -

acl c'e
1
+& ZL (24+1)c Ntz S |, (cos)| . (4.15)
4=L+1

In the first sum above we have used the unitarity bound at(s) < 1. 1In the second sum

we have used (4.13).

For the forward case, 6 = 0, IPL(cose)[ = 1, and one obtains
A
L.
<1\
A(s,1) = " ZJ (24+1) + Remainder. (4.16)
£=0

The remainder term can be easily shown to be negligible compared to the first term,

and we get

~
As,1) S ﬁ%lL (1+e) . (4.17)

e

Substituting our estimate for L(s) we finally have
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C s21 2
A(s,1) §Tﬂi . (4.18)

: X
Since unitarity gives us also the bound lle < (az)2 we can easily follow the same

method as above to get a bound similar to (4.18) for the full amplitude

c szlnzs
|F(s,1)| Sl (4.19)
The Greenberg-Low bound for Otot follows from (4.18),
%ot = éﬂ_ééiall < Const. slnzs . (4.20)

For the non-forward case, 6 # 0 and 6 # x, one has

5
2
[Pz(cose)l s <Msin9> ) (4.21)

%
Using this bound, and the inequality lle < (az)2 and proceeding as before, we get

IA(s,cosG)l < If(s,cosel

A
L
< ———E———g ;Z igéi%l + negligible terms . (4.22)
. 2
k(sinf) 4=0 )
For large s this gives the bound
s zn3/2
lA(s,cosQ)I S If(s,cose)l < Const.——————-fi . (4.23)
(sin6)*

Case (ii): (Froissart bound)
For this case we have analyticity in the Martin ellipse defined in (3.2) and

one can choose t(s) to be a constant independent of s,

t(s) = ty . (4.24)
Proceeding as in case (i) we get
X
_ 2
Ilez Sa(s) S Mg o7t/ ()% (4.25)
Hence instead of (4.14) we now have
5
L(s) = C (s)“4ns . (4.26)

With this improved estimate of the number of significant partial waves we get

following the same steps as in case (i) for s > 0
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2
A(s,1) < If(s’l)l < Const. sfn s (4.27)

k 3
< Const. sn’ (4.28
Tiot st. s s .28)
and S3/4 40 3/2
| £(s,cos6) | <cOnst.—J—s);— , 6 #0,% . (4.29)
k(sinb)

These bounds can be easily translated to bounds for |F(s,t)| for fixed
%
physical negative t. We use cosf = 1 + t/2k2 and F = 8x(s)*f and obtain from (4.29)
|F(s,t)| < Const. szn3/2s t #0. (4.30)
? t fixed, physical ?

By a Phragmen-Lindelof type of argument one can show that the bound (4.20) holds in
all directions in the s-plane. Thus the maximum number of subtractions needed for
fixed t dispersion relations is 2 as long as t is negative.

We close our discussion of the Froissart bounds by making two related remarks.
1) The non-forward bound (4.29) cannot be reached for a finite interval

91 <8< 92. For recalling that do/dQ = if‘z, we would then have

¥ 3
do . s*4n’s
Q  sind ’ bp<8<8
This would give a 91 >> Oiot for large s and an obvious contradiction. So the bound

can only be reached at isolated peaks in 6. At this point one immediately is led to
the suspicion that (4.29) could and should be improved.

2) Kinoshita, Loeffel and Martin8 considered the problem of improving the
Froissart bounds by assuming analyticity in a domain larger than the Martin ellipse.

They assumed:
<
=1
J4
(ii) Analyticity in the cut z-plane

(i) TUnitarity, 0 S a

(iii) Polynomial boundedness for z inside analyticity domain.
Their main results were:
(a) 1In the forward case no improvement is possible. An explicit counter-
example satisfying (i), (ii), and (iii) was constructed.
(b) For & # 0 or x an improvement of (4.29) is possible and they obtained
F(s,cos0)| < Const.(zns)3/2 . .31

sin29

This bound gives us a more acceptable bound on the differential cross-

section, which vanishes as s — @,
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do <« Cg,&ns)3
da s sin49 (4.32)
However, translating (4.31) back to a fixed t bound does not lead to a change in (4.30).
Actually, as is clear from ref. 8, it is not necessary to assume full cut plane
analyticity in the z-plane to obtain (4.31). For more detail on this point the reader
should read ref. 8.
Before proceeding to the next chapter we still have the task of proving the
inequality (4.9) for PL(X)’ with x > 1. The second inequality in (4.9) follogs tii-
vially from the first. To prove the first we introduce the variable y = x+(x -1)°

- +if
for which y+y L 2%, or x = cosf, y = e, Then we can write
+

P, (x) = Z cn(“y“ ) (4.33)

-4
By 05 @y ¢ @ =20

The coefficients Cn(z) have two properties: (a) C >

@) £ -2 223(11 2
The property (b) follows immediately from the fact that Cz is 2 times the
coefficient of xz in the expansion of Pj(x). From (a) and (b) we have
) 4 c 2, %8
Pz(x) 2C, "y >W[x+(x 15 1 (4.34)

A simple proof of property (a) due to Martin follows from some elementary properties

of rotation group. One can write

iJ @
c<J,J=0le ¥ |35,5=0>
Z V4

PJ(cose)

C < 3,3 =0|cosJ 6|3,J =0 > . (4.35)
Z y Z

Introducing a complete set of states in (4.35), we get
J

<

P (cos®) =C ) < J,JZ=OIJ,Jy=M > < J,Jy=Mlcos(Jy9) IJ,JZ=O >,

=-J
J
2
=c cosMB | < J,JZ=OIJ,Jy=M > . (4.36)
M=-J
But cosMf = %(elMe+e_1Me = %[yM+y—M} and that completes the proof of (b).

V. BOUNDS FOR UNPHYSICAL VALUES OF t AND MAXIMUM
NUMBER OF SUBTRACTIONS IN DISPERSION RELATIONS

For negative (physical) values of t we have the bound (4.30),

3/2
s

|F(s,t)| ¢ sin (5.1)

- 84 -



In this chapter we shall derive a fixed t bound for unphysical values of t.
More specifically we shall be interested in the region 0 < t < 4u2 and the region
Itl < 4p2. The dispersion relations are valid for any t in the Martin ellipse and
this unphysical bound will give us the maximum number of subtractions needed in the
fixed t dispersion relations. It will also give us a determination of the constant
that appears on the right in the Froissart bound (4.20). We follow the method of
Jin and Martin,9 although many of the results of this paper can be also obtained as
a byproduct of the proof in reference 2.

Let us, to be slightly more general consider an unequal mass collision
at+b — a+b, and allow the following kinematics: (i) s+t+u = 2m32+2mb2; (ii) 2u is the

lowest mass in the crossed t channel; (iii) no states in the s or u channels with
mass less than (m -+m ); (iv) u Sm 5 U S m .
a b a b 2
The amplitude, F(s,t), for fixed t, Itl < 4u”, is analytic in the cut s-plane.
2
The right hand cut starts at s = (ma+mb) and the left hand cut at s = (ma-mb)z—t.

We further assume that as isl - €0, Itl < Auz, F is polynomially bounded,
lFes, 0] < [N . (5.2)

We shall prove by making use of the Froissart bounds that, in fact

| :\Lim BBl -0, Je| <w® . (5.3)
s| >0 ]

From the analyticity of F and the bound (5.2) we can write an N+1 subtracted

dispersion relation

\E N+L A (s',t)
F(s,t) = ZJ Cn(t)sn + EE——b ) ds'? '§+1 )
n=0 (ma+mb) s (s'-s)
©
uN+1 Au(u',t)
+ - f 2du' m . (5.4)
(ma+mb)

It is easy to see from the partial wave expansion that

A (s',1) 20, 0S¢ <S4’ | (5.5)
In the s-channel, AS = ImF. Similarly, Au is the absorptive part for the u-channel
reaction a+b - a+b and by unitarity

At t) 205 05 e Sa . (5.6)

For complex s and Res large enough the integrals in (5.4) are uniformly

convergent for any t such that ]tl < 4u2. Therefore both integrals define functions
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analytic in lt] < 4p2. The function F(s,t) is also anﬁlytic in the disc, |tl < 4“2'
Hence Cn(t) are analytic in t in the same disc, sincené0 Cn(t)sn is analytic for
at least (N+1) distinct values of s.

From the Froissart bound we have,

]F(s,O)l < ¢ sznzs

At the end of this chapter we shall show that using the techniques of Chapter IV, we

can always choose an € > 0 and find a tO’ 0 < t0 < 4u2, such that

|F(s,t)] €est™, o0Sc< ty - (5.7)
We choose € < 1, and thus for O S¢S t0 we need only two subtractions in

our dispersion relations. We obtain

2 /1 As(s‘,t)

F(s,t) = a(t)+b(t)st+ — 5 ds!
T g (s'-5)
2 pA uhe)
+—f-—u—-——'—du'; 0S¢t St . (5.8)
7 2, 0
u' (u'-u)
Then using the identity,
SN+1 52 SZ N-1 N
= - - , (5.9)
s'N+1(s'-s) s'z(s'-s) s'3 s'N s'N+1

and comparing (5.8) with (5.4) we get
N N
- 0 N [Sn As(s',t) o Au(u',t)]
= —— f —_— —_— O
24 Cn(t)s a(t)+b(t)s+-21 | L/\ds -7t » L/ﬂdu' u'n+1 . (5.10)

! 1
n=0 n=2 s

This last equation is at this stage only valid for O St g'to. Two cases have to be

treated separately depending on whether N is even or odd.

(i) N even > 2.
Comparing the coefficients of sN for large s, (5.10) gives us
A (s',t) A (u',t)
_ 1 p s 0 l/'.L__
CN(t) ﬁ k/pds s'N+1 + T . du ulN+l . (5.11)

This equation is again only true at this stage for 0 Se s tO. From unitarity we

know that
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n
d 1
= Au(u ,t)

dt

Y
o

(5.12)
=0

These positivity requirements follow from the partial wave expansion and the fact that

n
4P, (cos) 20 . (5.13)
d(coso)™

cosBH=1

To prove this last inequality easily one can use the expansion (4.36) and the
positivity of the coefficients in that expansion.

Returning to (5.11) we can expand both AS and Au in power series
fes)

A(s',t) = Z a Mene®

n=0

[eo]

}: Au(n)(u')tn ) (5.14)
n=0

A (u',t)

The coefficients in both series are positive. Now, for O PR tO, we can exchange

the summation and integration in (5.11) and get

—\2 n f‘As(n)(S') Aul(n) (u?)
CN(t) = Z‘, t [ U/ —S'WT—— dS' +fFI_T-— du"J . (5.15)
n=0

2
The function CN(t) is analytic for Itl < 4u”. The right hand side of (5.15) is a
power series expansion and therefore it must also converge for all ltl < 4u2. Then
reversing the order again in (5.15) we conclude that

- A (s',t) A (u',t)
-2 ds' and = gu
. N+1 N N+1

s! u'

2
are finite for all t such that ]t] s 4u . It is easy to show using (5.4) that if
these integrals are finite, then
F(s,t)

N
s

lim = 0 , (5.16)

|s| »o

and we can undo one subtraction in (5.4).
(ii) N odd 2 3

In this case an analogous argument shows that we can reduce the number of
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subtractions by two.

Repeating the argument as many times as necessary we prove that

A (s8',t) A (u',t)
f_s__3__ ds' and f~u——3——du'

s! u'

converge absolutely for all [tl < 4u2. Hence it is easy to show that (5.3) follows.

In closing we still have to prove the inequality (5.7). Namely, we have to
show from the estimates of the previous chapter for Ifz(s)l, that for any e there
exists a ty such that for 0 <S¢ < t s |F(s,t)] cls|lte,

From the partial wave expan51on we have

A

Fs,0)| S¢ ) @unle, =)
0# 2k
© _ A
+c ) (24+1ysY ()” e, (1t ———)l ) (5.17)
L 2K?
L+l

Here in the first sum we used the unitarity bound for lf * and in the second sum we
2
used (4.11) with t(s) = -€. In (5.17) we have convergence for 0St< 4u . We

}
choose t. such that (to)2 << u, then in the second sum in (5.17) the decrea51ng

0
exponential will damp the increasing exponential behavior of P (1+ t/2k ), for

0<St<s to. In fact, one has the bound

< JUTB)E
|B, (cosht)| = ¢ T T EFO0 (5-18)
(24+1) *(sinhg)?
where
cosht = 1 + t/2k2 ,
or

1

. /I/ . 2 ﬁ_]
£ =4nl+ — + (}l+ — -1 ! . (5.19)
2k N2k 7

For large s

(s)*
We then get for large s )
2 2
|2, (1+ 5 | < L g e (s) (5.20)
2k (24+1)% %
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Now as long as 0 < t < t0 << u, the second sum in (5.17) is negligible compared to

the first. Hence, we get

L i %
o Lo 24(e)3/(s)”
|F(s,0)] Sc Yoy &
ya tﬁ (z)z
£=0
- 1 1 ~
c (s)%ns(t . L
< (s)% s* (24+1)
- C e = p
%
g0 @B
<0
' l4c(t 3
< C—% s 1 (0" hhe) /2; t #0 . (5.21)
t

A

Here we have used the fact that L(s) = (s)%zns. Thus by choosing tO small enough
(5.7) will follow from (5.21). It is interesting to note the vague similarity
between (5.21) and Regge like terms.

The knowledge that in the region 0 < t < 4u2 we have no more than two
subtractions in the dispersion relation enables us to determine the constant in the
Froissart bound. We have derived the bound 0. < Const. an(s/so); we shall calculate

an upper bound for the constant. We have

(s 0]
- A N (22+V)a, (s) (5.22)
o, kz /., ) y) s . .
£=0
From (4.10) we get
Nl
a,(s) § €2 k. (5.23)
£ (to)z P
(I+ ——

From the results of this chapter we know that ]F] < C(s/sO)2 and hence

-L
| £] < C(s/so)2 2 and N' = 3/2. This gives us

L2t
2
a, () Sc(%(;) e K , (5.24)
and 1
L(s) = %&— Ln(s/so) (5.25)

From (5.22) we get the bound
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o, S (1+¢) 5‘% L2 ,
k
< (1+e) (4—*2‘) an(s/so) , (5.26)
(w

where € can be as small as we like.

VI. UNITARITY BOUNDS
In this chapter we shall derive some very simple bounds which follow mainly

from unitarity. The additional input we use is that only L(s) partial waves are

significant.
A, Lower Bounds on ¢ . 10,
elastic
By definition we have o
Jta 2
o, > /. (2!,+1)lfj\ . (6.1)
k
L:
Hence we write
L
>bn 2
Oa1 kz /., (21+1)a£ . (6.2)
£=0
Using the Cauchy-Schwartz inequality we obtain:
L ) L L 2
e ) —
\ 542 >
ZJ ((22+1) az) (24+1) = (2L+l)az . (6.3)
£=0 £=0 £=0 )
Hence
L
e |\ Y
—“[Z (24+1)a, |
2 4
> k £=0
O ° T . (6.4)
E:(2z+1)
0
If o 2 ¢ s.N then (6.4) gives us
tot ?
k2 cjtz 0t2
612 ——5 2 Comst. — . (6.5)
(14D 4n’s
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L
We recall that for L = C(s) “4ns,

L ©
T v -M
}J (22+1)at = (22+1)az+0(s )
£=0 4=0

2

k -M
= ct+0(s ) . (6.6)
B. Lower Bound on Width of Diffraction Peak

We define the "width" of the diffraction peak, A, as

F(s,0

A= dF (s, t) . (6.7)
dt
t=0
In Regge theory for large s
~ 1
A= ans (6.8)
From the partial wave expansion we have
o
5 0 £, (s)
dF(s,t)|  _ 8x(s) £ 1y
= == (24+1) —— . (6.9)
dt £=0 k 2k2 2
£=0
Therefore,
L
L
2
’ngcslt,t) < cg;) Z (2441) zgzzl)
t=0 k 1=0
<S¢ oans . (6.10)

Since XF(S,O)I 2 ‘ImF(s,O)I = cso, one concludes that

Cot
A 2 — (6.11)

(,’/ns)4 .

Thus if o~ const. the diffraction peak width cannot be rapidly decreasing.

C. Bound on Regge Trajectories

The Froissart bound gives us immediately a bound on Regge trajectories at
t=0, a(0) S 1. However, if one assumes that the asymptotic behavior of F(s,t) is
dominated by a Regge pole it is possible to prove directly from unitarity, and
without using the analyticity input necessary for the Froissart bound, that
a(0) S1. We go through this proof which is due to Leader 1 just to demonstrate

how powerful a restriction unitarity gives us.
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We start by writing down the expression for Ou1’

g

0
2
= L /1 dt lEﬁE;Ell_ . (6.12)
el 32x% . 2k2s

-4k?
From this we have the obvious inequality

0
, 2

6.2 g 2 — ﬁtﬁ‘—‘? , (6.13)
2k

t e 32xs
-T

2
where T is a constant such that T << 4k~. Let F have Regge asymptotic behavior

F(s,t) ~ p(e)s?®) (6.14)

where we assume that B(t) and qft) are continuous in t for -tl St $0. Given any

€ > 0 we can choose T(¢) small enough so that q(t), for -T(e) <t < 0, is greater
than a(0)-¢, i.e.,
alt) > a(0)-¢ “T(e) St S0 . (6.15)

The optical theorem for large s gives us ImF ~ Csct. Substituting this on the left

in (6.13) and using (6.15) and continuity on the right we get

(ORI J2000)-2¢ (6.16)

ct
kzs
As s - @ we obtain

a(0)-1 2 20/(0)-2-2¢
or
a(0) < 1+2¢ . (6.17)

But € can be made arbitrarily small, hence
a(0) S 1 . (6.18)

This result follows only from unitarity, continuity, and Regge behavior - no
analyticity need be assumed.

D. Unitarity Bound on the Diffraction Peak

MacDowell and Martin12 derived a lower bound for the logarithmic derivative
of ImF(s,t) at t=0. Again only unitarity is used. This bound also has the advantage
that it can be compared with experiment even at non-asymptotic energies.

Let us write

A(s,t) = ImF(s,t) , (6.19)
and

A(s,t) = 8—"%—2 (20+1)a, (s)P, (1+ —%)
2%k

We also write the definitions
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o, = 4 24(25+1)az R (6.20)

t k2
_o4n ) 2
91 = 3 2J(2z+1)|f£] , (6.21)
k
5 = 4z 2:;(zz+1)a 2 (6.22)
el.im k2 4 ’
and
%
dA (s, t) 8 (s) };(22+1) LU, (6.2%
dt _ 3 2 4
t=0 2k
The problem is to find a minimum for this last series for a given fixed o
and %%1.im"
Using the method of Lagrange multipliers we get from (6.20), (6.22), and
(6.23)
oo
1
: %
}j [151— 2UHD) o 9qa 1 (24+1)8a_ =0 . (6.24)
' k 2 2. £
£2=0
The Lagrange multipliers p and q are picked to make the bracket zero for £ = 0,1
and the az's for 4 = 2,3,..., are taken to be independent variables. Hence an
extremum is reached for
a, = q-BL (L+1) , (6.25)

where ¢ and p are functions of s. Tt is clear from the case £=0 that « has to be
positive. On the other hand taking B negative in (6.25) will obviously not give
the minimum we are seeking and B 2 0.

In addition to (6.25) unitarity gives us the restriction

VRS a, s10. (6.26)
There are two cases to consider ¢ > 1 and ¢ < 1.
a) a>1
The minimum is reached when
a, =1 3 1< LO H
= ey- . < <
a£ a-BL(L4+1) L0 2 L1 H
az =0 3 L > L1 H (6.27)

where LO is the smallest integer such that a—BLO(LO+l) $1 and L1 is the largest

integer for which a-BLl(L1+1) > 0.

Using (6.27) in (6.20) and (6.22) we get o_ and o, ; as functions of ¢ and

t
B. Inverting these functions we can write ¢ = a(ot,oe i) and B = B(ot,ce i). With
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these values of @ and B in (6.27) we calculate the minimum of (6.23). The algebra
is tremendously simplified by converting all sums to integrals and errors are only

of order l/kz. The result is

c [e]
> 1t [ - _e.i2 } 1
5 I 143 (1- —=5) +o<k2) . (6.28)

4 AnA(s,t)
dt ¢

t£=0

However, the case o > 1 corresponds to small inelasticity and is unphysical. One can

check that for o > 1 we have

2
= £
Oe1 > Uel.im 3 O¢ ’ (6.29)
which is in disagreement with present data.
b) a<1
In this case the minimum is reached when
= - <
aj a-BL(L+1) 4 Ll s
a, =0 , £ > L . (6.30)

Using this expression in (6;20), (6.22), and (6.23) one gets, after some algebra,

1
z

2 2
o g +(0 “+12x ¢ . /kD)
j—tznA(s,t) z %[ (th? L ¢ el - %] . (6.31)
t=0 e.i 2k
% % 1
The bracket has a close lower bound, [— ( Y- =]. We have then
4 o . 2
e.i k
g, ©
d 1 t Tt 1
— f4nA(s,t) > =\ — - = > . (6.32)
de gm0 0N Ty 2

The algebra in going from (6.30) to (6.31) is quite involved. To get a quick
2
derivation correct to order 1/k” one takes leading orders in £ and converts all sums

to integrals. 1In that case (6.30) becomes

a, = ae’ LS L ,
a, =0 , L>1, (6.33)
where now a—Ble = 0 and L, = (a/ﬁ)%. From (6.20) we obtain
27 ozz
ot B E (6.34)
and from (6.22) 3
a . = (i—g) %g‘— . (6.35)

Note now that for a <1, o . < 2/3 o, From (6.23) we obtain
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Ty I TO K (6.36)
dt £=0 3k3 B2
Hence finally one gets
2
d 1 o %
T LnA(s,t) =2 — E = 55;;;—: , (6.37)

t=0 12k

2
which is the same as (6.32) when one ignores terms O(l/k”).
It is interesting to note how close (6.37), with 9% i replaced by 0.7 is to

the experimental situation. From Dr. White's lectures we learned that a good fit
to the pp data is obtained with the form %% = Aexp(bt), b = 9(GeV)2. One also

learns that, ignoring spin, Ref and Imf have approximately the same t-dependence.

One usually computes 0,1 a8

0
~ +bt. A
o = \/2 e dt = b s (6.38)
-
and
2 2
A= go]” T (6.39)
2k
From the fact that |Ref| and IImfl have the same t dependence we get
daf) 2, (6.40)
t=0
Substituting this in (6.37) we obtain
2
b > 1 |4x(Imf(0 . b
+ [aego? ]

k

where we have used the optical theorem o, = 4xImf(0)/k. Finally (6.39) gives us

2
1> 3<Imfo
> 23 ‘]——(—ﬁ-f(o) > : (6.42)

The bound is rather close when Ref/Imf is small.
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VII. LOWER BOUND ON THE FORWARD AMPLITUDE

The results on lower bounds are so far much weaker than one would like. 1In

13
this chapter we prove the Jin-Martin lower bound of the form

]F(s,O)I > gg72 ) (7.1)

More precisely we only show that there exist a sequence {sn}, s, > as n > ®©, such
that > -2
|F(s ,0)| = cs_ : (7.2)

Although a more direct proof14 of (7.2) for either large positive or large
negative s, but not both, is possible, we shall here follow the proof of Jin and
Martin which uses Herglotz functions. We do this for pedagogical reasons since
Herglotz functions are quite useful in scattering theory and they will come up again
in later lectures.

Let us start then by giving the definition of Herglotz functions and listing
a few of their properties.
Definition: a function H(z) is called a Herglotz function if H(z) is analytic
in the upper half plane and if ImH(z) > 0 for Imz > O.

Any Herglotz function has the representation
+ @

H(z) = A4Bz + & /—mﬂiﬁﬁz—@—d , (7.3)
T:D (IH+x7) (x-2)

with B 2 0, A real, and ImH(x) 2 0. Also we have the convergence condition

f—mdx<w . (7.4)
e

Another property that is easy to verify is that if H(z) is a Herglotz function then

1
H(z) ’

is also in the Herglotz class. TFrom the defining representation (7.3) one can easily

F(z) = - (7.5)

show that, for all z such that ¢ < argz < n-¢, the following bounds hold:
..l<
clz|™" Slu@)|Sclz] . (7.6)

For the physical amplitudes we want lower bounds on lH(x)I for real x and
(7.6) is not directly applicable. However one has the following lemma due to Martin}5
Lemma 1:

Given a Herglotz function, H(z), satisfying (7.6), and such that H(z) is
analytic in the cut z-plane with right hand cut from z=a to z= + ® and left hand cut
from z=-b to z= - ®, and any positive number C' larger than C; one can find an
infinite real sequence {xn}, i + o, such that

lH(x)] c'lx . (7.7)
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Similarly, one can find a sequence [xn}, x - @, along the negative real axis
such that (7.7) holds.
Since (-1/H(z)) is also Herglotz, it follows from (7.8) that there also exists
a sequence {xn), x — 1o such that
2 ll. -l
[ )| 2 cnlx | (7.8).

Proof of Lemma 1l:

Let F(z) be H(z) minus the contribution of the left hand cut in (7.3), i.e.,
e’}

F(Z)EA+BZ+T%[M dx . (7.9)

(1+x2)(x-z)

F(z) is regular in the cut z-plane with a right hand cut only. It is bounded by
C]z] in any complex direction including the negative real axis. Let us now assume
that on the right hand cut for large x

[Fx)| 2c'x, c¢c'>c . (7.10)
We show that (7.10) leads to a contradiction. This is obtained by first applying
the Phragmen-Lindelof theorem to the function 1/F(x). Since (1/F(z))is analytic

outside the right hand cut and a finite circle around the origin we get for large Izl

1 1 -1
Fy! = o Il (7.11)

in all directions. Hence we get for all directions

[F(z)| 2 c'|z| , (7.12)
which contradicts the bound given below (7.9) for C' > C. Thus for any C' > C there

must exist a sequence {xn], xn - @ on the positive real axis such that
' . .1
}F(xn)l <C'x (7.13)

The integral over the left hand cut in (7.3) when divided by Ix[ tends to zero as

X, + o, This gives us for the same sequence {xn] as in (7.13), as x +
' . .1
[H(x )| <crx (7.14)

An analogous result is obtained by interchanging the roles of the left and right
hand cuts. This completes the proof of the lemma 1.

In order to use the lemma 1 and (7.8) to obtain lower bounds we have first to
get Herglotz functions from the scattering amplitudes. In general, scattering
amplitudes are not Herglotz. We shall need the following second lemma.

Lemma 2:

Let F(z) be analytic in the cut z-plane with a right hand cut extending from
z=a to z= +  and a left hand cut from z= - ® to z=-b. Also let F(z) have the
following properties:

(i) |F)| < Const.lz‘N , lz| > Zy-
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(ii) ImF(x+i0) > 0.
(iii) F(z2) = F*(2*). (reality in gap).
Then F(z) has only a finite number of zero.

Proof of Lemma 2:

Complex zeros occur in pairs z;s zi*, and real zero xi occurs in the gap
-b S X, < a. If the number of zeros is infinite we can take p-pairs of complex
zeros and 2q real zeros and define a new function, G(2):

F(z)
> 7q (7.15)

[[ @229 ][ (2=
i=1 j=1

G(z) =

where we take 2p+2q > N+2. Hence from (i) we have for large !zl

i
G(z) = — . (7.16)
|z
By construction ImG(z) > O on the real axis, and we write the a an unsubtracted

dispersion relation for G,
-b @
G(z)=1/dxm_z)_+_l. ﬁix;rn_cj& , 7.17)
1 X-2z T . x-z
- ™ a

But the positivity of ImG(x) implies that IG(z)l cannot decrease faster than |zl-1

which contradicts (7.16). Hence the number of zeros must be finite and one can

easily show that
number of zeros S N+2 . (7.18)

This ends the proof of lemma 2.

Next we want to construct a Herglotz function from an F(z) satisfying the
conditions of lemma 2. Here two cases occur:

(a) Number of Real Zeros Even:

In this case we remove all the zeros and define a function @ as

o(z) = > E(2) 74 . (7.19)

[[ 2y @z [[ x)
i=1 j=1

Now ®(z) has no zeros. Furthermore on the cuts Im®(x+i0) > 0, and for large lz]

o(z) < Const.lle-ZP_2q . (7.20)

In lemma 3 below we show that such a function is a Herglotz function. Hence there

exist a sequence {xn}, x — o, such that

= -1
=
oG )] =T x_

(7.21)
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This is a consequence of lemma 1. From (7.21) and (7.19) we now get

(7.22)

3

[Fx )| 2¢Cx 2pt2q-1 > & -1
n n n

for the same sequence.

(b) Number of Real Zeros 0dd:

We remove all complex zeros and all real zeros except one, writing

y(z) = > F(2) 7e . (7.23)
[[ Gz @z ] =)
i=1 j=1

In this case VY(z) still has only one real zero at z = X but it has no complex zeros.

The treatment of the remaining zero depends on the sign of the derivative of F at the
remaining zero. A simple modification of the previous argument (see ref. 13) will

still give a sequence {xn], x oo, such that
2o x L
v )| % ¢ x , (7.24)

which gives again
-1
n

[P (x ) | 2¢C x (7.25)

To apply (7.22) and (7.25) to scattering amplitudes we still have to consider
the situation where ImF(x+i0) changes sign v-times from - ®@ to + . If this happens
then we write v
e(z) =]] (zX )F(z) (7.26)

k=1
where the zk's are chosen so that ImG(x+i0) > O on both cuts. Proceeding in the

same way for G as we did for F we get a sequence {xn], X - + o such that

z
lG(xn)l Const.xn , (7.27)
and hence :
> -1-v
lF(xn)l Const.xn , (7.28)
where Vv is the number of times ImF(x+i0) changes sign in - © < x < + o,
If we now consider the scattering process at+b - a+b, ImF(s,0) > 0 for
2 2
S > (Ma+Mb) ,and ImF(s,0) < 0 for ~w < s < (Ma-Mb) . Hence for an actual scattering
process all the conditions on F are satisfied with v = 1. We conclude that there
exist a séquence {sn}, s, + 0, and a constant C such that

[F(s_,0)| 2 Csn-2 (7.29)

In closing we state and prove lemma 3 which we have used to assert that

®(z) was Herglotz,

- 99 -



Lemma 3:

Given a function ®(z) regular in the upper half plane and satisfying the

following properties:

N
(2) lezy| <clz|”, |z| > 2,
(b) ®(z) has no zeros for Imz 2 0 s
(e) Imd(x+i0) > 0 on the real axis, (i.e., 0 S argd(x+i0) < ).

Then ®(z) is a Herglotz function.

Proof of Lemma 3:

T
Take an integer N' > N with N! 2 2, The function (®)1/N will also be analytic

in the upper half plane because of (b). Furthermore it is clear that Im[@l/N'] will

also be positive on the real axis as a consequence of (c). We consider the function
Wez) = expliot/N'] (7.30)

This function is regular for Imz > 0. On the real axis ]W(x+iO)[ < 1 holds. Now

the Phragmen-Lindelof principle tells us that only one of the following two possi-

bilities holds

(1) lw(z)] < 1 everywhere in the upper half plane

OR (ii) There exists a sequence of points {zn}, lznl - along some direction in
the upper half plane such that afz I

IW(zn)I?e Toa>o0 . (7.31)

]
Alternative (ii) implies that along some direction (Im<I>l/N ) blows up at least
linearly to - . Hence we get
I/NY) S

@)™ | Zaz |,
and > N!

]@(zn)l alzn} . (7.32)

This contradicts assumption (a) of our lemma. Only alternative (i) can hold, and

that implies

L/nt
Im () > 0 for Imz > 0. (7.33)
/e _ . . . ) - 1/Nt
Let 4nd =Zu+iv. The function v(x,y) is a harmonic function and v = arg? .
From (7.33) we know that O Sy < 5t for all points in the upper half plane and there-
fore v(x,y) is bounded for y 2 0. However, from our original construction we know

that on the x axis
N'g z

1 3

o
N

arg(CD(x+iO))1

=

or

UAN

v(x,0) & | (7.34)

0 N

Since v(x,y) is harmonic and bounded for y > O then it follows from (7.34) that for

all y 20,

©
A

veLy) S (7.35)

A\

or '
0 < arg(o(z Ny s (7.36)

=

- 100 -



and
0 < argl(z) < , Imz > 0; (7.37)
we conclude that #(z) is Herglotz. Q.E.D.

The lower bound obtained above is as we mentioned earlier rather weak.
The question of improving it is an immediate challenge.

It is clear from (7.22) that we can immediately improve (7.2) by one power
of s if we know the amplitude has a real zero and by two powers if we know the
amplitude has a pair of complex zeros. However, to guarantee the existence of
such zeros requires more detailed information about the signs of the scattering
lengths and the relative magnitudes of subtraction terms as compared to dis-
persion integrals over the low energy region. Such conditions are given in
Ref., 13.

Another possibility for improvement occurs in the case of a symmetric
amplitude, i.e. b=b, if one knows in advance that the scattering length is nega-
tive. To show how this happens it is convenient to use the variable E, the

laboratory energy, instead of s, where for ™K =+ ™K for example

s = P rE (7.38)
The amplitude F(E) is even in E and satisfies the dispersion relation
2 L
- 2F j InF(E') .
F(E) F(0) + — > 2 dE . {(7.39)

uw E'"(B'7-EY)

We define a new variable z=E2, write F(E)=G(z), and get

G(z) = G(0) +§Jj2§§§§%)dw . (7.40)

First note that G(z) is a Herglotz function of z, (ImF(E') > 0). Next it is

evident from (7.40) that G(x) is real and monotonically increasing in the in-

2
terval - < x <y”; dG/dz > 0 for z < uz. If the scattering length is negative,
2
G(u™) = F(u) <0 , (7.41)
2
then for -« <x <y,
2
G(x) =G(u) <0, (7.42)

We can therefore construct another Herglotz function H(z)=G(z)/z. This is

trivial to check from (7.40). Hence we have a real sequence {zn} such that,
-1
|8z )| = ¢z |~ ,
ez )] = ¢ ,
IF(En)l > C ) (7.43)
This improves (7.2) by two powers of s.

So far we have only derived lower bounds for the full amplitude. The ques-

tion of lower bounds for ImF or ot is also relevant. We need such a lower
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bound to complete the proof of (6.5).
We show that

-5 -2
ImF(sn,O) > C s (ﬂnsn) . (7.44)
From Chapter IV we write
2
L(s)
(5,0 |% = | = (2041) £,(5) BVe 4 o™ (7.45)
Using the Cauchy-Schwartz inequality we get,
2 s 2/L ~ /L AN
|F(s,0) | gkz(sm z<zz+1)/<§(u+1) 1£,0°)
2 2
< C” s4n"s ImF(s,0) . (7.46)

This with (7.2) gives us (7.44).

VIII. POMERANCHUK THEOREMS

A. Historical Remarks

The Pomeranchuk theorem}6in its original form states that asymptotically the
total cross section for the scattering of a particle on a target is equal to the
total cross section for the scattering of the antiparticle on the same target,
i.e. lim ¢ ,(E) = lim o (E). The total cross sections were assumed to reach a

¥ T E¥o ~
constant limit.

This theorem is not purely a rigorous consequence of analyticity and poly-
nomial boundedness alone. Other assumptions had to be made. These assumptions
have been considerably weakened by succeeding authors as shown below. The only
extra input now needed concerns the relative magnitude of ReF to ImF.

We consider the processes

a+T*a+T ,
a+T*a+T , (8.1)
with forward amplitudes, F+(E), respectively and E = lab., energy. We set
m, = and mT=M. L6 -
Pomeranchuk™ assumed that:

i) F+(E) are such that:
- lim ImFi(E)

Erves 7§?:T§— = const. (8.2)
and for large E,

F,(E) ‘

——={ < const. (8.3)

VE2.,2

ii) F+(E)/(E2-M2) satisfies an unsubtracted dispersion relation.
wginberg17 weakened the condition c+*const. as E*» and replaced it by the

condition that for large enough E, Ac = ;;-0_ should have one sign. He also
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showed that if one assumes that for large E, o, ~ C+(£nE)m, 0 <m< 1, then
C,=C. In that case one hafslim(c+/c_) = 1; .

Amati, Fierz, and Glazer proved that [ Eg dE converges.

A simple and elegant proof of the Pomeranchuk theorem in a slightly weakened
form was given by Meiman.19 We shall follow it here in section C. Before we do
that we have to discuss some mathematical preliminaries related to the Phragmén-
Lindeldf principle. We have used this principle several times in these lectures
and for the sake of completeness should state it somewhere.

B. Mathematical Preliminaries: Phragmén-Lindelsf

o

0
(a) Phragmén-Lindeldf Theorem: (Classical Form)

Let f£(z) be analytic in z regular in a sector, D, defined by two
straight lines intersecting at 0 with an angle m/q. Further let £(z) be continu-

ous in D. As r - o, let

. B
Max [£(rel®)| = 0" ), B <o . (8.4)
B¢ sector

If now lf(z)l < M on the straight lines, then lf(z)l < M for all zeD.
We specialize this theorem to the case of the half-plane which is of
interest to us and we will use in this chapter only the following version of (a).
Theorem (a'):
If £(z) is analytic in z, regular in Imz > 0, continuous in Imz = O,

and |£(x)| < M on the real axis, then:

either [£(z)| <M for all z, Imz = O,
or There exists a constant o > 0 such that
oR
M(Rn) > e s

for an infinite sequence {Rn}, R = = as n = o, where
M(R) = Max.|f(Re'%)| .
0<B<rr
A corollary of this theorem states that if £f(z) satisfies the conditions
of theorem (a') and has a bound sufficient to exclude exponential growth in any

direction, and if
lim f(x) =L s

X_"i'OO 1
lim £(x) = L2 s (8.5)
X0
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then L.=L

1L, and f(z) » L

1 uniformly in all directions.
Another more general form of the Phragmén-LindelSf principle which we
shall use below is contained in the following theorem.
Theorem (b):
We are given a domain G bounded by two curves Fl and FZ which extend to
infinity in such a way that in going to infinity along FZ G is to the left, and

as one moves to infinity along Fl G lies to the right.
FI/{

Consider a function £(z) analytic in G and continuous and bounded on boundary. Let

and 52 the manifold of

é;l be the manifold of limit values of f(z) as z — w along Fl
limit values as z + » along I“Z. (El and EZ each consist of either one point
or a continuum.) If E;l and EEZ have no points in common and if one of them does
not surround the other, then £(z) cannot be bounded in G.

If G is the half plane, then it follows from theorem (a') that if f(z)
is unbounded it increases faster than exp(alzl) in some direction. We note also

that theorem (a') is valid for a region obtained from the half plane by deforming

a finite part of the real axis. We do not need analyticity in the full upper

half plane to apply these theorems and we can easily exclude a region that lies
inside a semicircle centered at the origin.

C. Meiman's Proof of Pomeranchuk's Theorem

We start with functions F+(E) with the following properties:

i) F+(E+io) = F_(-E-io).

ii) Analytic in cut plane with cuts E5y to E=« and E=-« to E=-.

ii1) F, (E+o) = F:(E-io).

iv) For an arbit;ﬁry e > 0, and IEI > Eo(e)

lF(E)l < exp(elEl), in all directions. (8.6)

v) Fi(E)//EEjEE bounded on real axis as E = +c.

Properties i)-iv) are consequences of local field theory. In fact iv) can
be replaced by polynomial boundedness in local field theory. However, v) has
not been proved rigorously, and although one can only make the original Pomeranchuk
statement about cross sections that do tend to constants, still as we shall see
below there is no guarantee that the real parts are bounded as in v).

We now prove that i)-v) imply that there exists a sequence, {En}, En 2 +w as

n - «, such that
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lim[o,(E )-0_(E )] = 0. (8.7
n-4cw

To do this we define, g(E), as

F,(E)-F_(E)
= 8.8
8(B) = == (8.8)
E-u
The optical theorem gives us
Img(E) = 2M[o, (E)-o_(E)] . (8.9)
From the crossing condition i) and the reality condition iii) we obtain
g(-E+i0) = g (E+i0) (8.10)
and
g(-E-i0) = -g(E+i0) . (8.11)
Using theorem (b) of section B with G corresponding to the upper half
plane, F2 is the positive real axis and Fl is the negative real axis. Let

EZ be the manifold of limit values as E + +«t+i0 and é;l the manifold of limit
values of g(E) as E #» -»+i0. From (8.10) it is clear that 452 and Eil should
be symmetric with respect to the real-g axis in the g-plane. These manifolds
must intersect the real axis, for if they do not one of them would lie in the
upper half plane and one in the lower half plane and they will have no points
in common. If they have no points in common g(E) is unbounded by theorem (b),
and hence by theorem (a'), g(E) increases faster than some exponential (expalE[)
along some sequence of points in the upper half plane. This is excluded by the
bound (8.6). Therefore there must exist at least one real point, u s which is
in both (52 and é;l’ and thus there exists a sequence {En}, En -+ 4o as n * tow,
such that g(En) +u asn < o, OT

lim{Img(E )} =0 ,
n-*w n

and

1im[q+(En)-c_(En)] =0 . (8.12)
Nt

This is a weaker statement than the original Pomeranchuk theorem, but an
experimentally meaningful statement.

However, if the limit of Ac(E) as E @ » exists then it immediately follows
from (8.12) that

lim Ac(E) =0 . (8.13)
E4e

Meiman's method can also be used to study the case where the cross-sections
do not tend to a constant but increase or decrease like some power of logE or

loglogE.
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For example let us assume that for large E along the cut,
AG(E) = C|(E) | . (8.14)

The function @(E) is assumed analytic in the upper half plane and satisfies the

n

conditions: 1) for any € > 0 and large |E| > Eo(e) we have IE|-€ < l@(E)l < |E]€
2) along the real axis (Imm(E)/lml) +0as E + », and ¢(£? + 1 as E ?* ». An ex-
ample of such functions is @(E) = (logE)p (loglogE)q.

If now in addition to (8.14) we assume that g(E)/¢@(E) is bounded as E - +w
on the real axis, then by applying theorem (b) to this ratio we get

<flc(E )
llm T—ZE—S—- (8.15)

hence C=0 in (8.14). More precisely, if o, (E) ~ C+l¢(E)| and g_(E) ~ C_|o(E) |
as E ?* », then C+=C_ and
o, (E)

lim| —=<
o _(B)

=1 . (8.16)

The only input going into the Pomeranchuk theorem which is not a direct con-
sequence of local field theory is, as we mentioned earlier, condition v). Thus
even when the total cross sections tend to constants at infinity, there is no
guarantee that the ratio ReF+/E is bounded as E #* » along the real axis.

Martin20 was able to weaken ;) and replace it by

F4(E)
lim ’ = (8.17)

Evveo E logE

With this and the assumption that Ac(E) has a limit as E # « he showed that
Ag(w) = 0.

Thus the main gap remains to find a bound on the growth of the real parts.
To close this gap Eden21 and Kinoshita22 have shown that using unitarity and

analyticity in the Martin ellipse in cos® one gets the inequality

ReF{E)l < C/E in E , (8.18)

InFE) " [ Imp(z) 72

for sufficiently large E. One can easily check that for any process for which
6(E) » » as E #* », (8.18) implies

ReF(E

" (InF(E)) 0 E o . (8.19)

11m
Unfortunately, (8.19) does not help us in the most interesting case, namely when

(E) tend to constants. In that case we are still faced with the counter example,

F+(E) = -AE gn(u-E) + BE tn(pt+E) , (8.20)

- 106 -



where A and B are real and positive A # B.

For this example we have

lo, («)-0_(=) | = ;—M[A-Bl #£0 , (8.21)
also
_olB)
é_l.z 5@ 3 F1 . (8.22)

The real part of course grows like E4nE, a behavior which seems in contradiction
with the measurements of the Lindenbaum group.

Finally, using the remark at the end of section B, we stress the fact that
neither the Meiman proof nor the Martin proof need full analyticity in the upper
half E-plane. It is clear that all the results of this chapter are true even if
F+(E) is only analytic outside some large but finite semicircle centered at the
origin. In Ref. 20 Martin points out that this minimal analyticity and the
crossing property used are known to hold for all collisions of the type atb - atb

as a result of the work of Bros, Epstein, and Glaser, Ref. 3.

IX. ASYMPTOTIC RELATIONS BETWEEN PHASES AND TOTAL CROSS-SECTIONS

A. Motivations and Examples

In deriving upper bounds we have so far barely used the analyticity in
energy. In general it is not yet clear how to fully incorporate this information
into the derivation of upper bounds. In this chapter we shall show that there is
a strict correlation between the behavior of the ratio ReF/ImF as E #+ « and that
of o(E) as E % ». Of course, the dispersion relations in principle determine ReF

from o But because of the principal value integrals in the dispersion rela-

tot’
tions, it is easier to use either geometric methods or the phase representation

to determine what certain assumptions on (ReF/ImF) imply about the asymptotic
behavior of o(E).
In this chapter we restrict ourselves to studying the symmetric amplitude F(E):

F(E) = %{F+(E)+F_(E)] - pole terms. (9.1)

Let us first write down a few simple examples to give an idea of the kind
of relation we are seeking.

(a) ReF/ImF - const.

An example in this case would be

C
sinmy

F(E) = [E-u)+(-E4)%] ; 0 <o < 1. 9.2)
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For this example

. ReFS.Ez - ™
lim TnF(E) cots s (9.3)
B
and for large E,
a-1
o(E) ~E . (9.4)

Thus one feature of this example is that if ReF/ImF - constant as E + o,
then o(E) goes to zero like an inverse power and this power is determined by
the constant in (9.3). We shall see below that this feature is quite general
and can be made more precise.

(b) ReF/ImF ~ C(gnE) >

Here we take

F(E) = iCE[4nE - i%]Y . (9.5)
This gives us
o(E) ~ (4nE)Y
ReF(E) - C (9.6)
ImF(E) AnE : :

(c) Eé@l.4 const.

If (F(E)/E) + C as E # 4o, it is easy to show that ReF(E)/E + 0. TFor by
Phragmén-Lindelsf (F(E)/E) - C also as E % -, but F(E)/E has an odd real part and
hence C must be purely imaginary.

To make some of the features of these examples more general, we follow the
techniques used by Khuri and Kinoshita.23 Similar results can be obtained by

24

using the phase representation method.

B. Mathematical Preliminaries

. . . . 19
We first state an inequality due to Meiman.

Let g(E) be analytic in ImE > 0 and continuous in ImE = 0. Furthermore,

we assume that g(E) has the symmetry property

g(~E + 10) = g (E + i0). (9.7)
Also we assume that
|1i'.m g(E) = 0 (2.8)
E—-)(X)

The function g(E) maps the upper half E-plane into a certain domain of the g~
plane. In particular the upper edges of the semi real axis (0,-») and (0,+») are
mapped onto two curves Tl and T2 symmetrically located with respect to the real g-
axis. In this mapping a sufficiently distant upper-half neighborhood of the point
E = ® is mapped onto a certain neighborhood (perhaps many sheeted) of the point g=0.

To be more specific we take two large real values E and Eo, such that E,EO >> El;
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E1 being a large positive constant., We consider a domain in the E-plane bounded

by two semi-circles centered at the origin with radii E and Eo as shown below.

\\,\ '\\‘
.\\ \.‘.\..
\ \
1| R
-E

o E

Let us assume that for ‘El > E1 s Fl and Té have no points

in common. The
image of the above region in the g-plane is shown below

g(E,) T,

g =u + iv

g(=)

We let u be the nearest point of intersection of the map of the smaller semi-

circle with the positive u-axis, Similarly, we let ug be the farthest point of

intersection of the map of the large semi-circle with the positive u-axis.
Meiman's inequality can now be stated as

Yo du E
— > % In — 9.9
'J‘uE p (u) 3 n EO ] ( )

where E >> EO and p(u) is the shortest distance from the point u to the curve
F(E,EO).

For a proof of this inequality, see Ref. 23 or for more detail
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Nevannlina's book.

Using this inequality we state and prove the following two theorems due to
Meiman. For simplicity we ignore violent oscillations in the functions g(E).
Theorem I:

Let g(E) satisfy (9.7) and (9.8) and be analytic in ImE > 0. Furthermore,

let g(E) have no zeros for lE\ > E,. If in addition for large real E > El’ we

1
have the inequality

Im
\§E§\ > tan v , O <a< % , (9.10)

then starting with some Eo >> El’ we have for E >> Eo’

Exn/2

ls®)/g(E)| < ¢ (5 : (9.11)

(actually when we have oscillations, (9.11) holds only on a sequence of inter-
vals extending to infinity).
Proof:

In this case if we draw straight lines through the origin (in the previous
figure) with slope tan mo and -tan mo, then F2 will lie above one line and Fl

below the other as shown.

1

It suffices to consider the case « % since other cases can be reduced

1
to it by considering the function g' = gﬂy.

For @ = % we have

1
2
p(u) = (2 + |g®)|H", (9.12)
with u, < u < uo° Thus we have
L
2
Uo Uo uo+(u02+lg(E)l2)

du du
—_ < —_——r = /n (9.13)

Combining this with (9.9) we get

1e@®| N
T < C( = , (9.14)
u, + (uHe@ |’ ©

and hence

L
E 4
|g(B)] < C<E9> . Q.E.D. (9.15)

Remark:
Even though we always choose E >> EO and E0 large, it is still possible

that for some real E', E << E' < E, we have

le@D] < |g®)]| ; (9.16)
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i.e. B' is the point at which ‘g( E)\ takes its minimum value. 1In this case

L . .
(9.12) reads p(u) = (u2+\g(E')\2)2. One then gets instead of (9.15) the in-

equality

le€)]| < ¢ <E§>% . (9.17)
hence since E' < E, we get

le®"| =< ¢ <§%>% . (9.18)

We see here that if \g(E)\ oscillates (9.15) holds only on a sequence of points.
Theorem II:
If g(E) satisfies the same conditions as in theorem I but instead of

(9.10) we have,
| m g(E)| = c|Re g(E)l\,) c>0,v>1, (9.19)

for large real E; then starting with some Eo we have,

-V
1 1 E \:T.
|Im g(E)/Im g(B)] = (1 + % C'(v-1)4n 3 : (9.20)
o
where C' is a constant.
For a proof see the Appendix of Ref. 23.
C. Applications to the Even Amplitude

We now show how the two theorems just stated can be used to derive phase
relations for the even amplitude F(E) defined in (9.1).

First we recall the rigorous properties of F(E).

(i) Analyticity in cut E-plane and continuity on boundary.

(ii) F(E+i0) = F (E-i0); (reality).

(iii) F(-E-i0) = F(E+i0); (crossing).

(iv) lF(E)‘ < C ‘E\ 1n2 ‘E\; (Froissart Bound).
Theorem A:

If F(E) satisfies i) - iv) and if for large real E

|%§§‘ >tanmo ; 0<ao <k ; (9.21)
then for large enough lEl,
Ir@)| < ¢ |E| 72 wale])?. (9.22)

Proof:
We define the function w(E) as
F(E)

w(E) =
iE [ﬂnE -

w0 Y22 (9.23)

2}
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and 0 < arg E < 1.

By construction w(E) is analytic in the upper half E-plane excluding the
unit half disc around the origin. Furthermore, w(E) — 0 as lE\ - o in all
directions. It also follows from iv) and the dispersion relations for F(E)
that F(E)/E has no zeros for ‘E| greater than some constant El. Thus w(E) has
no zeros for sufficiently large ‘El in the upper half plane and also Re w = 0
in that region. From unitarity we have ImF(E) > 0 for E = u; hence along the
positive real axis Re w(E) is positive for large E.

The reality condition (ii) and the crossing relation (iii) give us

Re w(E+i0) = Re w(-E+i0) ,

Im w(E+i0) = -Im w(-E+i0) . (9.24)
For large E we have,
Im w(E) ~ _ ReF
Re w(E) = ImF ° (9.25)
and hence
Im w(E)
‘Re w(E)lZ tan o (9.26)

Thus w(E) satisfies all the conditions of theorem I of Meiman, and we get for

large enough real E

|¥§§i)| < c (?f e (9.27)
This gives us o
|FE)| = ¢ \E‘l—i GnlEDY; v > 2. (9.28)
For the total cross section we have
Gtot(E) < C E“OZ'/2 ;o' a. (9.29)

This completes the proof of theorem A. If the cross section tends to a
nonvanishing value or decreases more slowly than any negative power of E as
E — «, then |ReF/ImF| must tend to zero in that limit.

Again for the mathematically afflicted we stress that (9.28) and (9.29)
hold only on a sequence of points in general.

The cases where \ReF/ImFl - 0 as E @ = have been treated in detail in
Ref. 23. We state here one more theorem to give a flavor of the results.
Theorem B:

If F(E) satisfies (i) - (iv) and if for large real E

|ReF/InF| = —— , 0<a<1, (9.30)

(4nE)?
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then for large \El
l[F®| < ¢ |E| ¢ale)™, > o. (9.31)
Here A can be chosen arbitrarily large.
In this case the total cross section decreases faster than any inverse
power of ZnE. The proof of this theorem depends on using theorem II of Meiman.

The details are in Ref. 23, where also more theorems of this type are given.
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X. ASYMPTOTIC PHASE RELATIONS AND UNIVALENT FUNCTIONS

The theorems and inequalities proved in the previous chapter could be improved
and strengthened if the symmetric amplitude, F(E) is also univalent. However, one
can easily show that this is not true in general, namely F(E) is not necessarily
univalent. On the other hand as we shall see below, we can easily construct from
F(E) functions that are univalent in the upper half E-plane. We then use the strong
restrictions on univalent functions to derive some asymptotic phase relations for
these new functions. The details of this chapter can be found in Ref. 25.

A. Mathematical Preliminaries

A function, £(z), analytic in a domain D is called univalent in D if z, # z,
implies f(zl) # f(zz) for any Z152, in D. Locally any analytic function f(z) is
univalent in some neighborhood of a point z, if f'(zo) # 0. A theorem on univalent
functions states that if f(z) is regular for z in a simple domain D, and f£'(z) # 0
for all z in D, and if the simple boundary curve of D is mapped by £(z) into a simple
boundary curve (i.e., with no double points) of the image domain in the f-plane, then
£f(z) is univalent in D.

We now wish to construct a univalent function from the function F(E) defined by

Eq. (9.1) and satisfying the properties i)...iv) given above theorem A of Chapter IX.

We write a twice subtracted dispersion relation for F(E),

(e o)
2 A '
F(E)-F(0) = g%— / dE" __meéE_%; : (10.1)
. E'(E' -E

We define the new function H(E) as,

H(E) = Ejg%;zggl . (10.2)
This function H(E) has the following properties:
a) H(E) is regular for ImE > O and continuous for ImE Z 0.
b) H(E) is a Herglotz function, i.e., ImH(E) > 0 when ImE > 0.
c) H(iA), A > 0 is purely imaginary and positive.
d) ReH(E+i0) = -ReH(-E+i0), and ImH(E+i0) = ImH(-E+i0). Thus the function H(E)
maps the upper half E-plane into a domain in the upper half H-plane. This mapping
is of course not necessarily one to omne.
To get a univalent function we write

E

T
g(E) = /ﬁ Eé%—l dE' ImE 2 0

0

(10.3)

.
b

where the integration contour is taken to be in the upper half E-plane. The integral

is convergent at E'=0 since crossing tells us that F'(0) = 0.
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One can easily check that g(E) has the following properties: (a) g(E) is
regular in ImE > O and continuous in ImE 2 0, (b) Img(E) > 0 if ImE > 0, (c)
dg/dE # O for all E such that ImE > 0, (d) Img(-E+i0) = Img(E+i0) and Reg(E+i0) =
-Reg(-E+i0), (e) for E < p, Img(E+i0) is non-negative and increases monotonically
with E as E increases along the positive real axis, (f) Reg(E+i0) is non-negative
and increases monotonically in the interval 0 € E < .

As is seen from (b), g(E) maps the upper half E-plane into a domain G located
in the upper half g-plane. We know from (c¢) that this mapping is locally one-to-one
everywhere in the upper half E-plane. The mapping will be globally univalent if the
boundary curve of G does not have double points. Let us denote by Fl and F2 the
images of the negative and positive real E-axes respectively. We know from (f) that

the part of I', corresponding to O <g < i, does not intersect with itself and lies

2
on the positive real g-axis as shown in the figure below.
v
E-plane : g=ut+iv
n // 6
v
. . gL ¢ &
] Ty /
7 7
SNV INEY) YorgrirArig s .
g(-u) g (1)
g(0)

For E > pn, g(E) becomes complex and the corresponding part of P2 goes away monoton-
ically from the real g-axis according to (e). Thus FZ cannot have any double points.
The same holds for Pl. Hence the only remaining possibility is that Fl and PZ have
some common points. Because of the monotonicity and the symmetry the only possible
common points of Fl and F2 can be found only on the imaginary g-axis. One can easily
show from (10.1) that Reg(E+iO) > 0 for E > p. Hence the only possible common point
is g(0). If g(o©) is finite Pl and PZ meet on the v-axis. If g(o) is infinite they
continue going up. Thus the boundary curve of G has no double point which proves
the univalence of g(E) in the upper half E-plane. (Actually, to handle the behavior
at infinity properly requires a few more detailed arguments. Those interested should
consult Ref. 25).

One may ask what does one gain by going from F(E) to the univalent function
g(E)? We give a few examples of the sort of restrictions on the possible behavior
of g(E) which are imposed by some theorems on univalent functions.

For this purpose we introduce the new variable z defined by
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B b A>0 . (10.4)

This function maps the upper half E-plane onto a unit circular disc, |z] <1l. We
also define, for fixed A, the function
_ B(E)-g (i)
o (z) 2iAE (10 . (10.5)
By construction g'(iA) is never zero for A > 0. Thus @(2) is regular and univalent

in the unit disc, ]z| < 1, and its power series has the normalized form

o(z) = z+a222+a323+ e (10.6)

Furthermore, one can easily check that ¢(z) is real if and only if z is real,
Iz‘ < 1. For such univalent functions one can prove that the coefficients a in
(10.6) satisfy the inequality
lan] Sa n=2,3,4,... . (10.7)

This puts upper bounds on all derivatives of g(E) at E = i\ which depend only on A
and g'(iA). Although it is unlikely that the bounds (10.7) are of direct practical
use, they might be useful in some theoretical considerations.

Another possibly more practical inequality follows from a theorem of Koebe. It

gives us
loe*®) | >% , 0<e<2r . (10.8)

B. Asymptotic Phase Theorems to g(E)

The fact that g(E) is univalent allows us to use much more powerful inequalities
than that of Meiman given in the previous chapter. The main results of Ref. 25
follow from using a theorem due to Ahlfors. We start by stating that theorem.

We consider a simple domain D in the z-plane (z = x+iy) which is simply connected
and symmetric with respect to the x-axis. Let Z1 = Y1+in and 22 = X2+iY2 be the

points on the boundary curve of D with the smallest and largest real part, respectively.

z, \ z,

\\\\*\\;:) Domain D in z-plane
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For any x, Xl <x < XZ’ the vertical line Rez = x will have one or more intersections
with D, each of which bisects D into two disconnected parts. Under our assumptions

on D, there is one intersection which crosses the x-axis. This line segment we

denote by QX and its length by O0(x) as shown above. The line segment Qx divides D

into two disconnected parts in such a way that Z1 and Z2 belong to different parts.

We require that 6(x) is a continuous function of x for Xy <x < X, except at some
isolated points.

Let w = utiv = w(z) be a function which is regular and univalent in D and maps
D conformally onto a strip S defined by Iv] < %a, a > 0, in such a way that

u(Z,) -» - © and u(Zz) - 4+ 00

P

a/2 X

I
|
I
l
' |
ul(x) uz(x)

Strip S in w-plane

In this mapping the line segment 6 will be mapped onto a continuous curve LX which

1
connects the two boundary lines v = + Ea. The largest and smallest values of u on

Lx are denoted by uz(x) and ul(x) respectively, as shown above. The theorem of

Ahlfors now states that
X

2
dx
- P4 -
ul(xz) u2(xl) a \/P 0(x) 4a (10.9)
*1
holds for any pair X, > X, such that
X
2
dx
Jf 6(%) > 2 . (10.10)
*1

We now use the Ahlfor's theorem to prove the following results.

Theorem 1:

If g(E) for large real E satisfies

Reg(E > 1
= < < = .
Tmg (E) tanney , O o > , (10.11)

then g(E) has the lower bound for IE] > EO
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lgE)| = C(g—)za , 0<a<3
0

Proof:

We define z and w(z) by
E .
z = Ln(E) - in/2 c>0

w(z) = ng(E) - in/2

We apply Ahlfor's theorem to the mapping z - w. The lines Reg/Img

(10.

(10.

pond to the two straight lines in the w plane which are parallel to the u-axis

12)

13)

+ tannQ corres-

(w = ut+iv) and separated by the distance a = 2amw. We choose D to be the domain whose

boundary curve consists of two vertical line segments, Rez

= Ln(ag) and

E2
Rez = x, = Ln(—a), and two Jordan curves which are the inverse maps of the two

2

parallel lines in the w-plane mentioned above, by the inverse transformation z

It is obvious to check in this case that by definition
8(x) < r

Thus from the Ahlfor's inequality we obtain

> XZ-xl

u) (1,) U, (x ) Z 208 (=" - 4)
E2

= 20 4n — - 8w
£y

From the definition of ul(xz) we know that

ipy > U
inlg((Byle™ ] T u(x,), €T T x-e
If we choose ¢ = 5/2 we get

E
2.2¢
=) )

letilE, DI 2 °

for E2 >> El' In Appendix C of Ref. 25 one show that

lg@®) | > = |Img(iE) | ,
(2)*

for real positive E. This with (10.17) completes the proof.

Theorem 2:
If g(E) satisfies

R_e&@ g tanﬂa'

1
* —_—
Tmg (E) , 0 <a < 5

for E > Eo then g(E) has the upper bound
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(10.

(10.

(10.

= z(w).

14)

.15)

16)

17)

18)

19)



E 2a!
E—)
0

The proof of this theorem is given in Ref. 25 and is very similar to that of

lsE)| < c( (10.20)

Theorem 1 except that one reverses the definitions of z and w(z).
Several other theorems follow from the Ahlfor's inequality and the reader is
referred to Ref. 25 for details. We close by mentioning one such result.

If for sufficiently large real E we have
Reg(E) Sb, b>0 , (10.21)
where b is a positive constant, then g(E) has the following upper bound
lgE®)]| € ¢ sn|E| . (10.22)

This essentially means that the total cross-section is bounded by a constant for
large energies. Now if, for example, ReF(E) is negative for all E 2 EO where EO
is some fixed large energy, then clearly (10.21) will be satisfied for all E > EO

with b = Reg(E Thus if the forward amplitude is repulsive at high energies as

O)'
E — o then the total cross section cannot go to infinity or more precisely,

E
[ o(E')/E'dE' does not diverge faster than fgnE as E = .

- 119 -



16.
17.
18.
19.
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23.
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The purpose of this lecture series will be to discuss attempts to explain high

energy data using classical intuition augmented by Regge behavior.

I. GENERAL FEATURES OF TWO BODY INTERACTIONS

Experiments show that, at high energies, E%ggg has a very sharp peak near
6 = Oo, a smaller peak at 6 = 1800, and is very low in between. These general features
do not change as s varies. We will not consider the backward peak until later since
the backward peak can be obtained by generalizing forward peak results. These
features will have important implication for the models we will discuss.

Partial wave analysis of the amplitude gives

A(s,t) = 2(21+1)ft(s)PL(c059) (1.1
which can be normalized so %% = —l§|A|2. Unitarity at low energies gives
4k”, .
218£(s)
_e -1
fz(s) =TS where & would be real.

The observation that g% is very small between the forward and backward peaks

indicates that many partial waves contribute to (1.1) so it is plausible to replace

the sum over 4 with an integral. Near the forward direction and 4 large,

ES
Pz(cose) = JO(LG). Define b = % = the impact parameter. Since (-t)* = k&, (1.1)
becomes ool
1/
A=1i fb deO(b(-t)z)f(s,b) . (1.2)

0

The integral can be extended to £ = 0 since low ¢ waves do not appear important. If
f(s,b) is approximately factorizable then the shape of the forward peak is independent
of s, as is observed, 1In some cases the peak shrinks as s increases, but we will
assume that this is not crucial.

Several aspects of (1.2) should be noted. The arguments used to motivate it
from (l.1) are heuristic. However, (1.2) can be used as an exact representation of
A in impact parameter space. In the case
of spinning particles, (1.2) can be easily
generalized by making b a 2 dimensional //////ff\\\\\\\

i~
vector l to the incident momentum (see / b \\

v

v
N

Fig. 1). Then an integral representation

for JO gives

Center-of-mass System coordinates

Fig. 1
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A(s,t) = fdzg B (1.3)

[

which is the 2 dimensional Fourier transformation. For spinless particles, F
depends only on s and IEI. The representations (1.2) and (1.3) are very useful when
s is large, t is small, and the radius of the interaction region large. 1In the
resonance region where s is small, these representations could be used, but would

be very complicated. When is large, t is approximately the transverse momentum
transferred and |g|2 ¥ -t. The deBroglie wave packet spread is proportional to %
so at high s the wave packet feels only a small part of the scatter at a time. bmax
is of the order of the x Compton wavelength. We might expect classical physics

to be useful for constructing models when the wave packet size is much smaller than
bmax'

The problem now is to find £(s,b). The concept of a potential is very useful
in classical physics so let us try to use it to generate f(s,b). One aspect of this
concept which will be useful to us is the additivity of potentials. Sometimes the
potential of a composite system is the sum of the potentials of each constituent,
e.g., nuclear scattering or the quark model. We will use potentials which are
instantaneous in time and depend on spatial parameters.

Suppose we are given a potential. How can we use it? 1) Schr¥dinger's
equation is not relativistically invariant. Since we are interested in velocities
close to ¢, we must be cautious. 2) Covariant equations lead to retardation diffi-
culties. 3) The last possibility is to use the potential as an effective potential,
i.e., like a single scattering term. If we know the outgoing and incoming wave
function, we know the scattering matrix. The equation of motion is equivalent to
a definition of the potential.

1
Consider one dimensional motion through a slowly varying potential :

_ .0 _ 52 _ _.0
Hy i Y (P+H)y, P 1% (1.4)
is Schr8dinger's equation where 2m = A = 1. We expect the incoming wave to be
modified by a phase change and absorption. The boundary condition is ¢ — e_l(kx-wt)
as x = so it is reasonable to try y(x,t) = e-lw(x’t). This gives
2
oW _ . 9 W oW, 2
i A (1.5)
ox
X
The trial solution W = @ [ dx'V(x')~kx+wt where o,w are undetermined parameters
-
gives
. d 2
W= da o+ (V) k) Y (1.6)

We want to satisfy this for any V(x) so the choice w = k2 and o = %E leaves
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0 = é—k%‘l+ 12\/2
o (2k)

where k >> V, g% this is satisfied. This the eikonal approximation.

The eikonal wavefunction is

X
Vo= exp[— %E\/pdx'v(x')+i(kx-wt)} . (1.7)
- )

This is essentially the WKB approximation in one dimension. In three dimensions the

eikonal wavefunction is given by

X
¥(b,x) = exp[- %{-‘/ﬁdx'v(h,x')+i(kx-wt)] (1.8)
- o
assuming that there is negligible transverse deflection of the incident particle,
i.e., that 6 = 0.

The transition matrix element from state k to state k' is
St
T(k',k) = i /"d?’xv(x)q;kout(x)el& X (1.9)

Choose a coordinate system with k along the z axis. Define q = (k_'-k_,k _'-k ).
- X Xy vy

Substitute (1.7) for WEUt(x) in (1.9) and compare with (1.3). Note kz' w kz S0

i(kz-kz')z
e ~% 1. This gives
© z
r i
F(s,b) =,/ V(b,z)dz exp[- EE\/“dz'V(h,z’)} . (1.10)
- QO i - Q

(See Ref. 1). The s dependence is in V(b,z). A similar result can be obtained

from the Bethe-Salpeter equation. The integral in (1.10) is of the form
b

f dxf'(z)ef(z) = ef(b)-ef(a). Thus
a (e ]
r i iX(s,b)
F(s,b) = l-expL- o5 | V(bydz | = 1-e"502 (1.11)
- ®
with
[¢ 0]
X(s,b) = - %1; V(z,b)dz . (1.12)
- @

Note that the assumption of a straight line trajectory is essential in getting (1.11).
Equations (1.11) and (1.12) constitute the eikonal approximation to the amplitude.

This is comparable to the partial wave expansion (l.1l) with X(s,b) = 285=kb(s);

- 125 -



= [dzgeig'E(l-eiX) . (1.13)

Teikonal _,

The essence of the eikonal approximation is that the phase shift is a homogeneous
linear functional of the potential (Ref. 2).

We would like to describe the eikonal approximation without using the
Schrbddinger equation. Defining a '"Born approximation' allows us to do this. If V

is small then

T =T =/d23eiﬂ'9(1-eix) (1.14)

Born

which can be inverted, since X is small, to give

2 ig-b
. 1.1
X \/d qe —’I‘Born(g) (1.15)
(see Ref. 2)
Equation (1.15) and F = l-e1X can be used as a starting point for the eikonal
approximation. Incidently, these are true in the optical model. This allows us to

use TBorn in the sense of a relativistic single scattering term at high energies.

The eikonal approximation shows how to iterate such a term to get the complete

amplitude.

We need a model for TBorn on the mass shell. Note that the connection of X

with TBorn is trivial if we assume X small. We extend the small X functional form

to large X. How do we know that calculating higher terms in X (multiple scattering
corrections) gives reasonable results? The approach works in molecular and nuclear
physics so let's be optimistic and try. The goal is to find a TBorn that will
explain many features of data simply.

-6
II. SCATTERING BY COMPOSITE SYSTEMS3

Consider the scattering of an elementary particle by a composite system A.
(Fig. 2) We will assume that there is an
additive 2 body potential between the
projectile and each constituent. We also
assume no recoil or motion of the
constituents during the collision. Then

Vv, (b,z) =% V, (b-b,,2-z,) where the E
A(P>2) .J(J J)

J
dependence is suppressed. The additivity

of the potential implies that the phase

shifts are additive so

Fig. 2
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%X, (b) = ‘2"1; [V, (B,z)dz =Z xj(g-kj) . (2.1)
o j

The potential concept was used to motivate the additivity of the phase shifts,

For a quantum description of target, use nuclear wave function

[Wl(rl...rn) > = initial state

I

le(rl---rn) > final state

The transition amplitude is

= = * . 3 3
Ty = < 2|T(b,b1...bn)]1 > fx]fz (r;-.-r)T(bsb . b )y (r)..x YA r)...d
(2.2)
where £j = (Ej,zj). For elastic scattering Wl = wz so (2.2) becomes
T, (b) = /P (r r YT (b;b b )d3 d3 (2.3)
11 oplryeeer sbyeewb )dir e d Ty .
. 2 , . . . . . . .
with p = lw] . The integration weighs each specific configuration with its
probability.
In Glauber's theory of multiple scattering one defines "profile functions"
ix iX.(b=b,)
P =1-e >, p=1-e 3 3
A il
which implies - .
1-7, = x,(1-I’,) or T =ZI‘.-Z r.r, +.. 2.4
5 = 7y (1Ty) or T, 5 Ry (2.4)
i i,]
(i#3)

with N summations. This is a multiple scattering series. The first term is linear
in scattering from each constituant and is called the impulse term since it gives
the impulse approximation. The second
term corresponds to two scatterings. Our
approximation that the scattering is mainly
forward means that the projectile is unlikely
to be scattered twice by the same
constituent as in Fig. 3.

As an example consider the elastic

scattering of a 5 on deuterium.

Fig. 3
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TD(b) = \/der {rp(b-bl)+Pn(b-b2)-Pp(b-bl)Pn(b—bz)}'p(r)

22 -, ")

£ = (82 W[ =p~e = e
2
da. t/4p
G ~e (2.5)
p,n

assumed for scattering the 5 on free protons and neutrons implies that in the eikonal

-g2p2
approximation Pp ~ ce B . The single scattering terms give

>

e-(02+52)b2

/1d3rp(r)F(b—bl) =c (2.6)
and the double scattering term gives
2 2,.2
/jd3rp(r)P(b-b1)P(b+bl) = 2o (@H2B DD (2.7)

The Fourier transform from impact parameter space to momentum transfer space gives

N
T(t) = ic {%xp [_—_%—_5_}_C exp[———g———§—1 j (2.8)
4(a+p) 4o +267)
dg . .
E% is proportional to the square of T(t) h positive first term(impulse)

and has the features shown in Fig. 4. 1In
\

Si:://ﬁquare of total amplitude

~ negative second term
\ \\‘\.4! (double scattering)
-

d
general E% has N slopes when there are N

constituants. As N — o the curve becomes

a Bessel function as in Fig. 5. This logdd
- dt
effect is observed in heavy nuclei.7 9

Ve

Now we will relate the eikonal Ly \
- t
10-12 by .

approximation to the droplet model

making the number of constituents in our
composite model N - . Assume all the
constituents have the same wave function,

for instance they could be in harmonic
oscillator wave functions. Define S by
T(b;bl...bn) = l-S(b;bl...bn). Assuming

the scattering is independent gives dg

1
S =_ﬂ S.(b-b.) where §,(x) = 1-T'.(x) = %84t
g ] ]
iXs (%) %
€ ) ) J (r)CPJ(r))

using the factorization properties of ¢

Calling pj(r) =@

and S, and normalizing with < 2]1 >=1 —t———
Fig. 5
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n iX(b-b.) :
T(b) = 1- H ‘/ﬁd3rjpj(rj)e T - 1'{500})} @2
i=1

in (2.2) gives

where

Py iX(b-b_)
So(0) = [ d'rp(r)e T 1-T,(b) . (2.10)

PO(b) is the T matrix for one constituant. Then
N

T(b) = 1-]1-F0(b)] ) (2.11)

We want to get a simple result as N - . If we hold the cross section of the
composite system constant, then the cross section of each constituent must decrease.

A canonical assumption is

=1
o) =5 7(b).
This gives N
b -7(b
T(b) = 1-[1- Z%fll — 1-7®) (2.12)
N - o
iX(b-b.)
Now consider the short range approximation. The term e in (2.10)
acts as a delta function of b-br. Define
fe'e}
D(b) = /o(b,Z)dZ
- @
Then Po(b) = Zégl D(b) gives )
-y(0)D(b
T(b) = 1-¢ 7 (OD®) . (2.13)

The number y(0) is given by experiment. D(b) is independent of the projectile in
this approximation. When the projectile is complex the same result holds. As an
example, in optics y(0) is the opacity and D(b) corresponds to the optical depth.
Another example is nN scattering where D(b) has the shape given in Fig. 6. D(b) is
the distribution of the proton with "R" representing its size. A third example is

scattering from a nucleus.7-9 D(b) is given by Fig. 7.

~

large value

D(b) D(b)

b — 5 R b—>
Fig. 6 Fig. 7

- 129 -



1 b<R
1-o"7(OD(b) _ { (2.14)

0b>R

which gives (from (1.2) and (1.11)),

[ee]
T(t) = i/;deO(b(-t)%')[l—e'7(O)D(b)]
0
L L iRZJl(R(-t)f) )
= 1[bdbI(b(-6)%) = e = IRF(E) (2.15)
6 R(-t)?

F(t) is plotted in Fig. 8. T gives the diffraction pattern of black spheres. When

7 is purely real it gives an imaginary T.

7 can be made complex to give the correct
phase for (say) zN scattering. Then (2.15) \\\
predicts T for mA scattering where N is a F () /f} AN

nucleon and A a nucleus. Fits to high \\4/] k//f' \VZ

energy np and pp elastic scattering using —t —)
as free parameters Rey and Imy, and Fig. 8
10,11

assuming that D is given by electromagnetic form factors, agree to about 10%

2
when -t < 1 GeV , as sketched in Fig. 9. 1In practice Imy can be neglected. Note

N A
S
logg'g °
dt g 0
) v
&
o
T 0
- ’
! z
0. 1.0 -t (Gev ;
( ) Fig. 9 Fig. 10
that this model is inconsistent with moving Pomeron models since there is no
shrinkage. The model gives Ocor — 20e1 = 2R2, for the nuclear case (2.15).

Now we will generalize to the scattering of two composite systems A,B. See

Fig. 10. The separation of the center of masses at collision is b,
T (b) = [d3r a3 < B,2|T(b_sb,...b )|B,1 > (2.16)
o o? . 10 N s s P17 Py , s .

where ¢ is a constituent in the projectile, A. This can be summed over (¢ to give
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_ [ .3 3.1 o
T, (® —\/d rlA...d rNA <A,2|l:1-H (1-T (b ba))]IA,l > . (2.17)

(o]
For elastic scattering this becomes
NA
iX_ (b-b,..)
el .. _ 3 %3 (B bry
T,p (®) = 1- 1 \/d TP, (r))e (2.18)
o=1

where iXB =i -a(0)D(b). 1In the short range

X . . =
(constituant +B — constituant +B)
approximation as N,, N_ — o we find
A "B N

iXB(E_Erl)-J A 1%, 5 (0)

TABel(b) = 1-[[d3ripA(rl)e l-e (2.19)

with
X, 5 () = iy(oyfdh'DA@'-g)DB@w : (2.20)

This is a convolution of the distributions. When 7 is constant this is the "coherent
droplet model'" of Chou and Yang.3 The qualitative features of (2.18) and (2.19)
hold even if N # 0. DA(b) and DB(b) can be successfully (for N and NN scattering)
estimated by electromagnetic form factors. This approach can be applied to inelastic
scattering with DA(b) interpretated as an operator5 that rearranges the distribution
of A. What is needed are excitation form factors, e.g., yN - N¥,

The qualitative features of a multiple scattering series can be seen using a
Gaussian for X(b) = ice—bz/2R2 which can be justified from Regge theory (where R

depends on s), from statistical mechanics, or pragmatically. It gives

2 2 2 n 2
T(t) = iR {cetR /2 e JERT/A 0 (e) R /2n+..} . (2.21)

22! nn!

When -t is small the series damps rapidly; however, for large -t higher order terms

in the interaction strength ¢ are important. The number of terms that are important

is proportional to ]t}. See Fig. 11. When -t is very iarge the saddle point from
- - 2
the method of least descent gives the envelope e R85 for T. This is the Jaffe
bound. n=1
2
3
ln]Tnl 4
5
(etc.)
Fig. 11 -t
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ITII. ABSORPTIVE FORMULA

1 i i . =
We want to lead up to including Regge poles Suppose Veffective V0+-V1

where V., is weak and V0 has a simple or known form. For instance VO could come from

1

the Pomeron and V, from the charge exchange or isospin dependent part. We have

1
X(b) = Xo(b)+X1(b) where Xl << 1 for all important b. 1In charge exchange this is
satisfied when the energy is sufficiently high. Then
. iX iX iX
T(b) = 1-e™ ¥ 1 O(1tiX)=(l-e )-ie Oxl . (3.1)
Following (1.2) and (1.11), define
L iX,(b)
To(t) =i /ﬁbdeo(b-(-t)z)[l-e ] (3.2)
i, (b)
T,(8) = T-T = /PbdeO(b(-t)z)e X (B) - (3.3)

Equations (3.2) and (3.3) are known as the absorption formula, also called the
Sopkovich~Jackson-Gottfried absorption formula, or the distorted wave Born approxi-
mation because the factor eixo(b) distorts the usual Born formula. TIf T.(t) is
known from the high energy limit of data, then we can invert TO(b) to get eixo(b).
The data on Tl(t) gives Xl(b) since Tl(t) is linear in Xl(b)'

As an illustration consider the black disk approximation in a nucleus.
Figure 12 shows an example of what can occur in impact parameter space. Tl(t) has
the lower partial waves absorbed by the
eiXO(b) factor. Figure 13 shows what Xy
this gives in t space. The JO and Jl b \\uf

contributions are out of phase. This \\\ iXO

phenomena is clearly seen in nuclei. \ éf//

We could get Xl(b) from one 2 N
& Y

particle exchange with amplitude 5 . 0
u -t
It is known that the absorption formulas

describe modifications due to elastic
scattering in the initial and final states. iXO

See Fig. l4. The formalism discussed

above applied to inelastic processes f(
\

like #°p = % n. We would like to extend

-

\
. . - ) . . VQ Xle
it to processes like  p = wn which is 7 N

not really charge exchange unless we R
b—>

invoke SU(6) to equate the n and w. This

is not totally satisfactory. Another Fig. 12
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wo [\ o

~ I (W) \ ! / o=t
w \//// -

L
w = R(-t)*

-t
i Fig. 14

T (%) \ ,Z/\\ [\~
YERYAY

~ I (W

Fig. 13

justification of the application of the formalism to this reaction comes from
2
studying the multichannel version of the problem. Let channel 1 be np and channel

2 be wun. Then we can associate different potentials for different channels,

Tll(np - p): V11

Tzz(wn - wn): V

22
Ty, (P = wn): Vv, . (3.4)
Then
11 Tizy N
T(t) = <; / = i/;deO(b(—t)z)e{;—exp[iz(b)]} (3.5)
21 T22
with X = X0+X1, XO diagonal and Xl off diagonal, << T. 1If we ignore non-commutativity

of elxo(b) and i%l(b), we get

r O
Il(t) = | bdeO(b(-t)Z)e zl(b) . (3.6)
Usually it is assumed that V11 = V22 so %0 = IXO avoids the commutation problem.
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IV. EFFECTIVE POTENTIAL AND OPTICAL MODEL

The formula
T(t) = i/l‘)deO(b(-t)%)[l-eiX(b)} (4.1)

was derived by consgidering the matrix element for the scattering of an elementary

projectile by a composite target.

iX

iy X elem
e =< Ole i

0> (4.2)

We then assumed Xjelem

is independent of s and t, i.e., gi6(b-b1), and built up a
theory of effective two body potentials for composite-composite scattering. The
effective potential has a very simple constituent-constituent scattering "ancestor"
even though it could appear very complicated.

So far the use of potentials was only for motivation. There are other methods
of obtaining the eikonal formula. Later we will discuss a field theory with heavy
vector meson exchange which gives the formula. Note that the potential description
often resembles elastic unitarity so the Schr¥dinger equation is usually interpreted
as keeping only elastic intermediate states. 1In composite theories rearrangements
are important and are equivalent to inelasticity which in fact dominates. The

nuclear optical potential in Glauber theory has much physical content in common

with multiperipheral models. Unitarity gives

ImA =Z ‘/‘ITPP . nlzcmn

In the multiperipheral model T is

pp 7 n
the amplitude shown in Fig. 15. The sum
over lots of intermediate states can give
a Pomeron-like object, i.e.,
A(s,t = 0) ~ iso‘(t) with a(t) ¥ l+et. The
scattering is dominated by inelastic

intermediate states.

In alternate models like Huang's

incoherent droplet model13 hadrons are
considered arrangement of bits. Another Fig. 15

arrangement of p gives p+6nx. N depends

on kinetic energy so this model is a

theory of interaction, not just the states of a p alone. During a collision the
bits mix randomly. To determine the probability of a final state we just count

the number of rearrangements giving the state. If something like this is true,
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then following Glauber, eiX 0 > in (4.2) can be interpretated as a rearrangement of
some of the constituants. Projecting this on < Ol gives the elastic matrix element,
however, many inelastic intermediate states contribute. eiXIO > has a small overlap
with < Ol for small impact parameters. In
Fig. 15 the initial state has the role of
< OI. Both approaches in their simplest

N, *# = excited
versions leave out the process in Fig. 16. % proton
Later we will look at this comparison
again when discussing Regge cuts.

Another way to study the potential T
is to add production processes to non- Pomeron
relativistic potentials.2 This can be Fig. 16
done with the multichannel considerations

discussed previously. Denote 2-body channels by j. Then

(V2+k2)11;1 = Zvljwj (4.3)
J
where the momenta are assumed to be the same in each channel. 1In Ref. 2 it is shown
that we can find an effective potential that includes multichannel effects. 1In
general it is nonlocal. The idea of the proof is to construct Green's function for

the other channels 2,..,n resulting in

veH x1x) =\Zl Vi (DG (10T GO (0BT R) (4.4)
m,n
such that
(¥+k2)¢1 = [Veff(x',x)wl(x')dx' . (4.5)
As the energy increases, we hope that (4.5) approaches V(x)effective-localwl(x).
Recently there has been much interest in field theoretic approaches to the
eikonal model.M-20 The goal is to derive X from a model field theory where

S=expi(X) and X is the Born approximation. The most ambitious attempt is that of H.
1
Cheng and T.T. Wu 8 in electromagnetism. Torgerson's approach14 is to start with

1

the interaction Lagrangian Lin = gW?“WVu to couple spin % to meutral spin 1

t
particles. Elastic scattering of two fermions is then

< finallslinitial > =< flTexp/;4xLintli > (4.6)

which cannot be solved in general. We want the high s limit which supposedly is a
classical limit so we neglect self energy diagrams (the fermion sees only its local

region). Then the only diagrams remaining are those where each vector is emitted
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and absorbed by a fermion. Glauber solved (4.6) within these assumptions in 1951,

getting

<8 >=Z exp{gz/pﬁxx'-x)1 > 4.7

where A is the Born term corresponding to one vector exchange. The assumptions

imply that time ordering is not needed and that the emission and absorptions are

independent.

V. REGGE EXCHANGE

2
Consider a one particle exchange approximation to the amplitude, A ~* “g——
u -t
(See Fig. 17). 1In configuration space this corresponds to a Yukawa potential, i.e.,
in the s channel we see a potential. 1In the
g
t channel this looks like a resonance or
bound state which shows a peak in the cross
s u

section at its mass. Since A does not

depend on cos@t it is an s-wave resonance S
in the t channel. The Chew-Frautschi plots K\—/;i—_'J

have many resonances. We want to include t
a whole family in a Born term like —%—— .
he-t Fig. 17

To do this we use the Regge theory
formalism (ignoring signature, spin, and the possibility of cuts and fixed poles for
now) to get B(t)sa(t) for the amplitude at large s and fixed t. This is the Born
approximation to the potential due to the exchange of the family. If B(t) is slowly
varying then we get ea+bt for the amplitude where b = Psns and b = constant.

This approach gives selection rules on the particle quantum numbers. For

0 .
instance, consider n-p - 5 n. In the t channel the exchanged object must have

isospin 1 so

do

dt

L

2
- Sa(O)l - SZa(O)-Z . (5.1)
t*0 g

The relevant trajectory is that of the p with q(0) * %. Thus the effective spin
of the exchanged object is %. This fits the data very well whereas one particle
exchange does not.

If O?(O) = 1 then the amount of shrinkage of g% as s increases indicates the
slope of the P trajectory on the Chew-Frautschi plot. Sometimes there is shrinkage
and sometimes there is none, suggesting that the trajectory may be flat. This is
supported by the lack of evidence for mesons on such a trajectory. These facts
suggest that the Pomeron is not a Regge pole and should be treated separately. We

will look for a classical description of it.
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VI. HYBRID MODEL OR ABSORPTION MDDEL21

In this model the Pomeron singularity is assumed to come from the droplet model
and to be different from ordinary Regge poles. The potential is a sum of a droplet
model term and Regge terms. The droplet model implies that the Pomeron is a fixed
pole. If we assume that the droplet model holds literally at positive t then it
violates analyticity and unitarity. This can be rectified by a cut which masks the
Pomeron pole in the t > 0 region of the Chew-Frautschi plot. We will not worry about
this since we will apply the model only when t < 0. Note that we are not taking the
radical Regge theory where all the singularities in the physical region of the J
plane are simple moving poles. The Regge picture we will use has the following
features: (not applied to elastic scattering)

1) No resonances in the t channel implies no forward peaks in the s channel
(example, since no doubly charged meson resonances have been seen we expect no peaks
in n+n - n_N++ which is true experimentally).

2) The energy dependence comes from «(0). This we find by extrapolation from
positive m2.

3) Shrinkage of the forward peak in charge exchange scattering.

Competing models such as the coherent droplet model do not give the above
features since they do not have crossing and thus say nothing about the t channel.
The hybrid model gives the above features.

As an example of a hybrid model calculation consider pp — pp and neglect spin
(which is a few percent correction). Suppose there is a Pomeron contribution to the
amplitude AP and a Regge pole contribution AR. Assume that
]2

A= iC[Fp(t) (6.1)

P

where Fp is the electromagnetic form factor of the proton. Any non-magnetic form

factor works. A useful fit is
2
2
F (t) ~ <—E—> (6.2)
p 2
u =t

2 2

with u ¥ 0.7 Gev
(6.1) can be motivated by arguing that the interaction between bits is pointlike
and the the distribution of bits is proportional to the electromagnetic form factors.

We have normalized the amplitude to give

do _ 2

i LICHO R (6.3)
We next assume exchange degeneracy so

Ay = B(ysHE) -1 (6.4)
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which for [w+f0, p+A,] trajectories is real. For small t

2
A_ = 7y exp(a+tb.t)
R 1 (6.5)

B(t) = 7y exp(bzt), b1 = b2+a'jns, 7 =p(0), a = [a(0)-1]gns.

We neglect one particle exchange, such as 5 exchange which contributes a fraction of

a millibarn when s is above 5 GeV. Equations (6.1), (6.2) and (6.5) give the eikomnal

2, 2
X(b) = icb3K3(“b) b s -1 -b%/2R

X (D) +X, (b) (6.6)

where XO is the Pomeron eikonal, Xl is the Regge eikonal, K, is the third order

3

Bessel function of imaginary argument, b is the impact parameter, and R2 = Zbl.

Since Xo >> X1 we can substitute XO and X1 in (3.2) and (3.3) getting

r L —cb3K3(ub)7
o %/b db Jo(b(-t)z) 1-e (6.7)

=3
1]

2 iX_(b)
a(O)-le-bZ/ZR . 0

o]
]

1
1 k/; db Jo(b(-t)z)ys (6.8)

2
J. From (6.7) IT

Fig. 18 and T, becomes to second order in b/R0

1XO

b2 /2R
e can be approximated by [l-ce 0

0]2 has the shape in

2,,.2 2, 2
-b“/2R [1_Ce—b /2Rg ]

1, > 75X fo abg (-0 B

2

Rt 2 2
. a(0)-1 2 % R, t/2
= 7s e c\73 5 /¢ (6.9)
R, R

1

. -2 -2, -
with R2 = R0 +R
Fig. 18 except the dips are displaced

ITllz also looks like

since the Pomeron and Regge pole

contributions (6.1) and (6.4) are out of

phase. |T|2 has the shape given in Ln|T0l2
Fig. 19. As s increases the Regge pole

vanishes and ITIZ - }Tolz, i.e., the dips

get deeper. We shall later study the J

plane singularities which lead to the two

terms in (6.9)

-
O

-t —>

Fig. 18
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lanlz

Fig. 19
VII. COMPARISON OF MODELS
The hybrid model resulted from the assumption
ABorn(S,t) - Adroplet model+ARegge pole (7.1)

droplet model 2-24

where A is due to a fixed pole at @ = 1. The Frautschi and Margolig
model used (7.1) replacing the droplet term with a moving Pomeron term. Their
Pomeron is assumed to have a trajectory a(t) = l4+x't and phase [1+e-iﬂa](sinnoo_l,
thus they get elastic shrinkage. It is easy to pass from one model to the other if
a' = 0.

Next we will compare predictions of various models for pp, Eb, pn scattering.
do
dt _
over. The pp curve shrinks as s increases, the pp forward peak expands, and the dip

for pp and Ep is given in Fig. 20. It is important to note that the curves cross

in the Sp curve becomes less pronounced. TFirst consider what simple Regge theory

implies about the cross-over. The Regge contribution to the elastic scattering is

given by
pp = Ptwtf +oth, (7.3a)
PP = P-whf-otA, (7.3b)
pn = P+w+fo-p-A2 (7.3c)

The sign change from (7.3a) to (7.3b) is due to odd signature vector poles. The
sign change from (7.3a) to (7.3c) is due to I=1 poles.
Assume the same trajectory function q(t) = %+at for all but P. Empirically

- ~ ~ 2 .
atot(pp) > 9 t(pp) otot(pn) constant for 3 < s < 20 GeV . The optical theorem
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d
(G

Fig. 20

then implies that Im(p+A2) = Im(-p—Az) independent of s. Since

=i
l-e hi(e

p =~ Bp(t)s

singQ

a(t)

14 17O a(t)
2 sinno BAz(t)s ? (7.4)

>
]

if p =8, then, by (7.4), Im(p+A, ) = 0. If B = p. also then there is cancellation
p A2 2 w f0

of Imw with Imfo leaving only ImP in ctot(pp) and otot(pn). We will assume complete

exchange degeneracy Bp(t) = BA (t), Bw(t) = 6f (t). This is predicted by bootstrap
2 0
schemes and finite energy sum rule.

BA (t) requires a zero at q(t = 0 to cancel a pole in the physical region
2

of n-p - nn. Exchange degeneracy implies that Bp(t

0)
= do, - _ O
0) = 0 so dt(n P st n) should

be 0 at t = to. This is not seen, but we can salvage exchange degeneracy by using

cuts to fill in the dip at t=t In general, to kill ghosts (as in A2) and to

decouple spin flip amplitudes gt nonsense wrong signature points we need zeroes of
B at ¢ = 0,-1,-2,... corresponding to t = -0.5, -1.5, etc.25_27

The cross-over effect in Fig. 20 is not due to nonsense zeroes and not due to
large spin flip cancellation so it remains a mystery in the simple Regge model. The
hybrid model gives it nicely since cancellation of the two terms in (6.9) for some

will give T. = 0. The P term in (7.3a and b) is large and imaginary whereas the

o 1
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0, A2 terms are small. The fo term has the same sign for pp and Ep scattering. The
w term can explain the cross-over if its contribution (plus correction) is positive

for tO < t < 0 and negative for t < t

In general from fits to polarigation data we find that I=1 exchange corresponds
to helicity-£flip and I=0 corresponds to non-flip. The absorptive corrections to
helicity~flip amplitudes are smaller than to helicity non-flip for small t.

The amplitude for the reaction n-p - non is predominantly helicity flip.

The corrections go like tgns. The differential cross section and polarization are

given by
2ImG ,*G
oo g, 2ot &= —F (7.5)
e, | “+le_|

where G_ (G+) is the helicity (non) flip amplitude. If the phase of G+ and G_ are
equal then <Y~= 0. This is the case if only one Regge pole contributes. The simple
Regge model predicts that since only p is exchanged, CP should be 0. Experiments
give<?‘¥ (1545%) for-te[0.1, O.2]GeV2. In the hybrid model the phases of G, and G_
are modified by absorptive corrections. When parameters are fitted to other
reactions, the model gives Fig. 21. The ummeasured part of the polarization curve
is very difficult to measure.

The polarization of the reaction n+p - K+Z+ is easier to measure since the
decay of the Z+ indicates its polarization.28 The relevant trajectories are the
K*¥'s. If we assume exchange degeneracy
and SU(3) symmetry we can use p and A2
parameters. The differential cross section
and the calculated (M. Blackmon, private

communication) and measured polarization

are sketched in Fig. 22. (see next page) T
0.
The break in %% occurs near the point where (jj 5. -t =7
I

(}D is maximum as can be seen from (7.5).
Again exchange degeneracy without absorption
corrections predicts zero polarization.

Now we will study the J plane
singularities corresponding to the two terms

in (6.9). Recall that the Sommerfeld-Watson = 100%*“

transformation of the partial wave series

2 Fl(t)PJ(zt) results in a background

2 Fig. 21
integral, a sum over Regge poles, and

possibly a sum over cuts. The contour

which initially enclosed the positive
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Fig. 22

- 142 -



integers has been opened as shown in Fig.
-34i © L plane
23. A simple pole at £ = ¢q(t) has the

asymptotic behavior in s with t fixed so
a(t
p(t)s M.

Background / dense set of poles. Asymptotically this
Integral
Contour A l;pole

A cut may be represented by a

gives
t
a (1)

f wee,stas , (7.6)

-

where o%(t) is the branch point and W(#,t)
is the discontinuity across the cut which
f has been chosen to lie left of O%(t)' This
can be approximated by % Bn(t)soh(t). The

n
region of the cut away from o%(t) does not

effect the asymptotic behavior so only the
-%-i © discontinuity close to the end point matters.
If the discontinuity is regular at the

Fig. 23 branch point, we may expand W

W,t) = w(ac(t))+(z-ac(t))(g—f- ...

Bo(t)+(z—o%(t)61(t)+ e 7.7)

and substitute in (7.6). Using sa = eo%ns’ this gives

o%(t) aé(t)

A= /WW(L,t)szdL = Bo(t) §Z;g__ + Bl(t)§~———§ +... (7.8
‘ (4ns)

which is normalized so %% = —%lA]z. The series (7.8) converges too slowly for

present experimental energies. However, if we knew the asymptotic behavior of the
amplitude sufficiently well we could deduce the nature of the J plane singularities.
The first term represents a constant discontinuity W. The other terms represent
discontinuities that vanish at the branch point. If the Pomeron is a simple cut

with constant discontinuity, then it produces a total cross section

a (0)
-1 rmags,0y = Lo — (7.9)
op =3 (s, s Ins . .

To compare with the hybrid model, consider the case T = TOPomeranChon
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T charge exchange (CEX) at

1 t=0. Then (6.9) gives

2
cR
%% (s,0) - (1 - _°_> SO (7.10)
N 2

RO +R

The first term represents an ordinary Regge pole; however, since R2 = 2(b2+a'Lns)

is independent of s, the second term, which is a correction term, has the
-lsa(O)-l

and RO

asymptotic form B(0) (4ns) and thus represents a cut. [The normalizations in

(6.9) and (7.8) differ by a factor of so the branch point and Regge pole occur at

2
a(0).] As § - o, R2 ~®, R, RO2 = constant. So for t # O,

2 2
cR0 tRo /2 . a0y -1
a'tns © B(0)s

A(s,t) - - (7.11)

where ltzns‘ >> 1 and ]znsl >> 1. Since the power of s does not vary with t in this

limit, the cut is fixed as shown in Fig. 24 for the case of the p trajectory.
22-24

In the Frautschi-Margolis model with a moving Pomeron, the approximation
1%, -b2 /2R
e = l-ce which was used to derive (6.9) must be replaced by a series of
Gaussians, giving at large (-t)
N n tR 2/n -R (t)%
- 0
Z%—% e se 9 , (7.12)
2
with RO o gns. The moving cuts accumulate to an effective line as shown in Fig. 25.
Most Regge theorists believe that there are cutszg_31 in the J plane on the

evidence from perturbation theory. The first such evidence came from Amati, Fubini
and Stanghellini (AFS) who studied the unitarity diagrams in Fig. 26 and found that
they give a cut whose discontinuity is [ An*An. Mandelstam showed that when Fig. 26
is interpreted as a Feynman diagram, off-mass-shell contributions cancel the cut.
He then found non-planar Feynman diagrams such as Fig. 27, which produced cuts at
the same location as the AFS cuts. Unitarity cannot be used to give the discon-
tinuity so the importance of the diagram is unknown. The absorptive model gives the
cuts in the right position and gives the discontinuity with the correct sign relative
to the pole. The correct sign is important since it produces the dip, the cross-over
effect, and the polarization. Other models such as that of AFS give the wrong sign.
This suggests that the cut is not due to two body unitarity. The multiperipheral
model also gives the wrong sign unless absorption is added in the intermediate
states32 ag illustrated in Fig. 28.

If the absorptive model is correct then it contains non-planar diagrams as
in Fig. 27. For example, in deuteron-deuteron scattering the diagram in Fig. 29

gives a Regge cut according to Mandelstam's argument. It is also the second term in
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the multiple scattering series.
Now we will examine in more detail the similarities and contrasts between the
absorption model and unitarity models. We will see that (3.3) resembles elastic

unitarity. Define X, = A1p°1e(s,b) and X0 = 1+iA(s,b). Then (3.2) and (3.3)

become

To(s,6) =\/% deO(b(—t)%)AO(s,b) (7.13)

T (s,0) = /; dbJ (b (-t) )[1+1A (s,b)]A p°le( ,b)

= A1p01e(s,t)+A1C(s,t) (7.14)

where

A1P01e(s,t) = /; deO(b(-t)%)Alp°1e(s,b) (7.15)
and

Alc(s,t) = %/; deo(b(-t)%)AO(s,b)Alp01e(s,b) (7.16)

is a correction term due to a cut. If the elastic contribution A_ is mostly positive
imaginary, then A1 (s,t) has a minus sign relative to A po ( ,EB).

The integral [db was motivated by a discrete sum on . In the s channel Alc

has the expansion

A% =10 ;E‘(2£+1)A0 RO pOIe(s)Pj(zs) (7.17)
)
where
N
Agyy(s) = [dz'ay(s,2B, (2") (7.18)
and
AL §°1e - /; "AP ®(s,amP, (2") . (7.19)
Then (7.16) is ©
Alc = i/éz'dz"Ao(s,z')A1p°1e( ")( ) (24+1)P, (2)P, (z")P (z")] . (7.20)
‘ £=0

L
The term in brackets is the Mandelstam kernel 6(A)/(A)? where

A= zz+z'2+z"2-zzz'-zz'z"-zzz"+l and 6 is the step function. 1In t space (7.20)

becomes

(s £) = /Wt'dt"A (s,t")A, Pole o tmyk(s,t;ttsem (7.21)

which is the absorption or eikonal formula. The Mandelstam kernel K depends on s
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since the Jacobian transforming (7.20) to (7.21) does.
Now compare (7.21) with the results of two particle unitary applied to the
box diagram in Fig. 30. Let B be its

amplitude

B(s) = /119§§§é1 ds' . (7.22)

Two particle unitarity (AFS) gives the

|
A0 l Alpole

absorptive part of B,
Fig. 30

Abs[B(s)] = /:it'dt"AO*(s,t ')Al(s,t")K(s,t sttt (7.23)

which looks similar to (7.21). K is the same, however (7.21) is the whole amplitude
unlike Abs[B]. Also, (7.23) has a complex conjugation of an amplitude which is
mostly imaginary so the sign is opposite.

In (7.23) Alp01e is not necessarily a Regge pole. However, in such a case,

suppose AO ~ sCYO(t)_1 and Ai ~ sal(t)-l. Now K has the property that as s =, it

o

i L
is significant only when(-t'")? + (-t")” < (-t)?. Then

] 0 (£ )40y (£™) =2
A (s,t) —» /;t'dt"s . (7.24)
For large s and small t this gives
o, (0)-1
c s
A (s,0) 70 (7.25)

where o%(O) = Ob(0)+a1(0)-1' The cut has the same position as the AFS model gave
although the sign and magnitude are different. If we take t # 0, the slope of

o%(t) can be found. For instance, if we start with O = o
Oé' = og/Z. We can iterate choosing o = Obp and = ob. The results are shown

= Ob, then we get

in Fig. 31. The cuts are not very interesting for t > 0 since the pole contribution

dominates. If the Pomeron and p are iterated then we get Fig. 32.

2 —— 2 ——
Rest a () Relt

1L+ P o (t
/ 14 ,(t)
o

/ O‘pp = pe

— - a3o
- //////// t —>

Fig. 31 Fig. 32
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To see how important the cuts are consider typical cross sections at

E ~ 20 GeV.

ctotal - 25 mbarns

o .=
elastic

0charge exchange

Oy-exchange

%double charge exchange

10 mbarns

= 70 pbarns

~ 100 pbarns (single p cut)

= 1 pybarns (double p cut).

The last is known to be small for some reactions but could be important for the

diagram in Fig. 33.

We have seen that Alc(s,t) is related to Feynman diagrams in the shape of a

box instead of unitarity diagrams such as
Fig. 30. Mandelstam showed29 that unless
the intermediate particles are held on

the mass shell, the Feynman diagram gives
no cut. For some mysterious reason we

need to throw away the contributions when
the particles are off the mass shell. A
heuristic justification for this is that

if the intermediate particles are composite

and loosely bound, then they can break

Fig. 33

7

up when they are off the mass shell. TIf we assume that the propagators oscillate

wildly off the mass shell, then we need consider only mass shell contributions.

Gribov and Migdal claim that the absorptive part of an amplitude such as in Fig. 26

is less than or equal to the sum over all orders of the non-planar Feynman diagrams

(all crossed graphs)

in Fig. 34. If their argument can be
strengthened then it will provide the
justification.

It was pointed out earlier that the
hybrid model and multiperipheral model
neglect Fig. 16. It was hoped that this
correction is small. The correction to the
cross section has been estimated at about
107%,. Henyey et. 3l.33 try to make the
correction by multiplying AlC by A with

Fig. 34 A2 1. A should be close to 1 since A = 1
gave reasonable results for the cross-over effect, polarization, and %% . IEA>>L
then exchange degeneracy is intolerable and the location of dips in E% depend on s.
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Henyey et. gl.33 choose A ® 2 and get secondary peaks in %% from multiple scattering.
Data at higher s may decide which version of the absorptive model is better.

Another way of including absorption is to insert Regge poles in K matrix which
is defined by T = B(l-ipk)—l. B is the Born approximation and has resonance poles.
Poles and cuts are generated by this method; however, more art is needed to explain

data.

VIII. THEORIES OF PRODUCTION

A simple but. unsuccessful model for production is the bremsstrahlung model
which results from assuming that the particles are produced by the legs of elastic
scattering amplitudes as illustrated in
Fig. 35. The amplitude for the diagram is

A (s,t) —&  with A agssumed to be the
¢ s —m2 et

1
mass-shell amplitude, and g the (mass shell)

nN coupling constant. This model works

well in quantum electrodynamics (possibly
because the photon's mass is strictly zero),

but the results of this model are too large

Fig. 35

by at least a factor of ten for sN — nnN.
The main reason for this failure is that the Compton wavelength of the emitted n is
always smaller than or comparable to the interaction radius.

A more successful model is the "“synchrotron radiation model" which is moti-
vated by classical concepts of synchrotron radiation.34 The power radiated in
electrodynamics is proportional to (g;ﬁ)z. We will consider pp — pprx and assume
that in the center of momentum system the protons have classical trajectories that
are arcs of circles of radius p in the interaction region, which is a sphere of
radius R. See Fig. 36. Such a circular trajectory would result if the interaction
region contained a uniform magnetic field.

The impact parameter b(8) is related to
doez

(dcose
The elastic cross section is given classi-

)}, p, and R by the following argument.

cally by dcez = 2xbdb. 1Integrating, we get
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b cosf

el
brabt = | Y9 4coso’ = gbZ (0 8.1
25b'd doos0" cos 7b™ (6) . (8.1)

0 backward
angle

2
When cosf = 1 we want: ubz(O) = xR so b(0) = R. Geometry gives

p(B) = (Rz-bz)%cotg - b(0)

Next we assume the particle has a constant velocity so knowing p(6), we know the
trajectory ¥(t).

Next we postulate an appropriate classical current in the form of
J(;,t) = g&(;—¥(t)) assuming that it is a scalar. The LSZ formalism applied to the

amplitude for the diagram in Fig. 37 gives

(k) = < p,'p,'k;out|p p,;in >

4 ik'x .
N\/ﬂd xe < pl'pz';outlJ(x)[plpz;ln > . (8.3)

We are assuming that J is a c-number so it can be pulled out of the matrix element

leaving

sk ~ < p,'p,"'s0ut|p;p,in > /nd3xelk.x/;tg6(;-;(t)) (8.4)

v

4
= ' v, - [ ' 7
where < | > Aelastic(pl Py ,p1p2)6 (p1+p2 Py'-Py ) is taken from data. If the
interaction Lagrangian for mesons with nucleons is gﬂN¢w75¢, then at large s, -t
with {'s localized in wave packets J is equivalent to gﬁN¢6(§—?(t)) SO we get g=gﬂN
in this region. Other assumptions are needed, for instance we can take for non-

asymptotic t values the replacement

X
t £.))*
Aelastic (518 = (B (5,8 DA,(5:69)) (8.3
to give proper damping in £ and t2. Also we must symmetrize for the initial

- -
protons. Then we can substitute the trajectory r(t) in (8.4) and get S(k). Similar
arguments work for vector meson production.

P There are old data on pp»pﬂﬂ+, ppﬂo, PPHO»

ppwo at 12.5 GeV which agree fairly well

with the model's predictions.

The synchrotron radiation model works only
for large angle production; for small angles
we need to assume more quantum properties. We
have considered a radiation eikonal model.3

The main idea is to interpret the interaction
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Lagrangian g¢J as subtracting probability from elastic scattering. The assumptions

are

1) J=g %;Iw(b,z)lz where ¥ is given by (1.7) (one dimensional motion), and
2 2 2

2) V(b,z) = ilAexp[- ;—— - Z—Ei] = the potential occuring in elastic scattering
R 2R

where 7y = E/M accounts for Lorentz contraction. The appropriate value of g can be
obtained from Adler's self-consistency condition. The § matrix in (8.3) can be
generalized to the case of n meson emission if the emissions are assumed to be

independent:

S(kl,...,kn) =‘/K< pl'pz';out]plpz;in > < jl(xl) >...< jn(xn) >
=3, 1] 5, (k) . (8.6)
i
This can be summed to get
2.n 2.n
2

g ~fdn s 2282 o =~ &) e (8.7)
n J n' n n! n n!

where } is a phase space factor. The total inelastic cross section is
n

. 2
Olnel =30 ~ef Q. The probability of producing n particles is

n
n
o 2 .n 2
n_ (@ o8 0 (8.8)
5o, n! ’ )
n
nl
I . - 2 . . . . 35
Maximizing gives n ~ g O for a Poisson distribution. In Heckman's model,
3
2 _ d’k 2
g o= /w—w-|J(k)l (8.9)

increases as 4ns at large s. This model can be used to calculate differential cross
sections of pp — n+ + anything and pp = p + anything. These are easy to measure
with one armed spectrometers and the data have the general features at fixed s shown
in Fig. 38. The prediction is in excellent agreement at small angles and starts to
differ around angles of 20° in the center of momentum system.

Gundzik has worked on a scheme36 to LAB angle =
0 mrad.

calculate pp — pp using the concepts of the /////”_—__—-—"‘\\\\

above models. 1In the unitarity diagram in 2

Fig. 39, J is the source and sink of the SOk

intermediate pions. The phase of the emitted

pions is important here. Also the similar
diagram with two N* in the intermediate state

is important. Many parameters are needed

in this model.

Another classical theory Fig. 38 LAB
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0 e} of multiple production was constructed by

Landau ten years ago. It is related to

/T*(el)

J(gz) they are assumed to form a symmetrical pill
box containing shock waves. The shock wave
Fig. 39 generates entropy and the flux of entropy

37
is identified with the amount of particles produced. The sequence of events in a

collision is illustrated in Fig. 40. The model predicts n ~ Elab%’ which is not

contradicted by available data.38

'R very hot (®)

_e__a (highly excited) region

.7
-
02
>
(c)
N
\\
,I
e/
Fig. 40
The number emitted with angle 6 is
L L2
1 1\ 2_ 2
dn ~ ce 2((e) =M dn (8.10)

where ¢, c¢' are constants, depending on the initial state and rn = gn(tan@). The
energy flux is given by

1 1, . %
g(C"+n)- g(c )
w(@) ~ e . (8.11)
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Hagedorn's fireball model is similar to the above model in the sense that both have a
maximum temperature; however Hagedorn requires arbitrary parameters. Higher energy
accelerators are needed to test these models.

In conclusion classically based models work better than diagrammatic models
do for the above data. This might be expected since high s is expected to give
classical limits. Of course, we may find surprises such as a breakdown of micro-

causality; however the operational point of view says try until we find a problem.

IX. DIELECTRIC SPHERES AND SHARP BOUNDARY MODELS

Consider the scattering of light, of wave number k, by a dielectric sphere of
uniform index of refraction n and radius a in optics. Mie solved this fifty years
ago. When (k) gets large the solution becomes a sum of many Bessel functions.

9
Nussenzweig3 used the Sommerfeld-Watson transformation to study this problem. One

finds a lot of fine structure as is illustrated in Fig. 41. The shape of %% resembles
that of hadron scattering. The peaks occur when db ©, For instance, the backward

de
peak can result from the rays in Fig. 42. The Sommerfeld-Watson transformation for

the limit k — o gives J plane singularities (Regge poles) on the locii in Fig. 43.
The glory effect is due to poles on the curved section of the locii. The effect can
sometimes be observed from an airplane flying over clouds. Sunlight scattered back-
ward from water droplets of the right radius in the clouds can produce bright colored
rings around the shadow of the plane. The color implies that the effect is due to

a backward diffractive process from small droplets.

<

N
do
dQ

\/\—‘—\,—‘ >

Ll

-1 cosf +1
Fig. 41 Fig. 42
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£ plane

e,

Fig. 43

A quick and dirty derivation of the glory effect from a sharp sphere4 is the

following: write the partial-wave expansion

1 N 2i6‘c
= e— } -
£(9) Tik Z_-J(2.6+1)(e l)Pz(cose) . (9.1
£
Since Pj(-z) = (-)LPL(Z), (9.1) becomes
o N 2io, 240, 4
2ikE(6 = n) ~ /. (22+1D) [e -e ]Pz(-cose). (9.2)
£2=0,2,4
2165
If we assume the e is a slowly varying function of £ then the term in brackets

3

can be approximated by St e2165 and (9.2) becomes

£(0 % n) = ;/; deO(b(-u)%) %E[eZia(b)-1] . (9.3)

Compare this with the forward amplitude

; .
£(6* 0) = ik/; deo(b(-t)z)[e216(b)-1] ) (9.4)
Thus the backward peak is related to the forward peak. The prediction works roughly
for the backward peaks of ﬂ+p and K+p but does not work for ﬂ-p and K-p. The s

dependence of the peaks is predicted to be

~1dg,, ~
S 306 % 0) (9.5)
25

which is not strongly violated for such cases. (The assumption that e is slowly

do,, ~
dQ(e )

varying is not good in general.)
A more rigorous approach to the glory effect analogy for backward scattering
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is to use the Regge pole expansion. If the Regge poles on the locii in Fig. 43 are
assumed to occur at (s) = atbs then the backward np peak can be fit.41 The back=-
ward peak in 5C scattering has been studied in a model where the x is internally

42

L
reflected. JO(R(-u)Z) fits the data. M.C. Li has been working on similar appli-

cations.

The sharpness of the edge of the dielectric sphere is very important in
geometrical optics; however, for high s scattering of hadrons, the width of the edge
becomes large. If the analogy holds, then the backward peak should go away.

Suppose there is a discontinuity in n in hadrons, for instance, if they are
droplets with a skin. Then excited states may be surface waves. For instance,
in pp —> pN¥* where N% can be %+(1480), 3/2-(1520), 5/2+(1690), 7/2_(2190), etc., a
simple surface-wave model explains the s and t dependence for the first two and
fails for the second two.45 The matrix element to excite Y M surface wave can be

L
approximated by45 ®

M ~ ¢ M x
= — b .
TL (V) cLYL (2,0) deM(Ab)H(b) (9.6)
0
where H(b) is the distribution of matter in the interaction region (skin) and

i
A = (-t)?. For a nearly-square well potential

H(b) ~ %S (1-e1X(P)y

iX(b
We can assume l-e *(b) is a Gaussian in b and then sum the square of (9.6) over M to
get the cross section. Perhaps this model is discovering systematics that will come

out of someone's dynamics.
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Introduction

In these lectures we discuss two-body hadronic scattering in the high-energy
limit, under the hypothesis that it is dominated by Regge singularities, i.e.,
singularities in the finite parts of the complex angular momentum plane of the
partial-wave amplitudes in the crossed channel. 1In particular we discuss the
motivation of the hypothesis, the procedure for putting it into practical use, some
of its experimental consequences, and possible glimpses into the dynamics of strong
interactions. For general references the following books are recommended.

R.J. Eden, High Energy Collisions of Elementary Particles, (Cambridge, The

University Press, (1967)).

E.J. Squires, Complex Angular Momentum and Particle Physics (W.A. Benjamin,
New York (1964)).

P.D.B. Collins and E.J. Squires, Regge Poles in Particle Physics (Springer-

Verlag, Berlin (1968)).
I. Regge Poles in Potential Scattering

A. Regge Poles and Resonances:

As an introduction to the idea of Regge poles, we give a brief review of
potential scattering, where they were first introduced as a new way to describe
bound states and resonances.

Suppose a spinless non-relativistic particle is scattered by a central

potential central V(r), with kinematics as shown in the accompanying sketch.

In units such that A = 2m = 1 let E be
the energy of the particle and z be the

cosine of the scattering angle:

= k2
= |k, | =lkf_l) )
z = cosf = ki-kf/k (1.1)
The differential cross section is given by
doa _ 2
i |£E,2)| (1.2)
where the scattering amplitude f(E,z) has the familiar partial-wave expansion
leel
£(E,z) = }: (25+1)F£(E)Pz(z) , (1.3)
£2=0

where the partial-wave amplitude FL(E) is determinable from the solution to the

- 161 -



radial equation

2

d u 1
g + Euz(r) = [V(r) + &S&%ll J uz(r)
dr T
uz(r) - 0 . (1.4)

r-> 0
Asymptotically the solution is of the form

- i - T[—'z—
uz(r) Csin <kr 9 + SL(E)> . (1.5)

The partial-wave ampliitude is then given in terms of the phase shift SL(E) by

218, (B) _
N S R (1.6)

F () = 3 [

It is a real analytic function of E, and it has a branch cut along the positive
real E axis. There are no poles on the physical Riemann sheet except along the
negative real axis, where they correspond to bound states of spin 4. Complex poles
can occur only in conjugate pairs on the second Riemann sheet. TIf they are close
to the branch cut, the one just below the cut is near the physical region, and
correspond to a resonance of spin 4. TIts conjugate partner is far from the
physical region, and thus not directly "visible". (Except when the pair of poles
are near E=0, but there threshold effects become important.)

Regge shows that the same bound states and resonances show up as poles of
Fﬂ(E) in the complex g-plane, in the following way. First, from the radial equation
for a superposition of Yukawa potentials, one can show that FL(E) can be uniquely
continued to complex ¢, thereby giving a function F(E,£). It has the following
properties:

1. F(E,2) is meromorphic for Rel > -%,

2. F(E,4) » 0 as |g]| - o,

3. The positions of the poles in £ move with the energy E.
Such a moving pole is called a Regge pole, its locus ((E) a Regge trajectory.

In the usual description, a resonance is identified with a pole of
F(L,E) in E, at a positive integer value of q(E), which generally occurs at complex
E. We now propose to keep E real and associate resonances with the behavior of
o(E) in the complex ¢ plane.

A typical locus of a(E) in the complex angular momentum plane is shown in the

sketch below.
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Im(E)

5 increasing E

E=+ o

— Re(E)

The imaginary part Img(E) vanishes for E < 0. Whenever Rew(E) passes through
positive integer 4 with d[Rew(E)1/dE > 0, a bound state or resonance of spin # occurs,
provided Imo(E) is small. In the sketch, for example, A is a bound state, and B,C,D
are resonances. This family of bound states and resonances appear as recurrences of
the same state. Other families can occur as well, and will be characterized by

other trajectories. Each family is characterized by the principal quantum number
{i.e. the number of codes in the radial wave function). The points B', C', D' do not
correspond to identifiable resonances, because the poles corresponding to them are far
from the physical region. Actually, each trajectory o(E) has a complex conjugate
partner represented by its mirror image with respect to the Re ¢ axis. The mirror
images of B,C,D and B',C',D' all lie too far from the physical region to be identi-
fiable as resonances. Another way to exhibit the resonances is to plot Reo(E) against

E, as shown in the sketch below. gegy(R)
3 [

f<spin 2 resonance

spin 0 bound state

<:"'_“‘-spin 1 resonance

—_ — -l - SIS

To see the correspondence between the new way and the old way of describing a
resonance, let us examine F(E, ) near { = o(E):
E
e o —BE (1.7
(E, £) ~ p-o(E) )
Suppose that for some real value E=En we have Rea(En) = n, Then in the neighborhood
of E = En we can write

dov
~ 1 - T = = =
Reo(E) = n + o' (E En) , o' =3¢ (E En)
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Hence
B(E_)

F(E,n) ~ Thea(B)

B(E,)

(1.8)
~ n-[n + a'(E-En)]-i ImQ/(En)

8(E)
E-E_ + i Img

al

Il
]
Q [~

If o' > 0, this is the familiar Breit-Wigner formula for a resonance with mass E and

, Imo(E_) n

total width 2 1" If o' < 0, there is still a pole on the second sheet, but it
04

is not close to the physical region.

B. Sommerfeld-Watson Transform: To isolate the contribution of a Regge tra-

jectory to the scattering amplitude, we write the partial-wave series in the form

of a contour integral. Noting that 1/sinpf has poles at integer values of [,

and
n(-1)*
Res sinmt =1, 40, +1, + 2,...
we have ©
- =L T p (-
£(E,2) = Zo(““)Pz(Z)F(E’” “ e [ 40 i PR
t= (1.9)
where we have used
P,(-2) = (DR (2) (1.10)
and where C is the contour shown in the accompanying sketch
£ plane
x + Regge pole L=q(E)
Z
T c
R e S
For fixed lzl <1,
Pz(_z) _C__.; o 'G‘Imf:‘, (Z=COS@) (1.11)
L NO%

Since F(E, 4) — 0 as lzl% ©, we can expand the contour, drop the piece at infinity,

and pick up the Regge poles: /N
<fi> Regge pole

rd

1
NH
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sinmy

m(2041) B(E)P_(-2) pch -
£E,2) =) |- el R B VI sl TR (1.12)
) ]

Req > =%

The term in brackets represents the contribution from a Regge trajectory o(E), which
contains the effects of a whole family of bound states and resonances.

The original partial-wave expansion converges only for z lying in an ellipse with
foci + 1 (the Lehmann ellipse), but with (12) we can continue it outside of the
ellipse. 1In particular (12) has a simple asymptotic form for Izl - o, The region is
of course unphysical for potential scattering; but for relativistic scattering it

corresponds to high energy in the crossed channel. To obtain the asymptotic behavior

we note
P9 A Hed B oo 10 ) Geax ()
Z [0 (II)
Hence as Izl — o,
’ 5Qo +1) T(a+3) -5
€m0 ~ ) [FewFietdd Tt o 406, (1.14)
Rea > ~%

where the term 0 (z_%) comes from the "background" integral in (12). If there are
Regge poles with Rea(E) > -%, then the highest one dominates the asymptotic behavior.

If there are no Regge poles with Rew(E) > -%, then we learn nothing from (14).
It won't help to push the background integral further to the left, even if that is
possible. The reason is that Pa(z) = P—a-l(z)’ so that for Rexy < -% the asymptotic
behavior of Pa(-z) is

P (z) —_— ___q LCo%) (22)'0'1[1+0(z_2)],(Rea < -%) (1.15)
|z "*w(ﬁ) T(-o)

instead of (13), hence the background integral would still dominate over the pole
contributions. Thus, we need to know something about the background integral in (12),
and the Mandelstam symmetry comes to our aid.

C. Mandelstam Symmetry: The Mandelstam symmetry states

F(E,#) = F(E,-4~1) for £ = half-integer. (1.16)

Note that the radial equation (4) is invariant under g & -g-1. If V(r) - o« faster
than r-2 as r - 0, so that it dominates over the centrifugal potential z(£+1)/r2, then
uz(r) vanishes at r=0 in a manner independent of 4. In this case it is clear that

the Mandelstam symmetry holds not only for half integers, but for all 4. If, how-
ever, the centrifugal potential dominates over V(r) near r=0, then the two solutions

to the radial equation have the respective behaviors

o 2ol
r =-s0 (1.17)
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For 4 > 0 we must choose the first solution, while for 4 < 0 we must choose the second
solution. It turns out that the Mandelstam symmetry holds only for half-integer /.
We make use of the Mandelstam symmetry to do the Sommerfeld-Watson transform in a

different way. First let us define

Py(®) 4 - 0,1,2,..

@ (z) = ' (1.18)
4 {o L=-1, -2,.. .

This function can be continued to complex £:

_ _ tangs =1 Ira+3 Lped =2 1 _, 1
Ty =T @) CETG D 9 T TN g s )

(1.19)
with asymptotic behavior

1 T+ %) 4 -2 (1.20)
T LoaoyE ra D @ [t o™ ],

which holds for all £. We note that <j>z(z) has simple poles at half-integer 4, with

residues given by

L
Res G}(z) = i‘%f__ Q_z_l(z% (4 = half-integer) (1.21)
Res(F;(Z) = -Res P_L_l(z))(z = half-integer) - (1.22)

The last equality comes from the well-known equality QL(Z) (z) at half-

= Q-z-l
integer { . We now write

dg

Sintl (1.23)

£ =) @r+ ) 7 ® Py -+

(24 + 1) F(E,z)@(z)
b= - 1 c

where the contour C is shown in the accompanying sketch.
pole cancelled by (24+1) 4 plane
/P X ¥ Regge pole

¢ TS WP T 7T 3
t T' T 7 b ¥
l poles cancel in pairs by

Mandelstam symmetry

The poles of(?}(z) at half-integer f do not give spurious contributions to the intesral
because the one at 4 = % is cancelled by the factor (24 + 1), and the other cancels
in pairs by (16) and (22).

We now expand the contour and discard the contribution from infinity,
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Regge poles

and obtain

\ - .
£(E,z) = ZJ [ (20 + 1) Pa(-z) + background integral. (1.24)

Sin'rro/
Reyy > ~L
Hence
_, 38Ry + 1) T(a+%) ., .\« -L
FE2) EJ [ €y Fle + 1) (722 ] + 06z ) . (1.25)
Rey > -L

In this representation, the Regge poles always dominate the background integral.

D. Exchange Potentigl and Signature: Suppose we have an exchange potential

V(r) = Vl(r) + Vz(r)P (1.26)

where
PE(Y) = £(-T) . (1.27)
Then the effect potential is different for even and odd partial waves, for the

radial equation reads

2
du
— - [z + 1 Y. ]
3 +Eu£ 5 +Vl+(1)‘a\/2 u

dr r

2

Since (-l)z does not have a unique analytic continuation in / , we separately continue

the two equations

2+
duz +Eui___‘:.&£'e'—+ll+v +V]ui_
dr2 2 rZ 1= "2 J

and obtain from them the two partial wave amplitudes Fi(E,L). Clearly

rH(E, 1) F,(E), (1 even)

(1.28)
F (E, 1) = F,(E).(4 odd.)

+
We refer to F—(E,§) as partial-wave amplitudes of even (odd) signature. Regge poles
occuring in Fi(E,Z) will be characterized by signature. An even (odd) signatured

Regge pole produces a resonance only where it passes through an even (odd) integer
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value. We illustrate this in the accompanying

sketch. The two signatured ReC(E)
trajectories become degenerate if
either V1=0, or V2=0. Such a Trajectory of signature
degeneracy is called exchange k/+ /;
degeneracy. i

3 i
® denotes a bound state or resonance 2

1 / 4

é//

__//
/

To carry out the Watson-Sommerfeld transform write

+ ) -
£ =) o+ ) FE T +) e+ 1 P EnE e
4 even 4 odd

- %Z (24 + DFT(E, 9 [@2&) + O’L(-z)]
L =

-0

+%2 (22 + 1)F (E, p) [G’z(z) -@2(-2)]
) = o

Then, in a manner analogous to the earlier development, we obtain

+(E, z) Z{ —rp2d + 1) F‘;(-Z) +Q’a(z)} }

2 Sin'rra
o of + signature

2 { -2t D (@ () -@ (o) | }

2 sinmy
o of - signature

+ (Background integrals).
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II. Relevance of Regge Poles to Relativistic Scattering
We discuss some motivations for taking over the ideas of Regge poles from the
realm of potential scattering, where it is proved, to the realm of relativistic
scattering, where it is unproved. There is a practical and a theoretical motivation.
The former rests on the hope that Regge poles will lead to a simple description of
high energy scattering. The latter is based on the fact that the bootstrap hypo-
thesis seems to find a concrete expression in terms of Regge poles.

A. High-Energy Scattering

To illustrate the role of Regge poles in high-energy scattering, consider the

elastic scattering of spinless particles of equal mass, represented schematically

by the sketch shown, with p3 P4
2 2
s = (p1+p2)2 = 4(k +m") t —» u
2 2
t = (pl'p3) = -2k"(l-cos8)
o 7
u = (pl-p4) = -2k (l4cosfH) 1 $ Py (2.1)

where k and 6 are the center of mass three-momentum and scattering angle, respectively.
Let the scattering amplitude f(s,t) describe the s-channel reaction pl+p2 - p3+p4
2
for s > 4m~, t < 0. Then by crossing symmetry, the same function f(s,t) describes
+p

the t-channel reaction p - ;2+p4 when analytically continued to the region

173
2
t >4m , s < 0. Similarly, if f(s,t) is analytically continued to the region
2 2 - -
u=4m -s-t >4m , s <0, t <0, it describes the u=-channel reaction pl+p4 - p2+p3.
Of course no such crossing symmetry exists in the case of potential scattering.

We now make a partial wave expansion in the s-channel:

e o]
f(s,t) = Z (28+1)F , ()P, (2) (2.2)
£=0
where
z=cos6 = 1+—5 . (2.3)
2k

Suppose that we can continue Fz(s) into the complex 4 plane and carry out the
Sommerfeld-Watson transform. Then, if the only singularities are simple poles,

we will obtain as in potential scattering

_ npCaotl)
sinmgQ

f(s,t) ->

P (- ) 2.4
- ge (2.4)

where a(s) is the leading Regge pole in the s-channel. Using (2.3) and the

asymptotic form of Pa, we have
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£(s,t) —> C(s)eX®) | (2.5)

t >

s fixed
which says that the energy dependence of high-energy t-channel scattering at fixed s
is governed by the leading Regge pole in the s-channel. Similarly, for the s-channel
reaction, forward scattering (0 — 0) is governed by the leading t-channel Regge pole,

and backward scattering (6 — n) is governed by the leading u-channel Regge pole.

£(s,t) —— c(t)sHE) (2.6)

s >
t fixed

£(s,t) —  c(u)s¥® ) (2.7)

s —>
u fixed

We have not bothered to distinguish the trajectory o in (2.5), (2.6), (2.7), but of
course they need not be the same trajectory. The t=channel trajectory, for example,
generates bound states resonances having the quantum numbers of the t-channel, and
will be characterized by these quantum numbers. We assume that the trajectory
function @ is independent of the external particles in the scattering process, and
speak of “Regge pole exchange'" in analogy with single-particle exchange. As we can
see from (2.6) the salient feature of Regge pole exchange is that asymptotically
the scattering amplitude is proportional to the ofh power of the squared c.m.
energy, where ( is the variable spin of the object exchanged in the crossed channel.
As we change the momentum transfer t, the spin varies along the Regge trajectory.
This furnishes a simple and physically attractive picture of high energy scattering.

B. The Bootstrap Idea

The bootstrap idea, first proposed by Chew and Mandelstam, is that among the
hadrons there are no "elementary" particles, but that they are composite states of
one another. It has been difficult to state this idea in a form that is both
sufficiently practical and sufficiently precise, so that one may use it in an actual
calculation. To appreciate the difficulty, let us look at some attempts at formula-
tion.

A simple-minded example, which illustrates the idea, but which does not give a
consistent scheme for calculation, is the following. Suppose we calculate n-x
scattering by solving a non-relativistic Schr¥dinger equation with an attractive
Yukawa potential

~mr

v(r) = -g2 2 " s (2.8)

which we regard as the adiabatic potential due to the exchange of a p meson of mass

- 170 -



m and coupling constant g. The P~wave phase shift, 61(E;m,g) will then depend on
the energy E of the sy system, as well as on the parameters m and g. If m and g are
appropriately chosen the P-wave effective potential, as shown in the sketch below,
can accommodate a resonance, whose position and width depend on m and g. The boot-

strap requires that this resonance be the p meson that generated the potential in

the first place. Thus V(r) /N~ /P-wave centrifugal potential
”,«””Effective potential 2/r2
P-wave resonance N R
e
P /: 2 -mr
-
PG 2

61should pass through /2 at E = m, with a slope consistent with the decay width T
for p = mm:
2
I =g Cu,m ) (2.9)
where C depends on the pion mass p and the p mass m in a known way. The relation

between I’ and the phase shift may be obtained by noting

ei6lsin61 = L ~ L L (2.10)
- _0 ~ [] - . ] .
cot61 i 61 (EO) E EO+[1/6l (EO)]
where &' = BSI/BE, and E, is such that 61(EO) = g/2. Thus we require
5, (m;m,g) = =x/2
8, " (mjm,8) = _E_Z____ (2.11)
g C(u,m)

from which m/u and g can be determined. This, however, is not a real example because
the potential (2.8) is actually incorrect for spin 1 exchange, and there is no

simple way to find a "correct" version. Also, pions don't obey the Schr¥dinger
equation. A general way to state the bootstrap idea is that the requirements of
analyticity, crossing symmetry, and unitarity, plus "“boundary conditions" of some
kind, should completely determine all scattering amplitudes, including the existence
of particle poles, and their location and residues. To make this precise, one has

to be more specific about the "boundary conditions'. A suggestion that has under-
lined many practical calculations (the so-called N/D calculations) is to impose

Levinson's theorem, taken over from potential scattering:

SL(E=O)-6£(E =) = “Nz (2.12)
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where SL(E) is the ith wave phase shift, and Nz is the number of bound states (not
resonances, but bound states), of spin £4. When inelastic channels are open, one
would replace SA(E) by eigen-phase shifts. The idea expressed by (2.12) is that,
since NL=O when there is no interaction (i.e., when SLEO)’ there would be no
"elementary" bound state. In mathematical examples®* in which (2.12) can be
rigorously imposed, one does find that it determines the number of bound states and
resonances that can occur, and places restrictions on their positions and coupling
constants. But its general consequences has not been fully explored, owing to the
difficulty in using it in a full relativistic scattering problem.

Instead of the Levinson theorem, it seems far simpler, and more satisfactory
to take over from potential scattering the idea that all particles lie on Regge
trajectories. The statement is precise, and is independent of a detailed formu-
lation of the dynamical equations. It has the immediate experimental consequence
that all known p hadrons should be classifiable according to Regge trajectories,

which should also control the asymptotic behavior of scattering amplitudes.

C. Chew-Frautschi Plot

We can immediately test the hypothesis that all hadrons lie on Regge tra-
jectories by plotting the spin vs. (mass)2 for known hadrons, resulting in what is
known as Chew-Frautschi plots, as shown in the following figures. The trajectories
that one might postulate from such a plot can be tested experimentally by analyzing
high energy scattering data. A striking feature is that all known trajectories seem
to be straight lines. The presence of the fO at spin 2 on the p trajectory suggests

that there is exchange degeneracy of the p and f trajectories.

% K. Huang and A.H. Mueller, Phys. Rev. 140, B365 (1965).
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TII. Relativistic Scattering of Spinless Particles

A. Preliminaries

We consider the two body scattering process atb — c+d, and define as usual

(]
2 2 2% 2 2.%52 R d
s = (ptp) = ((p,,, m, )2+(pab +my )
2 t —> - U
t = (Pa'pc)z 1 <
u = (p,7P.) (3.1) a S¢ b

where p b is the magnitude of the three-momentum in the center of mass of a and b.
a

These variables satisfy f;
s+t+u =Z mi2 . (3.2)
i=1
We write the S matrix for this process as
s = 1+iT (3.3)
where
< ed|Tfab > = (20%6%(p +p,-p_p ) £(s, 1) (3.4)

where £(s,t) is Lorentz invariant, provided single-particle states are so normal-

ized that the phase-space volume for one particle is invariant:

. 3
1 a’p \
) ==l 0.
one—particle(zﬂ) P (0

states

where ¢ indicates quantum numbers other than momentum. The differential cross

section is
12

P
do _ 1 pc (3.6)

d |
- - f(S9t)
d 4nzs ab

Crossing symmetry states that £(s,t) describes different reactions in different
domains of its arguments., The three reactions, or channels, are as follows:
2
s-channel: at+b — c+d, for s > max [(ma+mb) ,(mc+md)2] s
t-channel: a+c - b+§,for t > max [(ma+mc)2,(mb+md)2] ,
- - 2 2

u-channel: b+c = atd,for u > max [(mb+mc) ,(ma+md) ] . (3.7)

We assume that f(s,t) can be analytically continued from one of these domains to

another.

+
Unitarity states that § S = 1, or

L oty = Lt

21(T T) 2T T s (3.8)
and time reversal invariance implies

<glt|g>= <p|T|la>. (3.9)

Then, taking the matrix element of (3.8) we obtain
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Re a (S)

T ] I I
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FOR NON-STRANGE MESONS

*SPIN IS NOT KNOWN BUT
IS ASSIGNED ON THE BASIS OF
STRAIGHT-LINE REGGE TRAJECTORIES

o 2L | ) | |
0] ! 2 3 4 5
S{GeV?)

vlo Dl G o

nojon

no|—

L T I I I I I 1

CHEW-FRAUTSCHI PLOT
FOR NON-STRANGE BARYONS

| ¥SPIN IS NOT KNOWN BUT IS
ASSIGNED ON THE BASIS OF
STRAIGHT - LINE REGGE TRAJECTORIES

A(2850)

A(2420)
N(2650)*
Ali950)

N(2190)

]
A3230)%

N(3030%*

n
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H

5 3] 7 8 9
S (GeV?)
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_LN o= hb,
Imf | q(8:t) =5/ £ 4, (@087 (p mp P E L, - (3.10)
n

The optical theorem reads

Imf b(s,O) = %k(s)%cT(s) (3.11)

ab - a
where OT(S) is the total cross section for a+b — anything. By virtue of (3.10)
f(s,t) has a series of branch cuts in s, with branch points at the various thresholds
for ab » n. The right hand side of (3.10) gives the discontinuities across the cuts.
The discontinuity across the elastic cut is given by the elastic unitarity relation

Inf(s,t) = ~l§ —E*% dQ'f*(s,tl)f(s,tz) (3.12)

8~ (s)

where, in the equal mass case,
—2k2(l—cose)

t=
£, = -2k2(1-cose')
t, = -2k2(l-0037)
cosy = cosBcosf'+sinbsinB'cosp' . (3.13)

The geometrical relationship among the anglﬁs is shown below.
Du

We can expand the two-body scattering amplitude f(s,t) in partial waves:

«©

£(s,t) =A} (24+1)P, (2 )F, (s) . (3.14)
2=0

If £ is an elastic amplitude, then elastic unitarity takes the simple form

L k 2
ImF, (s) = 5 (S)% lFt(s)l , (3.15)

with the solution
. % 2id (s)
2
F,(s) = 22e 2y, s, (s) 2o . (3.16)

If the elastic threshold is the lowest threshold then Im&z(s) = 0. Using the
orthognality of the Legendre polynomials, we can invert the partial wave expansion
+1

FZ(S) = %L/;sz(z)f(s,t(z)), (£=0,1,2,...) (3.17)

-1

to obtain
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B. Froissart-Gribov Continuation

We wish to continue FZ(S) into the complex plane so that we may study its
‘poles and other singularities there. 1In potential scattering this could be done by
solving the SchrBdinger equation for complex £4. In relativistic scattering we must
make use of dynamical assumptions. A guide to the analytic continuation is

Carlson's Theorem: Let f(z) be analytic for Rez 2 0. Suppose £(z) = 0 for

z =0,1,2,..., and that ‘f(z)l < const x e 2l as lzl -, Then £(z) = 0 for all

Rez 2 0.

Hence if we can find an analytic function F(E,£) which reduces to FZ(E> for 4 = 0,1,
2 . and which grows less fast than eﬁ‘z|, then we know that any other analytic
conTiTuation must grow at least as fast as eﬂlzl. Since PL(Z) grows essentially like
7z |4

e

3.

for -1 < z < 1, and therefore does not possess a unique continuation, we
have to examine the properties of f(s,t) to see whether Fz(s) has a unique continua-
tion. We assume that f(s,t) satisfies an N-times subtracted dispersion relation

at fixed s:

© N-1
N A (s,t") N A (s,u") ]
dt' t u du u'’? i
£@s.t) = e t'N tt T N Ta T a;(s)t” . (3.18)
t0 ) i=0

The first term gives rise to the analog of a potential, and the second term an
exchange potential. Now both t and u are linear functions of z = Z s of the forms
t = az+b, u = -a'z+b', where a > 0, a' > 0 in the s-channel physical region. Hence

(3.18) may be rewritten in the s-channel physical region, as
N-

fe's)

D.(s,z") N p- D (s,z") - ,

z dz? 172 N z dz' i

f(S,Z) - f N 7 V-7 + (_l) 7t Z'N '+Z Z‘ C,(S)Z )
Z =

21 2
D,(s,2) = A _(s,£(2)), Dy(s,2) = A (s,u(-2)), z, 21, z, 21,  (3.19)

For £ = 0,1,2,..., (3.17) is certainly valid, and we can substitute (3.19) into it
and interchange the order of integration to obtain

® +1
_ 1 [det W1 z i} le :
F () = nfz'N D (5,215 jdz 77 P, w. ! N Dy (s,z")
2

-1

+1 N-1 +1

lfi il P ( Y (s)% ﬁizzip (2) (3.20)
5 z 21z &y z) ZJ ci s 7. 1 . .
-1 i=0 -1

Now
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N N "
z  _ [(z-zY+2'] _ __\N-1 o N-2_ z
z'-z z'-z (z-2") Nz'(z-z') et o
N N ™N
z-  _ [(z+zy-z']" _ WWN-1 \\N-2 \N_z
7'z 20 +(z+z') Nz'(z+z') “+.o4(-1) S - (3.2D)

1£ 4 2 N, then the polynomials do not contribute, and we obtain

(o) . +1 Pz(z) . 0 / P (2)
(s) \dez'D (s z')2 /ﬁ z'—z k/:iz'D (s, z')2 dz vl (3.22)
zq -1 z, -1
Noting that . /jl PL(Z) i
2. dz z'-z Qi(z) (3.23)
-1
we have © ©
F (s) = k}; D (s z )Q (z")+ i\/pdz'Dz(s,z')Qz(-z') ,
! i
(4=N, N+1, N+2,...). (3.24)
Recall that for integer £,
Q,(-2) = (-D¥q, () (3.25)
so that
foe) ©
F,(s) = [dz D, (s,2")Q, (z")+(- 1)? /dZ'Dz(s,Z')Q!I(Z') . (3.26)
1 )

As in potential scattering, we are therefore led to define the signatured partial

wave amplitudes
o 00

Fi(s,4) = ifdle(s,Z)Qz(Z)i ifdz%(s,z)%(z) : (3.27)

2y )

This is the Froissart-Gribov formula. As in potential scattering we have

( Fl(s,4) (4=0,2,4,...)

F,(s) = (3.28)

U v (s, 4=1,3,5,...)
We must still show that (3.27) defines a unique continuation of Fz(s) to complex £.
By hypothesis, the dispersion relation (3.19) requires only N subtractions. Hence
the integrals in (3.27) converge at least for Rez 2z N and so define an analytic
fraction there. Also as ]Ll - o, Q (z) ~ CL 2[z+(z —1) 21 -%. Hence, since
2, > 1 and z, > 1, F (s,£) = 0 as lzl - © and so satisfies the hypotheses of Carlson's

Theorem. It therefore gives a unique analytic continuation.

The Mandelstam symmetry
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Ft(s,z) = Fi(s,—z-l) (£ = half integer) (3.29)

is assumed to hold. It is formally true of (3.27),for QZ has this property. However,
the integral do not converge as they stand and the assumption is that the analytic
continuation still maintains this property.

Since Qz(z) has simple poles at 4 = -1,-2,..., Fi(s,j) would, in general, have
fixed poles (i.e., s-independent poles) at these values of £. These are inadmissible
by the elastic unitarity realtion (3.13). For, by similar arguments given above,
(3.15) can be uniquely continued to complex 4 to read

+
Lim [F—(L,s+ie)-Fi(Z,s-ie)] - Lk T Fi(l,s+ie)Fi(z,s-ie) . (3.30)
2

€ -0 2 gy

1
2i
This cannot be satisfied if Fi(z,s) has real fixed poles in 4.

To get rid of them, we require their residues to vanish, namely

[e o]

/dle(s,z)Pz(z) =0. (#=0,1,2,...,i=1,2) . (3.31)

21

C. Regge Poles

We have seen that (3.27) defines an analytic function of £ for Relt Z N. For
Ret < N, singularities may occur, the simplest being Regge poles. They arise from

a failure of the integrals in (3.27) to converge at the upper limit. Suppose

D, (s,2) - Ei(s)zo‘(s) (i=1,2). (3.31)
z > Q0
We split the integrals into two parts, for example
@ Z o
%L/‘dle(s,z)QL(z) - %<f+[ >dzD1(s,z)Qll(z) (3.32)
%1 Z 2

where 7z is fixed but arbitrarily large. The first part, being a finite integral,

defines an analytic function. The second part can be evaluated using (3.31) and the

fact
Qz(z) - G z_J&"1 .
7 -
We then obtain
+ B, (8)1B, (s)
F—(s,4) = oy + [Terms regular at 4 = a(s)] . (3.33)

+
Thus F—(s,4) has a Regge pole at 4 = o(s), if 31(5) + Bz(s) # 0.
To examine the singularities of q(s) and B(s) we keep only the parts of (3.27)
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that contribute to a Regge pole:
+ o)
(s,8) = /\dz [D (s,2)3D, (s, z)]Qz(z) . (3.34)

Z
This is valid in the s-channel physical region. To continue in s, we must first

pole

restore t and u as integration variables. We carry this out explicitly for the
simple case of equal-mass scattering:

+

«©

1 t
(s,4) = L/;t[A (s,t)+A (s,t)]Q,(L-—=) (3.35)
anz : t u 2 2k2

pole

where T is positive and arbitrarily large. This can now be continued in s.

We first note that the function Qz(z) has a cut from z = +1 to z = -1, and
one from z = -1 to z = - @, with discontinuities as indicated in the sketch.
k2=—E kz ~c0 z plane(z=1+ —Eiﬁ

P m

Lz, -1 +1
2 e e e ey DTITITIIIIT I T
k=0 <A T T rrrrrrrrrrry !{!!{ZZ:&
'zb
_
—— _A ——

DiscqQ, (x) = '%Pz(x)
—_ "imd .
Q,(z,)=-¢""q, (-2)
.l _
Q,(z,)=-e ", (-2)

(-za=—zb=-z)

The cut from -1 to - ® gives rise to a s-cut in FP le(s £) from k2 =0 to k2= -t/4.
It is present only when 4 is non-integer. The comblnatlon (z- 1) Q (z), however, has
no cut from -1 to - @, even for non-integer 4. Since k = t/2(z- 1), we see that the
combination Fpolz(s,z)/ijhas no cut from k2 =0 to k2 = -t/4. This means that

for a Regge pole the reduced residue function
= 2
B(s) = B(s) /KX %) (equal mass case) (3.36)

and the trajectory 0(s) can have only the cut from k2 = -t/4 to k2 = - 00, (coming
from the cut of Qz(z) from z = -1 to z = +1), plus other cuts coming from AtiAu.

The former cut is, in fact, absent because t > T, and T - . The factor
2
k 4 in (3.36) corresponds to the threshold condition SL(k)k ¢ 0 k2£+1, familiar

from potential scattering.
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. R .y + .
We now examine singularities of F — due to those of At+A , which for fixed
-u

pole
t has right and left hand cuts in s, and is real analytic. At fixed t, the s-cuts
of At run from sA(t) to ©, and from sB(t) to - @, as shown in the sketch below.

Similarly the s-cuts of Au run from SA'(U) to ®©, and from sB'(u) to - ®. Since t is

right cut

s=4m2

u=4m

left cut

integrated from T up, and T -, it is clear from the sketch that only the right cut
remains in Fpo$é(s,z), and it runs from 4m2 to ©, The left hand branch point recedes
to - @ because both B and B' reced to s = - as T - . Therefore a(s) and PB(s)

can have a right cut, but no left cut. Since they are real analytic functions, they
are real for s < 4m2.

For the general mass case similar results are obtained. The reduced residue function
is given by

als)

B(s) = B(s)/(p P q) (3.37)

as a generalization of (3.36). Both «(s) and E(s) are real analytic functions, with
possibly a right cut from the lowest s-channel threshold to @, but no left cut.
Below threshold both «(s) and E(s) are real.

D. Reggeization

By Reggeization we mean the isolation of Regge pole contributions to the
scattering amplitude. The way to do this is to perform the Sommerfeld-Watson trans-

form. We write the partial wave expansion in the t-channel;
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o
f(s,t) =Z (2,6+1)P‘&(zt)G£(t) (3.38)
£=0

where

2 2 2 2
t(s—u)+(md -my )(mc -m )

T
[(t-m_m )%y (e=(m 4m ) ) (£=(m, -m ) ) (e- (mptm ) %) 12

s-u

- PO (3.39)
s > 4pacpbd
We assume that the signatured amplitudes have only simple poles of the form
+ B(s)
G(8:4) ~ Foa(s)
Then, repeating the steps of Sec. I-C, we find that as s » @
f(s,t) = Z Ra(s,t) + (background integral)
a
R (s,t) ~ - 22UEIL] g/ @ (p )4 @ (2 )] (3.40)
o’ sinpa(t) o t'=Vao 't ‘

where the + sign corresponds to signature = +1. As a function of z s (3.38) converges
in the Lehmann ellipse of the t-channel, which includes the t-channel physical

region but not the s-channel physical region. We can now continue it to the s-channel
physical region using (3.40). Before we do this, we must determine the phase of

CP( -z ), with the help of the relation

& (=) = +1’wr?( ), (mz 20) . (3.41)

In the physical region of the t channel, Imt > 0 and s < 0. Hence, Imzt > 0, so that

L IO QO 5 1O P, (3.42)

s,t) ~ "
Ra( ) sinnmo(t)

and this can be continued to the s-channel physicsl region. The reason we must use
(3.41) before the continuation is that the path of continuation passes through a
branch point of (Pa(z) in z, and the phase, if not determined beforehand, becomes
ambiguous thereafter.

We now examine the singularities of R (s t) in t:

1) R (s t) has poles at the integers from the factor [sum:oc(t)] . We discuss

- 181 -



separately two types of poles:

(a) Those poles at ¢o=0,1,2,.... correspond to physical particles of spin Q.
Because of the signature factor, only the even or odd ones are actually present in
Ra. However, if ¢(0) > O, and the signature is positive, then o=0 corresponds to a
particle of negative mass, a '"ghost!", which may be removed by assuming that
B(t) e a(t). (There are other mechanisms to deal with this problem when the
extrenal particles have spin. See discussion later, in Sec. VII).

(b) Those poles at o=-1,-2,-3,.., correspond to unphysical, or '"nonsense",
values of singular momentum. They are automatically removed from Ra becauseéax(z)
vanishes at these points. The signature factor then produces zeroes in Ra(s,t) at
nonsense wrong-signature values of @, unless B(t) has poles at these values of «.
(See discussion later, in Sec. IVC).

2) Ra(s’t) has poles at ¢ = +%, +3/2,..., arising from the poles of(ja(z). The
pole at o=-% is cancelled by the factor (2a#l). For the others there are two
possibilities.

(a) The residue of the pole may vanish.

(b) 1If the residue does not vanish, then the Mandelstam symmetry (3.29) requires
that there be another trajectory at -a-1 with the same residue. The pole from this
trajectory exactly cancels the original pole. This is known as a “compensating
trajectory".

For negative values of ¢, the compensating trajectory would lie above the
original one. For this reason it is customary to assume that (a) is the correct

choice and to take
1

B(t) o 3
P(a(t)+§)

To obtain the required analyticity properties, the correct threshold behavior,
and the absence of a ghost at a(t) = 0, we write

a(t)

4p_p
B(r) = —AHE < 2 bd> 7(t) (3.43)
D (a(£)+3) 0

where o is an arbitrary scale factor. Then y(t) is real analytic with no left hand
cut. Recalling (1.20) and using the properties of the gamma function, we find that

as s = @,

-ino(t)

R (5,6 ~ - 2 p1-ae)) e LN o S P SIS

(x) 0

This is the formula which is used in practical applications. Note that the
threshold factor in (3. ) is cancelled by a similar factor in z, [see (3.38)]. This

is of course no accident, for Ra(s,t) is expected on general grounds to be a real
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analytic function of s. If the ghost-killing zero is not needed, and we do not put
it in, then I'(l-a) in (3.44) is replaced by -I'(-q).
E. Khuri Poles

We have kept only the leading term in the asymptotic expression (3.44) for the
contribution of a single Regge pole. Keeping the full asymptotic expansion of the

hypergeometric function in the definition (1.19) OECE;(Zt)’ we obtain

R (s,t) = - L& pi-gqey) (e KB4y (S—>a(t)[1+z d <t><s—>'“}<3-45)
[0 3 S n s
() 0 n=1 0

The 4 (t) are just such that
n

Pz(zt)

E_-OC—(!‘:)— , as a(t) = ¢ s (3.46)

Ra(s,t) - const X

which is required for a resonance to have a definite spin. Thus (3.45) is signifi-
cant if resonance positions are non-degenerate. If, however at the same energy
there exist resonances of various spins, then the residue function in(3.46) could be
an arbitrary polynomial in Zos and the combination (3.45) is not particularly
significant. Since we do not have full knowledge of all the resonances present,
and since asymptotically only the leading term in (3.45) is significant, it would be
advantageous to have an alternative expansion to the partial-wave expansion, such
that the result of a Sommerfeld-Watson transformation would lead naturally to just
one term in the infinite n sum in (3.45). Such an expansion is supplied by Khuri
One can expand f(s,t) in a power series of s instead of in a series of Legendre
polynomials in z, in the form ©
£(s,t) =Z c (0)s" (3.47)
n=0
which converges in some circle in s. One then analytically continues cn(t) in n to
obtain ci(t,n), defined in the complex n plane (with signature introduced in the
usual way). Assuming that ci(t,n) has poles in n whose positions depend on t, (which
might be called Khuri poles), one can pick up their contribution to (3.47) by doing

the Sommerfeld-Watson transformation and obtain

f(s,t) =211 KG(S’t) + (background integral)

a

K (s,t) = -
o (ﬂ)%

ZEL p1-aqey) (O 11y (4O
0

where a(t) is the trajectory of a Khuri pole. Clearly, one Regge pole corresponds

to an infinite family of Khuri poles, spaced successively by one unit. The leading

* N.N. Khuri, Phys. Rev. 132, 914 (1963).
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member of this family of Khuri poles coincides with the Regge pole. Conversely, one
Khuri pole corresponds to an infinite family of Regge poles. As long as we do not
have a dynamical theory, there is little to choose between the point of view of Regge
poles and that of Khuri poles. 1In either case the requirements of agnalyticity and
unitarity in all channels probably can only be satisfied with an infinite number of
poles, Regge or Khuri. For formal considerations, however, Khuri poles are often
convenient,

Instead of (3.47), we can, in fact, consider a power series in some other
variable, for example in v = (s-u)/ZSO. Then we could arrive at (3.48) with Ka(s,t)

replaced by

-ina(t) a(t)

Ka(v,t) = - ZXE% T(l-a(t)) (e +1)v (3.48a)

()
which is convenient when it is important to take into account the symmetry of the
scattering amplitude under s-u interchange.

F. Factorizability of Regge Residues

The residue function B(s) of a Regge pole can be written as a product of two
factors in a manner similar to coupling constants in field theory. This is a conse-
quence of elastic unitarity, and we shall prove it for the case of the following
set of s-channel reactions:

1. gt —» qtx with partial wave amplitude Fl(s,Z)

2. g+ = NHN with partial wave amplitude Fz(s,z)

3. N+N - N+N with partial wave amplitude F3(S,L)

The spin of N is ignored for simplicity, and signature is understood. For
4mﬂ2< s < 16mﬁ2 the 2x state is the only intermediate state in the unitarity relation
(3.10), for all three reactions. Therefore in that interval of s, the unitarity
relations for the partial waves, continued in £ are simple generalizations of (3.30):
ImFl(s,z) = p(s)Fl*(s,L)Fl(s,L)
ImFZ(s,L) = p(s)Fz*(s,Z)Fl(s,z)

ImFB(s,z) = p(s)Fz*(s,t)Fz(s,z) (3.49)
where
1 s-4mﬁ2 2
o = )
Ian(s,L) = %I[Fn(s+ie,z)-Fn(s-ie,z)] (n=1,2,3) . (3.50)

Since all three reactions have the same quantum numbers, the same Regge pole Q(s)

occurs in Fn(s,z), (n=1,2,3). Thus near £ = Q(s+ig),
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Bn(s+ie)

+i ~
Fn(s te, ) L-Q(s+ie)

B, (s-i€)
o(s+ie) ~a(s-ie€)

Fn(s-ie,z) ~ (3.51)
Substituting these into (3.49), multiplying through by #-a(s+i€), and taking the

limit £-c¢(s+ie) - 0, we obtain

ﬁl(s+ie) = %éa%g; Bl(s 16)6 (s+i€)

52(s+ie) = %éa%g; 52(s 1e)Bl(s+1e)

53(s+1e) %éa%g; Bz(s-ie)Bz(S+i€) . (3.52)

Taking the quotient of the last two equations, we obtain

Bz(s+ie)2 = 51(s+ie)§3(s+ie),(4mn2 <s < 16mn2) . (3.53)

It is to be noted that our proof depends on the fact that there is no other
state degenerate with the 23 state. Similarly a generalization of the proof to take
the spin of the nucleon into account works only because the pion has spin zero,
and would not go through if there is spin degeneracy. If the 2x state were degeneracy,
the proof would have to be modified by considering new linear combinations of the
degenerate states. Since (3.53)1is analytic in s, we can continue it into the complex
s plane. Tt therefore holds for all s. The reduced residue y(s) defined in (3.43)
also satisfies (3.53), because the factors in its definition trivially factorize.

We can therefore write, as a solution to (3.53),
7,(s) =g _(s)g (s)
75(8) =g (8)gur(s)
73(s) = gNﬁ(s)gNﬁ(s) . (3.54)
The same proof can be used to show that the discontinuity function of a Regge

cut has similar factorizability, for a Regge cut may be thought of as a zontinuous

distribution of Regge poles.

G. Complication Due to Spin and Intrinsic Quantum Numbers

In order to apply the formulas we have derived to actual experiments, we have
to understand, at least qualitatively, how our results are affected by the spin and
intrinsic quantum numbers of the external particles. We now give a brief discussion
of this. A detailed consideration of spin will be postponed till later.

If the particles have spin, we must specify their helicities Aa’ hb’ AC, and Kd
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as well as their momenta We do this by using the helicity amplitudes £ cd; b(s t)
of Jacob and chk , where cdj;ab is an abbreviation of K sA Aa kb The s- and t-

channel amplitudes are no longer identical but are related by a crossing matrix.
That is,

fHS(s,t) = ZMHH,(s,t)fH't(s,t) , (3.55)

Hl
where H or H' denotes the relevant set of helicity indices. The crossing matrix
4wZHH' has been calculated by Trueman and Wick**. For our present purposes we only
need to know that it is a real orthogonal matrix:
44’5/%= 1. (3.56)

The unpolarized differential cross section in the s channel is given by

k —

do 1 f 1 | s 2

— = —= £ 7 (s,t) |7, (3.57)

2
da br’s ki (2Ja+1)(2Jb+1) ZJ H
where J_ and Jb are the incident spins. Because‘ﬁ¢g¢i= 1, this is equivalent to

k

do 1 £ 1 l t 2

10 = = > £ (.07 . (3.58)

dq 4nzs ki (2Ja+1)(2Jb+l) ,'TH

If fHS(s,t) describes elastic scattering, a+b — a+b, then the optical theorem states
s 5
Im < £ (s,0) > = %k(s) OT(S) (3.59)

where oT(s) is the total unpolarized cross section for atb — anything and < > denotes

the following helicity average:

s 1
< PG00 >= (23 1) (23, +1) Z Eabs ab(s 0). (3.60)
a,b
It can be shown that
<EE0 > - 3 £y (5,0) , (3.6l
(297> = 2y ) 23,7 b,-bsa,-a(H® » (.61
a,b

so that we can compute the s-channel total cross section directly in terms of t-

channel Regge poles.

The helicity amplitudes are particularly appropriate for Regge pole analysis

because they have simple partial wave expansions:

* M. Jacob and G.C. Wick, Ann. Phys. (N.Y.) 7, 404 (1959).
*k T.L. Trueman and G.C. Wick, Ann. Phys. (N.Y.) 26, 322 (1964).
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fcd,abt(s’t) - E;(2J+1)ch,ag(t)dhuj(zt)

A = a-b, u = c-d z, = cosQt (3.62)

where dqu(z) is a rotation coefficient. If a=b=c=d=0, then (3.62) reduces to the

partial wave expansion of the spinless case. Regge poles occur as J-poles of

J
ch,ab’
pole a(t) to (3.62) has the same form as in the spinless case, except that the

suitably continued into the J plane. The contribution of a single Khuri

reduced residue now acquires helicity indices:

74 (8) -
B r-a(e) (70 41y GO,

() 0

th(pole) = - (3.63)
Actually the helicity amplitudes contain kinematic singularities and satisfy con-
straint equations that did not exist in the spinless case. This means that 7H(t)
have kinematic singularities, and that the 7H(t) of different Regge poles may be
related to one another at some value of t. The simplest of these constraints come
from the requirement that in s-channel forward or backward scattering the total
helicity be conserved. Through crossing this forces certain linear combinations
of t-channel helicity amplitudes to vanish at these kinematic points.

We now turn to intrinsic quantum numbers, and use isospin as an example. TIf
we do not work with scattering amplitudes of definite isospin, the no further
complication arises. For example, consider the s-channel reaction ﬂ-p - n_p, with
the corresponding t-channel reaction ﬂ—ﬁ+ - pE. Crossing between the two channels
is simply given by (3.55), in which £° refers to n-p - n_p and ft refers to
n-n+ - pE. If we decompose all scattering amplitudes into amplitudes with definite
total isospin, however, then an isospin crossing matrix enters into the crossing
relation. For example, let fH IS denote the helicity amplitude for n_P - n—p in

3

the total isospin state I, and let fH denote the corresponding amplitude for

t
+ - _ I,Il
n it — pp. Then the crossing relation reads

«
s t
fH,I (S’t) —L%HH'(S’t)CII'fH'I' (S,t) s (3'64)
H'T!
where C is the isospin crossing matrix. It is a constant matrix independent

IT!
of s and t. We merely outline the procedure to derive it.

Suppressing helicity indices, and denoting a two-particle state by
lpl,Il,ml;pz,Iz,m2 >, where I is the particle isospin and m its z-component,
crossing symmetry states

< pysTgmgip,,T,m, [Tlp, T  my5p,,1,,m, >

=< -pz,Iz,-mz;p4,14,m4lT|pl,Il,ml;-p3,I3,-m3 > . (3.65)
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Now, both sides can be decomposed into linear combinations of amplitudes of

definite total isospin and give a relation of the form

\'1 s It t
Za £° = > b_ R (3.66)
: m3m4,m1,m2 I o mz,ma, ml, m3 I

where a,b, are certain Clebsch-Gordan coefficients. We may now use the orthogonality
relations of Clebsch-Gordan coefficients to solve (3.66), resulting in the crossing
relation (3.64). The only delicate problem in the derivation is the choice of

phases for the coefficients a and b. A clear and elementary discussion of this is
given by Carruthers and Krisch.®* They have worked out isospin crossing matrices

for many useful cases. For reference we cited some of these in Table I.

% P. Carruthers and J. Krisch, Ann. Phys. (N.Y.) 33, 1 (1965).
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Table I - I-spin Crossing Matrices

s: KK = KK etc.

s st t
fI (s,t) = ECII' fI' (s,t)
Il
Is It 0 1 2
1 5
S: nux 7T 0 3 1 3
t: nx > nx st _ 1 1 5
N ¢ = ! 3 2 e
LK 1614 T ) 1 1 1
3 2 6
IAIt 0 1
st N ~ aN ¢t = : Lo
. - (6)*
: w —~> NN
u: N = =N % 1 T _Zl
(6)*
1 3
IAIt 2 2
sn
c*" = 1 1 4
same for 2 3 3
s: K = 5K etc. 3 2 1
2 3 3
1 3
Is\It 2 2
st
c 1 103
s: NN = RN 2 2 2
t: NN - NN 3 _l 1
u: NN - NN 2 2 2
1 3
I&t 2 2
1
same for C = -
sn 2
3
2

/—-—‘ul\
N~ N~

N N|W
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IV. Some Simple Physical Consequences
A, Single Pole Dominance

Suppose (t) is the leading Regge trajectory which can be exchanged in the
t-channel. If there are no Regge cuts, it alone will dominate the s-channel scat-
tering when s is sufficiently large. From (3.58) and (3.63) we obtain the asymptotic

differential cross section:

k -ino(t) 2
9 - Froraam | 5| &0,
4xts i 0
1 K¢ 2 cos” uOtzg s . 20(t)
= o b(t)I" (1-a(t)) 2 ¢ ) , (signature = +1), (4.1)
4r"s i sin 19%_1 S0
where
i1 2
b =3 (25 +1) (23, +1) Z Yed;abt® (4.2)

a,b,c,d
Hence (ki/kf)(dc/dﬂ) has a very simple asymptotic s-dependence:
K 4o s\ 20(t)-1
T dg - &) . (4.3)
0

kf dq

If we plot Ln(Ei %%) vs. Ln(g—) at fixed t, we should obtain a straight line whose
0
slope is 2a(t)-1. This would enable us to determine the trajectory a(t) for negative

values of t by comparison with experiments. Most of the trajectories determined
so far conform remarkably well to a straight line:

a(t) = optatt . (4.4)

B. Total Cross Sections

By using the optical theorem (3.59) and the formulas (3.61) and (3.63), we
can calculate the asymptotic total cross section in the s-channel in terms of the

leading Regge pole a(t) in the t-channel:

cc o -1
ab s 0

o, (s)y - - (=) >

T oo (o) s

(4.5)

where O is the total cross section for a+b — anything, and Ob = (0), and

cn(n=a,b) is defined by

o]

(hr®s. 1Y% = —
_ 0 nn
n _———(ZJn+l) Z B, A o, (4.6)

- A
where ghunn(t) is the coupling [in the sense of Eq. (3.54)] of the t-channel Regge

pole to the nn system with helicities A,u. Since the Froissart bound* requires

* See Khuri's lectures in this Summer School.
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2
O < c(4ns) , we see that no Regge trajectory can have an intercept o, greater than
unity. If ob=1 then according to (4.5) OT approaches a finite constant, otherwise

it approaches zero by a power law.

It seems attractive to assume that there is a trajectory with Ob=1’ having
the quantum numbers of the vacuum. It should have positive signature so that it
does not create a zero-mass spin-one hadron. If such a trajectory exists, it
would be exchanged in all elastic scatterings, and by (4.5) all total cross sections
will approach constants as s = ®., Furthermore, the total cross sections for a+b
and a+b will be equal in that limit, because the trajectory will in both cases be
coupled to aa and bb pairs, thus giving the same ¢, These are just the conclu-
sions of the Pomeranchuk theorem, and this trajectory is named the Pomeranchuk
trajectory or the Pomeron and is denoted by o%(t). However, experimental data so
far have neither clearly confirmed nor ruled out the Pomeron. If it exists, then
the factorized form of the coefficient in (4.5) predicts relations among asymptotic

cross section, for example
2
) = 0 o . .
0N @ cm()cNN() 4.7)

Assuming that at Piab = 30 GeV/c, the total cross sections have essentially
attained their asymptotic limit, as is consistent with the trends in the experi-

mental data, one finds
Uﬂﬂcxb = 16 mb. (4.8)

This number, of course, has not been measured experimentally.

While the Pomeron (assuming that it exists) gives the asymptotic constant
cross section. The way this limit is approached depends on lower-lying Regge
trajectories. Their effect on the total cross section is simple to calculate via
the optical theorem, because the latter involves the amplitude linearly, so the
contributions from different trajectories are simply additive. Consider, for
example, pion-nucleon scattering. The s channel is w+N — n+N, and the t channel
is qtx - N+§. The quantum numbers of the t channel are P = +(-1)J, G = +1, and

I = 0,1. The known trajectories with these quantum numbers are

I=20:0P, f0 (signature = +1)
I=1:p (signature = -1) . (4.8)
Hence for large s
+
fo (s,t) = KP+Kf
t
fl (s,t) = K.p (4.9)

where KP =K (s,t), with Ka(s,t) given by (3.48). Using the isospin crossing

matrices of Table I, in Sec. III, we find
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s
f1/2 (s,t) L (KP+Kf)+-Kp
(6)
£.,.5(s,t) = ——¢ (K_+K_)-5K (4.10)
3/2 ? 3 P £ o)
(6)
which leads to
" 1 1
o . - z GP + L - écp
T p (6 (6)
o -1 T o + Ly . (4.11)
= 2 P 2 o]
7 p (6) (6)

~

Using the approximate value Ob(O) ~ afo(O) ~ % we have

[N

0n+p(s) = qb+(cf-cp)s

N

Oﬂ_p(s) = qn+(cf+cp)s , (4.12)

where 0o © ¢ are constants. The constants cf and ¢ are proportional to residue
P P

f)
functions evaluated at t=0. These residue functions must be positive when t as at
the squared mass of a particle, but may change sign by the time we extrapolate to

t=0. Assuming, however, that cf and ¢ are positive, we have
o

oﬁ_p(s) > oﬂ+p(s) (4.13)

which happen to be experimentally correct so far.

C. Diffraction Scattering

In any elastic scattering, we expect the amplitude to be dominated by Pomeron
exchange for small t and large s (i.e., high energy scattering near the forward

direction): -ino_(t)

e +1 ap(t)
£(s,t) = - T 7P(t)P(1'OtP(t)) ‘———2—"—"“(‘:—) (4.14)
() 0
as t - 0, o%(t) - 1 by hypothesis. Then
-ing (t) _lEa (t)
P(1-a (6)) Stk - 2 e * 7 Tcosfa (t)
P 2 sinnQL(£)T(0p(t)) 27p
LT
-iso(t)
- b1 27P T
= naP(t) naP(t) e COSEOP<t)
2gin 2 CcOS 2 1 (GP(t))
L - ix
t-0 2

Hence the amplitude is pure imaginary at t=0:
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N

o (0)

s\ P

£(s,0) = L 7P(0)(§_)
0

5 (4.15)

This means that the ratio of the forward elastic cross section to the total cross
section is as small as possible consistent with unitarity. That is to say, one may
physically attribute the elastic scattering to the effect of all inelastic reactions.
One calls this diffraction scattering because the same picture holds in the diffrac
tion of light by a completely absorptive sphere. In that classical example, the
incident light casts a shadow behind the sphere. The shadow is of course "caused"
by the absorption (inelastic effects), but its existence requires that there be a
definite amount of elastic scattering to cancel the incident wave behind the sphere.

Since the Pomeron has positive signature, the elastic cross section is

20 (t)
do _ _1 2 2 2 x s %
To = T3 Tp (DT (1-gy(£))eos” [Ta, (£) 1) . (4.16)
4"s 0
It is convenient to define
() -
de _m g g g e O
dt k2 do So
_ 2 2 2'n
c(t) = p () (1 of(t))cos [Eob(t)] . (4.17)
A qualitative sketch of do/dt is given below.
do
dt 4
) OE:SZ(.Ot(O)—l)
s fixed
%
— Nonsense wrong-signature points
e
At ;
. l
! > -t
_r
a'zn(s/so)
This cross section exhibits certain characteristic features.
L 2(a(0)-1)
1. The value of o, = (do/dt) _, varies with s like () P , so that

0

it is independent of s if 05(0)=1. The constantcy of ¢, is indeed experimentally

0
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observed in all elastic scatterings.
2. Suppose that the trajectory is linear in t,
Of(t) = Ob+a't s (4.18)
then (4.16) becomes

s
- 1 ——
do 2(ob ) o thSO
e

@& -emE (4.19)
0

dt
If c(t) varies slowly for small t, then the dominent t dependence comes from the
exponential factor. Hence the cross section will show a forward peak with a char-

acteristic width

At = —2— (4.20)

a'zng—
0
which shrinks logarithmically with s. This shrinkage is observed in some but
not all elastic scattering, possible because, in existing experiments, the energy is
not sufficiently high, so that lower trajectories are still important.

3. do/dt vanishes at the nonsense wrong-signature points, o%(t) = -1,-3,-5,..,
where the signature factor is zero, provided that B(t) has no poles there. This
would produce dips in the cross section, similar to the diffraction minima outside
of the central maximum in Fraunhofer diffraction. It was, however, pointed out by
Jones and Teplitz* and Mandelstam and Wang,** that B(t) may have poles at
precisely the nonsense-wrong signature points. The residues of these poles are
proportional to certain integrals over the "third double spectral function" Py
Whether or not these poles actually exists is a dynamical question. We can only
say that there is no general reason to expect a dip to occur except at nonsense
wrong-signature points. If a dip does occur at such a point, then the type of pole
mentioned above is either absent for some reason, or that its residue is small.

It is interesting to compare the characteristic features discussed above with
that of the optical model of scattering, which includes the Fraunhofer diffraction

of light. We start with the partial-wave expansion

@
f(s,t) }J (2Z+1)PL(Z)FL(S)
Ziﬁz(s)

1=0
y
e Z (24+1)P, () (e 1) . .2
£=0

At high energies assume that many partial waves contribute, so that for small angle

* C.E. Jones and V.L. Teplitz, Phys. Rev. 159, 1271 (1967).
*% §. Mandelstam and L.L. Wang, Phys. Rev. 160, 1490 (1967).
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scattering we can use the approximation

i
P,(cosb) = J (46) = J_(b(-t)?),
) 0 0
L >
6 -0

b = 4/k , (4.22)

where b is the classical impact parameter. We further assume that absorption

effects are important, so that SL(s) is pure imaginary, and that it is only a

function of b. Thus o
2
L
f(s,t) X 4gk /;bbJO(b(-t)z)X(b) (4.23)
0
where 216‘(5)
X(b) = e -1 (4.24)

is real by assumption. The model is then specified by the choice of X(b).
Suppose that the target is a black sphere with a sharp edge. Then all
partial waves are completely absorbed if the impact parameter is less than the

radius of the sphere, and completely unmodified otherwise. This corresponds to

choosing
-XO , b <R
X(b) =
0, bB>R . (4.25)
Then R
i
£(s,t) = i4ﬂk2X0‘/;bbJ0(L(-t)2)
0
L, 2 R %
= bk X _ 3 R0 . (4.26)
GO

2
This gives a diffraction peak of half width At ~ 1/R”, with diffraction minima
L L
occurring at the zeroes of Jl(R(-t)z). The first zero is at R(—t)2 = 3.83 which

corresponds to a scattering single

g =1.22 (%E) > (4.27)

2 formula well-known to amateur telescope makers.
As a second example, let us consider an absorptive sphere with a fuzzy edge,

represented by 2 9

x(b) = -xge > /R

0 (4.28)

This leads to , RZ %th
f(s,t) = ibnk Xo 5 e (4.29)

and the cross section exhibits a diffraction peak of width At ~ l/R2 but no
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diffraction minima.

From these examples we gather that the width of the diffraction peak is
related to the size of the target, while the depth of the diffraction minima is
related to the sharpness of the edge of the target. If we compare this with Pomeron
exchange, we see that the effective radius of a hadron as seen by another is

RY (4a'gni)® (4.30)

°0

which increases slowly with energy. We cannot say, however, that the presence of
nonsense wrong-signature dips implies that hadrons have sharp edges, because this
mechanism for dips is entirely different from that in the optical model. The
scattering amplitude in the optical model is pure imaginary for all t - a consequence
of the assumption that X(b) is real. 1In Pomeron exchange, however, the scattering
amplitude is pure imaginary only at t=0. Away from t=0 a real part comes in through
the signature factor. It is precisely the interference between the real and
imaginary parts that give rise to nonsense wrong-signature dips. If we must make a
classical picture of a hadron according to the Regge picture, we would have to
say that a hadron is a fuzzy black sphere surrounded by a real potential which
exerts a direct and an exchange force.

D. The p Trajectory

In the charge-exchange scattering x p *-non, the t-channel is non+ - ng, with
quantum numbers I=1, P=+(-)J, G=+1. The only known Regge trajectory with these
quantum number is the p. Hence one may hope to extract its properties unambiguously
from experiments, using the procedure described earlier. The result of such an
analysis is shown in the accompanying figure, and we note that q(t) is consistent
with a straight line which extrapolates through the p and g mesons.

In the experimentally cross section, a marked dip is observed at t = -0.58GevV ,
which is consistent with the first nonsense wrong-signature point, where ob=0.

The single pole model predicts that the spin-flip and the spin-nonflip ampli-
tudes have the same phase, which comes entirely from the signature factor. Hence
it predicts that the polarization is zero. Experimentally, however, the polarization
is not zero. This indicates that perhaps a second Regge pole with the same quantum
numbers is the p, or a cut is present.

E. The N and A Trajectories

The N and A trajectories may be studied in the backward scatterings

n+p - pn+ and n_p - pn_ (i.e., in the region of small u and large s), as illustrated

in the sketch below.
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At large s and fixed u, both reactions are controlled by trajectories with baryon
number B=+1. The u channel for n—p - pn_ is a pure I = 3/2 state and so contains
only the A trajectory. The u channel for n+p - pn+ is a mixture of I = 1/2 and

I = 3/2 and so contains both the N and the A trajectories. However, this cross
section is much larger than that for n_p - pn-, so we assume that the contribution
of the I = 3/2 state can be neglected, with the result that only N is exchanged.

Thus the relevant amplitudes may be written

-in (o (u) -%)
o (@ (N +1]

sinﬁ(ON(U)‘%)

£ty (325) = =By (1) (20 ()+D) ()

-ix (o, (u) -%)
Oﬁ(u) [e A -1]

singm (aA(u) -%)

8 = - 5
fn‘p (s,t) = nBA(u)(ZOZ(u)+1)(SO) (4.31)
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The salient feature of these formula is that, owing to the difference in signature
of N and A, fﬂ+Ps has a dip at the nonsense wrong-signature point oh(u)=-%, whereas
no dip is expected for fﬂ_pS at Qh(u)=~% because that is not a nonsense wrong-signa-
ture point. This expectation is dramatically verified by experiments. Thus we
see in both the cases of the p and the N trajectories that the poles of the residue
function, which theoretically may occur at nonsesne wrong-signature values, do not
seem to be present.

If we adopt the point of view of Regge poles (rather than Khuri poles), then
(4.31) merely represents the first term in the expansion of CF;(ZU) in powers of z,
For equal mass scattering this is gsufficient, for z, = @ as s >0, In the present

case, however, the last property does not hold, for

u(s,t)-(mz-uz)2 ~ u(s-t)—m4
[u- (k) 2 ) [u- (m-p) ] (u-m?)?

(4.32)

Z
u

where m and p are respectively the nucleon and pion mass. 1In the exact backward

~

. . 4
direction GS = 51 we have u ® 2m /s, hence

z - 140D,  (at 6 =p) . (4.33)
u S S
s —>

Therefore we must keep all terms in the expansion of Gga(zu>' This leads to a
difficulty,namely when we re-expand the series in powers of s, the coefficients of
all but the leading term diverge at Gs=ﬂ. Since this would violate analyticity,
the non-leading powers must, in fact, be absent. This would call for the existence
of an infinite family of Regge poles, spaced successively one unit beneath the
leading one, with residue functions so arranged to effect the cancellation of all
terms except the leading one. These new trajectories are called daughter trajec-
tories. 1In this case, the leading pole plus the infinite family of daughters just
precisely make up one Khuri pole. The interest of this theoretical problem lies

in the fact that it illustrates a constraint placed on the existence of Regge poles
by analyticity: You must take the whole family or none.

If we take the point of view of Khuri poles from the beginning, then this
particular problem does not arise. However, when the trajectory of the nucleon
Khuri pole passes through %, it calls for an infinite family of daughter Khuri poles
to make up precisely one Regge pole, in order to make a nucleon of spin %. Thus
it seems that a Regge pole or Khuri pole is generally accompanied by an infinite
family. A more detailed study of daughter trajectories is given by Freedman and

Wang.*

* D. Freedman and J.M. Wang. Phys. Rev. 153, 1596 (1967).
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V. REGGE CUTS

A, Regge Cut from Two-Particle Unitarity

Although we have assumed until now that there are only poles in the g plane,
elastic unitarity strongly suggests that there exist Regge cuts as well. To see this
let us consider equal mass spin zero scattering, and consider a term in the unitarity
relation corresponding to intermediate states containing two particles of the same

mass as the external particles:

1k %
Imf(s,t) = —% T /“dQ'f (s,t. )£ (s,t.) (5.1 -
8Tt2 ()% 2 2771 1 kf
The kinematics is illustrated in the sketch, with )
t -
t = -|k_-k 12 = -2k%(1-cosb) . k!
£l (T3
£= -[K-E % = 2% (1-cosO")
1 i ) 5
- 5 k
to= -|RR1? = -2k®(1-cosy) i
2 £
cosy = cosBcosf'+sinfsinb'cosp! (5.2)

A geometrical construction of t, t1 and t2 is given in the sketch below, from which

we see that

i 1 i
(-e? + (-£)* F (-1)* (5.3)
k. 1
. (-t)*
" e
i
(_tl)z . kf
k! L
(_tz)z
6
ey
7
q)l

The equality is actually never attainable, but as s = o at fixed t, we have 6 —- O,

and the equality is almost fulfilled when Zi’ kK., k' are coplanar:

f’
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% 5 % 1
('tl) + ()" = ()7 + O(S)
[for 6=0'4+y, s >, t fixed (i.e., 8 - 0] . (5.4)

We now let s become large and assume that fl(s,tl) and f2(s,t2) are each
dominated by a single Regge pole: al(tl)
fl(s’tl) = Al(tl)s

Oéz(tz)
fz(s,tz) = A2<t2)s . (5.5)

Hence
Tt

2
dt oy (t)+a, (t,)
__% /ﬁd@ A2 (t YA (tl)s R 2
2 2k lO

- / [dcp'Az (£,)4 (£ )s
8 0

Let the maximum of the exponent of s be denoted by

Imf(s,t)

I
|H
N
=
-
-;\-
= o

o, (£ )+, (£, ) -1
1717 7272 (5.6)

R

o (6) = max[ay (£ )4y (£,) =11, ((-£) (-t 2 (-5,  (5.7)

We can then transform the integral to the form

o, (t)
Imf(s,t) = fdw(z,t)s‘ (5.8)
- @
where 0 25t
D(L,E) = —1—5 f /:itp'Az*(tz)Al(tl)S(,&-al(tl)-az(t2)+1) LG9
-

The right hand side of (5.8) looks like the contribution of a continuous line of
Regge poles in the ¢ plane starting at oé(t). Hence there is a Regge cut from
,z=o¢(t) to 4 = - o,

Assume that oy (t) and a (t) are 1ncreas1ng functions of t, so that the
1

L L
maximum in (5.8) occurs at (-t ) + (-t ) = (- t) Putting x = (-tl)z, y = (-t2)2,
the maximazation condition reads

2 2
8{oy (-x")+a, (-y ) -1-A(x+y)} = 0 (5.10)
where A is a Lagrange multiplier. The solution is
2 2
occ(t) = oy (-x)+a, (-y ) -1 (5.11)
where x,y are such that
2 2
doy (=x7) da, (-y)
—&= = & - (5.12)
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For linear trajectories o = o +0&'t (i=1,2), the explicit solution is

0i
al'ocz'
a (t) = oy +o,-1) + m. t . (5.13)
In particular, for al(t) = o&(t) = ob+a't, we obtain
= - 1 1]
ac(t) (Zao 1) + o't . (5.14)

This result was first derived in a slightly different way by Amati, Fubini and
Stanghellini.®* The type of Regge cuts obtained here is usually referred to as an
AFS cut.

Little is known about the discontinuity D(f,t) in (5. ) except that it must

vanish at g = ac(t).w* If we assume

DL e (®)-H% (5.15)
Ao
c
where a > 0, then for large 4ns we have
oty R a. ()
c a -xins _ s
Imf(s,t) - c(t)s /pdx x"e = I(a+l)c(t) ol (5.16)
4ns - © 0 (4ns)

Thus a Regge cut contribution differs from that of a Regge pole by a logarithmic factor.
How high the energy should be in order that (5.16) be a good approximation depends
on a more detailed knowledge of D(4,t). Since 4ns is a slowly varying function,
(5.16) can hardly be distinguished from a Regge pole contribution over a limited
range of s.
The argument we have given for the AFS cut is of course not rigorous, for
the inelastic contributions to unitarity, which have been neglected, may alter our
conclusion. These contributions consist of additive terms to the right side of
(5.6), and they are positive at t=0. They may cancel the AFS cut, and replace it by
a higher-lying Regge singularity. All we can say is that this seems implausible.

B. Some Model Calculations

The argument given earlier for the AFS cut is based only on elastic unitarity,
and no appeal has been made to any detailed dynamical theory. We would like to give
a brief qualitative description of some calculations based on Feynman diagrams. Any
single Feynman diagram behaves asymptotically like sp(Lns)q, where p and q are
fixed integers, and so does not exhibit Regge behavior. However, if we compute the

leading asymptotic behavior of the n-rung ladder shown in the sketch and sum over n,

% D. Amati, S. Fubini and A. Stanghellini, Physics Letters 1, 29 (1962).
#% J. Bronzan and C.E. Jones, Phys. Rev. 160, 1494 (1967).
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we do obtain asymptotic behavior of the

n rungs
form sa(t). Therefore this sum of Feynman
t X I ] I {l diagrams contains a Regge pole. The
original Amati, Fubini and Stanghellini

E ' work was, in fact, based on a sum of
Feynman diagrams of the type shown in the sketch below; but they only made an

approximate calculation. The exact sum of

m rungs graphs can be written in the form of a
l’ ’ ] ] TTT dispersion integral, in which the absorpti e
N W LB parts are to be obtained by 'cutting'" the
n rungs graph (i.e., replacing propagators by
T LTTTT &-functions) in all possible ways and
7\ ) adding the contributions. The original AFS
S calculation retains only the two-particle

absorptive part by cutting the graphs along
AB. This is not the same as two-particle unitarity, but the mathematics is similar
and they obtained the cut whose branch point is given by (5. ).

Mandelstam* has shown, however, that if one takes into account all of the
multiparticle absorptive parts in the AFS calculation, the discontinuity of the AFS
cut D(£,s) is identically zero for s on the physical sheet. He considers another
class of Feynman diagrams, of the type shown in the sketch below, and shows that this
does give rise to a Regge cut with the same
branch point as the AFS cut. The essential
difference between the new class of diagram
and the old one is that the new class
consists of non-planar graphs, representing t >
an amplitude having a non-vanishing third

double spectral function Pru’ whereas Peu = 0 lll

for the AFS graphs. The lesson learned from /7 A \
these calculations seems to be that Regge s
cuts owe their existence to the third double spectral function. In this respect,
they has a common root with the poles of Regge residues at nonsense wrong-signature
points.

C. Effect of Regge Cuts in Scattering

If we accept the existence of the Pomeron and that of AFS cuts, then the
Pomeron would generate an infinite family of cuts, which would have an appreciable

effect on elastic scattering as s —> 0,
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that the Pomeron trajectory is linear:

ap(t) = l+a't . (5.17)

The AFS cut generated by the exchange of two Pomeron in the t-channel has branch
points at
1
ocz(t) = 1+ Eoz't . (5.18)
We can now take fl(s’tl) in (5.1) to be dominated by the PP cut and fz(s,tz) to be
dominated by the Pomeron. Then we find a new AFS cut which may be looked upon as

the effect of triple Pomeron exchange:

- a'Gahte 1, 5.19
a3(t) 1+ pOrEw 1+ o't - ( )

By repeating this argument, we find that the exchange of n Pomerons gives rise to

an AFS cut with branch point at
1 1
= t .
o (t) = 1+ o (5.20)
The trajectories of the family of cuts are shown in the sketch below.

How these cuts may affect high-energy olt)

scattering, of course, cannot be predicted

]
1
1

before we have some dynamical information. %o
Let us, however, make a reasonable guess.

Let us assume that the coupling of the PP

cut is much weaker than that of the Pomeron, ) o

P t

and that the couplings of the higher cuts
are pregressively weaker still. Then at
small t, the separation of P-P and P becomes
greater, and the P-P will take over. But by then the higher cuts also become well-
separated, so that their total effect may be more important than that from any single
one. Thus for a given large s, there is a small neighborhood of t=0 in which the
Pomeron dominates, and the cross section will have a diffraction peak which shrinks
logarithmically with increasing s. Outside of this neighborhood, the PP cut and
possible other higher cuts too, become important. The cross section then falls off
less rapidly with -t in this region, since the slope of the cut trajectores are
smaller. Furthermore, as s is increased, the separation between o%(t) and o5p(t)
becomes greater, and so the neighborhood in which the Pomeron dominates shrinks

with increasing s. Thus the cross section may have a qualitative behavior as

illustrated in the sketch below.
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do
dt /N

Pomeron dominant

cuts dominant

S -t
3
th
We can make a crude calculation by assuming that the contribution of the n
n
cut to the scattering amplitude has the form g s B , where g may have a weak

dependence on s. Then the scattering amplitude can be written as

© 1 ©
N n L n 't a'tins

f(s,t) = > g s =g }z exp[ngng+ ——;———] . (5.21)
n=0 n=0

As s > ®©, we convert the sum into an integral which we evaluate by the method of
steepest descent:
o)
f(s,t) ® s /;n exp|{ngng+
0

where n is the value of n which maximizes the exponent:

' - '
QLﬁéEE] X s exp[ngng+ QLééﬂi] (5.22)

- i
n = [a'tens/Lngl” . (5.23)
Hence

5
f(s,t) = se c(-t) ,

5
dg ~ 1 -2c(-t)
49 ~ 2, ,
dt n

L

c = 2[a'tns(-4ng) > . (5.24)

It is interesting that the t dependence is the fastest decrease allowed by the
Cerrulus-Martin bound.* If we assume that -(fns)(4ng) is a constant, then at a
fixed t, the cross section do/dt would fall with increasing s towards a limiting
envelop. Experiments on pp scattering indicated that this might be so, but a more

definite conclusion must await future experiments at higher energies.

* F. Cerrulus and A. Martin, Physics Letters 8, 80 (1964). Also see Khuri'’s lectures

in this Summer School.
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VI. TOWARDS DYNAMICS?
One of the motivations that we have mentioned for studying Regge poles is
the hope that it helps to formulate the bootstrap hypothesis. We now discuss
some important advances in this respect.

A. Finite-Energy Sum Rules.

By combining analyticity and Regge asymptotic behavior, one can deduce
an interesting sum rule that relates s-channel resonances to t-channel Regge
poles. For this purpose note that Regge asymptotic behavior holds along any
direction in the s-plane, if it holds at all. This is because(fa(z) oo 22
along any direction in the z-plane, hence the ratio of Regge to background

terms is of the same order in any direction.

It is convenient to introduce

_ s-u
v o= 5= (6.1)
o

where g is an arbitrary scale, and use v,t as independent variables. We de-
compose the scattering amplitude into terms symmetric and antisymmetric in v:
+ -
flv,t) = £ (v,t) + £ (v,t),
(6.2)
+ +
f(v,t) = £ f (-v,t).
+
Clearly f (v,t) admits only t-channel Regge poles of signature +1., In the com-
+

plex v plane, £ (v,t) has cuts along the real axis and no other singularity.
If there are bound state poles, we include them as part of the cuts. The branch
points of the cuts are functions of t, and for some t the right and left cuts
may overlap. In that event we carry out our development for a value t for which
they do not overlap and continue the results to the desired t. By Cauchy's

theorem, then,

1 n .+ _
= & Ve, - o, (6.3)
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v plane
t fixed

where n is an integer, and the closed
contour is shown in the accompanying
sketch. Note the circle is of Q
finite radius N. Since the contour

has reflection symmetry with re- _Vo(t)
spect to v = 0, (6.3) is a trivial
identity unless the integrand is an

odd function of v. This means that

(6.3) has content only for

+
0 = { even integer for f (v,t) (6.4)
odd integer for f~(v,t), )
and we shall only consider these values of n. Now separate the integral into an
integral around the cuts plus that along the circle. Using the antisymmetry

+
of v £ (v,t), we obtain

J

Yo

N

= EE )

+
dv v ImES(v,t) + z‘ﬁ‘ll f dv P £ (,e) = 0, (6.5)
[¢}

where C denotes a circle of radius N, excluding the two points on the real

axis, and

+ +
ImeEw,e) = zl Lip [£5(v + de,t) = £ (v-ie,0)] . (6.6)
1 e-0
Regge asymptotic behavior states that for large v

+ -L
£ (v,t) = QZ K (v,t) + 00D, 6.7)
L
sgn=+t

where Ka(v,t) is given earlier in (3.48a). The integral of vnKa over C is

elementary:

g dv vnKa(v,t) A j dv vn[(-v)a + va]

C
ﬂ

+ 2AJ' dv v o 4 ogqa AL f do ol(art1)O
C =77

I
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=+ 4iA sinm(tntl) N @antl) (6.8)

where A = -yl"(l—oz)/(rr)%,

Therefore (6.5) becomes

N n +n+1 _
j dv v ImEF(v,e) ZL [+ VOIS +om ™ = o
Vo o>

6;5% T'(e) o#nt+l
sgn=+1 (6.9)

Neglecting O(N-L), and writing the above explicitly for f+ and £ , we have

for sufficiently large N:

N o+n+l
j av " Imf+(v,t)’§ ;Y N ,{(n odd)
Vo @,sgn=+1 (m)? (a+nt+l) T(@)
(6.10)
N o - Ny+m+l
I dv v Imf (v,t) = A ;Y -(m even)
Vo o,sgn=-1 (1) (a+mtl) T (x)

These are the finite-energy sum rules (FESR) first derived by Dolen, Horn and
Schmid7'< by a slightly different method. They have given some actual numerical
examples, which we shall not go into.

In the s-channel physical region, vo(t) often becomes negative. The ana-
lytic continuation of (6.10) means that the original contour of integration
actually looks like that shown in the sketch below.

We can, in fact, replace Vo by 0, if we understand

+
Imf to be the discontinuity taken between points

il

a and b shown in the sketch. v=0 a

In these FESR, an integral of the amplitude extending over the s-channel
low-energy region, which contains s-channel resonances, is approximately
equated with the sum of t-channel Regge poles, which dominate the s-channel
high-energy scattering. It therefore connects low-energy and high-energy
phenomena, and connects exchanged particles (which produces a ''potential'')
with resonances (which are ”dué” to the potential). Thus by combining ana-
lyticity with the Regge hypothesis, we begin to see some manifestations of the

bootstrap.

“R. Dolen, D. Horn, and C. Schmid, Phys. Rev. 166, 1768 (1968).
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B. Duality.

To explore the dynamical implications of the FESR, we have to make
simplications in order to form an approximate picture of their real content.
Suppose that in (6.10) the integrals on the left side can be separated in some
manner into contributions from narrow resonances and a background. Harari*
conjectures that the background approximates the Pomeron contribution on the
right side, while the narrow resonances add up approximately to the rest of
the Regge poles. This division is of course ambiguous and cannot be made more
precise until a dynamical theory emerges. We accept this conjecture, however,
as a first approximation, That is, we approximate fi on the left side by a sum
of narrow resonances, and leave out the Pomeron on the right side, if it is
there. Then in the v plane for fi(v,t), the right and left cuts are replaced
by a series of poles that were originally on unphysical Riemann sheets, as in-

dicated in the sketch below.

In this approximation the content

v plane

of the FESR may be stated as t Fixed Real poles

approximating

follows: At a given t the the cut

sum of residues (generally ‘?/////
Y AV

t-dependent) of all the

x
K
K

poles within a large circle

of radius N is proportional
a+1

to N where o = a(t) is the

leading non-Pomeron Regge trajectory

in the t-channel. The criterion for large N is that the leading trajectory
dominates over the next one. Thus, although any one of the poles produces for
large N a contribution = N_l, the sum total of them gives Na+l. We say that the
direct-channel resonances add up to a Regge pole in the crossed channel (which
generates crossed-channel resonances). Conversely, a crossed-channel Regge

pole already contains the contributions from all direct-channel resonances

below a large energy N. This phenomenon is referred to as duality.

As defined above, duality is an immediate consequence of the FESR plus
the narrow-resonance approximation. Of these, the FESR are on relative firm
ground, both theoretically and experimentally. Thus a test of duality in this
form is mainly a test of the narrow-resonance approximation. An interesting

experimental test has been made by schmid.” He calculated numerically the

*

cH. Harari, Phys. Rev., Lett. 20, 1395 (1968). See also Harari's lectures in
¥ this summer school.

C. Schmid, Phys. Rev. Lett. 20, 684 (1968).
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partial wave projection of the amplitude for mN charge exchange scattering
from p-trajectory exchange, which we write in a simplified way ignoring spin:

+1
P (s) =3 | 4z By(2) My ()T (L-a(e) (7 M1y, # By 611

where the parameters of the p trajectory are taken from fits to actual scatter-
ing data. He found that Fz(s) when plotted in the Argand diagram moves in a
loop as a function of s, as shown in the sketch below.

Such loops are also made by a Breit-Wigner
InF  (s)
resonance of spin £. For a narrow resonance 4
the top of the loop corresponding to the mass
of the resonance. By interpreting the loops increasing s
as resonances, Schmid found a semi-

quantitative correspondence between N per(s)

his loops and the known direct channel

resonances. Thus, although the Regge-exchange amplitude has no poles in s,
its partial-mass projections mimics resonances. This is just what one would
expect if one believes in duality., The mathematical reason why (6.12) gives
rise to the loops is essentially the linearity of the p trajectory; namely,
since a(t) = ao-Za'(l-z)kz, the phase of the signature factor, which is solely
responsible for the phase of Fﬂ(s), increases with s,

One might wonder whether the concept of duality is fundamental and can be
stated as a general principle independent of the narrow-resonance approximation.
We do not yet know the answer to this question. More likely, duality occupies
a place similar to that of complementarity. Before quantum mechanics, comple-
mentarity cannot be precisely formulated, after quantum mechanics its precise
formulation becomes uninteresting; but it served as a useful working principle
that guided the way to quantum mechanics.

C. Exchange Degeneracy

The FESR (6.10) treats the even and odd parts of f(v,t) separately. To
obtain a sum rule for £ itself, multiply the first equation in (6.10) by Nm,
+
the second by Nn, add the two equations and re-express £ 1in terms of f by

(6.2). We find in this manner

N
%f dv Im[ (VPN + VN E,E) + (NN E(v,£) ]

%
(o]

o+ttt L

D €

L (1) % (atntmtl) ()

odd integer
even integeé) ’ (6.12)
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where on the right side we sum over all trajectories o > -L, of both signatures.

In the narrow-resonance approximation, we replace f(v,t) by a sum of zero-
width resonance poles, and leave out the Pomeron contribution on the right side.
Furthermore, we neglect the second term, which contains resonances in the u-
channel, arguing that the factors vnNm - van averages to something small,

(i.e. of the same order as terms already neglected in the narrow-resonance
approximation). Consider now a two-body system that has no s-channel resonances.
Examples are pp, ﬂ+ﬂ+, pK+a In our approximation the left side of (6.12) is
zero. Therefore, the sum of Regge poles on the right side vanishes for all N.
This means that if there is a Regge pole of a given signature, there must exist
one of opposite signature, with the same trajectory function o(t), and equal

and opposite residue function -y(t). It cannot have the same signature, for
that would cancel the original Regge pole identically. This degeneracy between
two Regge poles of opposite signature is called exchange degeneracy. It has

the same physical meaning as in potential scattering.

The requirement that exchange-degenerate trajectories have equal and
opposite residue functions depends on one sign convention (3.48a), which has
the signature factor in the form e-iﬂd + 1., If one redefines y(t) to make the
signature factor 1 % e-iﬂa, then we would require equal residue functions. The
exchange-degenerate trajectories must be such that when their contribution is
odded together, the term e-iﬁa is cancelled.

For ﬂ+ﬂ+ scattering we know that the p trajectory is exchanged. There-
fore a degenerate trajectory of opposite signature (i.e. positive) is called
for. In the ﬁ+ﬁ_ system in the t-channel, even signature means that the
amplitude is symmetric under ﬂ+ﬂ_ interchange, hence I = 0 or I = 2. It can-
not have I = 2, for in that case it would also couple to n+ﬁ+, contradicting
the fact that there are no resonances in ﬂ+ﬂ+. Hence the exchange-degenerate
partner of p has I = 0, and the only known trajectory with I =0, G = +1,

P = (-)J is the f trajectory. Experimentally, the f meson lies remarkably
close to the p trajectory, taken as the straight line passing through the p
and g mesons.

In general, however, we should not be surprised if exchange degeneracy is
only approximately realized in nature for its theoretical basis depends not

only on the narrow-resonance approximation, but also on the neglect of the

effects of u-channel resonances.
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D. Bootstrap of the p Trajectory.

In a very interesting calculation, Ademollo et al.* try to bootstrap the
p trajectory using the FESR in the narrow-resonance approximation. They were
able to do this only by introducing further assumptions. Let us see what they
do in some detail, for the true significance of such schemes is not yet clear

at the present time. They consider the reaction

o, B, v are isospin tensor indices

A is the ®w helicity

T =T w, for which the s,t,u channels are identical and have I =1, G = +1,
P = +(-1)J. Hence in each channel only the p trajectory can contribute.
This is a particularly happy choice because the Pomeron is not present, and
we are spared the task of ejecting it forcefully.

Let the helicity amplitude be f)s\’aﬁy(s,t)° It must be antisymmetric in
o and B because I = 1 in the s channel. Similarly, it is antisymmetric in

o and v and in B and Y. Hence
s - s
f)\’asy(s,t) eOlBYfX(S’t)' (6.13)

By Bose statistics, fi(s,t) is then antisymmetric in Py and Pys Py and Py-

O\)

It is linear in the polarization vector € of the w. Hence

s - wvao (AT
fX,@BY eaByepchplPZPBS A(s,t,u), (6.14)

where the invariant amplitude is totally symmetric in s,t, and u, with
tu =T = 3m> + o (6.15)
s L b .

One can evaluate the coefficient of A(s,t,u) explicitly and show

S -
fO,aBY =0

s _ .S
Friasy ~ Fo1,0y

i
- 1% eaBy(stu-nﬁ(n&-mﬁ)z)z A(s,t,u). (6.16)
, a(t) , . .
Since f1 UBY(S’t) ~ 8 , the asymptotic behavior for A is
2

*M. Ademollo, H. R. Rubenstein, G. Veneziano, and M. A. Virasoro,
Phys. Rev. 176, 1904 (1968).
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A(s,t,u) ~ sa(t)-l° (6.17)
We again introduce the variable v = (s-u)/ZSo and write A(v,t) for the

invariant amplitude. We consider the FESR from (6.10) with n=1:

1 1

YNOH' ='\-(Q/Ny+
(n)%(a+l)F(a) T'(a+2)

N
f dv v ITm A(v,t) = (6.18)

o

where v = Y/(ﬂ)%, and o = o(t) is the p trajectory.

Since we have omitted from the right hand side of (6.18) any lower-lying
trajectories that may be present, it is valid only for sufficiently
large N. Now Ademollo et al. make the additional assumption that for at least
a limited range of t, (6.18) is valid even for N so small that in the interval
0 < v < N,A(v,t) has only one resonance, the p resonance. In terms of proper-
ties in the complex v plane, the assumption is that for at least a limit range

of t, the contour integral of vA(v,t) over the circle shown in the sketch is

well approximated by that of the leading Regge v plane
pole contribution. There is no a priori t fixed
justification for this assumption. It was N

introduced partly as an inspired guess, ™ " ; i

partly as a calculational convenience.
But it turns out to be the condition that

bootstraps the p with brilliant success.

Since this requires the FESR in the narrow-
resonance approximation to be satisfied in a non-asymptotic region of N, it may
be called a condition of strong duality. We adopt this word as a shorthand for
the assumption described and refrain from philosophizing. The input assumptions

are that the p trajectory is linear and passes through 1 at t=q3:x 005(GeV/c)2:
a(t) =a_+a't, oz(mpz) -1 (6.19)

This leaves only one unknown constant among ao and o'. Now «o(t) makes t-channel

resonances at @ = 1,3,..., corresponding to t = nbz, mgz,... By crossing sym-
2
metry, there are s-channel resonances at s = nb s mg ,eo0, With corresponding

v values at

vp(t) [(s-u)/250]5=nb2 = (t—to)/ZS0

(6.20)

vg(t) vp(t) + 2/a/'so
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where
= 2 2 _ 2 _ 2
t0 mw + 3mTT Zmb 0.53(GeV/c)”. (6.21)

Assuming strong duality, we cut off the integral in (6.18) at same point between

the p and the g meson, i.e.,

vp(t) <N< vg(t)c (6.22)

To do the integral, we have to know the residue of the p pole at v = vp(t).
This can be obtained from the input p trajectory through crossing symmetry, as

follows. The p trajectory exchanged in the t-channel contributes to A(v,t) the
Khuri term

K (v,0) = § T(l-g) (1-e ¥y, 271 (6.23)

which has a pole at o = 1:

2y _
R s & - ey S (6-24)

Hence the residue is -ZQ/a', By crossing symmetry, the p pole in the s-channel

must have the same residue. Hence

2y 1 _ 2y 1
AV S50 - T T2 T T gt o (6.23)
9 s-m 0 p
Y
which gives
InA(y,t) = 2§ (umy ) (6.26)
o so P

in the range (6.22), in the narrow-resonance approximation. Substituting

(6.26) into the FESR (6.18), we obtain

+
a's a N L

=29
vp(t) NI (6.27)
Note that the residue function y(t) drops out.
We first note that vp(to) = 0. Hence
a(to) = 0, (6.28)
and this completely determines the p trajectory, leading to
-to ZHbz - 3mﬂ2 -mw2
o = 5 = > 5 5 0.5
m -t 3m - 3m - m
p o P w
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ot = - . — 1(Gev/c)? (6.29)

which are in remarkably good agreement with experiments. The condition (6.28)
can be re-expressed in an amusing form by noting that ao + a'to= a(s)ta(t)+ta(u)-2.

Hence, (6.28) is equivalent to the following condition for the p trajectory:
a(s) + a(t) + au) = 2, (6.30)

which is of course very well satisfied experimentally.

With o(t) determined, it remains to be seen whether (6.27) can be satisfied
for a range of t. Using (6.28), we can write vp(t) = a(t)/Za'so, and sub-
stituting into (6.27) yields the condition

' 2 o (t)+1
(o so) N

I'(x(t)+2)

= 1. (6.31)

It is now noted that the following is a miraculously good approximation:

(1 + )%
S — ® 1 (l<a< ) (6.32)

Therefore a solution of (6.31) for -1 < w(t) <1 is

so = 1/o! (6.33)

N=1+%x(t) .
Thus the arbitrary scale Sy is now fixed. The cutoff N happens to fall exactly
halfway between the p and the g meson, for using the «o(t) and s, now determined,

we find that

%[vp(t) + vg(t)] =1 + % (t). (6.34)

Ademollo et al. went on to investigate how they might extend the range
of t in which the FESR is satisfied., It turns out that this involves pushing
the cutoff N higher to include more resonances on the right-hand side, and at
the same time including lower-lying trajectories on the right-hand side.

The most interesting aspect of this calculation is the fact that strong
duality, which seems to be an ad hoc assumption, leads miraculously to some
good results, We shall return to it in the Veneziano model, which is a
crystallization of all the ideas we have discussed.

E. The Veneziano Model.

As we have seen, the FESR in the narrow-resonance approximation can

be satisfied unexpectedly for a limited range of t by using a low cutoff as
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the left-hand side and only one Regge pole as the right-hand side. To extend
the range of t, the cutoff has to be increased, and more Regge poles have to
be included. The Veneziano model is a simple formula that incorporates all
these features. In short, it is a simple solution to the FESR in the narrow-
resonance approximation,

Recalling what FESR means in the narrow-resonance approximation, we see
that for the process 7 — 1w a solution consists of finding an amplutide com-

pletely symmetric in s,t,u, having no cuts but only simple poles in s, and
a(t)-1

behaving like s as s = », Veneziano suggests the form
A(s,t,u) = +y[V(s,t) + V(s,u) + v(t,u)] (6.35)
where
F(l-aS)T(l—at)
V(s,t) = F(z"as_dt) = B(l—as,l—at). (6.36)

where o = o(s), atE a(t), and where B(z,w) is the Beta function. Since T'(z)
is a meromorphic function with simple poles at z = 0,1, 2..., V(s,t) has no
cuts but has poles at o(s) = 1,2,3,.... Because of the gamma functions in
the denominator, there are no simultaneous poles in s and t.

To compute the asymptotic behavior, we need the formula

—— x - -%
T'(atbz) IZ\”m (1) %e bz(bz)a+bZ 2, b> O,largz\é m-€. (6.37)

We first rewrite (6.36) in the form

T'(oe + o -1) sin m o
v(s,t) = [(1l-o,) —= t S

- 6.38)
I'(o in o +o -1 (

@)  sinn (@, ¥, -

The limit s — « does not exist along the real axis because V(s,t) has an in-
finite number of poles there. To avoid this difficulty, which is inherent in
the narrow-resonance approximation, we take the limit along a ray in the com-

plex s planes at an arbitrarily small angle ¢ with respect to the real axis.

s plane
€
IV AR 4
AN AN
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Then

sin 1 a(s) = %? [elﬂas - e_lﬂaS]
(6.39)
L L i [+ 0(e™2™5)7
73
and

sin mla, + o -1) = ~x= o @ T Dy g 729 (6.40)

so that
V(s,t) = T(l-ap) e M@ "Dy -1 (6.41)

Note that to get this result, the linearity of o is crucial, at least

asymptotically. For V(t,u) we can straightforwardly apply (6.37) to obtain

V(t,u) - T(l-a(t)) (a's)*(E-1, (6.42)
Finally,
_ 1 T (1-o(u)) m
Vis,u) = T-2o_-a"@-t) T@(s)) sinm als)
(6.43)
- O(e'TTSS)
Hence
As,t,0) =3 -y T(1-a(t)) M) 1y ()L (6 u

which is the proper Regge behavior. If we had used the complete asymptotic
expansion for I'(z), we would have obtained in place of (6.44)
_ - imog v o -1 3 -n
A(s,t,u) gro Y T(l-a.) (e -1) (@'s) t "1+ Hgl cn(t)s 1.
Thus there are an infinite number of parallel 'daughter' trajectories
an(t) = a(t)-n (n = 1,2,...).
From the asymptotic behavior of the amplitude we would expect that at each
mass there would be particles of all odd spins up to the leading trajectory.
This is in fact the case. From (6.36) and the integral representation of the

Beta function, we have
04

T

1 -
V(s,t) = fo dx x S (1-x) (6.45)

Using the binomial theorem, we obtain
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@ 1
n, -o =0, +n
v(s,t) = 2, DD ]'O dx x %
(6.47)
_ = RS QP 1
nz—‘-O(l) (n)n+1-ozs
where
Sy %y = (o) P T(1-%)
SRV G- -1 n. F(l—at—n)
= Lo (o +1)(@, 42)...(a, +n-1)
nl Y Y t ser & TR
- LR @) (6.48)
ol tal\%e :
Rn(x) is called a Pochammer polynomial of degree n. Hence
R (&)
o= 1 n- t
V(S,t) - 1’120 n' n+ 1 - as . (6.49)
As ¥, " n + 1, therefore,
Rn((lt) + Rn(Otu)
A(s,t,u) — v . (6.50)

n+1l-q
s

Since o, and au are linear in t, the residue is a polynomial in t symmetric
under t ~u, To find the spin of the resonances at as = nt+l, we have to ex-

press the residue in Legendre polynomials of z ¢

2 = s(t-u) . (6.51)
® Ls(stm ®) (= (m om )% (5= (m tm )?)1

We note that this is linear in t, and odd under t<—>u, Hence the residue is
a polynomial in zg containing only even powers. Since the w meson has spin
one, this implies* that at a mass m satisfying a(mz) = nt+l, there are reson=-
ances of all odd spins up to ntl., Thus the Veneziano model requires that the

mass spectrum forms a regular lattice on the Chew-Frantschi plot, as shown

below.

*
See Chapter 7 for partial-wave expansions.
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® is a resonance in
mm—

QO1s a resonance re-
moved by signature.

ot
O m

It is clear that the Veneziano model satisfies the FESR because it has
analyticity and Regge asymptotic behavior. With narrow resonance built in,
it represents an elegant example of duality. However, while the FESR are
satisfied, the trajectories are not completely determined. If one of the meson
masses (say that of the p meson) is supposed to be given, we still have an
arbitrary slope «o'. This again demonstrates, as in the previous calculation of
Ademollo et al. that the FESR alone is not enough to bootstrap. In the pre-
vious case, the bootstrap comes from the ad hoc assumption of strong duality,
which turns out to be equivalent to the requirement that not only even-spin
mesons like the fo be decoupled, but also all mesons (of whatever spin) at the
same mass. For example, referring to the previous sketch, we would require

that p' be decoupled also. From (6.50), we see that this would require
Rn(at) + RnGyu) = 0 (for n odd) . (6.52)

By (6.48), this is equivalent to

+ cos - = - “se - N
dt(dt 1) (at+n 1) au(au+1) (au+n 1), (6.53)
(for n odd)
and is solved by setting o = -(ozu+n-1)° Noting that ntl = as, we obtain the

condition
o + oL + o, = 2, (6.54)

which is the same as the consequence of strong duality in the earlier calcula-

tion of Ademollo et al., and which agrees well with experiments. In this model,
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however, there seems to be no compelling reason to require it.* For the present,
therefore, strong duality remains a tantalizing idea not yet fully understood.

F. Veneziano Model for m-m Scattering.

LovelaceT has made an interesting application of the Veneziano model to

-1 scattering. To take care of isospin complications, we first show that all

+
3 isospin amplitudes can be expressed in terms of a single

. . . . +_-
symmetric function of s and t. Consider first m ™ scatter-

ing as illustrated in the sketch, and let

+ f§+h_(s,t) = p(s,t) (6.55)

+ - .
Since the t-channel also corresponds to mm W scattering,

9(s,t) = op(t,s) . (6.56)
+ + )
Since the u-channel corresponds to 11 11 scattering,

f;+ﬂ+(s,t) = o(u,t) . (6.57)

+ - L . .
Now decompose the m m amplitude into amplitudes fi(s,t) of definite isospin

I in the s-channel:

9s,t) = § £2(s,0) + § £5(s,6) + 3 £50s,8) (6.58)
where f; and fz are even, and fi is odd, under t<su:
£2G,0) = (-1 £2(s ). (6.59)
Thus
9(s,u) = £ £5(s,8) - 5 £5(s,8) + 5 £3(s,0). (6.60)

Subtracting (6.60) from (6.58), we obtain fi(s,t) = (s,t) - p(t,u). We also
know that n+ﬁ+ is pure I = 2, hence by (6.57) f;(s,t) = @(u,t). Substituting
these results into (6.58), we find fz(s,t)° The final results are:
3 1
£2(s,t) = 5[0(s,t) + o(s,u)] - 5 p(t,u)
f?_(s>t) = C.P(S,t) = QP(S,U.) s (6.61)

£5(s,t) = o(u,t)

*
In the original paper of Veneziano, (6.54) was invoked to obtain signatured

trajectories; but we have seen that signature emerges automatically without

this condition.

1-C., Lovelace, Phys. Letters, 28B, 264 (1968).
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Therefore specifying ¢(s,t) completely specifies m-m scattering.
Lovelace constructed the Veneziano model for m-m scattering by taking

F(l-as)F(l-at)

0(s,t) = -y =g (6.62)
S

- Olt)

where T'(1 - a, - at) rather than I'(2 - a - at) appears in the denominator be-

a(t)

cause this amplitude should behave like s as s — «®, With this choice there
are no resonances in the I = 2 amplitude since ¢(u,t) has no poles in s. There
are resonances of both even and odd spin on as in the I = 0 amplitude, but only
resonances of odd spin occur in the I = 1 amplitude. The trajectory as is
identified as the exchange degenerate p-f° trajectory. This exchange degener-
acy corresponds to the absence of I = 2 resonances.

One of the most interesting aspects of this model is the prediction of a
zero in the amplitude coinciding with that re-
quired by the Adler self-consisting condition.
In general, in the reaction mA - BC, where
A B C are hadrons, the hypothesis of PCAC

(partial conservation of axial vector current),

plus some assumption about the absence of poles,
leads to the conclusion that the scattering amplitude must vanish as the four-
momentum q of the pion approaches zero. This result is known as the Adler self-

consisting condition, In terms of s,t,u, the zero is located at

2 2
s = (pA) =m,

£= (o)’ = m” (6.63)

2
u = (py-pp) = mg
which of course does not satisfy the comnstraint s+t+u = Zmz, because the pion

is taken off the mass shell. For m-m scattering (6.63) becomes

2
s=t=u = o (6.64)
Let us rewrite(6.62) in the form
o(s,t) = —y(l—as- at) B(l-as, l—at) (6.65)

At s=t=u = mﬂz, the Beta function cannot vanish, but the factor l-as-at vanishes
if
2 1
a(mﬂ )y = %, (6.66)

Combining this with d(nbz) =1, we find
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o 0.483

(o]

(6.67)
a' = 0.83

which is in excellent agreement with experiments.
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VII. SPIN
We now consider the full complications of spin. In particular we emphasize
those features that owe their existence to spin, such as kinematic singularities,
constraints, and sense-nonsense.

A, Kinematics

For a general two-body process atb < c+d with arbitrary masses and spins,

we specify single-particle states by their momenta and helicities. As usual let

5 d c
- A«
s = (p, + p)
= - 2 t u
t = (p, - py)
u = (p -p)2 (7.1)
a d b t a
s
which satisfy the relation
2 2 2 2 _
s+t +u-= m, + m + m, + my = z . (7.2)

The cosines of the center-of-mass scattering angles in the s and t channels
are given by

s(2t+s-T) + (maz_me)(mCZ_de)

= B = ,
z = cosb Afab‘dzd
t(2st+t-2) + (mdz-mbz)(m 2-m 2)
z, = cosOt = = 2 , (7.3)
TbdTeca
where /
”zéb =’J[s-(ma-mb)2] I:S_(ma-i_mb)z:' - V4Spab2 ’
Jen = «/[t-(mc-ma)zj [t-(n_tm )] = Jucp, 2 , (7.4)

where the square roots are positive for positive values of their arguments. The

physical region corresponds to

o(s,t) = 0, (7.5)

where o(s,t) is the Kibble function:
_ 2 2 2 2 2 2 2 2
o(s,t) = stu s(mb my )(ma -m ) - t(ma -y )(mC -my )

2 2 2 2 2 2 2 2
- (ma my -m my )(ma +md -m " -my ) . (7.6)



B. Helicity Amplijitudes

For the purpose of Regge analysis, it is particularly convenient to use the
helicity amplitudes of Jacob and Wick,* because they have simple partial-wave
expansions. The helicity amplitude for s-channel scattering will be denoted by
fcd,abs(s’t)’ where the subscripts denote both the particles and their helici-
ties. For its definition and properties we refer to the original paper of
Jacob and Wick. Our normalization is such that the differential cross section

is given by

p
do 1 cd s 2
fcd;ab (s,t)| . 7.7

4nzs Pab

Our amplitude is related to that of Jacob and Wick by

1 Peq
JW { c S
£ .. (s,t) = ——— £ _ (s,t) . (7.8)
cd;ab d4ﬂzs P, cd;ab
The partial-wave expansion reads
£ S(s,t) = T (24 B, (s) 4 (z.) (7.9)
cd,ab > cd;ab A Ts '
J=A W
m
A =a-b, g = c-d, Am = max(A,u)
where di (zs) are the usual rotation coefficients. The partial-wave amplitude
W
ng ab(s) is a matrix element taken between helicity states of definite total
>

angular momentum J and z component M:

J

ch;ab(s) -

<J,Mjc,d|T(s)|J,M;a,b> . (7.10)

These helicity states transform under spatial reflection P according to

J-3,-3,
P|J,M;a b> = nanb(-) J,M;-a,-b> (7.11)

where Ja,Jb are the spins of the particles a,b, and na’ﬂb their intrinsic parities.

* M. Jacob and G.C. Wick, Annals of Physics 7, 404 (1959).
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Thus parity conservation implies

J+J -3 -J

J _ Ped ™™ g
F_c’_d;_a,_b(S) = MM 13¢5 Fog;ap(® - (7.12)

Time reversal invariance implies
r! J : (7.13)

cd;ab(s) - Fab;cd(s)

Equations (7.12) and (7.13) serve to reduce the number of independent helicity

amplitudes.
*

The crossing relation between the s and t channel helicity amplitudes is

J J J J

s _ a b c d t
fcd,ab(s:t) = CIAZI:DIbI dAla(Xa) dblb(x-b) dclc(xc) led(Xd) fCIAI’DIbI(S’t),(7'l4)
where 2 2 2 2 2 2 2 2 2
cosx = - (s+ma -m )(t+ma m, ) - Zma (mC -m, +mb ~my )
a égabggc ’

(Smbz_maz)(tmbz_mdz) i 2mbz(mcz_mazmbz_mdz)
= Sabha

]
-

2 (7.15)

2 2 2 2 2 2 2 2
cosx (s+mc -my )(t+mC -m, ) - ch (mC -m, +mb -my )
¢ é;cdggc

I
-

2 2 2 2 2 2 2 2 2
(s+mf -m, )(t+md -m ) - Zmd (mC -m +mb -my )
5 calba ’
and Zma/@Zs,t)

sinX
a ‘5ab:7ac

2mb/@is,t5
S, Eab7 bd

Zmd/mis,ti
c-gcdgalc

o /)
Scd’bd

cosXd

[}

(7.16)

sinX =
c

sinXd

% L. Trueman and G.C, Wick, Annals of Physics 26, 322 (1964).
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We may write symbolically
s t
fH (s,t) = il/%LHH,(s,t) fH.(s,t) R (7.17)

where #, is a real orthogonal matrix:¢¢$T4%L= 1. It should be noted that (7.14)
is not valid for an amplitude that differs from ours by a normalization factor
that depends on s and t. In particular it is not valid for wa of (7.8).

The main advantages of helicity amplitudes are the following. (a) The number
of independent amplitudes can be easily enumerated and written down for an
arbitrary reaction. (b) By (7.1l) it is easy to form helicity states of definite
parity, and Regge trajectories couple to them independently. (c¢) It is straight-
forward to carry out the Sommerfeld-Watson transform on (7.9) to isolate Regge
pole contributions.

Helicity amplitudes, however, have kinematic singularities and satisfy con-
straint equations at certain values of s and t. These are intrinsic in their
definition and give rise to complicated structures in Regge residues that were
not present in the spinless case,

Instead of helicity amplitudes one can describe the scattering process in
terms of invariant amplitudes, which by definition is a set of independent ampli-
tudes completely free of kinematic singularities and constraints. We shall not
discuss them in general but merely illustrate them in specific examples. Although
it can be proven that invariant amplitudes exist for an arbitrary reaction, there
is yet no known method for their explicit construction in the general case.

From our point of view the main disadvantage of invariant amplitudes is that the
same Regge trajectory generally couples to more than one amplitude, so that Regge
residues in different amplitudes cannot be independent,

C. Kinematic Singularities and Constraints

According to Jacob and Wick, a general helicity state is defined as follows.
First define the helicity state of a single particle at rest. Then define that
for a moving particle by applying the boost operator of a Lorentz transformation.
The helicity state for two particles is the product of two of the above, rotated
in a standard way by the application of a total rotation operator. The helicity
amplitudes are defined as T-matrix elements with respect to two-particle helicity
states, and singularities and constraints generally arise from the fact that the
boost and rotation operators become singular at certain kinematic points. These
have nothing to do with the interactions of particles, and we call them kine-

matic singularities and constraints. An analysis from this point of view is
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given by Trueman,* who shows from general principles that kinematic singularities
in s can occur only at one of the following places:

(a) At é;;b =0 or é;cd = 0, namely s = (maignb)2 or s = (mcimd)z. The
values corresponding to the + sign are thresholds, the others are
called pseudothresholds.

(b) Boundary of the physical region o@(s,t) = O,

(c) The point s = 0.

Kinematic constraints can occur only at pseudothresholds or at ¢(s,t) = 0. Most
important for our purpose, the kinematic singularities at (a) or (b) above can
be factored out of the helicity amplitudes. Those at (c¢) can be factored out
except for fermion-boson scattering in the general mass case, where there is a
non-factorizable singularity of the type s°. For this case, however, one can
circumvent it by using W = s% as independent variable.

Another approach, more elementary but less satisfactory from the point of
view of general principles, is due to Wang.** It makes use only of the crossing
relation for helicity amplitudes and is a relatively straightforward constructive
recipe in specific cases. We shall briefly describe this approach here.

Going back to the partial wave expansion

s (oo
£ 7(s,t) = %
H J=

(23+1) FHJ(s) df\u(zs) , (7.18)
A
m

we see that the t dependence is contained in z in the rotation coefficient

J
dku(zs)' Now

J _ J

d,,(2) =D, (2) & (2) , (7.19)
where

DM(Z) = (142)1/2“‘*“‘ (1-z)%l>"“I s (7.20)

and eiu(z) is a polynomial in z. (We use the notation of GGLMZ?K“) Since the
factor Dku(z) is independent of J, it can be factored out of the sum in (7.18):

£, (s,6) =Dy (z) F°(s,0) (7.21)

* T.L., Trueman, Phys. Rev. 173, 1684 (1968). Errata, Phys. Rev., 181, 2154 (1969).
%% L.,L., Wang, Phys. Rev. 142, 1187 (1965).
*%% M, Gell-Mann, M. Goldberger, F.,E. Low, E. Marx, and F. Zachariasen, Phys.

Rev. 133, BL45 (1964).
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where

[ee]
£5%s,t) = ¥ (2341) Fi(s) & (z) . (7.22)
- H A s
J=\ "
m
The only t-singularities of Eﬁs(s,t) come from the possible divergences of the
whole series. We presume that these are dynamical and not kinematic singulari-

ties. Similarly, if we put
t _ -t
£,7(s,t) = D)\M(zs) £, (s0) (7.23)

then fﬁt(s,t) has no s-kinematic singularities.
The new amplitudes t° and Et, however, are related through a crossing rela-

tl‘orl Of the fOIIIl
Il 3 . HHI 3 Hl S, 3 ( .

where the matrix #Z can be deduced from the matrix #2 in (7.17). Since Et(s,t)
has no s-kinematic singularities by construction, all of the s-kinematic singu-
larities of ?S(s,t) must come from the known matrix #Z (s,t). Furthermore,

#L (s,t) must cancel all of the t-kinematic singularities of ?t(s,t), because f°
can have no such singularities. Thus by studying the matrix #Z all the kinematic
singularities in s and t can be recognized. 1In general this is an extremely
tedious procedure, but one arrives at the same conclusion as mentioned before.

In particular, we can factor out the s-kinematic singularities from each com-

ponent of Eﬁsz
-5 _ ~ g
£5(s,0) =K (o) £,5(s,0) (7.25)

where fHS(s,t) is now free of all kinematic singularities, s or t (except for a
L :
s? branch point for fermion-boson scattering in the general mass case).

Similarly we factor out all t-kinematic singularities from Tﬁt:
£ 5(s,t) = / (&) (s, (7.26)
H ™ H H :

where %Ht(s,t) is free of all kinematic singularities, s or t.
Substituting (7.25) and (7.26) into (7.24), we obtain a crossing relation

of the form

£°(s,0) = i' J?HH.(s,t) %Ht(s,t) (7.27)
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where the matrix -Z?(s,t) generally has singularities in s and t, although %HS
cannot have these singularities. For values of s,t in the neighborhood of a
singularity of Jﬂ(s,t), let us write (s,t) as a matrix product between a
matrix 1(s,t) containing the singularity,and a regular matrix 2(s,t) (of

course ‘Z?Z may be simply the unit matrix):

L0 = fis,e) fos,e . (7.28)

Then at the singularity, say s = s> t = 0, we must have
A t _
fl' EJZ(SO’tO)]HH' le (Soato) =0 > (7-29)

which is called a kinematic constraint.

The kinematic singularities and constraints discussed above lead to kinematic
singularities and constraints in the t-channel partial-wave amplitudes GHJ(t).
Since a Regge pole is a J-pole of the latter, with t-dependent residues, it fol-
lows that the Regge residues have known kinematic singularities and satisfy
known constraints. In particular the constraints relate the residues of Regge
poles of different quantum numbers at certain values of t.

D. Example: 17 = Tw

Earlier we have discussed the reaction 7T * Tw in terms of an invariant

amplitude (See Eq. (6.14)). Let us discuss it in terms of helicity amplitudes

as an illustration.
There are three s-channel helicity amplitudes (See Eq. (6.13)) fxs(s,t),

where A\ = 1, 0, -1 is the helicity of w. The partial-wave expansion reads
s ot J J
£.7(s,t) = ¥ (2J41) F."(s) d.."(z ) ’ (7.30)
A J=I)\| A (12N s

. . J . . ..
where the partial-wave amplitude FA (s) is a matrix element between helicity

states:
F0(s) = < musd | T(s) [T > (7.31)
Under the parity operation, the helicity states concerned transform as follows:
P|mmJ> = (-)Jlﬂﬂ;J>

Plmw;J,A> = - (-)JI-nu);J,-X> . (7.32)
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The eigenstates of parity for the mw system are
|3 34> = %5 [|m0;d, 1> Flmw:d,-1>] (7.33)
with

Plmo;J4> = + (-)J|nw;Ji> . (7.34)

By parity conservation the only non-vanishing matrix element between tw and T

states is
<3 d+| T(s) | I> = Fl(s) (7.35)

in terms of which the partial-wave amplitudes are

J _ J o1 J
Fi7(s) = -F 7 (s) =7 F(s)
J
Ey (s) =0 . (7.36)
Therefore there are only two non-vanishing helicity amplitudes fls(s,t) and

f_ls(s,t). Furthermore, owing to the fact that diu(z) = (_)K-u dfk ‘M(Z)’ they
H

are equal to each other. Hence there is only one independent helicity amplitude

s . . .
f1 (s,t). Since the reaction is the same for the s, t, and u channels,

£,5(s,t) = flt(s,t) (7.37)

up to a constant phase factor.

To factor out the kinematic singularities, we follow (7.21) and put

£5s,0) = 12 D F 5,0 (7.38)
flt(s,t) = (1-zt2)% Eltcs,t) , (7.39)

- s . . . s =t . .
where f1 (s,t) has no t-kinematic singularities, and f1 (s,t) has no s-kinematic

singularities. By (7.37), we have

(1-252)% E,%(s,0) = (1-zt2)% FACRI (7.40)

Now we need to work out some kinematics:

N
It

(t-u)/4pq,

N
]

(s-u)/4ptqt s (7.41)
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where

%(s-4mﬂ?)%

o)
1]

2

1
2

1 (s - <mw-mﬁ)21/4s} . (7.42)

{[s

From these we find that

q

s (m®+mﬁ)

(1-z 2)% __1 [@gs,tZJ%
s 4psqs s
L %
(]_-z 2')2 = _-—1-—— [ﬂﬁd—tl] s (7.43)
t 4p. q t
t't
where
_ 2,2 2.2
o(s,t) = stu mﬂ(m(JJ m Yoo (7.44)
Substituting (7.43) into (7.40) we have
15,0 E,%s,0)
= . (7.45)

4pay/s  bp.q/t

. = 8 . . . . = t . . .
Since f1 has no t-kinematical singularity, and fl has no s-kinematical singu-

larity, each side must be free of all kinematic singularities. That is

1
4p qy/s

where A(s,t,u) is an invariant amplitude. Thus

§1s(s,t) = A(s,t,u) (7.46)

X ES %
£°(s,0) = (127 dp_q_s? A(s,t,u0) = [o(s,0)1% A(s,t,u) ,  (7.47)

which is identical with (6.16).
E. Conspiracy

As mentioned before, kinematic constraints on t-channel amplitudes can occur
only at pseudothresholds, or on the boundary of the physical region. When the
external masses are equal in pairs, the latter includes the point t = 0. A con-
straint occurring at this point is physically interesting, because it corresponds
to forward scattering in the s-channel. Indeed, in many cases, such a constraint
is a direct consequence of angular momentum conservation in the s-channel.

For concreteness, let us consider nucleon-nucleon scattering, for which
there are 24 = 16 helicity amplitudes. Parity conservation and time-reversal
invariance reduce the independent to 5, which we can choose to be fi+_++,
£S5 £5 s £5 >

e A L f+-;-+’ ++

+%5 of a nucleon. Thus in £

cpo? where the subscripts + correspond to the helicity
5

cd;ab’
angular momentum along the relative momentum for the initial and final state,

(a-b) and (c-d) are the components of the total
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respectively. Conservation of angular momentum tells us that for forward scat-

tering (t = 0) we must have st(s,O) =0 if (a-b) + (c-d). Therefore

S ——
f+-,-+(s’0) =0
S —
£, 4.(:0) =0 . (7.48)

These also follow formally from (7.21) due to the fact that the corresponding
Dku(zs) vanish at t = 0 (zS = 1). Using the crossing relation (7.14), we can
convert these into linear relations imposed on th. When this is done in de-
tail, we find that the second requirement of (7.48) is in fact satisfied identi-
cally, owing to parity conservation and the conservation of total spin, (the
latter being a special feature of nucleon-nucleon scattering.) The first

of (7.48) leads to a non-trivial constraint:

frow T Ep " B -, =0, (at £ =0). (7.49)

Everything we have said so far applies equally well to backward scattering u = 0,

By the analyticity considerations outlined in our earlier discussion, we
would of course arrive at the same constraint equation. However, we would also
obtain other constraints at pseudothresholds, which cannot be deduced by such a
simple physical argument.

If we assume that at high energies (s # ) the amplitudes occurring in (7.49)
are dominated by t-channel Regge poles, then (7.49) relates the residues of
various Regge poles at t = 0. The Regge poles are said to ''conspire" if their
individual residues do not vanish, and are said to "evade" otherwise.

The case of conspiracy is of special interest when one of the conspirators
is the pion Regge pole. Because t = 0 is so close to the physical pion pole
t = 4@2, a conspiring pion would give rise to an extremely sharp forward peak
whose width is of order pz. Such sharp peaks have been experimentally observed
in forward np charge exchange scattering np = pn, and in charged pion photopro-
duction yp - ﬂ#ﬁ. Although in principle this could be explained by pion con-
spiracy with another Regge pole (which would correspond to a scalar meson),
actual calculations using the known m-N coupling constant g2/4ﬂ = 15 have failed
to reproduce the numerical magnitudes of the forward peaks. It is possible that
in these processes Regge cuts are important.* So far, therefore, there is no

clear evidence for conspiracy involving Regge poles only.

* K. Huang and I.J. Muzinich, Phys. Rev. 164, 1726 (1967);
D. Gordon and J. Froyland, Phys. Rev. 177, 2500 (1969).

- 231 -



F. Reggeization of Helicity Amplitudes

We begin with the t-channel partial-wave expansion

£t (s,t) = %

J J
cd;ab J_}\(2;r+1) Gy gsap(®) d}\u(zt) (7.50)

A =a-b, y=c-d, Az p 20, J = integer.
The object is to calculate Regge pole contributions to this helicity amplitude.
We restrict our discussions to integer J (and not half-integer) and assume that
A2y = 0. The case of half-integer J requires only trivial modifications and
is discussed in GGLMZ. The restriction A 2 p = 0 represents no loss in generality,
for all other cases can be reduced to this case by using properties of the rota-

tion coefficients:

J _J A d
dm(Z) = d_u,_}\(Z) =) dM(Z)

3 _ IR

O @ = (T e (7.51)

The discussion here follows closely that of GGLMZ, especially the Appendices of
that paper. All the special functions used here conform to the notation of

GGLMZ, which also contains useful tables for them. We put
t - Sl gz, (ElA-ulg t
fcd;ab(s’t) (1+zt) (l—zt) fcd;ab (s,t) > (7.52)

and recall from our earlier discussion that

€ B co
fcd;ab (s,t) = E

J=A
m

J J
(2J+1) ch;ab(t) eku(zt) (7.53)

has no s-kinematic singularities. There are still t-kinematic singularities con-

tained in do_ab(t). The functions eJ satisfy the properties (7.51).
3

A

In general, G (t) does not have definite parity, so trajectories of

cd;ab
both parities will couple to it. To separate their contributions, we now intro-
duce the parity-conserving helicity amplitudes. Using (7.11), we define helicity

states of definite parity by

J +J

. . a by,
,J;a,b>i_ = 7 {|3;a,b> + URINEY |3;-a,-b>} (7.54)
with
J
PlJ;a,b>i =+ (-1) |J;a,b>i . (7.55)
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We define partial-wave amplitudes of definite parity by

Jt
cd,ab

which couples only to Regge poles of parity i(-)J. The original partial-wave

¢t (1) = Tl (o) |5z, (7.56)

amplitudes are then given by

J o et _ _ 1. g+ J-
ch;ab(t) = <J;cd|G(t)|J;ab> 216ed;ap(®) + ch;ab(t)] . (7.57)

Next we define new linear combinations of the amplitudes T that are more
convenient for reggeization. The motivation is the following. We note that
GJi'at most changes sign when we reverse the sign of all initial helicities, or
all final helicities, or both. The coefficient ei , however, does not have such
a simple behavior (See Eq. (7.51)). Hence it is cgnvenient to define new coef-
ficients with simple behavior under helicity reversal and use them to define
new helicity amplitudes. We define
eiﬁkz) = %[eiu(z) + ei,
which at most changes sign when p -+ -j. Then by (7.51)

_M(Z)] > (7.58)

eﬁ(-z) =+ ()72 e}{i(z) . (7.59)

The original coefficients are expressible as

e‘)]\p‘(z) - e“i:(z) + e‘}]\;(z) ) (7.60)

Now define new helicity amplitudes (the "good" amplitudes)

+ _ 2 J+ J+ JF J-
cd;ap(s ) —JEX(ZJH) [Ceq;an(®) & (2 + G g, 4p(0) .z - (7.61)
Then (leaving helicity indices understood)
—t 1. + -
£7(s,t) =355 (s,t) + g (s,)] . (7.62)

Although gt'contains contributions from Regge poles of both parities, g+ is
dominated by parity (—)J and g by parity -(—)J as z ? «. The reason is that
eJ+ dominates over e asymptotically.

Before we can do the Watson-Sommerfeld transform on (7.61), we have to dis-
cuss how GJt can be analytically continued into the J-plane. For this we have

to invert (7.61) to obtain the analog of the Froissart-Gribov formula. Recall
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first the orthonormality property

+-

[ a2 @ (@) a2 =26 (7.63)
1 A A 2741 33! ' :
Defining a new coefficient
I (2 = 5| LIRS
cm(z) = (l+z) (1-z) dm(Z) 5 (7.64)
we rewrite (7.63) in the form
+1
. J J 2
J_l dz ehu(z) cku(z) =S SJJ, . (7.65)
In analogy with (7.58) define
Jt, . 1.J J
cka(z) = ZECKu(Z) + CK’_M(Z)] (7.66)
with the property
ey(-2) = 1 ORESON (7.67)
Then we have the orthonormal relations
+1
. J+ J'+ J- J'- 2
J_l dz [exu(z) CKM (z) + eku(z) CXH (z2)] = 2751 Sy R
+1
J+ J'- J- J'+
dz [e z) ¢ z) + e z z =0 7.68
[ [e@ 6, @) + & @ ¢ @] (7.68)
With the help of this, (7.61l) can be inverted:
J,+ 1 J+ + J- ¥
5 = =
¢’ Xt) =3 f_l dz [oy (20) g(s,0) + oy () 8°(s;0)] (7.69)

. + + . + :
where helicity indices on GJ— and g— are understood. Since g—(s,t) has no s-kine-

matic singularities, it satisfies the dispersion relation

o + © +
+ 1 , AX(e,z) |1 . B(t,z")
g(s,t) =2 [ dz' ST+ dz ey , (7.70)

z0 t z0

where we have ignored possible subtractions, since they will not contribute to the

final result, just as in the spinless case. Substituting (7.70) into (7.69) we

obtain
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o +1 c; (z)
JE, . 1 T | A2
G —(t) = = J dz' A—(t,z") 5 I_l dz, =53
o
1 .o - 1 +1 cJ+(zt)
-— 1 —_
+ b[‘ dz' B—(t,z") > 'J dzt e
2z, -1 t
J_
fe] +1 ¢ (zt)
l 1 AT 1 l dz 1
+ jz dz' A (t,z') 5 I_l tzl-z,
0
1.2 T 1 +1 cJ-(zt)
S ' 1y =
+ 2 jz dz' B'(t,z') 3 I_l dz, N (7.71)
o
Let J+
+ 1
CJi(Z) = l ! dz! ELEEE_l (7 72)
A 2 I—l z-z' ’ *
with the reflection property
J+ IR £ N
Cx;( z) =+ (-) CA;(Z) , (7.73)
which follows from (7.67). Then
Ji =l 7 rrat ' J+. + ' J- '
G —(t) - jz dz'[A~(t,z") Cku(z Y + A (t,z") Cku(z )]
o
L o~ + J+ F J-
L dz' ' -z') + ' . ] .
+ - IZ z'[B<t,z") Cku( z') +B (t,z'") CKM( z')] (7.74)
o
Using (7.73), we rewrite this as
J+ L + J+ F J-
- = dz! 1 'y + A 1 ]
SR =0 ] a' e QI AT )]
o
JH L 7 + J+ F J-
- - d ] 1 t - 1 L] . .
+ (-1) - f z'[B—~(t,z") Cku(z ) - B (t,z") Cku(z )] (7.75)

4
o]

. . . J+
To continue this to complex J, we need to know some properties of C.—.

A
The functions Ciﬁ(z) are studied in GGLMZ and in greater detail in Andrews

and Gunson. We need to know the following properties:
(1) Cii(z) is a linear combination of Legendre functions of the second

kind, Q,(2),with J-\ < 4 = JAA.

* Andrews and Gunson, J. Math. Phys. 5, 1391 (1964). They study a function

ﬁu(z), which is related to ours by

Ciu(z) = (_)A—u (1+z)%(X+u) (1_2)%(X-u) eﬁu(z)

e
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(ii) Cii{z) has square root branch points in J for integer values of J
satisfying g A< J € p-lor y <J < A-1.

(iii) Ciikz) has no other singularities in J except those coming from the
Legendre functions Qz(z), J-A = 4 < J+A. In particular the apparent poles at
half-integer values of J in the explicit forms tabulated by GGLMZ are in fact ab-
sent: They cancel by virtue of the symmetry property Qz(z) = Q-Z-l(z) at
4 = half-integer. The fixed J-poles coming from those of Q£ at 4 = -1,-2,...
remain., They occur at J = \-1, A-2, ....

The analytic continuation of (7.75) to complex J proceeds in the same manner
as the continuation in the spinless case. If the functions Ai, Bi in (7.75) are
polynomial bounded, then each integral defines a unique continuation in J which
is analytic for sufficiently large Re J. Since (-1)J+h does not have a unique

analytic continuation, we introduce the signatured amplitudes

[ a2’ I(e,2") oy (=) + AT(2") ¢ (2]

Z
o]

Gi(J,t) =

=N

i

3 - ! + 1 J+ t - + 1 J- 1
+ ﬂ.fz dz'[B—(t,z") CXM(Z ) - B(t,z") Cku(z 1, (7.76)
o
where T} = +1. This can now be continued to complex J and is the generalization
of the Froissart-Gribov formula. It is related to GJi'for integer J by

+Gt(J,t), for J+A even

+
_G—~J,t), for J+A odd . (7.77)
We may call T the "apparent signature." It is the same as the signature if

A = even integer and is opposite of the signature if A = odd integer. The func-

tions Ciﬁ have the property
CJi(z) = C(_J_l)i{z) (J = half-integer) . (7.78)
A A
Hence formally
+ + .
G—(J,t) = . G(-J-1,t) (J = half-integer) s (7.79)

I il

which is the Mandelstam symmetry. To get rid of fixed J-poles coming from those
in CJt, we assume
A
+
+1 A—(t,z)
[ ey S 0. (3= A1, A2, ...) (7.80)
+
-1 B—(t,z)



To carry out the Watson-Sommerfeld transform on (7.6l), we first rewrite it as

gs,0) =2 = (24D {[,6X3,0)] [e‘)]\::(zt) + eg\:(-zt)]
J

M3

A

+ [6M3,0] [ (=) - &.(-2)]
+[EE0] [ (2) - & (-z)]

T J- J-
+ - . .
+[EW0,0] [ (z) + & (2] (7.81)
To take advantage of the Mandelstam symmetry, we proceed as in the spinless case

A

to replace eii(z) by a special continuation in J. The function eJi(z) is a linear
H +
combination of Legendre polynomials and their derivatives. We define Ei;(z) as

the function obtained from eiﬁ%z) by replacing all Pz(z) by /Oz(z). This func-

tion is discussed in more detail in GGLMZ. It has the following properties. For

integer values of J, and A =2 y 2 0:

eii-(z) (J > ) (7.82a)
"
L
~ 0(x%) (p <= J < A-1) (7.82b)
E(i:X)iKz ;:6* Finite number (p <=J =yp-1) (7.82¢c)
1
~ 0(x*) (-X £ J < u-1) (7.82d)
~ 0(x) (J < -r-1) (7.82¢)

At J = half-integer, it has J-poles with residues satisfying

Jt _ (-7-D+
o Res E o s

1t also has square root branch points in J. 1In the partial-wave expansion these

Res E (J = half-integer) . (7.83)

will always be cancelled by corresponding ones in Gi{J,t) arising from those of

il
AT

To simplify our discussion, we pretend for the moment that the range (7.82c)
does not exist. This will be discussed separately in the next section on the
problem of sense and nonsense.

If we ignore the range (7.82c), the discussion proceeds in parallel with
that of the spinless case. We replace eig'by Eif in (7.81), extend the J-sum

from -o to «, and replace it by a contour integral:
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gs,0) = 3 5y [ 4 B 1 6%0, 0] 18]z + (2]

+ J+ J+
- 653,01 [ [(z) - B ()]

+LOW,0] 5 (2 - B (2]

t

F J- J-
- [Le@elE () +E (201}, (7.8

where C is the contour shown below.

> e N
L4 = -

The factor (-1)J+K from the residue of [sinﬂ(J+K)]_1 has been absorbed into the
Eii(z) functions by using (7.59). In addition to the poles of [sinﬂ(J+k)]_l, which
reproduce the original sum, the integral also picks up the poles of Eiﬁ(z) at the
half-integers. The one at J = -% is cancelled by (2J+1). By virtue of the
Mandelstam symmetry (7.79)and the property (7.83), the rest cancel in pairs as in
the spinless case.

A Regge pole of parity + (-)J, apparent signature ] [signature = ﬂ(-)xj

occurs in the form
o Peaan’® (7,85
N ed;ab J-a(t) *
Its contribution to gi{s,t) is obtained by unfolding the contour in (7.84) in the
same manner as in the spinless case. This is trivial to do for any particular
Regge pole. It seems pointless to give a general formula, for we would merely
drown in a sea of superscripts and subscripts.

The asymptotic behavior of gt(s,t) for large z,_ can be worked out in parti-
cular cases from the explicit formulas for Eii tabulated in GGLMZ. In the asymp-
totic formulas, the true signature (instead o% the apparent signature) always
appears in the usual factor (e-iﬂa + 1).

We give a list of factors that B (t) should contain:

cd;a
(1) Threshold factor [Zpabpcd/sO]aEt),where s, is an arbitrary scale.

(2) A factor [I'(a(t) - 3/2)]-1, for the same reason as in the spinless case.

(3) A factor coming from the J-branch points of CJ53

A-1 L -l
I [a(t)-n]® T

n=y, n=-\

[Q(t) _n]1/2 >
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which will exactly cancel a corresponding factor in EK

(4) A factor Kc (t) containing all the t-kinematic singularities of

fcd;ab(t)'
(5) A factor S(a), explained in the next section, having to do with

d;ab

"choosing sense.'
In addition, at certain values of t, the residues of various Regge poles may

satisfy kinematic constraints. Factorizability requires that Bcd'ab(t) have the
3

form

Beasap(t) = B.alt) 8(0) (7.86)

G. Sense and Nonsense

The discussion of the Sommerfeld-Watson transform in the last section is
incomplete, because we ignored the fact that Eit # 0 for integer J-values in the
range -4 < J < p-1. These terms are included iﬁ the representation
(7.84), although they were not in the original partial-wave expansion (7.8l) and
should not be included. Actually there is a cancellation among these terms, and
(7.84) is still correct; but this cancellation implies constraints on Regge poles
that we have to take into account.

The cancellation occurs between the various terms in (7.84), made possible

by certain symmetry properties of Eii and Ciﬁ, namely, for integer J in the
range -y < J < -1,
B (z) = (I, (7.87)
Ao A ? ’
JH, o (=3-1)F
CKE(Z) C A (z) . (7.88)

The first can be proved by using the explicit formula Eq. (A9) of GGLMZ, and the
second can be proved by induction by using the recursion formula, Eqs. (Al3),

(Al4) of GGLMZ. The second relation leads via (7.76) and (7.8Q) to

+ _ Fooo
nG—(J,t) = 'ﬂG (-J-1,t) (7.89)

for the same range of J values. Referring to (7.84) we note that the residues
of (2J+1)/sinm(J+A) at Jo and -Jo-l are equal to each other. Hence the contri-
butions from J = Jo and J = -Jo-l cancel in pairs: the first term in the curly
bracket cancels the fourth, the second against the third. Therefore (7.84) is
correct.

The equality (7.89) implies that if TF1¥J,t) has a pole at J = «o(t), such
that o(t) is an integer with -;-1 < o(t) < u, then _nG¥(-J-l,t) must have a pole
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at J = -g(t)-1. That is, whenever t is such that a Regge trajectory «(t) passes
through integer value between -y-1 and i, there must be another trajectory pass-
ing through -o(t)-1, of the same residue but opposite parity and signature,

unless the residue of o(t) vanishes. Here, as in the discussion of the phenomenon
associated with o(t) passing through half-integer values, we have the alternatives
of compensating trajectories vs. vanishing residues. In this case, however, the
compensating trajectory has opposite parity and signature.

The integer J-values for J < )\ are called nonsense values, a definition we
have already introduced in the spinless case, where A = 0. The range -u-1 < J <
therefore contains nonsense values of J, since in our convention A = p 2 0. When
a trajectory passes through these values, it is said to '"choose sense" if its
residue vanishes, and to ''choose nonsense' otherwise. These represent different
dynamical possibilities and one cannot decide in favor of either without a theory.
The simpler of the two seems to be to choose sense, for that avoids introducing
a compensating trajectory.

The factor S(o) listed at the end of the last section is designed to make
the residue vanish at the appropriate nonsense values of @, if the trajectory
chooses sense., If the trajectory chooses nonsense, then S{(¢) = 1, and we must
specifically include compensating trajectories in the analysis. Since S(&) must
not introduce singularities in o, it is an entire function of @, usually taken
to be a polynomial.

Nonsense values of o also occur in the spinless case, of course. But there
we were not faced with choosing sense or nonsense because the function 'tiy does
not have the peculiarity (7.82c), and consequently nonsense values of o never
give rise to a pole contribution to the Watson-Sommerfeld transform. An explicit

example of sense and nonsense is given in GGLMZ, Appendix B.
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VIII. PION-NUCLEON SCATTERING
As a non-trivial example of reggeization with spin we shall consider
pion-nucleon scattering in some detail. This example also gives us a chance to
see the detailed relation between invariant and helicity amplitudes and the
origin of the kinematic singularities and constraints.

A. Invariant Amplitudes

Let us consider m-N scattering in which the individual particles are in
definite charge states. Analysis in terms of total I-spin states may be easily

qz‘\ﬂ N p2 obtained from what we do here and will not

N\ be discussed. Suppose we calculate the scat-
. ) tering amplitude by summing all Feynman
) graphs, then we would obtain a Feynman
‘? amplitude of the form

W, omr NP

f = U(PZ:SZ) T(p23q2; Plaql) U(Pl’sl) b (8'1)

. - -’ .
where u(p,s) is a Dirac spinor of momentum p and z-component of spin s, and
T is a 4x4 matrix. We can write T as a linear combination of the 16 Dirac

. ®
matrices

1'3 ’Yul’ 'yu'Yvi 'YS'Y“" YS 3 (8'2)

with coefficients constructed from the 3 available independent momenta
(P1+P2)u: (pl_Pz)u’: (ql+q2)u’ ] (8.3)

in such a manner to insure that uTu is a Lorentz scalar. Thus terms proportional
to YSYp and Vg are immediately ruled out, for they would require pseudovector

and pseudoscalar coefficients, and none can be constructed from (8.3). Any in-
variant constructed from vuyv and (8.3) reduces to one constructed from 1 or y“,
when the nucleons are on the mass shell. Under the same condition, the only
independent invariant constructed from y“ is Y'(q1+q2). Thus the most general

form is

T(py,d,5P;59y) = -Als,t) + 7 v-(qy+q,) B(s,t) (8.4)

* We use the convention in S. Gasiorowicz, Elementary Particle Physics,

(John Wiley & Sons, New York, 1967), Chap. 2.
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where A, B are functions having no singularities except the unitarity cuts and
particle poles. By definition they have no kinematic singularities and no kine-
matic zeros and are called invariant amplitudes.

From the crossing property of Feynman graphs, the amplitude (8.1) also de-
scribes 7T -+ NN when we continue the q, and p, to the region where their components
change sign. For the invariant amplitudes, this simply means that we continue
the values of s,t from the s-channel physical region to the t-channel physical
region.

B. Helicity Amplitudes

The s-channel helicity amplitudes are

J J

. (s) d (z) (8.5)
KZ,O,KI,O A, s

s ©
f . (s,t) = Z (2J+1) F
KZ’O’kl’O J=%

where ll and KZ assume the values +%. We introduce a shorthand notation in which

the amplitudes are labeled only by the signs of KZ and Klg for example,

s _ s
f++ (s,t) = f+&2’0;_'_‘1/2’0 (s,t) . (8.6)
Then by (7.11) parity conservation implies
J _J
F++(s) =F (s)
J _oJ
F+_(s) = F_+(s) . (8.7)

Using this and the properties (7.51) of the rotation coefficients, we find that

there are only two independent helicity amplitudes, which we choose to be

1l
]

fls(s,t) f++s(s,t) f__s(s,t)

£,%(s,0) = £, °(s,t) = -£_°(s,0) . (8.8)

Identical formulas hold for the t-channel amplitudes, if we change the super-

scripts from s to t.

The helicity amplitudes are in fact the amplitudes (8.1) with specific

choices of the Dirac spinors:
S - - .
f)\Z)\-l (SQt) - u(pz’}\-z) T(p23q2’p1’q1) U(Pls}\l) H

t —
szxl (S:t) = U(Pzﬁxz) T(Pz,'Pl§'q2:ql) V(_Pl:'xl) 3 (8-9)
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where u(p,\) and v(p,\) are respectively positive and negative energy spinors

satisfying

ul(p,2) ulp,A) = -v(p,A) v(p,A) = +1 (8.10)
and
(3°3) ulp,A) = Au(p,A)

(13'3) v(p,A) = av(p,A) . (8.11)

To find the relation between helicity and invariant amplitudes we use (8.4) and

find after a lengthy but straightforward calculation
s /1+zs m
fl (s,t) =- [A(S,t) +—2—H'—B(S t):l
i < ot
f2 (s,t) = SR A(s,t) + ————iu“-B(s t)] (8.12)

and

£, 5(s,t) = [ (t- "mlA( Jt) +S—;1"B(s,t)]

Jt 4m

2 2.2
- fEysu-(m oy”) [B(s,t)] . (8.13)

2mdf-4m2

Since A and B are by definition free of kinematic singularities, the kinematic

1

t
f2 (s,t)

singularities of the helicity amplitudes are hereby explicitly displayed. The

following amplitudes are therefore free of all kinematic singularities:

- % s _ 8% Ll -5 . s
£° =[50+ )] » B = BT 1 50 (8.14)
) N . 2 2 &
= (t-tm®)f et , B2 l:——————t 4m £t ) (8.15)
1 1 2 %3 2 2.2 2

t su-(m -p")

However, they are not completely independent. To see this we solve for A and B
in terms of the set %1S, %25, and alternatively the set %lt, %zt :

A(s,t) = 2

/52
/gz

2 A ~
B [-(smm ) £%(s,0) + (s’ 0D £5s,0]

B(s,t) = [———L £°%s,0 - £%s,01 (8.16)

2

with

§F=s - @] [s - W] . (8.17)
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Since A(s,t) and B(s,t) have no kinematic singularities, the square brackets must

vanish at s = (m t u)z. Similarly, in terms of the t-channel amplitudes

2m2 A~ t s-u 4+ t
A(s,t) = - 2 [fl (S:t) + 2 fZ (S:t)] s
t-4m 2m
B(s,t) = - = £,5(s,0) (8.18)

so the square bracket must vanish at t = 4m2. Note that no constraint is needed
at t = 0 and hence there is no conspiracy condition. What happens is that parity
conservation in the t-channel automatically implies conservation of angular mo-
mentum in the forward direction in the s-channel.

The crossing relation for the helicity amplitudes is obtained by eliminating
A(s,t) and B(s,t) between (8.16) and (8.18). Since the arguments of the square
roots change signs during the continuation from the s-channel to the t-channel
physical region, the calculation requires a careful consideration of phases.

This is the whole point of the paper of Trueman and Wick. We take their result

from (7.14):

s _ X % t
£ (s:t) = z §; diy OO a2 (mx) £ 47(s,t) (8.19)
c=-% d=-%
where
s+m2— 2 t
COSX = = /J
stnx = 250

S =1[s - i s - (-2
g = £( t-4m?)
o(s,t) = stu - t(m®uH? . (8.20)

The rotation coefficients are given in the following matrix

d%(x) = . (8.21)

NX X
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Using this and (8.8), we obtain

s
f1 (s,t)

s
f2 (s,t)

s

Ci

inX  -cos¥ flt(s,t)

08X sinX fzt(s,t)

C. Reggeization of Helicity Amplitudes

(8.22)

Let us now illustrate the procedure discussed in Section VII D by following

it step by step for the present case. First we define

1

- t R S t
fl (S,t) \/‘1+—zt f]. (S,t)

£,"(s,t) = Vit

1

fzt(s,t)
t

(8.23)

These amplitudes have no s-kinematic singularities and have the partial wave ex-

pansions

-t _ 2 J J
f2 (s,t) —JEO(2J+1) G++(t) eOO(zt)

fzt(s,t) = ¥ (23+1) Gi (t) egl(z )
J=1 } t

Let |J,X1K2> be the NN state with angular momentum J and helicities AZ,X

P|J;a,b> = + (-1)J|J;—a,-b>

The parity eigenstates are therefore

IJ;a,b?t
with

L [|3;a,b> + |J;-a,-b>]

N

J
P|J;a,b>_.t =+ (-1) ‘J;a,b>_lt

The parity-conserving partial wave amplitudes are

J+
a

J,00> being the pion state,

J -
Gab(t) -

1
2

G 5(t) = ,<3a,b|6(£) [3;0,0>

In terms of these we have

J+ J-
[6(E) + 6 (6)]
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(8.24)

Then

(8.25)

(8.26)

(8.27)

(8.28)

(8.29)



The states of NN and the trajectories coupled to them are given below.

Parity eigenstate Abbreviation Parity G-parity Trajectories

%§{|J,++> + |3,-->] |J,0+> +(-1)J +1 P,p,f°
-1 w,Az

1 J

75{|J,++> - |a,-=>] |3,0-> -(-1) +1 B
-1 -

1 J o)

7§{|J,+-> + |3, -+] [7,1+> +(-1) +1 P,p,£
-1 w,AZ

1 J

7§[|J,+-> - |3, -] [J,1-> -(-1) +1 —_—
-1 A

1

Since the mm states all have P = +(-1)J and G = +1, the only non-vanishing partial

wave amplitudes are

J+
Go = <J,O+|G(t)|J,ﬂﬂ>
Gy = <I,1+|e() |3, (8.30)

Substituting this, via (8.29), into (8.24), we have the partial wave expansions

-t 12 J+ J

£, 7(s,t) = ZJE (23+1) Gyp(t) egp(z))

=t _1zZ J+ J

f2 (s,t) = 2J§1(2J+1) G01(t) e01(zt) . (8.31)

In the general discussion, we had further decomposed the above into the
+
amplitudes g—(s,t). But for pion-nucleon scattering, only states with parity

+(-1)J couple and this is unnecessary. If we do it anyway, we find that

J- - B
e0(zg) = epilzy) =0

I+ 3 T, J
c00(%e) = eoo(2e)s ep1(2y) = egi(z) (8.32)

and we are back to (8.31).
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From the table in GGLMZ, we find

ego(zt) = Py(z)) ch(zt) = Py(z,)
P1(z) J VAIGE0)
SHERE _—’;TJ_:-D c0102¢) = g [Bra (20 - B (2] (8.33)
Hence
Ego(zt) =G>(z ) Cgo(zt) = Q;(z)
R
Bz < R Cored T i (a0t Ga(ep] - (839
Then from (7.79) we obtain
-t m Boo(t)(a (£)+%) ozi(t) o, (t)
f1 (s,t) = 1=Pzp fo- sinn ai(t) [EOO (-z ) + n E (zt)]
2F2 (8.35)
i 1 O!-(t)
. T By (D () ay(e) g o A
£,7(s,t) = i=P?p,fo- sinm(w, (©)+1) [Eqg t 1700

The signature T& which appears here is the true signature.

We take the residue functions to be

where s; are arbitrary scales, the first factor provides the compensation required

B (t) =
A F(oz (t

by the Mandelstam symmetry, and the second is the threshold factor. 1In Y;O(t)’

. . . P =t
we factor out the kinematic singularities of fl (s,t):

i _ 1 —i
4m” -t
Factorization requires
Yoolt) 2 0 for ¢ < w? . (8.38)

In YOl(t), we must factor out both the kinematic singularities of f (s t) and

the branch points coming from COl(z ):

Ve () = w0 Ve 7o (8.39)

Finally we obtain the s-channel amplitudes by using (8.35) and (8.22).
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DYNAMICAL MODELS BASED ON UNITARITY AND ANALYTICITY

Lectures by: W. R. Frazer
University of California, La Jolla

Notes taken by: Harry J. Yesian
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The organization of the material to be covered in these lectures will be the
following.l’2

(1) A review of some S-matrix properties including the analytic structure

and the concept of polology.

(2) Bootstrap theories including the N/D method and the p-meson bootstrap

of Chew and Mandelstam.

(3) Some specific models, including the Bethe-Salpeter equation and its

implicit 0(4) symmetry.

(4) The multi-Regge Model in its simplest version.

We shall start today by going over some of the early attempts at formulating
theories of strong-interaction dynamics. The starting point is with Yukawa, who
postulated that the force between nucleons is mediated by the exchange of another
particle with a finite mass. This is in analogy to the electromagnetic force

which we know is mediated by the exchange of a photon between charged particles.

N N e
Meson Pho ton
N N e e
"nuclear force" "electromagnetic force"
The basic approaches that one can then use are: ur
. . 2
A. Translate the single meson exchange into a potential V ~ g i

and then try to solve the Schr¥dinger Equation. This leads to difficulties

in the relativistic domain for a number of reasons.
B. Lagrangian Field Theory
(1) Perturbation Theory. We know this fails because of the strength
of the interaction. However, we can still use it as a guide to
the singularity structure of the S-matrix.
(2) Diagram Summing - a particular model which sums ladder diagrams is

the Bethe-Salpeter equation in the ladder approximation.

I
1
]
1

-

Ladder diagram.
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C. Abstracted Theories
(1) Axiomatic Field Theory. Not to be covered here.
(2) S-Matrix Theory. Here one abstracts properties of the S-matrix from
A or B above and uses them as "axioms" to develop a logically in-
dependent theory. The rest of this lecture will be concerned with

this.

S-Matrix Properties

I will not attempt a logical, axiomdtic approach in the manner pioneered by
Stapp (see Ref. 2). My intention is only to review and motivate the assumptions
behind S-matrix dynamics. These assumptions fall into two classes:

(1) Basic axioms: That is, axioms whose origin and status transcend the
specific theories mentioned above.

(2) Abstractions: Included among these are the properties which are less
well founded than those in (1) and which owe their origin to particular models.
An example of this would be the idea that forces between strongly interacting
particles are mediated by particle exchange. Closely connected with this would
be crossing symmetry which is an abstraction from field theory. For example,
consider the following two diagrams:

(a) 3 4

Y}
~

(b)

1 3
Neglecting complications due to spin, both diagrams (a) and (b) contribute a term

81358245
2

m -t

5
to the scattering amplitude for the respective processes. The statement that the
coupling constants occurring in these two diagrams are the same is an example of
the crossing property.
Now let's return to Yukawa's basic idea, alluded to above, that forces between

hadrons (strongly-interacting particles) arise from hadron exchange. For example,
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the first Born approximation in potential scattering tells us that there is a cor-

relation between the mass of the exchanged particle, w, and the range of the inter-

\ / o
g//--- g = V(r) = g

action,.

Hence we see that the range of the interaction goes roughly like 1/j. Now since
the pion is the lightest mass hadron we know of, its role in strong-interaction
dynamics will be special. We see that it is responsible for the longest range
force. One way to isolate this long range force is to perform a modified phase
shift analysis of nucleon-nucleon scattering data.3 The highest partial waves are
presumably affected only by pion exchange. Ignoring spin for the moment, one can

divide the partial wave series into two pieces,

£(s,t) = z(2£+1)f£(s)P£(cos9)
)

- Z (24+1)£,(s)P (cos0) +Z (2441)£,(s)P ,(co56)
i< LC A= LC

The second series can be replaced by the one-pion exchange contribution. Here we

have chosen

L ~ kR, R~
c

E!‘»—-

™

where k is the center-of-mass momentum of one of the nucleons. In addition,
since the one-pion exchange contribution has as parameters g2 and uz, we can leave
them as free parameters and make a determination of them from a X2 fit to the data.
This was first done by Cziffra et gl.s A later analysis by Signell4 of different
data gave better results, yielding values of 14 and 130 MeV for g2 and [, respect-
ively.

Another method of extracting the pion exchange contribution to nucleon-nucleon
scattering was performed by Cziffra and M’oravcsik.5 In this instance, they dealt
with backward n-p scattering (charge exchange) to isolate the I=1 contribution in

the crossed-channel.
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If we define the Mandelstam
invariants in the usual way

4 P 3 /n

_ 2
S = (P1+P2)
—— - _ 2
t = (]?l P3)
1/ n 2\ P _ _ 2
u = (P1 P4)
the pion pole is at u = mﬂz. In the center-of-mass svstgm u = -Zkz'(1+cose).
Hence the location of the pion pole is at cos® = -1 - ;if in the cosf plane. Since

m 2 is very small, we see that this pole is actually quite close to the physical
™

region. The contribution of the pion to the unpolarized differential cross section

is:
do =.&f.£tb§f_
dQ s (x+x )2
o}
X = cosO
2
m
X, = +1 + —EE
2k
To perform the extrapolation, one wants Zo extend the quantity (x+xo)2 %% into the

. . s g s 2 . )
unphysical region where it is equal to . (——Ep at the pion pole, u = m_“.

Despite the practical difficulties encountered in performing an extrapolation
this method, as well as the modified phase shift analysis, give direct confirmation
of Yukawa's hypothesis.

There are other more complicated reactions in which continuation away from
unphysical regions has been useful. One such is the Chew-Low extrapolation which
can be used to determine the nature of the ™1 interaction when one of the incoming

pions is off the mass shell (see illustration below).

+ -
/
n ™ S/
/
o __ /
+
™ :;
\
\ -
P \TT

Singularity Hunting:

Poles in the scattering amplitude come from the first Born approximation in

potential scattering.

LD gt

B L2
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(2)
fp

The higher terms in the Born series for the scattering amplitude, say , are
given by6

f(z) _ (ee] SI 0 tl Q(Z)(S' t'2

B IZ i Iz m (s'-s)(t'-t)

4M 4y

where 4

0P s, e =f > A%

(2tA)

and

a=tsadead -t

A determines the boundary of the spectral function p(s,t). For the process under

consideration it is:

t

oundary of third Born approximation

"
e
|
|
|
.
l
|

boundary of second Born
approximation

b
| &

How does this compare with relativistic scattering? If one looks at the
singularity structure of Feynman diagrams, one finds the same singularities as
located in potential scattering.

The t-plane singularities arising from the Born series above are summarized

by the representation

£(s,t) = S fw ae! 8 Bset) + Im ae' g Dsyen) +
? 2_t , T t'-t g T t'-t T
H by (3u)
pion pole
These singularities are shown in the following figure:
t-plane

2 2 2

m 4y, u

5 -

pion 22 pion K’\3 pion

pole threshold threshold



The branch points in the figure above are called normal threshold singulari-

ties.

Digression on Anomalous Thresholds:

Consider elastic electron-deuteron scattering. One diagram which contributes

is the following.

e
On the basis of the normal thresholds discussed above, one might expect that the
range of the force should be R & Eﬁ— , or that the position of the nearest

singularity is t =~ 4Mp2. It turns but that if you calculate the threshold for

the above Feynman diagram it is: t = 8MPEB. This is called an anomalous threshold.
Here EB is the binding energy of the deuteron. The problem is a more general

one.7 If you have a diagram of the following type:

1
3
2 -
3
1
and if M12 > M22 + Méz, then you will have an anomalous threshold. To understand

the result in the case of electron-deuteron scattering, we know that the deuteron

is a loosely bound system of a neutron and a proton. A rough estimate of the

size of the deuteron and hence the range of the interaction can be read off from
the deuteron wave function which goes like e_ar, where O = MPEb)%. It is universely
proportional to the square root of the binding energy. This is a very small

number and hence the anomalous threshold is very close to the physical region.
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W.R. Frazer, "Elementary Particles."
Eden, Landshoff, Olive, and Polkinghorne, "The Analytic S-Matrix.'" Cambridge
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Unitarity and Singularities:

What are the implications of unitarity for the singularity structure of the

scattering amplitude? We begin by considering the partial wave expansion

f(s,t) = }; (Zz+1)f£(s)P£(cose)
£
for the elastic scattering amplitude. In what follows, we consider only the
scattering of spinless particles. For the partial wave amplitudes, unitarity says:

for s > Sthreshold i6£
e sin6j
£,(5) = — ,

where 5! is real below the inelastic threshold. Alternatively, this can be expressed

as

Imf, (s) = klfz(s)]z

Now we postulate (or abstract from potential theory or field theory) that the
partial wave amplitude is a real analytic function. This means that it is analytic
in a region which includes part of the real axis, and that on part of the real axis,
it is purely real. Such a function can then be shown to satisfy the Schwarz-
Reflection principle

fz(s*) = fz*(s)

From this, we can calculate the discontinuity:

fl(s+ie)-fz(s-ie) = ZiImfz(s+ie).

From this we see that the partial wave amplitude has a cut beginning at the elastic
threshold and extending to the right in the s plane along the real axis.

On the basis of scattering data, how can one infer the existence of bound
states below threshold. For example, let us examine the 3S-wave n-p scattering

amplitude fo(s) which we know has the deuteron as a bound state

S-plane
deuteron
pole
unitarity cut
1
S =4M
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Ignoring for the time being inelastic contributions, we may write in the physical
region s > s id
T e OsinSO
f (S)=_——_E__—_ = 1 - .
0 chotSO-l)
The statement of unitarity can be written in an alternative form as
1
In(z) = -k
0
Now we want to perform an extrapolation to the left of the branch point into the

unphysical region. To do this we define a function
M(s) L + ik
s) = 7V
£5(s)
where k is defined to have a cut in the s plane running to the right. Hence ik is

a real analytic function to the left of its branch point. Now for s > St we have

ImM(s) = -k+k = 0

d <
and for s ST

ImM(s) = 0+0 = 0

Therefore M(s) is an analytic function in the vicinity of elastic threshold. For s
in the physical region, it is

M= kcotSO.

We can, therefore, make a power series expansion about sT of the form

=1 1 2
kcot60 = 3 4 2 rok +...

Keeping only the first two terms, we may write

f.(s) =
0 L r kz-ik

t3 %

N =l

a

In the literature, this is known as the effective-range expansion. We may now take

this formula and determine the parameters a and r, from a fit to the scattering

0
data in the region just above threshold. The experimental values are
a = 3.82
ry = 1.20 (#i/mrxc)

Since the denominator of the partial wave amplitude is quadratic in k, the amplitude
will have two poles. One of its poles falls very close to the deuteron pole. It
represents a bound state of binding energy € = 2.21 MeV, whereas the measured
binding energy of the deuteron is EB = 2,23 MevV. The second pole lies farther away
to the left on the real axis. As we shall see below, it falls in the region where
our knowledge of the forces say there should be cuts. So we see that the simple
veffective range' approximation does not reproduce these cuts, but gives a pole as

an effective interaction.
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When this same analysis is applied to the scattering in the singlet state, one
finds that the pole far to the left of threshold still remains, while the analog of
the deuteron pole, has moved onto the second sheet. It is known as a "wirtual®
bound state.

Now let us see what our knowledge of the forces implies about the singularity
structure of partial wave amplitudes. We begin by considering the first Born
approximation due to meson exchange. If we were talking about nucleon-nucleon
scattering and were ignoring spin, this would simply be the one pion exchange
contribution

2

- B
(s,t) = 2

u -t

(L
fB

If we take the partial wave projection of this amplitude defined as:
1

th(s) = % ‘/qdz Pz(z)fB(l)(s,z)
-1

We find that this is equal to:

o

2 2
o+
2k
where k2 is the magnitude of the center of mass momentum and Qz(k) is the Legeudre

function of the second kind. 1In particular, for the S wave, we have

0 2 2+4k2
£, (s) = &5 40 &5
B 2 2
4k "
It is evident from this expression that we have a branch point in the S plane at
S = 4M2-u2. The other partial waves have a very similar singularity structure. We
see that due to the smallness of the pion mass, that this branch point is actually
quite close to the threshold branch point. The higher terms in the Born series
corresponding to shorter range forces give correspondingly more distant singularities
(branch cuts) to the left of elastic threshold. From the above form for the S-wave

partial amplitude, the discontinuity across the left hand cut can be calculated

to be
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_ 2
Imf £=0 _ng_ S-plane

unitarity cut

H

If we neglect inelastic scattering, unitarity tells us what the discontinuity across

the right hand cut is. It says

ll = -k s
£ (s)

It was hoped that a knowledge of the forces, plus elastic unitarity would be enough

Im > Sthreshold

to determine the partial wave amplitude in the low-energy region. Although this
has not usually turned out to be the case, let us examine the mechanics of this

model before discussing its elaborations. We assume

Imfl(s) = g(s) s < .

where SL, is the left-hand branch point, and where o(s) is a known function. The
N/D method, as this scheme is known, assumes that the partial wave amplitude can be

written as a quotient
- N(s)
ft(s) D(s)

where N(s) contains the left hand singularities and D(s) contains the unitarity cut.

From the above three equations, we may write,

ImN(s) o(s)D(s) s <s

L

=0 s > sL

ImD(s) = -kN(s) s > ST
=0 s < sT

Hence we may write the following integral representations for N and D, provided the

integrals converge.
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s
L

N(s) = = /ﬁds' T
T s°°s
- QO
Q
S'SO T (S"S)(S'—SO)
S

Here the integral representation for D has the form of a once-subtracted dispersion
relation. We can fix the normalization of N and D by setting D(so) f 1. 1In

general we could have an arbitrary number of subtractions in N and D. [CDD ambiguity]
This is because the asymptotic behavior of fz(s) says nothing about the asymptotic
behavior of N or D separately. From the above equation for ImD(s), we see that we
can write this last integral representation in the following form.

[e 9]
“S0 [0 ds'kN(s')
T (s'—s)(s'-so)

St

S

D(s) =1 -

We can now solve these equations by substituting for D in the N equation or vice

versa. If we define

°1L
' \]
B(s) = L /ﬂ QE_%LE_Z (Born approximation to the
T s'-s . .
- © partial wave amplitude)
we find
L s'-s (D
N(s) = B(s) - 1 /N ds'c(s' 0 /qu"k(s")N(s") 1
® w) Ts's Lw (s"-s") (s"=s) |
- ©
t
2% ) .
where k(s") = (s"/4-M")*. Performing a few manipulations, we find,
©
1
N(s) = B(s) + ds"K(s",s)N(s")
s"]T

where the kernel X is

(s"-so)B(s")-(s-so)B(s)}

K(S“’S) = k(sll)[ (S""S)(S"'SO)

Provided that o(s) is sufficiently well behaved at infinity, the above equation
for N is a non-singular Fredholm equation which can easily be solved on a computer.
Once N(s) is determined, one can go back and substitute it into the integral repre-

sentation and determine D(s). Then one can construct fz(s) = N(s)/D(s).
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Now, let us take these ideas and try to apply them to a bootstrap scheme. An
interesting possibility is the nx system which has the same quantum numbers in the
s channel as in the t-channel. So for example, we may hope to understand the p
meson as a resonance in the I=1, J=1 partial wave as being produced primarily as a
result of the exchange of the p meson in the t-channel. 1In terms of diagrams, this

means:

One could try to adjust the input parameters such as the mass and coupling constant
to obtain consistency with the width and position of the output resonance. However,
in certain respects, this model comes to grief. Due to the fact that we are
exchanging a particle of spin one in the t-channel, we are confronted with a problem
of divergences. Using the Feynman rules to calculate the p meson exchange contri-

bution to my scattering we have

2
g (P1+P3)'(P2+P4)

F(s,t) =
t-m 2
o]
2 s = (P, +P )2
= —g—_f . (t‘4H2)'(1 + __Zi__ﬁ , 172 5
t—mp (t-4u) t = (Pl-P3)
2
= ——5—5 * (threshold factor)-Pl(coset)
t-mp

The factor of s in cosGt ruins the convergence properties and the bootstrap scheme
fails. 1In addition, we have ignored in this procedure the contribution of the
shorter range forces and the inelastic intermediate state contributions to unitarity,
which should affect the solution significantly.

Another area where we may hope to gain some ground with this approach is in
nucleon-nucleon scattering. Scotti and WOng9 have fitted all the Nucleon-Nucleon
scattering data up to 300 MeV (first inelastic threshold) in terms of masses and

coupling constants of mesons exchanged. They included the =, 7, w, ¢ and p.
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Subsequently, Ball, Scotti and Wong took these same forces as input and
performed an N/D calculation in the NN channel. They were able to get bound states

with all the above quantum numbers, although the masses didn't come out correctly.

REFERENCES

9. G.F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).
10. A. Scotti and D.Y. Wong, Phys. Rev. 138, B145 (1965).
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Today we will begin by discussing briefly some elaborations of the N/D method
in bootstrap schemes. Certainly one way that we can improve upon our earlier results

is to consider the effects of the more distant singularties, such as inelastic

thresholds.
s plane
elastic inelastic
region region
3 s -
L T s

So, for example, if we were considering mn scattering, we would like to take into
account the sxmn intermediate state contributions to unitarity. It turns out to be
not too difficult to deal with two body inelastic intermediate states in principle.
So we may have a good handle on the problem if we were to approximate the mmn inter-
mediate state by grouping two of the final particles into a resonance configuration.
Either as pN or nA. One then considers the amplitude as a matrix. So for example

we make the following generalization

T = ND-l Forces
T11 T~ fxn p-exchange
le nm ~> pn n-exchange
T22 pn — pn
11-12

and consider the coupled channel approach. One would, of course, consider different
forces in each of the various channels. The unitarity condition for elastic

scattering goes over into a very simple form here.
-1 -1
T “(st+ie) - T (s-ie) = -k

where k is a matrix (diagonal) of center of mass momenta.

k,6(s-s,) 0
. - ( 1 1 )

0 k,8(s-s,)

Here 1 and s, are the thresholds for the two channels and ki is the corresponding
. -1
center of mass momenta. The matrix ND ~ method is then a straightforward general-

ization.

Another approach that attempts to consider the effect of inelastic processes

is the following. 1In the inelastic region, we may still write
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1
= ——— h = 6 :
f - where 8! R+16I

Now suppose BI # 0 and is a known function for s > sI, then the solution to the
problem can be written down immediately13 as
@
6 1
5(s) = &8 fds' 1)
7t k(s") s'-s
°1

where for the moment we have ignored the left hand cut.14 Unfortunately, this

. . . 2id .
solution is not unique. If e is a solution to the problem, then so is

(k-7) (kty®) e216
(k-7%) (k+7)
The extra multiplicative factor is designed not to destroy unitarity while it puts
poles on the unphysical sheet. These are the analogs of the C.D.D. poles, and are
. . . . 15-16
necessary to fit the scattering phase shifts on occasion.

Bethe-Salpeter Equation

Now we shall turn our attention to another dynamical model, the Bethe-
Salpeter equation and analyze its implicit 0(4) symmetry.17 There are a number of
reasons why we are interested in this model.

1) In its simplest version, the Bethe-Salpeter equation (hereafter B.S.) sums
up ladder diagrams. This is in contrast to the N/D approach, which typically con-

siders forces built out of single particle exchange only.

- — - vs
2) Some inelastic effects are included since you can break up the ladder in the
following way.

] —> //’

x /

P — —.\
3) At t=0, the Bethe-Salpeter equation exhibits 0(4) symmetry. This point will
be emphasized.
4) The equation is very similar to those of the Multiperipheral Model.

We will now analyze the B.S. equation at t=0 and use the 0(4) symmetry to

reduce it to more tractable form,
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k o
5P

N
4

t
Ak 1o K
>tp t=k 5P kinematics

The Feynman amplitude for the process depicted is M(p,p',k) and is a function of the
invariants p-p', p-k; p'-k, etc. For the moment we are ignoring spin in the problem.

In the center of mass system k takes the form
5
k = ((t) ’030’0) .

The fact that the elements of the ordinary rotation group 0(3) leave the amplitude
invariant leads to the ordinary partial wave expansion for the scattering amplitude.
But at t = 0

k = (0,0,0,0)
and the amplitude should exhibit a higher symmetry.

This symmetry is 0(3,1).* After performing a Wick rotation to transform
ourselves to a Euclidean Metric, the symmetry becomes 0(4) symmetry. We shall use
this to diagonalize the B.S. equation for the case of equal mass particles, but this
procedure can be extended to treat the unequal mass cases also.

The ordinary rotation group 0(3) consists of 3 possible rotations.

R, - rotation in 2-3 plane

1
R2 - " 1-3 plane
R3 - " 1-2 plane.

0(4) consists of these plus 3 more elements ("boosts'")

s1 rotation in 1-4 plane
SZ " 2-4 plane
S3 n 3-4 plane.

We can write down the elements as 4 x 4 matrices and calculate the commutation

relations of the generators.

Ri(69) = 1-iJi(66)
Si(66) = 1-1Ki(69)
* First considered by M. Toller and collaborators.
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then:

[Ji,Jj] = 1eiijk
(K] = ie; K
[K;.R; ] = ie; 3y

If we form the linear combinations:
35=5 +x,
i i—1i
then
: +
1= i
=0 ,
that is they satisfy 0(3) commutation relations. O0(4) is isomorphic to SU2 @ SU2.
Next we want to construct and label states according to eigenvalues of (J+)2
and (J-)Z. The eigenvalues are
+2 _ . .

-2 . states |j,j.m,m_ > .
(D7 = 3,0, 13,3

212

We can construct states of physical angular momenta by using the vector addition

- —f ——-
rules 7 = 3T 4+3

and combine states ljljzmlm2 > to construct states ]jl,szM > by using appropriate
Clebsch-Gordan coefficients in the usual way. j1 and j2 do not have any direct
physical meaning, whereas j does. We can also introduce the following convenient
notation

n = j1+j2 = Toller's A

M= 0th
so that according to the rules of vector addition, the physical angular momentum lies

in the range
M| <5 Sn
The most general sgpecification of an element of 0(4) is

U(,0,¥,058,7) = Ry (DR, (0)S, (1R, (R, (BIR,(7)

where the angles range over the following regions

0<B,0,0Sn 0< a,9,7 S 21
Then
. \ I1ds .
u@, 0,050,871 3 Jymmy > = ) BT (®,0,9,08,7) 3ydpm 'myt >
12 ™™
L L )
where
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D)

iy i N

1 (9.6, 1.0,8,7) = E: :25 ' L., w):25 ' Y8
LU 1
"

is k|
XE (CP,Q \[f)% z(as B, 7)

'm n llrnz

m 'm 'm m

1

Sandwiching u between states, we find,

3,3
1-2
< ydyitomtlufi i,i.m > = E}%mm"@ﬁow 0D, 8.

m''m

where jljz

G Ome = < 3pdpdmt 8,00 13,3,dm >

i(m,-m, )V
= Z{j e c(iypd mmym) -C (i, 3,3 'mm m)xd
1M
As an example
n,M=0 .

dj,OfO " - NG, 9 (sinpy e, T (cost)

where N(n,j) is a normalization factor. s v
Now let us take this machinery that )Jj{

we have built up and apply it to the scattering

of scalar particles on vector particles

The helicity amplitude is defined in terms of the on-mass shell Feynman amplitude

as follows: (we use the summation convention throughout)
*
= 1 '
Ty (s:0) =€ DM (p.p'kde ) .

The €'s are the polarization vectors for the vector particles. The amplitude M has

the Lorentz-Invariance property

1 =
M, (BsPhk) = A M, (AR, ARTLARA

In what follows we shall be working at k = 0. We go over to a convenient notation

for performing the partial wave expansion in 0(4)

"~ A
M, (P.p'k=0) = < p'ufM(p,p")[py >
A
where p denotes the magnitude of p and p specifies its orientation. OQur states

transform in the following way:
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~ AS
u(d) |pv > A, |Ap, vt >
vy
Passing from a cartesian index p to a pair of spherical tensor indices Zo, we have

from above

[N

u(A) | p,z,0 > =22 : (A)IQP,Z',G' >

'o'2o

Now we want to construct the states which transform irreducibly, under 0(4). Recall

how Jacob and Wick did this for 0(3). Consider
%
jm > = de zmm.J (R)R|p,6,0 >

where the integral is over the group volume. Then

i%
de.%mm,J (R)R'R|p, 8,0 >

fd(R'R) 35mm.j*<R"1R'R>R'R|p >

R'R =8

R'|jm >

and using the group property, we have

. id  1-1 7%
R'|jm > = u/\ds.?%nmnj (R ) fZ%nm,J (S)Slp,@,m >

ik 11 o
D )fdsim,,m,J (s)s|p,0,0 >

mm"'

But since the :23'3 are unitary, we have finally

R'|jm > = 3;1..;<R')ljm"> ,
so that ]jm > does indeed transform as desired.

For 0(4), the state that transforms irreducibly is

fdAijmj ,m,(n’M)*(A)u(A) |=,0,p >

From this, we can find the following expansion coefficients,

A (n’M)* ~ lé;é ~
] [} ] =
< p,=',0'|nMjmZ > NZ ij,m,z,g (p)zz'c'm (p)
(o]

Now we can use this to diagonalize the B.S. equation

4
',p,k) =B ', p, k) d ',q,k
Mv“(p p,k) V“(p p )Af qMVG(p q,k)

G oy (KB (4, P,k
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Here B is the kernel, which in the ladder approximation is simply
s v

K] v

while G is the two particle propagator

1 60T+(k/2-q)0(k/2—q)T
2

G__(q,k) = .
ot (k/2+q)2+ms2 (k/2—q)2+mv

where we have used the standard Feymman rules with Euclidean metric.

Symbolically, the B.S. equation says

O ===
//’///’__—\\\

so that iterating the kernel through the integral generates the sum of all ladder

diagrams
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18
We first consider the B.S. equation for the scattering of spinless particles.

By definition then, M=0 and for forward scattering, K=0, we have:

<p'Mp',p)|p > =< p'[B',p)|p >

4 A A ~ ~
A /d q < p'|M(p,Q)q > G(Q) < q|B(Q,P)|p >
using the transformation coefficients:

o (n,0)
< p‘nJm > NDj,m,O,O (p)

to protect our 0(4) partial waves, and using the orthogonality property

n,n"gjj'amm'

s

/qu <n'jm'|q > < q|njm > =8
we obtain

M (p',p) = B (p',p) + A fQ3dQM“<p',Q>G<Q>B“<Q,p)

From this equation, we can infer the existence of daughter Regge poles. To do this,
we assume that the solution of the equation can be analytically continued in the
variable n. (This can indeed be proved in the ladder approximation). Poles in the
n-plane, sometimes known as Toller poles, or Lorentz poles, manifest themselves as a
sequence of Regge poles. To see this more clearly, the expression for the 0(3)
partial wave amplitide in terms of the 0(4) partial wave amplitude is (where the

coefficients Xjn are given in Ref.18) j

[¢°) Jj=n X
-
* n K

T, (t=0) = Z X, MX, F
] jn jn X X
n=j . (}V/ —

where the terms in the sum represent the contribution of a horizontal array. The
inverse formula, necessarily sums the vertical array, j = 0,...,n.

Making the transformation k = n-j, we have
o)

Akt
T, (£=0) = ; XM IX
k=0
where we have momentarily dropped the index on the transformation coefficients X.

Now, suppose Mn has a Toller pole at n = ny: e.g.,

then
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[
%

T' t=0 =z }g_l__._
J( ) - j=(ny=k)
k=0
Thus, a single Toller Pole generates a sequence of daughtgr Regge Poles in addition to
the Parent Regge Pole at j = ng-. "Parent"
1

54

P First "daughter"
; e t
Chew Frautschi Plot. I

For the equal mass case, the daughter trajectories are spaced by two units of angular
momentum at t=0. Since we are working only at t=0, we can say nothing about whether
the trajectories are parallel to one another. There exist elaborate arguments based
on analyticity of the S-matrix which also imply the existence of daughter trajectories
and give various relations between them.

We can make an expansion of the B,S. equation about the point t=0, where we will
obtain a breaking of the symmetry, and the equation is no longer diagonal. Such an
expansion can lead to relations among the slopes of the Regge trajectories. In
addition, the classification of Regge trajectories at t=0 can be investigated within
this framework. One restrictive feature of the model is that it gives only poles in
the J plane, but no cuts. On the basis of such analysis, the pion has Toller quantum
number M=1 at t=0. But if the mass of the pion were zero, then J=0, at t=0 so that
the pion would have to have M=0. Experimentally, the pion seems to have M=l. To see
this more clearly, let us examine the beahvior of s-channel helicity amplitudes near

c t=0.

AN
8 o (oMl =Iaa Ay b - [ac-agll)
/ Py A A A
a t b
where M is the Toller quantum number of the tragjectory exchanged in the t=-channel.
N N Now in m photoproduction on nucleons,
the differential cross-section exhibits
a forward spike near the forward direction
N \\\ﬂ with a width of Q;uz. This motivates
its explanation in terms of pion exchange. But for photoproduction \Ka - Kbl = 1.
Hence, in order to restore the possibility of a forward peak, the pion must
have M=1, A similar peak exists in the differential cross-section of backward

n-p charge exchange scattering, where the interpretation in terms of an M=1 pion is

also strongly motivated.
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Multiperipheral Dynamics

The last dynamical model we shall consider is a recently-formulated bootstrap
scheme which attempts to remedy one of the major weaknesses of earlier models, in
that it attempts to take intc account effects of inelastic processes explicitly.

Such effects will play a major role in what follows.

One of the earliest attempts along these lines was formulated by Amati, Fubini,

and Stanghellini,19 who proposed that multipion exchange dominated high-energy, small-

momentum=-transfer inelastic scattering, in the following region of phase space

s large
/ R .sn large
ST (§-t .tn small,
/ :
s

Recently attention has focussed on the Multi-Regge Pole Model, which has explained

rather successfully much inelastic scattering data
In spite of the fact that the multi-Regge
region of phase space is small, we assume

by invoking the concept of duality,21 that

1
on the average, it is an adequate repre-
sentation of the scattering amplitude in
Simplest Multi-Regge diagram. the whole region of phase space.

The wiggly lines indicate Reggeons.
Consider the n-particle intermediate state contribution to the absorptive part of the
elastic scattering amplitude for particles a and b. To parameterize this contribution

22
we use the prescription of the multi-Regge pole model (MRM).

B T e

Kinematics s = (p_+p )2 t, =p 2
a ‘b 2 L+ 1 2
= = 1
s]. (p1+pb) t]_ (pl )
S, = (p,+p )2
2 2 b
s, = (p,+p )2 etc
3 37D ’

For the rungs of the diagram, we include only so called stable particles, for example

x mesons, in order to avoid double counting. Duality says that the Regge pole
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exchanges in our process account for, in an average way, resonant effects between
particles on adjacent rungs.
Unitarity says that the absorptive part of the elastic scattering amplitude due

to n-particles in the intermediate state is given in the MRM by:

ab [ .4 4 4 +, 2 2 2 2
A (s,t) = j d q0"'4'_"'d qP+1 8 (Zqi'pa-pb) 6 (qy - )""'6+(qn+1'“ ) %
ace, e ) o
(Sop) B, (t B *e N pee, e, v Fe ) x
a(e, N+,
s, o

where Ba represents the coupling of a Regge pole to the external particle a; and

where ﬁ(t1+,

peripheral chain. 1In the above, we have left out the signature factor of the Regge

+ . .
t, ) represents the internal coupling of two reggeons in the multi-

trajectories. This will be put in correctly below. 1In addition, there can be many
trajectories contributing so that each trajectory should have an index to identify
it. The internal vertex functions could have dependence on vertex angles, but we

shall ignore such dependence in our model.

The full absorptivempart of the amplitude is gotten as;

A(s,t) = z_A (s,t) .
n
n=0
But since we don't want to form the sum explicitly, we must try and be clever. We
. . . th th
try to write a recursive relation to get the n+l term from the n term. In order
to do this we must undo an integration and define a new function Bn in the following
way.
_ 4 +, 2 2 - * 4+ ' ,
as,0) = [ a*ay 6%ag®- WP (6,78, (e, M8 (b p TPy py )
Bn satisfies the following recursion relation.
Y b +, 2 2 - K+ +
! ' = -
B (5P, 5905 P5Py ") J d'qy 87(q)"-u)B(e; e, B (5,8, )
a(t, M +alt; ")
] 1
Bn-l(Pl ’pl’ql’pb ’pb) (801)

Summing this equation from n=1 to « gnd defining

we obtain an integral equation for B
v 1 ' _gY ' 1 j 4 4+ 22
BY (p,'sP_59g5P,"»Pp) = By (P '5P 595,P, "5P) + | d7q 6 (a7 -pT).

+ -
e, He

Q
y! * + - - .Y \
(S5 R G P NN I T L K CTRN PR M
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where we have labelled the Regge trajectories explicitly. Here BO’ the inhomogeneous

term, corresponds to the two particle intermediate state contribution.

a ‘b
,Yl
v + -
a b o, (t, )+o, ()
' k LA L |
Bg = 6(s;- pz) B:(t1+) By (£, 7) (s/57) 7 !

In order to conserve notation we introduce

% + +. - Ny + =+
and to make the above integral equation more tractable, we make a change to Lorentz

Invariant variables. That is, we want to change

j d4q 5+(q12-u2) ;:::::i:> integral in terms of invariants.
1

To do this, we perform a sequence of tricks
4 o+, 2 20 b A+ 220 b4 e 2
Jd qp 87(q;"-u") = Jhsz Jﬁ 4,879 & (q;7=u") 67(q;+ a-B)b(q"-s,)

]
where p = 12 + Py //////pb

Py

=
The above integral when evaluated in the center of mass sytem P = 0, gives

I ds J ( integral over 2 >
2 body phase space

= —— + = -'_ - 2 +- - 2
jasz jdtz e,y Jﬁqué(tz (4,-p) "0 (t, =(q 7" )

(Jacobian)

introducing the angular variables;

7 = pl'pl'

Z)= P79y
1= T,

21 7P 'Y

we have by the standard addition formula
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L
z,' =z z1+((1-z?)(1—212))2cos¢

1

so that the integral over qu1 reduces to' an integral over dp and dzl. In addition,

to simplify things, we take the asymptotic limit

2
s1 >> SZ’ mi
in which case we have:
z = 1+ %E
1
2t, -
- 2
z1 1+ 5
2t 4+
zi = 1+ 2
°1

The Jacobian of the transformation becomes, keeping terms of 0(&—) only
1

]
—

J = LEA) 6(¥), X >0
_ %

]
(=]

B(X), X <0

where A is the triangle function

A(a,b,c) = a2+b2+c2-2ab-23c-2cb

In this approximation, the multiperipheral integral equation becomes

N dS dt dt
' + ' + + .+
87 (s,805176) = By (s,8,8,5,0) +Z / f g Byt
0 °1 ( 7\(t t))
+
G
'L Y +
(801) B (sl,sz,t2 ,t)
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where
+ + -
I G- S LT

7!

diagramatically:

7'

7! ¥
Vo Vo
j]w

7! 7

. 2
s, and s, we have the relation 3

Now for high values of the subenergies s 1

oy’

= . '
s s Sl f(w’ts )

01
so that if we work in the limit that the Toller angle w is kept fixed, and absorb
f into the vertex functions, we have

s o s/s1 .

01
Previously we had

+ -
a ,(t; )+O‘7-(t1 )

"(s,sppt 50 = (s B (e, 08 (e Y (srs ) T

Bo
. . .24
We define y = 52/81 and factor the s dependence by defining

+ -
' o, (t, H+o , (t, )
B7 (S,Sl,tli,t) = (S/Sl) 7 ! 4 1 B7 (Slﬁt]_i’t)'

The equation for b then becomes
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7! +
(51,5, t) = MSM)F. )+ZZfbf o N CRRRLE
1’71 1 b 1 o, (At~ £ o2 Fory

+ -
o (t, )-a (t, )
-y 72 v 2 by(sz’tzi’t)

where
+ 2 + -
£, = = B *(t t
F (gm0 = B* (e DB (e D)
We now perform a Mellin transformation on this amplitude b in order to extract its

agymptotic behavior.
c+ioo

b spetie =5 [ e mhI v Gt

2ni
c~i00

defines the Mellin transform amplitude ¥ where the contour c is taken to the right

of all the singularities in the J plane of ¥. The inverse of this transformation is

given by
oo

P =L + 2.-j-1
B(i,ty5E) =5 /:isl b(sy,t = t) (s, /m")
m
0
The asymptotic behavior of the amplitude is governed by the singularities lying

farthest to the right in the j plane. The Mellin transform of the integral equation

becomes
e N DU |
dt - F ( ' —)'w (J,t _’t)
15( l’t)—F'b(l’m)-'-Z[ 1 1+2 - 2
(At 50 J-la (t,)*a (&) )-1]

Now in order to keep the model as simple as possible, we will assume that the

+  +
internal vertex functions, Fy'y(tl_’tZ—)’ factor

N A N N
P, (6560 =27 Tg (6 Dg (6)9)

1
where A7 4 is a matrix of coupling constants. In addition, we take
+ 20 . 7! +
F')/'b(tl , 1M ) - Ab g'}"(tl )

Then if we define the auxiliary function B as
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¥ Gt = g ehe G

the equation for P becomes

' ' \ '
8, @0 =2 ) 787 G0 (e
Y

where

2
p (j,t) = ‘ + E + _
(ACe,me)) " I-lo () Do (B) )-1]

Now if we define the Mellin transform of the total absorptive part of the amplitude

as:
c+ioo

. (s /m2y ] .
Ap(st) = 5= / dj(s/m™)” a_ (3,¢t)
c-ioo

then in terms of B, the Mellin transform of the absorptive part is

. I A A .
a,, (3,6 Zha Pt (3,8)B" (J,t)
7!
So that except for evaluating p(j,t), the problem has been reduced to an algebraic
one. Earlier, we had completely ignored the phase due to the signature in

our equations. This gives the following form for p

+ Y, *+.2 =z + -
de,= [g” (t£,7) [“cosy(a (t, ) -a (t, ))
o (Gt = f 2 2 2\ %Kiy 1T,

+ P + -
(-A(t)=>t)) J-(a, (£, )4 (£, ) -1)

On inspection we see that p(j,t) has a branch cut in the J plane The position of
the branch point is the same as the AFS branch point.19 Now, let us take a simple
model and actually calculate p. We will give the vertex functions exponential
dependence in momentum transfer

+

kyt2

[N

PP N
g(tz) e

and take the trajectory functions to be linear
o (t) = a+b t
7 7

To simplify the integration, we make the change of variable
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(e, %+ (£, 5

F - _aN2
! 2?0 o)’
2 2

after which the integral becomes

2 2
2 2 '21(7(}7_'_ +Y_ )
/ﬂdy+dy_(y+ -y_ e cos(2nby,y )

7, . - L ’ 2
P (J,t) {(xz-y_z)(y+2-x2)}2 J-[2a7-1-2b7(y+2+Y_ )]

where the range of integration in the Y. plane is the shaded rectangle:

- |
I
X+ X
A i
e // // Y
// L //z vy
N P S e
x4 e 7~ ///
Making the substitution
y+ = rcosf
y_ = rsiné , the integral for p becomes
/‘ —2k7r2
2- rdrdSeos(26)e cos(nbrzsinze)

py(j,t) =

LS
§i o 26 26 §E 2 3-[2a -1-2b rz}
> sin cos 6- = 4 4
r

where the integral is broken up into two pieces

(A) x2 < r2 < 2x? 06 <cos x/r
(B) 2x2 ES r2 S 0S6°% sin-lx/r
2
2x -2k7r2
. dr 2
oG = [ < > L@

2/ J-[2a -1-2b 1]
x 7 v

© -2k r
4

+ /\ dr’e - . IB(rz)
22 J-[2a7-1-2b7r ]
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where

cos x/r
2. _ cosZ@cos(nbrzsinZQ)dQ
I(r)-— 1
A . 2 22
0 X _ sinle 25 _ X
5 si cos 5
r
and
. -1
sin "x/r
2, _ COSZ@COS(ﬂerSiHZQ)dQ
I, =

,/\ 9 IS
0 X 29 29 _ X
— - sin cos ;7

Now if we make further the substitution

A sin26 T , we find I (r2) =1 (rz)
3 A B
2 (1212)
T
2, _ 2 2% _ 2
L) = Jy@ub(r —x7)"x) = I.(r)
. 2 2, 2 , .
Making the replacement r~ = r "+ x~, the integral for p becomes (recalling that
2
x" = -t/4)
kit o 1y "2k x'2 .
Y Vb2
y 2 dr e Jo(nbr (-t)*)

' (3,t) = 2Ke 7
0 J-(a (-t “+t/u)-1)

where p is normalized such that as J » o, p ~ From this expression, it is

G

clear that p has a branch point in the J plane at JZ(t) = 20%(t/4)-l.
Now in order to perform the integral, we make the approximation that the
region of J we are interested in is sufficiently well above the cut Jy(t), so that

J>> i ().

J plane

7
O
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In this limit we may take the denominator out of the integral for p and get

k t
-
, 2k e 2 Rk r? 5
o' (3,t) ¥ —F——— ar%e 7 3 (br (-£) )
J-3 ey
0
1
eky t K 2.2
= where k '= EZ + n8k
J-37(t) 7

One-Regge Pole Model

This is the simplest model in which the above equations can be analyzed.

The trajectory labels y can be dropped, and the equation for Bb(j,t) becomes

A+ g2 (1,000, 0)

B, (3,1

A

By (J,t) = ——>——
1- g%0(j,t)

2

where g 1is the internal coupling of the Regge pole in the multiperipheral chain.
The equation for the Mellin transformed absorptive part is

A _ Aalbp(J’t)

(350 = =
l-g 0(j,t)
The Regge poles arise from the vanishing of the denominator. There will always be
a Regge pole for real J to the right of the branch point. This is true regardless
2

of the value of g , because p has a logarithmic singularity at the branch point.
Now if g2 is sufficiently large so that the pole and the cut are well separated,
we may substitute our approximate form for p and obtain

k't
Aakbe

a_ (j,t) = :
ab J-[Za(t/h)—1+g2ek t]

We see that the position of the Regge pole is at:

B 2 k't
o%ut(t) = Zain(t/4) 1+g7e

We can impose bootstrap consistency by demanding Obut(t) = Oﬁn(t) in the linear

approximation. This gives

1-g2 (intercept)

2g2k' (slope) .

o
il
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In addition, we can bootstrap the residue function by demanding equality of input

and outpur residues

2.2
k , ab
1 = = -
k k 5 + Bk
or
- b
k=3
this gives:
52, 2xb 2 _1
b =2g"k = 2g—z— or g .
a = 1-g2 = 1-l = 0.68.
T

The iterated solution for the trajectory function gives

o kt
n
a(t) = 1-g>+g° Z 2‘{e 4 -1]

n=0

These results are not unreasonable for a high ranking meson trajectory such as the

p-meson, but they simply cannot account for the Pomeranchuk singularity. For one
A 2

thing, the intercept of the trajectory is not high enough. This is because the g

predicted by the known multiplicities of secondaries

= 2 2
n= g log(s/m")
2
which is given by this model is g = 1,~ 1.5. Hence a which is given by

a = l—g2 is too small.

So the one pole model is too simple to account for the highest lying vacuum singu-
larity. We must go to at least a two-input pole model. The input is to be a meson
trajectory and the Pomeranchuk trajectory. The results of the model are that the
slope of the output Pomeranchuk pole is = 1.5 times the '"normal' meson trajectory
slope.

A particularly simple limit of the 2 pole model is when the coupling of
the Pomeranchuk to the meson in the multiperipheral chain can be ignored. 1In
their limit, the Mellin transformed absorptive part of the elastic amplitude for

particles a and b is given by

aab(J’t) = Pole + Cut.

Here, the pole term represents the inelastic part of the total cross-section,
while the cut term comes from double Pomeranchuk exchange and represents the

elastic part of the total cross-section. (see Ref. 24)

- 285 -



19,
20.

21.

22.

23.

24,

REFERENCES

D. Amati, S. Fubini and A. Stanghellini, Nuovo Cimento 26, 896 (1962).

For a review of the status of the model, see the review talk by Czyzewski,

Proceedings of the Vienna Conference, 1968.

G.F. Chew and A. Pignotti, Phys. Rev. Letters 20, 1078 (1968).

G.F. Chew, M.L. Goldberger and F.E. Low, Phys. Rev. Letters 22, 208 (1969).

See N. Bali, G.F. Chew and A. Pignotti, Phys. Rev. 163, 1572 (1967), Eq.

Also, Phys. Rev. Letters 19, 614 (1967) Eq. (3).
For additional references see G.F. Chew and W. Frazer, UCRL Report 18681;

W. Frazer and C. Mehta, Phys. Rev. Letters 23, 258 (1969).

- 286 -

(C.5).



MULTIPERIPHERAL DYNAMICS
Lectures by: Geoffrey F. Chew
University of California, Berkeley

Notes taken by: David K. Campbell

- 287 -






In these lectures the central, unifying theme will be the "bootstrap" concept.
Specifically, we shall discuss the relations among the many different models partially
embodying this idea, with particular emphasis on the multiperipheral model. We shall
approach the problem within the framework of S-matrix theory, and I shall assume some
familiarity with the techniques used in that theory and a rudimentary knowledge of
the analytic structure of the S-matrix.(l)

The fundamental content of the bootstrap idea is self-consistency: that is, (2)
"nature is as it is because this is the only possible nature consistent with itself."”
The philosophical implications of such an hypothesis and its relation to "normal"
scientific theories--as well as most of the material in today's lecture--are
discussed in detail in reference (2).

We will attempt to construct a partial bootstrap limited to the hadrons and
based on the assumption that the hadrons by themselves are '"self-consistent', in some
sense all being composites of one another. 1In developing the theory, we will allow
no arbitrary hadronic parameters--like for instance, the masses and coupling constants
of elementary particles in a local field theory =-- but we will require a set of
"arbitrary'" postulates as constraints on the S-matrix. In effect we hope that by
constraining the S-matrix to satisfy certain constraints we will enable the partial
hadronic bootstrap to succeed even though a theory consistent with the full bootstrap
philosophy would have to include and account for electromagnetic, weak, and gravita-
tional interactions as well. The relevance of the constraints in limiting the theory
to hadronic interactions will become clear when we enumerate them.

First, let me motivate the ideas of '"'compositeness" and '"self-consistency."

We can recognize three distinct roles taken by particles in strong interactions.
The hadrons may appear as:

1) constituent particles in a composite, for instance, as the neutron and

proton in a deuteron ;

2) carriers of the strong forces, like the pion in the Yukawa model; and

finally as

3) the composites themselves.

Demanding '"self-consistency" of these different roles in a particular hadron system
can lead immediately to a crude bootstrap; in mTm scattering, one can imagine re-
quring that the forces caused by exchange of the p pole (in the t-channel) are
sufficient to produce the p resonance (in the s-channel). But it is clear that

this picture, couched in a non-relagtivistic language, is insufficient to describe
strong interactions, for which relativistic effects are essential. 1Indeed, to
describe the 1 as a bound state of, say Nﬁ, requires assuming a binding energy equal
to many times the rest mass of the composite particle.

Thus we must consider a relativistic theory. The extreme difficulties inherent
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in relativigtic quantum field theories suggest that these may be inappropriate for de-
scribing the bootstrap. We will instead use the S-matrix description of strong inter-
actions. Here one asserts that in measuring the probability for scattering an initial
configuration of momenta into a final configuration, one is measuring quantities re-
lated to S-matrix elements. By establishing or postulating fundamental properties of
the S-matrix, one is able to correlate different measurements.

What, then, are the fundamental properties of the S-matrix? To limit the theory
to the strong interactions and to embody the idea of compositeness we require the S-

matrix to satisfy four constraints.

1) Space-time constraints: We assume Poincare invariance of the S-matrix which

together with the Fourier transform relation between macroscopic space-time and
momentum leads to the conservation laws in momentum space. We also require the

cluster decomposition property, which asserts that events widely separated in space-

time are independent.

2) First degree analyticity: The S-matrix elements are analytic functions of

momenta with only those singularities related to the causal aspects of space-time and
to unitarity. We assume as well that the same function, continued gnalytically,
describes the scattering amplitude in all reactions related by the interchange of
ingoing particles with outgoing antiparticles; this is crossing.

3) Unitarity: This asserts sst = 1, combining the quantum idea of superposition
of states with the conservation of probability.

4) Second degree analyticity: By this constraint we mean that "all poles are

Regge poles,'" that is, that there exist no elementary particles corresponding to
Kroenecker delta singularities in angular momentum. This is also known as '"nuclear
democracy'" or "Regge boundary condition."

Our bootstrap hypothesis is that these postulates determine the hadronic S-matrix
uniquely.

Before we begin to examine this hypothesis, let us consider two questions. How
do these postulates achieve our goal of limiting the theory to hadrons so that we can
reasonably expect a successful bootstrap involving hadrons alone? Given these postu-
lates about the S-matrix, how do we develop a calculational procedure?

The answer to the first question is (superficially at least) clear. The
assumption of Poincare invariance implies that we are neglecting general relativistic
effects. Further, analyticity of the first kind in the presence of unitarity is in-
compatible with the existence of mass zero particles and thus---assuming that
descriptions of electromagnetic, weak and gravitational forces involving zero mass
photons, neutrinos and gravitons respectively are correct-~-we are excluding these

interactions from our theory. Hence these postulates may allow a partial bootstrap

of the hadrons separately.
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The second question is more difficult because there is no definite starting point
for making calculations. Essentially, given approximate knowledge of the S-matrix in
a small region, we can, by applying the constraints, extend and continue this know-
ledge to surrounding regions. However, the complexity of the theory precludes just
writing down the answer. So we will construct models satisfying some of the postu-
lates in a restricted domain and then "continue'" the results to relate different
regions of the S-matrix. The major emphasis of the lectures will be on discussing
simple models which allow us to correlate different parts of the S-matrix within the

bootstrap framework.
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Today's lecture will serve primarily as a brief review of the terminology and
concepts of S-Matrix theory.(l)

I will assert, rather than prove, most of the needed properties of the S-matrix,
in order to avoid deep forays into an unfamiliar formalism. The first properties
are unquestioned, although in some cases the direct logical relation to the funda-
mental postulates has not been completely established. Let us begin with a definition,
We will call a channel any collection of particles which can constitute an initial

or a final state. Communicating channels are channels which share the same conserved

quantum numbers so that S-matrix elements among them do not vanish identically.

I. Cluster Decomposition:

We will discuss this postulate in order to introduce and illustrate a useful

diagrammatic technique. Recall that this hypothesis stated that widely separated
events were independent. This implies that if we consider particles at all times
far apart, there will be no interaction. We can illustrate this principle with the
aid of simple diagrams in which a line corresponds to the motion of a real physical
particle and '"bubbles'" correspond to interactions among particles.

Consider a real physical scattering process in a three particle channel. We
could represent this general scattering as in Fig. 1 (term 0). By the cluster
decompos{tion hypothesis, there will exist configurations such that the particles are
so widely separated that no deflection of momentum takes place: that is, such that
the particles do not interact at all. This is indicated schematically in Fig. 1 by
term (1). We can equally well imagine interactions involving just two particles
(term 2) or all three particles (term 3).

Each "connected" portion of one of these diagrams contains as a factor a delta
function of the sum of the interacting particle momenta: term (1), for instance,
contains the product of three 8-functions corresponding to the requirement that all
three particles move undeflected. The total S-matrix, of course, will contain g
§-function corresponding to overall momentum conservation. That part of the
S-matrix corresponding to all particles interacting (after factoring off the
§-function) is called the '"connected part." Thus term (3) in Fig. 1 represents the

connected part of the three particle to three particle S-matrix element.

II. Analytic Structure of the S=matrix:

We can use the diagramatic approach developed above to indicate how
studies of the singularities of the S-matrix proceed. In the first instance, we

will restrict ourselves to those values of the external momenta which are allowed

physically. But the requirement of
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analyticity allows continuation of the S-matrix elements to domains outside the
"physical region.'" We will discuss this later.

Consider first the correspondence between poles in the S-matrix and
particles. One of the ways in which the scattering of three particles can take place
is by the physical double scattering process, as shown in Fig. 2. It can be shown
that the possibility of this double scattering occurring implies the existence of a

pole of the form

A
2 2
(p1+p2-pa) -m

in the connected part. Further, the residue of the pole is factorable into factors
depending on the two bubbles((A) and (B)) independently.

Another singularity can be shown to arise from the more complicated physical
triple scattering illustrated in Fig. 2(b). It was first emphasized by Coleman and
Norton that the requirement that diagram 2(b) describe a physically possible triple
scattering implies that the space-time displacements satisfy TAB+TBC = TAC' These
give a condition on the external momentum which allows one to calculate the location
of this singularity.

In general, any "diagram" involving a real scattering process will correspond
to a singularity of the S-matrix. The canonical techniques for locating these
are called the "Landau rules". Note that the more complicated singularities will
normally be branch points (on the real axis). Consider a gpecial example of a

physical region singularity: the normal threshold, shown in Fig. 2(c). This physical

situation arises if these particles come out with no relative momentum so that they
can interact again. Thus the singularity occurs at zero relative kinetic energy

and hence at

2 2
(p1+p2+p3) = éil m) .

To be certain that the significance of the diagrams is clear, I should
emphasize that they are not field theoretic or Feynman diagrams but are graphical
representations of real processes which correspond to singularities in the S-matrix.
The S-matrix is not a sum of these diagrams; they merely give the location of the
singularities. If we know the discontinuities across the singularities they
represent (unitarity helps here) and if we know the asymptotic behavior of the
amplitude (second degree analyticity helps here), then we can write dispersion
relations for the S-matrix element.

Suppose we now wish to extend our study of singularities to the "unphysical

region' of the external momenta. We must clearly have a prescription for continuing
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analytically past the Landau branch points discussed above. The '+ ie¢ prescription"
says that to remain on the Riemann sheet on which the physical scattering amplitude
is the boundary value of the analytic S-matrix element, we must follow '"paths' as
shown in Fig. 3. With this prescription we can continue beyond the lowest physical
threshold to the ''unphysical region.'" One extremely important singularity in the un-
physical region is the single particle singularity in the two particle connected part.
Since we are at present considering stable particles, we know that the singularity
corresponding to the formation and ''decay'" of the single particle intermediate shown
in Fig. 4 must be in the unphysical region. Continuing analytically to s = m2
demonstrates - as we would anticipate - that there is a pole in the S-matrix corres-
ponding to this single particle "intermediate" state. Further, factorization still
holds. The Landau rules, because they are analytic, will still describe the positions
of the general singularities outside the physical region.

III. Crossing:

Although we asserted this as a part of the fundamental postulate of
analyticity, crossing can be ''proved'" considering a diagram such as shown in Fig. 5.
By varying Py from Py >m to P, < -m while staying on the pole at p2 = m2, one can
continue from the process illustrated in Fig. 5(a) to that of Fig. 5(b) where the
scattering order is reversed. The particle then will have the antiparticle quantum
numbers of the particle m. By factorization we conclude that E, the amplitude B

with particle m "crossed," is the analytic continuation of B,

IV. Hermitian analyticity:

We will present an intuitive heuristic argument for the property, first

(3)

given by Stapp. Roughly speaking, before an interaction the particles can be

represented by an incoming wave, et r, whereas afterwards they may be considered to
+ik , ; -1

be an outgoing wave, e * r. So the transformation k = k should take S to § which

equals S+ by unitarity. Now k « (S-St)% where Se in threshold of s. Thus, the path
of continuation shown in Fig. 6, which takes k = -k, will take S to S+. Note that
if there are many branch points (thresholds), the continuation must go around the
lowest threshold.

(4)

V. The Cutkosky Discontinuity Formula:

Consider the consequences of unitarity and cluster decomposition for the
S-matrix element shown in Fig. 7(a). S'S = 1 gives us the diagrammatic equation

shown in Fig. 7(b), which corresponds to the equation
+ ¥ +
Mba(s+)-Mba (S+) = 1c zad¢ann(s+)Mna(S+)
n

where n denotes a physical intermediate channel, s, = s+ie, and
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is the phase space element.

By hermitian analyticity
(s,) = (s) where s = s - ie
Mba + Mba -7 - ’

and thus
Mba( S+) -Mba( S—) = e Z d¢ann(s-)Mna(S+) .

This formula can then be continued analytically. Analogous formulae can be derived
for the discontinuity associated with any Landau singularity.

We come now to a second set of properties related to poles associated with un-
stable particles. Here we will, in general, not attempt to indicate how these
follow from the basic postulates. We know that poles corresponding to stable parti-
cles lie on the real axis below the physical region. Further, we assert that on the
first or physical Riemann sheet(recall that Landau singularities are in general branch
points) there are no complex poles; this can be proved in axiomatic field theories,
for instance.

VI. Resonances and Unstable Particles:

Resonances, being short-lived unstable particles, also correspond to poles -
but poles on the second Rieman sheet. These poles are near the physical region,
lying just below the real axis, Of course, Hermitian analyticity (think of it as
f*(z*) = f(z)) requires that these resonances have partners, but the partners are not
on the same Rieman sheet and can readily be seen to be far from the physical region.
As an example, consider a threshold causing an n-sheeted structure to arise. In
general, Hermitian analyticity holds only on the physical sheet - obviously the
function can not be real below threshold on all sheets. So if we wish to continue
the equation £*(z%*) = f£(z) we must do so along complex conjugate paths originating
on the physical sheet. Hence the '"partner" of a resonance (lying on the second
Rieman sheet) will be a pole on the (n)th Rieman sheet, which is far removed from
the physical (+ie) limit (Fig. 8).

We may extend the diagramatic technique to include unstable particles by
considering resonance poles in many-particle channel amplitudes and using factori-
zation. Thus, the connected part of a 2 - 2 amplitude involving an unstable
particle can be defined by the procedure illustrated in Fig. 9.

(A) Virtual (or anti-bound) states:

If a pole lies on the second Rieman sheet, just below a branch point, it is

- 295 -



called a virtual state; the physical manifestation of this pole - sometimes also
called a"threshold enhancement,'is in a sense "half" a resonance. An example of such
a virtual state is the 1S anti-bound state of the nucleon-nucleon system, which lies
just below threshold in NN scattering. We may note, parenthetically, that unless
the discontinuity across a branch point is large there will not be a large local

variation of the amplitude. But unitarity shows that
2
disc F ~ |f|
so that unless f is large in the vicinity, as in the case of '"threshold enhancement'-

a branch point may not make its presence visible. (See Fig. 10)

Complex Normal Thresholds

Once we have noted the existence of complex resonance poles, we can see that
resonances - perhaps together with stable particles - can combine to create complex
normal thresholds on unphysical sheets. (See Fig. 11). To illustrate this, consider
TN scattering. Among the singularities therein will be a branch cut on an unphysical

(5)

sheet corresponding to Am branch point. Drummond has shown that the discontinuity

formula for complex normal thresholds is analogous to that for normal thresholds.

Wooly Cusps:

By analogy to the normal threshold case, we expect it is possible that there

are resonance poles in 'virtual' positions with respect to complex normal thresholds.

0 (6)

The effect of such poles in the physical region is called a "wooly cusp.
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FIG. 2(a) A Physical Double Scattering Process in the Connected Part of the 3 = 3
Scattering Amplitude
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FIG. 2(b) A Physical Triple Scattering Process in the Connected Part of the 3 - 3
Scattering Amplitude
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FIG. 2(c) The 3 Particle '"Normal Threshold'" in the Connected Part of the 3 = 3
_Scattering Amplitude
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To continue with the discussion of general properties of the analytie S-matrix,
I will illustrate how unitarity - with very little else - may be applied directly to
explain certain physical phenomena.

I. Partial Wave Discontinuity Formula:

Recall the general discontinuity formula

Mba(s+)‘Mba(s_) = ic }T d¢ann(S-)Mha(S+)'

This equation can be simplified immensely, if we consider the special case where

1) a,b and n are two body channels (with arbitrary masses, however);
and 2) only the effects of a single intermediate inelastic channel ; are included.
Taking into account only the channel ; implies that, instead of encircling
all the branch points to obtain the full discontinuity, the path of continuation
encircles just the threshold for ;. (Fig. 1). Then the discontinuity equation

becomes (assuming spinless particles)
s 4 4+ 2 2 +, 2 2
Mba(s)_Mba(Sn) B lc\/jd p1d p26 (pl 1 ) x B (p2 ) )Mbn(S)Mna(Sn)

The two body phase space integral can be done completely using partial wave
projections. Let qfa(s) be the partial wave projection of the amplitude Mb (s).
. ) y) Lo ) ) a
Defining the reduced ampléﬁude Bba by Aba = (qaqb)sza , Where q 1is the center

of mass momentum in the i channel, we find
2 2 2 2 2
B S - = i
ba &) B, © ) =2ip “(s)B _“(s )B_“(s) (1)
24+1

2q

Here o~ = _?25%—— ; note that the definition of p determines the normalization

of the partial waves. Further ,we note that by Bbaz(sn) we mean that function which
is the analytic continuation of Bbaz(s) onto the nfxt Riemann sheet (in a counter-
clockwise sense) with respect to the branch point n.

We notice immediately from this equation that:

1) in the partial wave amplitudes poles will be shared among communicating
channels;

2) poles can not occur at exactly the same value of s on both sheets as,
if they could, we would have a single pole on the left hand side equaling a double
pole on the right-hand side;
but 3) if the residue of the pole on the first sheet is small, so that the
discontinuity - which is proportional to this residue - is also small, then there

can exist a pole on the second sheet slightly displaced from the s-value of the
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original pole. For the displacement to go to zero, the residues must also vanish;
thus the branch point disappears as the poles coalesce. This is necessary for
consistency with 2).

As an example, take the nN system. The first few physical thresholds are shown
in Fig. 2. The A(1236) resonance, although strongly coupled to the sN channel, is
weakly coupled to 2gN. From Eq. (1) we then expect that the 2xN branch cut will have
a small discontinuity across it. Hence continuing around the cut on a path as shown
in Fig. 2, will reveal a pole, Z, on the next sheet, with its location only slightly
displaced from that of the A.

These weak branch points occur rather frequently and in many cases one is
justified in ignoring them. The success of "zero-width" models - which completely
ignore cut effects - substantiates this. Note that in general discussion of cuts in
any variable, energy or angular momentum, is of little physical significance unless
the discontinuities across the cuts are specified - say perhaps from a madel.

Now consider the special case in which channel n = channel a. Then Eq. (1) can

be solved explicitly for Bbaz(sa) to give

Bba (s)

y4
B (s ) =
ba a . 4 £
l+21pa (s)Baa (s)
This, as we shall see, leads us to expect poles for low 4 to congregate near

thresholds; the threshold enhancement effect. Suppose that, for some reason, the

amplitude Baa(s) is large near threshold. 1If its partial wave projection Baaz(s) is
also large, since paj(s) can have any phase (in complex directions) near threshold,
there will exist some direction away from threshold in which

2 y4

2ipa (s)Baa (s)

is real and negatively increasing. When this quantity reaches the value -1, there
will be a pole in anz(sa). From the form of pt we see that the lowest partial waves
- because for them pﬂ grows most rapidly away from threshold - are most favorable

for these zeroes.

What effects could cause Baa to be large near threshold? A typical cause is the
existence of a nearby pole in the crossed variable. Consider NN scattering as an
illustration (Fig. 3). Here the pion pole in the t-channel (and u-channel) (see
Fig. 3(a) and (b)) renders the amplitude large in the physical region near threshold
(Fig. 3(c)), assuming the pion coupling to the NN system is not extremely small.
Hence by unitarity, as expressed in Eq. (1), we anticipate poles near threshold

1
in the s-chamnel. These are found in the deuteron and the SO virtual state.
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Further examples of this can readily be found; in general the smallness of the
pion mass allows the systematic production of singularities near thresholds. For
definiteness, I will give two more examples. Consider the elastic two body scatter-
ing, a - a, where a is a two body channel with masses my and m, .

Solving the kinematics shows that the s channel threshold values of the

Mandelstam variables are

_ 2
s = (m1+m2)
t =0
T
and
u = (m,- m )2.
T 1 2
Cross-channel poles near threshold will thus be poles near t=0 or near u = (ml- m2)2.

For N,A scattering, as Fig. 4(a) illustrates, there is a pion pole in the u

channel. Since the value u = mﬂ2 is near the threshold value uT=(mA-mn)2, we expect
threshold enhancement to occur. Yet another example is backward sN scattering, in
which the diagram of Fig. 4(b) can contribute. Here the crossed channel pole occurs
at u = mNZ,whereas the threshold is at uT = (Mn-mﬂ)z. Again threshold enhance-
ment" predicts a pole near threshold in the s-channel. However, here our caution

is relevant that the partial wave projection of the amplitude must be large.

One finds that the projection on the S-wave (4=0) in the s-channel is small so that
an £=0 resonance is not formed. 1In the I=3/2 P-wave, however, there is a large
projection, and we find the A in the vicinity of the threshold.

The study of threshold effects is particularly important in classical nuclear
physics. Here all the bound states and resonances lie near threshold and can be
discussed as threshold effects. The smallness of the pion mass, which allows the
approximate isolation of these threshold states from other singularities of the S-
matrix, is necessary for the validity of classical nuclear physics. This brings us
directly to our next topic.

Small parameters in S-matrix theory:

We have seen that, in some sense, the smallness of the pion mass allows us to
separate classical nuclear physics from high energy physics. In general in hadron
dynamics, we latch on to small parameters whenever possible.1 The above discussion
on isolating threshold effects is one example of how a small parameter may enable
us to simplify our considerations. Other types of small parameters are the widths
of resonances, which are typically on the order of 100 MeV. In the limit that
these widths go to zero one can construct a theory in which unitarity is ignored
(all branch point effects = 0) and the S-matrix contains only poles; this is the
Veneziano model. In this model the Regge trajectory functions are all linear

and the amplitude can be scaled arbitrarily. To understand the scale of the
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amplitude and to permit resonances to have widths one must include the effects of
unitarity. We anticipate that models based on small parameters and ignoring (or
violating) certain of the fundamental postulates of the theory will apply only to

a limited part of the S-matrix. Such models, however, may have the advantage of
being mathematically ''clean". The simplicity of the "zero width'" model is manifest.
Although the discussion of threshold effects may have seemed complicated, a model 2
considering only threshold effects has a simple potential theory limit as mﬂ/MN-ﬁ 0.

III. The Multiperipheral Model

Early in the discussions of production experiments, it was discovered that
the peripheral model, which considers singularity diagrams of the form of Fig. 5 =
in which the process NN = NN+21 is considered =~ provided a good fit to the data.
The smallness of the pion mass separates its pole from the higher singularities
(Fig. 6) and motivates the assertion that at least for small values of t < O the

amplitude for NN - NN+21 may be expressible in the form

1 . ' .
Moy - Nﬂ(px,q,kxl,kxz)M[\]ﬂ o N“(pyl’q’kyl’kyz)
~ 2

t-m
b 1e

MNN - NN+2x

where the M‘% are '"off-mass shell" amplitudes and the momenta are defined in Fig. 5.

Amati, Bertocchi, Fubini and Stanghellini, and Tonin3 considered an extension
of the model to arbitrary production processes. The resulting multiperipheral
model is of great importance, for it explains simultaneously production processes
and the Regge behavior of 2 — 2 elastic amplitudes. ABFST showed that maximizing
the number of pion poles for a given multiplicity leads one to the unique set of
singularity diagrams in Fig. 7.

From their original model they predicted:

1) that the total cross section would have Regge asymptotic behavior, sa(t>,
with the power a(t) determined by the eigenvalues of a Fredholm kernel;

2) that the transverse momenta of produced particles would approach a limiting
distribution independent of energy and independent of the number of "links'" in the
chain; and

3) that the average multiplicity would increase as #gn s/sO.

Each of these predictions is in agreement with - or at least not in conflict
with - experiment.

The important features which we wish to abstract from this model are two. Any
model which possesses them can loosely be called multiperipheral, First, the
amplitude for the production of nt+2k particles is obtained from that for n just by

adding more links to the chain; thus, in some sense there is factorization. Second,

the region of small t, is dominant,.
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Before we proceed to incorporate these features in a specific model, I want to
introduce a recently-developed set of variables useful to describe the kinematics of
complicated production processes; these "Toller variables" will thus be the subject

of our next lecture.
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FIG 3. Pion Poles in NN Scattering
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Fig. 7. The Multiperipheral Model for ab -> ab+2Znx
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IV. Toller Variables

A fundamental advance in the kinematics of many particle-connected parts follows
from group theoretic techniques developed by Toller.l Instead of describing each
particle in the connected part shown in Fig. 1 by three components of momentum and a
spin projection (or helicity), the Toller approach associates a 6 parameter Lorentz
transformation with the particle. Let us agree on an arbitrary reference frame, say,
the lab frame for definiteness: the Lorentz transformation, bi’ associated with the
ith particle relates this fixed frame to a particular rest frame of particle i: we
will call this rest frame [i].2 The full amplitude for the process in Fig. 1 is thus
written as a function of the n+4 Lorentz transformations M = M(ba’bB’ 0""bn+1)'

In general we need 3 parameters to relate the fixed reference frame to a rest
frame of particle (i); these will replace the three variables associated
with momentum. Once the transformation to a rest frame has been accomplished, the
3 remaining parameters will be those of a rotation and will account for the spin
degree of freedom. Two of them will simply specify the z-axis, along which the spin
is projected, and the third will describe the dependence of the amplitude on

rotations about this z-axis. Hence this third variable, ¢, is related to the spin

projection quantum number m via

M(...0...) =Z gm(...)ei‘“1q> )

m

It may appear that this description is highly redundant. 1In place of four
variables for each particle, 3 continuous ones for momenta and 1 discrete one for
helicity, there are the 6 parameters of the Lorentz transformation. But we've seen
already that two of these 6 parameters only define the direction with respect to
which the spin is measured, so that there are really only 4 degrees of freedom for
each particle. What is superfluous in the description is that whereas the spin
projection m takes on only a finite number of discrete values, we are using a contin-
uous variable to describe this degree of freedom. But the symmetry between the
description of spin and that of momentum - or rather, the lack of asymmetry - in
this formalism more than compensates for this redundancy.

Next consider a modification of this technique in more detail. In Fig. 2,
which is meant as a schematic momentum flow diagram, we define momentum transfers
Qi’ (Qi2 = ti)' Our goal eventually will be to write the amplitude as a function of
group theoretic variables related to these momentum transfers as well as of other
group theoretic variables; as will become clear, this set of variables is chosen
because of its convenience for n particle amplitude in general and for the multi-
peripheral (Reggeised or not) model in particular.

From Fig. 2 we have immediately that
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Ll
= -p +
Q; Py 2: Py
j=0
and
P T 4ny
If m, 2 m_ or, in general, if (p,tp,+...+ )2 252 then or ever for
0 o °F g s Potp - pio Py every Q., yQ
i= iO’ is spacelike. Since we wish to consider production of arbitrary numbers of

particles, a typical Qi will clearly be spacelike. Hence we shall consider a simple

case in which all Qi are such that

2
Q" = ¢, <0

To proceed we define various frames of reference and study transformation between
them; in Fig. 3(a) the different frames are indicated by crosses on the lines repre-
senting momenta.

1) The frame [i] is a rest frame for the ith particle, so that in it

1 = (mi,O). Hence in this frame

QB T Y FA

so that

Q.

0 0
i Q> &) and Qg = (Qgyq02y)
~N
Further, we choose [i] to be the particular rest frame in which A lies along the z
direction; specifying this rest frame corresponds to using the two "redundant!"
parameters to define the direction along which spin is measured. Therefore in [i]

we may write

.0 02 . 2 _
Qi (Qi ,0’0’}\1)’ Qi 7\-1 = ti
and
0 02 .2 _
Qir = Q4150:020, Qg Ay =t

2) The expression {i,r] is shorthand for "the right-hand frame for Qi",

denoting a frame where
1
_ L \E
Q (0,0,0,¢( ti) )

which is reached from the frame [i] by a pure z boost., The frame [i+1,£4] is one in
which
1
%,

Qi+]. = (O’O’O’ ('t

i+l
also being reached from [i] by a pure z boost. Clearly these frames are related by
a pure z boost to each other. These three boosts are labelled as illustrated

schematically in Fig. 3(b). To solve for them explicitly we use the group property
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or, in terms of parameters,
1 2
- h R
coshqi cos (qi +qi )

Directly from the forms of Qi and Qi+1 we have

1 A
i
cosh q; = T
2
(-t
Xi
cosh q = T
2
(tiyp)
so that 2 0 0
_ Ai Qi Qi+l
cosh q; = p L - % o
(-7t ) LD R G
. 0 0 . .
Using Q. = m#+Q. , we obtain immediately
i+l i 5
™ot
cosh g, =

i %

—_—
2('ti)2(‘ti+1)
The Boost Bi(qi) is callegha VERTEX BOOST as it relates [i,r] to [i+1,#] and thus
transforms tacross' the i vertex.

3) Now for each Qi their exist two frames: [i,r] and [i,2]. 1In both of these
Qi is of the form 5
Qi = (0,0,0,(-ti)z.

Hence these frames must be related by a transformation leaving this form invariant;
but this is by definition true for any elements of the little group of Qi' For this
case (spacelike Qi)’ the little group is 0(2,1); let 8 represent an element of

, V.). Here pn, and v, are rotations
i i i i

about the z-axis and gi is a boost in the x direction.

this (3 parameter) group with parameters (ui, E.
~ ~

4) The ends of the chain require special attention. In the [0] frame

-pa = Ql and both are in the z direction: that is,
= ( 0 0,0,A,)
Pa Pa » Ui UsAg
and

_ 0
Q]. - (Q]_ ,O,O,"AO)-
We may thus define a z-boost which takes us to a. particular (rest)frame [a,r] in

which
Py = (m,0,0,0).
The transformation between [c,r] and the rest frame originally attached to

pa[a] = [a,2] is an element of the little group for Py which is 0(3). Call this
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transformation ra. Note in addition that exactly as in Sec. 2) above we can show
that [1,4] is reached from [q,r] by a boost along the z-direction. There we find

that the parameter of the boost, dg° is given by

. _Mo TNy
51nhq0 i — v

-t 2
Zma( P
We can readily use the Lorentz transformations between these various frames
to construct any of the transformations, bi’ between the particle rest frames [i]
and the arbitrary reference frame. If we know the transformation between the frame
. . 1 1 . . . .
[i,r] and the arbitrary frame, the boost Bi (where Bi is as defined in 2) will

take us from [i,r] to [i]. Then by transforming along the chain one finds

3 T PoFoPo(9p)8 B (a8, B 1 (a; ey

where the order of applying the transformation is from left to right, and Bi(qi) is’
a vertex boost in the z direction with parameter q; -

Thus an alternative set of variables to describe the amplitude is ra, rB,gl..,
8,41’ o7 ql,...,qn+1; here we have incorporated Lorentz invariance by removing
the dependence on the arbitrary reference frame in throwing away ba. Finally we
note that since 9> dp4) 2TE determined by tl""tn+l’ we may take as our complete

set of variables

M= M(ra, gl"'"gn+l’rB’t1""’tn+l)

Conservation of momentum has been satisfied implicitly by shifting attention
from the outgoing particles to the Qi' That this is true can be shown by counting
the number of degrees of freedom in our variables and comparing this with the known
total number. To specify completely the kinematics of a process involving N parti-
cles with spin one needs 3N-10 variables to describe momenta and N '"helicity"
degrees of freedom. With N = nt+4, we find a total of 4n+6. Now there are n+l gi's
with three parameters each and n+l ti's; in addition there are ra and rﬁ, which
correspond to the two helicity degrees of freedom of the external particles.
[Recall that for each of ra and rB two of the parameters are used to define the
direction of spin projection.] Thus again the total is 4n+6.

One great advantage of this final set of variables is that they are not
mutually constrained; the ti's can take on any value from 0 to - ® and the gi's can
be any elements of 0(3,1).

Examples: Consider two examples of the usefulness of these variables.

1) The Multi-Regge Hypothesis: Given M as a function of the 8;> we can expand

its dependence on any of the g; = say 8. in terms of the irreducible representa-
0

tions of 0(2,1). Schematically,
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M(...gi...)=/de Je..op J(gi),
0 . ee cen o
where j is a continuous index and is the analogue of angular momentum in 0(3). 1f
the function MJ contains poles in the complex j plane near which
Jo R
j- t
JOliO( )

then it can be shown that the right-most pole in j will control the asymptotic

behavior of the amplitude as gi - 0, But from the asymptotic form of DJ(qi) we

obtain 0
Otio(tio)
M Gl(ra,gl,...,gi_l,ui,tl,...,ti)(coshgi )
g, ~ 0
0
X Gy(Vis8yqyseeoBygo by thyy)
2
Since the two particle subenergy, s, , defined by s. = (p, +p., ), is related to
i i i -1 %4
0 0 0 0
cosh ¢, by
*o % %
s, =t .+t _+2(-t.  )2(-t. _)%coshe, ,
i i 1 1O+1 1O+1 ig 1 i

this expression gives Regge asymptotic behavior in the sub-energy s; - This is
0
indicated graphically in Fig. 4(a). 1If we postulate that this behavior holds as all

of the two particle sub-energies, s, 80 to infinity (all ti and all Vs fixed) (and

thus each gi - ), we have the multi-Regge hypothesis

o () % (ty) Gy (tpyy)

£,V t .t .V,
Me ook o1 (E1 V)81 (B taViiy) 8y Sn+l Pat1 s Vnrrte)
as illustrated in Fig. 4(b).

2) The General Reggeon Connected Part: Toller has further generalized this

work to include any "tree graph" (no closed loops) momentum flow diagram. (Fig. 5a)
This technique enables one to give meaning to a general "Reggeon connected part"

(see Fig. 5(b)) by factoring off the "Reggeon connected part" from a higher amplitude
in a specified asymptotic limit. This approach is conceptually similar to that
introduced to define connected parts for unstable particles.

The Multi-~Peripheral Model (MPM):

The two central hypotheses of any multi-peripheral model were mentioned last

time:
1) that there exists some '"reason'" for the amplitude to '"want to stay in a
region where the ti's are small.n

and 2) once an ordering of the produced particles is chosen such that hypothesis
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(1) is satisfied, the amplitude "factorizes" in the sense that

Mn+£ - KMn ’

where K is a factor depending only on a finite number of variables for particles
"ad jacent" to those labelled n+4, n+f-1,...,n (see Fig. 6).

This factorization property can be realized either with ordinary particle (x)
poles or with Regge poles. To resolve the question of which model is more realistic
we turn to experiment. It turns out that the average value of the two particle sub-
energies, s;» does not increase with s; thus we expect that the multi-Regge hypothesis
will not be applicable directly.

To see that s does not increase with energy we note that kinematical considera-

tions imply
s S s
s 1 2 u
G~ G e (IF(EL)
0 0 0 0
where
s = ()’
Py PB
is the overall invariant energy and s, is a suitable scale factor. If the multi-

0
plicity is n, then the average subenergy s; roughly satisfies

s, s,
in . ,8 . iy _ (5.
G ¥ Gy emd thus (G = ()

1/n

But experimentally (and from some theoretical arguments) we find that the average

multiplicity n grows like

n - ejn(é—)
°0
Hence B 1
s, e.&ns/sO =
D =& Te
0 0

which does not grow with s.

Of course, the concept of duality suggests that extrapolation of the high energy
limit of the multi-Regge model to low energies might still give a good approximation
to the average behavior. Since the mean subenergy sié is less than 1 GeV, however,
one would be asking more from duality than may be reasonable. So in the model that
we'll discuss next time, we will assume that multi-pion exchange, rather than multi-

Regge exchange, is the relevant multi-peripheral mechanism.
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FIG. 5b. The 4 Reggeon Connected Part

- 318 -



only a finite number of these adjacent
variables are needed to relate M

n+4
to Mn'

FIG. 6. Factorization along the Multi-Peripheral Chain
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Before I plunge into the details of the multiperipheral model of hadron dynamics,
which will be the central part of the next several lectures, I should outline our
intentions and approaches. We will aim to construct a model for the imaginary part
of the elastic amplitude for the process of — op. We will proceed by using the
multiperipheral model to describe the inelastic processes of — a'f'+n, where n

indicates an n-particle state and then by applying unitarity in the form

el _ S k]
ImMaB - o QZden MaB . a'6'+nMoﬁ ~ 'p'n
More particularly, on the basis of experimental evidence, we will restrict the
intermediate states 'B'+n to be a'B'+(n)w; we will then maximize the number of
"pion poles" in the multiperipheral chain to obtain the old model of ABFST. Finally
we will derive an explicit integral equation for a quantity - B(a,t) - related to

the total imaginary part, ImM el.

o’
Limiting our considerations to forward scattering, so that the invariant
momentum transfer, T, equals zero, we are evidently dealing with the total cross-

section (from the optical theorem). 1In addition, since the scattering is elastic,

at 1=0 the four-vector momentum transfer also vanishes - that is,
2
t = k7,
and
K= k),

then for elastic scattering 7 = 0 implies kM = (0,0,0,0). Thus the little group of
k is the full Lorentz group, 0(3,1), and we can expand the amplitude in terms of
the representations of the Lorentz group. Since the integral equation for B(a,t)
also has this symmetry at 1=0, we will diagonalize it with respect to 0(3,1).

This will lead to Fredholml integral equations for the expansion coefficients
Bx(t); here A is the continuous parameter (partially) labelling the irreducible
representatives of 0(3,1). Singularities occurring for particular values of this
parameter - Toller poles and cuts - will correspond to families of Regge poles and
cuts. From our specific pion-dominated multiperipheral model, we hope to generate
both the Pomeranchuk and rho trajectories; in the forward scattering limit we will
learn only about their intercepts at t=0, which should be given by poles at A * 1
and A < %, respectively.

For the first part of the exercise, in which we derive and diagonalize the
equation for BA(t), we will ignore isospin for simplicity. When we turn in detail
to the specific model which is to generate the P and p trajectories, we will, of
course, include this slight complication. 9

To motivate the "multiperipheral model with pion-pole dominance!" we appeal to
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two experimental observations:

1) the most frequently produced secondary particles in highly inelastic
processes are pions;

2) 1if the produced particles are ordered according to longitudinal momenta the
mean invariant momentum transfers, ti’ are small: thus the amplitudes are large only
in the region where pion poles are nearby.

Now G=-parity forbids the coupling of an odd number of pions, so the multiperi-
pheral chain with only pions as secondaries, having the maximum number of pion links,

is as shown in Fig. 1. Assuming factorization at the pion poles we may write

2
MOCB - o'B'4nr - fOC(ma atl9t2’gl)d(g2:t2)

X BT 0T 0By g) e (LT
£ (t ,t m 2 )
B n’ nt+l’ B *Bntl

where

d(g,t) = —ELE% with h(mﬂz) =1,
t-mﬁ

To proceed we must be able to express the unitarity integral in terms of the

Toller variables. Consider the n pion contribution to unitarity, which is given by

Tar <™ (b

[ ag®y *m (m)
B~ of \/PdQ MaB M

oz’ba) - a'f'+nop = a'f'n

and corresponds to the diagram of Fig. 2. The normal differential phase space for

the intermediate state ¢'p'4n is

(m) _ z 4 4 4 4 42 2
do ~ d'p,dpy...dipd pB'S (P, M)
spins
n
422 () Z o >
) (pB, mB,)ﬁ < pi+pa,+p6, Py Pg
i=1

Of course, for pions the spin sum can be ignored. In terms of Toller variables

this becomes

ae(™ _ L
(22) 3(n+2) 22n+3

sinhql...sinhqn+1c03hqB
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3 3 3
dt
X 1...dt d g2....d gn+1d rB

n+l
/ I 3
x du6 (sinhq, - (-ty) )
2%1

where

d3g = dp d(coshg) dv
and 3

d’r = d& dcosf d¢

. . s e t .
In the group theoretic variables the sum over helicities for the i b particle

, 3 .
has been absorbed into the dui+1 part of the d 811 Further, q, is to be regarded

as a function of tl""tn+l’ 8y» ...gn+1’ and rb, and for fixed ba and bb’ is
determined uniquely by the constraint.
3
b -1 b =1rq T
o g TaloB1N8 -r- B y9np Ty

This same constraint also determines uniquely ra and g1 in terms of the integration

variables for fixed ba-lb . Thus a quick check shows that, if we include the sums

over spins and the corresponding integrals over s both forms have 4n+4 independent

integration variables.

Defining
D(t) = |da(ey|?, where d(t) = B
t-m
and
2
F(thtigntigpe8iy) = LEI7
we find that
(n) 1 1 1
ImM =
- +2 2n+
op = op (zn)B(n ) y2m 3 Wa?ﬁ
[ . .
X ‘/ sulhql...51nhqn+1coshqutl...dtn+1
L
2
3 33 . ey
X dpld gz...d gn+1d r68(31nhq0 - —Ea&—— )
F (m 2 t,,t )D(g,,t.) F(t ,t t )
x AR IS R A R R R P LA WY R BT LS PO D

2
D(gn’tn)Fﬁ(mﬁ ’tn’tn+l’gn+1)
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To generate a tractable integral equation that, in essence, sums the series
over n, we resort to the trick of defining a sort of incomplete imaginary part by

. . . 3 .
undoing the integration over d r to give

(n) -1
b
B ( o an+2’tn+2

) =
;
(-t)
const (x) J 6(sinhq0- 5;37——) sinhql...sinhqn+1
2
17 oMy, s tytp58)D 8y, t))

3,
dtl"'dtn+1 d g2...d Bt

F(tn,t ).

n+1’tn+2’gn+1

g ()
transformation connecting frame [n+2, #7 to the arbitrary standard frame.

(n) (n)

Some insight into B may be gained if I illustrate its relation to I in

can be represented diagrammatically as in Fig., (3a). There a ., is the Lorentz

the simple case where B is a pion state. In this instance we find that we need only

(n) (),

2
continue tn tom and integrate over d3r to get T from B that is,
™

+2 B

(n) -1 _ (n) -1 -1 2, .3
1 (bd bB) = J B (bU rB bB’mB )d rB.

As the diagram of Fig 3(b) might suggest, we can establish a recursion relation

among the B(n). It is

B(n)(a,t) ] J d3g"d3g' dt"dt' sinhq"
(2ﬂ)6 2

sinhq' D(g",t") F(t”,t',t,g')B(n-Z)

(a",t") .

Summing over n generates the Neumann series for the integral equation

B(a,t) = Bo(a,t) + j d3g"d3g’dt"dt'k(g',g",t”,t,t')

B(a",t") R

where

- —lﬁ sinhq'sinhgq'"D(g",t")F(g',t",t"',t).
(Z5)

k 6 2
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and where
a = a''g''q"g'q"'

Notice that the integration variable t' appears only in K - in fact only in F -
so that we may redefine K to include the integration over t' if we wish. As we
anticipated, the equation is invariant under simultaneous Lorentz transformation of
a and a", This corresponds to the extended symmetry of the full amplitude at 1=0,
where the little group of k" becomes 0(3,1). We may thus usefully expand the equation

in terms of representations of the full Lorentz group by defining

B(a,t) = Z M ey oML ayan
It should be mentioned here that A is a continuous and M is a discrete label for the
representations of 0(3,1), - or, almost equivalently of SL(2,c). We will not be
concerned with the other indices, nor will we discuss the important technical
4
question of the completeness of the DAM. These questions can be resolved, and the

result is an equation of the form
0

My = BOAM(t) +ﬁt"B7‘M(t")K7‘M(t",t)
-0
where we have redefined K to include the integral over t'.

Provided that the kernel K falls off rapidly as t' — *D,Zthis is a normal

Fredholm equation and can be treated by the standard methods. However, putting
h(t) = 1 to give d(t) = L > does not lead to a sufficiently rapid vanishing of K.
t-m
k1

Thus we will require - and this is experimentally moderately well justified - that
h(t) provide a cut-off of some sort for K. Recall the crucial fact that t in this
equation is not the overall momentum transfer in the process of - of; this variable,
T, was set equal to zero long ago. We've seen that t is the variable which, for
p=r, if continued to mﬂz, relates B to the total absorptive part ImM.

From the theory of Fredholm equations we know that:

M
1 B = ——Mmt
D

where D)\M is the Fredholm determinant;
if the inhomogeneous term, B and the kernel, K are analytic in
2 he inhomog omdhk 1, ¥ lytic in A

A
then the only singularities of B not in K or BO are given by zeroes of DAM.

Note that these poles in A correspond to solutions of the homogeneous equation,
. . A
and their location depends only on the kernel K ’I(t",t) and not on the inhomogeneous

term. These are the Toller poles and give rise to families of ordainry Regge poles.
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The singularity which lies farthest right in the complex A plate, at, say, A

R’
is the one which controls the asymptotic behavior of the complete imaginary part,
AR
ImM (s,1=0) o S .
op — o . o

If we did not restrict our consideration to forward scattering, we would find that
the little group of k, where k2= T, is 0(2,1); expanding the amplitude in terms of
this little group leads to ordinary Regge poles.

To study this Fredholm equation in more detail we need to establish the specific
form of the kernel. At this stage we will incorporate isospin and make several
additional assumptions necessary to relate K to known or measurable quantities.

First, we will assume the pion has M=0, so that the M label can in effect
be dropped from all our equations. Our motivation for this assumption is that, since
M represents the lowest value of the angular momentum contained in the decomposition
of a representation of 0(3,1) into eigen-representations of angular momentum, an
M=1 classification is incompatible with a zero mass pion; this follows because for
a zero mass pion at the point t=0 the Regge trajectory of the pion must pass
through j=0. As the smallness of the pion mass has been crucial to many of our
previous considerations, we feel that consistency with the zero mass limit is
desirable. Incidentally, the success of the assumption that extrapolations to mﬁ=0
are "smooth'" in many current algebra calculations also suggest this classification.

Second, we must assume something about the quantities

2

F(tss i+1° 5408141

t t
i’ i1’ T84

.

) = ]f(ti,t

As inspection of Fig. 4 shows

dOe1

2 2 __mm
Flm "5t pom 28549) = at,

Thus if we redefine the kernel k to include the integral over ti and if we make
the approximation that for the limited region of values of ti and ti+2 in which the
multiperipheral amplitude is large

d el
)':._Gm__

e 11

Pt st 1981098107

we may express the kernel in terms of the three elastic cross-sections of definite
isospin. Since we want to discuss the kernel in terms of definite t-channel isospin
(see Fig. 4), we must introduce the crossing matrix BII' to relate the s- and t=-channel
isospins. We will discuss later the nature and magnitude of the errors introduced
by assuming dOE1

F =

dt
even when the '"pion-like'" lines are off the pion mass shell.
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Third, to make explicit the rapid fall-off at large t required for a Fredholm

equation, we assume that in

d(t) = -ESE%—

t~m
T

where h(t) is as shown in Fig. 5
Incorporating these assumptions into our previous equations, we find for the

kernel the equation

‘(7\"'1)7](5 t" t) n
Mol /“ ds h(t )h(t)

(k) =
- ? At (enem ?) (em %)

CI(S)

where we've symmetrized the kernel between t" and t and where

-t it
coshl = -t t%_ T
2(-t)*(-t")*
and 1
I 1 r 2, 7° E: el
') = ez [s(o-t m D | ) Brpachy (o)
Il
with 1 1 3
3 3
= 1 1 _3
Brr 3 2 6
1 _1 1
3 2 6
A, T

To analyze this equation for K we must know something about the behavior of the
CI(s). The three elastic cross-sections of definite isospin have the behavior shown

in Fig. 6. From the form of the crossing matrix, 8 we are led to expect the be-

1T’
havior shown in Fig. 7 for the three functions

Clgs}

[s(s-4mn3):]%

Now, ignoring isospin momentarily, Regge behavior predicts for the asymptotic behavior

in s of the elastic cross=-section

0
1.1 d 1 2 2
S Egn ] s et SO

..[,_k
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Assuming linear trajectories, this gives

ol —

0
1 1 2 0)-1 ; 2 20
e ~p la(0)-17 J ls()|? e o'tens

-4K%

With reasonable assumptions on g(t), this yields a leading behavior of the form

2le(0)-1]

Ins

el
g oC

Thus we expect that the asymptotic behavior of CI(s) will be roughly

B
NCIENN

I ~ ~
SR [8081] - C 4ns/s
0

s — 0

where BI will be discussed below.

To include isospin, as we must in order to calculate CI(S), we must be somewhat
careful. We wish to calculate the asymptotic behavior of the expression shown
diagrammatically in Fig. 4 for definite values of isospin in the t-channel. This
leading behavior arises from exchanging the highest allowed Regge trajectory in each
amplitude of Fig. 43; this corresponds to a Regge cut behavior. Amati,
Fubini and Stanghellini5 have shown that if trajectories al(t) and Qé(t) are ex-
changed in the two amplitudes, then the resulting cut gives a leading asymptotic be-
havior with exponent oi(O) + Qé(o) - 1. For the three values of isospin we find:

1) 1I=0. The leading trajectory allowed to both amplitudes is the Pomeranchuk,

S0 - - ~
BO = 20?(0) 1 1
and
0 const
C (s) Ins

2) TI=1. We can exchange a P and a p or two p. The former clearly provides

the leading behavior and thus

By = p(®) +a () - 1%

const %
— s

1
so C (s) ~ 7S

3) 1I=2. Here only two p's are allowed so

82 = 2ap(0)-1 > 0
and‘so
2 const
c (s) J0s "

- 327 -



Before we continue in the next lecture with our detailed study of the kernel,

I would like to mention briefly the relation of this multi-pion pole model to the

multi-Regge model discussed by, among others, Chew, Pignotti and Frazer. In the

multi-Regge model what we've taken as the s amplitude is replaced by a Reggeized

amplitude for all values of s. While this is anticipated to be correct for large

values of s, if we attempt to use the Regge form for low values of s in the I=0

amplitude, for instance, we clearly cannot hope to approximate the behavior in the

resonance region by the PP contribution alone. But if we incorporate a pp contri-

bution, we may find that the sum of the PP and pp contribution can roughly approximate

the resonance region (Fig. 8). Thus the multi-Regge model with at least two input

trajectories may be similar to the model we've been discussing.
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FIG. 3(b). Schematic Representation of the Recursion Relation Between B(n-2) and B(n)
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FIG. 4. Schematic Representation of the Fredholm Kernel

h(t)

FIG. 5. The Function h(t)
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FIG. 7 The Three Quantities
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From the equations we established last time for BA’I(t) and KX’I(t) we can, if
we assume something about the behavior of GIel(S), readily determine numerically the
rightmost singularity in the complex A plane. However, we can gain more insight into
the problem by solving it analytically in the "first Fredholm approximation®. This

yields the result that the poles in A can be found by solving for A the equation

oy & 1-1e Lt by

O =
0 e st
h2 ¢ [\ e-(h+l)n(s,t) I
=1 - j/dt —h (6) ds ———— C (s)
‘ (t-m 2)2 J ) AL
ool E1 4m
k18
where coshn(s,t) = 1-%; . For the approximation to be valid we need one of two
conditions.
1) The kernel must be factorisable in t and t'. Since
- 1
ALT o HDn(s,e',t) 4 h(t')h(t)
K> (t',t) = ds C (s)
J2 A+l t'-m 2y (t-m %
4m 7 7t
7T
-t -t 1
where coshn = sot-t? , this factorisation will not hold unless s >> t,t!

% %
s(-t)*(-t")*
This condition will be satisfied in the multi-Regge model, which has already used an

expression valid only at asymptotic s. But we have seen the importance of the low-
energy resonance contributions, so we don't want to make the assumption that s >> t,t!'.
2) The leading eigenvalue must be widely separated from the rest of the spectrum
and the approximation must be used only in the neighborhood of the leading eigenvalue.
As numerical calculations indicate that this condition holds, we may use the
approximation.

Let us first take a very rough look at the analytic structure of DI(K) in A.
Singularities in A coming from divergences of the integrals will probably arise from
the upper limit of the s integration because of the cut-off in t assured by the h(t).
As s/lt] approaches infinity,

Mo 8 8
R IR

and hence, using the asymptotic form of CI(s),
1 p
C (s) = (s/sy) I )

we see that the integral in the equation for DI(A) will exist and be analytic in A

for ReA > BI. In fact, as Fig. 1 illustrates, the situation is in some sense a
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mirror image of that in the energy plane, as DI(A) is real analytic for ReA > BI.
Further, if the kernel is positive definite, as is true for I=0 and I=1 but not for
I=2, then the integral becomes logarithmically positive-infinite as A agproaches 51.
SinceAthe integral falls tg zero exponentially as A — %, at some value A 3

ﬁI < XI <, we expect DI(AI) = 0, corresponding to io(Toller) pole in Bx (). In
fact, to anticipate the results somewhat, we expect A~ = 1 (the Pomeranchuk trajec-
tory intercept) and ;1 = % (the rho trajectory intercept), so that since 50 = 1 and

51 ~ 1 for both I=0 and I=1 the poles should lie only slightly to the right of the

2’
cuts which start at A = BI.
Before beginning a more detailed study of the integral, we can make a simpli-
fication by noting that as t — O, el ™ s/-t, and thus
-(A+1 +1
e AF+n o (-t/s)x .

Hence for A > O the t integration gets little contribution from the region near t=0,

1 ~ 1.2

t -m
T

and we may approximate

This enables us to perform the t integration by changing variables to coshrn,

dx = d(coshp) = % é% , at fixed s,
t
and obtaining
0
[d_t o EDN(s,e) 2 1
‘ t2 s AQ+2)
- o

We will discuss these approximate poles in A later.

If we look now at the integral over s, it becomes

Q
1 [ ds I
AOFD) (A2 .,/2 s ¢ ()

4m

which diverges, for I=0 and I=1l, by inspection of the asymptotic form of CI(s).
What's gone wrong? Our trouble stems from the combined high s and high t regions and
can be resolved by recalling that we should have included the t cut-off; this is
necessary both to assure that the equation be Fredholm and to agree with experiment
which shows that the amplitudes vanish very rapidly at high values of ]tl.

So let's backtrack a bit and be more careful. First, insert a cut-off in t
at It] = A, as discussed in the last lecture. Then, breaking the integral over s into
two parts, corresponding to integrals over the low and high energy regions

respectively, we have
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0

oy 21 - ;ﬁ d_; /“ -(?\+1)'q(s ) ¢Iig
- A t 4m ‘
ﬂ
0 o]
e [3—2' [t ol
- A s
max

To guide the analysis of these integrals let me indicate what we expect
qualitatively. Empirically, the average meson pair subenergy s is S 1 Gev. Thus in
determining the value of XI for which D(AI) = 0 we expect that the low-energy,
resonance-dominated term will provide the dominant contribution. We will first study
the high energy term and show that this is in fact a small contribution. Then we
will discuss the low energy integral in detail.

In concentrating on the '"high energy" term, I I, we may make the following

h.e.
approximations:
1) we suppose that S hax is large enough so that
>
CI(s/s y I
CI( )y = — 9 for s Z H and
s Ln(s/so) Smax ° o
2) we assume that for all t such that ]tl < A, t/s is sufficiently small for
s> s so that
max
e-(k+1)q(s,t) ~ (_S/t)—(h+1)
Thus
- p
I A+1 s (A+1)(s/s )
I T o /dt /h ds 9
h.e. x+1 4n(s/s.)
0
- A
Doing the t integration gives
© -(A+1) BI
I, ¢ A[ ° (s/54)
Lhe. ~ a1 x Ln(s/so)

Now we want to know how this behaves as A — 51, since at least for I=0 and

I=1 we expect the leading poles to be close to the BI. Writing
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[o 0]

I (A/so)x /ﬁ d(zns/so)

I . G o
Thee = &1 T2 Tn(slsg) exp[-(A-B)4n s/s]
En(smax/so)
S
we find, for (A-g )In(—2) << 1,
1 so

I I (A/so)h

c
h.e. A+l A 4n [

1
I (A-B_)4n <3§5\
P4 %)

Note that, for the I=0 case, there is an important subtlety which we must
clarify. If the Pomeranchuk were a Regge pole with o%(O) = 1 exactly, Egen the
P-P Regge cut would occur at 20%(0)-1 = 1 as well. Thus we would have A~ =1 = Po>
and the above derivation would give a divergent result for the high energy integral.
It is, therefore, essential for the Pomeranchuk to lie slightly below 1, say at
o%(O) = l-a, so that 50 lies below the pole, at 20%(0)-1 = l-2a.1 This result is
in agreement with an analysis by Finkelstein and Kajantie in which they showed,
under certain assumptions, that o@(O) must be strictly less than 1 in order to maintain
unitarity. We can even estimate roughly how much below 1 the intercept of the

"~

Pomeranchuk trajectory must lie by using the experimental knowledge that at A~ the

high energy contribution is "small®., Choosing explicit numbers for the parameters,
A < s = 1 GeVZ,
0
2

S = 20 Gev',

max

g (s) = 2mb for s > s

T max

and thus Co = 0.1, Taking a = 0.05 in AO = o%(O) = l-a and BO = 1-2a, gives

0_0.1 A 1 A
Thee. =72 (so) 4n &(o.osunzo) <1
. 0 . . . . C 0,70
and indeed Ih e must provide the major contribution to the vanishing of D" (A"). To
check the assertion the T I is small for I=1 as well we note simply that

~ h.e ~
Al = O%(O) and 51 = o§(0)+0%(0)-1 so that hl-Bl = a and the same order of magnitude

estimate of Ih eI results.

Consider next the low energy integral, to see whether the model in fact
A

/\1N

predicts DI(AI) = 0 for AO = 1 and A~ ¥ 1/2. We have
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S
max

0
I ~ _l_ -(A+)n I
Il.e. A+ / f ds e ¢ (s)
- A

t
4m
11
Here we see that the t-cutoff at A is not necessary to prevent the integral from
diverging. Further,we can establish that the important region in the t integration
is t ¥ s. Thus there will be little contribution from high values of t; this allows

us to take A to infinity and to do the t integral analytically to get

)
max
I 1 ds 2
e M= 7] 5 e
4mﬂ

Knowledge of the elastic cross-sections in this resonance region will immed-
iately allow us to do the s integral numerically. First, though, consider the A
dependence. We know this can't be correct as A = ®©, for the integral should go to
zero exponentially; our approximations are at fault here. But what about the poles
in A at 0, -1, and 27
1) The pole at A = -1 is easily explained. It comes essentially from treating
the pion as an elementary particle in the multiperipheral chain so that o%(t) = 0 for

all t. Then the contribution of the diagram shown in Fig. 2 is expected to be

20%(0) - 17~ -1,and hence we can expect a pole at A = -1.
2) The pole at A=0 is associated with the neglect of the pion mass in the
approximation
1 L L
2.2 2
- t
(t-m %)

In the limit m = 0 there would exist a pole at A=0; for the small physical

I
l.e at A = 0. An interesting observation is that this

gives a singularity in the same place as if we singled out the p trajectory in the

mTr there is a large peak in I

simr amplitudes (see Fig. 3) since 205(0)-1 ~ 0., Thus the small pion mass is repro-
ducing the behavior of the p; this is a point which we don't really understand.

Now let us return to a rough evaluation of the low energy integral. As we
are primarily interested in values of A near % or 1, the singularity at A=0 is most
important. Collecting all the other factors in Il.e.I into a "residue"™ at the pole
A=0 and assuming that the p dominates the resonance contribution we get
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where
I=0 1
= = 1/
Pr1 =1 =z
=2 -%

If we find that R ¥ 1 - this ideally should follow simply from the value of the

integral over s - we see that

~0
1) A =1 = %, (0) , and
2) SEEREXCO
We also find AZ -5

but we are not really justified in identifying this immediately with a trajectory
intercept, because of the crudity of our approximation.
In the next lecture I will discuss what the actual value of the resonance

integral is; although we will find qualitative agreement with our above conclusions,

the quantitative result is not correct.
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DI(A) is real analytic here

ReA -

ReA = BI
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I ended the last lecture with a hint that, although the qualitative results
regarding relative locations of the P and p trajectory intercepts were encouraging
for the simple pion multiperipheral model, the quantitative aspects were less satis-
factory. I'd like to go into greater detail on this difficulty now. First, what do
we mean by "quantltatlvely less satisfactory"? Recall that to produce a Toller pole
at A we required D (A ) = 0. Further, we argued that in

I I I

b= 1-Ih.e. _Iz.e. ’

the low energy or resonance term would provide the dominant contribution necessary to

produce the zero in D. Thus we require, for I=0,

s
max

0
~
p°a%) ¥ - f € (2) 2
AT +1)(A +2)4

and for I=1,

s

max

2 ~
D(A)—l'AlAl ~1 dS(S: (ﬂ"_‘ 0

AT (A +2)4

A ~

To produce the observed P (Aoyl) and the observed p (A1=%) intercepts, we require

Do(l) ~ 0 and Dl(%) = 0, which implies

max
Jf dsC (s)

TR
I

4
s
max
16 dsC
1 -1 [ dc(e)
15 9 s
4m
T

In both cases we find the integrands are about a factor of three too small; strictly

this would mean that neither the P nor the p has the experimentally observed

However, there are

speaking,
intercept in this model and might seem quite disturbing.

arguments suggesting that, at least in this simple version of the model, one should

not worry about this disagreement.

First, in asserting that

F(tisti 1 %i40°8541) de
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to simplify the model, we completely neglected off-mass shell effects: that is,

7t i+2
a standard prescription which suggests that, since the P-wave p resonance dominates

effects produced when ti and t,+2 take values other than ti =m =t, .. There is
1

the low energy wn amplitude, in continuing the amplitude off the mass shell one should
include a factor of the center of mass momentum to the first power. (see Fig. 1)
Since we are dealing with the modulus of the amplitude squared, we should include

a factor of the center of mass momenta, q, squared. From Fig. 1 we have for arbitrary

t

2 2 2 _ s
- t and for t = > = - - >
and for m 9 s ™

Qogs

on

o

where ¢ 2 and q 2 indicate the off mass shell and on mass shell momenta respec-
off on

tively.

2 2
Taking s = mp as a typical example, we get the ratio, neglecting L

2
Goff o, _ 4t
2 2
9on mp
With t = -0.2 and mp2 = 0.6, this ratio becomes approximately 2 which indicates that

the inclusion of off mass shell effects might produce a substantial increase in the
value of the low energy integral.

Second, any contributions from higher mass meson states will also tend to
increase the integral over CI(s). Thus including the effects of produced and exchanged
K mesons by introducing the SU(3) meson octet of x-K instead of the SU(2) meson
triplet of pions is one possible and potentially useful generalisation of the present
model; later, we will come back to the octet model for a brief, qualitative survey.

Let us now briefly consider the relation of A branch points and poles in the
multiperipheral model. 1In the expression

M - NI§Azt)
D"(A)
we can also approximate NI(A,t) by a Fredholm expansion. To lowest order, corres-

ponding to our approximation for DI(K),

ploy =2 - e 0 I(er,e)

~T
o X A 1
L Y €I(so) 4n [(x-sl)zn(smax/so)]
we find
o, = Bhél(t)

Thus the analytic structure of NI(h,t) in this approximation is that of BOA’I(t). in
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A
our moder B >\’I(t) has similar analytic structure in A to the kernel, K 1

0 (t',t),
and thus we expect NI(A,t) in general to have Regge cuts but no Regge poles. There
is, however, one subtle point which arises and disappears almost before we can
mention it. If we have included non-elementary pions - that is, pions for which
a'(e) # 0 - NI(a,t) would have a branch point at A = -1. But since we've put in an

elementary pion,

N v
A -1
This, in fact, just cancels the pole at A = -1 in DI(A), so that there is neither
A,
pole nor zero in B I(t) at A = -1.

Since the cases of interest are for I=0 and I=1, let me now restrict the
considerations to these values of isospin. Then the analytic structure of BK’I(t)
A
is roughly as shown in Fig. 2, with a pole at AI coming from the zero of DI(A) and

a branch cut beginning at A = BI also from DI(A). Recall that the logarithmic term

ALL

producing the cut in DI(A) and thus in B"’ " (t) is of the form

1
(A_Bl)zn(smax/so)

Zl(f—) tn {
0 L
where ZI is a small constant. Thus unless A-BI = a - 0, the branch point will be
weak. Consider first the situation when a # 0. Then the branch point is weak, and,
by the arguments I discussed several lectures ago, there is also a pole on the second
Riemann sheet reached by going through the cut. (see Fig. 2). This second pole
participates in a VeEy interesting effect relevant to what happens when, in non-

forward scattering, AI(T) - 5I(T), where 7 is the overall momentum transfer. Consider

the case for I=0. Here we find

. ﬁo = ob(1/4)-l
where AO(T)

AO(T) = Q?(T).

If we assume that o%(T) = ob(O) + ob'(O)-T, Q?'(O) > 0, then at some value

T =T, < 0 the cut will overtake the pole. But this seems impossible, once accord-
ing to our previous analysis the leading pole is always to the right of the branch
point. What transpires is that, as a - 0, the discontinuity across the cut becomes
large and the pole on the second Riemann sheet moves farther away from the pole on
the first sheet. Further, the residue of the first sheet pole approaches zero as

a > 0, and, in essence, the second pole moving as illustrated in Fig. 3a, '"takes
over". 1In terms of a conventional single sheet description, we never see the

second pole; we see a peak in the discontinuity across the cut (Fig. 3b).

We may note parenthetically that, has we simply ignored the cut, we would
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have obtained similar physical results. This illustrates once more the principle
that a weak singularity is essentially no singularity; to make almost any physically
meaningful deduction from analytic structure arguments one must know the discon-
tinuities across, as well as the location of, the singularities.

Conclusions from the Pion-Dominated Multiperipheral Model:

1) The characteristics of trajectories and residues are determined by the
resonances - that is, in some sense by the trajectories themselves. Here we've not
been able to exploit this connection directly, since we've taken the cross section
in the resonance region as an empirical input. The most direct hope for a bootstrap
the simple multi-Regge model, fails because the two particle subenergies are not
large enough. Attempts to use "duality" to extend the Regge expression to the
resonance region are fraught with difficulties we've already mentioned; but even so,
inputting two Regge poles may lead to an acceptable model. Eventually, applying
self-consistency in some quantitatively more accurate model may lead to a good
bootstrap of the trajectories. This is in contrast to the Veneziano model in which
one can arbitrarily change the scale of trajectory parameters.

2) The Pomeranchuk trajectory is qualitatively like the rho trajectory; within
the context of this model, there seems no way to single out the Pomeranchuk from
all other Regge trajectories.

This is in conflict with the numerical results of the older Regge phenomeno-
logical fits, which suggest a very "flat" P, and with the spirit of some of the
recent duality models, which treat the P difficulty from all other trajectories.
With regard to the first point, a recent fit by Dikmen1 is relevant. 1In =N
scattering there is no shrinkage of the forward peak. The standard explanation
attributes this to the "flatness" of the P trajectory, o%'(t) X~ 0. But Dikmen
discovered that plotting the direct channel resonance contributions in the near
forward direction gave a sharply peaked distribution as shown in Fig. 4. Further,
this resonance contribution goes to zero as § — ®, so that, if the Pomeranchuk
trajectory were flat, the peak would expand. Hence the width of the P contribution
must shrink if the total forward peak width remains constant. Dikmen finds that
the data are consistent with o@'(t) ~* 0.7 GeV-1 for t near zero.

In view of the duality hypothesis one might question Dikmen's technique,
namely, if the Pomeranchuk is similar to all other trajectories, is it consistent
to add it to a sum of resonances? The answer is that it may be consistent with
Regge pole-resonance duality if the Pomeranchuk corresponds to weakly coupled
exotic resonances. Then adding the P to a sum of non-exotic resonances would not
be double counting. Note that our general discussion of unitarity as a
discontinuity formula leads us to expect poles in all reaction amplitudes, exotic

or not. If sufficiently far from the physical region, exotic resonances could
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easily appear as a rather flat background. SU(3)

SU(3) Generalisations of the Meson-Dominated Multiperipheral Model.

We've mentioned previously that one way to increase the kernel strength in
the multiperipheral model to produce output Regge poles at the correct positions
is to increase the number of distinguishable low-mass particles which can be
produced and exchanged in the multiperipheral chain. One obvious way to do this is
to introduce, instead of the SU(2) triplet of pions, the SU(3) n-K octet. Let us

look briefly at this possibility.
The analogues of the three isospin amplitudes obtained from the decomposition

181 = 26160

are the six SU(3) amplitudes in the decomposition of the Kronecker product of two

octets,

888 = 168568A6109T56}27.

Here 88 and 8A stand for the symmetric and antisymmetric octets respectively. The

crossing matrix, from which we can make many quick deductions, can be written

e (s-channel)

1 8 8, 10 10 27
1 2 3 27
L 8 L L 4 i 8
. A 1 1 27
s 8 10 .2 2 Z 70
1 1 1 29
8, 8 2 D 0 0 8
1 2 1 1 9
10 3 5 0 4 4 40
= 1 2 1 1 9
10 8 5 0 4 i 40
’r 1 11 L L 7
8 5 3 12 12 40

(t-channel)
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From the first row we see immediately that the singlest trajectory in the t-
channel - that is, the Pomeranchuk - will again have the highest intercept. This
follows because the contributions are from elastic cross sections which are positive
definite. Which trajectory will come next? Taking a hint from experiment, we
agssume that, since there are no observed resonances in the 10, TB, or 27 channels,
the main contributions will come from 1, SA, and SS. Comparing the second and
third rows shows that SS and SA trajectories receive equal contributions from the
singlet and 8A resonances but that whereas the 8A trajectory receives a positive
contribution from the 85 resonances the 8S trajectory receives a negative contri-
bution from the 85 resonances. To make the argument more concrete, recall that Bose
statistics require that the SS states have even orbital angular momentum, £, and
that 8A states have odd £.

Since the x-K octet is spinless, this means that the SS corresponds to an
octet of even spin resonances [fo,Az, etc] and the 8A to an octet of odd spin
resonances [p,K¥,w]. Thus our arguments have shown that the p trajectory should
come out above the fo trajectory; however, since the p resonance is stronger than
the fo, this splitting of the trajectories need not be large. Hence the hypothesis
of exchange degeneracy of the fo-p trajectories may still be approximately correct.

Finally, we note that 10 and 10 receive no contribution from the large p
resonance and 27 receives a negative contribution. Thus it is probable that the
leading trajectories for these channels will be well below the others.

Qualitatively this agrees well with observation. However, for two reasons,
it is not clear that this model is more acceptable than the SU(2) pion model. First,
SU(3) symmetry is badly broken in the sense that m << My - Second, in single
peripheral exchanges the pion fits experimental results well, but the kaon does not.

At this stage, I think we've carried the multiperipheral model as far as we
can at present. In the next lectures, I plan to turn to some very interesting
recent work on the "strip" model to show how some of the ambiguities in the multi-

peripheral model can be avoided and how a numerically quite succesgsful bootstrap can

be obtained.

REFERENCES
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In the next two lectures I shall discuss, as a final example of specific
approximations to the S-matrix, the "strip model" of the four-particle connected
part. There exist several different, but related, versions of this model(l-A);
they share a common set of similar initial hypotheses but differ in the methods

used to calculate the functions involved.

BASIC PROPERTIES OF THE STRIP MODEL:

What is the cofmmon denominator of these strip models?5

To discuss this question, let me begin by recalling two salient features

of two-body scattering:

(1) in the s-physical region there are frequently strong peaks in the
low-energy cross sections associated with resonances in s; these peaks
die out above S =2 GeV2 indicating that the couplings of such reso-
nances to the two-body channels become smaller at high energies;

(2) when there are direct channel resonances, the cross channel reactions
show forward or backward peaks, which persist to asymptotic energies;
apart from these peaks, the high energy cross sections are very small.

Thus, if we draw a plot of the Mandelstam invariant s, t, and u (see Figure la),
we see that the amplitude is large only in the shaded parts of the physical re-
gion -- that is, the parts in which at least one of the three Mandelstam invari-

ants is small., If we make the hypothesis that the amplitude (See Ref. (1) for

arguments supporting this), continued out of the physical region, remains large

only in a region of width roughly comparable to that in which it is large inside
the physical region, we obtain the three '"strips" as shown in Figure 1bj here
the "s-strip" is associated with small values of s and all values of t and u.
This division of the Mandelstam plot into "'strips' suggests a model which di-

vides the amplitude into three parts by writing

M(s,t,u) = M (s,t,u) + M (s,t,u) + M(s,t,u) (1)

where M° is associated with the s-strip and similarly for Mt and M'. Since
within the s-strip the values of s are always less than some 51> we expect that
with M° will be associated the low energy resonances in the s-channel. Further,
since -- again within the s-strip -- the channels to which the resonances couple
strongly are the two-particle thresholds in the s-channel, it is natural to in-
corporate these thresholds into M°. of course, identical considerations apply

to Mt and M in the t and u channels respectively. Finally, we note from Figure 1

. . . . . . t
that the asymptotic behaviour in the s-channel is contained in M~ and MP; as at
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high energies the multiparticle thresholds become important, it is reasonable to
assign all the multiparticles s-channel thresholds to Mt and M".

In the s-channel, we may think of the decomposition of equation (1) as
being of the form

M=M + Vv

where V° is some "potential' acting in the s reaction. Our hope is to formulate
a set of dynamical equations so that, given v® as an input, we may calculate Mo,
In this connection it is important to note that v® both contains the low-lying
resonances in the crossed variables and controls the asymptotic behaviour in the
s-channel. Thus we might hope to parameterize v° either by a few resonances in
t and u or by a sum of Regge pole contributions; in fact, we shall see that both
these parameterizations have been employed in the literature.6 Note that if we
can establish a procedure for calculating M° given v = Mt and MP, we can also
obtain from it Mt given M® + M and M¥ given M+ Mt. A self-consistent solu-
tion to the dynamics would thus represent a bootstrap.

To summarize this section, let me state succinctly the basic assumptions
of the strip model. The amplitude may be written in the form

M= +u o+
Each of the terms is assumed to have Mandelstam analyticity,2 that is, to satisfy
a double dispersion relation similar to
e 1 '
M(s,t) = lz‘Jj‘zggégj?fT%Ey ds' dt'
i

where we've ignored other double spectral terms for simplicity.

In addition, M°

(1) contains the s-channel low-lying resonances and two-particle thresholds;

(2) contains multiparticle thresholds in t and u;

(3) approaches a limiting behaviour as s * = such that M°/v° 5 0 (since
v° = Mt + M" is assumed to control the asymptotic behaviour);
(4) 1is such that, as t + « at fixed (small) [s|,

MS —~ B(S) ta/(s)

This fourth property, the Regge asymptotic condition, is not always included
1)

as input into the model. The original strip model,( for instance, generates --

rather than assumes -- Regge behaviour in its dynamical equations.
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THEORETICAL IMPLICATIONS OF STRIP MODEL ASSUMPTIONS:

Before we attempt to formulate explicit dynamical equations, let me consider
some of the immediate theoretical consequences of the ''strip approximation" to
the amplitude. To discuss this point and to simplify the later mathematical mani-
pulations, I will henceforth consider the specific case of m-T scattering as a
single channel problem. Thus, the only two-body threshold in M° will be the m-w
channel, and the multiparticle s-channel thresholds in Mt and M will begin with
the 41 branch point at 16 mi. Further, we may enjoy the advantages of no spin
complications and equal mass kinematics. As we shall see, G-parity considerations
and the existence of a well-established resonance (the p) also make this a parti-
cularly favourable case. One clear disadvantage is that the m-7 interaction has
not yet been directly measured. However, we shall suppose that it has the
general features mentioned above and found in, say, TN scattering. In the fol-
lowing, I will suppress the isospin indices, as they are not essential to our
purposes.

For the moment let me neglect the u-channel contribution for clarity. The
amplitude may then be written

M= +M
and our decomposition implies that there are no individual terms in the amplitude
containing both s and t two-body thresholds. Similarly, there are no individual
terms containing inelastic thresholds in both s and t. Using the singularity
diagram we introduced earlier, we may illustrate this situation graphically;
namely, the diagrams shown in Figures 2a and 2b are included in the strip ap-
proximation, but those shown in 2c¢c and 2d are not. Note here the importance of
the G-parity considerations in 1-T scattering. The diagram shown in Figure 2c
cannot occur in -1 scattering because G-parity forbids the 31 couplings. If
such a diagram were allowed, then the boundary of the true double spectral func-
tion, p(s,t), would be as in Figure 3a, whereas the boundary of the strip ap-

proximation double spectral function would be as in Figure 3b. Since the model
we have outlined would then fail to get even the boundary of p(s,t) correct, it
would be very unsatisfactory. However, as G-parity considerations do apply, both
the actual double spectral function and the strip approximation double spectral
function have the boundary shown in Figure 3c.

Let us delve into these points in more explicit detail. If we introduce
the notation MS to denote the s-discontinuity of the amplitude, then the decom-

position

M=u + M
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implies that Mz is the full elastic discontinuity in the s-channel and that M;

is the full inelastic discontinuity in the s-channel; that is,

Ms = Ms—el

Mz = Ms-inel
and ME = Mt-el

M: = Mt-inel .

Using Mandelstam analyticity, we may write

Mo = (i i) e (2)
and
Ms-inel T T I (i Tzfl e : (3)
Thus taking the t-discontinuity of (2), Ms-el,t = Mzt = Pgel and, by analogy,
Mt—el,s = MES = Preel
But taking the t-discontinuity of (3) gives
Ps- J.rlel(S 0 = s inel, t = M;t = MES = pt—el(t’s) . (4)

Thus the essential approximation of the strip model consists in putting the in-
elastic part of the double spectral function equal to the (reflection of the)
elastic part of the cross channel double spectral function. For the case of m-m
scattering, equation (4) is exact in the shaded region of Figure 3(c), that is,

for the t-strip,

2 2 2

4s m l6s m 8s m
_—___ﬂf— =t-s=s _—___EE_ L+ 2 . 2 ]
(s-l6mﬂ) (s-l6mﬂ) (s-l6mﬁ)(s-4mr9

and similarly for the s-strip. Outside this region, equation (4) is only an

approximation, but inelastic effects are seen to play a central role in the model.
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The strip model incorporates maximal analyticity of the first kind, including
crossing, and also maximal analyticity of the second kind. A major remaining
restriction is unitarity. In its most general form, unitarity is unmanageable.
But we see that within the strip-model the entire amplitude is constructed from
elastic double spectral functions, and these may be computed on the basis of
unitarity by a technique due to Mandelstam.(z) The result "satisfies' unitarity
to the extent that the inelastic discontinuity is adequately described by the

above approximation.

THE MANDELSTAM ITERATION:

"signature decomposi-

To begin the discussion let me introduce the so-called
tion"3 of the amplitude in the s-channel, which divides M into two functions Mt,
each having a branch cut in the cosGS =z plane only for z > 1., In this con-
text we consider the amplitude as a function of z rather than t because of the

simpler symmetry properties in zg than in t. We write
W :
m

where MR conta}ns the cut beginning at 2y = 1+2 "g and ML the cut at
z = -(1 +2 Tg) -- see Figure 4. This division gs trivially possible simply
by writing twd dispersion integrals over the two (separated) cuts. Defining
+
= Df(s,z ) % M(s,m2 )]
we find that
i+ +
M(s,z ) = 5[M (s,z2 ) + M (s,-z )]

+ 5 (s, ) - M (5,2 )]

Thus the total decomposition of the amplitude is

+ + +
M- = M°© + V&
+ .
where each individual term -~ for example, v°" -- has only a right~-hand cut. The

crucial point is that the two-particle unitarity integration maintains the +
labelling -- that is,
+ +.% +
Im M mjdgel(M) M
This can be proved, for instance, by expanding the amplitude in partial waves.
From this point, I will drop the (+) notation, but it is understood that in writ-

. + -
ing M we mean M or M .
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The assumptions of analyticity allow us to write dispersion relations in t

for both v° and M° separately,

r°° dt' Vts__(t',s)

s R R
Vi(s,t) = . 5 (t'-t) (5)
4m
T
and
@ gt M(t',s) N
s =1 .t 7

16m
i

A significant point here is that since M does not contain the T=77 threshold in
. . L . 2 s . .
the t-channel, its t-discontinuity begins at 16mﬂ. Because M is defined to con-

tain the entire 2-particle s-cut and no inelastic s-cuts, we have

1 . . . .
51 [Ms(s+1€,zs) - Ms(s-le,zs)] = ——93-— I dao' M(s-le,zg) M(s+1e,z;) 5 (7

320 /s
where 4(q2+m2) = g s
= 2 2
zg = zsz; + cosd'/l-zs \ﬂ-z's R

and dQ' = d(cos®') d¢' .
If we define

s _ 1l s . V- P

o (s,t) = 2i[Mt(s-i-le,t) Mt(s ie, t) ] (8)

then ps is the elastic double spectral function in the s-channel. Evidently,

<o

s
s 1 j ds' p7(s',t)
M == b=
£t o o5 (9)
so(t)
4(4m>) , .
where s (t) = —=+ 4m is the boundary of p (s,t).
0 2 T
t-l6mTT

Substituting from equations (5) and (6) into equation (7) and using equation (8)

we obtain
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]

* S 1 '
% J p(s,ehde’ | %I{M(s+ie,zs) - M(s-ie,z )]
t

(t'-t)
o ()
°°dt M(st) de, M (s,t,)
[elt] ][1f ————2] (10)
32ﬂ'/é L 2 t1+2 (1 t +2q (1- “Z g
N
4(16m2)
where t (s) = lém~ + ————EE—
° m s-l+m1_r

Doing the (non-trivial) angular integrations over dQ'(Z) we obtain

(oo}

/“dt' 0 (s t;l j I dtldt M (s t ) M (s,t )
t (S) 16 q/S 4m2 K (t 2> ; q )
t.t
172
t-ty-t, - 22 + /X
X 4n 4 (11)
)
t-tymty -5 - /K
2q
£ttt
20 2, 02,2 _ _ o172
Here K(t,tl,tz, q) =t +t1 +t2 -6t1t2 2tt1 2tt2 >

In the s-channel physical region, t < 0 for all values of t and t2 in the region
of integration, so K > 0 and the integrand is non-singular. We can obtain an
explicit equation for ps(s,t) by taking the t-discontinuity of both sides of
equation (l1). Since evaluating the discontinuity of the right-hand side re-
quires a rather subtle argument, let me outline the calculation briefly. Viewed
as a function of t for positive real t1 and t2’ K(t,tl,tz; q2) is as shown in

Figure 5. 1Its zeros are at

)
e Tt ;;5— + Z[tltz :[} + Z/J ,

both of which are greater than zero and thus at unphysical values of t in the
s-channel. If we continue equation (10) as a function of t from t < 0 into the
region t > 0, the first potential singularity we will encounter occurs at t_.

However, encircling this point in the t-plane shows that the possible singu-
1

-z

1
-2z
larity arising from K 24 K is cancelled by a minus sign coming from the in-

version of the argument of the logarithm, which is evaluated on its principal
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branch. Above t_, since K < 0, the logarithm acquires an imaginary part which

charges in such a way that near t, one finds

In x = fn x + 2mi

thus at t = t+ the cancellation of the potential singularity from K ° cannot occur,

and we find

s k=0 dt dt2 M;;(s,tl) Mt(s,tz)

0%(s,t) = H 2 L (12)
2
TT

e q/s K*(t,t;,t55 q°)

where the region of integration is shown in Figure 6. Within this region of in-

tegration it is always true that K = 0 and that

E>e =t b, bt 2[ (} t <} +”’E}J

so that

=ty +/e)” (13)

for all s.

This final inequality is extremely important, for it allows an iterative
. . s . s .
solution for the amplitude M to be constructed,given V. To see this recall

that from equation (9) we may write

©
= =
u =% | ——(—:—)-S (.8 4y . (14)
so(t)
In this equation the first term is zero below t = l6mi but the second is non-zero
above t = 4m2. Hence the full t-=discontinuity of the amplitude between t = mni
and t = 16m2 comes from the '"potential" term, which we assume is known. Above

= l6mi_we must add to this known discontinuity the one calculated from the

dispersion integral over ps(s,t). Equation (13) and the form of the region of

integration in equation (12) guarantee that knowing Mt up to t = z'implies that

we may calculate, from equation (12),
s
p (s,t) up to t = (
. . _ S _ 2 s 2
Since we are given Mt(— Vt) up to t = 16mﬂ, we may calculate p~ up to 36mﬂ, from

which we may generate ps up to 64mi. Thus the dynamics of the strip

model is contained in equations (12) and (14), which are solved by the Mandelstam
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(2)

iteration technique. In the next lecture I shall mention briefly the results
of this procedure, but spend more time discussing the difficulties, related to
convergence problems for the integrals, which affect the model.

Let me close with a brief digression on the relationship of the strip model
to the multiperipheral model we studied earlier. Although this connection is
somewhat tenuous and not mathematically precise, it does illustrate that similar
physical approximations and assumptions are being used.

Recall that in the MPM we approximated inelastic unitarity by a sum of

terms of the form

where Mh corresponded to the multiperipheral amplitude for a 2 =+ n production

process. (See Figures 7 and 8 and note that we are ignoring G-parity.) We see

"cut" the singularity diagram with a line

immediately that, in Figure 8, if we
in the t-sense, we always have a two-particle state. In taking the sum over all
n, we are of course summing over all k in Figure 8 so that we are approximating
the full amplitudes shown in Figure 9. But this looks remarkably similar to our
strip model approximation that ps-inel = pt_el.
Note the crucial difference that in the strip model diagram of Figure 10
the t-lines are on mass shell §-functions whereas in Figure 9 they represent poles.
Conversely, by analogy with potential theory, we may think of the Mandelstam

(8)

iteration as reconstructing the Born series, as indicated in Figure 11 for the

t-channel being the direct channel. Here the t-channel always contains two-particle

states, and taking the t-channel discontinuity ( = Im elM) gives, roughly speaking,

t-
the same correspondence as deduced above between the two models.
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CONVERGENCE DIFFICULTIES AND REGGE ASYMPTOTIC BEHAVIOUR:

In the last lecture I mentioned that ''convergence'" difficulties plague the

original strip model in the form we've discussed so far. As these problems must
be resolved before any useful results can be obtained, let me deal with them
directly, before going on to summarize the outcome of this approach.

Recall that our fundamental equations were

K=0

k3
s 1 dtldtz Mt(t_:l,s) Mt(tz’s)
0%(s,t) = —3— | . - (1)
81 q/s 4m2 K (t’tl’tZ’ q)
and
M (t S)=’1'J ds' PS(s'. ¢t +Vs(t s) (2)
£ T (s'-s) £ *
s, (t)
From these we could calculate the amplitude via M + M® + v° and
o) S ' '
o 1 j Mt(t ,s) dt 3
T 5 (t'-t) ’
16m

But in writing equation (3) in the form shown, we've assumed that Mi vanishes as
t * » so that the integral converges. In general, this will not be the case.

In particular, if Ms(s,t) has an s-channel pole, then the integral cannot
converge. This follows in the simple case of one S-wave resonance by noting

that, if

2
M = Bt B (4)
s-m
then Mi = ﬁi, where M° does not contain the s-channel pole. Thus if both
(3) and (4) are to hold, the t' integral must diverge and the subtraction term
necessary to define the integral in the standard sense can then be identified
with the resonance parameters.
Assuming that, in the general case, Mi does not vanish as t # », how do we
evaluate the integral in equation (3)? Let me discuss two approaches.
The most direct way to gain convergence is, as I1've indicated, to introduce
subtractions in the t' integration. 1In the so-called "S-wave dominant' model

(1)

for the m-m interaction, Chew and Mandelstam introduced one subtraction by

writing

[-OO dt'

= t gt
M(S:t) = fO(S) + I (t'—t)t'

s
Mt(t',s).
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Here the function fo(s) is a constant with respect to t: hence the name ''S-wave
dominant" model. Even after imposing unitarity, via the N/D technique, the sub-
traction term still contains one free parameter, A, if one does not require that
the S-wave amplitude coincide with the continuation of the Froissart-Gribov
amplitude to the point £ = 0. This freedom, at the time the model was proposed,
was considered desirable, for A could correspond to the fundamental coupling
constant in the ¢4 Lagrangian field theory of the m-m interaction. But although
Atkinson(z) has proved rigorously that consistent solutions satisfying crossing
and unitarity exist to the reciprocal equations we wrote down for Mi and ps(s,t),
when one introduces a subtraction in equation (3), the solutions (which had al-
ready been obtained numerically before Atkinson's proof) are rather uninteresting.
The p resonance, for example, does not appear, This leads us to seek another
way, other than the simple subtractions, by which to define the integral in
equation (3) when the discontinuity does not vanish as t 2 .

The alternative approach we have called '"second-degree analyticity" and was
suggested by Chew and Frautschi,(3) who, motivated by Regge's work on potential
theory, postulated that all physical angular momentum values be connected by the
Froissart-Gribov interpolation. The asymptotic form of the amplitude and its

t discontinuity are then unambiguously connected. For example, if the leading

J singularity is a simple pole at J = w(s),

s . r(s) Pa(é)(-zs) S (8)

M (s,t) the sinmo(s) T sinm(s) (%)
and

w(e,s) o w) Bz = 8 (6)

Note that M° contains s poles while Mi does not. Nevertheless, according to
second-degree analyticity, the amplitude is completely determined by its dis~
continuities. If we can find a region of s in which ¢(s) < O so that the integral
in equation (3) converges, we can define the expression for all values of «(s)

by analytic continuation. Both in potential theory and in the ladder diagram
models of perturbation theory, the behavior of the real part of the Regge tra-

jectory, as shown in Figure 1, guarantees that such a region exists.

“"subtractions"

The crucial point is that, although one might still say that
are needed when one continues into the region where g(s) > 0, these subtractions
are completely determined if the discontinuity -- and thus «o(s) by equation (6) --
is known. Hence there are no fundamental constants corresponding to elementary

particles or their couplings in this approach.
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In practice we do not need to make an explicit continuation to determine M°
given Mi. Rather, since we know that the asymptotic form of the discontinuity
is given by (6), we can subtract from Mi the leading Regge terms. To identify
the Regge functions w(s) and B(s) we can use the Mandelstam interation -- subject
to a cut-off requirement that I'll mention in a moment -- to calculate Mi out to
large t and, by comparing our results with the form implied by (6), deduce o(s)
and B(s). We'll discuss this method in more detail in the next section. We may
then write an expression involving a convergent integral plus Regge terms for
M. Although this expression will be formally similar to that obtained by making

subtractions at infinity, let me emphasize once more that now there are no ar-

bitrary subtraction constants in the equations.

We have so far resolved the first convergence problem. Our solution was to
invoke the '""Regge boundary condition," or, as we've sometimes called it, maximal
analyticity of the second kind. There remains a second difficulty, which can
only loosely be called a "convergence" problem. It is that, in general, our calcu-
lational procedure involving the Mandelstam iteration provides no guarantee that
Ms(s,t) becomes small compared to v° outside the s-strip. This requirement is
crucial for the consistency of the model, as v® is assumed to dominate at asymp-
totic values of s. In fact we can show that our iteration scheme is such that,
if the "potential," v°, contains as input elementary particle poles of spin
greater than one or Regge poles for which o(s) > 1 for any s > 0, then Mi(t,s)
will grow explosively with increasing s. To see this, recall that in equations
(1) and (2) the relevant regions of the invariants in which to evaluate ps(s,t)
and Mt(t,s) are s and t both greater than 0. Suppose that for some region of

t >0, Vi 2‘sa(t) with o(t) > 1. Then equation (1) implies ps(s,t) will receive

a contribution -- just by putting ty =t in the integral -- of the form
s 200(t71) -1
p(s,8) = s (e1)
for t = 4t1. Equation (2) then implies that Mt(t,s) will have the same behaviour,

and thus a second iteration gives

o5(s,£) = sH(F1)"3

for t = 16tl' Similarly, the nth iteration gives

n n
ps(s,t) - SZ a(tp)-2 +1
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for t > 4nt1. For a(tl) > 1, this leads to an increasing asymptotic behavior
for Ms(s,t) in s as t increases.(A)
When analyzed in detail the above phenomenon corresponds to the development
of Regge cuts, resulting from the jteration of Regge poles. With linear pole
trajectories the leading cut always lies below the leading pole for positive t
(it turns out that ac(t) = 20(t/4) - 1), and so at large s the function M° re-
mains small compared to Ve, However, it is computationally difficult to handle
indefinitely-rising powers in the strip model, and, at present, in the literature
this difficulty has been circumvented by inserting a high s cut-off of some sort.

In the next section, I'll mention two forms of the cut-off and discuss the re-

sults finally obtained from the cut-off, convergent equations.

RESULTS FROM THE STRIP MODEL WITH A NON-REGGE POTENTIAL:

At least two explicit strip model numberical calculations using non-Regge
potentials have been published.(S)
was obtained by letting the potential, Vs(s,t), approach zero rapidly above some

‘e s . . . s
critical value, S1- This is in conflict with our assumption that V (s,t) =

In reference (5a) the necessary cut-off in s

B(t) sa(t) as s + o, but since the calculations of reference (5a) are concerned
with the limit t - «, in which M is expected to dominate, this conflict may not
be serious. In reference (5b) use is made of a simpler, and in view of our
assumptions, perhaps more justifiable cut-off. Equation (1) is re-written in

the form

M_dt, dt

_ _g(s) J f Mg M dey dty

s 2
8m q/s 4m2 Kz(t,tl,tz; q)

where g(s) goes rapidly to zero above s = K the edge of the unphysical strip.
In both cases the input to the model is the potential VS, parameterized in

terms of one or more elementary particle poles. The equations of the Mandelstam

iteration are then used to calculate M° to high values of t, for which we expect

Mi = B(s) ta(s). From this equation we see that a(s) and B(s) may be calculated

from

In |Mi(t,s)| = /n B(s) + Re a(s) 4n ¢t

arg [M:(t,s)] = arg B(s) + Im o(s) 4n t . (7)
I should note that in both potential theory(6) and the cut-off relativistic
theory(Sb) it has been shown that the Mandelstam iteration does in fact lead to

Regge asymptotic behavior; thus, in particular, equation (7) can be applied.
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In practice an approximately determinable asymptotic power, o(s), can be recog-
nized after only three Mandelstam iterations.(7)

The general shape of the output trajectories is as shown in Figure 2. Note
that in the strip model we expect trajectories to ''turn over' at large positive

values of their arguments. Assuming that o(s) satisfies a dispersion relation

Q(S) = O((oo) +%‘.J\ M_s_'_Ld—S—'

(s'-s) ’

this behaviour follows immediately from the fact that Im w(s) -+ O outside the

. (8)

strip.
Since both calculations employed elementary particles as input and got

Regge poles as output, they were not attempting to find self-consistent, boot-

strapping solutions. However, in both cases the elementary p pole was included

in the input potential and an output Regge trajectory, with isospin = 1, could

be made to satisfy
I=1, 2
o (mp) =1

for reasonable values of the input and cut-off parameters. The width of this

"p" meson, however, was much too large. In addition, the slope of the p trajectory
was too small. A second trajectory, one with I = 0 and the quantum numbers of

the vacuum -- therefore a candidate for the Pomeranchuk trajectory -- was also
generated. 1Its properties were similar to those of the p trajectory and thus

only partly satisfactory.

THE "NEW' STRIP APPROXIMATION:

From the point of view of the bootstrap philosophy, the calculations we've
just outlined are somewhat unsatisfactory. Rather than utilizing the full cross-
ing symmetry of the -1 system, the previous models have used elementary particle
poles as input to generate output Regge poles. An almost equivalent statement
is that the original strip model calculations have not made full use of the
fourth fundamental postulate of S-matrix theory, that of maximal analyticity of

the second kind.

(9)

proposed the '"mew' strip model.

To remedy this defect Chew and Jones
Taking over bodily the physical arguments about the strips of the Mandelstam plot
being the important regions in which the amplitude is large, they noted that,
since Regge poles both contain low energy direct channel resonances and control

asymptotic behaviour in the crossed channel, within the strip region a sum of
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Regge poles could perhaps provide a good approximation to the amplitude. Since

the strip structure is maintained, the decomposition of the amplitude is still
S t
M=M +M +M

where all three terms now have Regge forms. Hence the new strip approximation

to the amplitude may be written, including signature, as

_ s ] t t
ulsoEou) = DR;(8,8) + 85 Ri(,0)) + DORH(E8) + Ey Ry(E,)

+ Z(R (u,8) + & R (u,8)) (8)
k

where the sums over i, j, and k are over the leading Regge trajectories and §i
is the signature factor of the ith trajectory. Here Ri(s,t) is a specific func-
tion, whose form we shall discuss later, which contains an s-channel Regge pole.
The Regge trajectories involved are then to be determined self-consistently from
the dynamical equations.

One cornerstone of the original strip model which we must be careful to
include in the '"new" model is maximal analyticity of the first kind. This re-
quirement can be invoked by insisting that each individual Regge term satisfy
the Mandelstam representation. What does our new model suggest about the double
spectral functions? Now an s-channel Regge pole term would be expected to pro-
vide a significant contribution to the double spectral function only outside the
t-channel resonance region -- that is for t > tl’ with t1 =3 GeVz. For such
values of t, the actual boundary curve of the double spectral function is ap-
proximately the line s = 8, Applying identical considerations in the t-channel -
and limiting ourselves for the moment to pst(s,t) -- we find that we should try
to construct a Regge term with a non-zero double spectral function in the shaded
region of Figure 3. The upper limit of the s-strip, 15 again marks the edge
of the region in which two-particle thresholds and low-lying resonances are
dominant.

Clearly, one obvious defect of this approximation is that the "corners" of
the double spectral functions have been neglected. Arguments have been pro-
posed(gc) that these regions are unimportant, but, as we shall later see, this
omission is connected with the fundamental difficulty in the new strip model.

An explicit expression for a Regge term satisfying all the above considera-

(9b)

tions is
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o.(s)

RX(s,t) = 5020, (s) + 1] v,(s) (a2 © X
1 P z")
o.(s)
—_TT _t . i
sinmo, (s) Pozi(S)(l * 2q2) * \J" £, Z' 41+ (== § ) (9
ZqS

Note that this contains both s-channel resonance poles, via the Regge pole, and
s-channel two-particle thresholds, via the trajectory and residue functions o(s)
and y(s). Further, its double spectral function has the boundary shown in
Figure 4; recall that the upper limit, 51> must be imposed by the dynamical
equations.

To formulate dynamical equations for the model we invoke two-particle
unitarity. Although one could proceed as in the original strip model with the
Mandelstam iteration technique, historically the N/D method was chosen. The
motivation for this choice is that the N/D equations provide a simpler scheme
for numerical calculations. The Mandelstam iteration procedure, since it involves
functions of two variables and since K-% is infinite on the integration boundary,
requires high numerical accuracy.

The N/D technique involves the partial wave projection of M(s,t) in, say,
the s-channel. Let me call this projection Bl(s). Let us then define

P L °1 Im By(s")
Bl(s) = Bl(s) - o js —ZETTET_— ds'
o
and note that Bz(s) contains no s poles and correspondingly is holomorphic in £
for Re £ > 0. As 5 2 o, Bl(s) -+ Bz(s); in fact, sy is the point above which
Bl(s) e‘Bf(s). Note the (inexact(gb)) analogy to the original strip model's

decomposition
M=M +V

where M =+ V° as s -+ w.
If we now write B1 = Nl/Dl and demand that N1 contain all the singularities
of B?, then Dy will have only the "strip" cut from s, to s;. Imposing

two-particle unitarity,

In B,(s) = p,(s) By(s) By(s)

on D1 in this region implies

- 371 -



Im Dy(s) = -pz(s) N, (s)

and, with second-degree analyticity, leads eventually to an integral equation
for Nl(s),
> . rsl ds'[B5(s") - B, (s)] ' |
N;(s) =B (s) += J, 7o) p (s N )(s') . (10)

[¢]

The method of solution is to parameterize the input Regge functions, o(t) and
vy(t), in an appropriate manner, to calculate Bf(s), and then to solve equation

(10) numerically.

Unfortunately, the solutions obtained in this manner are far from satis-
factory.(lo) If one inputs only a p meson trajectory, both a p and a P emerge.
Further, the output p trajectory, ¢ (s), does not pass through 1 for s > O.
Including both p and P as inputs lezds to even worse results. If the P is added
in a straightforward manner, the p ends up as a ghost state on the physical sheet.

To discover the source of the difficulties mentioned above, Collins went
back to potential theory. Here the input of the two Regge poles, p and P, cor-
responds to the superposition of two potentials, one attractive and one repulsive,
as shown in Figure 5. If in this potential theory model Collins took the

left-hand cut in B, to be just the cut of the potential, which in fact corresponds

to the Born approxfmation, then ghost states similar to ghost "p" mentioned
previously could arise. Of course, such states do not exist in the full solution
to the Schr8dinger equation and arise simply because of the inadequacy of the
approximation. Now the Mandelstam iteration we've outlined previously yields in
the limit of an infinite number of iterations the exact solution to the
Schr8dinger equation.(ll) Thus, Collins argued, in the relativistic problem
perhaps by iterating the Regge 'potential' through the Mandelstam equations
several times, thereby obtaining the correct boundary for the double spectral
function, one might be able to overcome the inadequacies of the model. This is

the procedure followed in the Collins-Johnson version of the strip model, to

which I now turn.

COLLINS-JOHNSON MODEL:

Collins and Johnson's method for implementing the strip model begins by

adopting the approximation to the amplitude given in equation (8), but written

in the form, for the s-channel,

M=M +v°
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Then, using the Mandelstam iteration with v° as input, they calculate the corner
of the s-channel elastic double spectral function from the true boundary to
t=ty (see Figure 6). Above £t of course, the Regge form of the amplitude is
already assumed to give the double spectral function to sufficient accuracy.
Crossing and the knowledge of ps_el(s,t) enable them to evaluate the corners of
pt-e and p as well. ©Note that, in the spirit of the original model, we could
include an approximation to inelastic effects by setting

s-inel(

pt_el(s,t) =0 s,t) .

In fact, Collins and Johnson do use this approximation to incorporate inelastic
effects, by a technique developed by Frye and Warnock,(13) on the far right-hand
cut of the N/D equations. In the next step, the contributions of the original
potential and the corner of the double spectral function (region X of Figure 6)
to the (left-hand cut of the) partial wave, Bl(s), are calculated. The result
is then fed into the Frye-Warnock N/D equations, and these equations are solved
numerically.
The explicit numerical calculations involved inputting the p and P tra-

(12,14) and matching input to

jectories and residues, suitably parameterized,
output parameters. The trajectories and residues are shown in Figure 7. Collins
and Johnson in this way were able to '"bootstrap' the p with parameters,

ap(O) = _55, Fp = 143 MeV, the first time that such parameters have been obtained
from a bootstrap model.

Let me summarize the results of the Collins-Johnson strip model; I feel they

are both successful and promising.

(1) There is weak dependence on the strip width parameter, sq- This re-
moves any arbitrary parameters from the model.

(2) The trajectories are roughly linear with unit slope for |t| <1 GeVZ.
Recall that on the scale of Figure 7, 1 GeV™ = 50 mi. We've already
explained why the strip model is expected to give trajectories that
turn over, so even this small range of linearity is gratifying.

(3) The trajectory intercepts can be self-consistent in the ranges

.3 5ap(0) < .7
and 9 < aP(O) < l.2.
As the calculations were not. done to infinity, the Froissart bound limit
aP(O) < 1 does not directly apply. Note that, as in the multiperipheral
model, aP(O) - ap(O) =5,
(4) The P'(£°) trajectory was not generated.
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input _ r output

p

(5) A self-consistent solution was obtained with T = 143 MeV.

7T
(6) OTotal
NN data, is roughly 15 mb. The diffraction peak in dg/dt is too broad

= 26 mb. The expected result, using factorization and TN and

by about a factor of two.
(7) The low energy S-wave ''looks good" in the sense that it is small.
This is an important result, never before obtained from a bootstrap
model without arbitrary parameters. This smallness is usually "explained"
through PCAC and the Adler condition, which requires that at the un-
physical, off-mass shell point, s = t = u = mi, the amplitude should
vanish. The Collins-Johnson result suggests that the physical content
of PCAC is already contained in our bootstrap conditions,
This summary of results concludes my comments on the strip model and marks
the end of our detailed analysis of approximations to the S-matrix. In the final
lecture I'll compare the various models we've discussed to see how much success

the hadron bootstrap program can claim.
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LECTURE 9
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FIGURE 3
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FIGURE 5
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In this final hour I'd like to stand back from the details of the models we've
been discussing to recapitulate the essence of my lectures and to speculate on
future developments.

We've seen that the complexity of the S-matrix postulates has forced resort to
models that attempt to satisfy only some of the basic principles while explicitly
ignoring others. Two different models emphasing different fundamental hypotheses
are "complementary" in that where one succeeds partially the other fails badly. One
of our long-term goals must be to try to establish overlapping domains of validity
for different models; in this manner we can hope to understand interrelations among
different parts of this S-matrix.

Most of our approximate solutions have been based on, motivated by, or justified
by the existence of small parameters. Since they have been central to our discussion

let me now summarize these small parameters and the models to which they lead.

1) Widths of Resonances:

The width of a typical B=0 resonance, say Pp ~ 125 MeV, is sufficiently small,
relative to most hadronic masses, to allow a meaningful '"zero-width" model -- the
Veneziano Model -- to be constructed. Saturating the amplitude with nothing but
zero width resonances means neglecting branch points and unitarity in general.
Empirically, this technique seems most successful in interactions having baryon
number, B, equal to zero - that is, in purely mesonic processes. With B=1 there are
already difficulties; in nN scattering, for instance, the important A(1236) resonance
has not successfully been described. As the baryon number increases, the importance
of threshold effects multiplies. A model which ignores unitarity cannot possibly
be valid in the domain of large baryon number.

2) Coupling of Pomeranchuk Trajectory:

A small parameter which we have briefly mentioned is the value of cross
sections at very high energy. This can be translated into the statement that the
“coupling constant, gp - more properly, the Regge residue - of the Pomeranchuk
trajectory is small.l Such a weak coupling allows one to construct models which,
as a first approximation, neglect the Pomeranchuk. Incorporating duality suggests
that this implies the neglect of exotic resonances, leading naturally to a quark-
type model. Mandelstam2 has discussed such models in the tree graph approximation
and obtained a mathematically consistent solution for SU(n), although ghost states ~--
negative residues at resonance poles, implying negative resonance widths -- are a
major problem.

3) Pion Amplitudes near Threshold:

The smallness of a scattering amplitude containing pions (and no direct channel
pole graphs) near threshold follows simply in a field theoretic framework from the

assumption of PCAC but is awkward to discuss within the "on-mass-shell" S-matrix
P
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formalism. Thus the results of Collins and Johnson on the smallness of the nx
S-wave amplitude near threshold are encouraging, as no PCAC assumption was used as
input into their model.

4) The Pion Mass:

In three separate models we've discovered that the smallness of the pion mass
justifies important approximations. Since we've concentrated our attention on
these models in the previous lectures, I'll just mention them briefly here. They
are: a) the potential theory model which we used to understand threshold states;

b) the multiperipheral model; and

¢) the strip model.

From this summary, what may we conclude about the interrelations among the many
models? 1In particular, can we see any trace of the overlapping domains of validity
we hope to establish?

First, recall the relation of the strip model to the multiperipheral model;
this we discussed in detail in the last lecture. By including more of the funda-
mental postulates, the strip model is able to resolve an ambiguity inherent in our
specific version of the multiperipheral model. 1In its capacity to predict the
narrow the width the strip model provides motivation for the Veneziano model.

Another connection, less obvious and more speculative, may exist between the
strip model and the Veneziano model. Since both seem capable of describing the p
resonance in the my system, perhaps we could improve the output from the strip model
by inserting as input the form of Regge residue function suggested by the Veneziano
model - that is, put

7(t) «< P[l—ocp(t)]

The resulting Regge trajectory and residue function may have wider regions of
validity than those obtained without this additional constraint.

We've already mentioned a third interrelation among the small parameters:
namely, the strip model result and the smallness of the S wave xy scattering ampli-
tude, which corresponds to a consequence of PCAC.

Finally, we consider a possible constraint on internal symmetry from multi-
peripheral or strip models. If one inputs into the strip model a meson singlet
state with no internal quantum numbers - corresponding to a U(l) symmetry - one finds
that the force resulting is not sufficient to allow the bootstrap condition to be
satisfied.4 On the other hand, if one postulates the existence of too many
equivalent low-lying states, then the force may increase as much as to violate the
Froissart bound. Thus self-consistency may provide a restriction on the multiplicity
of low-lying states; but this multiplicity of states of similar mass and spin is

what we normally regard as "internal symmetry". Thus in some sense we may be able
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to underatand the "n" in SU(n). That bootstrap theories may lead to unitary
"symmetries'" has, by the way, been known for some time. Cutkosky3 showed in 1963
that if one considers vertices as in Fig. 1 and demands that each particle be
described as a bound state of the other two, one is led to unitary symmetries as
possible solutions of the consistency conditions.

One mighr feel that the partial success of the SU(3)xSU(3) current-current
form of the weak interactions would require, in order to 'explain" SU(3), that weak
interactions be included in bootstrap. My view is that we have not begun to under-
stand the weak interactions. Conserved currents are a concept borrowed from the
electromagnetic interaction; although there is success in first-order phenomenology,
if taken seriously in higher orders, the local current hypothesis for weak
interactions leads to horrendous difficulties. 1In short, I think the speculation
that SU(3) may be explicable in terms of the strong interactions alone is
reasonable.

For nearly ten years the principles underlying the hadron bootstrap have been
unchanged. It is natural in a theory based on broad, general hypotheses that
progress is slow. But until we find

1) a violation of the underlying principles; or

2) a model which staisfies all the postulates but which clearly does not

correspond to the physical world; or

3) a proof of non-uniqueness of the solution,

the concept compels attention.
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Fig. 1 A Three Particle Vertex
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I. INTRODUCTION

The concept of duality is probably the most important new development in
strong interaction dynamics in the last few years. Today, we can hardly imagine a
discussion of hadronic processes without mentioning ideas such as finite energy sum
results, resonance dominance, global duality and local duality, the connection
between the Pomeranchuk singularity and the non-resonant background, exchange degen-
eracy, the absence of exotic exchanges, duality diagrams and the Veneziano formula.
The purpose of these notes is to review, step by step, the historical and logical
developments of the various aspects of duality. 1In every step of this development
we will try to emphasize the assumptions needed in order to proceed, the consequences

of these assumptions, the experimental justification for making such assumptions,

and the experimental status of the predictions which follow from these assumptions.

The rapid development of this subject has led to a certain amount of
confusion in the literature. It is very often stated that some aspect of duality is
consistent or inconsistent with experiment on the basis of a certain prediction,
while the prediction itself can really be obtained from a weaker set of assumptions
(which does not necessarily coincide with the particular aspect of duality under
discussion). A typical example is the frequently made statement that the apparent
absence of a p' meson at 1250 MeV provides evidence against the Veneziano formula.
We must remember, however, that the existence of the p' is already predicted by the
assumption of local duality which is only one of the many ingredients which go into
the construction of the Veneziano formula. The absence of the p'-meson is therefore
evidence against strict local duality. The Veneziano formula is to be blamed, only
to the extent that it utilizes local duality as one of its ingredients. Another
example which is much more crucial is the failure of various predictions of the
exchange degeneracy hypothesis. In many of these predictions, the failure can be
traced to a failure of Regge pole theory (to be distinguished from a theory including
cuts). If Regge pole theory fails and if cuts are necessary, we should modify
everything in the formulation of duality, beginning with the original form of the
finite energy sum rule. Only after such proper modifications are inserted into the
formulation of the sum rules of the duality scheme, and of the exchange degeneracy
hypothesis, we will be able to test this hypothesis within the framework of duality
and decide whether or not it is experimentally valid. 1In view of these and many
other similar cases, we shall try to clarify some of the confusion which has propa-
gated through the literature on this subject, and we shall put the blame for each
success or failure on the appropriate theoretical considerations which lead to the
tested prediction. 1In our discussion we follow a chart (Fig. 1) which indicates

the theoretical sequence of assumptions which have led to the development of the
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various ideas, beginning with finite energy sum rule and ending with the extensions
of the Veneziano formula. This chart shows the new assumptions which are needed

in every stage as well as the experimental and theoretical consequences which result
from these assumptions. We shall discuss every one of these items both from the
theoretical point of view and from the experimental point of view, mention the
experimental status of the various ideas involved and propose new experimental tests
wherever possible. Since this is supposed to be a general review of the subject,

we will avoid minor technical details such as discussion of various ghost killing
mechanisms, details of Regge cut contributions, choice of cutoff values in the sum
rules, higher moment sum rules, and many other interesting technical questions which
are related to duality in one way or the other. We shall mainly concentrate on the

basic concept of duality.

II. FINITE ENERGY SUM RULES (FESR)

3

Finite energy sum rules are historically and logically the simple mathe-
matical tool that has led to the idea of duality2 in hadron physics. The sum rules
themselves are merely a clever mathematical representation of the assumptions that
are used in deriving them, namely: Analyticity and asymptotic Regge behavior.
Without further dynamical assumptions (such as resonance dominance) the sum rules
do not and-cannot yield any new physics beyond the ideas used in the derivation.
In particular, without such additional assumptions, the finite energy sum rules
(FESR) do not necessarily lead even to duality itself.
The familiar derivation of the FESR involves the assumption that a scattering

amplitude f£(v,t) obeys, for v > N, a Reggeistic expansion:

N 1+ e_i“ai(t) a, ()

£(v,€) = ) = B (D) e ("

i
Here, Vv is the laboratory energy of the incident particle, t is the invariant momen-
tum, ai(t) and Bi(t) are the trajectory and residue function of the t-channel Regge
poles, respectively. Using the usual analyticity requirements and crossing proper-
ties which are needed for writing ordinary fixed-t dispersion relations, sum rules
of the following typical form can be derivedl’z:

N
Oti(t)+1

fxmf(v,t)dv = Zgi(t)%ﬁ:m
0 i ’

Similar sum rules can be written for the real part of f(v,t), for various combina-
. . . . n
tions of the real and imaginary parts, for higher moments [v Imf(v,t)], etc.

We have no good reason to doubt the validity of the analyticity assumptions
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needed for deriving the finite energy sum rules. However, we do have very good
reasons to doubt the validity of Regge pole theory. There are many phenomenological
indications that contributions of Regge cuts are extremely important in many cases.
We do not see any reason or justification to neglect them in writing the asymptotic
behavior of the amplitude which appears in the FESR. This point which is often
ignored, is extremely important, since many of the questionable predictions of
various duality assumptions seem to contradict experiments precisely in those cases
where Regge pole theory is in trouble. It is not clear at all whether these failures
are failures of duality or whether they are failures of Regge pole theory. 1If the
latter is the case, it is conceivable that the duality assumption will become
consistent with experiment, once Regge cuts are properly included in the formulation.
We shall return to the subject of Regge cuts frequently in this review (particularly
in Sec. 20) but let us emphasize immediately that a clear formulation of the various
aspects of duality which includes the effects of Regge cuts is badly needed. To
our knowledge, such a formulation does not yet exist. It is completely trivial to
add some logarithmic cut terms on the right hand side of the FESR but this is not
sufficient for providing us with a complete duality theory including Regge cuts.
We have to understand much better the contribution of Regge cuts to various specific
partial waves in the s-channel and the possible connection between Regge cuts and
the absorption model before we can claim to understand the role played by cuts in
the duality scheme.

For the time being, however, let us follow the usual route of ignoring cuts

and discuss the physical content of the finite energy sum rules.

mar ()

/T~

-

T : P
1 \/ 2 3 4 v(Bev)

Fig. 2. The t=0 amplitude for n_p - ﬂon

This is perhaps best illustrated by Fig. 2, in which the physical amplitude for =N
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charge exchange at t=0 is shown together with a low energy extrapolation of its high
energy Regge parametrization.2 The two amplitudes approach each other as the energy
v grows and the areas under the two curves have to be equal according to the FESR.
The extrapolated Regge amplitude represents some kind of an average of the true
physical amplitude over the interval (0...N).

So far we have given an explicit form only to the high energy part of the
amplitude. We did not assume anything for the low energy part of the amplitude,
which appears on the left hand side of the FESR. Figure 2 therefore tells us that

the extrapolated Regge pole contribution is balanced by whatever terms which appear

in the low energy side of the relation. Depending on whether or not we make further
theoretical assumptions for the low energy part of the amplitude, we can use the

finite energy sum rule either for pure phenomenological studies or for dynamical

calculations.
III. FINITE ENERGY SUM RULE PHENOMENOLOGY

The basic content of the FESR is a relation between the low energy part of
an amplitude and its high energy part. The left hand side of the FESR is given by
the physical amplitude at low energies. The right hand side of the FESR involves

the parameters of the dominant Regge trajectories which can in principle, be

completely determined by the physical amplitude at high energies. The FESR enables

the low energy data to impose constraints on the parameters appearing in the high

energy Regge description. GConversely, the high energy data, through its Regge

parametrization, can impose constraints on whatever low energy parametrization one
may with to use. Theoretically, it is conceivable that extremely accurate low
energy data for a certain physical amplitude may lead to a better determination of
its high energy Regge parameters than some poor quality high energy data for the
same amplitude. We know, of course, that infinitely accurate data at a given region
would be sufficient to determine the entire physical amplitude in other regions by

a unique analytic continuation. The finite energy sum rules essentially provide us
with an approximate, non-unique way of doing a similar thing in the realistic case
of data with finite experimental errors. Many applications of this idea have been
proposed by various authors4 and, in some cases, have indeed improved our under-

standing of the high energy amplitudes.
IV. FINITE ENERGY SUM RULE AND HADRON DYNAMICS =~ RESONANCE DOMINANCE

The dynamical use of FESR appears when we assume that the dominant phenomena
on its left hand side are described by the s-channel exchange of the same set of
Regge trajectories which appear on the right hand side of the FESR. This leads
immediately to a bootstrap scheme which uses as input analyticity, Regge behavior

and additional dynamical assumptions such as resonance dominance, and which yields
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as output sets of equations among hadronic masses and coupling constants (or trajec-
tories and residue functions). It is the resonance dominance assumption which converts
the FESR from a mathematical tool to a profound statement about strong interaction
dynamics. For example, in Fig. 2, if we assume that the actual physical amplitude is
completely dominated by resonances and that the high energy amplitude is completely
dominated by Regge poles we learn that the extrapolated contribution of the Regge

poles balances the total contribution of the resonances alone, and it is precisely
such a relation which we find useful for studying the spectrum of hadrons.

At this point we must add that the resonance dominance assumption in its
localized sense (i.e., a resonance contribution dominates its immediate energy
neighborhood) is reasonable only for the imaginary. part of the amplitude. A resonance
creates a clear bump in the energy dependence of the imaginary part of its partial
wave amplitude. At the resonance position (at least for a simple Breit-Wigner resomr

ance) the real part of the .amplitude vanishes (Fig. 3).

Imf (E) Ref(E)

Fig. 3. The imaginary part and the real part of an ordinary Breit-Wigner resonance

It would therefore be ridiculous to assume that resonances dominate the real part of

the amplitude around the resonance energy. We could compute the resonance contribution

to the real part by inserting its contribution to the imaginary part into a dispersion
relation. We could then find that the real part of the amplitude gets contributions
from very distant resonances. 1In the following section we shall, therefore, utilize

the resonance dominance assumptions only for the imaginary part of the amplitude.
V. GLOBAL DUALITY

As long as the low energy resonances dominate the left hand side of the FESR,
we find ourselves with the following situation: A sum of t-channel Regge poles
balances a sum of s-channel resonances. In other words, the dominant poles which are
exchanged in the t-channel determine the s-channel singularities and vice versa.

This notion contradicts the traditional approach according to which the s-channel
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resonances should be added to the t-channel exchanges in the description of hadronic
scattering amplitudes. What we now say is that the s-channel resonances by themselves
should be sufficient to determine the complete amplitude. At the same time, the
t-channel Regge poles by themselves should also be sufficient for determining the

amplitude. We have two complete complementary descriptiong of the same physical

situation. Any of these descriptions is complete by itself and need not be supple-
mented by contributions from the other description. This is the fundamental idea of
duality. We refer to it as Global Duality if the equality between the sum of t-
channel resonances and the sum of t-channel Regge poles is true only in an average
sense (over a region, say, from O to N). It is conceivable that in some cases the
equality between these two descriptions can be true in a smaller region such as in
the region of a specific resonance or over a range of a few MeV. 1In such a case we
may talk about local duality. We shall return to the idea of local duality in Secs.
24-29 and for the time being concentrate on global duality.

The usefulness of global duality depends in a crucial way on the simplicity
of the two complementary descriptions of the scattering amplitude which are being
considered here. 1In some cases the s=-channel description may be very simple, but
the t-channel picture is totally useless and complicated. (This is the case, e.g.,
for nN scattering at (s)% = 1.24 BeV). 1In some other cases the t-channel picture
may be simple and attractive, while the s-channel picture involves an enormous
number of resonances and is, again, useless and complicated. (This would presumably
happen for T p - non at 20 BeV). In some other cases, both pictures may be compli-

cated and the duality idea will be of no use at all. It is possible, however, that

in gsome situation both the s-channel picture and the t-channel picture are fairly

simple. 1In these cases the equality between the sum of s-channel resonances and the
sum of t-channel trajectories becomes a sufficiently simple equation and the solution
of such an equation may give us meaningful, interesting results. 1In order to test
the idea of duality and to find its immediate dynamical consequences, we will
therefore have to concentrate on cases in which the two complementary descriptions
are both simple.

But before we turn to the applications, we should convince ourselves that it
is indeed possible for a few s-channel resonances to produce the main characteristics
of one or a few t-channel trajectories and that, on the other hand, it is possible
for a t-channel Regge trajectory to exhibit some of the characteristics of a small

number of s-channel resonances.
VI. CAN A FEW RESONANCES PRODUCE THE CHARACTERISTICS OF A t-CHANNEL TRAJECTORY?

Three of the most common characteristic properties of a t-channel exchange

(whether a Regge pole, a cut, or any other simple peripheral exchange) are the

- 393 -



following:
a) An angular distribution with a forward peak and a rapid variation as a

function of t.

b) A possible dip structure which is fixed in t for all energy values.

c) A smooth energy dependence for a fixed value of t.

It is not difficult to see how a number of s-channel resonances can add up
in such a way as to produce a sharp forward peak with a rapid variation in t. This
will happen, for instance, when a number of resonances with different spins exist at
the same energy. If the contributions of these resonances to the physical scattering
amplitude add with a positive relative sign in the forward direction, the combined
effect at t=0 will be a sharp forward peak, while at larger t-values, cancellations
between the contributions of the different resonances will take place and the
numerical value of the amplitude will be much smaller. This phenomenon is, of
course, well known but it is not often appreciated how striking the angular distri-
bution produced by a small number of resonances can be. An interesting example is
shown in Fig. 4. We consider the n-x elastic scattering amplitude at a c.m. energy
of approximately 1900 MeV and assume that at this energy the amplitude is comple tely
given by five s-channel resonances with spins 4, 3, 2, 1 and 0. The relative
importance of these resonances in the particular example shown in Fig. 4 is taken
from the prescription of the Veneziano formula, but this is totally irrelevant for
our discussion here. What is relevant is the observation that five resonances
with relatively low spins can produce such an impressive forward peak with such a
strong t-variation at small angles. Any uninformed observed who would see this
figure without knowing what was plotted here would undoubtedly claim that this is a
typical curve representing a strong peripheral exchange contribution. His conclusion
would not be necessarily wrong! 1In fact, it could be perfectly consistent with the
statement that we have here five s-channel resonances. There is no necessary
contradiction between the two points of view and it is clear that a relatively small
number of resonances can reproduce angular distributions which would normally be
considered as typical peripheral distributions.

A slightly more complicated problem is the question of producing dips in
the angular distribution at fixed values of t for all energies, a property which is
common to many simple t-channel exchanges. An arbitrary collection of s-channel
resonances will not have such a property. The positions of the dips in the angular
distribution of an s-channel resonance are, of course, dictated by the spin of the
resonance (which determines which Legendre polynomial dominates the amplitude at
that particle energy) and by the energy of the resonance. A very strict relation
between the energies of the various s-channel resonances and their spin values has

to exist in order to force all the prominent s-channel resonances to produce dips at
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Fig. 4. Angular distribution of sz elastic scattering assuming J=4,3,2,1 and O
resonances (from Ref. 6).

the same t-values. Before discussing the general condition which is necessary for
such a situation, let us return to our example of n-n elastic scattering and study
the dip structure of the first few prominent resonances.

At the mass of the p meson the sm-~x amplitude is probably dominated by the
first Legendre polynomial Pl(cose). The amplitude will therefore vanish at the
point 6 = 90°. This corresponds, at the mass of the p meson, to a value of
t = -0.25 BeV2 (Fig. 5a). 1If we further assume that at the mass of the f0 meson
(1250 MeV) the dominant feature in the amplitude is the second Legendre polynomial

we find that the first zero in the angular distribution of nm-n elastic scattering
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Fig. 5. t dependence of nx secattering at the p, f0 and g meson masses (5a,5b,5c)
superimposed on the same t-distribution (5d).
at this energy is produced at t = -0.31 BeV2 (Fig. 5b). At a center of mass energy

of 1650 MeV, n-n elastic scattering is presumably dominated by the g meson with a
spin-parity 3. We find that the first zero in the angular distribution of the xn-x
amplitude at this energy occurs at t = -0.29 BeV2 (Fig. 5¢). The remarkable coin-
cidence between the first zeros in the amplitudes of the three prominent x-x
resonances (Fig. 5d) indicates how, in general, different s-channel resonances may
produce dips in angular distributions at the same values of t. It happens in the
following way: As we go to higher and higher energies the angular distributions

cover wider and wider ranges in t. 1If the zeros would be at the same values of the

angle B, they would correspond to larger and larger absolute values of t as the
energy grows. If, however, as the energy grows, we have prominent resonances of
larger and larger spins, we have contributions of higher Legendre polynomials and
the first zero in the angular distribution occurs at smaller and smaller values of

6. There is a competition between the widening of the range in t and the approach
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of the first zero in 6 towards the forward direction. 1If the two effects precisely
cancel each other, we will observe the phenomenon of having the first zero in the
angular distribution at a fixed value of t for all energies. This is precisely

what happens in our example of the p, £, and g mesons and this is also what happens

2
(in a slightly more complicated situation) in sN elastic scattering. The asymptotic

relation between the spin of the resonance and its mass, which guarantees a fixed

1
T
value of t for the first zero in the angular distribution is J ~ (s)°.

This relation also determines the most peripheral partial wave which is
allowed to contribute to the scattering if the radius of interaction is fixed. We
can see this in the following simple way. For an impact parameter R, the angular
momentum in the c.m. frame is 4 ~ kR, where k is the c.m. momentum. If we assume a
fixed radius of interaction, R, the largest angular momentum allowed to contribute
at a given center of mass momentum k will be proportional to k, and, therefore,

1
proportional to (s)z. We therefore conclude that if the prominent resonances in

L
the s-channel are always the peripheral resonances (4 ~ (s)?) it is guaranteed

that the first zero in the angular distribution of every one of these resonances

will appear at the same t-value at all energies, thus producing our second charac-

teristic property of a peripheral t-channel exchange.

The third property of t-channel exchanges, namely, the smooth energy
dependence for fixed values of t can be reproduced by s-channel resonances only if
a fairly large number of resonances compensate each other at various energies so as
to produce bumps in the energy dependence of specific partial wave amplitudes which
correspond to valleys between bumps in the energy dependence of other partial wave
amplitudes. 1In such a way (Fig. 6) a number of s-channel resonances can produce

structure in the energy dependence of the partial wave amplitudes but no structure
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whatsoever in the energy dependence of the total physical scattering amplitudes. It
is clear that here more than in the previous two characteristic properties, a
detailed compensation among the s-channel resonances is important, and indeed this
property (smooth energy dependence) is normally not obeyed by small numbers of
s-channel resonances. In particular, in m-n scattering in the region of the p, £,

and g mesons the energy dependence is not yet smooth although the two other properties
are already obeyed. At higher energies, however, as the number of resonances
presumably increases rapidly, the smooth energy behavior materializes as a result of
the statistical cancellations of the many resonances.

We have thus demonstrated that, given enough constraints (which are not too
unreasonable!) between s-channel resonances, a fairly small number of them can
reproduce many of the characteristic features of peripheral t-channel exchanges and
therefore provide us with a description of scattering amplitudes which is comple-

mentary to the description provided by the exchange of Regge poles.
VII. CAN A t-CHANNEL TRAJECTORY REPRODUCE THE PROPERTIES OF s-CHANNEL RESONANCE?

An s-channel resonance is characterized by a bump in the energy dependence
of a specific partial wave amplitude. It can also be characterized by a circle in
the Argand diagram for the phase shift of the same partial wave. 1In order to
understand how Regge poles in the t-channel reproduce the same physical amplitude
as the one described by s-channel resonances we have to study whether the projections
of the t-channel trajectories on the s-channel partial wave amplitudes is capable
of producing such peaks in the energy dependence.7 In order to do so, let us again
consider w-n elastic scattering and assume (for no good reason at all) that the
entire scattering amplitude at all values of v and t is given by the expression
f(v,t) = ei“a(t). Figure 7 shows8 the angular dependence of the real and the
imaginary parts of this amplitude at different center of mass energy E*. The ampli-
tude is independent of Vv but the range of t-values available at any given energy,
depends on the value of v. The amplitude shows oscillations both in the real and
in the imaginary part as a function of t or 6. 1In order to study the behavior
of specific partial wave amplitudes, we have to perform the partial wave expansion
of our amplitude. Let us first consider the S-wave part ({ = 0). The real and
imaginary parts of the S-wave partial wave amplitude can be obtained by integrating
the real and imaginary part of the amplitude from 6 = 0 to 180° at every given
energy. Such an integration will produce oscillations which are caused by the
variation in the maximal allowed value of It|. The outcome of such a calculation
is shown in Fig. 7b. We obtained a spiralling phase shift which creates clear
circles in the Argand diagram with a radius which is decreasing with energy. It is

clear that as a function of energy, the imaginary part of the S-wave amplitude will
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show peaks at various energy values and such peaks will be interpreted as S-wave
resonances in the s-channel. A similar situation occurs when we project the P-wave
component of the same amplitude and we find the situation demonstrated in Fig. 8.

All of these arguments only demonstrate that our fictitious amplitude
eina(t) possesses typical resonance properties in the s-channel. It is not diffi-
cult, however, to convince ourselves that if we add one to our amplitude, or if we
divide it by a smooth function of t (t < 0), such as singal’'(0®), we will not change
this property of the amplitude. 1In other words, the signature factor of the Regge
pole exchange amplitude guarantees that its projection on s-channel partial waves
will produce "s-channel resonances'", namely bumps in the energy dependence of
specific partial wave amplitudes. The entire Regge amplitude which is, of course,
much more complicated than the signature factor alone, normally retains this
property, although the number of resonances, their position, elasticities and their
various regularities may change as a result of the details of the other factors
appearing in the Regge formula.

We can therefore conclude that, on one hand, the t-channel trajectories are
capable of producing the most obvious properties of s-channel resonances and on the
other hand it is perfectly conceivable that a small number of such s-channel
resonances can reproduce the typical characteristics of a peripheral exchange. While
this does not prove that the duality idea is experimentally valid, it does indicate
that it is theoretically self-consistent and that it does not contradict any funda-
mental notion such as the concept of a resonance or the concept of a peripheral
exchange. Whether experiments obey the predictions of this restrictive scheme we

will see in the next sections.
VIII. DUALITY AND THE INTERFERENCE MODEL

The most crucial consequence of our assumptions so far (namely: analyticity,
Regge pole dominance in the t-channel and resonance dominance in the s-channel) is

2
the statement that s-channel resonances should not be added to t-channel exchanges’)

in constructing a hadronic scattering amplitude.

This contradicts the basic idea of the interference model9 which proposes to
do precisely what duality forbids us to do: to add s-channel resonances and t-channel
trajectories. The first experimental test of duality is, therefore, to study
whether or not the interference model can be ruled out by experiment. In other
words - to discover whether the addition of resonances and t-channel poles really
leads to double counting. Very strong arguments against the interference model
have already been proposed in the original work of Dolen, Horn and Schmid2 and in
several other papers.10 In our opinion the best argument against the interference

, . 11
model can, in fact, be found in the recent attempts to resurrect the model. It
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is indeed true that these attempts have led to magnificent fits to the physical
amplitudes of processes such as gN - ﬁN.ll But a brief glance at the artificial
assumptions and the awkward resonance properties required by these fits should be
sufficient to convince us that they have very little to do with a reasonable
physical description of a strong interaction scattering amplitude. A typical
example is provided by Fig. 9 in which we see how a scattering amplitude which

practically vanishes is said by the propcnents of the interference model to be a

sum of two quantities, equal in magnitude and opposite in sign, representing the
contributions of an s-channel resonance and a t-channel trajectory. Let us empha-

size here that on purely mathematical grounds it is dubious whether the interference

ImSll(Res)

Fig. 9. An example of an inter
ference model "explanation" of

the S11 =N amplitude. A "new"
1440 MeV S;; resonance is invented
in order to compensate a Regge-
istic contribution and to give

a total physical amplitude which
practically vanishes (from

Ref. 11).

model or any other such flexible model (or for that matter, duality) can ever be
rigorously ruled out. But we are not interested here in mathematics. We are trying
to find a meaningful description of hadronic processes. Any description which
involves resonances corresponding to dips rather than peaks in the energy dependence
of an amplitude, or which invokes non-existent resonances which cancel non-existent
Regge poles in order to produce a vanishing physical amplitude, certainly does not

qualify as a simple physical picture.
IX. S-CHANNEL QUANTUM NUMBERS ARE IMPORTANT AT LARGE s-VALUES

According to the traditional picture of hadronic reactions, s-channel
resonances dominate low energy amplitude and have nothing to do with high energy
amplitudes, while peripheral exchanges in the t-channel dominate high energy ampli-
tudes and are irrelevant to low energy amplitudes. Such a situation would indicate
that small angle, high energy phenomena in a given scattering process are not

dependent in any crucial way on the internal quantum numbers of the reaction in the
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s-channel. Thus, a typical exchange model would not distinguish between processes
such as elastic K+p and K—p scattering. In both cases the same exchanges are
allowed in the t-chanmnel (Fig. 1), while the s-channel quantum numbers (which are

different) are said to be irrelevant to high energy, small angle scattering.

I=0,1 I=0’1
c=tl1 C=+1
+ + K- K-
K P w,A,, £
2
S=+1 S=-1 «
(exotic) (nonexotic)
P p p P

Fig. 10. K+p - K+b and K—p - K_p have the same t-channel quantum numbers but totally
different s-channel properties.

Duality, however, relates the t-channel exchanges to the s-channel reson-
ances and therefore demands that the s-channel quantum numbers which control the
s-channel resonances, will also be important in describing high energy, small angle,
phenomena. 1In particular, if we have two processes in which in one case no s-
channel resonances exist while in the other case many s-channel resonances exist,
we should find traces of this empirical fact even in the high energy domain, in
spite of the fact that in such energies the effects of resonances are not directly
observed. Consequently, processes such as K+p and K_p elastic scattering should
show different characteristics well above the region of the prominent s-channel
resonances. Simple regularities which will show that s-channel quantum numbers
are indeed important for describing high energy, small angle, phenomena will pro-
vide us with supporting evidence for the idea of duality. They would not be
possible in a simple interference model, for example, because in such a model the
resonances are added to the dominant t-channel features and do not dictate any
specific behavior to the t-channel exchanges.

There are, at least, two very clear systematic phenomena which indicate
that s-channel internal quantum numbers are very important for high energy scattering.
We believe that one of them is fairly well understood, while the other can be only

vaguely understood in terms of qualitative statements and it does not have, so far,
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any explicit quantitative description.

The first observation is shown in Fig. 11 where all the known total hadronic
cross sections are plotted versus energy. There are 10 known total cross sections
in the range between 2 and 20 BeV. Four of them show very little or no energy
dependence. K+p and K+h total cross sections are, for example, constant (within

1 mb) from two to 20 Bev. pp and pn total cross sections are also approximately

30 g, (mb) o, (mb)
55 _
25 4 ‘i\‘*=§=§§~._\___________i;i
7P
- 50 _] -

15

KTp , K+n 45
:::::::::::::::::::::::::::::::gg
40 -
P, ,,(Bev/c) PP
LAB PLAB(BeV/c)
T T 1 ] 7 T T )
6 10 14 18 6 10 14 18

Fig. 11 Smooth curves approximating total hadronic cross sections

constant in this energy range. (They certainly vary much less than pp and Eh).

All other six total cross sections are not constant. They decrease towards an
asymptotic value which is probably constant. The clear energy dependence of these
six processes is correlated in a striking way with the fact that these six pro-
cesses are the ones in which many s-channel resonances are found. On the other
hand, the four processes with constant total cross sections are precisely the ones
having exotic s-channel quantum numbers for which no known s-channel resonances
exist. This cannot be an accident. It is a very clear indication that the s-
channel quantum numbers, through the s-channel resonances, do have something to say

1
about high energy phenomena. The complete explanation for this will be given in
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Secs. XI and XII, after we shall discuss the particular role played by the
Pomeranchuk singularity within the duality framework, but the correlation speaks
for itself even on pure empirical grounds.

Another systematic set of experimental results which indicate a strong
correlation between the internal quantum numbers in the s-channel and small angle,
high energy, scattering is shown in Fig. 12. The angular distribution for high
energy elastic scattering for several initial states is shown. Again, we find that
the various processes can be clearly divided into two groups. Processes such as
pp and K+p elastic scattering show an angular distribution without any clear dip
structure. On the other hand, processes such as n+p, nup, gp and K_p elastic
scattering show a dip structure with dips somewhere around t = -0.6 BeVZ. The
correlation is, again, based on the fact that processes with exotic s-channel
quantum numbers do not have dips in the angular distribution while processes with
non-exotic s-channel quantum numbers and hence with many s-channel resonances, do
show dips in their angular distribution. A simple explanation of this correlation
would be, of course, to claim that the dips are entirely due to the contributions
of s-channel resonances and are therefore absent in processes which do not allow
any such resonances. This statement, while "explaining'" this striking regularity,
does not really provide us with a quantitative way of describing it. In fact, it
turns out that a simple Regge pole model which includes the restrictions on the
Regge pole parameters implied by duality and the absence of exotic s-channel reson-
ances, is inconsistent with this experimental observation. If we want to reconcile
the presence of dips in non-exotic elastic processes and their absence in exotic

elastic processes, with a simple exchange model we have to include either Regge cuts

or absorption effects. How to do this precisely is not yet clear and this is

obviously one of the most interesting open problems.

Quite independent of the fact that we cannot present here a quantitative
explanation of this regularity, let us emphasize again that its mere existence is
another piece of supporting evidence for the idea of duality. It would be extremely
difficult to explain the one-to-one correspondance between exotic and non-exotic
s-channel quantum numbers on one hand and the absence and presence of dips in
angular distributions at high energies on the other hand without taking into
account the influence of s-channel resonances on high energy, small angle scattering.
Such an influence is built into the duality idea and is completely foreign to
models such as interference model. We may therefore claim that the prediction of
duality that s-channel quantum numbers are important and crucial for describing
small angle high energy scattering is verified at least by two independent remark-

able sets of regularities of the experimental data.
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Figure 12: Angular distributions for elastic reactions, Exotic channels
do not show dips in angular distribution while non-exotic channels

have dips (D.R.0. Morrison, Lund Conference review).
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Figure 12. (Continued),.
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X. AN ARTSTOCRATIC POMERANCHUK SINGULARITY

So far we have assumed that the t-channel Regge poles are balanced in the
sense of duality by the s-channel resonances and that from the s-channel point of
view the amplitude is completely dominated by resonances. At this point wé must
make an extremely important exception.12’13 In order to realize the necessity of
making such an exception, let us consider again a process with exotic s-channel
quantum numbers, such as K+p elastic scattering (Fig. 1). 1In this process no
s-channel resonances exist, but the Pomeranchuk singularity contributes in the
t-channel as much as it contributes in K p elastic scattering. Consequently, the
Pomeranchuk singularity cannot be related to the contribution of s-channel reson-
ances, since it contributes equally to two processes, one of which has no s-channel
resonances while the other has a large number of such resonances. We therefore
have to assume that the Pomeranchuk singularity in the t-channel should be viewed
from the s-channel point of view as a non-resonating background rather than as a
quantity dominated by resonances.

Another way of stating our motivation for proposing such a conjecture can
be the following: The Pomeranchuk trajectory contributes only to the I=0 t-channel
amplitude. The crossing matrix tells us that an I=0 t-channel amplitude has equal
projections on all s-channel isotopic spins. Therefore, in order for the Pomeranchon
to be related to any kind of s-channel structure, such a structure should be
completely independent of the isotopic spin in the s-channel. This is clearly not
a characteristic property of a resonance or of a simple sum of resonances. In
that respect the Pomeranchon is completely different from other t-channel trajec-
tories in such a way that the overall projection on a specific s-channel isotopic
spin vanishes. The Pomeranchuk trajectory, however, is higher than all other
trajectories and, for sufficiently large energies, can never be cancelled by any
other t-channel contribution. It must therefore stand by itself and be reflected

as an isospin independent contribution in the s-channel. Such a contribution could

easily be some kind of a background but could hardly be associated with resonance
structure in the s-channel. We shall therefore modify our original resonance
dominance assumption of Sec. IV, to include one term which is not dominated by
resonances and which does not even have contributions of resonances. This term will
be the Pomeranchuk singularity (from the t-channel point of view) or a non-resonant
background (from the s-channel point of view). The rest of the scattering ampli-
tudes will be assumed, as before, to be completely described either by t-channel

Regge poles (other than the Pomeron) or by s-channel resonances with no background.
XI. TWO COMPONENT AMPLITUDES

After making the resonance dominance assumption for all amplitudes other
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than those contributed by the Pomeranchon and after making the specific exception
of the Pomeranchuk singularity, we now have a general description of hadronic
amplitudes in terms of two additive components.

