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Abstract — An experimental test for the response function of metals to the low-frequency
s-polarized evanescent waves is proposed by measuring the lateral component of the magnetic
field of an oscillating magnetic dipole spaced above a thick metallic plate. This suggestion is
motivated by the fact that the Lifshitz theory using the Drude response function is in contradic-
tion with high-precision measurements of the Casimir force performed at separations exceeding
150 nm. Analytic expressions for the lateral components of the magnetic field, which are fully
determined by the s-polarized evanescent waves, are reported in terms of the reflection coefficients
of the plate metal. Numerical computations are performed for the reasonable values of the exper-
imental parameters for different models of the dielectric response. The resulting fields differ by
the orders of magnitude depending on whether the Drude or plasma response function is used in
computations. Thus, the measurement of the magnetic field will allow to discriminate between
these two options. Possible applications of the obtained results are discussed.
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Introduction. — The evanescent fields are created by
the oscillating currents and charges, which are always
present in a metal interior. It has been known that they
are confined in the vicinity of metallic surfaces and are
characterized by the zero mean Poynting vector. The re-
spective solution to the wave equation is characterized by
at least one pure imaginary component of the wave vector.
This leads to the exponentially fast drop of the evanes-
cent wave in the corresponding spatial directions (see the
monographs [1,2] for theory and diverse applications of
evanescent waves).

In spite of the paramount importance of some appli-
cations, e.g., as a tool to overcome the diffraction limit
in optics [3], the electromagnetic response of metals to
the s-polarized evanescent waves is still not sufficiently
investigated. A large body of information is collected
on surface plasmon polaritons [4] for large magnitudes
ki = |k¢| of the wave vector projection on the surface. This
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information, however, refers solely to the transverse mag-
netic (p-polarized) evanescent waves. At the same time a
much used technique of the total internal reflection and
frustrated total internal reflection enables to probe the
electromagnetic response of metals in the area of k; only
somewhat over the wave vector magnitude kg = w/c where
w is the field frequency [5-7]. The reason is that for trans-
parent media the index of refraction in the infrared domain
is not sufficiently large (e.g., for Si it is equal to only 3.4).
Note also that the method of nano frustrated total inter-
nal reflection used in the near-field optical microscopy to
overcome the diffraction limit [3,8] is more sensitive to the
p-polarized evanescent waves [9].

The response of metals to the low-frequency electro-
magnetic waves (including the evanescent ones) is rou-
tinely described by means of the Drude model. Recently,
however, the use of this model in the case of s-polarized
evanescent waves has been questioned by a series of high-
precision experiments on measuring the Casimir force be-
tween metallic surfaces performed at separations above
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150nm [10-22]. The point is that the measurement data
of these experiments are inconsistent with theoretical pre-
dictions of the fundamental Lifshitz theory [23-25] if the
electromagnetic response of metals at low frequencies is
described by the Drude model. The surprising thing is
that the same measurement data were found to be in good
agreement with theory if the plasma model is used al-
though this model disregards the relaxation properties of
conduction electrons and should not be applicable at low
frequencies [10-22]. A more sophisticated treatment of
the problem revealed that the major difference between
the theoretical predictions for the Casimir force using the
Drude and plasma models originates from the contribution
of s-polarized low-frequency evanescent waves [26-31] (see
also reviews in [32-34]). This places strong emphasis on
an independent test of the response function of metals to
the s-type evanescent waves.

In this letter, we derive an analytic expression for the
magnetic field of an oscillating magnetic dipole spaced in
vacuum at some height above a thick metallic plate. The
magnetic moment of this dipole is pointed perpendicular
to the plate. According to our results obtained in the gen-
eral case of a spatially nonlocal electromagnetic response,
the lateral component of the magnetic field is determined
by the s-polarized low-frequency evanescent waves and is
highly sensitive to the character of response function of the
metal. Based on this, we propose an experimental test for
a response function to the s-type evanescent waves. Com-
putations are made for typical experimental parameters.
It is shown that the magnitudes of lateral component of
the dipole magnetic field computed using the Drude and
plasma models differ by up to a factor of several thou-
sands depending on the dipole oscillation frequency. This
allows to either confirm or exclude the theoretical descrip-
tion of the response of metals to the s-polarized evanescent
waves by means of the Drude model. The possible impli-
cation of the suggested test for the Casimir physics and in
a wider context for condensed matter physics and optics is
discussed.

Magnetic dipole above metallic plate. — First let
us consider the oscillating magnetic dipole in vacuum in
the absence of metallic plate. We assume that it is at the
origin of the coordinates 7y = (0,0,0) and the magnetic
moment m = [0,0, mgexp(—iwt)] is directed along the
z-axis. On the assumption that the dipole size is much
smaller than the wavelength \ = 27¢/w, the components
of its magnetic field at a point r = (z,y,2) = (21,22, 2)
are given by [35] (here and below it is implied that all
fields depend on ¢ as exp(—iwt))

31‘% — :)3> etkor,

H,(w,7) = mg [ +i— — —=
T

roz (k2
H,, (w,7) = —mo—%- (0 +
T r

where a =1, 2, ko = w/c, r = |r| = (2® +y*> + 2%)*/2 and
the Gaussian system of units is used.

The components of the electric field of magnetic dipole
in free space are [35]

. ,ko 1 ikor 4
E(w,r) = imgko <2r2 — 7"3> e —x (2)

0

Note that the magnitudes of the electric field components
are suppressed by a factor kgr in comparison with those
for the magnetic field. Since in the suggested experimental
test kor < 1079 (see below), the electric field of the dipole
can be ignored.

In what follows we shall use the Fourier expansion of
the field (1) in two-dimensional plane waves

3)

where k, = (kg,ky) = (ki,k2) and m, = (z,y) =
(x1,22). The explicit expressions for the Fourier trans-
form H(w, ki, z) can be easily found in the polar coor-
dinates using the integral representation for the Bessel
functions [36] and several integrals [37,38]. The results
are

1 .
H(w,r) = W /dkteZk"”‘H(w,kt,z),

H, (w ki, z) = —27rim0k;asign(z)e—qIZI,

[eY

2
H,(w,ky, 2) = QWmQ%efq‘z‘, (4)
where k = k2 + k2 and q = (k7 — k3)'/2.

We are coming now to the case of magnetic dipole lo-
cated at the point (0,0,h) above the surface of a thick
metallic plate coinciding with the coordinate plane z = 0
(see fig. 1). The field of this dipole in the region above the
plate can be calculated by the method of images [39,40].
This method reduces to an introduction of the fictitious
image source whose field is identical to the field of induced
charges on the plate. Originally, it was used to solve the
boundary problems for static fields and ideal metal sur-
faces. However, it is also applicable for the quasistatic
fields [41]. We consider this case and assume that the
dipole size is much smaller than h which, in its turn, is
much smaller than A = 27wc¢/w. Note that we have repro-
duced the same results, as obtained below, with the help of
a technically more complicated but fully rigorous method
of Green functions used in the derivation of the Lifshitz
formula for the Casimir force in [23-25]. According to the
method of images, the field in question can be found as a
superposition of the fields of the real dipole and the ficti-
tious (image) dipole located at the point (0,0, —h). In so
doing the magnetic moment of the image dipole depends
on the reflectivity properties of metallic plate.

The reflectivity properties are usually described by
the Fresnel reflection coefficients defined for p- and s-
polarizations of the electromagnetic field

E(W)q — (qc
e(w)g + g’

Rp(w,k;t) = Rs(w,kt) =
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vacuuln Xz

metal i

Fig. 1: Configuration of magnetic dipole spaced in vacuum
above thick metallic plate and the fictitious (image) dipole.

where ¢. = [k? — e(w)k3]*/? and e(w) is the frequency-
dependent dielectric permittivity of the plate metal. In
this section, however, we do not use a specific form of the
reflection coefficients making the results applicable to both
the local and nonlocal response of the metal (note that the
spatially nonlocal models are the subject of considerable
discussion in relation to the problems of the Lifshitz the-
ory mentioned above [42-53]). It has to be stressed also
that in the configuration of fig. 1 the reflected wave is de-
termined by the coefficient R4 alone because the electric
field remains negligibly small.

Now we apply eq. (4) to both the dipole and its image
in order to find the Fourier transform of the magnetic field
above the surface of metallic plate. After taking into ac-
count that in the coordinate system of fig. 1 one has to
replace z with z — (—h) = z + h for the fictitious dipole
and with z — h for the real one, the result is

Hé@(w,kt,z) = —2mimgka [Rs(w’kt)e—q(z—&-h)
+sign(z — h)e~ 2= =H]
( k? (6)
HP (w, ky, ) = QWmoé[Rs(kat)e*q(erh)
+emalz=h].

Substituting eq. (6) into eq. (3) and using eq. (1) for the
second terms on the right-hand side of eq. (6), we find the
magnetic field in the domain above the metallic plate,

_imo /dktRs(m kt)kaeiktrt_q(z+h)
2T
h) [ k2 k )
) <° +3imy — i) eikor
T T r

ZTa(z —
k2 .
7/dktRS(w7kt)ielkt'f‘t—q(zﬁ-h)
q

HP (w,7) =

—my—————>
r2

HP (w,7) = (7)

where now r = [22 + y? + (z — h)?|Y/2
Introducing the polar coordinates under the integrals
on the right-hand sides in eq. (7) and integrating over the

angle variable [36,37], one arrives at

Hé’;’(w,r)= %/ dkek2 Ty (kere) R (w, ke 9+
t Jo

To(z—h) (K ko 3\ ikor
73<r+&ﬂ_ﬁ e

(8)
o] 3

k
dkt;tjo(ktrt)Rs (w, ky)e 1T

—mg

Hép)(w,r) = mo/
0
k2 ko 1

0
+tmo | —+i5 — 3
r rz2 3

(z=h)? (kg | oko 3N\ iker
T G e ) e

where J,, is the Bessel function and r; = (27 + 23)Y/? is
the polar radial variable.

In the strict sense, both the propagating waves (for them
k: < ko and ¢ is pure imaginary) and the evanescent waves
(for them k; > ko and ¢ is real) contribute to the field (8).
For the propagating waves, however, the power in the
exponential factors under the integral is pure imaginary:
—q(z 4+ h) = i(k3 — k2)Y/2(z + h). Since in the suggested
experimental test kor < 1 holds or, equivalently, r < A,
it is possible to neglect by the phase in these factors. As
a result, one can see that the contribution of propagating
waves to the integrals in eq. (8) is less than that of the
evanescent ones by the factor of 1/(koh)® = A\3/(2mh)3.
Below we choose h ~ r in the suggested experimental test
leading to 1/(koh)® ~ 10?7, Because of this one can ne-
glect the contribution of propagating waves and replace
the lower integration limits in eq. (8) with ko.

Another important observation is that the contribution
of the real dipole to the total magnetic field above the

plate (8) vanishes for the lateral components HP and be-

o

comes simpler for the z-component H ép ) if the calculation
is performed at the dipole height z = h. Since we are
looking for a quantity which is the most sensitive to the
response function of metal to the evanescent waves, there
are no better candidates than the lateral components of
the magnetic field given by

0% [ Ak, k2 Ty (kyre) Ry (w, ke )e 20" (9)

HP (w,7) =
Tt ko

In fact eq. (9) is analogous to the Lifshitz formula for
the Casimir force at large separations. In this case, the
difference in Casimir forces calculated using the Drude and
plasma dielectric functions is completely determined by
different contributions of the s-polarized evanescent waves.
Thus, calculating the field components (9) for different
models of the dielectric response of metal and comparing
the obtained results with the measurement data, taken
at z = h, it is possible to independently test the validity
of these models in the range of low-frequency evanescent
waves.
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Parameters of magnetic dipole. — The magnetic
dipole considered in the previous section can be realized
in the form of an alternating current Iy exp(—iwt) which
flows through a small circular loop of radius R or a coil
containing N loops. In such a situation, the magnitude of
the magnetic moment is given by

1 2

moy = ETI'NIQR . (10)

It is assumed that the coil size is much smaller than the
height h above the plate where it is situated (see fig. 1).

The qualitative assessment for the desirable parameters
of the coil can be made under a simplified assumption of an
ideal metal plate, i.e., by putting Rs(w, k) = —1. In this
case from eq. (6) we obtain the Fourier transform of the
x-component of magnetic field calculated at height z = h
above the plate,

HP) (w, kg, h) = 2mimokge2he, (11)

By comparing this with eq. (4), one can conclude that
under a condition kgr < 1 the z-component of magnetic
field is given by the last term on the right-hand side of
eq. (1) with z = 2h,

my 62
W (44 32)5/2

6mozh
H () _ 0 _
(p(x)_(svzi +4h2)5/2_

(12)
where we introduced the dimensionless variable & = x/h.

From (12) it is seen that in order to maximize the lateral
projection of magnetic field one should have larger mg
(i.e., higher current and larger loop radius and the number
of loops) but smaller distance between the dipole and the
plate.

It is rather difficult to create the magnetic dipole which
combines a high electric current with small h because the
coil size is supposed to be much smaller than h. Fabrica-
tion of a small coil with a high current and large number
of loops presents a real challenge. Micro electromagnets
which meet our requirements have been, however, created
using the methods of micro [54-56] and mini [39] technolo-
gies. The typical micro electromagnet may be of 1mm
height and consist of N = 10 loops of R = 1 mm radius.
The coil of this kind is able to support the current up
to Iy = 3 x 10”stat A which is equal to 1 A in the SIL.
Calculating the respective magnetic moment by (10), one
finds

mo =3.14 x 10" % erg/Oe = 3.14 x 107> Am?.  (13)

To estimate the lateral magnetic field produced by this
magnetic moment, we substitute eq. (13) into eq. (12) and
choose x = h = 10 mm which leads to = 1. The result is

HP)(z) = 3.36m0e = 3.36 x 107" T = 0.27 Am . (14)

Now we determine the desirable values of the oscil-
lation frequency of the magnetic dipole which depends

on the plate material. Good metals, such as copper,
are preferable for our purposes. The plasma frequency
and the relaxation parameter of copper are equal to [57]
wp = 1.12 x 10 rad/s and v = 1.38 x 10*® rad/s, respec-
tively. At low frequencies the dielectric permittivity is well
described by the Drude model,

w2

" (15)

ep(lw)=1- m

The oscillation frequency of the magnetic dipole has to
satisfy two requirements. First, it has to provide greater
reflectance on the plate. Second, it has to give large dif-
ference between the predicted field components when one
uses alternative models of the dielectric response of metal.

To comply with these requirements, we introduce the

quantity
w=hqg=hy/k}—k3

and bring the reflection coefficient Ry defined in eq. (5) to
the form

(16)

Rafo k) = VT (17)
where )
K(w) = [e(w) - 11:—]21 (18)
and wy, = ¢/h.

When the Drude model (15) is used, the major contribu-
tion to |K(w)| at low frequencies is given by its imaginary
part

CL)QW

P
— 19
R R "
With the proviso that |K(w)| > 1, the magnitude of
the reflection coefficient (17) is close to that given by the
plasma model which disregards the relaxation properties
of conduction electrons,

w2 w
K (w)] = —2)

2
w
ep(w) =1— w—g.

(20)
As discussed in the introduction, the Lifshitz theory of
Casimir force is in agreement with the measurement data
of high-precision experiments when the plasma model is
used as a response function of metals to the low-frequency
s-polarized evanescent waves.

If, on the contrary, |K(w)| < 1, the magnitude of the
reflection coefficient (17) becomes too small and only a
small share of the dipole field is reflected from the plate.
Because of this the dipole oscillation frequency should sat-
isfy the condition

2 2
\K(w)|m%<17 = %%

< 21
vw}% wg (21)

For h = 10mm and the Drude parameters of copper
listed above, one finds Q ~ 100rad/s. Based on this, it
is reasonable to consider the dipole oscillation frequencies
equal to 2, 10, and 100 rad /s, which lead to the measurable
magnetic fields.
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Fig. 2: The magnitude of the real part of the xz-component of
the magnetic field of the magnetic dipole reflected from the
copper plate is shown (a) as a function of separation by the
three curves counted from bottom computed using the Drude
model for different dipole oscillation frequencies and by the top
curve computed using the plasma model and (b) as a function
of frequency by the bottom and top pairs of curves computed
using the Drude and plasma models, respectively, at two dif-
ferent separations.

Computational results. — We have performed nu-
merical computations of the lateral component of the
field Hg(;p ) for a magnetic dipole with the magnetic mo-
ment (13) spaced above a thick copper plate at the height
of h = 10mm as shown in fig. 1. All computations were
made by eq. (9) for y = 0, i.e., 7, = z, using the di-
electric permittivities of the Drude model (15), plasma
model (20), and the spatially nonlocal phenomenological
dielectric permittivity introduced [53] to reach an agree-
ment between the Lifshitz theory and the measurement
data of high-precision experiments without disregarding
the relaxation properties of conduction electrons. We re-
call that eq. (9) describes the field component at the height
h above the plate at a distance x from the magnetic dipole.

The computational results for the magnitude of the real
part of HY) are shown in fig. 2(a) as a function of the
separation from the magnetic dipole. The three curves
counted from the bottom are computed using the Drude
model (15) for the dipole oscillation frequencies equal to
2, 10, and 100rad/s, respectively. The top curve, which
does not depend on frequency, is computed by means of
the plasma model (20). In fig. 2(b), the magnitude of
the real part of HQE? ) is shown as a function of the dipole
oscillation frequency. The bottom pair of curves is com-
puted using the Drude model at 10 and 20 mm separation
from the magnetic dipole whereas the top pair of lines is

0.70
0.50

z =20 mm
0.30

0.20
0.15

0.10

ImH®P (mOe)

100 200 500 1000 2000

w (rad/s)

Fig. 3: The imaginary part of the x-component of magnetic
field for copper plate is shown (a) as a function of separation by
the three curves computed using the Drude model for different
dipole oscillation frequencies and (b) as a function of frequency
by two curves computed using the Drude model at two different
separations. For the plasma model, the imaginary part of the
field is zero.

computed at the same separations by means of the plasma
model. In both figs. 2(a) and (b), the computational re-
sults obtained using the spatially nonlocal model [53] are
indistinguishable from those shown for the plasma model.

From fig. 2 it is seen that the computational results
essentially depend on whether the Drude or the plasma
model is used in computations. Thus, for \ReH,(;p )| the
respective difference may be up to a factor of 10 depend-
ing on the dipole oscillation frequency. With increasing
frequency, this difference decreases. In order to deal with
not-too-small fields, we consider the oscillation frequency
of 100 rad/s. In this case in the interval from 10 to 20 mm
one obtains

IReH | < 0.336mOe = 3.36 x 1075 T = 0.027 A m™*

(22)
if the Drude model is used in computations. If, however,
the plasma model is used, the values of |ReH;,(cp )| at the
same separations are by more than an order of magnitude
larger. In doing so the parameter kor discussed above is
of the order of 107°. This allows clear experimental dis-
crimination between the two models of dielectric response
to the low-frequency s-polarized evanescent waves (note
that the current limit for the resolution of weak magnetic
fields is down to 10~ T [58-60]).

Figure 2(b) also demonstrates a profound effect of the
used dielectric model on the value of |ReHg(vp )|. Thus, the
largest deviation between the theoretical predictions ob-
tained using the Drude and plasma models by the factor
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of 280 is obtained for w = 10rad/s at « = 10mm. For
w = 100rad/s these predictions still differ by the factor
of 14.

Similar computations with all the same parameters us-
ing the Drude model have been performed for ImH, fcp ) In
fig. 3(a), the obtained results are shown as a function of
separation by the three curves from bottom to top for the
dipole oscillation frequency equal to 2, 10, and 100rad/s,

respectively. In fig. 3(b), ImH‘rgp ) is plotted as a function
of frequency by the two curves computed at the separation
from the dipole of 10 and 20 mm. If the plasma model is
used, the reflection coefficient Rg(w,k;) is real resulting
in ImH® = 0 (for the spatially nonlocal model [53] the
values of ImH®) are by the factor of 107! smaller than
those shown by the bottom line in fig. 3(a)).

From fig. 3 it is seen that if computations are performed
by means of the Drude model, the obtained values of
ImH" are much greater than those of \ReHg(cp )| shown
in fig. 2 for all values of the oscillation frequency. It is
evident also that any nonzero measured value of ImH. g(gp )
could be used in support of the Drude model and for an
exclusion of the plasma model as a response function to
the low-frequency s-polarized evanescent waves.

Conclusions. — In the foregoing, it was argued that
there are no sufficient experimental evidences in favor of
the statement that the response of metals to the low-
frequency s-polarized evanescent waves is described by the
dielectric permittivity of the Drude model. Additional im-
portance to this statement is added by the fact that the
Lifshitz theory of the Casimir force becomes inconsistent
with the measurement data of a number of high-precision
experiments if the electromagnetic response of metals at
low frequencies is described by the Drude model. An
agreement between the experiment and theory is restored
if, instead, the plasma model is used. Thus, a direct ex-
perimental test of the response function of metals to the s-
polarized evanescent waves is crucial for both the Casimir
effect and for all numerous applications of these waves in
fundamental physics and in modern technology.

According to the obtained results, the direct experimen-
tal test for the Drude dielectric permittivity as a response
function of metals to the low-frequency s-polarized evanes-
cent waves can be performed by measuring the lateral
component of the magnetic field of the oscillating mag-
netic dipole spaced above a thick metallic plate. To prove
this statement, we have derived an analytic expression for
the magnetic field of a small magnetic dipole located in
the vicinity of a metallic surface and demonstrated that
its lateral component is determined by the contribution of
the s-polarized evanescent waves alone. Numerical compu-
tations of the real and imaginary parts of the lateral field
component were performed for a copper plate for the rea-
sonable experimental parameters by describing the elec-
tromagnetic response of metals by the Drude or plasma
models for different oscillation frequencies of the dipole.

It was shown that the obtained results differ by the orders
of magnitude depending on the model of dielectric per-
mittivity used. Thus, by measuring the field components,
whose values are well within the limits of experimental
sensitivity, one could either validate or disprove the possi-
bility to use the Drude model in the range of low-frequency
s-polarized evanescent waves.

The results of the proposed experiment would be elu-
cidating for the long-standing problems of the Lifshitz
theory and will find applications in the fluorescence mi-
croscopy, infrared spectroscopy, theory of superlenses, sur-
face plasmon polaritons and other prospective subjects of
optics and condensed matter physics.
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