Physics Letters B 813 (2021) 136060

Contents lists available at ScienceDirect

PHYSICS LETTERS B

Physics Letters B

www.elsevier.com/locate/physletb

L))

Check for
updates

Disk galaxies and their dark halos as self-organized patterns

Shankar C. Venkataramani®*, Alan C. Newell

Department of Mathematics, University of Arizona, 617 N. Santa Rita Ave., Tucson, AZ 85721, USA

ARTICLE INFO ABSTRACT

Article history:

Received 20 August 2020

Received in revised form 9 November 2020
Accepted 28 December 2020

Available online 30 December 2020

Editor: M. Trodden

Galaxies are built by complex physical processes with significant inherent stochasticity. It is therefore
surprising that the inferred dark matter distributions in galaxies are correlated with the observed
baryon distributions leading to various ‘Baryon-Halo conspiracies’. The fact that no dark matter candidate
has been definitively identified invites a search for alternative explanations for such correlations and
we present an approach motivated by the behaviors of self organized patterns. We propose a nonlocal
relativistic Lagrangian theory for a ‘pattern field’ which acts as an ‘effective dark matter’, built on the idea
that defects in this pattern field couple to the baryonic matter distribution. The model applies to rotation
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supported systems and, for them, we compute galactic rotation curves, obtain a radial acceleration
relation with two branches, and deduce the Freeman limit for central surface brightness.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Mass discrepancies and dark matter

Understanding the nature of dark matter is one of the great
intellectual challenges of our time. Dark matter is postulated to
explain discrepancies between the observed (non-relativistic) mo-
tions of stars in galaxies, and galaxies in clusters, from the predic-
tions of Newtonian gravity [1]. Although long suspected [2,3], the
hunt for additional ‘invisible’ matter became a serious endeavor in
the wake of the pioneering observations by Vera Rubin and her
colleagues [4,5], demonstrating definitively that the rotation ve-
locity curves v(r) of galaxies flatten out with increasing radius r
instead of the expected Keplerian decay v ~ ./GM/r predicted by
a balance of the gravitational GM/r? and centrifugal v2/r acceler-
ations.

Our focus in this letter is on the structure and dynamics of disk
galaxies. In the conventional picture, disk galaxies have two dis-
tinct components - a massive, three dimensional, cold dark matter
(CDM) halo, and a thin 2d’ disk, containing stars/gas (baryons)
that is in rotational equilibrium in the combined gravitational field
of the halo and the disk.

While the CDM model for dark matter works remarkably well
on cosmological scales, no DM particle has yet been definitively
identified. Additionally, there are several discrepancies between
CDM predictions and observations on galactic or smaller scales [6].
N-body simulations give halos with the “universal” Navarro-Frenk-
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White (NFW) profile pnrw(R) = [(H(R/R/ZW [7], (R is the
3d radial coordinate). Observations, however, favor “cored” halos,
e.g. the quasi-isothermal profile pgiso = (1-H/20720/R%)’ over the “cuspy”
NFW profile [8].

A proxy for the distribution of baryonic matter in disk galaxies
is given by the surface brightness profile. In the disks of galax-
ies, i.e. outside the bulge if one is present, the brightness de-
cays (approximately) exponentially from the center [9]. Assuming
a constant mass-to-light ratio, the baryonic surface density ¥ =
Yo exp(—r/rg), where r is the 2d radial coordinate in the galac-
tic plane, Xg is the (extrapolated) central surface density and r is
the (baryonic) scale length of the galaxy. The Freeman “law” is ob-
servational evidence that ¥y ~ X* is the same for all high surface
brightness (HSB) galaxies, independent of their total mass [9]. Includ-
ing low surface brightness (LSB) galaxies gives a wider distribution
of central densities, with a rapid fall-off beyond *, defining the
Freeman limit [10].

Observations reveal tight correlations and scaling relations be-
tween the halo parameters pp, Rc and the baryonic parameters
30,70 [11,12]. Indeed, galaxies are surprisingly simple and seem-
ingly governed by a single dimensionless parameter [13]. Since
galaxy formation is inherently stochastic this suggests an impor-
tant role for self-organizing dynamical processes [14].

For quasi-steady systems, many observations indicate that the
dynamically inferred DM halo is strongly correlated with the
baryon distribution [15]. Many of these relations are subsumed by
the radial acceleration relation (RAR) [16], which is a “local” re-
lation for the observed total acceleration ggps (from halo + disk)
and the purely baryonic contribution gp,,. This relation holds for
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a range of galaxies including dSphs, disk galaxies (SO to dIrr) and
giant ellipticals, and was first proposed in [17] as the basis for
‘Modified Newtonian dynamics (MOND)'. The successes of MOND
in predicting various observed regularities on galactic scales [18]
have inspired interesting proposals for coupling baryons and DM
[19] as well as a variety of dark matter models that behave like
MOND for galaxies and like CDM on cluster and larger scales
[20,21]. There have also been attempts to recover these scaling re-
lations within ACDM using cosmological simulations that include
various baryonic feedback mechanisms [22,23].

Our aim in this letter is to propose specific self-organizing
mechanisms for galactic dynamics. To this end, we present a the-
ory that allows us to compute rotation curves of galaxies, and
explain observed galaxy scaling relations including the RAR and
the Freeman limit. We are motivated in this endeavor by the self-
organizing properties of pattern forming systems and a recognition
that instability generated patterns might have a role to play in
galaxies [14]. In many situations, pattern structures are topologi-
cally constrained by the presence of defects and are not ground
states. Therefore they can store energy. By coupling the defects to
the distribution of baryons, we get additional energy that can give
rise to forces that produce effects attributed to dark matter halos.
In such a scenario, it is certainly plausible that there should be
correlations and scaling relations between the halo and baryonic
parameters.

2. Patterns, universality, defects and halos

Patterns are ubiquitous in nature and arise when, at some
stress threshold, a symmetric “ground state” destabilizes and cer-
tain symmetry-breaking modes are preferentially amplified. These
modes compete for dominance through nonlinear interactions and
a set of winning configurations emerges. Generally, whereas some
symmetries are broken, others are not, leading to the presence of
defects that prevent the new state from being a ground state, a
true energy minimum.

A useful illustration is provided by the well-studied case of high
Prandtl number convection in a horizontal layer of fluid heated
from below. For a sufficiently large thermal gradient, the conduc-
tion state becomes unstable to convective rolls which transport
heat more efficiently. At this transition the continuous translation
symmetry of the conductive state is broken and replaced by a dis-
crete translation symmetry from the preferred wavelength of the
roll pattern. The preferred wavelength depends only on a glob-
ally defined parameter - the Rayleigh number. However, because
the rotational symmetry is not broken at the transition, the ori-
entations of the roll patches are chosen by local biases, boundary
conditions and other constraints.

If the system size is much greater than the chosen wavelength,
the resulting pattern is a mosaic of “locally” uniform stripe pat-
terns with different orientations which meet and meld along de-
fect lines and points in 2D (and planes and loops in 3D). In more
confined geometries such as cylinders or spheroids where the
boundaries may be heated, or in situations where angular momen-
tum conservation constraints might apply, the patterns, although
locally stripe-like, can be target or spiral shaped. The resulting de-
fects have topological charges reflecting the far-field geometry or
constraints away from the defects. They also have energy, associ-
ated with the fact that the emerging pattern is not a true energy
minimum but a metastable state; metastable in the sense that ei-
ther the topological constraints make the state a local minimum or
that the time scale to coarsen and “heal” the defects is extremely
long.

Patterns and other collective phenomena are studied using
macroscopic order parameters that measure the amount of symme-
try breaking. Order parameters are governed by universal equa-
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tions that reflect the underlying symmetries of the system but are
insensitive to the precise details of the microscopic interactions in
the system - a phenomenon called universality [24]. For systems
that form stripe patterns by breaking translation but not orien-
tation invariance, the appropriate order parameter is a phase
whose gradient k gives the local orientation of the pattern. The mi-
croscopic fields are generally 27r periodic functions of the phase .
Integrating over the microscopic degrees of freedom gives a canon-
ical form for the effective energy [25]

e
E=—
3
ko

where i is dimensionless, the preferred wavenumber |k| = ko,
¥* is a (universal) surface density [12,15], and the normalizing

* 2 . . . .
constant Zkf ensures dimensional consistency. Specifically, we
0

will take * ~ 136 Mg /pc? corresponding to an acceleration scale
a9 =27 GX* ~ 1.2 x 1071%m/s?, the empirically observed univer-
sal acceleration scale in disk galaxies [17]. The ground states £ =0
correspond to the plane waves ¢ (x) =K -X, |K| = ko. If boundaries
or other external constraints dictate that the phase pattern be ra-
dial, ¥ (x) = ¥ (R) where R = |X|, we cannot be in a ground state.
Indeed, a calculation reveals that, minimizing £ with ¢ = ¥ (R),
we get K— 0 as R — 0 and ¥ (R) — koR + const as R — oc. These
target (spirals if the instability is to waves and (1) is modified
appropriately) patterns are robust because they cannot be continu-
ously deformed into the plane wave ground states. Their curvature
radii are large compared to the local pattern wavelength, so they
are locally stripe like and their macroscopic energies can be repre-
sented by (1).

What is important to us here is that the target pattern has an
energy density of the same form as a cored quasi-isothermal halo
with Rc ~ kg 1. Such halos describe the dark matter distribution
out to the edge of the optical disk in real galaxies, so this suggests
adding a term like (1) to the Lagrangian of a galaxy can recover
the effects of ‘dark matter’ [25,26].

The additional action from (1) leads to the flattening of ro-
tation curves to a limiting value vy = \/32(1 —a)m GX*/ko [26],
where o is an O (1) quantity whose precise value is unimportant
for this letter, and will henceforth be set to 0. While this result is
encouraging important questions were left unanswered - (1) What
determines the parameter ko?, (2) How do we eliminate the as-
sumption of spherical symmetry and model more realistic disk
galaxies? and, (3) What physical processes might lead to a term
like (1) in the action? We address these questions in subsequent
sections.

/[(k(z, —1k2)? +(V-k)2]dv, k=Vy, 1)

3. An effective Lagrangian for pattern dark matter

A proper formulation of our ideas requires the identification of
an appropriate Lagrangian. ACDM is obtained from a Lagrangian
that includes the Einstein-Hilbert action for the geometry of space-
time, the ‘dust’ matter action for CDM/baryons, and a cosmological
constant term modeling dark energy. Alternative Lagrangians de-
scribe various flavors of MOND [27-29], dark matter with novel
material properties - dipolar dark matter [30], superfluid dark
matter [31] and fuzzy dark matter [32], as well as “non-material”
alternatives like emergent gravity [33]. Our goal is to formulate an
appropriate ‘pattern dark matter’ Lagrangian that encapsulates the
physics discussed above. Our action is the sum of

4
Sk = —— [ RV=gd*, SM:/pBu“ua\/—gd“x,
167t G
Z*CZ ) u 2 “ 2 4
Sp===5 [ {0 vy + (V0 vgdtx
0
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Sy = —/,OBCZV [kgzvﬂwvﬁw] J=gd*, )

where V represents the covariant derivative and u® is the 4-
velocity of the baryonic matter with density pp. The model in-
cludes the Einstein-Hilbert action Sgy, the matter action Sy, the
pattern action Sp as motivated by (1), and the interaction term
Sy motivated by the empirical observation that the dark matter
halo couples to the local baryonic density pp [34]. We have intro-
duced V (|k|?) > 0, a convex potential that vanishes at k = 0. Large
values of pp create “defects” in i, like the spherical target pat-
tern with Vi =0 at the center. Sp and Sy come with negative
signs since they are ‘potential’ terms, i.e. akin to W in the action
S= [(T — W)dt for classical particle systems.

What remains is the specification of kg and the potential V.
Before we do so, however, we emphasize that, irrespective of the
choices we are about to make, the additional terms S, and Sy in
the action automatically lead to three of the key outcomes that
characterize the behaviors usually associated with dark matter.
First, we find that the curvature term in S, leads to an additional
force which behaves as % for large r and a flattening of the ve-
locity rotation curve given by vgo = % Second, the coupling
between the pattern “dark matter” and the baryonic density leads
to the Freeman limit with a maximum central surface density on
the universal scale ¥* for rotation supported systems. Third, the
model predicts a radial acceleration relation (RAR) between the
total gravitational acceleration gohs and the baryonic contribution
Zhar» that has two branches.

Our choice for kg is motivated by stability considerations for a
differentially rotating stellar disk v(r) =r Q(r). WKB analysis gives
the dispersion relation for density waves [35]

K2 = @i(rzsz), 3)
r dr

where o is the radial velocity dispersion, k is the epicyclic fre-

quency and Xp is the local baryonic surface density.

Stability for a stellar disk requires that the Toomre parame-

ter Q = ;75— > 1. A positive «? implies that the specific angular

momentum r2€ is increasing with r, and thus stabilizes the long
wavelengths k — 0. This is indeed Rayleigh’s criterion for stability
of rotating inviscid flows. Q describes the competition between
the stabilizing effects from x2 > 0 and the destabilizing effect of
self-gravitation represented by GXp. k1(r) = % is the “locally”
preferred (fastest growing) wavenumber.

Since our model is an attempt to encode the effects of insta-
bility induced patterns and self-organization, we posit that the
phase ¥ in our model is connected with the clumping instability
in baryons. We therefore seek to identify the pattern wavenum-
ber in (2) with ki (r). The ‘effective’ action in (2) is crude in that it
only allows for a ‘global’ wavenumber kg, so we will set kg = k1 (o)
where ro ~ ky 1 is a characteristic length scale.

If the system is rotation rather than pressure supported, the
random motions have to be ?r)naller than the ordered rotational

v(r

velocity o S v(r). Since k ~ = in the flat portion of the rotation

curve, we get, to within an O (1) constant, the radial dispersion is

w®)? =0’k — 27 G |K| + «2,

on the scale o ~ ,/ % and vgo > % for r ~ rg, the baryonic
scale length, since an O (1) fraction of the total mass is within this
radius.

We adopt the self-organizing principle that, if Q < 1, the stellar
disk heats up until it reaches marginal stability Q =1 at a scale
ro ~ kal. Multiplying the ‘halo estimate’ vgo = % with the
stability estimate vZ, ~ % we get v& = 16uGMgag, where ag =
27 GX* and p is an O (1) constant.

A key empirical scaling relation for disk galaxies is the Bary-
onic Tully-Fisher relation v‘;o = GMpap (BTFR) relating the bary-
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onic mass Mp to v, with very little scatter over a wide range of
galaxies [36]. The stability analysis suggests that, despite the ap-
proximate nature of our effective Lagrangian, it is consistent with
the BTFR. We can therefore obtain the effective parameter ko for
our model, by demanding that the halo estimate v2 = 32ZCGX

oo T ko
agree with v4 = 2w GMgX*. This yields

ko =164/27 X*/Mgp, (4)

a value we will henceforth adopt. We stress that we do not claim
that the stability analysis constitutes a derivation of BTFR, but sim-
ply argue that it lends credence to our calibration of k.

4. A variational analysis of the model

Since galaxies are non-relativistic, vo < c, the geometry of
space-time deviates from the flat Minkowskii space at O (¢) where
€= (‘%’C)2 We obtain the (Newtonian) limit description through
a principled asymptotic expansion in the small parameter €. In
a steady state, our system is described by the weak-field metric,
g =—(c2+2¢(X)dt? + (1 —2¢(X) /c?) (dx? +dy? +dz%), where ¢ (X)
is the total Newtonian potential. We note that v, X, k are O (1), the
spatial velocity v= 9 is 0(,/€), and pp, T* and ¢ are O(¢). We
can expand the action S and collect terms in powers of ¢ (equiva-
lently €) to get, S =c%S; + Sz,

Sp=— / d3xdt [2*k53[(k3 — VY )2+ (Aay)3] +pBV(|wf|2)]

2 2
Sy = /d3xdt [pg (v? - ¢) _ VoI 26 37kg 3 (|V¢|4 - kg)

81 G
— 20 (Tkg* @)+ psV (VY)Y ) | (5)

This formulation is completed by prescribing the potential V.

We illustrate the procedure for analyzing the variational equa-
tions for the action in (2) by revisiting the example of spherically
symmetric compact clump of matter. Step 1: Prescribe pg(R) and
solve the variational equations for Sp, i.e. a pattern formation
problem. For a compact clump, and a generic potential V with a
global minimum at 0, V¢ ~ 0 within the source, so we get the tar-
get patterns that were discussed earlier. Step 2: With the given pp
and ¥ computed from the previous step, solve for the gravitational
potential ¢. For a compact dense clump, Vi ~ 0 where pp # 0,
and outside the clump, |Vy/| ~ 1, Ay ~ 2R™!. Consequently, we
get Ap ~ 4 G(pp +8X*ko/(b* +k3R%)), b~ 0(1),

M 2 >* R
CMe + 3omG T [1 - Ltan_] <ko—)] (6)

=V~ —
8obs = VO~ ~p koR koR b

Step 3: Solve for the steady state velocity from % = Zobs-

To model a disk galaxy, we now carry out these steps in an
axisymmetric setting, where all the fields only depend on r =
VX2 4+ y? and z. The matter density pg(r,z) &~ Xp(r)8(z) is con-
centrated close to the galactic plane z=0.

In Step 1, extremizing S1, we have two contributions, the pat-
tern Lagrangian Sp which is an integral over all of space, and the
interaction Lagrangian Sy = —anEB(r)V(|1//r|2)rdr which is an
integral over the galactic disk. Off the disk y satisfies the Eikonal
equation |Vy| = ko, as appropriate for stripe patterns. Using Huy-
gens’ principle, we obtain:

v(r, z) = mi(l)] [w(s, 0) + kom]

= Y [s+tcosh(s), £tsind(s)] = (s, 0) + kot, (7)
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Fig. 1. Huygens’ construction - the phase contours (solid curves in z > 0) have a
common evolute (solid curve in z < 0) and intersect the characteristics (straight
lines) orthogonally. The contours for z < 0 are given by reflection. A spherical target
pattern (dashed phase contours) is shown for comparison. The involutes are (ap-
proximately) spherical caps with centers off the plane z=0.

where the second line follows for regions where the characteristics
r=s+tcosf(s),z=*tsinf(s)) do not cross.

The geometry of this construction is illustrated in Fig. 1. The
phase fronts for z > 0 (resp. z < 0) are the involutes of a common
evolute y = (x(s), F8(s)) and ka]xp is the local radius of curvature
[37, §12]. For the Eikonal solution, Vv is discontinuous across the
galactic plane z = 0. Indeed, in contrast to the spherical target pat-
tern, the contours given by the involutes intersect the plane z=0
at an angle 6(s) # % This discontinuity in Vi is regularized as a
phase grain boundary (PGB), a defect well known in patterns, con-
sisting of a boundary layer across which Vi changes smoothly as
illustrated in Fig. 2.

We can estimate the (surface) energy density of a PGB as fol-
lows. Since the boundary layer has width w, the curvature and
stretch of the phase contours are, respectively, Ay ~kow~!sind(s),
k& — |V |2 ~ k2 sin? 6(s). Eq. (1) now implies

Spcp ~ w1k sin® 6(s) + wkg sin® 6(s).

Optimizing for w gives w ~ Spep o sin® 6(s). A rigorous

1
ko sinf(s) *
calculation along these lines yields Xpgp = 8% sin® 6(s) [38]. Us-

ing (4), the sum of Sy, and the PGB defect energy is

Sdiskzzyr/[gf sin39(s)+EB(s)V(kgcosze(s))]sds. (8)

We can extremize to get k3p(s)V’(cos? 0(s)) = 4X*sin6(s), a lo-
cal relation between the matter surface density, the characteristic
angle 6(s), and indirectly, also the common evolute y.

We can now make an informed choice for the potential V. The
argument of V is |Vy/|? = k2 cos? 6(s) < k3 within the galactic disk.
To ensure |V |? < k% in the presence of matter, a canonical choice
is the log barrier function V = —VqIn(k3 — |V [?) [39], where Vy is
an O (1) constant. Putting everything together, we have the leading
order (in € = (Voo /c)? small and kg+/r2 + z2 large) solution of the
variational equations for (2):

(r,z) = (s +tcosh(s), £tsinb(s)),

y:<s+

4% 4
sin” 6(s)
Vo

cosO(s)sinf(s) sin®O(s)
0y 0(s)

Xp(s) =
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Fig. 2. Phase grain boundary (PGB). There is a jump in Vy across the PGB. This
structure is smooth on the scale w, the width of the PGB. The stretching and bend-
ing of the phase contours contribute to an effective surface energy.

IV ~ko, Ay =2k (t—sin6(s)/6'(s)) " ~ 2ko/V1? + 22,
A = Ap +¢p) = 4T G| TpMS(2) + 25K (A)?]
V2 =10:¢(r,0) = rdrp(r, 0) +rdrdp (r, 0). 9)

The curvature of the phase contours is Ay and the effective
mass density in the pattern field ¢ is 22*ka3(A¢)2. The leading
order solution of v is given by (7) as long as the curvature Ay <
k%, consistent with a ‘cored dark halo’.

5. Phase surfaces as dark halos

We record a few observations. An important caveat is that our
equations describe equilibria for purely rotation supported galaxies
- no significant random motions or 3d structure, i.e. no bulge or
pseudobulge. In the current form, Eqgs. (9) are consequently limited
to describing ‘pure disk’ LSB galaxies. For such galaxies, (9) implies
the Freeman limit Xp < % [10].

Although Egs. (9) do not describe the central regions of HSB
galaxies, we expect that they do describe the disk component. For
HSB galaxies, the Freeman limit applies to the extrapolated central
density, obtained from the exponential disk region Sp = Zge~"/"0
and not for the “true” line-of-sight central surface density, which
can be substantially higher, and instead satisfies the central surface
density relation CSDR [40,19]. Further work is needed to obtain
these relations for HSB galaxies within our framework as this will
require extending our model.

The second equation in (9) expresses the common evolute y in
terms of 6(s) which in turn is given by . This connects the local
matter distribution X and the pattern ‘halo’.

We can also prescribe y and use it to compute Xp, ¥, ¢ and
v. A natural critical case is when the evolute degenerates to a sin-
gle point (0, —zp), so that 6(s) = arctan(%") and Xg(s) = %(1 +
s2/z3)73/2, corresponding to a Kuzmin disk. It is remarkable that
the surface density of a Kuzmin disk, a natural model for galactic
disks, arises from the surface energy o sin®6(s) relation for PGB
defects, a formula that was originally derived in a totally different
context of patterns [38].

The mass of this ‘critical’ Kuzmin disk, Mg = 87 Z*zg/vo, is de-
termined by zg, the length-scale in the evolute. The phase is given
by ¥ (r,z) = ko(r® + (|z] + z0)?)'/2 and the curvature of the con-
tours is 1/(r% + (|z| + z0)) /2 < zal so the eikonal approximation
for the phase is valid for all (r,z). We can compute the potential
¢ (r,0) and the rotation velocity:

.0 4 Ly
2nGX*zg Vo /1 + &2 0

v2(r) ~ 4&2 “12 E2
2mGY*zg  Vo(1+£2)3/2 0 14¢2

log(1+&%) + -,

)
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Fig. 3. Computed rotation curves. ap = 3600 km?s~2kpc~'. We approximate the pat-
tern DM density 22*ka1 (A¥)? by the £ =0 mode. We also plot the rotation curve
obtained from Eq. (12) for the RAR. Compare Fig. 7 in Ref. [41].

4¢ ~12 &
2V
V0(1+$2)3/2 + 0 1_|_g’_-2

where & =r/zp is the scaled radius, and the initial terms are the
(non-dimensional) baryonic contributions to the potential (¢par),
velocity (vgisk) and acceleration (gps). The asymptotic velocity
vZ, =4m V(;]/ZGE*ZO = (GM3ag)'/? where ag = 2w GX*. Indepen-
dent of the scale zg, the critical Kuzmin disks in our theory satisfy
a radial acceleration relation (RAR) since both gaL(;“ and gg—(‘)’s only
depend on the combination & =r/zg.

While the Kuzmin disk is a useful model, most real galax-
ies are exponential disks [9]. Interestingly, exponential disks also
arise naturally in our theory. From (9), a “limiting” case for a
cored halo corresponds to 6’(s) = zal siné(s) which ensures that
Ay > 2kozal. Solving for 6(s) and computing the corresponding
density Xp using (9), we get,

8obs
2 GX*

~

+oe (10)

4% A3 6,735/20

2B(s) = Vo a4 A26725/ZO/4)3 .

(11)

For A <1, this is the baryonic density of an exponential disk

Yp = Tpe S/ with $g = 42;0"‘3 ,To = 320, suggesting that the self-
organizing processes underlying our model might naturally pro-
duce exponential disks if the dynamics drive the phase curvatures
to a constant (maximal) value on the galactic plane.

Rather than attempting to explain the origins of exponential
profiles for disk galaxies, our goal here is somewhat more limited,
namely, we seek to compute the rotation curves for LSB expo-
nential disks within our theory. We henceforth set Vo = 4. Com-
bining (11) and (4) we obtain kgzg = 48 A=3/2. Fig. 3 shows the
numerically obtained rotation curves for a model exponential disk
with rg = 1kpc, Mg = 108 Mg corresponding to A a2 1/2. The rota-
tion curve computed from our theory rises slowly, and continues
to rise beyond 7rg. The shape of the curve as well as the scale
of the velocity is in good qualitative agreement with the observa-
tional curves in [41].

In Fig. 4, we plot the RAR for our theory applied to various
matter distributions (Vg is set to 4) and compare with the fit

8bar
_ 12
8obs 1 — o—vEu /B (12)

for the choice gy =ag [16]. Note that, for rotation supported sys-
tems, the resulting RAR has two branches. In the absence of a
bulge/central mass, the baryonic contribution to the acceleration
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Gobs / ag
3

-
S
o

¢ Compact spherical source
—6— Critical Kuzmin disk

7 = Fitting function Eq. (12)
7 % Exponential disk (4 =1/2)
10 ' ' :
1078 10 107 10° 10’
gbar/ ag

Fig. 4. The radial acceleration relation (RAR) in our model for various distributions
of matter. gops and gp,r are the total gravitational acceleration and the baryonic
contribution respectively. No parameters are fit: g = ap = 27 GX*. Compare Fig. 1
in Ref. [42].

Zpar has a peak value gmax at a few scale-lengths. For g < gmax
there are two values of r, one on either side of the peak, with
gbar(r) = g and (generically) different values of ggps, giving two
branches that meet at the peak acceleration. Our theory therefore
gives two branches for the RAR in agreement with recent observa-
tions for dwarf disk and LSB galaxies [42].

Fig. 3 illustrates the comparison between the RAR prediction,

using (12) and "r—z = Zohs, With the rotation curve from our model.
While the RAR prediction peaks and then declines slightly, the ro-
tation curve given by (9) continues to rise, albeit slowly. The RAR
prediction and our computed curve will both asymptote to the
same value v, given by the BTFR. However, this, clearly, does not
determine the entire rotation curve, which therefore serves as a
test for the validity of our theory, even allowing for the (nonlocal)
calibration for kg in (4).

Importantly, the discrepancies between our predictions and the
RAR are significant in the ‘inner’ regions (within a scale length).
Besides the difficulties in resolving the rotation curves on these
scales, this region is strongly influenced by the galactic bulge
and/or a central black hole (if present). In particular, if the baryonic
acceleration gy, is monotonically decreasing in the region that can
be resolved by observations, it is likely that ggns will be a mono-
tonic function of gp,r and discrepancies between our model and
the RAR given by (12) might be hard to detect.

6. Discussion

We have proposed an effective Lagrangian theory for dark mat-
ter, by combining ideas from pattern formation with empirical ob-
servations. We have introduced an additional “dark field” ¢ that
plays the role of DM. In our theory, no structures are formed on
scales smaller than k; 1 resulting in cored DM halos in contrast
to the cuspy halos formed by CDM.

Our theory is based on universal equations for pattern forma-
tion and can thus describe a variety of instability generating mech-
anisms. Our favored interpretation is that i is the order parameter
for a broken translational symmetry, with a characteristic scale k; 1
determined by the distribution of baryons. We identify ko with the
most unstable wavenumber in the stability analysis that leads to
Toomre’s criterion [35], thereby directly relating the ‘baryonic in-
stability’ of a rotating disk to the pattern instability that produces
the ‘dark halo’ in our framework.

Ours is an effective, long wave theory, applicable on scales
2 ko 1, rather than a fundamental theory, since ko in (2) explicitly
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depends on the baryonic mass Mp of the host galaxy, as given by
Eq. (4). This nonlocality is to be expected and is indeed unavoid-
able for an effective theory that is consistent with the BTFR [43].
Our theory is “minimally” nonlocal through the dependence of its
action on a single global quantity Mp.

With no additional fitting parameters, our parsimonious theory
retrodicts some of the observed regularities and scaling laws for
isolated, quasi-steady, rotation supported systems, including the
RAR and the existence of the Freeman limit.

There are two distinct sources for the new effects arising in our
theory. First, the curvature of the phase surfaces contributes an ad-
ditional energy (mass), consistent with cored halos. The resulting
gravitational acceleration dominates the baryonic contribution gpa,
at large distances and flattens the rotation curves. Second, for disk
galaxies, the phase surfaces are spheroidal rather than spherical
and thus generate a phase grain boundary on the galactic plane.
This additional source yields the third relation in Eq. (9), linking
0(s), the angle between the phase surfaces and the galactic plane,
to the density of the disk, X(s), providing a natural explanation
for the disk-halo connection in galaxies [34,41]. One consequence
of this connection is that exponential disks correspond to a con-
stant curvature for the phase surfaces on the galactic disk z =0,
and thus to a constant ‘halo’ surface density [12].

A limitation of our current analysis is that it does not apply
to bulges, elliptic galaxies or other pressure supported systems. In
ongoing work we are investigating the use of a perfect fluid in
place of the dust Lagrangian for matter in Eq. (2), to extend our
analysis to systems with pressure supported components. We are
also evaluating the consequences of the potential instability of the
PGB when the angle 6(s) becomes too sharp [38].

Galaxy formation is a complex process, and involves a great
many effects [44,45] not included in our simple model. In cos-
mological contexts galaxies are “nonlinear”, with the implication
sometimes being that theorists can build models that describe the
very largest scales of the universe, and not be too concerned with
tensions between theories and observations, or “unexplained” reg-
ularities/scaling laws, on small “nonlinear” scales [15]. We disagree
with this point of view. We contend that the robust scaling rela-
tions satisfied by galaxies are not “accidental” and require robust
explanations. Our model offers conceptual insight into these rela-
tions by demonstrating how a generic mechanism for coupling the
dark field v, through its defects, to the baryonic density pp leads
to self-organization.

Our model allows us to compute the rotation curves of expo-
nential disk galaxies. The resulting phase contours for exponential
disks are (approximately) spherical caps ¥ ~ (r2 + (z + z0)%)1/2, as
illustrated in Fig. 1, implying that the Kuzmin disk solutions ap-
proximate the “dark halos” of disk galaxies [46]. This universality
[24] justifies our use of simplified physical models, with relatively
few ingredients, in this preliminary attempt to understand self-
organization in galaxies.
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