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Galaxies are built by complex physical processes with significant inherent stochasticity. It is therefore 
surprising that the inferred dark matter distributions in galaxies are correlated with the observed 
baryon distributions leading to various ‘Baryon-Halo conspiracies’. The fact that no dark matter candidate 
has been definitively identified invites a search for alternative explanations for such correlations and 
we present an approach motivated by the behaviors of self organized patterns. We propose a nonlocal 
relativistic Lagrangian theory for a ‘pattern field’ which acts as an ‘effective dark matter’, built on the idea 
that defects in this pattern field couple to the baryonic matter distribution. The model applies to rotation 
supported systems and, for them, we compute galactic rotation curves, obtain a radial acceleration 
relation with two branches, and deduce the Freeman limit for central surface brightness.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Mass discrepancies and dark matter

Understanding the nature of dark matter is one of the great 
intellectual challenges of our time. Dark matter is postulated to 
explain discrepancies between the observed (non-relativistic) mo-
tions of stars in galaxies, and galaxies in clusters, from the predic-
tions of Newtonian gravity [1]. Although long suspected [2,3], the 
hunt for additional ‘invisible’ matter became a serious endeavor in 
the wake of the pioneering observations by Vera Rubin and her 
colleagues [4,5], demonstrating definitively that the rotation ve-
locity curves v(r) of galaxies flatten out with increasing radius r
instead of the expected Keplerian decay v ≈ √

GM/r predicted by 
a balance of the gravitational GM/r2 and centrifugal v2/r acceler-
ations.

Our focus in this letter is on the structure and dynamics of disk 
galaxies. In the conventional picture, disk galaxies have two dis-
tinct components – a massive, three dimensional, cold dark matter 
(CDM) halo, and a thin ‘2d’ disk, containing stars/gas (baryons) 
that is in rotational equilibrium in the combined gravitational field 
of the halo and the disk.

While the CDM model for dark matter works remarkably well 
on cosmological scales, no DM particle has yet been definitively 
identified. Additionally, there are several discrepancies between 
CDM predictions and observations on galactic or smaller scales [6]. 
N-body simulations give halos with the “universal” Navarro-Frenk-
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White (NFW) profile ρNFW(R) = ρ0
[(1+(R/R S )2)(R/Rs)] [7], (R is the 

3d radial coordinate). Observations, however, favor “cored” halos, 
e.g. the quasi-isothermal profile ρqiso = ρ0

(1+R2/R2
C )

, over the “cuspy” 
NFW profile [8].

A proxy for the distribution of baryonic matter in disk galaxies 
is given by the surface brightness profile. In the disks of galax-
ies, i.e. outside the bulge if one is present, the brightness de-
cays (approximately) exponentially from the center [9]. Assuming 
a constant mass-to-light ratio, the baryonic surface density � =
�0 exp(−r/r0), where r is the 2d radial coordinate in the galac-
tic plane, �0 is the (extrapolated) central surface density and r0 is 
the (baryonic) scale length of the galaxy. The Freeman “law” is ob-
servational evidence that �0 ≈ �∗ is the same for all high surface 
brightness (HSB) galaxies, independent of their total mass [9]. Includ-
ing low surface brightness (LSB) galaxies gives a wider distribution 
of central densities, with a rapid fall-off beyond �∗ , defining the 
Freeman limit [10].

Observations reveal tight correlations and scaling relations be-
tween the halo parameters ρ0, RC and the baryonic parameters 
�0, r0 [11,12]. Indeed, galaxies are surprisingly simple and seem-
ingly governed by a single dimensionless parameter [13]. Since 
galaxy formation is inherently stochastic this suggests an impor-
tant role for self-organizing dynamical processes [14].

For quasi-steady systems, many observations indicate that the 
dynamically inferred DM halo is strongly correlated with the 
baryon distribution [15]. Many of these relations are subsumed by 
the radial acceleration relation (RAR) [16], which is a “local” re-
lation for the observed total acceleration gobs (from halo + disk) 
and the purely baryonic contribution gbar. This relation holds for 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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a range of galaxies including dSphs, disk galaxies (S0 to dIrr) and 
giant ellipticals, and was first proposed in [17] as the basis for 
‘Modified Newtonian dynamics (MOND)’. The successes of MOND 
in predicting various observed regularities on galactic scales [18]
have inspired interesting proposals for coupling baryons and DM 
[19] as well as a variety of dark matter models that behave like 
MOND for galaxies and like CDM on cluster and larger scales 
[20,21]. There have also been attempts to recover these scaling re-
lations within �CDM using cosmological simulations that include 
various baryonic feedback mechanisms [22,23].

Our aim in this letter is to propose specific self-organizing 
mechanisms for galactic dynamics. To this end, we present a the-
ory that allows us to compute rotation curves of galaxies, and 
explain observed galaxy scaling relations including the RAR and 
the Freeman limit. We are motivated in this endeavor by the self-
organizing properties of pattern forming systems and a recognition 
that instability generated patterns might have a role to play in 
galaxies [14]. In many situations, pattern structures are topologi-
cally constrained by the presence of defects and are not ground 
states. Therefore they can store energy. By coupling the defects to 
the distribution of baryons, we get additional energy that can give 
rise to forces that produce effects attributed to dark matter halos. 
In such a scenario, it is certainly plausible that there should be 
correlations and scaling relations between the halo and baryonic 
parameters.

2. Patterns, universality, defects and halos

Patterns are ubiquitous in nature and arise when, at some 
stress threshold, a symmetric “ground state” destabilizes and cer-
tain symmetry-breaking modes are preferentially amplified. These 
modes compete for dominance through nonlinear interactions and 
a set of winning configurations emerges. Generally, whereas some 
symmetries are broken, others are not, leading to the presence of 
defects that prevent the new state from being a ground state, a 
true energy minimum.

A useful illustration is provided by the well-studied case of high 
Prandtl number convection in a horizontal layer of fluid heated 
from below. For a sufficiently large thermal gradient, the conduc-
tion state becomes unstable to convective rolls which transport 
heat more efficiently. At this transition the continuous translation 
symmetry of the conductive state is broken and replaced by a dis-
crete translation symmetry from the preferred wavelength of the 
roll pattern. The preferred wavelength depends only on a glob-
ally defined parameter – the Rayleigh number. However, because 
the rotational symmetry is not broken at the transition, the ori-
entations of the roll patches are chosen by local biases, boundary 
conditions and other constraints.

If the system size is much greater than the chosen wavelength, 
the resulting pattern is a mosaic of “locally” uniform stripe pat-
terns with different orientations which meet and meld along de-
fect lines and points in 2D (and planes and loops in 3D). In more 
confined geometries such as cylinders or spheroids where the 
boundaries may be heated, or in situations where angular momen-
tum conservation constraints might apply, the patterns, although 
locally stripe-like, can be target or spiral shaped. The resulting de-
fects have topological charges reflecting the far-field geometry or 
constraints away from the defects. They also have energy, associ-
ated with the fact that the emerging pattern is not a true energy 
minimum but a metastable state; metastable in the sense that ei-
ther the topological constraints make the state a local minimum or 
that the time scale to coarsen and “heal” the defects is extremely 
long.

Patterns and other collective phenomena are studied using 
macroscopic order parameters that measure the amount of symme-
try breaking. Order parameters are governed by universal equa-
2

tions that reflect the underlying symmetries of the system but are 
insensitive to the precise details of the microscopic interactions in 
the system – a phenomenon called universality [24]. For systems 
that form stripe patterns by breaking translation but not orien-
tation invariance, the appropriate order parameter is a phase ψ
whose gradient k gives the local orientation of the pattern. The mi-
croscopic fields are generally 2π periodic functions of the phase ψ . 
Integrating over the microscopic degrees of freedom gives a canon-
ical form for the effective energy [25]

E = �∗c2

k3
0

∫ [
(k2

0 − k2)2 + (∇ · k)2
]

dV , k = ∇ψ, (1)

where ψ is dimensionless, the preferred wavenumber |k| = k0, 
�∗ is a (universal) surface density [12,15], and the normalizing 
constant �∗c2

k3
0

ensures dimensional consistency. Specifically, we 

will take �∗ ≈ 136 M�/pc2 corresponding to an acceleration scale 
a0 = 2πG�∗ ≈ 1.2 × 10−10m/s2, the empirically observed univer-
sal acceleration scale in disk galaxies [17]. The ground states E = 0
correspond to the plane waves ψ(x) = k · x, |k| = k0. If boundaries 
or other external constraints dictate that the phase pattern be ra-
dial, ψ(x) = ψ(R) where R = |x|, we cannot be in a ground state. 
Indeed, a calculation reveals that, minimizing E with ψ = ψ(R), 
we get k → 0 as R → 0 and ψ(R) → k0 R + const as R → ∞. These 
target (spirals if the instability is to waves and (1) is modified 
appropriately) patterns are robust because they cannot be continu-
ously deformed into the plane wave ground states. Their curvature 
radii are large compared to the local pattern wavelength, so they 
are locally stripe like and their macroscopic energies can be repre-
sented by (1).

What is important to us here is that the target pattern has an 
energy density of the same form as a cored quasi-isothermal halo 
with RC ∼ k−1

0 . Such halos describe the dark matter distribution 
out to the edge of the optical disk in real galaxies, so this suggests 
adding a term like (1) to the Lagrangian of a galaxy can recover 
the effects of ‘dark matter’ [25,26].

The additional action from (1) leads to the flattening of ro-
tation curves to a limiting value v∞ = √

32(1 − α)πG�∗/k0 [26], 
where α is an O (1) quantity whose precise value is unimportant 
for this letter, and will henceforth be set to 0. While this result is 
encouraging important questions were left unanswered - (1) What 
determines the parameter k0?, (2) How do we eliminate the as-
sumption of spherical symmetry and model more realistic disk 
galaxies? and, (3) What physical processes might lead to a term 
like (1) in the action? We address these questions in subsequent 
sections.

3. An effective Lagrangian for pattern dark matter

A proper formulation of our ideas requires the identification of 
an appropriate Lagrangian. �CDM is obtained from a Lagrangian 
that includes the Einstein-Hilbert action for the geometry of space-
time, the ‘dust’ matter action for CDM/baryons, and a cosmological 
constant term modeling dark energy. Alternative Lagrangians de-
scribe various flavors of MOND [27–29], dark matter with novel 
material properties – dipolar dark matter [30], superfluid dark 
matter [31] and fuzzy dark matter [32], as well as “non-material” 
alternatives like emergent gravity [33]. Our goal is to formulate an 
appropriate ‘pattern dark matter’ Lagrangian that encapsulates the 
physics discussed above. Our action is the sum of

SE H = c4

16πG

∫
R
√−g d4x, SM =

∫
ρB uαuα

√−g d4x,

SP = −�∗c2

k3

∫ {
(k2

0 − ∇μψ∇μψ)2 + (∇μ∇μψ)2
}√−g d4x,
0
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Sψ = −
∫

ρB c2 V
[
k−2

0 ∇βψ∇βψ
]√−gd4x, (2)

where ∇ represents the covariant derivative and uα is the 4-
velocity of the baryonic matter with density ρB . The model in-
cludes the Einstein-Hilbert action SE H , the matter action SM , the 
pattern action SP as motivated by (1), and the interaction term 
Sψ motivated by the empirical observation that the dark matter 
halo couples to the local baryonic density ρB [34]. We have intro-
duced V (|k|2) ≥ 0, a convex potential that vanishes at k = 0. Large 
values of ρB create “defects” in ψ , like the spherical target pat-
tern with ∇ψ = 0 at the center. SP and Sψ come with negative 
signs since they are ‘potential’ terms, i.e. akin to W in the action 
S = ∫

(T − W ) dt for classical particle systems.
What remains is the specification of k0 and the potential V . 

Before we do so, however, we emphasize that, irrespective of the 
choices we are about to make, the additional terms S p and Sψ in 
the action automatically lead to three of the key outcomes that 
characterize the behaviors usually associated with dark matter. 
First, we find that the curvature term in S p leads to an additional 
force which behaves as 1

r for large r and a flattening of the ve-

locity rotation curve given by v2∞ = 32πG�∗
k0

. Second, the coupling 
between the pattern “dark matter” and the baryonic density leads 
to the Freeman limit with a maximum central surface density on 
the universal scale �∗ for rotation supported systems. Third, the 
model predicts a radial acceleration relation (RAR) between the 
total gravitational acceleration gobs and the baryonic contribution 
gbar, that has two branches.

Our choice for k0 is motivated by stability considerations for a 
differentially rotating stellar disk v(r) = r 	(r). WKB analysis gives 
the dispersion relation for density waves [35]

ω(k)2 = σ 2k2 − 2πG�B |k| + κ2, κ2 = 2	

r

d

dr
(r2	), (3)

where σ is the radial velocity dispersion, κ is the epicyclic fre-
quency and �B is the local baryonic surface density.

Stability for a stellar disk requires that the Toomre parame-
ter Q = σκ

πG�B
> 1. A positive κ2 implies that the specific angular 

momentum r2	 is increasing with r, and thus stabilizes the long 
wavelengths k → 0. This is indeed Rayleigh’s criterion for stability 
of rotating inviscid flows. Q describes the competition between 
the stabilizing effects from κ2 > 0 and the destabilizing effect of 
self-gravitation represented by G�B . k1(r) = πG�B

σ 2 is the “locally” 
preferred (fastest growing) wavenumber.

Since our model is an attempt to encode the effects of insta-
bility induced patterns and self-organization, we posit that the 
phase ψ in our model is connected with the clumping instability 
in baryons. We therefore seek to identify the pattern wavenum-
ber in (2) with k1(r). The ‘effective’ action in (2) is crude in that it 
only allows for a ‘global’ wavenumber k0, so we will set k0 = k1(r0)

where r0 ∼ k−1
0 is a characteristic length scale.

If the system is rotation rather than pressure supported, the 
random motions have to be smaller than the ordered rotational 
velocity σ � v(r). Since κ ∼ v(r)

r in the flat portion of the rotation 
curve, we get, to within an O (1) constant, the radial dispersion is 
on the scale σ ∼

√
GMB

r and v2∞ � GMB
r for r ∼ r0, the baryonic 

scale length, since an O (1) fraction of the total mass is within this 
radius.

We adopt the self-organizing principle that, if Q < 1, the stellar 
disk heats up until it reaches marginal stability Q = 1 at a scale 
r0 ∼ k−1

0 . Multiplying the ‘halo estimate’ v2∞ = 32πG�∗
k0

with the 
stability estimate v2∞ ∼ GMB

r0
we get v4∞ = 16μGMBa0, where a0 =

2πG�∗ and μ is an O (1) constant.
A key empirical scaling relation for disk galaxies is the Bary-

onic Tully-Fisher relation v4∞ = GMBa0 (BTFR) relating the bary-
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nic mass MB to v∞ with very little scatter over a wide range of 
alaxies [36]. The stability analysis suggests that, despite the ap-
roximate nature of our effective Lagrangian, it is consistent with 
e BTFR. We can therefore obtain the effective parameter k0 for 

ur model, by demanding that the halo estimate v2∞ = 32πG�∗
k0

gree with v4∞ = 2πGMB�∗ . This yields

0 = 16
√

2π�∗/MB , (4)

 value we will henceforth adopt. We stress that we do not claim 
at the stability analysis constitutes a derivation of BTFR, but sim-

ly argue that it lends credence to our calibration of k0.

. A variational analysis of the model

Since galaxies are non-relativistic, v∞ � c, the geometry of 
ace-time deviates from the flat Minkowskii space at O (ε) where 
= ( v∞

c

)2
. We obtain the (Newtonian) limit description through 

 principled asymptotic expansion in the small parameter ε . In 
 steady state, our system is described by the weak-field metric, 
= −(c2 +2φ(x))dt2 +(1 −2φ(x)/c2)(dx2 +dy2 +dz2), where φ(x)

 the total Newtonian potential. We note that ψ, x, k are O (1), the 
atial velocity v = dx

dt is O (
√

ε), and ρB , �∗ and φ are O (ε). We 
n expand the action S and collect terms in powers of c (equiva-
ntly ε) to get, S = c2S1 + S2,

1 = −
∫

d3xdt
[
�∗k−3

0 [(k2
0 −|∇ψ |2)2 + (�ψ)2]+ρB V (|∇ψ |2)

]

2 =
∫

d3xdt

[
ρB

(
v2

2
− φ

)
− |∇φ|2

8πG
− 2φ�∗k−3

0

(
|∇ψ |4 − k4

0

)
− 2φ

(
�∗k−3

0 (�ψ)2 + ρB V ′(|∇ψ |2)|∇ψ |2
)]

. (5)

his formulation is completed by prescribing the potential V .
We illustrate the procedure for analyzing the variational equa-

ons for the action in (2) by revisiting the example of spherically 
mmetric compact clump of matter. Step 1: Prescribe ρB(R) and 
lve the variational equations for S1, i.e. a pattern formation 

roblem. For a compact clump, and a generic potential V with a 
lobal minimum at 0, ∇ψ ≈ 0 within the source, so we get the tar-
et patterns that were discussed earlier. Step 2: With the given ρB

nd ψ computed from the previous step, solve for the gravitational 
otential φ. For a compact dense clump, ∇ψ ≈ 0 where ρB 
= 0, 
nd outside the clump, |∇ψ | ≈ 1, �ψ ≈ 2R−1. Consequently, we 
et �φ ≈ 4πG(ρB + 8�∗k0/(b2 + k2

0 R2)), b ∼ O (1),

obs = ∇φ ≈ GMB

R2
+ 32πG�∗

k0 R

[
1 − b

k0 R
tan−1

(
k0 R

b

)]
. (6)

tep 3: Solve for the steady state velocity from v2

R = gobs.
To model a disk galaxy, we now carry out these steps in an 

xisymmetric setting, where all the fields only depend on r =
x2 + y2 and z. The matter density ρB(r, z) ≈ �B(r)δ(z) is con-
ntrated close to the galactic plane z = 0.
In Step 1, extremizing S1, we have two contributions, the pat-

rn Lagrangian SP which is an integral over all of space, and the 
teraction Lagrangian Sψ = −2π

∫
�B(r)V (|ψr |2)rdr which is an 

tegral over the galactic disk. Off the disk ψ satisfies the Eikonal 
uation |∇ψ | = k0, as appropriate for stripe patterns. Using Huy-

ens’ principle, we obtain:

ψ(r, z) = min
s≥0

[
ψ(s,0) + k0

√
(r − s)2 + z2

]
ψ [s + t cos θ(s),±t sin θ(s)] = ψ(s,0) + k0t, (7)
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Fig. 1. Huygens’ construction – the phase contours (solid curves in z > 0) have a 
common evolute (solid curve in z < 0) and intersect the characteristics (straight 
lines) orthogonally. The contours for z ≤ 0 are given by reflection. A spherical target 
pattern (dashed phase contours) is shown for comparison. The involutes are (ap-
proximately) spherical caps with centers off the plane z = 0.

where the second line follows for regions where the characteristics
r = s + t cos θ(s), z = ±t sin θ(s)) do not cross.

The geometry of this construction is illustrated in Fig. 1. The 
phase fronts for z > 0 (resp. z < 0) are the involutes of a common 
evolute γ = (α(s), ∓β(s)) and k−1

0 ψ is the local radius of curvature 
[37, §12]. For the Eikonal solution, ∇ψ is discontinuous across the 
galactic plane z = 0. Indeed, in contrast to the spherical target pat-
tern, the contours given by the involutes intersect the plane z = 0
at an angle θ(s) 
= π

2 . This discontinuity in ∇ψ is regularized as a 
phase grain boundary (PGB), a defect well known in patterns, con-
sisting of a boundary layer across which ∇ψ changes smoothly as 
illustrated in Fig. 2.

We can estimate the (surface) energy density of a PGB as fol-
lows. Since the boundary layer has width w , the curvature and 
stretch of the phase contours are, respectively, �ψ ∼k0 w−1 sin θ(s),
k2

0 − |∇ψ |2 ∼ k2
0 sin2 θ(s). Eq. (1) now implies

�P G B ∼ w−1k2
0 sin2 θ(s) + wk4

0 sin4 θ(s).

Optimizing for w gives w ∼ 1
k0 sin θ(s) , �P G B ∝ sin3 θ(s). A rigorous 

calculation along these lines yields �P G B = 8�∗
3 sin3 θ(s) [38]. Us-

ing (4), the sum of Sψ and the PGB defect energy is

Sdisk = 2π

∫ [
8�∗

3
sin3 θ(s) + �B(s)V (k2

0 cos2 θ(s))

]
sds. (8)

We can extremize to get k2
0�B(s)V ′(cos2 θ(s)) = 4�∗ sin θ(s), a lo-

cal relation between the matter surface density, the characteristic 
angle θ(s), and indirectly, also the common evolute γ .

We can now make an informed choice for the potential V . The 
argument of V is |∇ψ |2 = k2

0 cos2 θ(s) ≤ k2
0 within the galactic disk. 

To ensure |∇ψ |2 ≤ k2
0 in the presence of matter, a canonical choice 

is the log barrier function V = −V 0 ln(k2
0 −|∇ψ |2) [39], where V 0 is 

an O (1) constant. Putting everything together, we have the leading 
order (in ε = (v∞/c)2 small and k0

√
r2 + z2 large) solution of the 

variational equations for (2):

(r, z) = (s + t cos θ(s),±t sin θ(s)),

γ =
(

s + cos θ(s) sin θ(s)

θ ′(s)
,

sin2 θ(s)

θ ′(s)

)

�B(s) = 4�∗
sin3 θ(s)

Fi
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g. 2. Phase grain boundary (PGB). There is a jump in ∇ψ across the PGB. This 
ructure is smooth on the scale w , the width of the PGB. The stretching and bend-
g of the phase contours contribute to an effective surface energy.

∇ψ | � k0, �ψ � 2k0
(
t − sin θ(s)/θ ′(s)

)−1 ≈ 2k0/
√

r2 + z2,

�φ = �(φB + φP ) � 4πG
[
�B(r)δ(z) + 2�∗k−3

0 (�ψ)2
]
,

v2 = r∂rφ(r,0) = r∂rφB(r,0) + r∂rφP (r,0). (9)

The curvature of the phase contours is �ψ and the effective 
ass density in the pattern field ψ is 2�∗k−3

0 (�ψ)2. The leading 
der solution of ψ is given by (7) as long as the curvature �ψ �
, consistent with a ‘cored dark halo’.

 Phase surfaces as dark halos

We record a few observations. An important caveat is that our 
uations describe equilibria for purely rotation supported galaxies 
no significant random motions or 3d structure, i.e. no bulge or 
eudobulge. In the current form, Eqs. (9) are consequently limited 
 describing ‘pure disk’ LSB galaxies. For such galaxies, (9) implies 
e Freeman limit �B ≤ 4�∗

V 0
[10].

Although Eqs. (9) do not describe the central regions of HSB 
laxies, we expect that they do describe the disk component. For 

SB galaxies, the Freeman limit applies to the extrapolated central 
nsity, obtained from the exponential disk region �B = �0e−r/r0

d not for the “true” line-of-sight central surface density, which 
n be substantially higher, and instead satisfies the central surface 
nsity relation CSDR [40,19]. Further work is needed to obtain 
ese relations for HSB galaxies within our framework as this will 
quire extending our model.

The second equation in (9) expresses the common evolute γ in 
rms of θ(s) which in turn is given by �B . This connects the local
atter distribution �B and the pattern ‘halo’.

We can also prescribe γ and use it to compute �B , ψ, φ and 
. A natural critical case is when the evolute degenerates to a sin-
e point (0, −z0), so that θ(s) = arctan(

z0
s ) and �B(s) = 4�∗

V 0
(1 +

/z2
0)

−3/2, corresponding to a Kuzmin disk. It is remarkable that 
e surface density of a Kuzmin disk, a natural model for galactic 
sks, arises from the surface energy ∝ sin3 θ(s) relation for PGB 
fects, a formula that was originally derived in a totally different 
ntext of patterns [38].
The mass of this ‘critical’ Kuzmin disk, MB = 8π�∗z2

0/V 0, is de-
rmined by z0, the length-scale in the evolute. The phase is given 
 ψ(r, z) = k0(r2 + (|z| + z0)

2)1/2 and the curvature of the con-
urs is 1/(r2 + (|z| + z0)

2)1/2 ≤ z−1
0 so the eikonal approximation 

r the phase is valid for all (r, z). We can compute the potential 
(r, 0) and the rotation velocity:

φ(r,0)

πG�∗z0
≈ − 4

V 0

√
1 + ξ2

+ V −1/2
0 log(1 + ξ2) + · · · ,

v2(r)
∗ ≈ 4ξ2

2 3/2
+ 2V −1/2

0
ξ2

2
+ · · · ,
2πG� z0 V 0(1 + ξ ) 1 + ξ
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Fig. 3. Computed rotation curves. a0 = 3600 km2s−2kpc−1. We approximate the pat-
tern DM density 2�∗k−1

0 (�ψ)2 by the � = 0 mode. We also plot the rotation curve 
obtained from Eq. (12) for the RAR. Compare Fig. 7 in Ref. [41].

gobs

2πG�∗ ≈ 4ξ

V 0(1 + ξ2)3/2
+ 2V −1/2

0
ξ

1 + ξ2
+ · · · (10)

where ξ = r/z0 is the scaled radius, and the initial terms are the 
(non-dimensional) baryonic contributions to the potential (φbar), 
velocity (vdisk) and acceleration (gbar). The asymptotic velocity 
v2∞ = 4π V −1/2

0 G�∗z0 ≡ (GMBa0)
1/2 where a0 = 2πG�∗ . Indepen-

dent of the scale z0, the critical Kuzmin disks in our theory satisfy 
a radial acceleration relation (RAR) since both gbar

a0
and gobs

a0
only 

depend on the combination ξ = r/z0.
While the Kuzmin disk is a useful model, most real galax-

ies are exponential disks [9]. Interestingly, exponential disks also 
arise naturally in our theory. From (9), a “limiting” case for a 
cored halo corresponds to θ ′(s) = z−1

0 sin θ(s) which ensures that 
�ψ ≥ 2k0z−1

0 . Solving for θ(s) and computing the corresponding 
density �B using (9), we get,

�B(s) = 4�∗ A3

V 0

e−3s/z0

(1 + A2e−2s/z0/4)3
. (11)

For A � 1, this is the baryonic density of an exponential disk 
�B = �0e−s/r0 with �0 = 4�∗ A3

V 0
, r0 = 1

3 z0, suggesting that the self-
organizing processes underlying our model might naturally pro-
duce exponential disks if the dynamics drive the phase curvatures 
to a constant (maximal) value on the galactic plane.

Rather than attempting to explain the origins of exponential 
profiles for disk galaxies, our goal here is somewhat more limited, 
namely, we seek to compute the rotation curves for LSB expo-
nential disks within our theory. We henceforth set V 0 = 4. Com-
bining (11) and (4) we obtain k0z0 = 48 A−3/2. Fig. 3 shows the 
numerically obtained rotation curves for a model exponential disk 
with r0 = 1 kpc, MB = 108 M� corresponding to A ≈ 1/2. The rota-
tion curve computed from our theory rises slowly, and continues 
to rise beyond 7r0. The shape of the curve as well as the scale 
of the velocity is in good qualitative agreement with the observa-
tional curves in [41].

In Fig. 4, we plot the RAR for our theory applied to various 
matter distributions (V 0 is set to 4) and compare with the fit

gobs = gbar

1 − e−√
gbar/g†

(12)

for the choice g† = a0 [16]. Note that, for rotation supported sys-
tems, the resulting RAR has two branches. In the absence of a 
bulge/central mass, the baryonic contribution to the acceleration 
5

Fig. 4. The radial acceleration relation (RAR) in our model for various distributions 
of matter. gobs and gbar are the total gravitational acceleration and the baryonic 
contribution respectively. No parameters are fit: g† = a0 = 2πG�∗ . Compare Fig. 1 
in Ref. [42].

gbar has a peak value gmax at a few scale-lengths. For g < gmax
there are two values of r, one on either side of the peak, with 
gbar(r) = g and (generically) different values of gobs, giving two 
branches that meet at the peak acceleration. Our theory therefore 
gives two branches for the RAR in agreement with recent observa-
tions for dwarf disk and LSB galaxies [42].

Fig. 3 illustrates the comparison between the RAR prediction, 
using (12) and v2

r = gobs, with the rotation curve from our model. 
While the RAR prediction peaks and then declines slightly, the ro-
tation curve given by (9) continues to rise, albeit slowly. The RAR 
prediction and our computed curve will both asymptote to the 
same value v∞ given by the BTFR. However, this, clearly, does not
determine the entire rotation curve, which therefore serves as a 
test for the validity of our theory, even allowing for the (nonlocal) 
calibration for k0 in (4).

Importantly, the discrepancies between our predictions and the 
RAR are significant in the ‘inner’ regions (within a scale length). 
Besides the difficulties in resolving the rotation curves on these 
scales, this region is strongly influenced by the galactic bulge 
and/or a central black hole (if present). In particular, if the baryonic 
acceleration gbar is monotonically decreasing in the region that can 
be resolved by observations, it is likely that gobs will be a mono-
tonic function of gbar and discrepancies between our model and 
the RAR given by (12) might be hard to detect.

6. Discussion

We have proposed an effective Lagrangian theory for dark mat-
ter, by combining ideas from pattern formation with empirical ob-
servations. We have introduced an additional “dark field” ψ that 
plays the role of DM. In our theory, no structures are formed on 
scales smaller than k−1

0 resulting in cored DM halos in contrast 
to the cuspy halos formed by CDM.

Our theory is based on universal equations for pattern forma-
tion and can thus describe a variety of instability generating mech-
anisms. Our favored interpretation is that ψ is the order parameter 
for a broken translational symmetry, with a characteristic scale k−1

0
determined by the distribution of baryons. We identify k0 with the 
most unstable wavenumber in the stability analysis that leads to 
Toomre’s criterion [35], thereby directly relating the ‘baryonic in-
stability’ of a rotating disk to the pattern instability that produces 
the ‘dark halo’ in our framework.

Ours is an effective, long wave theory, applicable on scales 
� k−1, rather than a fundamental theory, since k0 in (2) explicitly 
0
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depends on the baryonic mass MB of the host galaxy, as given by 
Eq. (4). This nonlocality is to be expected and is indeed unavoid-
able for an effective theory that is consistent with the BTFR [43]. 
Our theory is “minimally” nonlocal through the dependence of its 
action on a single global quantity MB .

With no additional fitting parameters, our parsimonious theory 
retrodicts some of the observed regularities and scaling laws for 
isolated, quasi-steady, rotation supported systems, including the 
RAR and the existence of the Freeman limit.

There are two distinct sources for the new effects arising in our 
theory. First, the curvature of the phase surfaces contributes an ad-
ditional energy (mass), consistent with cored halos. The resulting 
gravitational acceleration dominates the baryonic contribution gbar
at large distances and flattens the rotation curves. Second, for disk 
galaxies, the phase surfaces are spheroidal rather than spherical 
and thus generate a phase grain boundary on the galactic plane. 
This additional source yields the third relation in Eq. (9), linking 
θ(s), the angle between the phase surfaces and the galactic plane, 
to the density of the disk, �(s), providing a natural explanation 
for the disk-halo connection in galaxies [34,41]. One consequence 
of this connection is that exponential disks correspond to a con-
stant curvature for the phase surfaces on the galactic disk z = 0, 
and thus to a constant ‘halo’ surface density [12].

A limitation of our current analysis is that it does not apply 
to bulges, elliptic galaxies or other pressure supported systems. In 
ongoing work we are investigating the use of a perfect fluid in 
place of the dust Lagrangian for matter in Eq. (2), to extend our 
analysis to systems with pressure supported components. We are 
also evaluating the consequences of the potential instability of the 
PGB when the angle θ(s) becomes too sharp [38].

Galaxy formation is a complex process, and involves a great 
many effects [44,45] not included in our simple model. In cos-
mological contexts galaxies are “nonlinear”, with the implication 
sometimes being that theorists can build models that describe the 
very largest scales of the universe, and not be too concerned with 
tensions between theories and observations, or “unexplained” reg-
ularities/scaling laws, on small “nonlinear” scales [15]. We disagree 
with this point of view. We contend that the robust scaling rela-
tions satisfied by galaxies are not “accidental” and require robust 
explanations. Our model offers conceptual insight into these rela-
tions by demonstrating how a generic mechanism for coupling the 
dark field ψ , through its defects, to the baryonic density ρB leads 
to self-organization.

Our model allows us to compute the rotation curves of expo-
nential disk galaxies. The resulting phase contours for exponential 
disks are (approximately) spherical caps ψ ≈ (r2 + (z + z0)

2)1/2, as 
illustrated in Fig. 1, implying that the Kuzmin disk solutions ap-
proximate the “dark halos” of disk galaxies [46]. This universality
[24] justifies our use of simplified physical models, with relatively 
few ingredients, in this preliminary attempt to understand self-
organization in galaxies.
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