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Abstract: Revealing the time structure of physical or biological objects is usually performed thanks

to the tools of signal processing such as the fast Fourier transform, Ramanujan sum signal processing,

and many other techniques. For space-time topological objects in physics and biology, we propose a

type of algebraic processing based on schemes in which the discrimination of singularities within

objects is based on the space-time-spin group SL(2,C). Such topological objects possess an homotopy

structure encoded in their fundamental group, and the related SL(2,C) multivariate polynomial

character variety contains a plethora of singularities somehow analogous to the frequency spectrum

in time structures. Our approach is applied to a model of quantum computing based on an Akbulut

cork in exotic R4, to an hyperbolic model of topological quantum computing based on magic states

and to microRNAs in genetics. Such diverse topics reveal the manifold of possibilities of using the

concept of a scheme spectrum.

Keywords: finitely generated group; SL(2,C) character variety; algebraic surfaces; schemes; exotic

R4; topological quantum computing; microRNAs

MSC: 14E15; 14J70; 51H30; 81P68; 92D20; 57M05

1. Introduction

In signal processing of a time series, the lines of the Fourier spectrum are described by
discontinuities. The approach may be generalized with number theory by taking Ramanujan
sums as the building blocks of the signal expansion, e.g., see [1].

A more ambitious approach is to use algebraic geometry to reveal the singularities of
an object. In recent papers, we explored topics of quantum computing and DNA biology
with a common algebraic geometrical tool that we now call SL(2,C) scheme processing.
The group SL(2,C) is found in physics in Einstein’s field equations [2] and in loop quantum
gravity [3]. For us, the necessary ingredient is a finitely generated group π expressing the
symmetries of the investigated object. The SL(2,C) character variety [4] associated with π
is determined and summarized by its Groebner basis G [5,6]. The multivariate polynomials
in G may contain isolated (or non-isolated) singularities that characterize the richness of
the object. In this essay, the polynomials are reduced to surfaces living in the 3-dimensional
projective space P3(Q) over the rationals.

Isolated singularities of a surface are easy to characterize and classify according to
their A-D-E type in the McKay correspondence [7]. For a non zero dimensional singular
subset in the surface, we may use tools of schemes for the resolution of singularities [8].
Scheme theory was created by A. Grothendieck to generalize smooth manifolds to algebraic
varieties possibly decorated with singularities [9,10]. For our purpose, it is enough to see a
scheme as a geometrical object defined by the vanishing of polynomials defined over an
affine (or a projective space) like those living in G.
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Previously, our approach was restricted to algebraic surfaces containing isolated singu-
larities in applications to topological quantum computing [11] and DNA-RNA transcription
and regulation [12]. From now, the SL(2,C) scheme processing is a good option to man-
age general singular sets. This is needed in our model of quantum computing based on
an Akbulut cork in exotic R4 [13], in our hyperbolic model of topological quantum com-
puting based on magic states [14] and for some transcription factors and microRNAs in
genetics [12].

In Section 2, we briefly describe the mathematical formalism used in our paper. It
includes the definition of the character variety V representing the finitely generated group
π over the group SL(2,C) and how a Groebner basis G is obtained from V in practice.
The section mentions the distinction between simple singularities and singularities whose
support is not zero dimensional. We then investigate the algebraic geometry of three
types of complex objects in physics and biology. The first two objects rely on quantum
computing following our previous papers [11,13,14]. Section 3 discusses the symmetries
and related representations of the Akbulut cork W, a fundamental object in the theory
of exotic 4-manifolds. Section 4 refers to the symmetries and the related representations
of an hyperbolic 3-manifold found in the context of magic states in quantum computing.
Section 5 investigates a third class of objects, which are a family of biological molecules
called microRNAs that regulate the types and amounts of proteins [12]. In Section 6, we
provide commentary on our results.

2. Theory

Details about the theory are described below. The corresponding implementation is
performed on Sage [15] and Magma [16].

2.1. The SL(2,C) Character Variety of a Finitely Generated Group and a Groebner Basis

Let fp be a finitely generated group; we describe the representations of fp in the (double
cover alias the group extension of order two of the Lorentz group) SL(2,C), the group of
(2 × 2) matrices with complex entries and determinant 1. The group SL(2,C) may be seen
simultaneously as a ‘space-time’ (a Lorentz group) and a ‘quantum’ (a spin) group.

Representations of fp in SL(2,C) are homomorphisms ρ : fp → SL(2,C) with char-
acter κρ(g) = tr(ρ(g)), g ∈ fp. The set of characters allows to define an algebraic set by
taking the quotient of the set of representations ρ by the group SL(2,C), which acts by
conjugation on representations [17].

Such an algebraic set is called the SL(2,C) character variety of fp. It is made of a
sequence of multivariate polynomials called a scheme X. The vanishing of polynomials
defines the ideal I(X) of the scheme X. A Groebner basis G(X) is a particular set of the
polynomial ring I(X) that has to follow algorithmic rules (similar to the Euclidean division
for univariate polynomials).

For the effective calculations of the character variety, we make use of a software on
Sage [15]. We also need Magma [16] for the calculation of a Groebner basis, at least for 3-
and 4-letter sequences.

2.2. Singularities of an Algebraic Surface

Simple Singularities

The surfaces S of interest in this case are said to be almost not singular in the sense
that they have at worst simple singularities. In Magma, it is referred to a simple or A-D-E
singularity [7] if it is an isolated singularity on S that is analytically of the type An, n ≥ 1,
Dn, n ≥ 4, E6, E7, or E8.

The A-D-E type and the number of simple singularities are reflected in our notation.
E.g., S(lA1) means a surface with l singularities of type A1, S(A2) means a surface with a
single singularity of type A2, and S(D4) means a surface with a single singularity of type D4.

The Cayley cubic encountered in our previous paper is κ
(4A1)
4 (x, y, z) = xyz+ x2 + y2 + z2 −
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4 [11]. The Fricke surface of type D4 is S(D4) = xyz + x2 + y2 + z2 − 8(x + y + z) + 28 ([18],
Figure 16). Several other examples can be found in [12].

The relevant Magma command for such simply singular surfaces is HasOnlySimpleSin-
gularities(S).

2.3. Arbitrary Singularities

Let X ∈ P3(Q) be a singular surface (a surface containing a non zero dimensional
singular subset of points). Let Y ∈ P3(Q) be a regular surface (devoid of singularities)
above X, that is, a representation (in a sense to be qualified) ρ : Y → X. The set of such
morphisms ρ belongs to the so-called spectrum SpecX(Y) of Y in X.

In our context, the formal desingularization of an (hyper)surface X in P3(Q) is realized
with a proper birational map Y → X, where Y is regular. The formal desingularization is

realized with the introduction of a formal prime divisor Spec ÔX,p → X, where p ∈ X is a
regular point of codomension 1, OX,p is the structure sheaf at p of X seen as a scheme, and
the hat means the completion [19].

Taking the affine surface S(x, y, z), the related homogeneous polynomial defines a
hypersurface X(x, y, z, w) ∈ P3(Q) so that a formal prime divisor is actually a morphism
φ : Specφ[[t]] → X defined by the Q-algebra homomorphism φ♯ : Q([x, y, z, w]/ < X >→

Fφ[[t]], where Fφ = Q(s)[α], s is a parameter, and α is defined by the vanishing of a
minimal polynomial.

The relevant Magma command for this case is FormallyResolveProjectiveHyperSurface(S:
AdjComp := true). Thanks to the setting AdjComp := true, the command returns the number
of essential singularities allowing one to obtain the formal divisors needed to only compute
birational invariants or adjoint spaces [19,20].

2.4. Kodaira–Enriques Classification

Given an ordinary projective surface S in the projective space P3 over a number field,
if S is birationally equivalent to a rational surface, the software Magma [16] determines the
map to such a rational surface and returns its type within five categories. The returned type
of S is P2 for the projective plane, a quadric surface (for a degree 2 surface in P3), a rational
ruled surface, a conic bundle, or a degree p Del Pezzo surface where 1 ≤ p ≤ 9 .

A further classification may be obtained for S in P3 if S has at most point singular-
ities (unless the singularities may be formally resolved as we described in the previous
subsection for the case of characteristic zero). Magma computes the type of S (or rather,
the type of the non-singular projective surfaces in its birational equivalence class) according
to the classification of Kodaira and Enriques [21]. The first returned value is the Kodaira
dimension of S, which is −∞, 0, 1, or 2. The second returned value further specifies the
type within the Kodaira dimension −∞ or 0 cases (and is irrelevant in the other two cases).

The Kodaira dimension −∞ corresponds to birationally ruled surfaces. The second
return in this case is the irregularity q ≥ 0 of S. So S is birationally equivalent to a ruled
surface over a smooth curve of genus q and is a rational surface if and only if q is zero.

The Kodaira dimension 0 corresponds to surfaces that are birationally equivalent to a
K3 surface, an Enriques surface, a torus, or a bi-elliptic surface.

Every surface of the Kodaira dimension 1 is an elliptic surface (or a quasi-elliptic
surface in characteristics 2 or 3), but the converse is not true: an elliptic surface can have
Kodaira dimension −∞, 0, or 1.

Surfaces of Kodaira dimension 2 are algebraic surfaces of a general type.

A Singular Surface

Let us illustrate our approach with a selected singular surface encountered in the
context of the transcription factor Prdm1 in our recent paper ([12], Section 3.1). The affine
surface under question is S2(x, y, z) = z4 + 2yz3 + x2 − 6yz − 2x − 8. It contains 9 essential
singularities in the desingularization. A 3-dimensional plot of S2(x, y, z) is in Figure 1.
The surface is rational of the conic bundle type.
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Figure 1. The affine singular surface S2(x, y, z) = z4 + 2yz3 + x2 − 6yz− 2x − 8 found in the Groebner

basis for the transcription factor Prdm1 ([12], Section 3.1).

The projective surface is S2(x, y, z, w) = z4 + 2yz3 +w2(x2 − 6yz)− 2xw3 − 8w4. There
is 5 distinct types of minimal polynomial. For one of the divisors, the minimal polynomial is
α2 + 2s + 1 and the prime divisor in the desingularization is the morphism φ : Specφ[[t]] →
X defined by

x → 1, y → st, z → t, w → αt2 + 0(t4).

The 9 formal morphisms are used to compute the global sections (or adjoints) Homi,j.
For i, j < 3, one obtains Hom1,1 = Hom2,1 = Hom2,2 = Hom2,3 = Hom3,1 = Hom3,2 =
Hom3,3 = 0, Hom1,2 = [z, w], Hom1,3 = [xz, yz, z2, xw, yw, zw, w2].

3. SL(2,C) Scheme Processing in Quantum Computing Based on an Akbulut Cork

3.1. A Short Account of Magic States for Quantum Computing

A quantum state is called magic when it is added to the eigenstates of the d-dimensional
Pauli group to obtain universal quantum computation [22,23]. A subset of magic states
consists of states associated with minimal informationally complete measurements, also
called MIC states, see [14] and the references therein. In the context of a 3- or 4-manifold
M, of fundamental group π1(M), a subgroup of index d of π1(M) has cosets organized
according to a permutation group Pd. Then, a permutation is also a permutation matrix
and a possible source of MIC states arising from its eigenstates. Finally, for appropriate
subgroups of π1(M), a finite geometry Fd is found from the two-point stabilizer subgroup
of Pd. The coset coordinates of Fd can be made in one to one correspondence with d-
dimensional quantum observables. For example, important quantum geometries such as
the Mermin 3 × 3 grid (at index d = 9), the generalized quadrangle of order two GQ(2 × 2)
(at index d = 15), are encoding two-qubit contextuality [14] .

The Akbulut cork below belongs to the theory of 4-manifolds and features magic states
of quantum computing [13]. To our earlier work, we add the investigation of SL(2,C)
character variety of the relevant fundamental groups. In particular, we put the Akbulut cork
in a new perspective by revealing the singularity spectrum of its SL(2,C) character variety.

3.2. Brief Introduction to 4-Manifolds

The theory of 4-manifolds is described in books [24–26]. Here, we are interested
in the decomposition of a 4-manifold into one- and two-dimensional handles as shown
in Figure 2 ([24], Figures 1.1 and 1.2). Let Bn and Sn be the n-dimensional ball and the
n-dimensional sphere, respectively. An observer is placed at the boundary ∂B4 = S3 of
the 0-handle B4 and watches the attaching regions of the 1- and 2-handles. The attaching
region of the 1-handle is a pair of balls B3 (the yellow balls), and the attaching region of
2-handles is a framed knot (the red knotted circle) or a knot going over the 1-handle (shown
in blue). For closed 4-manifolds, there is no need to visualize a 3-handle since it can be
directly attached to the 0-handle. The 1-handle can also be figured out as a dotted circle
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S1 × B3 obtained by squeezing together the two three-dimensional balls B3 so that they
become flat and close together ([25], p. 169), as shown in Figure 2b.

For the attaching region of a 2- and a 3-handle one needs to enrich our knowledge by
introducing the concept of an Akbulut cork to be described in the next paragraph ([13],
Figure 3).

Figure 2. (a) Handlebody of a 4-manifold with the structure of 1- and 2-handles over the 0-handle B4,

(b) the structure of a 1-handle as a dotted circle S1 × B3, and (c) an Akbulut cork W = 946(−1, 1).

3.3. Akbulut Cork

A Mazur manifold is a contractible, compact, smooth 4-manifold (with boundary) not
diffeomorphic to the standard 4-ball B4 [24]. Its boundary is a homology 3-sphere. If we
are restricted to Mazur manifolds that have a handle decomposition into a single 0-handle,
a single 1-handle, and a single 2-handle, then the manifold has to be of the form of the
dotted circle S1 × B3 (as in Figure 2b) (right) union a 2-handle. The simplest object of this
type is the Akbulut cork shown in Figure 2c [27,28].

Given p, q, r (with p ≤ q ≤ r), the Brieskorn 3-manifold Σ(p, q, r) is the intersection
in the complex 3-space C3 of the 5-dimensional sphere S5 with the surface of equation
z

p
1 + z

q
2 + zr

3 = 0. The smallest known Mazur manifold is the Akbulut cork W, and its
boundary is the Brieskorn homology sphere Σ(2, 5, 7).

The Akbulut cork has a simple definition in terms of the framings ±1 of (−3, 3,−3)
pretzel knot also called K = 946 ([29], Figure 3). It has been shown that ∂W = Σ(2, 5, 7) =
K(1, 1) and W = K(−1, 1).

An exotic R4 is a differentiable manifold that is homeomorphic but not diffeomorphic
to the Euclidean space R4. An exotic R4 is called small if it can be smoothly embedded as
an open subset of the standard R4 and is called large otherwise. Here, we are concerned
with an example of a small exotic R4.

According to [29], there is an involution f : ∂W → ∂W that surgers the dotted 1-
handle S1 × B3 to the 0-framed 2-handle S2 × B2 and back, in the interior of W. There
is a smooth contractible 4-manifold V with ∂V = ∂W, such that V is homeomorphic but
not diffeomorphic to W relative to the boundary ([27], Theorem 1). This leads us to our
next paragraph.

3.4. The Manifold W̄ Mediating the Akbulut Cobordism between Exotic Manifolds V and W

A cobordism between two oriented m-manifolds M and N is any oriented (m + 1)-
manifold W0 such that the boundary is ∂W0 = M̄ ∪ N, where M appears with the reverse
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orientation. The cobordism M × [0, 1] is called the trivial cobordism. Next, a cobordism
W0 between M and N is called an h-cobordism if W0 is homotopically like the trivial
cobordism. The h-cobordism, according to S. Smale in 1960, states that if Mm and Nm

are compact simply connected oriented M-manifolds that are h-cobordant through the
simply-connected (m + 1)-manifold Wm+1

0 , then M and N are diffeomorphic ([26], p. 29).
However, this theorem fails in dimension 4. If M and N are cobordant 4-manifolds,

then N can be obtained from M by cutting out a compact contractible submanifold W and
gluing it back in by using an involution of ∂W.

The h-cobordism under question in our example may be described by attaching an
algebraic cancelling pair of 2- and 3-handles to the interior of Akbulut cork W. The 4-
manifold W̄ mediating V and W resembles the Akbulut cork with the dot replaced by a
0-surgery The manifold under question is nothing but L7a6(0, 1)(0, 1)] (see [27], p. 355
or [13], Figure 3c).

3.5. The Character Variety for an Akbulut Cork W

The Sage code we used is as follows:
from snappy import manifold
M=Manifold (‘946(−1, 1)’)
G=M.fundamental_group()
I=G.character_variety_vars_and_polys (as_Ideal=True)
I
The fundamental group ruling the Akbulut cork W = 946(−1, 1) is the two-generator

group

π1(W) =
〈

a, b|aBAb2 ABabaBABab, a3BAb3 AB
〉

, A = a−1, B = b−1. (1)

With Sage software in Reference [15], or the aforementioned code, we compute the
corresponding character variety. Then, from Magma [16], the Groebner basis is found in
the form

GW(x, y, z) = z(z − 2)[x + y + f1(z)][y
2 − y + f2(z][y + f3(z)] f4(z),

f1(z) = −171/34 z8 + 913/34 z7 − 2429/34 z6 + 4733/34 z5 − 2443/17 z4

−224/17 z3 + 1847/17 z2 − 1103/34 z − 1,

f2(z) = −95/34 z8 + 477/34 z7 − 1221/34 z6 + 2331/34 z5 − 1089/17 ∗ z4 (2)

−285/17 z3 + 858/17 z2 − 337/34 z − 1

f3(z) = −71/17 z7 + 376/17 z6 − 997/17 z5 + 1942/17 z4 − 1993/17 z3

−188/17 z2 + 1477/17 z − 436/17,

f4(z) = z7 − 5 z6 + 13 z5 − 25 z4 + 24 z3 + 4 z2 − 18 z + 5.

The factor containing f1(z) in Equation (3) is the singular surface SW(x, y, z) shown in
Figure 3. It is a rational scroll and a surface of a general type. The factor containing f2(z)
is an hyperelliptic function of genus 7, discriminant ≈ 1.327502101 and points at infinity
(1, 0, 0) and (1,−95/34, 0). The factor containing f3(z) is an ordinary curve. The factor
containing f4(z) is a seventh-order polynomial.
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Figure 3. The surface SW(x, y, z) found within the Groebner basis of the SL(2,C) character variety

for the Akbulut cork W.

Formal Desingularization of the Surface SW(x, y, z)

The formal desingularization of a hypersurface X in the three-dimensional projec-
tive space P3

Q over the rationals Q is described in [19] and can be explicitely given with
Magma ([16], Section 122.5.3).

To the surface X = SW(x, y, z), we associate the degree 8 homogeneous polyno-
mial SW(x, y, z, w) = x + y + f1(z, w) ∈ Q(x, y, z, w) , with f1(z, w) = −171/34z8 +
913/34 wz7 + · · · − 1103/343 w7z − w8.

For the projective surface X = SW(x, y, z, w), the two essential (over the three) singular
morphisms are

x → 1

y → st − 1 (3)

z → t

w → αt + O(t8),

x → 1

y → s (4)

z → 34/171 (s + 1)t7 + O(t8)

w → O(t8),

where α has minimal polynomial −s − α8 f1(α
−1).

These formal morphisms are used to compute the global sections (or adjoints) Homi,j.
For the surface SW(x, y, z), one gets
Hom1,1 = Hom2,1 = Hom2,2 = 0, Hom1,2 = [z6, z5w, z4w2, z3w3, z2w4, zw5, w6] · · · .

3.6. The Character Variety for the Mediating Manifold W̄

The fundamental group π1(W̄) of the h-cobordism W̄ is as follows: [13]

π1(W̄) =
〈

a, b|a3b2 AB3 Ab2, (ab)2aB2 Ab2 AB2
〉

. (5)

The cardinality structure of subgroups of this fundamental group is

ηd[π1(W̄)] = ηd[π1(W)] = [1, 0, 0, 0, 1, 1, 2, 0, 0, 1, 0, 5, 4, 9, 7, 1 · · · ],

where the bold digits refers to our investigation in ([13], Table 1) concerning the exis-
tence of a finite geometry obtained with a subgroup of the corresponding index. The
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smallest case occurs at index 10, and the geometry is the Mermin pentagram, a type of
contextual geometry.

As before, with Sage software in Reference [15], we compute the corresponding
character variety. Then, from Magma, the Groebner basis is found in the form

GW̄ = (z − 2)(z2 − z − 1)[x + g1(z)][y + g2(z)]g3(z),

g1(z) = −z9 + 3z8 + 5z7 − 18z6 − 10z5 + 43z4 − 2z3 − 27z2 + 3z + 4, (6)

g2(z) = −z8 + 2z7 + 6z6 − 11z5 − 15z4 + 24z3 + 9z2 − 10z − 2,

g3(z) = z7 + z6 − 5z5 − 6z4 + 6z3 + 5z2 − 2z − 1.

Although the card seq for manifolds W and W̄ are the same, we clearly see that
the character varieties are distinct. In the later case, it contains two ordinary curves and
polynomials of degrees 1, 2, and 7.

4. SL(2,C) Scheme Processing in Topological Quantum Computing

In this section, we are interested in the SL(2,C) character variety of the fundamental
group of (hyperbolic) 3-manifold L10n46 (alias otet0800002). This manifold describes the
4-fold (irregular) covering of the figure-eight knot 41 = K4a1 ([14], Table 2). It is connected
to the magic state describing the contextual geometry of two-qubits (e.g., [14] Figure 1
or [30] Table 1).

Thanks to the character variety and the related algebraic surfaces , we can add the
topological aspect to the previous description.

The Groebner basis of the character variety for the fundamental group of 3-manifold
L10n46 may be obtained with Magma. The 3-generator fundamental group is

π1(L10n46) = 〈a, b, c|abAcBac, abbCBccBBBACbcbC〉. (7)

The character variety GL10n46(e, f , g, h)(x, y, z) is now seven-dimensional as in [12],
and the selected choices of parameters e, f , g, and h allow us to determine the algebraic
surfaces within the Groebner basis.

For instance, we find

GL10n46(0, 0, 0, 0) = yS1(x, y, z)S2(x, y, z)S3(x, y, z) · · ·

S1(x, y, z) = f
(A1)
2,{}

(x, y, z) = xyz + xz2 + x2 + y2 + z2 + yz − x − 6, (8)

S2(x, y, z) = xz2 + yz − x − 2,

S3(x, y, z) = −x2z2 + 2x2 + y2 + z2 + 2x − 4.

The first surface S1(x, y, z) = f
(A1)
2,{}

in the product (9) has a single simple singularity of

type A1 whose reduced singular subscheme is of degree 2 with a vanishing support.
The second surface S2(x, y, z) is a singular rational scroll with a single essential singu-

larity. The corresponding singular morphism Spec Fφ[[t]] → X = S2(x, y, z, w) is

x → 1

y → s (9)

z → t

w → ((−2s3 − 6s)/(s2 + 4)α + (−2s2 − 4)/(s2 + 4))αt + O(t3),

where α has minimal polynomial α2 − sα − 1.
The third surface S3(x, y, z) = −x2z2 + 2x2 + 2x + y2 + z2 − 4 is a singular surface of

the degree 4 del Pezzo type. There are 4 essential singularities. We retain one of the two
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singularities with a nontrivial minimal polynomial. The corresponding singular morphism
Spec Fφ[[t]] → X = S1(x, y, z, w) is

x → 1

y → s (10)

z → t

w → αt − 1/(s4 + 4s2 + 4)t2 + (−1/2 s4 + 9/2)/(s6 + 6s4 + 12s2 + 8)αt3) + O(t5)

where α has minimal polynomial α2 − 1/(s2 + 2).
All three affine surfaces are shown in Figure 4.

Figure 4. Left: the (degree 3) del Pezzo surface S1(x, y, z) = f
(A1)
2,{}

(x, y, z) = xyz + xz2 + x2 + y2 +

z2 + yz − x − 6 . Middle: the (rational scroll) surface S2(x, y, z) = xz2 + yz − x − 2 . Right: the (del

Pezzo degree 4) surface S3(x, y, z) = −x2z2 + 2x2 + y2 + z2 + 2x − 4.

5. SL(2,C) Scheme Processing in microRNAs

In this section, we focus on the SL(2,C) character varieties attached to microRNAs
(miRNAs for short). This case was already tackled in our recent paper [12].

The miRNAs are short (approximately 22 nt long) single-stranded RNA molecules
playing a fundamental role in the expression and regulation of genes by targeting specific
messenger RNAs (mRNAs) for degradation or translational repression. The genes encoding
miRNAs are much longer than the processed mature miRNA molecule. There are pre-
miRNAs, approximately 70-nucleotides in length, that are folded into imperfect stem-
loop structures.

Each miRNA is synthesized as an miRNA duplex comprising two strands (-5p and -3p).
However, only one of the two strands becomes active, which is selectively incorporated into
the RNA-induced silencing complex in a process known as miRNA strand selection [31,32].
For details about the miRNA sequences, we use the Mir database [33,34].

Disregulation of miRNAs may lead to a disease such as cancer. A key microRNA
known as an oncomir (involved in immunity and cancer) is mir-155 [12].

Here, we select examples of human miRNAs from the perspective of evolution.
The generator of the group π to be considered is a short (about 8-letter long) seed made
of two to four distinct bases in the set {A,U,G,C}. Most of the time, π is close to a free
group of rank equal the number of distinct bases in the seed minus one. This point can be
checked by the cardinality structure of conjugacy classes subgroups of π (denoted card
seq). Exceptions to this rule and the occurrence of singularities (isolated or not) in the
corresponding character variety built from π are a witness of a potential disease. Unlike
the case of transcription factors, until now, singularities possibly found with microRNAs
are isolated singularities.

According to Reference ([35], Table 3), the slowest evolving miRNA gene is hsa-
mir-503 (the notation hsa is for the human specie). It is known that mir-503 regulates
gene expression from different aspects of pathological processes of diseases, including
carcinogenesis, angiogenesis, tissue fibrosis, and oxidative stress [36]. The seed region
for mir-503-5p is AGCAGCGG, and the corresponding Groebner basis for parameters
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(e, f , g, h) = (0, 0, 0, 0) is very simple: Gmir−503−5p(0, 0, 0, 0) = κ
(4A1)
4 (x, y, z), as shown in

Figure 5 (Left).
For (e, f , g, h) = (1, 1, 0, 0), Gmir−503−5p(1, 1, 0, 0) = −3xyzκ3(x, y, z), and κ3(x, y, z) is

the Fricke surface found in ([11], Section 3.3). For (e, f , g, h) = (1, 1, 1, 1), there are many
more polynomials. One of them defines the Fricke surface xyz + x2 + y2 + z2 − 2x − y − 2.
The considered seed region for mir-503-3p is GGGUAUU. The surfaces in the Groebner
basis are very simple in this case, and not even simple singularities lie in them.

One of the fastest evolving microRNA is mir-214 ([35], Table 3). First mir-214 was
reported to promote apoptosis in HeLa cells. Presently, mi-214 is implicated in an extensive
range of conditions such as cardiovascular diseases, cancers, bone formation, and cell
differentiation [37]. For mir-214-5p and the seed sequence GCCUGU, one finds the surface

f
(A2)
1,{1:0:0:0}

(x, y, z) = xyz + y2 + z2 − 4 within Gmir−214−5p(0, 0, 0, 0), as shown in Figure 5.

A singular surface with the same support f (x, y, z) = xyz + y2 + z2 − y − 2z − 1 is found
in Gmir−214−5p(1, 1, 1, 1). For a longer seed, surfaces are not found to contain isolated
singularities.

Figure 5. Left: the Cayley cubic κ4(x, y, z) found in the character variety for the slowest evolving

miRNA gene hsa-mir-503. The surface f
(A2)
1,{1:0:0:0}

(x, y, z) found in the character variety Gmir−214−5p of

the fast evolving gene hsa-mir-214.

6. Conclusions

Over the last few years, the authors of this article have found that some mathematical
techniques employed for quantum information processing and quantum computing may
also apply to biology at the genome scale. More precisely, group theory and representations
of symmetries with characters of finite groups have been used for topological quantum
computing (TQC) [14] or elementary particles [38], and the encoding of proteins [39].
Methods for dealing with infinite groups and SL(2,C) representations of such groups in
TQC papers [11,40] were similarly employed for transcription factors [12] and miRNAs [12].

Our efforts in this paper belong to the field of scheme processing, where the desingu-
larization of discontinuities of algebraic surfaces is a spectrum. The scheme spectrum is a
well known concept in commutative algebra. The prime spectrum of a ring is the set of
prime ideals of the ring R and is denoted by Spec(R). The sheaf of rings O is the relevant
algebraic geometrical notion introduced by Grothendieck to develop this field [8,41]. We
touched on this important concept of schemes while investigating non-zero dimensional
sets of singularities in surfaces belonging to the SL(2,C) character variety of an infinite
group. We are fortunate that the software Magma is designed to implement schemes in
a variety of applications (curves, surfaces, and more). Another computer algebra system
with similar facilities is Singular [42,43].

We have no doubt that scheme theory will play and increasing role in other fields
such as cosmology [44] and the field of ‘quantum consciousness’ [45]. One possible field of
application is the so-called ‘quantum consciousness’ [45].
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