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Abstract
Multi-messenger astronomy explores the universe using a multitude of signals, including electromag-
netic radiation, gravitational waves, and high-energy particles, providing a more complete under-
standing of cosmic events than any single method alone. Binary neutron star mergers serve as ideal
laboratories for multi-messenger studies and reveal remarkable versatility as probes of fundamental
physics and potentially for phenomena beyond Standard Model particle physics, such as dark matter.
On August 17, 2017, the detection of GW170817, along with the gamma-ray burst GRB170817A
and the kilonova AT2017gfo, marked the first multi-messenger observation of a binary neutron star
merger, providing unprecedented insights into astrophysics, nuclear physics, and cosmology.

However, significant challenges remain. On the one hand, the impact of systematic, model-
dependent errors on the measurement of fundamental parameters is not yet fully understood and
quantified. On the other hand, the limited number of detected gravitational wave events of this kind
still presents a challenge. Furthermore, key questions persist regarding their potential to constrain
the unknown neutron star equation of state of dense nuclear matter and to unveil the nature of dark
matter. To study astronomical phenomena with complex signatures, this work relies on Bayesian
statistical methods. In particular, using a Bayesian nuclear-physics and multi-messenger astrophysics
code, it is demonstrated that a joint statistical analysis of different messengers representing distinct
astrophysical processes could provide deeper insights into compact binary mergers.

The presented studies, targeting the investigation of gravitational waveform model-dependent
systematic biases, indicate that multiple observations of binary neutron star mergers with current-
generation detectors can introduce significant biases in neutron star radius inference, highlighting
the need for improved waveform model accuracy. In contrast, waveform model systematics have a
negligible impact on determining the cosmic expansion rate.

Motivated by the limited number of observed binary neutron star mergers in gravitational waves,
the presented Bayesian multi-wavelength analysis of a gamma-ray burst and its afterglow demon-
strates a complementary approach to identifying and characterizing such events. Expanding this
method to a broader range of astrophysical scenarios can provide deeper insights into gamma-ray
burst progenitors and their connections with compact binaries, including binary neutron star merg-
ers, especially during periods when gravitational-wave detections are not available.

Addressing one of the fundamental open questions regarding the unknown neutron star equation
of state, the findings demonstrate that gravitational-wave observations of binary neutron star mergers
from future observatories could differentiate between three-nucleon interaction models. Hence, these
insights provide a better understanding of the behavior of nuclear matter, describing how three-
nucleon forces, arising from interactions involving a third nucleon that modifies two-body forces,
influence the equation of state of neutron star matter. In addition, observations with next-generation
gravitational-wave detectors can be expected to yield improved constraints on microphysical param-
eters governing the behavior of nuclear matter at extreme densities within neutron stars.

Similarly, dark matter constitutes a major unresolved question. The presented analyses of simu-
lated gravitational-wave data from dark-matter-admixed binary neutron star mergers indicate that
next-generation detectors may have limited sensitivity to test for or exclude the presence of dark
matter in binary neutron star mergers. The results of this study disfavor the presence of dark matter
within the framework of the model considered, and no constraints on its properties or underlying
nature could be derived.
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Zusammenfassung
Die Multimessenger-Astronomie untersucht das Universum mithilfe verschiedener Signale, darunter
elektromagnetische Strahlung, Gravitationswellen und hochenergetische Teilchen. Durch die Kom-
bination dieser Daten entsteht ein deutlich umfassenderes Verständnis kosmischer Ereignisse im
Vergleich zu einer einzelnen Messmethode. Besonders die Verschmelzung zweier Neutronensterne,
ein sogenanntes binäres Neutronensternsystem, eignet sich für solche Studien, da sie all diese
Signale emittieren und wertvolle Einblicke in fundamentale physikalische Fragen liefern können.
Darüber hinaus wird vermutet, dass diese Systeme mit Phänomenen außerhalb des Standardmod-
ells, wie dunkler Materie, in Verbindung stehen könnten und demnach wertvolle neue Erkennt-
nisse liefern könnten. Die erste Entdeckung eines solchen Systems gelang am 17. August 2017,
als sowohl das Gravitationswellensignal GW170817 als auch elektromagnetische Strahlung in Form
des Gammablitzes GRB170817A und der Kilonova AT2017gfo beobachtet wurden. Diese erste
Multimessenger-Beobachtung eines binären Neutronensternsystems markierte den Beginn einer neuen
Ära der Multimessenger-Astronomie und ermöglichte beispiellose Einblicke in die Astrophysik, Kern-
physik und Kosmologie.

Dennoch bleiben Fragen offen. Einerseits ist der Einfluss systematischer, modellabhängiger Fehler
bei der Messung fundamentaler Kenngrößen noch nicht vollständig verstanden. Andererseits bleibt die
geringe Anzahl bislang nachgewiesener Gravitationswellenereignisse dieser Art eine Herausforderung.
Darüber hinaus sind grundlegende Fragen zur unbekannten Zustandsgleichung dichter Kernmaterie
in Neutronensternen und die Natur dunkler Materie nach wie vor ungeklärt. Um astronomische
Phänomene mit komplexen Signaturen zu untersuchen, stützt sich diese Arbeit auf Methoden der
bayesschen Statistik. Insbesondere wird mithilfe eines bayesschen Kernphysik- und Multimessenger-
Astrophysik-Codes gezeigt, dass eine gemeinsame statistische Analyse verschiedener astrophysikalis-
cher Prozesse tiefere Einblicke in die Verschmelzung binärer Neutronensterne ermöglichen kann.

Die zu Beginn vorgelegten Untersuchungen zu systematischen Fehlern in Gravitationswellenmod-
ellen zeigen, dass mehrere Beobachtungen binärer Neutronensternsysteme mit den derzeit verfügbaren
Detektoren zu erheblichen systematischen Fehlern bei der Abschätzung des Neutronensternradius
führen können. Dies unterstreicht den Bedarf an noch präziseren Wellenformmodellen. Umgekehrt
haben sich dieselben systematischen Effekte auf die Bestimmung der kosmologischen Expansionsrate
des Universums als vernachlässigbar erwiesen.

Da bisher nur wenige Verschmelzungen von Neutronensternen durch Gravitationswellen
beobachtet wurden, hat sich die Untersuchung von Gammablitzen mit Hilfe bayesscher Statistik über
mehrere Wellenlängen hinweg als vielversprechende komplementäre Alternative herausgestellt, um
solche Ereignisse auch ohne Gravitationswellendaten zu identifizieren und zu charakterisieren. Eine
Ausweitung dieser Methode auf weitere astrophysikalische Szenarien könnte wertvolle neue Erken-
ntnisse über die Ursprünge von Gammablitzen und ihre Verbindung zu kompakten Binärsystemen
liefern.

Um grundlegende offene Fragen zur unbekannten Zustandsgleichung von Neutronensternen zu
adressieren, zeigen die Ergebnisse, dass zukünftige Gravitationswellenbeobachtungen helfen könnten,
verschiedene Modelle dreiteilchenbasierter Kernwechselwirkungen zu unterscheiden. Diese Drei-
Nukleon-Wechselwirkungen, die zusätzlich zu den Zweikörperkräften wirken, beeinflussen die Zus-
tandsgleichung von Neutronensternmaterie und sind demnach von großer Bedeutung für die Kern-
physik. Aufbauend auf verschiedenen kernphysikalischen Modellen zeigte eine weiterführende Analyse,
dass zukünftige Gravitationswellendetektionen verbesserte Einschränkungen auf mikrophysikalische
Modellparameter ermöglichen könnten, die das Verhalten von Kernmaterie unter extremen Dichten
in Neutronensternen bestimmen.

Ebenso bleibt die Natur der dunklen Materie eine der größten offenen Fragen. Die Analysen
simulierter Gravitationswellenbeobachtungen von binären Neutronensternen mit dunkler Materie
deuten darauf hin, dass Detektoren der nächsten Generation nur eine begrenzte Empfindlichkeit
besitzen, um die Existenz dunkler Materie in solchen Systemen nachzuweisen oder auszuschließen.
Entsprechend wird die Anwesenheit dunkler Materie in Neutronensternen, zumindest für das in dieser
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Arbeit betrachtete Modell, nicht unterstützt. Somit liefern die Ergebnisse keine richtungsweisenden
Erkenntnisse hinsichtlich der Eigenschaften oder der Natur dunkler Materie.
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Tyler Barna, Ramodgwendé Weizmann Kiendrebeogo, Nina Kunert, Gargi Mansingh, Brandon
Reed, Niharika Sravan, Andrew Toivonen, Sarah Antier, Robert O. VandenBerg, Jack Heinzel,
Vsevolod Nedora, Pouyan Salehi, Ritwik Sharma, Rahul Somasundaram, Chris Van Den Broeck.
An updated nuclear-physics and multi-messenger astrophysics framework for binary neutron star
mergers. Nature Communications, 14(1):8352, 2023. doi: 10.1038/s41467-023-43932-6.

I contributed to the joint multi-messenger simulations carried out for this article and demonstrated
the performance scaling of the code as shown in the manuscript. Additional contributions include
image visualizations, software development, and editing the manuscript.

• Nina Kunert, Peter T. H. Pang, Ingo Tews, Michael W. Coughlin, and Tim Dietrich. Quanti-
fying modeling uncertainties when combining multiple gravitational-wave detections from binary
neutron star sources. Phys. Rev. D, 105(6):L061301, 2022. doi: 10.1103/PhysRevD.105.L061301.

I carried out parameter estimation simulations in collaboration with Dr. Peter Pang, performed
data analysis, visualized results, and authored the manuscript. Preliminary findings were presented
in my master’s thesis, while the final publication provides a refined analysis and extended inves-
tigations to evaluate the impact of systematic biases.

• Nina Kunert, Jonathan Gair, Peter T. H. Pang, Tim Dietrich. Impact of gravitational waveform
model systematics on the measurement of the Hubble constant. Phys.Rev.D 110 (2024) 4, 043520.

The analysis in this study builds upon data from my previous work [Phys. Rev. D, 105(6):L061301,
2022]. I conducted data analysis under guidance of Dr. Jonathan Gair, visualized the results, and
authored the manuscript.

• Nina Kunert, Sarah Antier, Vsevolod Nedora, Mattia Bulla, Peter T. H. Pang, Shreya Anand,
Michael Coughlin, Ingo Tews, Jennifer Barnes, Thomas Hussenot-Desenonges, Brian Healy,
Theophile Jegou du Laz, Meili Pilloix, Weizmann Kiendrebeogo, Tim Dietrich, Bayesian model
selection for GRB 211211A through multiwavelength analyses. Mon. Not. Roy. Astron. Soc.,
527(2):3900–3911, 2024. doi: 10.1093/mnras/stad3463.

I collected and processed the X-ray data, while the remaining observational data were primarily
compiled by my colleagues, Dr. Sarah Antier and Prof. Dr. Michael Coughlin. I conducted all
parameter estimation simulations, performed data analysis, visualized the results, and authored
the manuscript.

• Henrik Rose, Nina Kunert, Tim Dietrich, Peter T. H. Pang, Rory Smith, Chris Van Den Broeck,
Stefano Gandolfi, and Ingo Tews. Revealing the strength of three-nucleon interactions with the pro-
posed Einstein Telescope. Phys. Rev. C, 108(2):025811, 2023. doi: 10.1103/PhysRevC.108.025811.

My contributions to this article include conducting parameter estimation simulations, providing
support for the data analysis presented in this study, and contributing to the manuscript.

• Hauke Koehn, Edoardo Giangrandi, Nina Kunert, Rahul Somasundaram, Violetta Sagun, Tim
Dietrich. Impact of dark matter on tidal signatures in neutron star mergers with Einstein Tele-
scope. Phys.Rev.D, doi: 10.1103/PhysRevD.110.103033.

My contributions include consultation during data analysis and contributing to the manuscript
through review and proofreading.





Contents

I Introduction 1

II Multi-messenger studies of compact binaries across the universe 7

1 Outlining the big picture with general relativity 9
1.1 General relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Cosmological framework: standard model of cosmology . . . . . . . . . . . . . . . . . 11

1.2.1 Dark matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.2 The Hubble tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Linearized theory of gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.1 Propagation of gravitational waves in vacuum . . . . . . . . . . . . . . . . . . . 17
1.3.2 Generation of gravitational waves . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.3 Gravitational-wave emission from the inspiral of compact binaries . . . . . . . 21
1.3.4 Gravitational-waves as cosmological probes . . . . . . . . . . . . . . . . . . . . 22

2 From relics: compact binaries 25
2.1 Black holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Neutron stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Interior and structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.2 Tidal deformability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Compact binaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.1 Binary neutron star mergers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.2 Neutron star-black hole mergers . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 To ripples: multi-messenger signatures 37
3.1 Gravitational waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.2 Waveform models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Electromagnetic signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.1 Gamma-ray bursts and afterglows . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.2 Kilonovae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.3 Associations of gamma-ray bursts with supernovae and kilonovae . . . . . . . . 54

III Multi-messenger data analysis 57

4 Statistical and computational methods 59
4.1 Bayes’ theorem: likelihoods, priors, and posteriors . . . . . . . . . . . . . . . . . . . . 60
4.2 Joint probabilities and distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4 Parameter estimation: computational methods in Bayesian inference . . . . . . . . . . 63

4.4.1 Fisher information formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.2 Sampling algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

vii



viii Contents

5 An updated nuclear-physics and multi-messenger astrophysics framework for bi-
nary neutron star mergers 67
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4.1 Equation of State construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4.2 Prior weighting to incorporate radio and X-ray observations of single neutron

stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4.3 Gravitational-wave inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.3.1 GW models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4.3.2 GW analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.4 Electromagnetic Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4.4.1 Kilonova models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4.4.2 Supernova models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4.4.3 Kilonova/Supernova Inference . . . . . . . . . . . . . . . . . . . . . . 80
5.4.4.4 GRB Afterglows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4.4.5 Connecting Electromagnetic Signals to Source properties . . . . . . . 81
5.4.4.6 Bayesian statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5 Supplementary material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.5.1 Computing generic kilonova lightcurves . . . . . . . . . . . . . . . . . . . . . . 82
5.5.2 EOS Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5.3 Combined Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5.4 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5.5 Modelling Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5.6 Effect of systematic uncertainty budget . . . . . . . . . . . . . . . . . . . . . . 87

IV The impact of gravitational waveform model systematics 89

6 Quantifying modeling uncertainties when combining multiple gravitational-wave
detections from binary neutron star sources 91
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.1 Combining information from multiple detections . . . . . . . . . . . . . . . . . 93
6.2.2 Waveform models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2.3 Injection setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3.1 Radius measurements and intrinsic biases . . . . . . . . . . . . . . . . . . . . . 96
6.3.2 Waveform-model systematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7 Impact of gravitational waveform model systematics on the measurement of the
Hubble constant 103
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2.1 Modeling standard sirens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2.2 Population of synthetic BNS sources . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2.3 Bayesian framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



Contents ix

V Exploring progenitors: Bayesian multi-wavelength analyses of gamma-
ray bursts 113

8 Bayesian model selection for GRB 211211A through multi-wavelength analyses 115
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.2 Observational data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.3.1 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.3.2 Employed models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.4 Multi-wavelength Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.4.1 Model Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.4.2 Presence of an additional component . . . . . . . . . . . . . . . . . . . . . . . . 121
8.4.3 Source properties of the potential compact binary mergers . . . . . . . . . . . . 123
8.4.4 Influence of the prior choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

VI Binary neutron star mergers as probes of nuclear and dark matter 131

9 Revealing the strength of three-nucleon interactions with the Einstein Telescope 133
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
9.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9.2.1 Equations of state for different three-nucleon interactions . . . . . . . . . . . . 134
9.2.2 Injection campaign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
9.2.3 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9.2.4 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
9.3.1 Population analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
9.3.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
9.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

9.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
9.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.5.1 Re-analysis of GW170817 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
9.5.2 Computation of evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

10 Impact of dark matter on tidal signatures in neutron star mergers with the Ein-
stein Telescope 149
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
10.2 Constructing NS with DM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

10.2.1 EOS construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
10.2.2 Adding DM to the NS properties . . . . . . . . . . . . . . . . . . . . . . . . . . 152

10.3 EOS inference through BNS mergers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
10.3.1 Creating mock events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
10.3.2 Analyzing the events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

10.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
10.4.1 Recovering the underlying baryonic EOS . . . . . . . . . . . . . . . . . . . . . . 157
10.4.2 Detectability of DM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
10.4.3 Inference of the DM particle mass . . . . . . . . . . . . . . . . . . . . . . . . . 161

10.5 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
10.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166



x Contents

11 The Bright and the Dark: Exploring nuclear-physics and dark matter constraints
with binary neutron star mergers 169
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
11.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

11.2.1 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
11.2.2 Construction of baryonic matter equation-of-states . . . . . . . . . . . . . . . . 172
11.2.3 Dark matter model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
11.2.4 Construction of dark matter equation-of-states . . . . . . . . . . . . . . . . . . 175
11.2.5 Employed GW data and detector setup . . . . . . . . . . . . . . . . . . . . . . 175
11.2.6 Inference of nuclear and dark matter properties . . . . . . . . . . . . . . . . . . 176

11.3 The bright side: nuclear-physics constraints . . . . . . . . . . . . . . . . . . . . . . . . 177
11.3.1 Studying constraints across different microphysical models . . . . . . . . . . . . 177

11.4 The dark side: constraining dark matter properties . . . . . . . . . . . . . . . . . . . . 180
11.4.1 Analyzing GW170817 assuming the presence of dark matter . . . . . . . . . . . 180
11.4.2 Studying synthetic signals with next-generation detectors . . . . . . . . . . . . 180
11.4.3 Comparison to Fisher matrix informed posteriors . . . . . . . . . . . . . . . . . 183

11.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

VII Conclusions 185

List of acronyms 191

List of figures 193

List of tables 195

Bibliography 197

Curriculum vitae 235

Acknowledgements 237

Declaration of authorship 239



List of symbols

This dissertation explores compact binaries across diverse scientific disciplines, including observa-
tional astronomy, gravitational-wave astrophysics, nuclear physics, and cosmology. To ensure clarity,
notations, symbols, and units used throughout the dissertation are listed below.

Symbol Description

AαB
α denotes a sum over repeated indices ac-

cording to Einstein summation conven-
tion.

□ refers to the d’Alembert operator or
Laplace operator of Minkowski space.

∇ denotes the nabla operator, which is a
vector differential operator.

ℜ represents the real part of a mathemat-
ical quantity.

x denotes a vector quantity using bold
font.

M⊙ is a weight unit in terms of the solar
mass: 1 M⊙ = 1.99× 1030 kg.

Mpc is an astronomical distance scale,
whereas 1 Mpc ≃ 3, 09 · 1022 m.

fm is a typical length-scale in nuclear
physics corresponding to 10−15 m.

erg is a unit of energy corresponding to
10−7 J.
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Preface

Throughout history, astronomers relied on electromagnetic (EM) waves to explore the cosmos. Ini-
tially confined to visible light, early observations provided only a limited window into the universe.
However, as scientific and technological progress enabled access to the entire EM spectrum, astronomy
transformed into a multi-wavelength science. Observations in the radio, infrared, and optical regime
have enabled the detection of distant galaxies, unveiled stellar nurseries, and revealed that the universe
expands and is dominated by two dark components, namely dark matter and dark energy, with dark
energy driving the accelerated expansion. On the other hand, ultraviolet, X-rays, and gamma-rays
carry information about the most violent and energetic processes in the universe including accretion
in active galactic nuclei, supernova (SN) explosions, and gamma-ray bursts (GRBs). By harnessing
the entire spectrum of EM waves, known as multi-wavelength astronomy, astronomers have expanded
our understanding of the cosmos, uncovering its structure, evolution, and fundamental physical laws.

On September 14, 2015, a new era in astronomy began with the first detection of a gravitational-
wave (GW) signal, GW150914 [6], originating from the merger of two black holes (BHs). This ground-
breaking discovery established GW astronomy as a fundamental observational discipline for exploring
the universe from an entirely new perspective. A crucial prerequisite for this discovery was Albert
Einstein’s theory of general relativity [231], which revolutionized our understanding of gravity. Unlike
Isaac Newton’s interpretation of gravity as a force acting at a distance [468], Einstein revealed that
gravity arises from the curvature of spacetime caused by mass or energy. Based on his theory, Einstein
predicted the existence of GWs in 1915 [232], describing them as ripples in spacetime generated by
accelerating massive objects, such as BHs and neutron stars (NSs). While strong indirect evidence for
GWs came from the Hulse–Taylor binary pulsar [321], it took nearly a century after Einstein’s pre-
diction to achieve a direct detection. This required the development of advanced technologies capable
of detecting tiny distortions in spacetime, on the order of 1/200th of a proton’s radius (∼ 10−13 cm)
[176], caused by passing GWs. This breakthrough not only validated Einstein’s prediction, but also
opened an entirely new way of observing the cosmos, allowing scientists to study the most extreme
phenomena in the universe.

The detection of compact binaries containing NSs is of particular interest in GW astronomy. The
merger of two NSs represents a complex astrophysical event that emits a diverse array of observational
signals across multiple messengers, including GWs, neutrinos, and EM radiation spanning the entire
spectrum from X-rays to ultraviolet, optical, infrared, and radio waves. The anatomy of binary neutron
star (BNS) mergers, as shown in Figure 1, plays a fundamental role in shaping the rich spectrum
of astrophysical messengers they generate. Unlike NSs, which consist of ultra-dense nuclear matter
and maintain a well-defined surface capable of emitting EM radiation, BHs lack a material surface
and do not emit light from within their event horizon.1 Consequently, these coalescences, along with
neutron star–black hole (NSBH) mergers, are prime multi-messenger candidates and are expected to
produce a variety of signals, governed by their composition, dynamical evolution, and the distinct
emission mechanisms at play. While the GW emission results from the inspiral of accelerated binary
masses causing disturbances in the fabric of spacetime, the EM emission arises from different ejecta
components expelled during the merger2, as depicted in Figure 1. The prompt GRB emission in
the form of collimated jets releases energy through relativistic outflows, while the afterglow results
from the interaction of the jet with the surrounding ambient medium. Additionally, merger ejecta
concentrated around the remnant lead to a distinct kilonova emission, powered by the radioactive
decay of heavy elements synthesized via r-process nucleosynthesis during the merger. This kilonova
signature serves as a crucial probe of neutron-rich ejecta and provides insights into the cosmic origin
of heavy elements such as gold and platinum.

A landmark event in this field occurred on August 17, 2017, when a BNS merger was ob-
served simultaneously in GWs and EM radiation for the first time [11] by the Laser Interferometer

1However, in gaseous environments, BHs can still produce EM signals through interactions with surrounding matter,
such as accretion flows or relativistic jets.

2Some studies suggest that EM emission may also occur in the pre-merger phase [488, 507, 453].
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Gravitational-wave Observatory (LIGO) and Virgo detectors [1, 34, 10]. This historic multi-messenger
observation, shown in Figure 1, included GW170817, the GW signal, the associated short GRB and af-
terglow termed GRB 170817A, detected by Fermi and INTEGRAL [9, 282], and the kilonova emission
AT2017gfo, observed in the optical and infrared bands [186, 342, 58, 398, 648]. This unprecedented
opportunity to combine these diverse observed messengers marked a new era in multi-messenger
astronomy, driving significant advancements across multiple research fields.

Gravitational 

waves

Cosmology | Alternative

estimate of cosmic expansion 

Anatomy of a binary neutron star merger Scientific impact on:

Kilonova

Multi-messenger observation

GW signal | GW170817

GRB afterglow | GRB170817A

Kilonova | AT2017gfo

X-ray Radio

Gamma-ray burst / 

afterglow

Optical 

GRB 

Nuclear physics | Constrain

neutron star equation-of-state

Chemistry | Study formation

of heavy elements

Theoretical physics | Confirm

theory of general relativity

High-energy astrophysics |

Study relativistic outflows

FIGURE 1
Illustration of the anatomy of a BNS merger showing expected emission components and messengers
including GWs, GRBs and their afterglows, and kilonovae. Left: The first multi-messenger observation
of a BNS merger including the GW signal GW170817, the prompt GRB emission and its afterglow
GRB170817A related to the collimated relativistic outflow, and the kilonova AT2017gfo resulting
from the radioactive decay of heavy elements synthesized in the merger ejecta. Right: Major scientific
implications across astrophysics, nuclear physics, chemistry, and cosmology. Plots are taken from [11].

One of the most significant outcomes of this joint detection was the improved constraint on NS
properties, particularly the equation of state (EOS) of supranuclear dense matter [13, 83, 529, 451,
633, 182, 214]. By combining GW and EM data, researchers placed tighter limits on the NS radius
[451, 153, 214, 471], offering critical insights into the nature of matter at extreme densities. Addition-
ally, the observation of both gravitational and EM signals allowed for an independent measurement
of the Hubble constant, providing an alternative method for determining the expansion rate of the
universe [7, 291, 317, 214, 657, 140, 489]. Furthermore, the analysis of the kilonova emission confirmed
BNS mergers as a cosmic production site for heavy elements [342, 502, 224, 313, 174]. Moreover, com-
pact binary mergers, including the event associated with GW170817, have enabled tests of general
relativity using this new type of sources, providing strong confirmation of its predictions and demon-
strating agreement with Einstein’s theory of general relativity [17]. Lastly, the combined observation
of GRB 170817A/AT2017gfo enabled the study of relativistic outflows and provided constraints on
the merger environment as well as the properties of synchrotron emission [672, 293, 294].

This groundbreaking joint observation has made a significant impact across multiple scientific
disciplines, exemplifying the immense potential of multi-messenger astronomy. Despite being a single
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event, it has already led to significant advancements in theoretical physics, nuclear physics, cosmology,
chemistry, and high-energy astrophysics, enhancing the understanding of the universe’s most extreme
phenomena.

Objectives

While this multi-messenger observation has significantly advanced our understanding of the physics
guiding the merger of compact binaries, it remains susceptible to various sources of bias, includ-
ing model-dependent interpretations. Recognizing these limitations and systematically assessing po-
tential biases is essential for ensuring the robustness and accuracy of future research in multi-
messenger astronomy. Systematic biases can arise from the use of imperfect or incomplete theo-
retical models of compact binary coalescences (CBCs), which are cross-correlated with observational
data to infer source properties. With regard to gravitational waveform models, systematic uncer-
tainties arise from approximations in modeling the relativistic two-body problem, including Post-
Newtonian methods [108, 109], the effective-one-body formalism [142, 191, 143], phenomenological
models [46, 297, 322, 349, 213, 511, 635], or numerical relativity simulations [97, 69, 216, 329]. These
uncertainties become more significant when combining multiple GW signals or analyzing high signal-
to-noise ratio events. Understanding these systematics is crucial for accurately constraining the NS
EOS, including properties such as the NS radius [483, 269, 571, 535]. In this context, the present
work aims to investigate and quantify the impact of gravitational waveform model systematics on the
measurement of astrophysical and cosmological parameters, namely the NS radius and the expansion
rate of the universe.

Despite the detection of a likely more massive BNS merger associated with the GW signal
GW190425 [19], no further multi-messenger observations of BNS mergers have been reported to
date [30]. In the absence of a GW observation, studying compact binaries such as BNS systems
remains feasible through the analysis of EM transient observations, namely GRB detections. The
duration of GRB signals can serve as a classification metric. Short GRBs, lasting less than 2 − 3 s,
are typically linked to compact binary mergers, including BNS and NSBH mergers, whereas GRBs
with longer durations are generally attributed to core-collapse supernovae (CCSNe) of massive stars.
In principle, such a classification could offer a way to infer a compact binary in the absence of a GW
observation. However, this classification scheme faces significant challenges, as exemplified by the
anomalous GRB signal, GRB 211211A, detected on December 11, 2021 [533, 642]. While its duration
is consistent with a core-collapse SN from a massive star, its observed properties are more consistent
with a BNS merger origin. This discrepancy highlights the limitations of the duration-based GRB
classification and indicates that the classification of astrophysical scenarios associated with GRBs is
more complex [684, 554]. Consequently, it underscores the necessity of alternative methodologies to
infer compact binaries from GRB progenitors. By examining GRB 211211A, this work illustrates how
compact binary mergers, including BNS mergers, can be inferred in the absence of GW detections
through Bayesian model selection applied to multi-wavelength EM data.

In NSs, where extreme gravity meets extreme matter, fundamental principles of nuclear physics
and general relativity can be tested, making NSs unique laboratories. However, the NS EOS re-
mains one of the unsolved puzzles in astrophysics. It dictates the thermodynamic properties of dense
matter, governs its chemical composition, and shapes the macroscopic structure of NSs. Various
theoretical models propose different EOS formulations, each offering distinct descriptions of nuclear
interactions and compositions of NS matter [418, 419, 401, 312, 223, 348, 160, 645, 646]. Given the
uncertainties in the fundamental properties of dense matter, these models explore a range of possible
microphysical behaviors. GW signals from BNS mergers encode crucial information about their as-
trophysical origin and thus can probe their internal structure, composition, and nuclear interactions
[83, 529, 451, 633, 214, 553]. Consequently, these signals serve as a powerful probe for nuclear physics,
providing a way to constrain the NS EOS by comparing both observational and synthetic data with
different theoretical models. Using different EOS models, this work aims to refine our understanding
of nuclear interactions at supranuclear densities and to constrain fundamental nuclear parameters.
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Beyond the challenge of understanding the behavior of nuclear matter at extreme densities, an ad-
ditional source of uncertainty stems from our limited knowledge of the broader cosmic environment.
Dark matter (DM), despite constituting the dominant mass component in the cosmos, remains one
of the most profound mysteries in astrophysics. Its fundamental properties, including its composi-
tion, interaction mechanisms, and possible coupling to Standard Model particles, continue to elude
direct detection, driving extensive theoretical and observational efforts [4, 116, 354]. NSs, which are
modeled as being composed of baryonic nuclear matter, may accrete DM through scattering inter-
actions over cosmic timescales, particularly in dark-matter-rich environments such as galactic halos
[478, 688, 689, 560]. If sufficient DM accumulates, it could alter the properties of the NS, includ-
ing mass, radius, and tidal deformability, thereby affecting the interpretation of BNS observations
[99, 328]. Future GW observations of BNSs could reveal deviations from expected nuclear-physics
predictions, potentially signaling the presence of DM. This work simulates GW observations of DM-
admixed NS mergers to assess their impact on compact binary inferences and explore the feasibility
of constraining DM properties.

Outline

Part I introduces the preface and rationale, serving as the foundation for the thesis structure.

Part II establishes the theoretical foundation for studying compact binaries through multi-messenger
astronomy. Chapter 1 outlines the overarching theoretical framework on the basis of general relativity
and consistently derives the cosmological framework and the existence of GWs. Chapter 2 revisits
the formation of compact objects, including BHs and NSs, and discusses BNS and NSBH mergers
as ideal candidates for multi-messenger astronomy. Chapter 3 details multi-messenger signatures of
compact binary mergers, including GWs, GRBs, their afterglows, and kilonovae.

Part III focuses on the methodological framework for multi-messenger data analysis. Chapter 4
presents the statistical and computational tools, introducing Bayesian inference for multi-messenger
data analysis and employing advanced parameter estimation algorithms to infer information from
models with high-dimensional parameter spaces. Chapter 5 consistently integrates these methods in
a nuclear-physics and multi-messenger astrophysics code, termed NMMA, demonstrating a multi-
messenger and multi-physics approach to extracting astrophysical parameters.

Part IV is dedicated to addressing the central research question concerning the impact of model-
dependent biases in multi-messenger astronomy, with specific emphasis on systematic uncertainties
in gravitational waveform modeling. Chapter 6 investigates the influence of these model-dependent
biases on the measurement of the NS radius, while Chapter 7 examines their implications for the
determination of the expansion rate of the universe.

Part V presents a Bayesian model selection study of the GRB signal GRB 211211A in Chapter 8,
illustrating how multi-wavelength data can be used in Bayesian studies to gain insights into BNS
mergers even when no associated GW signal is detected.

Part VI focuses on the use of GW observations from BNS mergers to probe both nuclear and dark
matter properties. Chapter 9 investigates whether future GW observations of BNS mergers can pro-
vide insight into distinct nuclear particle interactions, focusing on different models of three-nucleon
interactions. Chapter 10 examines whether multiple GW detections of DM-admixed BNS mergers
with next-generation observatories can help constrain the properties of DM. Building on this, Chap-
ter 11 aims to explore the potential of next-generation GW detectors to constrain both nuclear matter
parameters governing the NS EOS and DM properties in BNS mergers.

Part VII concludes with a summary and an outlook on the future of multi-messenger astronomy.
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Outlining the big picture with general relativity

CONTENTS

1.1 General relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Cosmological framework: standard model of cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Dark matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.2 The Hubble tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Linearized theory of gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.1 Propagation of gravitational waves in vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.2 Generation of gravitational waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.3 Gravitational-wave emission from the inspiral of compact binaries . . . . . . . . . . . . . 20
1.3.4 Gravitational-waves as cosmological probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Albert Einstein’s theory of general relativity (GR) fundamentally transformed our understanding of
the cosmos [231], showing that the universe is a dynamic tapestry where space, time, and matter
are forever interlinked. His brilliant insight, the equivalence principle, states that, in small enough
regions of space and time, the effects of gravity are indistinguishable from the effects of acceleration.
In this conception, gravity is no longer seen as a force in the traditional sense acting at a distance to
gravitationally bind objects as postulated by Isaac Newton’s law of universal gravitation [468]. Instead
it is a manifestation of the curvature of spacetime, leading objects to warp the fabric of spacetime
itself, guiding everything from light to massive objects along curved paths. These paths, known as
geodesics, represent the trajectories of freely falling objects in curved spacetime. In this framework,
the Earth’s motion around the Sun is not driven by a gravitational force in the Newtonian sense, but
rather by the planet following a geodesic in curved spacetime. This geometric interpretation of gravity
forms the foundation of GR and has profound implications for modern astrophysics. As explored in
the following chapters, GR provides a powerful framework for investigating compact objects, such as
BHs and NSs, analyzing their GW signatures, and probing the large-scale dynamics and evolution of
the universe.

1.1 General relativity

The Einstein field equations (EFEs) lie at the core of GR, relating the geometric properties of space-
time, encapsulated by the Einstein tensor Gµν , to the distribution of matter and energy, given by
the stress-energy-momentum tensor Tµν . While differential geometry forms the mathematical heart
of GR, the EFEs embody its central physical insight. This insight is captured in compact tensorial
form and is often intuitively illustrated by the well-known phrase1:

Spacetime tells matter
how to move, and Gµν = κTµν

matter tells spacetime
how to curve.

(1.1)

In GR, gravity is interpreted as the manifestation of spacetime curvature induced by mass and energy.
This interpretation means that gravity is not fundamentally a force, but is instead seamlessly woven

1In Eq. (1.1), the Einstein gravitational constant κ = 8πG/c4 is given through the Newtonian constant of gravitation
G and the speed of light in vacuum c.

9
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into the architecture of the universe itself. To explore spacetime curvature, the language of tensors
is indispensable. Tensors ensure that physical laws remain invariant under changes in coordinates,
maintaining covariance under general transformations. For tensor calculus, it is convenient to employ
the Einstein summation convention, wherein repeated indices in superscript and subscript positions
imply a sum:

xµy
µ =

X

µ

xµy
µ. (1.2)

Henceforth, Greek indices, µ, ν, ... = 0, 1, 2, 3, will denote spacetime coordinates, while Latin indices
i, j, ... = 1, 2, 3 will refer to spatial coordinates. In GR, the mathematical fabric of spacetime is a
four-dimensional manifold M, whose points represent single events xµ(µ = 0, 1, 2, 3), combining time
and three spatial dimensions x(t, x, y, z). Closely related to this is the metric tensor gµν , which is a
rank-2 tensor and encapsulates all geometric and causal structures of spacetime itself. As the metric
of spacetime, it can be used to describe an infinitesimal spacetime interval

ds2 = gµνdx
µdxν , (1.3)

which provides a way to measure the distance between two neighboring events (xµ, xµ + dxµ) within
the manifold. Additionally, it is crucial for index operations such as raising and lowering indices, e.g.,
xµ = gµνx

ν . In the following, metrics are expressed using the (−,+,+,+) signature. The Riemann
curvature tensor Rµνρσ measures how much spacetime curves under the presence of mass or energy
and is given as

Rµνρσ = gρλ(∂µΓ
λ
νσ − ∂νΓ

λ
µσ + Γλ

µηΓ
η
νσ − Γλ

νηΓ
η
µσ). (1.4)

It is a function of the metric tensor gµν and its derivatives and involves calculating the connection
coefficients encoded in the Christoffel symbols. These are defined as

Γσ
µν =

1

2
gσα(∂µgαν + ∂νgαµ − ∂αgµν), (1.5)

in which ∂µ = ∂/∂xµ is the partial derivative acting on the coordinates xµ. While the Riemann tensor
fully describes the curvature of spacetime, it can be contracted into a simpler rank-2 tensor, the Ricci
tensor

Rµν = gρσRµνρσ, (1.6)

which provides a simplified view of curvature that specifically describes volume-changing curvature
effects. Together with the Ricci scalar

R = gµνRµν , (1.7)

the trace of the Ricci tensor, the Einstein tensor fully encapsulates spacetime curvature

Gµν := Rµν − 1

2
Rgµν . (1.8)

The source of curvature is any distribution of matter, energy, or stress as given by the stress-energy-
momentum tensor Tµν . The forthcoming chapters will provide a more in-depth exploration of ideal
sources of curvature, such as compact objects. To describe the evolution of the universe, the EFEs
can be further extended with a cosmological constant, Λ, yielding

Gµν + Λgµν =
8πG

c4
Tµν . (1.9)

This synthesis of geometry and physics in Eq. (1.9) is one of the most important achievements in
modern science, enabling the exploration from compact binaries to the evolution of the universe itself.
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1.2 Cosmological framework: standard model of cosmology

Applying the EFEs to the universe as a whole allows modeling its large-scale structure and dynamical
evolution. This forms the foundation of modern cosmology, providing a framework to describe the
expansion, contraction, or equilibrium of the universe based on its underlying constituents.

A central aspect in modern cosmology is the cosmological principle, positing that the universe
is homogeneous and isotropic on large scales. This simplifies cosmological models by assuming that
the universe appears uniform and isotropic in all directions. A metric that satisfies the cosmological
principle is the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric given in comoving coordinates
(t, r, θ,ϕ)

ds2 = −c2dt2 + a2(t)
� dr2

1− kr2
+ r2dθ2 + r2 sin2 θdϕ2

�
, (1.10)

which describes the expansion of the universe over time in terms of a dimensionless cosmic scale factor
a(t) and a curvature constant k. Substituting the FLRW metric into the definitions of the Ricci tensor
and Ricci scalar yields the Einstein tensor, which governs the dynamics of the universe through the
EFEs. The stress-energy-momentum tensor on the right-hand side of Eq. (1.9) is assumed to encap-
sulate all sources of curvature, such as baryonic matter, DM, radiation, and any other conceivable
contributors by modeling them as a perfect fluid. Under this assumption, Tµν is given by

Tµν = (ρ+ p)uµuν + pgµν , (1.11)

whereas ρ is the total energy density of the universe, p is the total pressure, and uµ is the fluid’s
four-velocity. Solving the EFEs within the FLRW metric framework for the tt-component and spatial
components yields the Friedmann equations,

� ȧ
a

�2

= H2 =
8πG

3
ρ− kc2

a2
+

Λc2

3
, (1.12)

ä

a
= −4πG

3

�
ρ+

3p

c2

�
+

Λc2

3
, (1.13)

governing the evolution and dynamics of an isotropic and homogeneous universe. Grounded in GR, the
Friedmann equations form the mathematical cornerstone of the Lambda Cold Dark Matter (ΛCDM)
model, the prevailing paradigm in cosmology. In this model, the cosmic history of the universe began
approximately 13.8 billion years ago [43], starting with an energetic expansion from an initial hot
dense plasma filled with matter and photons, known as the Big Bang. Since then, the universe has
undergone rapid expansion, whereas the rate of cosmic expansion can be quantified with the Hubble
parameter

H ≡ ȧ

a
. (1.14)

As the universe expanded and cooled, protons and electrons combined into neutral atoms approxi-
mately 380,000 years after the Big Bang, a process known as recombination. This allowed photons
to decouple from matter and propagate freely, forming the cosmic microwave background (CMB)
radiation that is observed today. While the expansion of the universe persists, gravity drives matter
overdensities to propel the formation of stars and galaxies. Over time, these structures evolve into
a vast cosmic web of filaments and voids spanning the observable universe. Eventually, dark energy
becomes the dominant influence, a form of energy with negative pressure that drives the accelerated
expansion of the universe and is denoted by the cosmological constant Λ in the Friedmann equations.
Given different energy densities and curvatures, the universe’s evolutionary trajectory can take one
of three possible cases:
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k =





1, for a closed universe with spherical geometry,

0, for a flat universe,

−1, for an open universe with hyperbolic geometry.

(1.15)

A crossover point is marked for the case when k = 0, separating open and closed universes. For a flat
universe with k = 0 = Λ, a critical density

ρc =
3H2

8πG
, (1.16)

can be derived from Eq. (1.12). This can be used to introduce density parameters for both matter
and radiation Ωm,r

Ωm,r ≡ ρm,r

ρc
=

8πGρm,r

3H2
, (1.17)

which quantifies the universe’s density relative to this critical value. Using the expression for the
density parameters in Eq. (1.12), the first Friedmann equation can be rewritten as

1 = Ωr + Ωm + ΩΛ + Ωk , (1.18)

whereas the dark energy density parameter ΩΛ and the curvature density parameter Ωk are defined
as

ΩΛ ≡ Λc2

3H2
and Ωk ≡ − kc2

H2a2
. (1.19)

Each density parameter in Eq. (1.18) evolves differently with the cosmic scale factor a(t),

Ωr = Ω0,ra
−4; Ωm = Ω0,ma−3; Ωk = Ω0,ka

−2; ΩΛ = ΩΛ,0 , (1.20)

whereas the subscript Ω0,i denotes the present-day values of the i-th density parameter. By using
these expressions and multiplying by H2, the first Friedmann equation in Eq. (1.18) can be rewritten
as a function of present-day density parameters,

H2 = H2
0 (Ω0,ra

−4 + Ω0,ma−3 + Ω0,ka
−2 + Ω0,Λ), (1.21)

highlighting the importance for the present-day cosmological measurements.2 The latest observation
using the CMB radiation revealed that the universe is composed of 70% dark energy (Ω0,Λ ∼ 0.7),
30% baryonic and DM (Ω0,m ∼ 0.3), and is close to a flat geometry according to Ω0,k ∼ 0 [43].
Additionally, the present-day value of the Hubble parameter, known as the Hubble constant H0, has
been a subject of intense scientific investigation, leading to the Hubble tension.

While the ΛCDM model offers remarkable consistency with observations, questions about the
nature of DM, dark energy, and the expansion rate of the universe remain unanswered, making it
a fertile ground for future research. Nevertheless, given its robust explanatory power and empirical
support, the ΛCDM model will be assumed as the fundamental cosmological framework for this work.

1.2.1 Dark matter

The nature of DM remains a mystery. DM, an invisible yet fundamental component of the universe,
plays a crucial role in the formation of cosmic structures and influences a wide range of astrophysical
phenomena through its gravitational effects. As a non-luminous form of matter, DM neither emits nor
absorbs electromagnetic radiation, making it undetectable by conventional observational methods. Its

2Note that the radiation density is considered negligible, as matter and dark energy constitute the dominant com-
ponents of the energy density.
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existence is therefore inferred solely from its gravitational influence on cosmological and astrophysical
systems. While DM is thought to interact predominantly via gravity, no evidence currently suggests a
coupling to the other fundamental forces mediated by gauge bosons. However, such a coupling cannot
be ruled out, as it may lie below current detection thresholds. Within the framework of the standard
cosmological model, DM is estimated to constitute approximately 25 % of the universe’s total energy
density, exceeding the roughly 5 % contribution from baryonic matter [43].

Evidence for DM has evolved over decades, beginning with early observational evidence found in
the 1930s by Jan Hendrik Oort and Fritz Zwicky. While Oort’s studies of stellar motions in the Milky
Way hinted at a mass discrepancy within our own galaxy [478], Zwicky was the first to identify DM
on a larger cosmic scale. Applying the virial theorem, Zwicky demonstrated that the observed galaxy
velocities exceeded those predicted by visible mass alone, implying the presence of a significant unseen
mass component [688, 689]. In the 1970s, Vera Rubin and Kent Ford discovered flat rotation curves
in spiral galaxies, an observation inconsistent with the expected decline in rotational speeds based
on visible matter alone [560]. More recent evidence has emerged from gravitational lensing studies,
such as those of the Bullet Cluster, where the spatial separation between the lensing mass and the
baryonic mass provides compelling evidence for DM [175, 421]. Additionally, precise measurements
of the CMB radiation have revealed anisotropy patterns that require DM to reconcile the observed
temperature fluctuations with theoretical models [36, 43].

Despite substantial evidence supporting the existence of DM, its fundamental nature remains
highly uncertain and is a topic of active research. Consequently, a wide range of DM candidates,
spanning an extensive mass spectrum, has been proposed to account for its properties, as depicted in
Figure 1.1.

DM must be a boson thermal freeze-out possible

eV      keV     MeV    GeV     TeV
Excluded:
wavelength
larger than
galaxies

Excluded:
mass
larger than
galaxies

10-21 eV
MPl                                            Msun

axions
sterile

neutrinos
WIMPs Planckian

relics

primordial
black
holes

wave-like                                         particle-like                                   compact

FIGURE 1.1
The possible mass range of DM particles spans a broad spectrum. For masses above the Planck scale
(MPl ∼ 1019 GeV), DM manifests as macroscopic, compact objects, while for masses below 1 eV, DM
is better described by collective, wave-like phenomena. Image taken from [73].

Within the framework of GR, where the density and flux of energy and momentum act as sources
of the gravitational field, DM, primarily interacting through gravity, can influence spacetime in a
manner that alters the properties of GWs, potentially leaving detectable imprints in their signatures.
Consequently, GW observations could provide indirect constraints on the properties and distribution
of DM in the universe. Different GW probes of DM are discussed in Bertone et al. [98] and include
direct searches, primordial BHs, phase transitions, non-perturbative DM production, environmental
effects, and exotic compact objects. This work specifically examines exotic compact objects, with a
particular focus on DM-admixed NS mergers.
In light of observational evidence, it is a widely accepted hypothesis to assume that DM halos en-
compass galaxies. While one perspective suggests that DM is smoothly distributed throughout the
Galactic halo, theoretical models predict that cold DM naturally forms subhalo structures [94, 126].
Consequently, stars and stellar remnants are expected to be embedded within DM halos and may
undergo rapid DM accretion via scattering when transiting overdense regions within DM subhalos



14 Outlining the big picture with general relativity

[89, 94, 126]. DM capture scales with the product of a star’s nucleon count and its escape velocity,
making compact objects such as NSs prime targets for detecting DM accretion effects [99]. As a result,
NSs can accumulate significant DM [550, 99, 201], with BNS systems possibly retaining more due to
their extended lifetimes and enhanced gravitational influence.

DM, whether concentrated in the core or surrounding a NS, can alter its internal structure,
affecting key properties such as mass, radius, and tidal deformability [99, 341, 328, 281, 338]. These
structural modifications influence the NS EOS and imprint distinct signatures on GW signals, making
BNS mergers potential probes of DM. The extent of these imprints is governed by the DM particle
mass and the fraction of DM accumulated within NSs. Since the amount of captured DM in BNS
mergers depends on the DM particle mass, the interaction cross-section, and the ambient DM density,
variations in the fraction of captured DM across different mergers might exist [362] and could provide
crucial insights into the properties and distribution of DM. However, the fraction of DM within NSs
may be small, such that the resulting change in tidal deformability would be subtle, necessitating the
sensitivity of next-generation GW observatories, such as the Einstein Telescope (ET) [307, 519, 577,
128] or Cosmic Explorer (CE) [8, 541, 241], for possible detection.

Beyond their role as potential DM probes, BNS mergers also serve as standard sirens, cosmological
distance indicators based solely on GW observations, as outlined in Subsec. 1.3.4. This capability
makes them a powerful tool for exploring another key cosmological challenge, the Hubble tension.

1.2.2 The Hubble tension

With the theory of GR being established, Einstein introduced the cosmological constant Λ in his
equations in 1917 to support a static universe [230]. However, Einstein’s universe needed a perfect
balance and was thus inherently unstable. Hence, the view of a static universe shifted radically within
the following decade. While Alexander Friedmann theoretically demonstrated dynamic solutions of
the EFEs in 1922 [264] and Georges Lemâıtre derived the linear velocity-distance relationship and
connected his solutions to observations in 1927 [390], at the latest, with Edwin Hubble’s observational
evidence revealing the relationship between the distance of galaxies and their recessional velocity in
1929 [320], the idea of an expanding universe began to gain traction.
A fundamental aspect of this discovery is the Hubble law, more recently also referred to as Hubble-
Lemâıtre law,3

v = H0d, (1.22)

which is a linear relationship between the recession velocity v and the distance d of an astrophysical
object, valid at small distances. While H0 denotes the present-day value of the expansion rate as
outlined in Section 1.2, the evolution of the expansion rate over cosmic time is described by the
Hubble parameter, or Hubble-Lemâıtre parameter, H(t).

As one of the most significant cosmological discoveries, the measurement of the universe’s expan-
sion rate has continually captivated the attention of scientists. However, determining its precise value
has proven challenging, leading to a variety of measurement techniques. In recent years, measuring
H0 has emerged as a major frontier in cosmology, with a key challenge being the reconciliation of
measurements from the early and late universe.4

Probing the early universe, the CMB radiation represents a snapshot of the universe when photons
decoupled from matter, leaving behind a faint glow that has since redshifted into the microwave range
due to cosmic expansion. It exhibits faint temperature anisotropies across the sky that formed due
to the complex interplay between matter and radiation in the early universe prior to the epoch of
recombination. The angular distribution of these anisotropies reveals a characteristic pattern, which

3Although the discovery involved multiple contributors, the credit is nowadays distributed to honor both Hubble’s
observational evidence and Lemâıtre’s theoretical derivation.

4Among the various measurement techniques for H0, the main focus in this work will be on values inferred from the
SH0ES and Planck collaboration.
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FIGURE 1.2
Illustration of the H0-tension between early- and late-time measurements using the CMB radiation
and the local distance ladder, respectively. Figure taken from [318], original data compilation in [499].

can be analyzed in terms of its frequency components. This analysis yields a power spectrum displaying
a series of peaks, providing valuable insights into the physical properties of the early universe. The
first peak primarily constrains the overall curvature of the universe, while the second and third peaks
provide crucial information about the densities of baryonic and DM, respectively. By assuming the
ΛCDM model as the underlying cosmological model and fitting it to the CMB’s power spectrum,
the cosmological expansion rate can be inferred. The Planck satellite’s observations of the CMB have
provided a highly precise estimate of H0 = 67.36± 0.54 km s−1Mpc−1 at 68% credibility [43].

In the late universe, the cosmic distance ladder method offers an independent determination of
the universe’s current expansion rate. The SH0ES (Supernovae, H0, for the Equation of State of
Dark Energy) collaboration employs this approach to build a hierarchical chain of distance measure-
ments to progressively greater cosmic scales, ultimately calibrating the relationship between distances
and redshifts. The key building blocks are so-called standard candles that are astronomical objects
with well-understood intrinsic luminosities that enable precise distance measurements. The SH0ES
methodology involves three main rungs of the cosmic distance ladder. These include geometric anchors
(e.g. parallaxes) to measure nearby distances, Cepheid variable stars to extend distance measurements
to galaxies, and Type Ia SNe to reach far greater cosmic scales. Using this method, the SH0ES Col-
laboration determined an estimate of H0 = 74.03± 1.42 km s−1Mpc−1 [546].

This discrepancy, referred to as the Hubble tension, also known as the Hubble-Lemâıtre tension,
highlights a significant divergence between the two state-of-the-art measurements of the Hubble con-
stant. Figure 1.2 not only illustrates the significant improvements in the precision of H0 measurements
but also highlights the persistent discrepancy between different methods, raising fundamental ques-
tions about its underlying cause. To date, the origin of this discrepancy remains unresolved, and
explanations for the prevailing tension are as diverse as the methods employed to measure H0. The
tension has been attributed either to systematic uncertainties in one or more measurements or to
potential shortcomings in the standard ΛCDM model, requiring modifications or entirely new the-
oretical frameworks [93, 115, 412, 510]. A promising alternative for inferring H0 involves the use of
GW signals as will be detailed in Subsec. 1.3.4. This approach, however, necessitates an introduction
to the linearized theory of gravity.
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1.3 Linearized theory of gravity

Within the established cosmological framework, compact objects such as BHs, NSs, and white dwarfs
serve as cosmic laboratories of extreme gravity due to their extreme densities and spacetime curva-
tures. While gravity in the vicinity of compact objects is strong, most regions in the universe, when
considered at a sufficient distance from the source, exhibit weak gravitational fields.

This weak-field approximation leads to the linearized theory of gravity in which the spacetime
geometry is nearly flat and the EFEs in Eq. (1.1) can be solved analytically. This approximation,
fundamental to Einstein’s prediction of GWs [232], implies that the spacetime metric gµν is considered
to be

gµν = ηµν + hµν , (1.23)

the Minkowski metric ηµν altered with small metric perturbations hµν . In this sense, GWs can be
considered as small perturbations in the metric deviating from flat Minkowski metric. The line element
of the Minkowski spacetime in Cartesian coordinates reads

ds2 = ηµνdx
µdxν = −c2dt2 + dx2 + dy2 + dz2. (1.24)

The perturbations of hµν are required to be

|hµν | ≪ 1, with |∂σhµν | ≪ 1. (1.25)

Under this assumption, any higher-order terms, such as hαβhµν ≈ 0, can be neglected and indices of
hµν can be raised or lowered with the help of the flat Minkowski metric ηµν .

Linearizing the Einstein tensor Gµν in Eq. (1.8) requires calculating the inverse spacetime metric
gµν , the Christoffel symbols Γσ

µν , and the Riemann tensor Rα
βµν under small perturbations hµν . The

inverse spacetime metric is then given by gµν = ηµν −hµν and can be used to calculate the Christoffel
symbols that take the form

Γσ
µν =

1

2
ησα(∂νhαµ + ∂µhαν − ∂αhµν), (1.26)

while neglecting higher-order terms O(h2). As Christoffel symbols are first-order quantities, only their
derivatives contribute to the linearized Riemann tensor and terms involving products of Christoffel
symbols in Eq. (1.4) can be neglected so that the linearized Riemann tensor,

Rµνσρ =
1

2
(∂ρ∂νhµσ + ∂σ∂µhνρ − ∂σ∂νhµρ − ∂ρ∂µhνσ), (1.27)

can be obtained by using Eq. (1.26) in Eq. (1.4). The linearized Ricci tensor can be retrieved by using
the linearized Riemann tensor in Eq. (1.6) and is given as,

Rµν =
1

2
(∂α∂µh

α
ν + ∂α∂νh

α
µ − ∂µ∂νh−□hµν), (1.28)

in which the scalar h := ηµαhµα is defined as the trace of the perturbation hµν and □ refers to the
d’Alembertian

□ := ∂µ∂
µ = ηµα∂µ∂α = − 1

c2
∂2

∂t2
+∇2. (1.29)

The Ricci scalar in its linearized form is given as

R = ∂µ∂νh
µν −□h. (1.30)
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The linearized Einstein tensor is then obtained by using the linearized Ricci tensor and Ricci scalar
in Eq. (1.8)

Gµν =
1

2

�
∂µ∂αh

α
ν + ∂ν∂αh

α
µ − ∂µ∂νh−□hµν + ηµν(□h− ∂α∂βh

αβ)
�
. (1.31)

It proves advantageous to introduce a trace-reversed metric perturbation

h̄µν := hµν − 1

2
ηµνh , (1.32)

which can be in Eq. (1.31) to simplify the linearized Einstein tensor to

Gµν =
1

2

�
∂µ∂αh̄

α
ν + ∂ν∂αh̄

α
µ − ηµν∂α∂β h̄

αβ −□h̄µν

�
. (1.33)

While the linearized Einstein tensor as given in Eq. (1.33) governs the dynamics of the metric per-
turbation, it contains redundant degrees of freedom due to coordinate invariance. By utilizing the
gauge freedom to perform infinitesimal coordinate transformations xµ → x

′µ = xµ+ξµ(xν), for which
|∂µξν | ≲ |hµν |, and imposing the Lorenz gauge condition

∂ν h̄µν = 0, (1.34)

the first three terms in Eq. (1.33) can be eliminated so that the Einstein tensor reads

Gµν = −1

2
□h̄µν . (1.35)

Using this expression in Eq. (1.1), the linearized EFEs are finally given as

□h̄µν = −16πG

c4
Tµν . (1.36)

1.3.1 Propagation of gravitational waves in vacuum

In the absence of matter and energy sources, the stress-energy-momentum tensor vanishes so that
Tµν = 0 and Eq. (1.36) reduces to

□h̄µν =
�
− 1

c2
∂2

∂t2
+∇2

�
h̄µν = 0, (1.37)

thereby exposing the underlying wave-equation structure of the linearized EFEs. A general solution
of Eq. (1.37) is a linear combination of plane waves

h̄µν = ℜ
h
Aµνe

ikσx
σ
i
= Aµν cos(kσx

σ), (1.38)

where ℜ denotes the real part which is important for physical applications. The polarization tensor
Aµν encodes information about the amplitude and polarization of the wave, while kσ determines
its propagation direction and frequency. There exists a hypersurface on which the value of kσx

σ is
constant and can be decomposed as

kσx
σ = k0x

0 + kix
i = −ωt+ k · x = const., (1.39)

where x0 = ct is the time component of the spacetime vector, k0 = −ω/c is the temporal component
of the wave four-vector, k = ki = (k1, k2, k3) denotes the spatial components of the wave vector,
and x = xi = (x1, x2, x3) refers ot the spatial coordinates. Consequently, by symmetry of the cosine
function, the wave equation in Eq. (1.38) can also be written as

h̄µν = Aµν cos(ωt− k · x). (1.40)
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By choosing a coordinate system in which the GW propagates along the z-axis, the wave phase
simplifies to ωt − k · x = ω(t − z). For the wave equation to be satisfied, the wave vector kσ must
fulfill the condition

|k|2 = ηµσkµkσ = kσkσ = 0, (1.41)

indicating that it is a light-like or null-vector. This implies that ω = c|k|, indicating that GWs prop-
agate at the speed of light without dispersion. In order to identify the two characteristic polarization
states of GWs, the 16 components of the polarization tensor Aµν must be systematically reduced
to two independent degrees of freedom. By taking advantage of the symmetry of Aµν = Aνµ (6
constraints), focusing on the Lorenz gauge class of coordinate systems (4 constraints)

Aµνk
µ = 0, (1.42)

and further refining to the transverse-traceless (TT) gauge (4 constraints)

Aµνu
µ = 0 = Aµ

µ, (1.43)

where uµ is the four-velocity vector, one can show that the polarization tensor Aµν possesses only
two independent components

ATT
µν =




0 0 0 0
0 Axx Axy 0
0 Axy −Axx 0
0 0 0 0


 =




0 0 0 0
0 A+ A× 0
0 A× −A+ 0
0 0 0 0


 . (1.44)

In a coordinate system in which the z-axis coincides with the direction of wave propagation, the
metric perturbation in TT-gauge

h̄TT
µν =




0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0


 =




0 0 0 0
0 A+ A× 0
0 A× −A+ 0
0 0 0 0


 cos[ω(t− z)], (1.45)

can be written in terms of the plus polarization h+ and the cross polarization h×, respectively. These
polarizations are fundamental to both the theoretical framework and the observational detection of
GWs.

A well-known example that helps to illustrate the effect of the two GW polarization states is to
consider a GW that passes in perpendicular direction through a ring of test particles located in the
x − y plane. The presence of a GW induces periodic perturbations in the spatial coordinates of the
particles as shown in Figure 1.3.

As a GW propagates through an initially circular ring of material particles, the plus polarization
induces vertical and horizontal stretching and squeezing along the principal axes, while the cross
polarization causes stretching and compression along diagonal axes rotated by 45◦. The interplay of
these effects leads to the characteristic oscillatory deformation patterns observed in GW detections. In
this setup, the separation between the test particles plays a crucial role in determining the amplitude
of the induced deformations. Specifically, larger separations amplify the relative displacements caused
by the GW, thereby enhancing the strain signal and improving the detectability of the GW.
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FIGURE 1.3
Illustration of the effect of a GW passing through a ring of test particles located in the x − y plane,
shown for the plus polarization h+ and cross polarization h×.

1.3.2 Generation of gravitational waves

Binary systems composed of compact objects are primary sources of GWs. A compact source intro-
duces a non-vanishing stress-energy-momentum tensor Tµν , necessitating the treatment of

□h̄µν = −16πGTµν , (1.46)

in which the speed of light c has been set to unity (c = 1). A solution of Eq. (1.46) is given through
Green’s function5

h̄µν(x
σ) = −16πG

Z
G̃(xσ − yσ)Tµν(y

σ)d4y , (1.47)

satisfying the wave equation in the presence of a Dirac delta-function source

□(x)G̃(xσ − yσ) = δ(4)(xσ − yσ), (1.48)

where □(x) refers to the d’Alembert operator with respect to the coordinates xσ. Following the
approach in [157], the retarded Green function can be written as

G̃(xσ − yσ) = − 1

4π|x− y|δ[|x− y|− (x0 − y0)]Θ(x0 − y0) , (1.49)

in which x and y refer to spatial vectors, |x − y| symbolizes their norm, and the theta function
Θ(x0 − y0) equals 1 when x0 > y0, and zero otherwise. The retarded time refers to the time delay
associated with the propagation of GWs from a source to an observer and can be related to time t as

tr = t− |x− y|, (1.50)

ensuring the adherence to causality. Using Eq. (1.49) in Eq. (1.47) yields

h̄µν(t,x) = 4G

Z
1

|x− y|Tµν(t− |x− y|,y)d3y, (1.51)

5The notation for the Green’s function G̃(xσ − yσ) is deliberately chosen to differ from that of the gravitational
constant G to minimize potential ambiguities.
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where the delta function was utilized to perform the integral over y0. To analyze oscillatory phenomena
like spacetime perturbations, it is convenient to work in Fourier space. Reviewing the equations for
the Fourier transform and its inverse for a spacetime function ϕ(t,x)

ϕ̃(ω,x) =
1√
2π

Z
dt eiωtϕ(t,x),

ϕ(t,x) =
1√
2π

Z
dω e−iωtϕ̃(ω,x),

(1.52)

helps to write down the Fourier-transformed metric perturbation as

˜̄hµν(ω,x) =
1√
2π

Z
dt eiωth̄µν(t,x). (1.53)

By inserting Eq. (1.51) in Eq. (1.53), performing a change of variables from t to tr, and further
reformulations using Eq. (1.52), the Fourier-transformed metric perturbation can be rewritten as

˜̄hµν(ω,x) = 4G

Z
d3y eiω|x−y| T̃µν(ω,y)

|x− y| . (1.54)

In the specific case of an isolated source, where the spatial extent δr is significantly smaller than the
distance to the observer r and the radiation frequencies ω are sufficiently low (δr ≪ ω−1), the term
eiω|x−y|/|x− y| can be replaced by eiωr/r. By factoring this term out of the integral, Eq. (1.54) can
be expressed as

˜̄hµν(ω,x) = 4G
eiωr

r

Z
d3y T̃µν(ω,y). (1.55)

Since the Lorenz gauge condition in Fourier space implies

˜̄h0ν = − i

ω
∂i
˜̄hiν , (1.56)

only spatial components T̃ ij need to be considered in Eq. (1.55). This integral can be calculated by
making use of the Fourier-space version of ∂µT

µν = 0, which is −∂kT̃kµ = iωT̃ 0µ, so that one finds

Z
d3y T̃ ij(ω,y) = −ω2

2

Z
yiyj T̃ 00d3y. (1.57)

Introducing a definition of the quadrupole moment tensor of the energy density of the source

Iij(t) =

Z
yiyjT 00(t,y)d3y, (1.58)

and using its Fourier transform, one finally obtains the quadrupole formula6

h̄ij(t,x) =
1

r

2G

c4
Ïij(tr), (1.59)

in which the speed of light constant has been restored. This formula reveals that GW emission from an
isolated, non-relativistic source arises from the second time derivative of its energy-density quadrupole
moment, highlighting that accelerating mass distributions, characterized by quadrupole and higher-
order multipole moments, emit GWs.7 These waves, described by the GW strain signal hij , can
be detected by GW observatories, providing valuable insights into the nature of their astrophysical
sources.

6Note that this derivation provides insight into the physical origin of the metric perturbation. To obtain the observ-
able gravitational wave strain, h̄ij must be projected onto the TT gauge.

7This contrasts with EM radiation, which arises from the time-dependent dipole moment of the charge density.
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1.3.3 Gravitational-wave emission from the inspiral of compact binaries

The quadrupole formalism is essential for understanding GW emission from binary-star systems,
where orbiting massive objects produce quadrupole moments that make them ideal sources for GW
astronomy. Following the approach in [409], one can consider a Newtonian binary system compris-
ing two point-like objects with masses m1 and m2, spatially related through a relative coordinate
x0 = x1 − x2. The total mass can be defined as Mtot = m1 + m2 and the reduced mass as
µ = m1 m2/Mtot. In the center-of-mass frame, the mass density for a non-relativistic system is then
given as

ρ(t,x) = µδ(3)(x− x0(t)). (1.60)

For the simple case of circular orbits in the x-y plane, one can write

x0(t) = R cos(ωst+ π/2),
y0(t) = R sin(ωst+ π/2),
z0(t) = 0,

(1.61)

where ωs is the orbital frequency, R is the orbital radius, and the phase π/2 is a helpful choice for
the origin in time to calculate the nonzero components of quadrupole moment tensor that will then
take the form

I11 = µR2 1−cos(2ωst)
2 ,

I22 = µR2 1+cos(2ωst)
2 ,

I12 = − 1
2µR

2 sin(2ωst).

(1.62)

Calculating the second time derivatives for each component and evaluating Eq. (1.59), one can show
that the two GW polarizations can be written as

h+ =
1

r

4Gµω2
sR

2

c4

�1 + cos2 ι

2

�
cos(2ωstr), (1.63a)

h× =
1

r

4Gµω2
sR

2

c4
cos ι sin(2ωstr), (1.63b)

in which r corresponds to the observer’s distance to the binary source and ι refers to the angle between
the normal to the orbit and the line of sight. Using Kepler’s third law to express the orbital frequency
as

ωs =

r
GMtot

R3
, (1.64)

and introducing the chirp mass

M = µ3/5M
2/5
tot =

(m1m2)
3/5

(m1 +m2)1/5
, (1.65)

one can rewrite Eqs. (1.63a - 1.63b) as

h+ =
4

r

�GM
c2

�5/3�πfgw
c

�2/3 1 + cos2(ι)

2
cos(2πfgwtr), (1.66a)

h× =
4

r

�GM
c2

�5/3�πfgw
c

�2/3

cos(ι) sin(2πfgwtr). (1.66b)

in which fgw = ωgw/2π with ωgw = 2ωs. The above equation yields several key insights for a self-
gravitating, non-relativistic binary system on circular orbits:
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1. Binary systems emit GWs at a frequency twice their orbital frequency to leading order.

2. The masses of the binary system enter the GW amplitude only through the chirp mass,
meaning that this combination of masses is best measured when GWs are observed.

3. GW amplitudes are highest when viewed face-on at ι = 0◦ or ι = 180◦, whereas h× vanishes
and h+ reaches half of its maximum when viewed edge-on at ι = 90◦.

While the consideration of a binary system on circular orbits represents an idealized scenario, it
highlights fundamental physical mechanisms underlying the inspiral of compact binary systems. The
previous considerations did not yet include the backreaction, meaning that the emission of grav-
itational radiation removes energy and angular momentum from the system, causing the orbit to
shrink.
The radiated energy budget is the sum

E = Epot + Ekin = −Gm1m2

2R
, (1.67)

of the potential energy Epot and kinetic energy Ekin. This implies that as the binary emits GWs, its
orbital energy becomes increasingly negative. To compensate for this loss, the orbital separation R
must decrease over time, while the orbital frequency ωs increases in accordance with Eq. (1.64). The
total radiated power over a solid angle Ω in the quadrupole approximation

Pquad =
dEquad

dt
=

r2c3

16πG

Z
dΩ⟨ḣ2

+ + ḣ2
×⟩ =

32

5

c5

G

�GMωgw

2c3

�10/3

, (1.68)

grows with rising ωgw, further enhancing the energy loss and driving the system into a self-reinforcing
inspiral. Ultimately, this emission process will lead to the merger of the two compact objects. Through-
out the inspiral, the assumption of quasi-circular orbital motion remains valid as long as the orbital
frequency evolves slowly, i.e., as long as

ω̇s ≪ ω2
s . (1.69)

In this regime, one can obtain an expression for the GW frequency

fgw(τ) =
1

π

� 5

256

1

τ

�3/8�GM
c3

�−5/8

, (1.70)

as a function of time to coalescence τ ≡ tcoal − t, when equating Eq. (1.68) to the time derivative of
Eq. (1.67) and using the relation fgw = ωgw/(2π). Equation (1.70) demonstrates that GWs emitted
by coalescing compact binaries exhibit a characteristic time-dependent frequency increase, commonly
referred to as the chirp signal. This behavior is shown in Figure 1, which depicts the GW signal
GW170817, observed as part of the multi-messenger detection of a BNS merger.

1.3.4 Gravitational-waves as cosmological probes

Traditionally, the expansion rate of the Universe has been inferred from EM observations, as detailed
in Subsec. 1.2.2. More recently, GW astronomy has emerged as a powerful tool in cosmology, offering
an independent avenue to measure the Hubble constant. Central to this approach are standard sirens,
the GW analogues of standard candles, whose theoretically well-understood, model-predictable prop-
erties enable direct luminosity distance measurements, thereby circumventing the need for traditional
EM distance measurement techniques. This concept was originally introduced by Bernard Schutz in
1986, when he proposed using GW signals from compact binary systems as cosmological probes [583].
To study the evolution of the universe, it is worthwhile to introduce the redshift. In the cosmological
context, the redshift can be related to the cosmic scale factor

z =
a(t0)

a(te)
− 1, (1.71)
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where a(te) refers to the size of the universe when the light was emitted and a(t0) = 1 is the universe’s
size when the light was observed. For present-day astrophysical observations, this equation simplifies
to a(t) = 1/(1 + z). Using this expression in Eq. (1.21), one can define the dimensionless Hubble
parameter E(z) as a function of cosmological redshift

E(z) ≡ H(z)

H0
=
q
Ωm,0(1 + z)3 + Ωk,0(1 + z)2 + ΩΛ,0 , (1.72)

thereby providing a framework that facilitates the formulation of consistent distance measures. In a
flat ΛCDM universe, the luminosity distance DL is equivalent to the redshifted comoving transverse
distance8, DM , and is given as

DL = (1 + z)DM = (1 + z)
c

H0

Z z

0

dz′

E(z′)
. (1.73)

In the regime of low redshifts (z ≪ 1), this equation simplifies to the linear relation with redshift

cz ≈ H0DL, (1.74)

already introduced in Eq. (1.22). Within this framework, obtaining measurements of both the redshift
and the luminosity distance for a given compact binary is essential to determine the value of H0. The
luminosity distance is encoded within the GW strain signal produced by a CBC. The evolution of a
gravitational waveform h̃(f) over frequency can be written in terms of an amplitude Ã and the phase
ϕ as

h̃(f) = Ã(f) exp(−iϕ(f)). (1.75)

At leading order, the two GW polarizations can be written as [409]

h̃+(f) ∝
M5/6

z

DL

1 + cos2(ι)

2
f−7/6 exp(iϕ(Mz, f)), (1.76)

h̃×(f) ∝
M5/6

z

DL
cos ιf−7/6 exp(iϕ(Mz, f) + iπ/2), (1.77)

where Mz ≡ M(1 + z) denotes the detector-frame (or redshifted) chirp mass and the previously
defined observer-source separation r is now expressed in terms of the luminosity distance DL. These
equations demonstrate that the amplitude of the GW strain is inversely proportional to the source’s
luminosity distance. By comparing the observed GW strain with theoretically derived waveform
templates derived from GR, one can infer both intrinsic and extrinsic parameters of an astrophysical
source, including the luminosity distance. The redshift as a key observational parameter in astronomy
stems from the relativistic Doppler effect and reflects

z =
λobs − λemit

λemit
, (1.78)

how much an observed wavelength λobs of an astrophysical source is shifted relative to the wavelength
at the time of emission λemit. When determining the Hubble constant using compact CBCs, the
redshift can be obtained by identifying the host galaxy associated with the GW signal and measuring
the redshift using spectroscopy or photometry.

This approach, termed the bright siren methodology, involves GW events with detectable EM
counterparts. Primary sources are BNS and NSBH mergers, which are expected to emit observable
EM signals during and after the merger. The first multi-messenger observation of a BNS merger
[7, 16, 11] by the LIGO and Virgo detectors [1, 34] is a prime example for inferring H0 [7, 23]. This

8The comoving transverse distance is a measure of distance between two points, perpendicular to the line of sight
to a distant source, in an expanding universe that remains constant over time.
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achievement utilizes the luminosity distance information encoded within the GW signal, combined
with the measured redshift of the identified host galaxy. While current GW observations have not
yet resolved the Hubble tension [170, 247, 245, 248], future observations hold promise for further
constraining this cosmological parameter. In particular, multi-messenger observations offer significant
potential to enhance the accuracy ofH0 measurements by combining GW derived luminosity distances
with EM redshift data [7, 291, 317, 657, 214, 140, 489].

In contrast, the dark siren approach applies to cases in which no EM counterpart can be identified,
and the redshift information must be inferred using statistical methods. Notable examples of these
techniques include the galaxy catalog method [203, 170, 252, 287, 29, 289, 288, 425, 122], the cross
correlation method [477, 455, 92], the spectral siren technique [245, 424, 454, 243], and the Love siren
method [431, 164, 334].

Together, both bright and dark siren methodologies underscore the potential of GW observations
as independent tools for cosmological inference. By enabling direct measurements of the luminosity
distance from the GW signal, without reliance on the cosmic distance ladder or on observations
of the CMB radiation, these approaches provide a novel avenue for constraining key cosmological
parameters, most notably the Hubble constant.
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Compact objects such as BHs, NSs, and white dwarfs are evolutionary endpoints of stars. Once nuclear
fusion ceases, they form as relics of stellar evolution through gravitational collapse, as illustrated in
Figure 2.1. The final outcome depends on the progenitor star’s mass, composition, and evolutionary
history [671].

In contrast to normal stars, which rely on outward thermal pressure from nuclear fusion to balance
inward gravitational attraction, compact objects lack the nuclear fuel necessary for fusion and thus
cannot generate the heat required for stability [353]. Consequently, the pressure supporting compact
stars in hydrostatic equilibrium arises from different mechanisms.

Low- and intermediate-mass stars (up to ∼ 8 M⊙) evolve into white dwarfs and are supported
by electron degeneracy pressure.1 High-mass stars (roughly 8–20 M⊙) undergo gravitational collapse
after a SN explosion during which protons and electrons can combine to form neutrons via inverse
beta decay, thereby creating neutron-rich objects denoted as NSs. The remnant core is stabilized by
neutron degeneracy pressure. However, there is a theoretical upper mass limit commonly referred to
as the Tolman-Oppenheimer-Volkoff limit [638], beyond which even the neutron degeneracy pressure
cannot prevent gravitational collapse. In these cases, no known form of degeneracy or internal pressure
can resist a gravitational collapse, resulting in the formation of a singularity within an event horizon
[479, 588]. Hence, compact objects surpassing this upper-mass bound collapse into BHs.2

All compact objects exhibit substantially larger mass-to-radius ratios than ordinary stars, resulting
in densities that far exceed those of conventional atomic matter. The concept of compactness is often
expressed as a dimensionless ratio,

C =
GM

Rc2
, (2.1)

in which M and R represent the mass and radius of the compact object. The compactness pa-
rameter C exhibits a broad spectrum of values depending upon the type of compact object. For
non-rotating (Schwarzschild) BHs, the compactness of a non-rotating (Schwarzschild) BH is exactly
C = 0.5.3 In the case of rotating (Kerr) BHs, the horizon radius decreases with increasing spin,
reaching R = GM/c2 in the extremal limit, where the compactness would attain its maximum value
of C = 1 [157]. In contrast, NSs exhibit compactnesses of roughly 0.1 − 0.2, and white dwarfs
are characterized by significantly lower compactness parameters, approximately ∼ 10−4 [588, 166].

1In 1931, Chandrasekhar established the Chandrasekhar limit of approximately 1.4 solar masses for white dwarfs,
beyond which electron degeneracy pressure cannot prevent gravitational collapse [163].

2For more detailed explanations, the reader may consult additional literature such as [588, 302].
3cf. Eq (2.2) in Subsec. 2.1.
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Although all three types of stellar remnants are of considerable interest, this work focuses on BHs and
NSs and will elaborate on these compact objects and their related compact binaries in more detail.

FIGURE 2.1
Possible stellar evolutionary tracks for stars of different initial masses and resulting stellar relics such
as BHs, NSs, and white dwarfs. Image taken from [42].

2.1 Black holes

BHs are solutions to the EFEs that define regions of spacetime with gravitational fields so strong
that nothing, neither light nor particles, can escape from it. Although BH spacetimes were theoret-
ically predicted shortly after the formulation of GR4, their astrophysical significance was not fully
appreciated until the seminal work of Oppenheimer and Snyder [479], which explored the possibility
of stellar collapse into these objects.

According to the no-hair theorem, BHs are characterized exclusively by three fundamental physical
properties: mass, angular momentum (spin), and electric charge, rendering them relatively featureless
objects. The mass is the most straightforward property of a BH, determining the strength of its
gravitational field. The size of a non-rotating BH, as determined by the radius of the event horizon,
or Schwarzschild radius,

Rs =
2GM

c2
, (2.2)

4Karl Schwarzschild derived exact solution to EFEs for the gravitational field of a non-rotating, spherically symmetric
body in 1916, yielding the well-known Schwarzschild metric [585, 584]. Other important works include those by
[540, 473, 663, 330].
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is proportional to the mass M of the BH. Based on the mass, BHs can be further classified into three
main categories5:

• Supermassive BHs: with masses ranging roughly from 106 to 109 M⊙,

• Intermediate-mass BHs: with masses ranging roughly from 102 to 106 M⊙, and

• Stellar-mass BHs: possessing masses roughly between ∼ 5− 102 M⊙.

An interesting aspect is that stellar evolution models predict that stellar-mass BHs with masses in
the so-called lower-mass gap (from roughly 2− 3 to 5 M⊙) and in the higher-mass gap (from roughly
50 to 150 M⊙) cannot be directly formed by the gravitational collapse of a star [14].6 While the
upper-mass gap is thought to result from extremely massive stars undergoing pair-instability SNe
resulting in a disruption of a star leaving no remnant, the existence and theoretical foundation for a
lower-mass gap are not fully established [363].

FIGURE 2.2
The one- and two-dimensional posterior probability distributions for the component masses of
GW230529 (teal), two NSBH events GW200105 162426 and GW200115 042309 (orange and blue),
the two confident BNS events GW170817 and GW190425 (pink and green), and GW190814 (red),
where the secondary component may be a BH or a NS. Lines of constant mass ratio are indicated by
dotted gray lines and the gray-shaded region marks the 3− 5 M⊙ range of primary masses. Contours
in the main panel denote the 90% credible regions, with vertical and horizontal lines in the side pan-
els denoting the 90% credible interval for the marginalized one-dimensional posterior distributions.
Image taken from [3].

The lower-mass gap is thought to exist between the upper-mass range of NSs, spanning approximately
2.1 to 2.5 M⊙ [691, 416], and the lightest BHs with masses of roughly ∼ 5 M⊙. GW observations
of compact binary systems offer a promising avenue to further investigate the nature of this mass

5The mass ranges associated with the listed classes of BHs should be considered approximate, as variations exist in
the literature.

6Estimates for the lower and upper-mass gap may exhibit variability depending on the methodology and data used
in their determination. However, the study of [250] indicated an upper limit for stars with a maximum mass of
150 M⊙.
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gap, as they enable to retrieve information on the masses, spins, and tidal properties, thereby en-
abling the characterization of compact objects in this mass region. In particular, tidal deformability
measurements can help to distinguish NSs from BHs [10, 11], while spins can offer clues to formation
mechanisms [131, 35, 505]. With a growing catalog of GW detections [31, 30], hierarchical population-
level analyses can assess the statistical significance of this mass gap, clarifying whether it constitutes
a genuine astrophysical feature. Figure 2.2 shows recent GW observations of CBCs, with component
masses located within or near the lower-mass gap (gray-shaded region for primary mass).
GW230529 was observed during the fourth observing run of the LIGO–Virgo–KAGRA (LVK) detector
network on 2023 May 29 by the LIGO Livingston observatory. The signal originated from a coalescing
compact binary with component masses 2.5− 4.5 M⊙ and 1.2− 2.0 M⊙ reported at the 90% credible
level and was most likely an NSBH merger [3] (shown in teal in Figure 2.2). GW observations of
compact binaries, such as GW230529, provide crucial observational evidence for the existence of
lower-mass gap objects and serve as sources for multi-messenger astronomy, as detailed in Section
2.3.

2.2 Neutron stars

As dense relics of stellar evolution, NSs constitute the most compact form of matter known to exist
in the universe. A typical NS with a mass of 1.4 M⊙ has a radius constrained to 11 km to 13 km
[214, 324, 492] and reaches densities as high as 1015 g cm−3 [384]. These conditions make NSs unique
natural laboratories for exploring both extreme matter and gravity conditions unattainable on Earth,
which are important for nuclear physics and GR. A fundamental open question regarding NSs is
their EOS, which describes the thermodynamic properties of dense matter and governs their chemical
composition and macroscopic structure. Constraining the NS EOS is thus crucial to understand the
properties of strongly interacting matter.

2.2.1 Interior and structure

In theoretical modeling of NS interiors, the relativistic equations of stellar structure, the Tol-
man–Oppenheimer–Volkoff (TOV) equations [480, 637], provide the relativistic version of the hy-
drostatic equilibrium condition for spherically symmetric, non-rotating stellar objects composed of
a perfect fluid. By analogy to its cosmological application, as defined in Eq. (1.11) in Chapter 1,
the idealized fluid model can be used to study the structure of spherically symmetric, non-rotating
objects. In this framework, the stress–energy–momentum tensor

Tµν = (ϵ+ p)uµuν + pgµν , (2.3)

is expressed as a function of the total energy density ϵ which is given by

ϵ = ρc2 + ε, (2.4)

where the total energy density, ϵ, comprises the rest-mass density of the fluid, ρ, and the internal
energy density, ε, which represents the thermal motion of the fluid particles [604]. According to
Birkhoff’s theorem, any spherically symmetric solution to the vacuum field equations must be static
and asymptotically flat, implying that the exterior region around a spherical, non-rotating mass
follows the Schwarzschild metric [585, 584]. In contrast to the exterior solution, the interior of these
objects necessitates a more general metric in form of [604]

ds2 = −e2Φ(r)dt2 +
�
1− 2m(r)

r

�−1

dr2 + r2(dθ2 + sin2(θ)dϕ2), (2.5)
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to describe a static density and pressure profile for a spherically symmetric, self-gravitating perfect
fluid configuration.7 Inserting the metric in Eq. (2.5) and the stress-energy-tensor given in Eq. (2.3)
into the EFEs in Eq. (1.1) yield the TOV equations:

dm

dr
= 4πr2ϵ, (2.6a)

dp

dr
= −(ϵ+ p)

m+ 4πr3p

r(r − 2m)
, (2.6b)

dΦ

dr
= − 1

ϵ+ p

dp

dr
. (2.6c)

The tt-component of the Einstein tensor yields Eq. (2.6a), which describes the mass m enclosed along
the radial coordinate r. Matching this interior solution to the exterior Schwarzschild solution deter-
mines the NS mass M = m(R). The rr-component of the Einstein tensor and the use of conservation
of energy (∇νT

µν = 0) lead to the derivation of Eqs. (2.6b) and (2.6c). For the limit, when m(r) ≪ r
and p(r) ≪ ϵ, Eq. (2.6b) reduces to the Newtonian equation of hydrostatic equilibrium and Φ is
the Newtonian gravitational potential in such a case. Furthermore, Eq. (2.6b) reveals that pressure
not only provides the outward force necessary for hydrostatic equilibrium, but also acts a source of
gravity within the framework of GR, thereby imposing a limit on the maximum mass attainable by
a NS.
When supplemented with an EOS, p = p(ϵ), which relates pressure to the total energy density, the
TOV equations completely determine the structure of a spherically symmetric body of isotropic mate-
rial in equilibrium. Determining the NS EOS remains an area of active research, as it provides crucial
insights into the nature of nuclear matter at densities far exceeding those achievable in terrestrial
laboratories.

The NS EOS encapsulates how pressure relates to energy density (or density) within the star.
Because NSs exhibit vastly different densities at different radii, the star is typically modeled as a
layered structure [385, 386] with an outer/inner crust and outer/inner core, each governed by distinct
microphysics and, hence, by specific EOS regimes. Figure 2.3 depicts the layered structure of a NS,
revealing a thin outer atmosphere (with a radial width of RW = 10−4 km) composed of hydrogen,
helium, and carbon, with a baryon density, nB , of nB < 10−7 nsat, overlying a more complex interior.8

2.2.2 Tidal deformability

The tidal deformation of an object arises from variations in the gravitational field exerted by its
binary companion. While BHs are tidally rigid [104, 173], NSs exhibit a measurable tidal response.
This response results from the presence of an external gravitational field or, in essence, from the
curvature of spacetime from the companion. The resulting deformations manifest as changes in the
multipole structure of the NS’s exterior spacetime, Ql. The extent of tidal deformation,

λl = −Ql

εl
, (2.7)

is given as the ratio of induced multipole deformation in the NS’s exterior spacetime and the strength
of the multipolar tidal field, εl, exerted by the companion [216]. In circular binaries, the fundamental
modes exhibit the strongest tidal coupling [590, 358, 377], with the quadrupole mode (l = 2) being
the dominant contributor [216]. While the quadrupole tidal deformability is the leading-order effect,
higher-order terms such as dynamical tides [268, 513, 582, 615] or spin-tidal couplings to the NS

7The metric is expressed geometric units with G = c = 1.
8The saturation density, or nuclear saturation density, nsat, is the characteristic density at which the strong
nuclear force saturates. The saturation density is typically around 0.16 fm−3 corresponding to approximately
2.7× 1017 kg/m3.
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FIGURE 2.3
Structure of the interior of a NS composed of outer crust, inner crust, outer core, and inner core with
typical radial widths, RW , baryon densities, nB , and assumed particle species shown from the left to
the right. The image is taken from [177]; image credit: Muses collaboration.

rotation [33, 493, 381] introduce further corrections. Although these corrections are essential for
accurately modeling GW signals, their influence is expected to be subdominant for current-generation
detectors [166].

The tidal response of a NS to an external quadrupolar gravitational field, and thereby its tidal
deformability Λ, can be determined by solving the TOV equations in conjunction with a perturbative
equation describing the star’s linear response to external curvature. A quadrupolar (l = 2) linear
perturbation applied to a spherically symmetric star leads to a static, even-parity deformation of the
spacetime metric [308, 309]. The key quantity describing this tidal perturbation is the function H(r),
which satisfies a second-order differential equation [509]

H ′′(r) +H ′(r)

�
2

r
+ eλ(r)

�
2m(r)

r2
+ 4πr (p(r)− ρ(r))

��
+H(r)Q(r) = 0, (2.8)

where the primes denote derivatives with respect to r, and Q(r) encodes matter and metric contri-
butions, given by

Q(r) = 4πeλ(r)
�
5ρ(r) + 9p(r) +

ρ(r) + p(r)

c2s(r)

�
− 6eλ(r)

r2
− (ν′(r))

2
. (2.9)

Here, ρ(r) and p(r) are the energy density and pressure, respectively, c2s(r) is the speed of sound
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squared, and the metric functions λ(r) and ν(r) are defined as

eλ(r) =

�
1− 2m(r)

r

�−1

, ν′(r) = 2eλ(r)
m(r) + 4πp(r)r3

r2
. (2.10)

This second-order differential equation for the metric perturbation H(r) in Eq. (2.8) can be reformu-
lated as a first-order equation by introducing the dimensionless function y(r) ≡ rH ′(r)/H(r). This
yields [509]

ry′(r) + y(r)2 + y(r)eλ(r)
�
1 + 4πr2 (p(r)− ρ(r))

�
+ r2Q(r) = 0, (2.11)

which is integrated outward from the stellar center to the surface. The value of y at the surface
with stellar radius R, yR ≡ y(R), along with the compactness in geometric units C = M/R, fully
determines the tidal Love number9

k2(C, yR) =
8

5
C5(1− 2C)2 [2− yR + 2C(yR − 1)]×

�
2C


6− 3yR + 3C(5yR − 8) + 2C2

�
13− 11yR + C(3yR − 2) + 2C2(1 + yR)

��

+3(1− 2C)2 [2− yR + 2C(yR − 1)} log(1− 2C)
�−1

. (2.12)

This Love number quantifies the star’s quadrupolar deformation in response to an external tidal
field. In GW observations, the imprint of these tidal interactions enters the waveform phase evolution
through the dimensionless tidal deformability,

Λ ≡ λ

M5
=

2

3
k2

� R

M

�5

=
2

3
k2C

−5, (2.13)

in which M denotes the star’s mass and R refers to the star’s radius. Eq. (2.13) reveals that the
amount of tidal deformation depends on the internal structure of the NS, in other words, the NS EOS.
Consequently, GW observations of BNS mergers provide a unique opportunity to constrain the EOS
of dense matter.10 In fact, GW detectors effectively measure a combination of tidal deformabilities,

Λ̃ =
8

13

h
(1 + 7η − 31η2)(Λ1 + Λ2) +

p
1− 4η(1 + 9η − 11η2)(Λ1 − Λ2)

i
, (2.14)

which is more tightly constrained by observational data than individual tidal deformabilities, as
given in Eq. (2.13) due to their strong correlation [253, 655].11 The significance of this property
originates from the tidal deformation of NSs within binary systems, which accelerates the inspiral
rate and imprints a distinctive tidal signature on the GW signal [309, 194, 193] as shown in Figure 2.4
for different tidal deformability values for the case of a BNS and NSBH coalescence. Figure 2.4
demonstrates that increasing tidal deformability accelerates the inspiral and advances the coalescence
time of the binary. This behavior is consistently observed in both BNS and NSBH mergers and affects
the GW phase evolution only during the late inspiral stage around a few hundred Hertz [166, 216, 298].
In contrast, the chirp mass affects the waveform at lower frequencies, approximately around ∼ 100 Hz,
where current GW detectors exhibit greater sensitivity compared to higher frequencies (cf. Figure 2
in [216]).

Tidal interactions play a crucial role in binary systems such as BNS and NSBH mergers, as they
enable constraints on the NS EOS and significantly influence the emission of EM signatures essential
for multi-messenger astronomy. Consequently, subsequent sections offer an examination of these two
binary configurations, focusing on their fundamental properties.

9Love numbers are dimensionless parameters providing a measure of rigidity and deformability of an object in the
presence of an external tidal field. For NSs, typical values between k2 ∼ 0.05− 0.1 [309].

10For example, GW170817 ruled out very large tidal deformabilities [10, 13].
11The symmetric mass ratio, η, is defined as η = m1m2/M2

tot and Mtot refers to the total mass of the binary system.
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FIGURE 2.4
Imprint of different tidal deformabilities on the GW signal for an equal-mass, nonspinning BNS
system (upper panel) and for a binary consisting of a nonspinning 1.4 M⊙ NS and a nonspinning
5 M⊙ BH (lower panel) during the inspiral and merger stage. In the upper subplot, the BNS waveform
was generated with IMRPhenomD NRTidalv2 [322, 349, 626, 210, 213, 212] and the x-axis denotes the
corresponding frequency (top) and time (bottom) for the Λ̃ = 0 binary. In the lower subplot, the
waveform was generated with IMRPhenomNSBH [635] and the upper x-axis denotes the corresponding
frequency for the Λ̃ = 100 binary. Both plots were taken from [166].

2.3 Compact binaries

The primary objective of this study is to investigate the coalescence of compact binaries, which
provides valuable insights into associated multi-messenger signals, strong-field gravitational regimes,
the behavior of matter at supranuclear densities, and stellar formation processes. Generally, double
compact objects in binary systems, such as BNS, NSBH, and binary black hole (BBH) coalescences,
are believed to form through two principal formation channels [88]: isolated binary evolution in galactic
fields [397, 87, 617] and dynamical evolution of stars in dense clusters [508, 66].
In the context of multi-messenger astronomy, this work will focus on compact binaries, specifically
BNS and NSBH systems, which are prime candidates for joint detections of GW and EM signals.
Unlike BBH mergers, BNS and NSBH mergers can produce a diverse array of EM counterparts,
including for example GRBs, synchrotron afterglows [485, 229, 460], and kilonovae [622, 435]. To
date, comparatively few GW detections of BNS and NSBH binaries have been made, while BBH
mergers have been observed in greater numbers [30].
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2.3.1 Binary neutron star mergers

Although the first BNS system, the Hulse-Taylor binary pulsar, was identified exclusively through EM
observations in 1974 [321], it was subsequently recognized that binary relativistic stars are significant
sources of GWs12.

GW observations: To date, two GW observations have provided evidence suggesting the coa-
lescence of BNS mergers. The first detection of a BNS system in GWs, GW170817, occurred in
2017 and revealed a total binary mass of 2.77+0.22

−0.05 M⊙ [10], consistent with the galactic NS binary
population [627]. This event marked the first observation with both derived tidal constraints and
multi-messenger signatures across the EM spectrum [11]. GW190425, the second candidate with a
total mass of 3.4+0.3

−0.1 M⊙, is likely a BNS merger despite being more massive than galactic NS bi-
naries [19], suggesting the formation of more massive NSs in compact binary systems. However, the
absence of an EM counterpart and the limited tidal information in the GW signal complicate efforts
to unambiguously identify the nature of the components in GW190425 [149]. While the GW signal
of the inspiral phase reveals information about the properties of the progenitor NSs, the GW signal
of the post-merger phase encodes valuable insights on the fate of BNS mergers. For both GW170817
and GW190425, GW signals from the post-merger remnants were not detected [12, 284]. This non-
detection is primarily attributed to the limitations of current detector sensitivities [576].

Post-merger evolution: The fate of BNS mergers is determined by intrinsic system properties,
which influence four distinct post-merger evolutionary pathways and consequently impact the prospect
of EM detectability. These remnant scenarios are primarily governed by the remnant mass, Mrem, and
the NS EOS, determining the TOV mass13, MTOV.

14 Figure 2.5 illustrates four different outcomes
after two NSs merged (panels A → B) depending on the remnant mass [576]:

• Mrem ≳ χMTOV: a prompt BH formation occurs (panels B → C) accompanied with an accretion
torus and jet. χ is the threshold for prompt collapse depending on NS EOS and ranges in 1.3 ≲
χ ≲ 1.6 (cf. [576] and references therein).

• 1.2 MTOV ≲ Mrem ≲ χMTOV: a hypermassive NS forms (panels B → D) which will collapse to form
a BH on dynamical time scales of O(1s) (panels D → E).

• MTOV < Mrem ≲ 1.2 MTOV: a supramassive NS forms after the merger (panels A → B → D → F)
and will form a BH on time scales of ≲ 105 s (panels F → G).

• Mrem < MTOV: a massive, stable NS survives the merger (panels F → H).

EM counterpart detection: While for GW190425 no EM counterpart was detected after the GW
trigger, the detection of GW170817 was accompanied by a range of EM signals including a burst of
gamma rays [9, 282] and emission ranging from X-rays to radio spectral regime [11]. In the absence
of a direct detection of GWs from the post-merger, EM observations of ejected and stripped material
can provide complementary insights into the hot nuclear EOS, their remnant fate, short GRBs, and
kilonovae. As indicated, several factors determine whether and how prominently BNS mergers will
produce observable EM signals following the coalescence. Apart from the remnant mass and NS EOS
primarily determining the fate of the BNS merger remnant (BH or NS), other factors such as the mass
ratio [314, 211, 592], the NS spin [211], the composition of ejected material [342], the viewing angle
and the ambient environment can influence the detectability of EM signals. Notably, comprehensive
investigations into the interplay of these factors, as outlined above, remain an active area of research,
with the outcomes of these variations not yet fully elucidated.

12Since then, additional BNS systems have been identified through EM observations (cf. Table 2 in [627]).
13The TOV mass, MTOV, represents the maximum mass that a non-rotating NS can sustain.
14Other factors influencing the post-merger outcome include the mass ratio and spin [216].
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FIGURE 2.5
The fate of BNS merger remnants. Two NSs coalesce until they merge (panels A → B). Depending
on the mass of the remnant, it will either promptly collapse to form a BH with an accretion torus
and jet (panels B → C), or form a rapidly, differentially rotating NS (panels B → D). Depending on
the mass of this NS, it will either be hypermassive, in which case it will collapse to form a BH in
O(1s) (panels D → E), it will be supramassive, collapsing to form a BH in 105 s (panels F → G), or
it will form an infinitely stable NS (panels F → H). Image taken from [576].

2.3.2 Neutron star-black hole mergers

Merger scenarios: Two distinct merger scenarios are possible for NSBH systems, depending upon
their intrinsic properties. For a NS of mass MNS orbiting a BH of mass MBH, tidal disruption occurs
when the tidal gravity gradient across the stellar radius, RNS, exceeds the self-gravity of the NS. This
critical separation distance, dtidal, scales as dtidal ∼ (MBH/MNS)

1/3RNS [77]. When the separation
distance exceeds the innermost stable circular orbit15 (ISCO), dtidal > RISCO, the NS is disrupted,
dispersing neutron-rich material into its vicinity. This disruption is expected to produce an EM
counterpart, while the GW signal rapidly diminishes [374, 426, 635], as illustrated by the orange
GW signal in Figure 2.4. When dtidal < RISCO, the NS is mildly deformed [166], or undergoes tidal
disturbance in the vicinity of the BH [77], resulting in the NS plunging into the BH. Consequently,
no EM counterpart is produced and the GW signal resembles that of a BBH merger, exhibiting a
characteristic ringdown to a steady state [257]. This is illustrated by the blue GW signal in Figure 2.4.

GW observations: Four candidate NSBH mergers (GW190426, GW190917, GW200105,
GW200115) exhibit primary masses consistent with BHs and secondary masses consistent with NSs,
indicating at least four potential detections of such systems [25, 27]. However, the absence of tidal sig-
natures and EM counterparts prevents their definitive identification [149]. Furthermore, BHs involved
in NSBH mergers have systematically smaller spin magnitudes [106] and are less massive (≲ 15M⊙)
than those in BBH systems [687, 679, 106, 3]. In addition to the identified NSBH candidates, events
such as GW230529 and GW190814 warrant particular attention due to their unusual mass configura-
tions. GW230529 likely represents a NSBH merger, involving a 2.5 – 4.5 M⊙ object and a lower-mass
companion consistent with a NS. The presence of a higher-mass object in the merger suggests that
compact objects within the lower mass gap can form and participate in binary coalescences [3].
GW190814 featured a secondary object with a mass of approximately 2.6 M⊙, placing it lower mass
gap between the heaviest known NSs and the lightest BHs. Despite its high SNR, no tidal signatures

15For a non-spinning massive object, the radius of the innermost stable circular orbit, RISCO, is defined as RISCO =
3RS .
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or EM counterparts were observed. GW190814’s unusual combination of component masses, extreme
mass ratio, and inferred merger rate remains unexplained by existing binary evolution models in both
galactic and dense stellar environments. Its discovery poses a significant challenge to current theories
of compact-object formation and may point to new pathways for producing the lightest BHs or the
most massive NSs [24].

EM counterpart detection: Given these insights through GW observations, only a small fraction
(≲ 20 %) of NSBH mergers may have observable EM emission [19, 27, 260, 106, 3]. In fact, no EM
counterpart was observed for the mentioned NSBH candidates. The detectability of EM signals from
NSBH mergers depends on the system’s intrinsic properties. More unequal mass ratios disfavor NS
disruption, whereas more equal mass ratios lead to more significant NS tidal disruption and a larger
remnant mass. Such disruption is more likely in systems featuring low BH masses, substantial BH
spins aligned with the orbital angular momentum (as higher BH spins reduce the horizon radius,
enabling the NS to orbit closer before merger), and NSs with lower compactness, which enhances
their deformability [166]. In general, the latter is expected to be small for NSBH binaries as Λ̃ ∼ q4,
where q refers to the mass ratio [166, 368].
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Both BNS and NSBHmergers are among the most energetically extreme events in the universe, serving
as prime multi-messenger laboratories. These coalescences generate GWs detectable by advanced
ground-based observatories and can emit a diverse array of EM counterparts, including short GRBs,
afterglow emission, and kilonovae. In addition, these events may produce neutrinos, offering further
insight into the merger dynamics. Figure 3.1 illustrates distinct stages of a BNS merger event and
underlying physical processes, highlighting corresponding observational signatures emitted over time.1

The subsequent sections will explore these multi-messenger signatures and their physical processes,
with a focus on GW emission, GRB bursts, afterglows, and kilonovae.
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FIGURE 3.1
Phases of a BNS merger as a function of time, showing the associated observational signatures and
underlying physical phenomena. Abbreviations: black hole (BH); γ-ray burst (GRB); gravitational
wave (GW); interstellar medium (ISM); neutron (n); ultraviolet (UV); electron fraction (Ye). Image
taken from [249] and coalescence inset courtesy from [516].

1Note that the indicated GW signal duration is detector-dependent and increases with lower frequency cutoffs.
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3.1 Gravitational waves

GW detection and the development of waveform models are both fundamental to GW astronomy, as
detections provide the observational data necessary to identify astrophysical events, while waveform
models enable the accurate extraction of source properties. Subsec. 3.1.1 provides an overview of GW
detection, highlighting interferometric GW detectors and essential data analysis techniques used to
extract GW signals from noisy data. Subsec. 3.1.2 presents an overview of gravitational waveform
models used to infer astrophysical properties from observed GW sources.

3.1.1 Detection

Almost a century passed between Albert Einstein’s theoretical prediction of GWs in 1915 [232] and
the first direct GW detection of a BBH merger (GW150914) [6] on September 14, 2015, by the LIGO
and Virgo collaborations, enabled by significant advancements in GW detector technology [1, 34] and
data analysis techniques [18].

Interferometer

The detection of GW signals relies on the interferometric design of GW detectors, which measures
the periodic stretching and compression effects on test masses induced by a GW (cf. Figure 1.3). A
schematic illustration of an interferometer is shown in Figure 3.2.
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FIGURE 3.2
Schematic layout of a GW laser interferometer. The system employs power recycling mirrors and
Fabry-Pérot cavities to enhance laser power and sensitivity. The photon detector measures the phase
difference and thus the length difference of both interferometer arms.

Figure 3.2 illustrates the operational principles of an interferometric GW detector. A laser beam is
introduced into the interferometer to precisely measure differential changes in the lengths of its two
orthogonal arms. The beam splitter divides the laser light into two coherent beams, which propagate
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along the orthogonal arms. At the end of each arm, mirrors reflect the beams back toward the beam
splitter. When a GW traverses the interferometer, it induces differential changes in the arms, causing
one arm to elongate while the perpendicular arm contracts as the GW oscillates through its peaks
and troughs. In the absence of a GW, the reflected laser beams recombine at the output photodiode
and undergo destructive interference, resulting in no detectable signal. However, the passage of a GW
introduces slight variations in the arm lengths, leading to a characteristic interference pattern in the
recombined laser light. The change in arm length, δL, relative to the original arm length, L, produces
a GW strain,

h(t) =
δL

L
, (3.1)

enabling the detection of GWs. The first directly measured GW strain, GW150914, had a maximum
(dimensionless) amplitude of 10−21, which means that the 4 km LIGO arms changed in length by
10−21 × 4× 105 cm = 4× 10−16 cm. Contrasting this length with the proton radius of 10−13 cm, GW
detectors aim to detect length changes of the order of 1/200 of the proton radius with a typical laser
wavelength of the order of 10−4 cm [176].

To achieve such extraordinary sensitivity, GW interferometers incorporate Fabry–Pérot cavities
within their arms. These cavities effectively amplify the optical path length without necessitating
physically longer arms by enabling the laser light to undergo multiple round trips between highly
reflective mirrors. Consequently, a vast number of coherent photons are repeatedly traversed along
the interferometer arms before recombining at the output photodiode [176].

The response of a GW detector to the two fundamental polarization states, h+ and h×, varies
as a function of the source’s sky location and the detector’s orientation. This directional sensitivity
is characterized by the detector’s antenna pattern functions, denoted as F+ and F×. The measured
strain h(t) in an interferometric detector due to an incoming GW signal is given by

h(t) = F+(θ,ϕ,ψ)h+(t) + F×(θ,ϕ,ψ)h×(t), (3.2)

where θ,ϕ represent the polar and azimuthal angles, respectively, specifying the direction of the in-
coming wave relative to the detector, while ψ denotes the polarization angle of the wave.

From detection to the GW signal

Extracting GW signals from detector data involves a series of sophisticated data analysis techniques2

designed to identify, isolate, and characterize extremely subtle spacetime distortions caused by astro-
physical events. During the calibration procedure, the raw detector photodiode output is converted
to GW strain data as a time series,

d(t) = h(t) + n(t), (3.3)

containing the actual GW signal, h(t), concealed by noise, n(t). Noise mitigation procedures aim to
identify various noise sources, such as seismic noise, thermal noise, or quantum noise (shot noise and
radiation pressure noise)3. Effective noise modeling, such as glitches, enables the removal of noise
artifacts from the data stream.

The calibrated strain data undergoes a sequence of processing steps, including windowing, whiten-
ing, and bandpassing (cf. Figure 3 in [18]), prior to the application of matched filtering. In this process,
detector data is compared with a bank of theoretical waveform templates representing possible GW
signals. This method maximizes the signal-to-noise ratio (SNR)

ρGW =
⟨d(t)|h(t)⟩p
⟨h(t)|h(t)⟩

, (3.4)

2A simple schematic illustration of required data processing steps in LIGO-Virgo from raw data to the results in
presented in GW catalogs is shown in Figure 1 in [18].

3A more detailed discussion of different noise sources can be found in [137, 18].
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by correlating the data with each waveform template and requires evaluating the noise-weighted inner
product

⟨a|b⟩ = 4ℜ
Z ∞

0

df
ã∗(f)b̃(f)
Sn(f)

, (3.5)

in which ã and b̃ are the Fourier transforms of the time series a(t) and b(t), respectively, ã∗ is its
complex conjugate, and Sn(f) refers to the power spectral density (PSD) of the noise. The optimal
matched-filtering SNR associated with a given GW signal, h(t), is given through

ρopt =
p
⟨h|h⟩. (3.6)

Once a GW event has been identified, parameter estimation can be carried out to infer the astro-
physical characteristics and properties of the GW source.4

Current and future GW detectors

GW astronomy spans a vast frequency spectrum, each band requiring specialized detection techniques.
Ground-based interferometers are more sensitive in the high-frequency regime (Hz to kHz), in which
GW signals are expected from compact binary inspirals, CCSNe, and pulsars. At the time of writing,
there are several ground-based GW detectors: two Advanced LIGO interferometers located in Hanford
and Livingston in the United States [1], Advanced Virgo in Italy [34], KAGRA in Japan [48, 610, 67],
and GEO600 located in Germany.5 An additional ground-based GW detector, expected to become
operational in the latter half of this decade, is currently under construction in India, thus extending
the LIGO Collaboration observational network [570]. The next (third) generation of GW detectors
includes ET [519, 263, 306, 307] in Europe and CE [8, 541, 241] in the United States, further increasing
sensitivity.

While ground-based detectors are sensitive and optimized for higher frequencies due to seismic
and thermal noise limitations, space-based GW detectors such as the Laser Interferometer Space
Antenna (LISA) [71, 180, 62, 50, 587] will probe the low-frequency (mHz) regime, unveiling mergers
of massive binaries, extreme mass ratio inspirals, and galactic binaries. In addition, Pulsar timing
arrays enable the exploration of ultra-low frequency regimes (in the nanohertz), probing supermassive
BH binaries and stochastic GW backgrounds [208, 41]. The combination of observations across diverse
GW frequency bands, analogous to multi-wavelength EM astronomy, provides a comprehensive view
of the universe.

3.1.2 Waveform models

Gravitational waveform modeling is indispensable for detecting and interpreting GW signals. GWs
convey comprehensive information about their originating astrophysical sources. To determine the
astrophysical parameters of a GW source, it is necessary to compare observational data with theo-
retical gravitational waveform templates. These templates are constructed within the framework of
GR under different approximations, enabling the characterization of a GW signal in terms of a set
of intrinsic and extrinsic parameters. While BBH mergers are described by 15 parameters, additional
physics must be included to model BNS systems due to the finite-size effects of NSs. In particular,
the leading-order tidal deformabilities (Λ1,Λ2) account for how each star deforms in its companion’s
gravitational field. More advanced models may also include higher-order tidal deformabilities or quan-
tities like f-mode oscillation frequencies, which encode additional information about the NS EOS. For
quasi-circular binaries with tidal effects at leading order, the set of BNS parameters is given as [534]:

4A more detailed explanation of required statistical and computational methodologies will be provided in Chapter 4.
5The GEO600 detector primarily serves as a testbed for fundamental research and the development of advanced
technologies for GW detection.
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θBNS = {m1,m2, aspin1,ϕspin1, θspin1, aspin2,ϕspin2, θspin2,Λ1,Λ2| {z }
intrinsic

, DL, tc,ϕc,α, δ, ι,ψ| {z }
extrinsic

}. (3.7)

Intrinsic parameters, such as the masses (m1,m2), spins
6 (aspin1,2,ϕspin1,2, θspin1,2), and leading-order

tidal deformabilities (Λ1,Λ2) affect the physical dynamics of the system, while extrinsic parameters
describe observer-dependent aspects, including the source’s luminosity distance DL, sky location
(right ascension α; declination δ), inclination angle ι, polarization angle ψ, and time and phase of
coalescence (tc,ϕc).
Given the complexity of GW dynamics and the need for accurate waveform modeling, different theo-
retical approaches have been developed to predict gravitational waveforms. These approaches vary in
terms of their accuracy, applicability range, and computational feasibility, giving rise to four distinct
approaches:

• Numerical relativity (NR) waveforms,

• Post-Newtonian (PN) waveforms,

• Effective-One-Body (EOB) waveforms, and

• Phenomenological waveforms.

Figure 3.3 depicts three distinct stages of a CBC, namely, inspiral, merger, and ringdown (IMR),
for the case of a NSBH coalescence. Additionally, the figure outlines different gravitational waveform
modeling approximation schemes and their respective domains of applicability.

Inspiral: The two bodies orbit each other with decreasing separation due to the emission of grav-
itational radiation. Throughout most of the binary evolution, orbital velocities remain relatively low
compared to the final merger stage7, allowing for approximation through analytical expansions. EOB
[190, 142, 143, 191] and PN frameworks [108] provide successful descriptions of this phase.

Merger: Analytical schemes break down in the late inspiral phase around the time of merger
until the two bodies plunge together to form a single, highly dynamical object. In this regime, NR
simulations model highly relativistic effects that dominate this brief but strongly non-linear stage.

Ringdown: The GW signal following the merger is shaped by the nature of the remnant and ex-
hibits characteristic spectral signatures. In the case of a direct plunge of the NS into the BH, the
remnant rapidly collapses, leaving minimal GW emission. The newly formed BH stabilizes by radiat-
ing residual perturbations as quasi-normal modes, described by perturbation theory. For the case in
which the tidal separation distance exceeds the ISCO, the NS is tidally disrupted. This leads to char-
acteristic modifications in the gravitational waveform and may result in detectable EM counterparts
due to the formation of an accretion disk and potential mass ejection (cf. Figure 3.3). In contrast,
post-merger GW signals from certain BNS mergers could provide insight into the hot nuclear EOS
under conditions inaccessible in terrestrial experiments [85, 340].

NR waveforms: Solving the complete set of the EFEs analytically8 is generally unattainable due
to their inherent nonlinearity and complexity. NR addresses this challenge by utilizing computational
methods and algorithms to accurately model the fully nonlinear relativistic dynamics of merging com-
pact objects in late inspiral, merger, and ringdown (cf. Figure 3.3). A necessary precursor was the

6The dimensionless spin magnitudes are defined as 0 ≤ aspin1,2 ≡ S1,2/M2
1,2 ≤ 1, where S1,2 and M1,2 denote binary

spins and masses, respectively. Spin orientations are given by the polar and azimuthal angles θspin1,2,ϕspin1,2,
relative to the line of sight.

7For example, the two BHs involved in the first GW detection, GW150914, reached a relative velocity of v/c ∼ 0.6
at merger [6].

8Known analytic solutions of the EFEs include the flat Minkowski spacetime in special relativity, the Schwarzschild
and Kerr spacetimes describing single BHs, and the FLRW spacetime used for the standard model of cosmology.
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FIGURE 3.3
Schematic illustration of gravitational waveform as a function of time for a non-spinning 1.4 M⊙ NS
merging with a non-spinning 5 M⊙ BH at a distance of 100 Mpc, generated with IMRPhenomNSBH

[635], similar to [166]. Different merger stages such as inspiral, merger, and ringdown are illustrated at
the top, while gravitational waveform-model approximation schemes and their range of applicability
are indicated on the bottom. In this configuration, the NS undergoes tidal disruption prior to merger,
imprinting characteristic signatures on the GW signal and giving rise to EM counterparts, thereby
potentially enabling multi-messenger observations.

decomposition of spacetime into separate spatial and temporal components, known as 3+1 decompo-
sition [60].9 By foliating the four-dimensional manifold into a sequence of three-dimensional spacelike
hypersurfaces at constant time, the EFEs can be recast into a form suitable for numerical integration.
While the ADM formalism developed by Richard Arnowitt, Stanley Deser, and Charles W. Misner
was groundbreaking, subsequent developments have refined and extended the 3+1 decomposition to
improve numerical stability and accuracy.10 Another significant milestone in NR was the successful
simulation of BBH mergers [515, 152, 72]. These simulations proved exceptionally challenging due to
problems such as singularities and the need for stable numerical algorithms. Nowadays, various NR
codes are available that model the nonlinear relativistic dynamics of compact binary systems, en-
abling the extraction of highly accurate gravitational waveforms throughout the late inspiral, merger,
and post-merger phases: BAM [634, 134, 133, 132], THC [530], SACRA [676], Whisky [68, 280], or
SpEC [350] and SpECTRE [351].

Although NR waveforms provide the most accurate representation of the highly nonlinear dynam-
ics in the late inspiral and merger phases, the computational expense of running full NR simulations
makes them impractical for GW data analysis. Consequently, waveform models incorporate NR results
to capture the merger and ringdown regimes and calibrate their waveforms against NR waveforms to

9The 3+1 decomposition, introduced by Richard Arnowitt, Stanley Deser, and Charles W. Misner in their ADM
formalism, has been crucial for understanding spacetime dynamics in GR and has become foundational in the field
of NR.

10Notable examples include BSSN Formalism [459, 593, 594, 82] or the Z4 formulation [120, 121].
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enhance accuracy during these stages. As a result, NR simulations serve as important prerequisite
and testbed for GW modeling.

PN waveforms: At low velocities (v ≪ c) and relatively wide separations, the PN formalism can
accurately describe the inspiral phase (cf. Figure 3.3). As the system approaches the last orbits before
merger, fully nonlinear effects become dominant, and purely PN treatments lose accuracy. Moreover,
GWs are not generated only by the quadrupole moment as derived in Subsec. 1.3.2, but exhibit a
multipolar structure that represents an expansion in powers of (v/c). Furthermore, the influence of the
source’s self-gravity, arising from its gravitational binding, cannot be neglected. Incorporating these
effects leads to an expansion of order O(v2/c2). Hence, the PN expansion at n-th order will contribute
to O(v2n/c2n) term, yielding higher-order curvature corrections for both the orbital dynamics and
the gravitational waveform.
In Subsec. 1.3.3, the consideration of a binary inspiral under adiabatic approximation11 showed that
the GW luminosity,

F = −dE
dt

, (3.8)

originates from the change in orbital energy, E, averaged over a period, where E = EMtot. The idea
of the PN formalism is to compute the orbital phase, Φorb, of a binary as a perturbative expansion
in a small parameter v = πMtotfgw. In the case of circular orbits, one can use the energy balance
equation, Eq (3.8), and Kepler’s third law to obtain a description of the evolution of the orbital phase
[144]

dΦorb

dt
=

v3

Mtot
, (3.9)

dv

dt
= − F(v)

E′(v)Mtot
, (3.10)

or equivalently,

Φorb(v) = Φref +

Z vref

v

dvv3
E′(v)
F(v)

, (3.11)

t(v) = tref +Mtot

Z vref

v

dv
E′(v)
F(v)

, (3.12)

in which E′ corresponds to the derivative of the binding energy, tref and Φref are integration constants,
and vref is an arbitrary reference velocity. Different PN treatments emerge from the freedom to
handle the right-hand side of Eq. (3.9) via distinct approaches, provided that the correct order of the
expansion is maintained. However, the expressions F and E are indispensable for any PN calculation.
Recent advances have yielded energy up to fourth-PN (4PN) order and gravitational waveform and
flux expressions up to 4.5PN order [109]. Substituting these refined energy and flux expressions into
Eqs. (3.9) and (3.10) yields a rigorous formulation for the phase’s time evolution. Waveforms developed
through this approach belong to the so-called Taylor family [144]. These time-domain PN models
can accurately describe early inspiral dynamics but are impractical for large-scale GW searches in
noisy data and for parameter estimation.

The stationary phase approximation12 (SPA) provides an approach to convert slowly evolving PN

11The adiabatic approximation assumes that the fractional change in orbital velocity per orbital period is negligibly
small, implying a slow and gradual evolution of the orbit, cf. Eq.(1.69).

12The SPA approximates the Fourier transform of a slowly evolving inspiral waveform by assuming that the dominant
contribution arises from stationary points where the phase varies least rapidly. This is valid under the assumption
of a slowly moving binary during the inspiral phase where v2/c2 ≪ 1.
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time-domain signals into closed-form frequency-domain expressions. These frequency-domain expres-
sions facilitate GW searches and data analysis. Under this approximation, Eqs. (3.9) and (3.10) can
be equivalently written as [144]

dΨ

df
= 2πt, (3.13)

dt

df
= −πM2

tot

3v2
E′(f)
F(f)

, (3.14)

enabling the computation of Fourier-transformed PN waveforms. One of the most commonly used
frequency-domain models is the TaylorF2 model which is given in the SPA approximation as

h̃SPA(f) = Af−7/6 exp−iΨ(f), (3.15)

where A corresponds to the amplitude and Ψ is the GW phase in the frequency domain [144]. This
waveform is characterized by a fully analytical frequency-domain representation, which enables ex-
ceptionally efficient computation. Nevertheless, as the binary system nears the last stable orbit before
the merger, nonlinear effects start to dominate, thereby diminishing the accuracy and applicability
of PN treatments.

EOB waveforms: To address the limitations of the PN approach, the EOB formalism was developed
[142, 191, 143]. Central to this approach is the idea to transform the relativistic two-body problem,
up to the highest available PN order, into an equivalent one-body problem with a reduced mass µ in
an effective background metric, geffµν . In polar coordinates (r,ϕ), the EOB metric takes the form [144]

ds2eff = geffµνdx
µdxν = −A(r)dt2 +

D(r)

A(r)
dr2 + r2(dθ2 + sin2 θdϕ2), (3.16)

in which the coefficients A(r) and D(r) can be written as a Taylor expansion. The system’s dynamics
can be described with the Hamiltonian

Hreal(r, pr, pϕ) = µĤreal = Mtot

s
1 + 2η

�Heff − µ

µ

�
, (3.17)

in which pr and pϕ represent the conjugate momenta, µ is the reduced mass as introduced in Sub-
sec. 1.3.3, η refers to the symmetric mass ratio and is related to the effective Hamiltonian given as
[142, 191]

Heff(r, pr, pϕ) ≡ µ

vuutA(r)

"
1 +

A(r)

D(r)
p2r +

p2ϕ
r2

+ 2(4− 3η)η
p4r
r2

#
. (3.18)

Solving the Hamiltonian system

dr

dt̂
=

∂Ĥreal

∂pr
(r, pr, pϕ), (3.19a)

dϕ

dt̂
=

∂Ĥreal

∂pϕ
(r, pr, pϕ), (3.19b)

dpr

dt̂
= −∂Ĥreal

dr
(r, pr, pϕ), (3.19c)

dpϕ

dt̂
= F̂ϕ(r, pr, pϕ), (3.19d)
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in which Ĥreal refers to the dimensionless Hamiltonian introduced in Eq. (3.17), t̂ = t/Mtot, and
ω̂ ≡ dϕ/dt̂, yields the orbital motion of the binary constituents. To derive the EOB waveform, it is
essential to incorporate the dissipative effects associated with gravitational radiation when mapping
the orbital dynamics to the emitted multipolar waveform. These effects are encoded in the radiation
reaction force F̂ϕ, which drives the loss of angular momentum due to GW emission. The radiation re-
action provides a self-consistent coupling between the conservative dynamics, governed by the effective
Hamiltonian, and the emitted radiation, enabling the binary to inspiral and merge. To enhance the
physical accuracy of the resulting waveforms, the EOB formalism can be further refined by calibrat-
ing its parameters to NR waveforms. Depending on the approach taken to compute the Hamiltonian
Heff and the coefficients in Eq. (3.16), there are two types of EOB waveforms: TEOBResum and
SEOBNR.

A key model for the studies presented in this work is SEOBNRv4 ROM NRTidalv2. SEOB-
NRv4 is a calibrated waveform model for spinning, non-precessing BBHs, developed using pertur-
bation theory waveforms and NR simulations [118]. This model extends to higher positive aligned
spins and more spin-asymmetric configurations compared to previous versions. By incorporating an
NRTidal description, as detailed below, the BBH model is extended to a BNS model. For fast and
efficient waveform generation, a reduced order model (ROM) was constructed for this model [522].

Phenomenological waveforms: While EOB models are more physically grounded, their compu-
tational cost makes them inefficient for GW data analysis, which requires generating millions of
waveforms. Phenomenological models address this limitation by utilizing analytically motivated ap-
proaches, calibrated to NR waveforms, enabling significantly faster waveform generation. Central to
this approach is the decomposition of the gravitational waveform13

h̃ = Ã(f)e−iψ(f), (3.20)

into the amplitude Ã(f) and the phase ψ(f) and to construct different approaches for the inspiral
(insp), intermediate (int), and merger-ringdown (MR) regime in respective frequency domains14:

h̃(f) =





Ãinsp(f) exp[−iψinsp(f)] f < f1,

Ãint(f) exp[−iψint(f)] f1 ≤ f ≤ f2,

ÃMR(f) exp[−iψMR(f)] f > f2.

(3.21)

Whereas Ãinsp and ψinsp are modeled on PN/EOB expansions at low frequencies in the early inspiral,

ÃMR and ψMR are fitted to NR waveforms at high frequencies in the late inspiral, merger, and
ringdown stages. An intermediate or transition segment of Ãint and ψint ensures continuity and
smoothness in amplitude and phase at the matching frequencies. Similarly, the phase is modeled
using a decomposition motivated by the PN expansion of the GW phase for quasi-circular binaries
in the frequency domain. This decomposition of the phase

ψ(f) = ψPP(f) + ψSO(f) + ψSS(f) + ψT(f) + ... , (3.22)

captures distinct physical contributions such as the non-spinning point-particle dynamics ψpp, spin
effects such spin-orbit ψSO and spin-spin ψSS contributions, and tidal interactions ψT.

15 Higher-
order spin contributions, including cubic-in-spin terms, as well as spin–tidal coupling effects, are not
incorporated in this decomposition, but may be incorporated in extended PN frameworks to improve
the accuracy of the phase model.

This piecewise construction is the foundation of phenomenological IMR waveform models, or so-
called IMRPhenom models, which have the advantage that these templates are computationally

13Note that this thesis focuses on frequency-domain phenomenological models.
14cf. Figure 4 in [349].
15For BBH coalescences, tidal effects are zero and do not necessitate the inclusion of tidal phase contributions. In
contrast, tidal contributions become significant when at least one NS is present in a CBC.
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fast to generate, thus ideal for large-scale data analysis and parameter-estimation studies. Different
phenomenological models have been developed including IMRPhenomB [46], IMRPhenomC [574],
IMRPhenomD [322, 349], IMRPhenomP [297], IMRPhenomXAS [511], IMRPhenomXHM [273],
and IMRPhenomXP [512]. For the purpose of this work, more focus will be given to the model
IMRPhenomD.

IMRPhenomD describes non-precessing BBH coalescences throughout the different stages men-
tioned above [322, 349]. The amplitude is constructed by deriving the inspiral amplitude from a
re-expanded SPA amplitude, the MR amplitude is modeled as a Lorentzian around the main ring-
down frequency, and the intermediate amplitude is modeled as a four-degree polynomial function
[322]. The PP phase, ψpp, in IMRPhenomD is based on the TaylorF2 phase, whereas spin-orbit
contributions are included up to 3.5 PN order [119] and spin-spin contributions up to 2PN order
[61, 444]. Furthermore, IMRPhenomD includes information obtained from the SEOBNRv2 model
[626] in the early inspiral stage, while the intermediate and merger-ringdown regime is informed
through NR simulations.

NRTidal models: BBH systems do not require the incorporation of matter effects. However, when
a NS is involved, these effects impart additional signatures in GW signals as illustrated in Figure 2.4
in Subsec. 2.2.2. Consequently, phenomenological waveform models for BBHs can be enhanced by
incorporating tidal contributions. This augmentation is expressed as

h̃Tidal = h̃PP · (ÃNRTidale−iψNRTidal

), (3.23)

and facilitates the modeling of gravitational waveforms from BNS and NSBH mergers through the
NRTidal framework introduced in [213]. The main idea is to derive a closed-form approximation for
the tidal phase contribution ψT in Eq. (3.22), calibrated to NR simulations obtained with different
EOSs.16 The non-spinning tidal effects appear in the GW phase at 5PN order. Beyond this, analytical
progress has led to partial results extending to 7.5PN [195] and beyond, especially in the context of
dynamical tides [615]. For the example of IMRPhenomD NRTidalv2 [322, 349, 626, 210, 213, 212],
the tidal phase contribution can be obtained through

ψT (x) = −κT
eff

39

16η
x5/2P̃NRTidalv2(x), (3.24)

in which κT
eff refers to the effective tidal coupling constant and describes the dominant tidal and mass

ratio effects, x = ω̂2/3, whereas ω̂ = Mtotω is the dimensionless GW frequency with Mtot being the
total mass , and P̃NRTidalv2 is the Padé approximant. The effective tidal coupling constant is related
to the mass-weighted tidal deformability through Λ̃ = 16/3 ·κT

eff [212]. While the GW phase is crucial
for extracting binary properties, accurate amplitude modeling is important and requires a correction,
which for NRTidalv2 takes the form [212]

ÃNRTidalv2
T = −

r
5πη

24

9M2
tot

DL
κT
effx

13/4 1 +
449
108x+ 22672

9 x2.89

1 + d x4
, (3.25)

in which d is obtained by fitting. The recent NRTidalv3 model is based on a larger set of NR BNS
waveforms including various total masses, EoSs, and mass ratios, includes a mass-ratio dependence of
the fitting parameters in the calibrated model, and incorporates dynamical tides (cf. [2] and references
therein).

16In addition to the tidal phase contribution, also spin effects entail information about the EOS because that part of
the phase depends on the spin-induced quadrupole and, hence, need to be considered for an accurate description
[298]. However, the NS’s spin is small enough that the tidal deformability often provides the dominant EOS imprint.
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3.2 Electromagnetic signatures

Compact binary mergers involving at least one NS can generate a range of EM signals due to the
extreme energies and matter dynamics involved. The formation of ultra-relativistic jets can produce
GRBs, while the interaction of these jets with the ambient medium gives rise to broadband afterglow
emission. Furthermore, the ejection of neutron-rich material during the merger powers an EM tran-
sient known as a kilonova. The physical mechanisms underlying these transients will be discussed in
detail in the following subsections.

3.2.1 Gamma-ray bursts and afterglows

GRBs are among the most energetic astrophysical phenomena, characterized by intense EM emission
spanning energy ranges from tens of keV to several MeV [680]. The initial release of energy, predomi-
nantly in hard X-rays and soft γ-rays, is commonly termed as prompt emission. This phase is followed
by a prolonged, gradually decaying afterglow emission, which extends across the entire EM spectrum
and persists over timescales ranging from days to years.
GRBs are broadly categorized into two classes based on their observed duration17 of the prompt emis-
sion: short-duration GRBs (≤ 2 seconds) are thought to originate from compact binary mergers (BNS
or NSBH), whereas long-duration GRBs (≥ 2 seconds) are typically associated with core-collapse of
massive stars [669, 487, 10].18 In both scenarios, a compact object surrounded by a massive accretion
disk launches a GRB jet through the Blandford–Znajek mechanism [114], extracting rotational energy
from a magnetized BH to power the prompt and afterglow emission. This energy extraction mech-
anism is considered to be an important component of central engine models that power GRBs and
provides the energy reservoir for the relativistic outflows described by the so-called fireball model19,
which is illustrated in Figure 3.4. In this broad conceptual framework, a GRB is described as an
ultra-relativistic outflow or blastwave, regardless of the progenitor system (compact binary merger
or massive star collapse) or GRB classification (short or long) as indicated in Figure 3.4. Central to
this idea is the formation of a compact object as central engine (in most cases a newly formed BH
or a rapidly spinning magnetar) surrounded by an accretion disk, which launches an ultra-relativistic
jet into the surrounding ambient medium giving rise to the prompt emission and afterglow. From a
theoretical perspective, GRB prompt emission and afterglow are distinguished based on the physical
regions where radiation is produced. However, in practice, differentiating between internal and exter-
nal emission is difficult [680]. The fireball model continues to serve as a general theoretical framework
for understanding key features of GRBs20, including both the prompt emission and the extended
afterglow. However, over time, it has been progressively refined through additional theoretical devel-
opments.

Prompt emission: Following the formation of a central engine after a compact binary merger or
the collapse of a massive star, a portion of the released energy is emitted as GWs and neutrinos,
while another fraction is converted through accretion onto the central engine into an ultra-relativistic
outflow of photons and baryons, forming a collimated jet. As relativistic outflows are launched with
variability in their Lorentz factors, faster ejecta shells will catch up with slower ones, creating colli-
sions or internal shocks within the outflow. Internal shocks convert kinetic energy into high-energy

17The duration or T90 statistic is defined as the time interval between the epochs when 5% and 95% of the total
fluence is detected, with main limitations being due to detector energy bandpass and sensitivity.

18For short GRBs, T90 < 2 s, with an average T90 ∼ 0.5 s, while for long GRBs T90 > 2 − 3 s with an average of
T90 ∼ 30 s. However, the origins of sGRBs and lGRBs remain uncertain, with observations like GRB 211211A
challenging this classification, cf. Chapter 8.

19The fireball paradigm was first proposed by Mészáros & Rees [433] and Waxman & Piran [659] in the early 1990s
to account for the extremely high-energy and non-thermal spectra observed in GRBs.

20cf. [276] for a recent review.
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FIGURE 3.4
Illustration of the two main GRB classes and hypothesized progenitors in the framework of the
fireball model. Short GRBs are typically associated with compact binary mergers, while long GRBs
are connected to massive star collapses. In both cases, the accretion of matter onto a newly formed
central engine powers the GRB jet released into the surrounding ambient medium. The internal shock
produces γ-rays as part of the prompt emission, and the external shock produces the GRB afterglow
ranging from γ-rays and X-rays to optical (O) and radio (R) waves. Own illustration oriented towards
[433, 275].

photons, producing high-energy photons that manifest as the initial spikes in the prompt emission.
Consequently, prompt-emission light curves exhibit highly irregular temporal structures with complex
observational features [680]. To this day, the driving mechanisms that produce the highly variable
prompt emission remains poorly understood and an active research area. A number of alternative
models have been proposed to explain the prompt emission [220, 339, 227, 91, 147], indicating that
the prompt emission could be multi-component or dominated by different physical processes.

After the prompt gamma-ray emission, many GRBs exhibit a prolonged plateau phase in their
X-ray afterglow (cf. Figure 3.1). Two leading explanations for this plateau involve either (i) extended
energy injection from the central engine [474, 681] or (ii) spin-down of a newly formed magnetar that
transfers rotational energy to the expanding shock [189, 683, 439]. Once the plateau phase ends, the
afterglow light curve typically transitions to a steeper decay consistent with standard GRB afterglow
modeling.

GRB afterglow: Unlike the prompt emission, the GRB afterglow is more comprehensively under-
stood and can be modeled by describing the dynamics of a relativistic blast wave interacting with
the circumburst medium. As it decelerates, the blast wave shocks the surrounding matter, requiring a
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treatment based on relativistic shock physics. Across the non-magnetized shock front, three conserva-
tion laws govern the physical condition of the shocked plasma: baryon number, energy, and momentum
fluxes. These conservation equations can be reduced into a system of equations (cf. Eqs. (35-37) in
[369], see also [113, 543]), which can be solved to describe relativistic shocks propagating into the
upstream medium. During the deceleration phase, two shocks form: a forward shock (FS) propagating
into the external medium and a reverse shock (RS) propagating backward into the ejecta (cf. Fig-
ure 3.4). Multi-wavelength observations of GRB afterglows suggest that their dominant emission
component arises from the external forward shock, exhibiting a broadband spectrum described by
a broken power law [680].21 Particles, primarily electrons and protons, that are accelerated within
these shock fronts, produce intense, broadband, non-thermal radiation via synchrotron emission at
the shock front. The flux at the peak of the spectrum is given as [369]

fν,max =
(1 + z)L′

νΓ

4πD2
L

≈ NtotP
′
ν,maxΓ

4πD2
L

, (3.26)

in which L′
ν is the luminosity in the jet comoving frame, Γ is the Lorentz factor, Ntot is the total num-

ber of electrons contributing to radiation at frequency ν, and the power radiated per unit frequency
for one electron at the peak of the spectrum is given as

P ′
ν,max ≈

√
3q3B′

mec2
, (3.27)

in which B′ refers to the magnetic field strength, and q denotes the particle charge, andme denotes the
electron mass. The synchrotron-emitting electrons produce a broadband (radio to X-ray) spectrum
characterized by a multi-segment broken power law. The deceleration of the relativistic outflow causes
temporal softening and fading, resulting in an afterglow with power-law decay across wavelengths.
The flux density can be characterized as

Fν(t, ν) ∝ t−ανβ , (3.28)

in which α denotes the temporal decay index and β refers to the spectral index. A comprehensive
GRB afterglow model necessitates a detailed description of the blast wave, including the FS, RS, and
the contact discontinuity separating them. Emission from the RS is calculated similarly to the FS,
with their relative contributions depending on the microphysical parameter ratios and the Lorentz
factors of both shock fronts [355, 682, 461]. In addition, synchrotron self-Compton (SSC) processes
can be significant in modeling GRB afterglows, as synchrotron photons generated by a population of
electrons may be scattered to higher energies by the same electrons. This mechanism can produce an
additional high-energy bump in the GRB flux. More generally, inverse Compton scattering, includ-
ing SSC and external Compton contributions, plays an important role in shaping the high-energy
afterglow emission.

GRB jet breaks and structures: Observational evidence indicates that GRB outflows are collimated,
as initially proposed by Rhoads [544], based on the detection of jet break in numerous afterglow light
curves. The subsequent steepening of the light curve following a jet break is generally attributed
to two principal effects: the edge effect and the sideways expansion effect [545, 506]. For a tightly
collimated outflow, the bulk Lorentz factor Γ initially satisfies Γ ≫ 1/θj , where θj is the half-opening
angle, so that the emission is beamed. As the jet decelerates over time, Γ drops to ∼ 1/θj at the
so-called jet break time. When Γ < 1/θj , the observer will be able to see the jet’s lateral extent.
This transition alters the radiation emission, leading to a noticeable change in the afterglow’s decay
rate, characterized by a steeper temporal index in Eq. (3.28) with α2 > α1. Additionally, as the
jet undergoes lateral expansion, varying in degree across models, the energy per solid angle directed
toward the observer decreases. Combined with changes in relativistic beaming, this results in a sharp

21Note that in the early afterglow phase, the afterglow is not only the external shock emission, but a superposition of
multiple emission components. These include the external forward shock, the external reverse shock and an internal
dissipation site launched due to late central engine activities [680].
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drop in observed flux, known as a jet break in the afterglow light curve observed across multiple
wavelengths.

The jet break is sensitive to the jet structure. If the jet has a structured energy or angular
profile (i.e., a “structured jet”), the jet break transition can manifest differently, possibly leading to
multiple breaks or a smoother light-curve evolution. Previous numerical simulations indicate that jet
angular energy distributions often exhibit a structured profile, characterized by a highly energetic core
surrounded by power-law wings (cf. Figure 1 in [566]). In this context, the structured jet is a GRB
jet model in which the isotropic equivalent energy of the blast wave, Eiso, is a function of the angle
from the jet axis: Eiso = 4πdE/dΩ ≡ E(θ) [566]. GRB jet structures are commonly approximated
using uniform Top-Hat jets, Gaussian jets and power-law distributions, characterized by a smoothly
varying core, expressed as [566]

E(θ) = E0 exp
�
− θ2

2θ2c

�
Gaussian, (3.29a)

E(θ) = E0

�
1 +

θ2

bθ2c

�− b
2

Power law, (3.29b)

in which each model is parametrized by a normalization E0, a width θc, and a power law index b.22

The structure of the GRB jet is still an active field of research, but is thought to depend on the
jet-launching mechanism and on modifications by the sculpting that occurs as the jet burrows out of
the surrounding ejecta debris. Overall, extensive examinations of GRB afterglows and jet structures
provide insights into the progenitor and its environment, jet properties and the microphysics of
collisionless shocks.

3.2.2 Kilonovae

Kilonovae or macronovae are rapidly evolving, luminous astronomical transients powered by the ra-
dioactive decay of heavy elements synthesized in BNS or NSBH mergers. The existence of these
thermal transient events was first introduced by Li and Paczynski [394], who proposed that rapid
neutron capture in the merger ejecta [387, 229, 262] would lead to radioactive decay, producing a de-
tectable EM transient [366, 436, 549]. In 2017, the first multi-messenger observation of a BNS merger
including a kilonova, AT2017gfo [11, 185], provided compelling evidence that BNS mergers are key
sites of the rapid neutron-capture process (r-process) nucleosynthesis.23

Kilonova modeling: Kilonova modeling necessitates a comprehensive multiphysics approach, inte-
grating (i) hydrodynamics to track the evolution and expansion of merger ejecta, (ii) nuclear heating
from r-process radioactive decay, and (iii) radiative transfer to predict emergent light curves and
spectra. However, the fundamental physics underlying kilonovae can be derived from first principles
and analytical astrophysical considerations, as demonstrated in [436, 435].

Consider ejecta with mass Mej expanding spherically24 at a constant mean velocity v following a
merger. The ejecta propagate into the surrounding medium, reaching a radial extent of R ≈ vt. In
the immediate vicinity of the merger, the ejecta remains extremely hot, with a high optical depth
inhibiting the escape of thermal radiation. Consequently, repeated photon interactions thermalize
the spectrum, resulting in an emission profile that approximates a blackbody. The optical depth and

22This notation is adopted in the GRB afterglow model afterglowpy [651, 566], which is utilized for the multi-
wavelength analysis presented in Chapter 8.

23First kilonova detections associated with GRB observations include. for instance, GRB 060614 [677], GRB 080503
[500], and GRB 130603B [624, 95].

24Spherical symmetry provides a reasonable first-order approximation, as the ejecta undergo substantial lateral
expansion from the merger scale to the kilonova emission peak. Observational studies of the kilonova transient
AT2017gfo support this assumption, revealing a high degree of sphericity based on the blackbody-like nature of its
spectrum [608, 607].
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FIGURE 3.5
The kilonova scenario [436]: Neutron-rich, ultra-dense merger ejecta (Mej ∼ 0.01 M⊙), initially disso-
ciated into individual neutrons and protons (proton fraction Yp ∼ 0.1−0.4), undergo rapid expansion
(v ∼ 0.05− 0.4c) upon ejection from the merger site. Rapid neutron capture onto newly formed light
seed particles proceeds during the first second of expansion, while the ejecta quickly lose internal en-
ergy owing to adiabatic expansion. Radioactive decay of neutron-rich nuclei created by the r-process
heats material at late times and leads to thermal emission once the photon-diffusion timescale be-
comes comparable to the expansion timescale (tdiff ∼ t), on a timescale of days to a week. Simulation
snapshots show a BNS merger with dynamical ejecta indicated by yellow contours. Image from [597].

photon diffusion timescale in this regime are given by [435]

τ ≃ ρκR =
3Mejκ

4πR2
, (3.30a)

tdiff ≃ R

c
τ =

3Mejκ

4πcR
=

3Mejκ

4πcvt
, (3.30b)

in which ρ = 3Mej/(4πR
3) is the mean density and κ is the opacity. As the ejecta expand, the time

required for photons to diffuse out decreases over time, following tdiff ∝ t−1. Eventually, radiation can
escape on the same timescale as the expansion, when tdiff = t [59].25 This marks the characteristic
time, tpeak at which the kilonova light curve reaches its peak defined as

tpeak =

s
3Mejκ

4πβvc
, (3.31)

Assuming ideal blackbody radiation, the temperature of the thermal emission is expressed as

Teff =
� Ltot

4πσR2
ph

�1/4

, (3.32)

in which Ltot is the total luminosity summed over all mass shells and Rph is the radius of the
photosphere. The source’s flux density at a photon frequency ν is then given as

Fν(t) =
2πhν3

c2
1

exp[hν/kTeff(t)]− 1

R2
ph(t)

D2
L

, (3.33)

in which DL is the luminosity distance. Given that the ejecta are at least heated by the radioactive
decay of heavy r-process nuclei, the peak luminosity can be expressed as

25The transparency timescale, governed by the diffusion timescale, is critically dependent on the opacity of the ejecta
to its radiation, a quantity which comes along with great uncertainty [555, 130].



52 To ripples: multi-messenger signatures

Lpeak ≈ Mejė(tpeak) ≈ 1041erg s−1
�ϵth,v

0.5

�� Mej

10−2M⊙

�0.35� v

0.1c

�0.05� κ

1cm2g−1

�−0.65

, (3.34)

in which ė is the specific heating rate and ϵth is the thermalization efficiency. Considering the
broad range of parameter values in BNS and NSBH mergers with ejecta masses ranging from
Mej ∼ 10−3 − 0.1M⊙, opacities of κ ∼ 0.5 − 30 cm2g−1, and velocities of v ∼ 0.1 − 0, 3c, the
peak luminosities from r-process heating can vary within Lpeak ≈ 1039 − 1042erg s−1 [435].

r-process nucleosynthesis: The emission observed from kilonovae is fundamentally linked to r-
process nucleosynthesis, which plays a crucial role in the formation of heavy elements such as gold,
platinum, and uranium. While elements up to iron originate in stellar cores and SNe, heavier elements
are primarily synthesized through the r-process. Acting as a cosmic factory for the heaviest elements,
this process occurs in extreme neutron-rich environments, where rapid neutron capture exceeds β-
decay timescales. Burbidge et al. [145] and Cameron [150] proposed that nearly half of these heavy
elements form under such conditions, producing neutron-rich isotopes essential to cosmic abundances.
The feasibility of r-process nucleosynthesis is governed by the electron fraction, Ye, a key parameter
defined as

Ye ≡
np

nn + np
, (3.35)

in which np and nn denote the number densities of protons and neutrons, respectively. In typical stel-
lar environments, ordinary matter has more protons than neutrons (Ye ≥ 0.5), whereas neutron-rich
conditions (Ye < 0.5) are generally necessary for the r-process to occur [435]. The proton fraction is
highly sensitive to neutrino interactions, which are governed by neutrino radiation transport dynam-
ics within the astrophysical environment where r-process nucleosynthesis occurs.26 Neutron capture
terminates once free neutrons are depleted, leaving behind neutron-rich nuclei that undergo radioac-
tive decay into stable isotopes, depositing energy into the expanding ejecta.27 The resulting release
of nuclear binding energy, occurring across a broad range of decay timescales, follows a power-law
heating rate scaling with t−1.3. This energy deposition drives kilonova emission and becomes directly
observable at the peak luminosity time, L(tpeak) = Lpeak. Therefore, kilonova emission depends on
the composition of synthesized r-process nuclei, making it a diagnostic of the merger’s initial condi-
tions including outflow velocity, ejected mass, and proton fraction.

Sources of neutron-rich ejecta: In both BNS and NSBH mergers, kilonova emission is primarily
powered by two distinct ejecta components: the dynamical tidal ejecta and the post-merger outflows
from the remnant accretion disk [249, 592]. Unlike NSBH mergers, BNS mergers are also expected
to generate shock-driven ejecta in the polar region and winds from the disk can contribute the ejecta
mass budget (cf. Table 2 in [435]). Figure 3.6 illustrates the various ejecta components in a BNS
merger and presents the associated kilonova emission across different timescales.
The tidal ejecta are expelled dynamically into the orbital plane on millisecond timescales, driven by
tidal forces [84, 389] or compression-induced heating at the interface of the merging bodies [314, 84].
The amount of tidal tail ejecta is sensitive to the total binary mass, mass ratio, EOS, and NS spin28

and ranges for BNS mergers between 10−4−10−2 M⊙ with velocities of 0.1−0.3c [314, 527, 125].29 The
expelled neutron-rich ejecta (Ye ≲ 0.25) undergo r-process nucleosynthesis, producing lanthanide-rich
material with high opacities in optical and UV wavelengths. This leads to (near-)infrared-dominated

26Neutrino radiation transport schemes are part of sophisticated NR codes [561, 557, 265, 579] and hence provide
important information for kilonova modeling.

27Radioactive heating is driven by a combination of β-decays, α-decays, and fission processes, as described in [436,
78, 316].

28Studies of [211, 228, 452] have shown that NSs with high-spins can also enhance the amount of dynamical tidal
ejecta.

29For NSBH mergers, the dynamical ejecta mass can range up to ∼ 0.1 M⊙ for similar velocities [373, 258].
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FIGURE 3.6
A schematic representation of ejecta sources in BNS mergers, occurring during or after the merger,
along with the corresponding kilonova emission components observed across different timescales.
Image taken from [470].

emission, corresponding to the red component of the kilonova light curve peaking on a timescale of a
week. A higher mass asymmetry in the binary system (q ≪ 1) results in an increased production of
lanthanide-rich, red kilonova ejecta [556, 84, 389].

Following the merger, an accretion disk forms around the remnant, occurring in all BNS mergers
and in NSBH mergers when tidal disruption takes place outside the BH horizon. The amount of disk
mass depends on the total mass, the mass ratio, the EOS, and the spins of the binary components
[476] and can range between ∼ 0.01 − 0.3 M⊙. At early times, the accretion rate of the disk is high
and mass loss is driven by neutrino heating. If the NS remnant lasts longer than ∼ 50 ms, enhanced
neutrino emission can eject ∼ 10−3 M⊙, with stronger magnetic fields potentially increasing this ejecta
[207, 498, 441]. On timescales of days, accretion disk winds can become the dominant contributor
to the ejecta mass budget, provided the remnant mass remains sufficiently low. These winds can
exhibit a broad range of opacities, from high to low, with intermediate values sometimes referred to
as ’purple’ opacity [470].

The ”blue” kilonova emission in Figure 3.6 is associated with less neutron-rich, high-Ye, lanthanide-
poor shock-heated ejecta, characterized by lower neutron abundances (Ye ≳ 0.30) [438, 498]. Low-
opacity outflows, typically concentrated in the polar regions due to dynamical ejection or disk-driven
winds [445], likely correspond to the blue kilonova component, originating from hot, fast dynamical
ejecta and winds driven by neutrino radiation and magnetic fields from a short-lived hypermassive NS
[342, 653, 174]. The quantity of high-Ye ejecta increases when BH formation is substantially delayed,
as the prolonged NS lifetime sustains a high neutrino luminosity, enhancing proton-rich material
ejection. Hence, in polar regions light r-process elements are produced, which are related to shock-
heated dynamical ejecta and winds from a post-merger remnant, as well as from the accretion disk.
For the case of AT2017gfo, the early blue emission is mainly attributed to shock-driven ejecta, while
the long-lived redder emission to the disk wind ejecta [471].

Overall, the total kilonova emission can be thought of as a combination of the distinct blue and
red components, since both high- and low-Ye components can be visible after merger, while the ratio
of the observed fluxes for both components depends on the observer’s viewing angle. While it is also
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common practice to model these components separately, this will propagate quantitative errors onto
the inferred ejecta properties [342, 668].

Astrophysical sites of r-process nucleosynthesis: The astrophysical environments responsible
for the r-process nucleosynthesis remain one of the most enduring mysteries in nuclear astrophysics.
Apart from BNS mergers and NSBH mergers, CCSNe have long been considered a potential site for
r-process nucleosynthesis. More specifically, collapsars, resulting from the collapse of rapidly rotating
massive stars, are associated with long GRBs and broad-lined type Ic (SN Ic BL) SNe, characterized by
hydrogen and helium deficiency and broad spectral lines [405]. These systems may synthesize r-process
elements through accretion disk processes analogous to those observed in post-merger environments
[598]. Unlike post-merger disks, collapsar disks originate from neutron–proton balanced material. At
high accretion rates, electron degeneracy induces proton-to-neutron conversion via electron capture
[90], maintaining a low proton fraction (Yp ∼ 0.1) [599, 172]. This process drives neutron-rich out-
flows capable of synthesizing the full range of r-process elements, with abundances dependent on the
progenitor’s structure and rotational profile [172, 440].

An alternative scenario involves magnetorotational or jet-driven CCSNe, where a magnetic jet
accelerates neutron-rich material from the proto-NS, a process often associated with hyper-energetic
broad-lined Type Ic SNe [151, 666]. This process requires magnetar-strength magnetic fields and
millisecond rotation periods [472, 295], while jet instabilities [372, 475], especially with weaker fields,
may limit nucleosynthesis to lighter r-process elements [295, 539].

In addition, recent studies [159, 496, 495] provide evidence that magnetar giant flares can produce
r-process elements by shock-heating and ejecting NS crustal material. In particular, observations of
a hard gamma-ray signal following the giant flare SGR 1806-20 match predictions of r-process nucle-
osynthesis, indicating the synthesis of ∼ 10−6 M⊙ of heavy elements [495]. This confirms magnetar
flares as an r-process site, potentially contributing 1–10% of the Galactic r-process element abundance,
with significant implications for early Galactic chemical evolution [495].

3.2.3 Associations of gamma-ray bursts with supernovae and kilonovae

Although GRB duration serves as a preliminary classifier, certain cases remain ambiguous, with
some long GRBs possibly originating from compact-object mergers and some short GRBs potentially
linked to core-collapse events. Therefore, a definitive progenitor identification relies on establishing
the presence of an associated SN or kilonova and ideally an associated GW signal.

Within the broader SN taxonomy, events arise either from core collapse in massive stars or from
thermonuclear explosions of accreting white dwarfs. These subtypes are typically distinguished by
spectroscopic signatures that reveal ejecta composition and kinematics. A definitive indicator of a
GRB-associated SN is the appearance of characteristic SN features in the optical spectrum. So far,
spectroscopically identified SNe associated with GRBs belong to broad-lined H/He-deficient SNe
(Type Ic-BL SNe) (e.g. 1998bw (GRB 980425), 2003lw (GRB 031203), 2006aj (GRB 060218)) indi-
cating high kinetic energies, although not all Type Ic SNs are linked to a GRB (e.g. 1994l, 1997ef,
2002ap) [680]. GRB-associated SNe exhibit significant diversity in peak luminosity, rise times, light-
curve duration, and spectral line widths. A widely supported model attributing the emergence of
both a GRB and a SN signature involves the formation of a millisecond magnetar during the collapse
of a massive star [664, 670, 437, 367]. Extensive searches for SN emission associated with nearby
short GRBs have been conducted, yet no confirmed detections have been reported to date [680]. GW
observations of CCSNe could help to reveal or distinguish between the various explosion mechanisms,
but their complexity makes parameter estimation challenging. Moreover, LIGO and Virgo have yet
to detect such signals [21].

The multi-messenger observation of a BNS merger accompanied by a short GRB signal,
GRB 170817A, and a kilonova, AT2017gfo, confirmed that short GRBs can be associated with com-
pact binary mergers. Apart from AT2017gfo, further evidence for a kilonova was also claimed for
GRB 060614 [677], GRB 080503 [500], and GRB 130603B [624, 95]. Kilonova transients fade over a
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few days, peaking in the optical/infrared on similar timescales, whereas SNe often require about a
week or more to reach peak brightness. Kilonovae are also intrinsically fainter than GRB-associated
SNe and exhibit a distinct redder color evolution due to the presence of heavy, lanthanide-rich r-
process elements in the ejecta. Hence, systematic photometric and color evolution measurements over
days to weeks allow for the distinction between the slower, brighter SN component and the more
rapidly evolving, redder kilonova component.
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In probability theory, two fundamental paradigms shape statistical inference: the Frequentist and
Bayesian approaches. Frequentist methods treat unknown parameters as fixed values, relying on
repeated sampling to draw conclusions, whereas Bayesian inference represents uncertainty through
probability distributions, treating parameters as random variables. This distinction is particularly
significant in astrophysics, where many phenomena, such as BNS mergers, are rare and nonrepeatable.
Bayesian methods naturally address this challenge by combining prior knowledge with data from new
observations.

The rapid advancement of observational astrophysics, driven by GW detectors, satellites mea-
suring high-energy radiation, and large-scale optical and radio surveys, has further underscored the
necessity of Bayesian techniques. As data volume and complexity continue to grow, modern astro-
physics increasingly relies on Bayesian statistical frameworks and advanced computational algorithms
to extract meaningful insights. These methods facilitate the incorporation of prior knowledge, the ex-
ploration of high-dimensional parameter spaces, uncertainty quantification, and systematic model
comparison, making them indispensable for interpreting the universe’s most complex and transient
phenomena.

At the core of Bayesian statistics lies Bayes’ theorem, which establishes a formal framework
for updating beliefs about a hypothesis in light of new information. Bayes’ theorem serves as the
foundation for two primary applications in statistical inference:

• hypothesis testing, and

• parameter estimation.

This chapter presents the fundamental principles of Bayesian statistics, including priors, likelihoods,
and posteriors, which are essential for parameter estimation. It further examines their application
in statistical model comparison and the computational techniques employed for parameter inference.
These fundamental concepts are employed for Bayesian multi-messenger data analysis as demon-
strated through the nuclear-physics and multi-messenger astrophysics framework NMMA presented in
Chapter 5.

59
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4.1 Bayes’ theorem: likelihoods, priors, and posteriors

Attributed to Thomas Bayes, the Bayes’ theorem follows directly from two fundamental building
blocks: the definition of conditional probability and the mathematical relationship for determining
the probability of a cause given an observed effect. For two events A and B in a probability space,
the conditional probabilities of

A givenB : P (A|B) =
P (A ∩B)

P (B)
where P (B) ̸= 0, and (4.1a)

B givenA : P (B|A) =
P (B ∩A)

P (A)
where P (A) ̸= 0, (4.1b)

allow to establish the relationship P (A ∩ B) = P (A|B)P (B) = P (B|A)P (A) from which Bayes’
theorem can be derived as

P (A|B) =
P (B|A)P (A)

P (B)
. (4.2)

In scientific applications, the primary objective is to infer the posterior probability distribution of
parameters θ under a given hypothesis H in order to describe the observed data d. In this setting,
Bayes’ theorem is often written as

p(θ|d,H) =
p(d|θ,H)p(θ|H)

p(d|H)
≡ L(d|θ)π(θ)

Z , (4.3)

where L(d|θ), π(θ), and Z refer to the likelihood, prior, and evidence, respectively. Here, θ =
(θ1, ..., θn) represents a vector encapsulating multiple parameters, which is particularly relevant for
multiparametric models, e.g. gravitational waveform models.

The likelihood function denoted as, L(d|θ) = p(d|θ,H), represents the conditional probability
density of the observed data d given a specific choice of model parameters θ under the hypothesis H.
The prior, p(θ|H) = π(θ), encodes prior knowledge about model parameters. It can be informative,
incorporating specific knowledge, or uninformative, expressing minimal prior assumptions to let the
data primarily drive the inference. The product of the likelihood and the prior is normalized with the
evidence, also known as the marginal likelihood, given as

Z = p(d|H) =

Z

Ωθ

L(d|θ)π(θ)dθ, (4.4)

in which the integral is taken over the entire parameter space Ωθ, which includes all possible values
of the parameter vector θ. The evidence represents the probability of observing the data under the
hypothesis, serving as a normalization constant that ensures the posterior distribution integrates to
unity.

In the framework of Bayesian inference, the posterior probability p(θ|d,H) encapsulates the prob-
ability density function (PDF) of the continuous parameter vector θ given the observed data d
and the underlying hypothesis H. When dealing with a multidimensional parameter space, where
θ = (θ1, ..., θn), it is often of interest to examine the posterior distribution of a single parameter
while marginalizing over the remaining parameters. This process yields the marginalized posterior
distribution, expressed as [636]

p(θi|d) =
Z �Y

k ̸=i

dθk

�
p(θ|d) = L(d|θi)π(θi)

Z , (4.5)

where the integral is performed over the nuisance parameters, i.e., those not of primary interest. Here,
L(d|θi) represents the likelihood function marginalized over the nuisance parameters.
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4.2 Joint probabilities and distributions

In the realm of multi-messenger astronomy, it is of interest to infer the joint posterior probability
distribution of model parameters describing an astrophysical event described by distinct physical pro-
cesses. When dealing with multiple independent observations of one event, Bayes’ theorem naturally
extends to joint distributions, allowing for the integration of information from separate data sources.
Consider two independent sets of observations, d1 and d2, which can be modeled with correspond-
ing models comprising two sets of parameters, θ1 and θ2. If the two observations of one event are
independent, then the joint posterior distribution can be written as

p(θ1,θ2|d1, d2,H) =
p(d1, d2|θ1,θ2,H)p(θ1,θ2|H)

p(d1, d2|H)
=

p(d1|θ1,H) p(d2|θ2,H) p(θ1,θ2|H)

p(d1, d2|H)
, (4.6)

in which p(d1, d2|θ1,θ2,H) is the joint likelihood function, p(θ1,θ2|H) refers to the joint prior dis-
tribution, and p(d1|θ1,H)p(d2|θ2,H) is the product of two likelihoods given the two independent
measurements associated with data sets d1 and d2.

A prime example of an astrophysical event described by distinct physical processes is a multi-
messenger observation of a BNS merger, observed through GW and EM radiation, associated with
data sets dGW and dEM, respectively. For this example, the joint likelihood function can be written
as

LGW−EM = p(dGW, dEM|θGW,θEM,H) = LGW(dGW|θGW,H)× LEM(dEM|θEM,H). (4.7)

A direct implementation of a Bayesian multi-messenger data analysis is described in Chapter 5, while
also outlining the choice of the GW likelihood (cf. Eq. (5.14)) and the likelihood assumed for the EM
observation (cf. (Eq. 5.16)) including the GRB and kilonova emissions.

The principle of joint probability distributions extends naturally to the case of multiple inde-
pendent observations. Specifically, considering the scenario described above, let Nobs represent the
number of observed multi-messenger events, each associated with measurements d1, ..., dNobs

. Under
the assumption that these events are statistically independent, the joint posterior distribution is
formulated as

p(θ|d1, ..., dNobs
,H) =

p(d1, ..., dNobs
|θ,H)p(θ|H)

p(d1, ..., dNobs
|H)

= p(θ|H)

NobsY

i=1

p(di|θ,H)

p(di|H)

= p(θ|H)1−Nobs

NobsY

i=1

p(θ|di,H)

(4.8)

where θ represents the set of parameters governing both the GW and EM signals, such that
θ = {θGW,θEM}. The joint probabilities of the likelihood and evidence are determined by their
respective product forms, consistent with the assumption of statistical independence across observed
events.
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4.3 Hypothesis testing

While the evidence in Eq. (4.3) primarily functions as a normalization constant in Bayesian inference,
it also plays a crucial role in hypothesis testing and statistical model comparison. Specifically, model
selection aims to determine which model is most statistically supported by the observed data and to
quantify the relative preference for competing models based on their evidence.
For hypothesis testing, consider two competing hypotheses (represented by models), H1 and H2.
Evaluating the Bayes’ theorem for each of the hypotheses yields corresponding posterior distributions.
The ratio of the posterior probabilities of the competing hypotheses defines the posterior odds, O1

2,
given as

O1
2 =

p(H1|d)
p(H2|d)

=
p(d|H1)

p(d|H2)
· p(H1)

p(H2)
= B1

2|{z}
Bayes factor

· Π1
2|{z}

Prior odds

, (4.9)

in which the prior odds quantify the relative belief in two competing hypotheses before observing any
data. If both hypotheses are equally likely a priori, meaning π(H1) = π(H2) ⇒ π(H1)/π(H2) = 1,
the posterior odds reduces to the Bayes factor, which is given as the evidence ratio

B1
2 =

Z1

Z2
=

p(d|H1)

p(d|H2)
=

R
dθ1p(d|θ1,H1)p(θ1|H1)R
dθ2p(d|θ2,H2)p(θ2|H2)

. (4.10)

A common approach in Bayesian model comparison is to express the Bayes factor in logarithmic form,

logB1
2 ≡ log(Z1)− log(Z2), (4.11)

which facilitates interpretation and enhances numerical stability. The magnitude of the Bayes factor
quantifies the strength of evidence favoring one model over the other, while the sign determines the
direction of preference, with positive values indicating support for hypothesis H1 and negative values
favoring hypothesis H2.

In this context, Bayesian model comparison considers both how well a model fits the data (like-
lihood) and how complex it is (prior information). Models with more parameters can fit data better
simply because they are more flexible, but this can lead to overfitting rather than true explanatory
power. The Bayes factor, which compares models by integrating their likelihoods with prior proba-
bilities, naturally penalizes those with more parameters. This follows Occam’s razor1, ensuring that
a more complex model is only preferred if it provides a significantly better explanation of the data.

Therefore, the Bayes factor is a fundamental tool in Bayesian model selection, providing a quan-
titative measure for comparing hypotheses while accounting for both model fit and complexity. Its
applicability extends to Nobs independent observations d1, ..., dNobs

, enabling the computation of the

combined Bayes factor B̂1
2, expressed as

B̂1
2 =

p(d1, ..., dNobs
|H1)

p(d1, ..., dNobs
|H2)

=

QNobs

i=1 p(di|H1)QNobs

i=1 p(di|H2)
=

NobsY

i=1

B1
2,i , (4.12)

in which B1
2,i refers to the Bayes factor from the i-th observation.

1Occam’s razor states that among competing hypotheses that explain the data equally well, the one with the fewest
assumptions should be preferred.
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4.4 Parameter estimation: computational methods in Bayesian inference

The primary objective of Bayesian inference is to obtain a posterior probability distribution for the
model parameters. For the case of models describing a multidimensional parameter space2, the com-
putation of the posterior can be very challenging and requires sophisticated computational methods.
This section presents computational methods for estimating posterior distributions, beginning with
the Fisher matrix formalism as an approximation technique, followed by a discussion of sampling
algorithms, with a particular focus on nested sampling for efficient parameter inference.

4.4.1 Fisher information formalism

Central to the Fisher information formalism is the Fisher information matrix (FIM), which quantifies
the amount of information a sample carries about unknown parameters in a probabilistic model.
Consider a gravitational waveform model with parameter vector θ and a likelihood function L(dGW|θ)
under stationary Gaussian noise (cf. Eq. (5.14)), the elements of the FIM can be computed as

Fij = E

 
∂ lnL(dGW|θ)

∂θi

∂ lnL(dGW|θ)
∂θj

!
, (4.13)

where the expectation E(·) denotes averaging over the noise realizations in the data dGW. While the
off-diagonal elements convey information on the correlation between different parameters θi and θj ,
the diagonal elements Fii represent the amount of information available about each parameter θi. The
larger Fii, the better the parameter θi can be estimated, meaning higher Fisher information leads to
smaller estimation uncertainties.

The inverse of the FIM serves as an approximation of the covariance matrix associated with the
estimates of model parameters. The diagonal elements of this covariance matrix correspond to the
variances of the individual parameter estimates. Consequently, the lower bound (Cramér-Rao bound)
on parameter uncertainties σθi for each individual parameter θi is given as

σθi ≥
p
(F−1)ii. (4.14)

These parameter uncertainties can be utilized to approximate the posterior distributions of individual
model parameters by assuming a Gaussian distribution centered at a selected simulated value. This
approach significantly reduces computational complexity.

However, the Fisher information formalism is valid in the limit of high SNR. At low SNRs, the
linear approximations used to compute the FIM become unreliable3, leading to an underestimation
of parameter uncertainties. Moreover, the FIM assumes that the posterior distribution of parameters
is Gaussian, which is often not true in GW parameter estimation as GW signals often involve highly
correlated parameters. The FIM approach does not account well for such strong degeneracies, leading
to poorly constrained parameter estimates. Consequently, while the FIM provides a computationally
efficient approximation, more sophisticated sampling algorithms are required for accurate parameter
estimation.

4.4.2 Sampling algorithms

Sampling algorithms used in Bayesian inference generally fall into two primary categories: Markov
Chain Monte Carlo (MCMC) methods [434, 299] and nested sampling [602]. These approaches are de-
signed to efficiently explore the posterior distribution by generating representative parameter samples.

2As discussed in Subsec. 3.1.2, GW signals from BBH mergers are characterized by 15 parameters, while BNS
mergers include two additional tidal deformability parameters, resulting in 17 parameters.

3The linear signal approximation assumes that the template waveform can be expanded linearly around the true
parameters θ0, keeping only the first-order terms: h(θ) = h0 + hiδθ

i + ..., where δθi ≡ θi − θi0 [325].
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Specifically, both techniques produce a collection of samples such that the number of samples within
a given interval is proportional to the posterior probability distribution, such that (θ,θ+ dθ) ∝ p(θ)
[652]. In the following, more focus is given to nested sampling, as it plays a key role in the sampling
methods used for the studies presented in this work. For dedicated reviews the reader is directed to
relevant literature, e.g. [407].

Nested sampling: The nested sampling algorithm, introduced by John Skilling in 2004 [602], is
a Monte Carlo technique designed to efficiently estimate Bayesian evidence and explore complex,
high-dimensional posterior distributions. Nested sampling estimates how the likelihood function L(θ)
relates to the prior mass element dX = π(θ)dθ [603],

L(θ)|{z}
Likelihood

× π(θ)dθ| {z }
Prior mass

= Z|{z}
Evidence

× p(θ)dθ| {z }
Posterior

, (4.15)

yielding primarily an estimate for the evidence Z =
R
L dX = L(d|θ)π(θ)dθ and the poste-

rior dP = p(θ)dθ as a by-product. A simple approach could be to grid the parameter space,
evaluate

R
L(θ)π(θ)dθ, and sum the values to approximate the evidence Z. However, in most

cases, the Bayesian evidence involves a multidimensional likelihood function, so that the evalua-
tion quickly becomes infeasible due to the curse of dimensionality. To mitigate this issue, the problem
is reparametrized in terms of the prior mass X. More specifically, one defines the cumulative prior
mass X(λ) [603],

X(λ) =

Z

{θ:L(θ)>λ}
π(θ)dθ, (4.16)

which measures how much of the prior distribution falls above a certain likelihood threshold λ. This
can be imagined as sorting all possible parameter values θ based on how likely they are L(θ).4 As
λ increases, the enclosed prior mass X decreases from 1 to 0. Because X(λ) is a smooth, decreasing
function, this property enables its inversion to express the likelihood in terms of the prior mass:
L(X(λ)) ≡ λ. This reformulation transforms the original multi-dimensional integral in Eq. (4.4) into
a simpler one-dimensional integral [603]

Z =

Z 1

0

L(X)dX. (4.17)

This implies that nested sampling systematically explores the parameter space, defined by the prior
points θi, identifying regions with progressively higher likelihood values Li while simultaneously
reducing the prior mass. This process is illustrated in Figure 4.1, in which the parameter space is
further refined as higher-likelihood regions are explored via the cumulative prior mass function.
In principle, the Bayesian evidence could be approximated numerically, Z, using only standard quadra-
ture methods such as

Z ≈ Z =
NX

i=1

Liwi, (4.18)

in which Li refers to the likelihood at a given point i, and wi is a weight that depends on how the
prior mass is distributed and could be evaluated with the trapezoidal rule as wi =

1
2 (Xi−1 −Xi+1)

[603]. However, this approach is only feasible, if the likelihood function L(X) was known. Since the
distribution of likelihood values over the prior mass is generally unknown, Monte Carlo methods must
be employed. The procedure for estimating the evidence as well as the generation of posterior samples
is outlined below:

4Essentially, this means that if λ is small, allowing for low likelihood values, most of the prior is included, so X(λ)
is close to 1. Conversely, if λ is very large, allowing for high likely values, only a few parameter values are included,
so X(λ) is close to 0.
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FIGURE 4.1
The nested sampling algorithm of John Skilling [603], outlined in the left panel, systematically gen-
erates nested likelihood shells (middle panel), leading to a progressive reduction of the prior mass
space with an increasing number of iterations (right panel).

Evidence estimation: The procedure starts with drawing Nlive so-called live points from the prior,
π(θ), associated with a prior volume X0, with X0 = 1. Each live point has a likelihood Li = p(d|θi)).
At each iteration, the lowest-likelihood point Li among the live points is identified and removed
(referred to as a dead point) and a new point is sampled from the prior constrained to have like-
lihood greater than Li. At the i-th iteration, the prior volume is a random variable distributed as
Xi = tiXi−1, where ti follows the distribution P (t) = Nlivet

Nlive−1. The weights wi can be evaluated
by simply computing wi = Xi−1−Xi or using the trapezoidal rule wi =

1
2 (Xi−1−Xi+1). This process

continues until the entire prior volume is explored, with live points moving through nested likelihood
shells as the prior volume decreases (cf. right panel in Figure 4.1).

Stopping criterion: The nested sampling algorithm will terminate when the contribution of the
remaining live points to the evidence becomes negligible and falls below a specific tolerance, estimated
as [603]

LmaxXj < fZj , (4.19)

in which f represents the tolerance, given as a fraction of Z, and the index j corresponds to the total
number of iterations used for the sampling yielding Nj dead points. The choice of the tolerance value
is arbitrary.

Posterior reconstruction: As the prior volume decreases, the sequence of discarded points forms
a representative posterior sample. Posterior samples can be inferred from these dead points, each
weighted as

pi =
LiwiP
j Ljwj

=
Liwi

Z
. (4.20)

These weighted samples enable the computation of key posterior statistics such as means, variances,
and covariances. Nested sampling techniques that estimate both the evidence and the posterior distri-
butions are implemented in software packages such as dynesty [611] and MultiNest [135], facilitating
parameter estimation for GW and EM data, respectively.
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MCMC sampling: In contrast to nested sampling, MCMC sampling methods are designed to di-
rectly estimate the posterior probability distribution. MCMC is a type of Monte Carlo method that
creates a Markov chain designed to produce samples from a target probability distribution once it
reaches equilibrium. A Markov chain is a sequence of random variables x1, x2, x3, . . . , where the
probability of transitioning to the next state depends only on the current state, not on past states.
This property is called the Markov property: P (xt+1|x1, x2, ..., xt−1, xt) = P (xt+1|xt). Let p(t)(x)
denote the probability distribution of the state of a Markov chain estimator. The Markov chain is
established by an initial probability distribution p(0)(x) and a transition probability T (x′|x). Then,
the probability distribution at the (t+1)-th iteration of the Markov chain, p(t+1)(x) is given by [407]

p(t+1)(x′) =
Z

dNx T (x′|x)p(t). (4.21)

For an MCMC method to be effective, the Markov chain must satisfy i) ergodicity, meaning that it
should be possible to reach any state from any other state, and ii) aperiodicity, meaning that the chain
should not get trapped in cycles. Together, these conditions ensure that iii) the target distribution
is the unique stationary distribution of the chain. Once these conditions are satisfied and the chain
reaches approximate stationarity, a burn-in phase discards initial draws to ensure that the chain has
converged to the target distribution. Furthermore, thinning the chain by only keeping a subset of
samples helps to reduce autocorrelation and produce a more representative set of samples from the
stationary distribution.

Metropolis-Hastings algorithm: A common algorithm in MCMC sampling is the Metropolis-
Hastings algorithm [434, 299] and enables efficient exploration in complex and high-dimensional
parameter spaces. To sample from a target probability function, the algorithm starts with some
arbitrary state θ(0) and uses a proposal PDF Q(θ∗|θ(t)) at iteration t in the chain to generate a new
random candidate state θ∗. The new state θ∗ is accepted with a probability A when

A = min

 
1,

p(θ∗|d,H)Q(θ(t)|θ∗)

p(θ(t)|d,H)Q(θ∗|θ(t))

!
. (4.22)

If the probability of the new state θ∗ exceeds that of θ(t), the proposed state is accepted and sets
θ(t+1) = θ∗. Otherwise, acceptance is determined by drawing a random number, u, from a uniform
distribution U(0, 1) and accepts the proposed state θ∗, when A ≥ u. Otherwise, the proposed state

is rejected, and the chain keeps the current state θ(t+1) = θt. Since the posterior distribution is
proportional to the likelihood and the prior, p(θ|d,H) ∝ p(d|θ,H)p(θ), one only needs to compute
the ratio of the posteriors p(θ∗|d,H)/p(θ(t)|d,H) up to a constant factor. This means that this
method does not require computing the evidence, since it cancels out in the posterior ratio. As a
result, MCMC directly targets the posterior distribution. While the MCMC/Metropolis-Hastings
method offers broad applicability, flexibility in proposal design, it can produce correlated samples
necessitating additional post-processing and careful tuning.
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Nina Kunert, Gargi Mansingh, Brandon Reed, Niharika Sravan, Andrew Toivonen, Sarah Antier,
Robert O. VandenBerg, Jack Heinzel, Vsevolod Nedora, Pouyan Salehi, Ritwik Sharma, Rahul So-
masundaram, and Chris Van Den Broeck published in Nature Communications 14 (2023) 1, 8352. I
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Editorial notes: The figure captions were reformatted to align with the current style of this work,
and minor typographical errors in the text were corrected. Additional citations have been included
beyond those in the published version.

Abstract: The multi-messenger detection of the gravitational-wave signal GW170817, the corre-
sponding kilonova AT2017gfo and the short gamma-ray burst GRB170817A, as well as the observed
afterglow has delivered a scientific breakthrough. For an accurate interpretation of all these different
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messengers, one requires robust theoretical models that describe the emitted gravitational-wave, the
electromagnetic emission, and dense matter reliably. In addition, one needs efficient and accurate
computational tools to ensure a correct cross-correlation between the models and the observational
data. For this purpose, we have developed the Nuclear-physics and Multi-Messenger Astrophysics
framework NMMA. The code allows incorporation of nuclear-physics constraints at low densities as
well as X-ray and radio observations of isolated neutron stars. In previous works, the NMMA code
has allowed us to constrain the equation of state of supranuclear dense matter, to measure the Hub-
ble constant, and to compare dense-matter physics probed in neutron-star mergers and in heavy-ion
collisions, and to classify electromagnetic observations and perform model selection. Here, we show
an extension of the NMMA code as a first attempt of analysing the gravitational-wave signal, the
kilonova, and the gamma-ray burst afterglow simultaneously. Incorporating all available information,
we estimate the radius of a 1.4M⊙ neutron star to be R =11.98+0.35

−0.40km.

5.1 Introduction

The study of the gravitational-wave (GW) and electromagnetic (EM) signals GW170817 [10],
AT2017gfo [53, 174, 185, 242, 345, 352, 398, 428, 589, 625, 647], and GRB170817A [420, 255, 379]
has already enabled numerous scientific breakthroughs, for example, constraints on the proper-
ties of neutron stars (NSs) and the dense matter equation of state (EOS) at supranuclear den-
sities [83, 562, 529, 451, 183, 153, 214, 324], an independent measurement of the Hubble con-
stant [7, 291, 317, 184, 214, 657], the verified connection between binary NS (BNS) mergers and
at least some of the observed short gamma-ray bursts (GRBs) [11], and precise limits on the propa-
gation speed of GWs [11]. These scientific achievements were enabled by the multi-messenger nature
of GW170817.

Despite this enormous progress, results have been obtained by connecting constraints from individ-
ual messengers a posteriori, i.e., different messengers were analyzed individually and then combined
within different multi-messenger frameworks to achieve the final results. Such frameworks and at-
tempts include, among others, the work of Breschi et al.[129] performing Bayesian inference and
model selection on the kilonova AT2017gfo, Nicholl et al.[471] developing a framework for predicting
kilonova and GRB afterglow lightcurves using information from GW signals as input, and the multi-
messenger framework developed by Raaijmakers et al.[525]. Similarly, to these works, our previous
Nuclear physics - Multi-Messenger Astrophysics (NMMA) framework has been successfully applied
to provide constraints on the EOS of NS matter and on the Hubble constant [214, 491], to investigate
the nature of the compact binary merger GW190814 [631], to provide techniques to search for kilo-
nova transients [54], to classify observed EM transients such as GRB200826A [44], and to combine
information from multi-messenger observations with data from nuclear-physics experiments such as
heavy-ion collisions [324].

Here, we upgrade our framework to allow for a simultaneous analysis of kilonova, GRB afterglow,
and GW data capitalizing on the multi-messenger nature of compact-binary mergers.

5.2 Results

The full potential of our NMMA study becomes clear from Fig. 5.1 where we show a set of possible
EOSs relating the pressure and baryon number density inside NSs. Different constraints can provide
valuable information in different density regimes. For example, theoretical calculations of dense nu-
clear matter in the framework of chiral effective field theory (EFT) [401, 312, 223, 503, 348] or data
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FIGURE 5.1
Overview of constraints on the EOS from different information channels. We show a set of possible
EOSs (blue lines) that are constrained up to 1.5nsat by Quantum Monte Carlo calculations using
chiral EFT interactions [630] and extended to higher densities using a speed of sound model [633].
Different regions of the EOS can then be constrained by using different astrophysical messengers,
indicated by rectangulars: GWs from inspirals of NS mergers, data from radio and X-ray pulsars, and
EM signals associated with NS mergers. Note, that the boundaries are not strict but depend on the
EOS and properties of the studied system.

extracted from nuclear-physics experiments, e.g, heavy-ion collisions [563] or the recent PREX-II ex-
periment at Jefferson Laboratory [37], provide valuable input up to about twice the nuclear saturation
density, nsat ≈ 0.16 fm−3. GW signals emitted during the inspiral of a BNS or black-hole–NS (BHNS)
systems contain information that probe the EOS at densities realized inside the individual NS compo-
nents of the system, typically up to about five times nsat, but the exact density range probed in such
mergers depends noticeably on the mass of the component stars. Furthermore, radio observations
of NSs can be used to infer their masses, e.g., by measuring Shapiro delay in a binary system. In
particular, radio observations of heavy NSs with masses of about 2M⊙, such as PSR J0348+0432 [57],
PSR J1614-2230 [63], and PSR J0740+6620 [187], currently provide valuable information at larger
densities than those probed by inspiral GW signals. In addition, these observations provide a valuable
lower bound on the maximum mass of NSs. Matter at the highest densities in the universe could be
created in the postmerger phase of a BNS coalescence, i.e., after the collision of the two NSs in the
binary. This phase of the binary merger might be observed through future GW detections with more
sensitive detectors. Alternatively, this phase can be probed by analyzing EM signals connected to a
BNS merger, i.e., the kilonovae, GRBs, and their afterglows. Finally, at asymptotically high densities
that are not shown in the figure, the EOSs can be calculated in perturbative QCD [371] and might
be used to constrain the NS EOS [360]. The combination of all these various pieces of information
provides a unique tool to unravel the properties of matter at supranuclear densities.

GW170817-AT2017gfo
With the NMMA framework, we analyze GW170817 simultaneously with the observed kilonova

AT2017gfo. For the GW analysis, we have used the IMRPhenomPv2 NRTidalv2 waveform model and
analyzed the GW data obtained from the Gravitational Wave Open Science Center (GWOSC)[649]
in a frequency range of 20Hz to 2048Hz, covering the detected BNS inspiral[16]. For the EM signal,
we use the data set compiled in Coughlin et al.[182], where in this work, we include the optical,
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FIGURE 5.2
Best-fit early-time lightcurve from the analysis. The best-fit lightcurves (dashed, with the 1 magni-
tude uncertainty shown as the band) for AT2017gfo data when analysing GW170817-and-AT2017gfo
(orange) or GW170817-and-AT2017gfo-and-GRB170817A (blue) simultaneously. We note that both
bands overlap almost completely, i.e., for AT2017gfo the accuracy of the kilonova lightcurve descrip-
tion does not depend noticeably on the inclusion of a GRB afterglow component. For the analysis,
we restrict our dataset to times between 0.5 days up to 10 days after the BNS merger to simplify the
joint GW170817-and-AT2017gfo-and-GRB170817A study as discussed in the main text.

infrared, and ultraviolet data between 0.5 and 10 days after the merger. The corresponding data is
analysed with a Gaussian Process Regression (GPR)-based kilonova model. For our analysis, we are
presenting the best-fit lightcurve in Fig. 5.2, with its band representing a one magnitude uncertainty
for the individual lightcurves. This one magnitude uncertainty is introduced during the inference and
should account for systematic uncertainties in kilonova modelling. In Supplementary information, we
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wind ejecta mej
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mass Mc, the mass ratio q, the mass-weighted tidal deformability Λ̃, and the radius of a 1.4 solar mass
neutron star R1.4 at 68%, 95% and 99% confidence. For the 1D posterior probability distributions,
we mark the median (solid lines) and the 90% confidence interval (dashed lines) and report these
above each panel. We show results that are based on the simultaneous analysis of GW170817-and-
AT2017gfo (orange) and of GW170817-and-AT2017gfo-and-GRB170817A (blue).
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show how smaller or larger assumed uncertainties change our conclusions and it show that the one-
magnitude is a sensible choice. Such a finding is also consistent with Heinzel et al.[303]. Therefore,
we focus particularly on one-magnitude uncertainties’ results. Nevertheless further work would be
needed to understand in detail uncertainties related to the ejecta geometry[303], assumed heating
rates, thermalization efficiencies and opacities within the ejecta[139]. Furthermore, we point out that
for Fig. 5.2, we explicitly restricted our data set to the times between 0.5 to 10 days after the BNS
merger, since model predictions at earlier or later times are more uncertain, e.g., due to less accurate
opacities during early times and a larger impact of Monte Carlo noise in the employed radiative
transfer models at late times. While this does not affect the GW170817-AT2017gfo analysis, it has
an impact when we will also incorporate the GRB afterglow. In fact, we find that not restricting us
to this time ranges can cause problems in the joint inference and it takes noticeably longer until the
sampler converges.
Fig. 5.3 summarizes our main findings and shows joint posteriors for the mass of the dynamical ejecta
mej

dyn, the mass of the disk wind ejecta mej
wind, the chirp mass Mc, the mass ratio q, the mass-weighted

tidal deformability Λ̃, and the radius of a 1.4 solar mass neutron star R1.4. In contrast to previous
findings using simpler kilonova modelling (see Ref. [596] and references therein), we can fit AT2017gfo
with masses for the dynamical (about 0.006M⊙) and disk-wind (about 0.07M⊙) ejecta components
that are within the range of values predicted by numerical-relativity simulations [528].

While the parameters extracted are consistent with our previous findings [214], we observe a clear
improvement on the parameter error bounds due to (i) performing a simultaneous analysis of the
distinct messengers and (ii) employing a modified likelihood function when analysing the kilonova.
For instance, the constraints on R1.4 = 11.86+0.41

−0.53, a typical choice to quantify EOS constraints, is

significantly improved compared to our previous result, R1.4 = 11.75+0.86
−0.81 km[214]. The half-width of

R1.4’s 90% credible interval decreases from about 800m [214] to about 400m.

GW170817-AT2017gfo-GRB170817A
In addition to the combined analysis of GW170817 and AT2017gfo, we can also incorporate infor-
mation obtained from the GRB afterglow of GW170817A, where we employ the data set collected
in Troja et al.[640]. The GRB afterglow light-curve data are analyzed with the synthetic Gaussian
jet-model lightcurve described before [651, 566]. Fig. 5.2 shows the corresponding best-fit lightcurve
for the kilonova with a 1 magnitude uncertainty band as before. Moreover, we are also presenting the
best-fit lightcurve, which includes kilonova and GRB afterglow, and the employed uncertainty band
in Fig. 5.4. We find that both the kilonova AT2017gfo and the GRB afterglow GRB170817A are well
described in our analysis.

Fig. 5.3 again summarizes our findings for the joint posteriors of the mass of the dynamical ejecta,
the mass of the disk wind ejecta, the on-axis isotropic equivalent energy, the chirp mass, the mass
ratio, the mass-weighted tidal deformability, and the radius of a 1.4 solar mass neutron star for
this analysis, which is consistent with GW170817-and-AT2017gfo only. Compared to the analysis of
GW170817-and-AT2017gfo only, the improvement on the parameter uncertainties is minimal, yet,
noticeable when information from GRB170817A is added. Although no significant constraint on the
EOS is imposed by the jet energy E0 as the ratio ξ between it, E0, and the disk mass mdisk is taken
as a free parameter, the inclination constraint from the GRB plays a role in the constraint on EOS.
For an anisotropic kilonova model, the inclination angle changes the observable kilonova light curves
beyond scaling (e.g. Fig. 2 in Ref. [595]), which is correlated with the ejecta masses (e.g. Fig. 3 in
Ref. [52]). Therefore the GRB’s inclination measurement imposes a constraint on the EOS via the
kilonova eject masses measurements. Moreover, for future studies, we expect that the inclusion of the
GRB afterglow will be of great importance for measuring the Hubble constant.
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FIGURE 5.4
Best-fit late-time lightcurve from the analysis. The best-fit lightcurves (dashed, with the 1 magnitude
uncertainty shown as the band) for the analysis of GRB170817A when simultaneously analysing
GW170817, AT2017gfo, GRB170817A. We compare our model predictions with the observational
data including the 1-sigma measurement uncertainty.

5.3 Discussion

We have developed a publicly available NMMA framework for the interpretation and analysis of BNS
and BHNS systems. This framework allows for the simultaneous analysis of GW and EM signals such
as kilonovae and GRB afterglows. In addition, our framework allows us to incorporate constraints from
nuclear-physics calculations, e.g., by sampling over EOS sets constrained by chiral EFT, and to include
radio as well as X-ray measurements of isolated NSs. By employing our framework to a combined
analysis of GW170817, AT2017gfo, and GRB170817A, we find that the radius of a typical 1.4 solar
mass NS lies within 11.98+0.35

−0.40 km; cf. Tab. 5.1 for a selection of studies from the literature. Based
on our findings, our analysis is a noticeable improvement over previous works. However, additional
uncertainties in our work lie in limited physics input in kilonova and semi-analytic GRB and models.
Therefore, reliable astrophysical interpretations of future BNS detections will only be possible if not
only parameter estimation infrastructure, as presented in this work, but also the astrophysical models
describing transient phenomena advance further. Nevertheless, given the increasing number of multi-
messenger detections of BNS and BHNS merger, we expect to use our framework to further increase
our knowledge about the interior of NSs during the coming years.
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TABLE 5.1
Comparison of radius measurements of a 1.4 M⊙ neutron star for a selection of multi-messenger
studies.

Reference R1.4 [km]

Dietrich et al. [214] 11.75+0.86
−0.81 (90%)

Essick et al. [239] 12.54+0.71
−0.63 (90%)

Breschi et al. [129] 11.99+0.82
−0.85 (90%)

Nicholl et al. [471] 11.06+1.01
−0.98 (90%)

Raaijmakers et al. [524] 12.18+0.56
−0.79 (95%)

Miller et al. [447] 12.45+0.65
−0.65 (68%)

Huth et al. [324] 12.01+0.78
−0.77 (90%)

this work [NMMA] 11.98+0.35
−0.40 (90%)

A selected list of radius measurements of a 1.4 M⊙ neutron star from various multi-messenger studies
is shown. We denote the corresponding credible interval in parenthesis.

5.4 Methods

This text is invisible.

5.4.1 Equation of State construction

The EOS describes the relation between energy density ε, pressure p, and temperature T of dense
matter and additionally depends on the composition of the system. For NSs, thermal energies are
much smaller than typical Fermi energies of the particles, and therefore, temperature effects can be
neglected for isolated NSs or NSs in the inspiral phase of a merger. In these cases, the EOS simply
relates ε and p.

The most general constraints on the EOS can be inferred from the slope of the EOS, the speed of
sound, defined as

cS = c
p
∂p/∂ε , (5.1)

where c is the speed of light. Due to the laws of special relativity, the speed of sound has to be smaller
than the speed of light, cS ≤ c. Furthermore, the speed of sound in a NS has to be larger than zero,
cS ≥ 0, as NSs would otherwise be unstable. These constraints alone, however, allow for an extremely
large EOS space.

At nuclear densities, additional information on the EOS can be inferred from laboratory ex-
periments and theoretical nuclear-physics calculations. For example, this information was used to
constrain the properties of stellar matter in the NS crust [86, 161], i.e., the outermost layer of NSs at
densities below approximately 0.5nsat. Above roughly 0.5nsat, NS matter consists of a fluid of neu-
trons with a small admixture of protons. In this regime, the EOS can be constrained by microscopic
calculations of dense nuclear matter. These calculations typically provide the energy per particle,
E/A(n, x), which is a function of density n and proton fraction x = np/n with np being the proton
density. From this, the EOS follows from

ε(n, x) = n
E

A
(n, x) , (5.2)

and

p(n, x) = n2 ∂E/A(n, x)

∂n
. (5.3)

The proton fraction x(n) is then determined from the beta equilibrium condition, µn = µp + µe,
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where µi is the chemical potential of particle species i, and n, p, and e refer to neutrons, protons,
and electrons, respectively.

To calculate the energy per particle microscopically, one needs to solve the nuclear many-body
problem, commonly described by the Schrödinger equation. This requires knowledge of the nuclear
Hamiltonian describing the many-body system. Fundamentally, nuclear many-body systems are de-
scribed by Quantum Chromodynamics (QCD), the fundamental theory of strong nuclear interactions.
QCD describes the system in terms of the fundamental degrees of freedom (d.o.f.), quarks and gluons.
Unfortunately, this approach is currently not feasible [632]. At densities of the order of nsat, however,
the effective d.o.f. are nucleons, neutrons and protons, that can be treated as point-like nonrelativistic
particles. Then, the nuclear Hamiltonian can be written generically as

H = T +
X

i<j

V NN
ij +

X

i<j<k

V 3N
ijk + · · · , (5.4)

where T denotes the kinetic energy of the nucleons, V NN
ij describes two-nucleon (NN) interactions

between nucleons i and j, and V 3N
ijk describes three-nucleon (3N) interactions between nucleons i, j,

and k. In principle, interactions involving four or more nucleons can be included, but initial studies
have found these to be small compared to present uncertainties [365].

The derivation of the nuclear Hamiltonian (Eq. (5.4)) from QCD is not feasible due to its nonper-
turbative nature. In this work, we therefore use a common approach and choose nucleons as effective
d.o.f. The interactions among nucleons can then be derived in the framework of Chiral Effective Field
Theory (EFT) [236, 406]. Chiral EFT starts out with the most general Lagrangian consistent with
all the symmetries of QCD in terms of nucleonic degrees of freedom. It explicitly includes meson-
exchange interactions for the lightest mesons, i.e., the pions. This approach yield an infinite number of
pion-exchange and nucleon-contact interactions which needs to be organized in terms of a hierarchical
expansion in powers of a soft (low-energy) scale over a hard (high-energy) scale. In chiral EFT, the
soft scale q is given by the nucleons’ external momenta or the pion mass. The hard scale, also called
the breakdown scale Λb, is of the order of 500−600 MeV [222] and interaction contributions involving
heavier d.o.f., such as the ρ meson, are integrated out. The chiral Lagrangian is then expanded in pow-
ers of q/Λb according to a power-counting scheme. Most current chiral EFT interactions are derived
in Weinberg power counting [660, 661, 662, 236, 406]. One can then derive the nuclear Hamiltonian
from this chiral Lagrangian in a consistent order-by-order framework that allows for an estimate of
the theoretical uncertainties [237, 221, 222] and that can be systematically improved by increasing the
order of the calculation. Chiral EFT Hamiltonian naturally include NN, 3N, and higher many-body
forces, see Eq. (5.4), and chiral EFT predicts a natural hierarchy of these contributions. For example,
3N interactions start to contribute at third order (N2LO) in the expansion. Typical state-of-the art
calculations truncate the chiral expansion at N2LO [401, 503, 233] or fourth order (N3LO) [629, 223].

With the nuclear Hamiltonian at hand, one then needs to solve the many-body Schrödinger equa-
tion which requires advanced numerical methods. Examples of such many-body techniques include
many-body perturbation theory (MBPT) [629, 312, 223], the self-consistent Green’s function (SCGF)
method [154], or the coupled-cluster (CC) method [292, 233]. Here, we employ Quantum Monte Carlo
(QMC) methods [155], which provide nonperturbative solutions of the Schrödinger equation. QMC
methods are stochastic techniques which treat the Schrödinger equation as a diffusion equation in
imaginary time. In the QMC framework, one begins by choosing a trial wavefunction of the many-
body system, which for nuclear matter can be described as a slater determinant of non-interacting
fermions multiplied with NN and 3N correlation functions. This trial wavefunction is evolved to large
imaginary times, projecting out high-energy excitations, and converging to the true ground state of
the system as long as the trial wavefunction has a non-zero overlap with it. Among QMC methods, two
well-established algorithms are Green’s function Monte Carlo (GFMC), used to describe light atomic
nuclei with great precision [155], and Auxiliary Field Diffusion Monte Carlo (AFDMC) [581], suitable
to study larger systems such as nuclear matter. Here, we employ AFDMC calculations of neutron
matter but our NMMA framework is sufficiently flexible to employ any low-density calculation for
neutron-star matter. We then extend our neutron-matter calculations to neutron-star conditions by
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extrapolating the calculations to β equilibrium using phenomenological information on symmetric nu-
clear matter and constructing a consistent crust reflecting the uncertainties of the calculations [628].
This crust includes a description of the outer crust [86] and uses the Wigner-Seitz approximation to
calculate the inner-crust EOS consistently with our AFDMC calculations.

At nuclear densities, chiral EFT together with a suitable many-body framework provides for a
reliable description of nuclear matter with systematic uncertainty estimates. With increasing density,
however, the associated theoretical uncertainty grows fast due to the correspondingly larger nucleon
momenta approaching the breakdown scale. The density up to which chiral EFT remains valid is not
exactly known but estimates place it around 2nsat [630, 222]. Hence, chiral EFT calculations constrain
the EOS only up to these densities but to explore the large EOS space beyond the breakdown of
chiral EFT, one requires a physics-agnostic extension scheme. Here, physics-agnostic implies that no
model assumptions, e.g., about the existence of certain d.o.f. at high densities, are made. Instead,
the EOS is only bounded by conditions of causality, cS ≤ c, and mechanical stability, cS ≥ 0,
mentioned before. There exist several such extension schemes in literature: parametric ones, like the
polytropic expansion [536, 300, 55] or expansions in the speed of sound [633, 290], and nonparametric
approaches [240]. To extend the AFDMC calculations employed here, we employ a parametric speed-
of-sound extension scheme. Working in the cS versus n plane, the speed of sound cS(n) is determined
with theoretical uncetainty estimates by chiral EFT up to a reference density below the expected
breakdown density. From this uncertainty band, we sample a speed-of-sound curve up to the reference
density. Beyond this density, we create a typically non-uniform grid in density up to a large density
≈ 12nsat, well beyond the regime realized in NSs. For each grid point, we sample random values for
c2s(ni) between 0 and c2 (we set c = 1 in the following). We then connect the chiral EFT draw for the
speed of sound with all points c2s,i(ni) using linear segments. The resulting density-dependent speed
of sound can be integrated to give the EOS, i.e., the pressure, baryon density, and energy density. In
the interval ni ≤ n ≤ ni+1,

p(n) = p(ni) +

Z n

ni

c2s(n
′)µ(n′)dn′ , (5.5)

ϵ(n) = ϵ(ni) +

Z n

ni

µ(n′)dn′ , (5.6)

where µ(n) is the chemical potential that can be obtained from the speed of sound using the relation

µ(n) = µi exp

"Z log n

log ni

c2s(log n
′)d log n′

#
. (5.7)

For each reconstructed EOS, constrained by Chiral EFT at low densities and extrapolated via the
cS extension to larger densities, the global properties of NSs can be calculated by solving the Tol-
man–Oppenheimer–Volkoff (TOV) equations. This way, we determine the NS radii (R) and dimen-
sionless tidal deformabilities (Λ) as functions of their masses (M). We repeat this approach for a large
number of samples to construct EOS priors for further analyses of NS data.

This approach is flexible and additional information on high-density phases of QCD can be in-
cluded straightforwardly. For example, pQCD calculations at asymptotically high densities [371], of
the order of 40 − 50nsat, might be used to constrain the general EOS extension schemes even fur-
ther [55, 360]. However, the exact impact of these constraints at densities well beyond the regime
realized in NSs needs to be studied in more detail. While our NMMA framework currently does not
have this capability, we are planning to add this in the near future. Similarly, instead of using general
extension models, one can employ specific high-density models accounting for quark and gluon d.o.f.
One such model is the quarkyonic-matter model [429, 332, 586, 417], which describes the observed
behavior of the speed of sound in NSs [630]: a rise of the speed of sound at low densities to values
above the conformal limit of c/

√
3, followed by a decrease to values below the conformal limit at

higher densities. In future work, we will address quarkyonic matter and other models in our NMMA
framework.
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The construction of the EOS, as detailed above, is implemented in the NMMA code under the
class EOS with CSE. This class allows for (a) an exploration of theoretical uncertainties in the low-
density EOS and (b) constructs the high-density EOS using a cS extrapolation. (a) Low-density
uncertainties are implemented by requiring two tabulated EOS files for the lower and upper bound
of the uncertainty band as inputs, containing the pressure, energy density and number density up to
the chosen breakdown density of the model. By default, the results of a QMC calculation using local
chiral EFT interactions at N2LO [630] with theoretical uncertainties are provided. Upon initiation
of the class, a sample is drawn from the low-density uncertainty band using a 1-parameter sampling
technique. In this approach, a uniform random number ω is sampled uniformly between 0 and 1, and
the interpolated EOS is given as

p(n) = psoft(n) + ω(pstiff(n)− psoft(n)), (5.8)

ε(n) = εsoft(n) + ω(εstiff(n)− εsoft(n)), (5.9)

where the subscripts “soft” and “stiff” refer to the lower and upper bounds of the EFT uncertainty
band, respectively. This sampling technique assumes that pressure and energy density are correlated
but we have found that releasing this assumption and using a four-parameter form suggested by
Gandolfi et al. [270] does not change our results appreciably. In future, we will explore additional
schemes, e.g., using Gaussian processes [239].

(b) The EOS given by Eqs. (5.8) and (5.9) is used up to a breakdown density determined by the
user. By default, this density is set to 2nsat. Beyond this density, the class constructs the EOS using
a cS extension. The maximum density up to which the EOS is extrapolated and the number of linear
line segments can be adjusted by the user, with the default values being 12nsat for the former and 5
line segments for the latter. The code then solves Eqs. (5.5), (5.6) and (5.7) to give the extrapolated
EOS. The pressure, energy density, and number density describing the full EOS are accessible as
attributes of the EOS with CSE class.

Finally, the method construct family solves the stellar structure equations (TOV equations and
equations for the quadrupole perturbation of spherical models), and returns a sequence of NSs with
their masses, radii and dimensionless tidal deformabilities as arrays.

5.4.2 Prior weighting to incorporate radio and X-ray observations of single
neutron stars

To incorporate mass measurements of heavy pulsars and mass-radius measurements of isolated pulsars,
the associated likelihood is calculated and taken as the prior probability for an EOS for further
analysis. For instance, the radio observations on PSR J0348+4042 [57], and PSR J1614-2230 [63]
provide a lower bound on the maximum mass of a NS. The likelihood for a mass-only measurement
is given by

LPSR−mass(E) =

Z MTOV

0

dM P(M |PSR), (5.10)

where P(M |PSR) is the posterior distribution of the pulsar’s mass and MTOV is the maximum mass
supported by the EOS with parameters E. The posterior distributions of pulsar masses are typically
well approximated by Gaussians [214].

Recent X-ray observations of millisecond pulsars by NASA’s Neutron Star Interior Composition
Explorer (NICER) mission have been used to simultaneously determine the mass and radius of these
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NSs [667, 446, 547, 447, 548]. The corresponding likelihood is given by

LNICER(E)

=

Z
dM

Z
dR PNICER(M,R)

π(M,R|E)

π(M,R|I)

∝
Z

dM

Z
dR PNICER(M,R)δ(R−R(M ;E))

∝
Z

dM PNICER(M,R = R(M ;E)),

(5.11)

where PNICER(M,R) is the joint-posterior distribution of mass and radius as measured by NICER and
we use the fact that (i) the radius is a function of mass for a given EOS, and (ii) that without further
EOS information, e.g., through chiral EFT, the prior for the radius given mass is taken to be uniform.

5.4.3 Gravitational-wave inference

This text is invisible.

5.4.3.1 GW models

A complex frequency-domain GW signal is given by

h(f) = A(f)e−iψ(f), (5.12)

with the amplitude A(f) and the GW phase ψ(f). Because of the NS’s finite size and internal
structure, BNS and BHNS waveform models have to incorporate tidal contributions for an accurate
interpretation of the binary coalescence. Such tidal contributions account for the deformation of the
stars in their companions’ external gravitational field [193, 309] and, once measured, allow to place
constraints on the EOS governing the NS interior [11, 13, 20, 156]. They are attractive because they
convert energy from the orbital motion to a deformation of the stars, and lead to an accelerated
inspiral. In the case of non-spinning compact objects, the leading-order tidal contribution depends
on the tidal deformability

Λ̃ =
16

13

(m1 + 12m2)m
4
1Λ1 + (m2 + 12m1)m

4
2Λ2

(m1 +m2)5
(5.13)

with the individual tidal deformabilities Λ1,2 = 2
3k

1,2
2 /C5

1,2 and the individual masses m1,2. Here,

k1,22 are the Love numbers describing the static quadrupole deformation of one body inside the grav-
itoelectric field of the companion and C1,2 are the individual compactnesses C1,2 = m1,2/R1,2 in
isolation.

To date, there are three different types of BNS or BHNS models for the inspiral GW signal
that are commonly used: Post-Newtonian (PN) models [195, 33, 380, 333], effective-one-body (EOB)
models[142, 194, 315, 310, 47, 96, 215, 456, 616], and phenomenological approximants [347, 210, 213,
212, 635]. In the NMMA framework, we make use of the LALSuite [395] software package, in particular
LALSimulation, so that the BNS and BHNS models used by the LIGO-Virgo-Kagra Collaborations
can be easily employed. This includes:

• PN models such as TaylorT2, TaylorT4, or TaylorF2 where a PN descriptions for the point-
particle BBH baseline as well as the tidal description is employed,

• the most commonly used tidal EOB models SEOBNRv4T [310, 615, 616], its frequency-domain surro-
gate model [375], as well as the TEOBResumS model [457, 47] including its post-adiabatic accelerated
version [458] which enables it being used during parameter estimation,
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• and phenomenological models such as IMRPhenomD NRTidal [322, 349, 626, 210, 213],
SEOBNRv4 ROM NRTidal [118, 521, 210, 213], IMRPhenomPv2 NRTidal [322, 349, 210, 213],
IMRPhenomD NRTidalv2 [322, 349, 626, 212], SEOBNRv4 ROM NRTidalv2 [118, 521, 212], PhenomNSBH
[635], IMRPhenomPv2 NRTidalv2, [210, 213, 212], and SEOBNRv4 ROM NRTidalv2 NSBH [635, 212,
426].

5.4.3.2 GW analysis

By assuming stationary Gaussian noise, the GW likelihood LGW(θ) that the data d is a sum of noise
and a GW signal h with parameters θ is given by [652]

LGW ∝ exp

�
−1

2
⟨d− h(θ)|d− h(θ)⟩

�
, (5.14)

where the inner product ⟨a|b⟩ is defined as

⟨a|b⟩ = 4ℜ
Z fhigh

flow

ã(f)b̃∗(f)
Sn(f)

df. (5.15)

Here, ã(f) is the Fourier transform of a(t), ∗ denotes complex conjugation, and Sn(f) is the one-sided
power spectral density of the noise. The choice of flow and fhigh depends on the type of binary that
we are interested in. In our study, we will set flow and fhigh to 20 Hz and 2048 Hz, respectively. This
is sufficient for capturing the inspiral up to the moment of merger for a typical BNS system in the
advanced GW detector era.

5.4.4 Electromagnetic Signals

Text

5.4.4.1 Kilonova models

Kilonova models are extracted using the 3D Monte Carlo radiative transfer code possis [138]. The
code can handle arbitrary geometries for the ejected material and produces spectra, lightcurves and
polarization as a function of the observer viewing angle. Given an input model with defined densities
ρ and compositions (i.e., electron fraction Ye), the code generates Monte Carlo photon packets with
initial location and energy sampled from the energy distribution from radioactive decay of r-process
nuclei within the model. The latter depends on the mass/density distribution of the model and the
assumed nuclear heating rates and thermalization efficiencies. The frequency of each Monte Carlo
photon packet is sampled according to the temperature T in the ejecta, which is calculated at each
time-step [427, 408]. Photon packets are then followed as they diffuse out of the ejected material
and interact with matter via either electron scattering or bound-bound line transitions. Time- and
wavelength-dependent opacities κλ(ρ, T, Ye, t) from Tanaka et al. [623] are implemented in the code
and depend on the local properties of the ejecta (ρ, T , and Ye). Spectral time series are extracted
using the technique described by Bulla et al. [141] and used to construct broad-band lightcurves in
any desired filter.

5.4.4.2 Supernova models

Templates available within the SNCosmo library [76] are used to model supernova spectra. Currently,
the salt2 model for Type Ia supernovae and the nugent-hyper model for hypernovae associated
with long GRBs are implemented in the framework and have been used in the past [44]. However,
the framework is flexible enough such that additional templates for different types of supernovae can
be added with minimal effort.
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5.4.4.3 Kilonova/Supernova Inference

Our EM inference of kilonovae and GRB afterglows is based on the AB magnitude for a specific filter
j, mj

i (ti). We assume these measurements to be given as a time series at times ti with a corresponding

statistical error σj
i ≡ σj(ti). The likelihood function LEM(θ) then reads [181]:

LEM ∝ exp


−1

2

X

ij

(mj
i −mj,est

i (θ))2

(σj
i )

2 + σ2
sys


 , (5.16)

where mj,est
i (θ) is the estimated AB magnitude for the parameters θ and σsys is the additional error

budget for accounting the systematic uncertainty within the electromagnetic signal modeling. The
inclusion of σsys is equivalent to adding a shift of ∆m to the light curve, for which marginalized with
respect to a zero-mean normal distribution with a variance of σ2

sys.
This likelihood is equivalent to approximating the probability distribution of the spectral flux

density fν to be a Log-normal distribution. The Log-normal distribution is a 2-parameter maximum
entropy distribution with its support equals to the possible range for fν ∈ (0,∞). There are two
advantages of approximating fν with a Log-normal distribution: (i) if the uncertainty is larger or
comparable to the measured value, it avoids having non-zero support for the nonphysical fν < 0; (ii)
if the uncertainty is much smaller than the measured value, the Log-normal distribution approaches
the normal distribution.

For kilonovae, we use the same model presented in Dietrich et al. [214]. The model is controlled

by four parameters, namely, the dynamical ejecta mass mej
dyn, the disk wind ejecta mass mej

wind, the
half-opening angle of the lanthanide-rich component Φ, and the viewing angle θobs. Both the dynam-
ical ejecta and the disk wind ejecta are described in methods section 5.4.4.5.

5.4.4.4 GRB Afterglows

In our framework, the computation of the GRB afterglow lightcurves is until now based on the
publicly available semi-analytic code afterglowpy [651, 566]. The inclusion of other afterglow models
is currently ongoing.

The GRB afterglow emission is produced by relativistic electrons gyrating around the magnetic
field lines. These electrons are accelerated by the Fermi first-order acceleration (diffusive shock accel-
eration) and the magnetic field is assumed to be of turbulent nature, amplified by processes acting
in collision-less shocks. The complex physics of electron acceleration at shocks is approximated by
the equipartition parameters, ϵe and ϵB , denoting the fraction of the shock energy that goes into
the relativistic electrons and magnetic field, respectively, and p, and the slope of the electron energy
distribution dn/dγ ∝ γ−p, with n being the electron number density and γ being the electron Lorentz
factor. The flux density of the curvature radiation is

Fν =
1

4πd2L

Z
dθdϕR2 sin(θ)

ϵν
αν

(1− e−τ ), (5.17)

where τ is the optical depth and ϵν and αν are the impassivity coefficient and absorption coefficient, re-
spectively. For a fixed power-law distribution of electrons these can be approximated analytically [575].
The synchrotron self-absorption is neglected in this work.

In order to capture the possible dependence of the GRB properties on the polar angle, the jet is
discretized into a set of lateral axisymmetric (conical) layers, each of which is characterized by its
initial velocity, mass, and angle. Several prescriptions for the initial angular distribution of the jet
energy are available in the code. As default, we use the Gaussian jet model with E ∝ E0 exp(− 1

2 (
θ
θc
)2),

where θc characterizes the width of the Gaussian. The jet truncation angle is θw. We assume the GRB
jet to be powered by the accretion of mass from the disk onto the remnant black hole [229, 486, 432,
462]. Consequently, the jet energy is proportional to the leftover disk mass,

E0 = ϵ× (1− ξ)×mdisk, (5.18)
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where ξ is the fraction of disk mass ejected as wind and ϵ is the fraction of residual disk mass converted
into jet energy.

The dynamical evolution of these layers is computed semi-analytically using the ”thin-shell ap-
proximation” casting energy-conservation equations and shock-jump conditions into a set of evolution
equations for the blast wave velocity and radius. Within blast waves, the pressure gradient perpen-
dicular to the normal leads to lateral expansion [650, 286]. In other words, the transverse pressure
gradient adds the velocity along the tangent to the blast wave surface, forcing the latter to expand.
The lateral expansion is important for late-time afterglow and is included in the code.

Finally, the flux density, Fν , is obtained by equal arrival time surface integration, Eq. (5.17),
taking into account relativistic effects, i.e., that the observed Fν is composed of contributions from
different blast waves that has emitted at different comoving time and at different frequencies.

5.4.4.5 Connecting Electromagnetic Signals to Source properties

To connect the observed GRB, kilonova, and GRB afterglow properties to the binary properties, we
rely on phenomenological relations, i.e., fits based on numerical-relativity simulations. For our work,
we use the fits presented in Kruger et al. [364] and Dietrich et al. [214] but emphasize that a variety
of other fitting formulas exist in the literature [217, 182, 528, 183, 466].

In NMMA, the dynamical ejecta mass mej
dyn is connected to the binary properties through the

phenomenological relation [364]

mej
dyn,fit

10−3M⊙
=

�
a

C1
+ b

�
m2

m1

�n

+ cC1

�
+ (1 ↔ 2), (5.19)

where mi and Ci are the masses and the compactness of the two components of the binary with
best-fit coefficients a = −9.3335, b = 114.17, c = −337.56, and n = 1.5465. This relation enables
an accurate estimation of the ejecta mass with an error well-approximated by a zero-mean Gaussian
with a standard deviation 0.004M⊙[364]. Therefore, the dynamical ejecta mass can be approximated
as

mej
dyn = mej

dyn,fit + α, (5.20)

where α ∼ N (µ = 0,σ = 0.004M⊙). To determine the disk mass mdisk, we follow the description of
Dietrich et al. [214],

log10

�
mdisk

M⊙

�
= (5.21)

max

�
−3, a

�
1 + b tanh

�
c− (m1 +m2)M

−1
threshold

d

���
, (5.22)

with a and b given by
a = ao + δa ·∆ , b = bo + δb ·∆ , (5.23)

where ao, bo, δa, δb, c, and d are free parameters. The parameter ∆ is given by

∆ =
1

2
tanh (β (q − qtrans)) , (5.24)

where q ≡ m2/m1 ≤ 1 is the mass ratio and β and qtrans are free parameters. The best-fit model
parameters are ao = −1.581, δa = −2.439, bo = −0.538, δb = −0.406, c = 0.953, d = 0.0417,
β = 3.910, qtrans = 0.900. The threshold mass Mthreshold for a given EOS is estimated as [40]

Mthreshold =

�
2.38− 3.606

MTOV

R1.6

�
MTOV, (5.25)

where MTOV and R1.6 are the maximum mass of a non-spinning NS and the radius of a 1.6M⊙ NS.



82
An updated nuclear-physics and multi-messenger astrophysics framework for binary neutron star
mergers

We note that we assume that the disk-wind ejecta component is proportional to the disk mass, i.e.,
mej

wind = ξ ×mdisk.

5.4.4.6 Bayesian statistics

Based on Bayes’ theorem, the posterior distribution of the parameters p(θ|d,H) under hypothesis H
with data d is given by

p(θ|d,H) =
p(d|θ,H)p(θ|H)

p(d|H)
≡ L(θ)π(θ)

Z(d)
, (5.26)

where L(θ), π(θ), and Z(d) are the likelihood, prior, and evidence, respectively. The prior describes
our knowledge of the source or model parameters prior to the experiment or observation. The likeli-
hood and evidence quantify how well the hypothesis describes the data for a given set of parameters
and over the whole parameter space, respectively. Throughout our NMMA pipeline, all data analy-
ses use Bayes’ theorem but differences appear due to the functional form of the likelihood and its
specific dependence on the source parameters. For example, the GW likelihood is evaluated with a
cross-correlation between the data and the GW waveform and the EM signal analysis employs a χ2

log-likelihood between the predicted lightcurves with the observed apparent magnitude data, however,
from a Bayesian viewpoint their treatment is equivalent only with different likelihood functions.

In addition to the posterior estimation, the evidence Z carries additional information on the
plausibility of a given hypothesis H. The evidence is given by

Z(d|H) =

Z
dθp(d|θ,H)p(θ|H) =

Z
dθL(θ)π(θ), (5.27)

which is the normalization constant for the posterior distribution. Moreover, we can compare the
plausibilities of two hypotheses, H1 and H2, by using the odd ratio O1

2, which is given by

O1
2 =

Z1

Z2

p(H1)

p(H2)
≡ B1

2Π
1
2, (5.28)

where B1
2 and Π1

2 are the Bayes factor and prior odds, respectively. If O1
2 > 1, H1 is more plausible

than H2, and vice versa.

5.5 Supplementary material

This text is invisible.

5.5.1 Computing generic kilonova lightcurves

Gaussian Process Regression:

Because we are given vectors of photometry or spectra from radiative transfer simulations, we require
methods to interpolate between these grids. If we denote the parameters of the models as Θj and the
vectors of data as τ , parameterized by the i-th time index, we can create matrices of simulations as
Tij = [τi(Θ

j)]. From these matrices, there are a variety of ways to interpolate these vectors, including
direct interpolation of the vectors. Here, instead, we interpolate the principal components of each τi.
To compute the principal components, we take the singular value decomposition (SVD) of this matrix

T = V ΣU⊤. (5.29)
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The SVD computes orthonormal basis vectors in the columns and rows of V and U . With this new
basis, we can project our original τi onto the left-singular vector basis

sk(θ
j) = V ⊤

ki τi(θ
j), (5.30)

where sk are the weights of the principal components of the input data Tij . This method has the
benefit of maximizing the variance in each subsequent basis vector, meaning we can truncate this
sum to minimize computational resources; in our case, we find that using the first 10 basis vectors is
sufficient for a reliable representation of the lightcurves.

To interpolate the principal component eigenvalues, we use Gaussian process regression
(GPR) [532], which relies on the assumption that the correlation between neighboring values can
be represented by a multivariate Gaussian distribution. The covariance between function values is
known as a “kernel” function, with many kernel functions commonly used in the literature; in our
analysis, we use a rational-quadratic kernel function implemented in sci-kit learn [497]:

k(θi,θj) =

 
1 +

d(θi,θj)2

2αl2

!−α

(5.31)

where α = 0.1 and l = 1.0 for our implementation.
As is common in GPR-based interpolation, we first normalize the components of sk(θ

j) by sub-
tracting the minimum value and dividing by the difference between the maximum and minimum
value. After the interpolation, the de-whitened values are projected back into the time domain:

τi(θ
j) = Viksk(θ

j) (5.32)

Finally, the interpolated τi(θ
j) is then used for the computation of the likelihood.

Neural Networks:

Another alternative method for the grid interpolation is a feed-forward neural network (NN) which
can predict the kilonova lightcurves based on the input parameters used by the chosen model [49]. The
main advantage of this approach is it to reduce the memory footprint for the lightcurves computation.

To train the NN, we use about 2000 lightcurves computed with the full radiative transfer code
possis [138]. These lightcurves are split into a training data set of 90% and an evaluation dataset that
contains 10% of all lightcurves. In the pre-processing stage, all the data was normalized between 0 and
1 via the usual MinMax normalization method, and similar to the GPR method, we used PCA data
reduction to reduce the dimensions of the output parameter space to 10 components. In addition, we
use simple linear interpolation for the cases in which the requested time interval is larger than the
original in-hand data.

To develop our NN, we used Keras API from Tensorflow[5]. Our NN comprises an input layer
with the same number of neurons as the input parameter space, three dense hidden layers with 64,
128, and 128 neurons each, and an output layer with ten neurons for the bolometric luminosity and
the nine observational bands. We use the Adam optimizer with a learning rate of 0.01 and a Rectified
linear unit as activation function. Finally, the NN is trained using a batch size of 32, epoch count of
15, and mean squared error (MSE) as loss function. To reconstruct the real lightcurves, a series of
inverse transformations is applied with respect to the PCA and the normalization. Overall a MSE of
0.0022 is achieved.

The table summarizes the intrinsic parameters for the multi-messenger observation of a BNS merger.
In the fourth column, we report median posterior values at 90% credibility for the joint inference of
GW170817-and-AT2017gfo-and-GRB170817A. U(a, b) refers to uniform distribution between a and b.
logU(a, b) refers to the log-uniform (of base 10) distribution, i.e. if X ∼ logU(a, b), log10 X ∼ U(a, b).
N (µ,σ) refers to a normal distribution with mean µ and variance of σ2.
The table summarizes the intrinsic parameters for the multi-messenger observation of a BNS merger
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TABLE 5.2
Posterior of and prior used for the GW170817-and-AT2017gfo and GW170817-and-AT2017gfo-
GRB170817A analysis.
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TABLE 5.3
Posterior of and prior used for the GW170817-and-AT2017gfo and GW170817-and-AT2017gfo-
GRB170817A analysis with the model from Ref.[342].
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using the kilonova model described in Ref. [342]. In the fourth column, we report median poste-
rior values at 90% credibility for the joint inference of GW170817-and-AT2017gfo-and-GRB170817A.
U(a, b) refers to uniform distribution between a and b. logU(a, b) refers to the log-uniform (of base
10) distribution, i.e., if X ∼ logU(a, b), log10 X ∼ U(a, b). N (µ,σ) refers to a normal distribution
with mean µ and variance of σ2.

5.5.2 EOS Sampling

For a set of EOSs, such as our sets constrained by chiral EFT, our framework is able to directly
sample over EOSs instead of sampling over the masses and tidal deformabilities independently. Since
these EOSs relate masses and tidal deformabilities based on nuclear-physics information, the tidal
deformabilities can be computed for a given mass and EOS according to

p(Λi|mi,EOS) = δ(Λi − Λ(mi; EOS)). (5.33)

This feature enables the possibility to include more physical information on the NS sources during
parameter estimation ab initio and can be used through the installation of additional bilby and
parallel bilby patches that come along with our NMMA framework. Another advantage of this
functionality is that information from multiple simulations can be combined to compute a combined
posterior because the EOS is a common parameter for all NSs [370].

5.5.3 Combined Sampling

To extract most information from the GW and the EM data, we perform a full parameter estimation
combining both likelihoods. The ‘full’ likelihood L is given by

L(θ) = LGW(θGW)× LEM(θEM), (5.34)

where θ = {θGW,θEM}. Because the lightcurve models and the GW waveform models depend on
different sets of parameters, simply sampling over all of the parameters would not yield a stronger
constraint on the parameters of interest. Therefore, it is key to use connections between different
parameters at the prior level. In particular, a few parameters describing the EM signals can be deter-
mined by the binary masses and the EOS. For instance, the dynamical ejecta mass mej

dyn and the disk
mass mdisk are connected to the binary properties through the relations discussed in the methods
section. The details for all the parameters are summarized in Supplementary Tab. 5.2.

5.5.4 Scaling

Due to the enormous computational burden of simultaneously analysing both the EM and GW signals,
we have to ensure a good parallelization of our code. For the NMMA framework, the parallelization is
achieved by taking advantage of the flexibility of dynesty [611] and based on the interface presented
in parallel bilby [606].

In particular, the nested sampling process is parallelized using a head/worker strategy. The “head”
organizes the live/dead points, and validates if the stopping criteria are reached, while the “workers”
find new live points under the likelihood constraint. The theoretical scaling performance of such a
strategy is given by [296]

T (Ncores) = T (Ncoreref )×
ln(1 +Ncoreref/nlive)

ln(1 +Ncores/nlive)
, (5.35)

where T (Ncores) is the runtime using Ncores cores and T (Ncoreref ) is the reference time using Ncoreref

cores. The parameter nlive denotes the number of live points.
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FIGURE 5.5
Scaling performance of the NMMA framework. Theoretical against measured scaling performance for
the inference runs of GW170817-AT2017gfo and GW170817-GRB170817A-AT2017gfo on 256, 512,
1024, and 2048 cores, respectively. The theoretical scaling is computed for 256 cores using the reference
time T (Ncoreref ) = 102.49 h for GW170817-AT2017gfo and T (Ncoreref ) = 543.45 h for GW170817-
GRB170817A-AT2017gfo.

To validate if such a scaling is achieved, we performed intensive scaling tests on SuperMUC NG at
the Leibniz Supercomputing Centre (Munich), Lise and Emmy of the North German Supercomput-
ing Alliance, and on HAWK of the High-Performance Computing Center Stuttgart. We show results
for scaling tests performed on HAWK using AMD EPYC 7742 processors. The tests are based on a
full joint inference of GW170817-and-AT2017gfo and GW170817-and-GRB170817A-and-AT2017gfo
which includes intermediate checkpointing and all necessary I/O-operations. The strong scaling for
such simulations is shown in Supplementary Fig. 5.5 and is compared to the theoretical scaling men-
tioned of Eq. (5.35).

5.5.5 Modelling Uncertainty

Overall, the obtained multi-messenger constraints depend noticeably on the robustness and accuracy
of the individual GW, kilonova, and GRB afterglow models but also on the uncertainty and accuracy
of the underlying equations of state and nuclear physics computations. In the past, there have been
numerous studies considering the effect of GW-model uncertainties, e.g., [572, 573, 370] and we have
already employed multiple GW models in one of our previous studies also to investigate uncertainties
with the conclusion that with the current amount of observational data, we are mainly limited by
statistical and not systematic uncertainties [214]. As an example of the influence of the particular
choice of the kilonova model, we employ two different kilonova models with different assumptions
about the geometry and composition of the ejecta. In particular, we compare the results for our
standard kilonova model as presented in Supplementary Tab. 5.2 with the results based on the model
of Kasen et al. [342] in Supplementary Tab. 5.3. While we find that individual parameters can be
different, we find a similar neutron star radius of R1.4 = 11.86+0.37

−0.49km.

5.5.6 Effect of systematic uncertainty budget

To investigate the effect of the value chosen for the systematics uncertainty budget, the analysis on
the GW170817-AT2017gfo-GRB170817A event has been conducted with three different values of σsys,
namely, 0.5mag, 1mag and 2mag.
To gauge the effect on the final equation-of-state constraint, the resulting posterior of the radius of
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FIGURE 5.6
Best-fit early-time lightcurve from the analysis with various σsys. The best-fit K-filter lightcurve
(dashed, with the one magnitude uncertainty shown as the band) for AT2017gfo data when analysing
GW170817-and-AT2017gfo-and-GRB170817A simultaneously with different σsys.

a 1.4M⊙ neutron star, R1.4, for these different σsys are compared. The median values with the 90%
credible interval as uncertainties, are shown in Supplementary Tab. 5.4.

TABLE 5.4
Comparison of radius measurements of a 1.4M⊙ neutron star for different σsys.

σsys [mag] R1.4 [km]

0.5 12.05+0.35
−0.45

1.0 11.98+0.35
−0.40

2.0 11.76+0.41
−0.49

The resulting radius measurements of a 1.4M⊙ neutron star for σsys being 0.5, 1.0 and 2.0 are shown.

With lower values of σsys, the estimated R1.4 is skewed towards higher values, with the minimal
uncertainty at 1mag. Therefore, it hints that

• the information from difference channels are more coherent at 1mag as compare to 0.5mag

• the information is not over diluted in 1mag as compare to 2mag.

To verify the above claim, we investigate into the estimated best-fit lightcurves. In particular, the
best-fit lightcurves with the associated error budget for filter K is shown at Supplementary Fig. 5.6.
One can see that the 0.5mag is underestimating the systematic uncertainty and failed to account
for the data after 6 days after the merger, while the 2mag is overcompensating for the systematic
uncertainty. Based on the above observations, we concluded that the σsys of 1mag is a sensible choice.
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The impact of gravitational waveform model systematics
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This chapter is based on the article by Nina Kunert, Peter T. H. Pang, Ingo Tews, Michael W.
Coughlin, Tim Dietrich published in Physical Review D (2022), Vol. 105, L061301. I carried out
parameter estimation simulations in collaboration with Dr. Peter Pang, performed data analysis, vi-
sualized results, and authored the manuscript. Preliminary findings were presented in my master’s
thesis, while the final publication provides a refined analysis and extended investigations to evaluate
the impact of systematic biases.

Editorial notes: Appendix A has been integrated in the Section 6.2 and additional citations have
been included beyond those in the published version.

Abstract: With the increasing sensitivity of gravitational-wave detectors, we expect to observe mul-
tiple binary neutron-star systems through gravitational waves in the near future. The combined
analysis of these gravitational-wave signals offers the possibility to constrain the neutron-star radius
and the equation of state of dense nuclear matter with unprecedented accuracy. However, it is crucial
to ensure that uncertainties inherent in the gravitational-wave models will not lead to systematic
biases when information from multiple detections are combined. To quantify waveform systematics,
we perform an extensive simulation campaign of binary neutron-star sources and analyse them with a
set of four different waveform models. Based on our analysis with about 38 simulations, we find that
statistical uncertainties in the neutron-star radius decrease to ±250m (2% at 90% credible interval)
but that systematic differences between currently employed waveform models can be twice as large.
Hence, it will be essential to ensure that systematic biases will not become dominant in inferences of
the neutron-star equation of state when capitalizing on future developments.
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6.1 Introduction

Gravitational waves (GWs) emitted from binary neutron-star (BNS) coalescences allow us to probe
the equation of state (EOS) of dense nuclear matter. This was successfully demonstrated by the LIGO-
Virgo Collaboration and other research groups following the first GW observation of a BNS system,
GW170817, using Bayesian analyses of the GW signal [10, 16, 13, 15, 200]. Such constraints have been
further improved in numerous multi-messenger analyses, e.g., Refs. [83, 55, 451, 13, 526, 188, 311, 153,
214, 388, 524, 324], by incorporating data from associated electromagnetic observations, AT2017gfo
and GRB170817A [9], nuclear-physics computations [300, 55, 630], nuclear-physics experiments [196,
563, 37], as well as radio and X-ray observations of isolated neutron stars (NSs) [57, 63, 256, 446,
547, 447, 548].

Extracting information from observational data always requires certain modeling assumptions.
For example, to infer information from the measured GW data, it is necessary to cross-correlate the
observed GW signal with theoretical models describing the compact binary coalescence for various
binary parameters. Following this approach, the matching introduces systematic uncertainties that
originate from the approximations made to describe the general relativistic two-body problem. These
approximations range from an analytical description using the Post-Newtonian (PN) framework [108],
the effective-one-body (EOB) model [142, 143] to numerical-relativity simulations, e.g., Refs. [69, 216].
Since it is expected that statistical uncertainties will be reduced for high signal-to-noise ratio (SNR)
signals or when multiple signals are combined, systematic uncertainties introduced by the waveform
models will become increasingly prominent and it is crucial to understand all sources of systematic
uncertainties for a reliably quantification of EOS constraints.

Previous studies have shown that EOS constraints based on tidal deformabilities extracted from
GW170817 were dominated by statistical uncertainties, e.g., Ref. [13], and that systematic biases
were under control, i.e., noticeably smaller than statistical ones. For example, Ref. [225] performed an
injection study to investigate systematic uncertainties from different GWmodels and found systematic
biases for GW170817 to be small. However, for similar sources observed at Advanced LIGO and
Advanced Virgo design sensitivity, different waveform models can lead to noticeable biases, i.e., the
recovered 90% credible intervals would not contain the injected values. Similarly, Ref. [572] used
simulated, non-spinning GW170817-like sources measured at design sensitivity and found that for
unequal masses the obtained tidal parameters can get noticeably biased. This work was extended by
Ref. [573] by studying the imprint of precession and source localization obtained through a possible
electromagnetic counterpart. Ref. [269] found that existing GW waveform models used for the analysis
of GW170817 will be dominated by systematic uncertainties for SNRs above 80. Finally, very recently,
Ref. [167] discussed numerous systematic biases that enter GW analyses outlining the importance of
waveform systematics.

As pointed out in, e.g., Refs. [204, 39, 376, 673], even low SNR signals can be used and combined
to constrain the tidal deformability parameter to an accuracy of ∼ 10% with only a few tens of
detections; cf. also Refs. [246, 655]. Using such a procedure, systematic biases are introduced through
“stacking,” i.e., combining multiple GW measurements. However, to our knowledge no study to date
has addressed waveform systematics introduced through the stacking of signals within a realistic
injection study. Here, we address this issue and determine at which point systematic biases dominate.
We use a set of 38 simulated signals analysed with four different waveform models and perform a total
of 152 BNS parameter estimation simulations assuming Advanced GW detectors at design sensitivity
[1, 34]. Throughout this work, geometric units are used by setting G = c = 1. Further notations are
M = MA+MB for a system’s total mass, q = MA/MB for the mass ratio, and ΛA, ΛB for individual
tidal deformabilities of the stars in a binary.
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6.2 Methodology

By using Bayes’ theorem, the posterior p(θ⃗|d,H) on the parameters θ⃗ under hypothesis H and with
data d is given by

p(θ⃗|d,H) =
p(d|θ⃗,H)p(θ⃗|H)

p(d|H)
, (6.1)

where p(d|θ⃗,H), p(θ⃗|H), and p(d|H) are the likelihood, prior, and evidence, respectively. The prior
describes our knowledge of the parameters before the observation. It also naturally acts as a gateway
for additional observations to be included as part of the analysis. The likelihood quantifies how well the
hypothesis describes the data at a given point θ in the parameter space and the evidence marginalizes
over the whole parameter space. By assuming Gaussian noise, the likelihood p(d|θ⃗,H) of a GW signal

h(θ⃗) with parameters θ⃗ embedded in the data d is given by [652]

p(d|θ⃗,H) ∝ exp

 
−2

Z fhigh

flow

|d̃(f)− h̃(f ; θ⃗)|2
Sn(f)

df

!
, (6.2)

where ñ(f) and h̃(f) are the Fourier transform of n(t) and h(t; θ⃗), Sn(f) is the one-sided power
spectral density of the noise. In our study, all simulations are performed in stationary Gaussian noise
assuming Advanced LIGO [1] and Advanced Virgo [34] design sensitivity and we set flow and fhigh
to 20 Hz and 2048 Hz.

The evidence p(d|H) is given by

p(d|H) =

Z

V
p(d|θ⃗,H)p(θ⃗|H)dθ⃗, (6.3)

which is the normalization constant for the posterior distribution. The landscape of the likelihood
function is explored using the nested sampling algorithm [603] implemented in parallel bilby [606].

6.2.1 Combining information from multiple detections

Extracting tidal effects from GW data requires information about the EOS. In this study, we will use
EOSs that are constrained by chiral effective field theory (EFT) at low densities [630, 633]. Chiral EFT
is a systematic theory for nuclear forces that provides an order-by-order scheme for the interactions
among neutrons and protons [236, 406]. These interactions can then be used in microscopic studies
of dense matter up to densities of ∼ 2 times the nuclear saturation density (nsat = 0.16 fm−3). In
Ref. [214], 5000 EOSs constrained by quantum Monte Carlo calculations using chiral EFT interactions
up to 1.5nsat were computed. For this article, we employ the most-likely EOS of Ref. [214] for all of our
BNS injections. During the parameter estimation, instead of sampling masses and tidal deformabilities
independently, we sample from the same set of 5000 EOSs. These EOSs relate masses and tidal
deformabilities based on nuclear-physics information. The tidal deformabilities are then computed for
a given mass and EOS via

p(Λi|mi,EOS) = δ(Λi − Λ(mi; EOS)), (6.4)

with mi and Λi denoting the mass and tidal deformability of the stars.
In addition to the tidal behavior, the EOS also determines the maximum allowed mass Mmax for

NSs. Therefore, we choose a uniform NS mass distribution given by

p(m1,m2|EOS) =
2Θ(m1 −m2)Θ(Mmax −m1)

(Mmax −Mmin)2
, (6.5)

where Mmin is the minimum NS mass and Θ is the Heaviside step function. We choose Mmin to be
0.5M⊙.



94
Quantifying modeling uncertainties when combining multiple gravitational-wave detections from
binary neutron star sources

For the EOS prior probability, the mass measurements of PSR J0348+0432 [57], PSR J1614-
2230 [63], and PSR J0740+6620 [256] are taken into account, similar to the approach outlined in
Ref. [214]. The prior gives rise to R1.4 = 12.24+1.21

−1.44km (at 90% credibility). In contrast to [214],
the NICER observation of PSR J0030+0451 [446, 547] and the upper bound on Mmax derived from
GW170817 [542] are not included here to avoid masking the systematic uncertainties in the GW
analysis by additional information.

Since the EOS is a common parameter, we can combine the information from multiple simulations
to compute the combined posterior, pc(θ⃗). With Nobs detections {di} it is given as

pc(EOS|{d⃗i}) = p(EOS)1−Nobs

NobsY

i=1

pi(EOS|{d⃗i}), (6.6)

in which pi(EOS|{di}) is the EOS posterior given the i-th simulation and p(EOS) refers to the prior
employed. To correct the selection bias introduced by non-uniform detectability across sources, we
follow Ref. [414] to compute the joint posterior for the EOS as

pc(EOS|{d⃗i}) = p(EOS)1−Nobs

NobsY

i=1

pi(EOS|{d⃗i})R
dθ⃗pdet(θ⃗)p(θ⃗|EOS)

, (6.7)

where pdet(θ⃗) is the probability of detecting the GW signal corresponding to the source parameters

θ⃗. In this work, a threshold SNR of 7 is enforced for the detections and we estimate pdet(θ⃗) using a
neural-network classifier as described in Ref. [277] trained on the BNS parameter distributions.

6.2.2 Waveform models

The frequency-domain representation of a gravitational waveform can be written as

h̃(f) = Ã(f)e−iψ(f), (6.8)

with the frequency f , the amplitude Ã(f), and GW phase ψ(f). The phase can be further decomposed
into

ψ(f) = ψpp(f) + ψSO(f) + ψSS(f) + ψT(f) + · · · , (6.9)

with ψpp being the non-spinning point-particle contribution, ψSO corresponding to contributions
caused by spin-orbit coupling, ψSS to contributions caused by spin-spin effects, and ψT denoting the
tidal effects present in the GW phase. We note that higher-order effects, e.g., cubic-in-spin, could also
be included.

The dominant quantity describing EOS-related tidal effects on the GW signal is the mass-weighted
tidal deformability [309, 308, 246]

Λ̃ =
32

39

"�
1 + 12

XB

XA

��
XA

CA

�5

kA2 + (A ↔ B)

#
, (6.10)

with the compactness parameters of the individual undisturbed stars CA,B = MA,B/RA,B , the Love

numbers kA,B
2 [308, 193, 104], and XA,B = MA,B/(MA + MB). The leading-order PN contribu-

tion to the tidal phase, proportional to Λ̃, starts at the 5PN order, i.e., becomes most relevant at
the late inspiral; cf. Fig. 2 of Ref. [216]. To quantify the modelling systematics, we employ four
different GW waveform models: TaylorF2 (TF2), IMRPhenomD NRTidal (PhenDNRT), IMRPhe-
nomD NRTidalv2 (PhenDNRTv2), SEOBNRv4 ROM NRTidalv2 (SEOBNRTv2). These models are
based on different point-particle and tidal descriptions and, hence, lead to different estimates on the
intrinsic source properties. The variety of GW models allows us to disentangle the effects of the tidal
contribution, comparing PhenDNRT vs. PhenDNRTv2, and the point-particle information, compar-
ing PhenDNRTv2 vs. SEOBNRTv2. The comparison with TF2 serves as a “worst case” scenario
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FIGURE 6.1
Constraints on the radius of a typical NS, R1.4, from simulated raw data for the injection model
PhenDNRTv2. The radius for the injected EOS is shown as red dashed line.

since point-particle and tidal contributions are varied with respect to the injected waveform set (see
Appendix 6.5).

An easy interpretation of the tidal contribution for our employed models can be extracted from
Figs. 3 and 4 of Ref. [212]. NRTidalv2 predicts larger tidal effects than TaylorF2 and smaller tidal
effects than NRTidal for the same tidal deformability. Hence, it is expected that NRTidal models
will predict smaller NS radii and TaylorF2 will potentially predict larger radii with respect to our
reference model NRTidalv2. Considering the differences in the employed point-particle contributions,
we refer to Fig. 3 of Ref. [572], where it was found that when using the same tidal contribution, both
TaylorF2 and SEOBNRv4 ROM lead to smaller estimated tidal deformabilities than IMRPhenomD.
A summary of the expected biases and the final results is given in Tab. 6.1.

6.2.3 Injection setup

We simulate a network of interferometers consisting of Advanced LIGO and Advanced Virgo at
design sensitivity [1, 34]. The BNS sources in our injection set are uniformly distributed in a co-
moving volume with the optimal network SNR ρ ∈ [7, 100]. The sources’ sky locations (α, δ) and
orientations (ι,ψ) are placed uniformly on a sphere. Based on the observed BNS population, the
spins of NSs are expected to be small [481]. We restrict the spin magnitudes of the two stars (a1, a2)
to be uniformly distributed, ai ∈ [−0.05, 0.05]. The component masses are sampled from a uniform
distribution of m1,2 ∈ [1, 2] M⊙. For our 38 BNS setups, we have used PhenDNRTv2 as injection
model and employed the most-likely EOS of Ref. [214], leading to an injected radius of a typical
1.4M⊙ NS, R1.4, of ∼ 11.55km, corresponding to a dimensionless tidal deformability of Λ1.4 ∼ 292.5.
We have used the four different models for the recovery, leading to a total of 152 inference runs.
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6.3 Results

This text is invisible.

6.3.1 Radius measurements and intrinsic biases

In Fig. 6.1, we present our preliminary results for the NS radius, R1.4, for the injection model PhenD-
NRTv2 for each individual injected GW event denoted through a random identifier (index). The
uncertainties reflect the 90% confidence intervals. Depending on the source properties, the SNR and
the particular noise realisation, different GW events place tighter or weaker constraints on the neu-
tron star radius. To improve our radius estimate on the underlying EOSs, one can combine multiple
GW events. In Fig. 6.2, we show the R1.4 results for successively combined GW events. Fig. 6.2(a)
clearly shows that the combination of multiple GW events significantly reduces the uncertainty of
a NS radius measurement. Furthermore, in order to avoid an arbitrary ordering effect in our simu-
lated BNS population, we randomly shuffle the order (indexed events as shown in Fig. 6.1) of the 38
simulated events for 1000 times and compute the median over all permutations; cf. Fig. 6.2(b).

At this stage, our study still includes an additional selection bias in our BNS population due to
our inability of detecting arbitrarily weak GW signals [414]. Therefore, we are systematically more
sensitive to sources with higher SNRs. This means that more massive binaries are favoured due to
their high SNRs1. Because these systems also correspond to lower tidal deformabilities, this selection
effect could lead to smaller R1.4-predictions. When correcting for this selection bias using the neural
network classifier of Ref. [277], we obtain our final result for R1.4 shown in Fig. 6.2(c). As can be seen
in Fig. 6.2(b)-(c), we recover the expected ∼ 1/

√
N falloff of the statistical uncertainty of the radius

measurement, where N denotes the number of combined GW detections. When all GW events are
combined, we obtain a final NS radius estimate for the injection model PhenDNRTv2 of 11.55+0.24

−0.25km
which is in perfect agreement with the injected value of 11.55 km (red dashed line). The injection set
corrections illustrated in the panels of Fig. 6.2 were likewise applied to the other waveform models
used in this study. The final NS radius measurements for all models are listed in Tab. 6.1 and are
shown in Fig. 6.3. From our NS radius measurement for the injection model PhenDNRTv2, we confirm
the findings of Ref. [204] that the tidal deformability can be measured with a statistical uncertainty
of ∼ 10% after a few tens of detections.

TABLE 6.1
Overview of expected and measured NS radius measurements, R1.4, and systematic shifts, ∆R1.4,
for our selected GW models with respect to PhenDNRTv2. ◦ marks no expected bias, ⇑ a larger
expected radius estimate, ⇓ a smaller expected radius, and ⇕ denotes cases in which competing
effects are present. The injected NS radius is 11.55 km. Our results for ∆R1.4 in the last column are
based on the shift of the median value from the injected value.

Model ψpp ψT ψ R1.4 [km] ∆R1.4 [m]

PhenDNRTv2 ◦ ◦ ◦ 11.55+0.24
−0.25 −3

PhenDNRT ◦ ⇓ ⇓ 11.22+0.26
−0.30 −329

SEOBNRTv2 ⇓ ◦ ⇓ 11.12+0.28
−0.25 −437

TF2 ⇓ ⇑ ⇕ 11.71+0.24
−0.26 +158

1We note that although the extrinsic parameters affect the SNR, they do not contribute to an uneven detectability
for given intrinsic parameters.
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FIGURE 6.2
Overview of applied corrections for injection model PhenDNRTv2: (a) combined injection data, (b)
combined and randomly reshuffled injection data, and (c) same data as before but corrected for
selection effects as detailed in Sec. 5.4. The injected NS radius is 11.55 km (red-dashed line).
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6.3.2 Waveform-model systematics

In Tab. 6.1, we show our expectations of potential systematic biases originating from different mod-
elling assumptions, which we compare with our results for all waveform models in Fig. 6.3.
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FIGURE 6.3
Left: radius constraints of a typical NS with 1.4M⊙, R1.4, versus number of successively combined
GW signals for the GW models PhenDNRT, TF2, SEOBNRTv2, and the injection model PhenD-
NRTv2. Right: posterior distribution function (PDF) for each GW model when all GW signals are
combined. The injected EOS value is shown as black-dashed line.

The injection model PhenDNRTv2 perfectly recovers the injected value, but all other models em-
ployed, introduce a considerable bias in the NS radius measurement. PhenDNRT predicts lower NS
radii which can be explained by the different tidal descriptions in the PhenDNRT and PhenDNRTv2,
leading to overall smaller tidal deformabilities, and, hence, to smaller NS radii. Due to this systematic
bias and decreasing statistical uncertainties, the model recovers the injected value within the 90%
credible interval only when less than 20 GW events are combined. Combining all 38 GW events,
PhenDNRT recovers a NS radius of 11.22+0.26

−0.30km which is lower than the injected value by ∼ 300m.
We note that the bell-shaped PDF for PhenDNRT in Fig. 6.3 is an effect of our selection bias cor-
rection and is not present when excluding this correction. We find the same trend towards smaller
NS radii for SEOBNRTv2. Here, the different point-particle phase description in the model predicts
smaller tidal deformabilities and, hence, smaller NS radii. From the results in Fig. 6.3, we find that
the model is able to recover the injected NS radius in the 90% credible interval when less than 30
GW events are combined. The SEOBNRTv2 model predicts a final NS radius of 11.12+0.28

−0.25km when
all injections are combined, resulting in a systematic shift of ∼ 400m towards smaller NS radii. In
comparison to the injection model PhenDNRTv2, the systematic biases present in PhenDNRT and
SEOBNRTv2 lead to overall smaller NS radii when all GW events are combined. However, our analy-
sis of the injection raw data shows that for some individual simulations PhenDNRT predicts slightly
larger NS radii than PhenDNRTv2.

Finally, TF2 shows an indefinite trend for R1.4, giving smaller NS radii for a smaller number
of combined GW events, whereas with more than 23 combined GW events TF2 overestimates the
injected NS radius. Notably, this model shows the largest uncertainties when less than 10 GW events
are combined. Using all 38 detections, TF2 predicts a NS radius of 11.71+0.24

−0.26km which is larger than
the injected value by ∼ 150m. The trend of the TF2 model could be explained by the different point-
particle and tidal-phase descriptions compared to the injection model PhenDNRTv2. Because in TF2
the point-particle sector is described up to 3.5PN order whereas tidal effects are included up to 7.5
PN order, the uncertainties of ψpp will dominate for smaller numbers of combined GW events, leading
to smaller NS radii, while uncertainties of ψT at 7.5PN order begin to dominate when larger numbers
of GW events are combined, leading to larger NS radii. Therefore, the combined R1.4-estimate for
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TF2 underestimates waveform systematics because competing effects balance out; see Tab. 6.1 and
Fig. 6.3.

Notably, the R1.4-estimates when combining the first few events in Fig. 6.3 follow the same pattern
regardless which waveform model is employed. The first event results in an overestimation of R1.4

because it is largely driven by our heavy-pulsar prior. The non-zero support of Λ = 0 for low Λ
injections results in an underestimation of R1.4 when including a few additional events.

We find that our extracted systematic shifts of the NS radius of up to ∼ 400m are smaller than
shifts∼ O(1km) estimated in previous studies [269, 514]. From a mock analysis of 15 sources, Ref. [269]
found that systematic errors of that order dominate over statistical errors for signals with SNR ≳ 80
for current advanced detectors at design sensitivity. Ref. [514] found a similar result when neglecting
dynamical tidal effects in their BNS population. The differences with our findings could originate
from the fact that in our parameter estimation runs we directly sample over an EOS set restricted
by nuclear physics to obtain combined R1.4-estimates. Refs. [269, 514], instead, used methods such
as spectral parametrizations and universal relations for the EOS to translate binary tidal parameters
into NS EOS and radius information. Consequently, our parameter estimation accounts for more
physical information on the NS radius which affects systematic biases. Moreover, systematics can
become more pronounced once information across several events are combined. Appendix 6.5 shows
that we do not find significant systematic biases when estimating mass and spin parameters with our
waveform models.

6.4 Conclusions

In this work, we performed a large injection campaign with a total of 152 BNS parameter estima-
tion simulations to understand how the combination of information from multiple BNS detections
will decrease statistical measurement uncertainties in the NS radius and to quantify the impact of
waveform model systematics. For this purpose, we used four different waveform models with different
point-particle and tidal phase descriptions. Based on 152 BNS simulations, our main findings are
summarized below:
(i) We verified that both the combination of multiple GW sources and GW detections with high SNR
will be influenced by the different modelling assumptions of existing GW models.
(ii) From a total number of 38 combined simulations, one might be able to constrain the NS radius
with an accuracy of ±250m for our injection model.
(iii) Our results showed that systematic effects substantially affect the NS radius measurement. In
this work, these are strongest for the models PhenDNRT and SEOBNRTv2 (up to ∼ 440m). Hence,
these models cannot recover the injected NS radius in their 90% credible interval when more than 20
or 30 GW events are combined, respectively.
Overall, with increasing GW detector sensitivity and the projected BNS merger rate of 10+52

−10 de-
tections per year estimated by Ref. [22] or 9–88 forecasted by Ref. [501] for O4, waveform model
systematics will influence the extraction of NS properties. Moreover, it might be possible that sys-
tematic uncertainties in GW modelling could lead to inconsistencies of the measured NS properties
between different messengers, in particular, when information from electromagnetic counterparts of
potential multi-messenger observations or tighter constraints from future X-ray observations similar
to Ref. [446, 447] are included. In fact, given the expectations of 1− 13 well-localized (≤ 100 deg2 at
90% credible areas) GW detections for BNS systems with corresponding kilonova detection rates of
0.5−4.8 events per year in O4 [501], one can expect systematic effects when using currently available
waveform models during the next observing runs.
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6.5 Appendix

Waveform Models

Throughout this article, we used four different waveform approximants that are described in more
detail below:

TaylorF2 (TF2) is a purely analytical model derived within the Post-Newtonian approximation,
see Ref. [108] for a review. The model includes point-particle [578, 110, 192, 111, 112, 448] and aligned
spin terms [444, 61, 117, 448] up to 3.5PN order as well as tidal effects up to 7.5PN order [194, 654,
103, 195].2

IMRPhenomD NRTidal (PhenDNRT) uses a binary black hole (BBH) baseline given by the phe-
nomenological frequency-domain model IMRPhenomD, which was introduced in Refs. [322, 349] and
calibrated to untuned EOB waveforms [626], as well as numerical-relativity hybrids. The model
describes spin-aligned systems throughout the inspiral, merger, and ringdown. The BBH model is
augmented by the NRTidal phase description of Refs. [210, 213], which is based on analytical PN
knowledge up to 6PN order, a tidal EOB model [456, 96], and numerical-relativity simulations. In
PhenDNRT, no additional contributions from EOS-dependent spin-spin or cubic-in-spin effects are
included.

IMRPhenomD NRTidalv2 (PhenDNRTv2) uses the same underlying BBH model as PhenDNRT,
but has a different description of the tidal sector and the NRTidalv2 phase contribution is em-
ployed [212]. This tidal description incorporates PN information up to 7.5PN order and is calibrated
to an updated set of tidal EOB and NR waveforms as outlined in Ref. [212]. These updates also
include tidal contributions to the GW amplitude as well as the EOS-dependence on the quadrupole
and octupole moment in the spin-spin (up to 3PN order) and cubic-in spin (up to 3.5PN order)
contributions.

SEOBNRv4 ROM NRTidalv2 (SEOBNRTv2) also uses the NRTidalv2 description for the tidal
sector which includes amplitude- and EOS-dependent spin effects. However, in contrast to PhenD-
NRTv2, the waveform model is based on an effective-one body description. The underlying BBH wave-
form model SEOBNRv4 was introduced in Ref. [118] and its reduced-order model SEOBNRv4 ROM
is constructed following the methods outlined in Ref. [521]. The differences between PhenDNRTv2
and SEOBNRTv2 will enable us to understand the importance of the underlying BBH model for the
inference of the EOS parameters.

Assessment on systematic biases on mass and spin parameters

In order to investigate potential biases in the recovery of sources’ mass and spin parameters, i.e., the
chirp mass Mc, the mass ratio q, and the effective spin parameter χeff , we used a percentile-percentile
(pp) test.
We expect our recovery to be unbiased when the pp-curve for each parameter follows the x = y line,
apart statistical fluctuations resulting from the Gaussian noise assumed in our BNS simulations. We
find that associated parameters analyzed in Fig. 6.4 follow the expected x = y relation, shown as
black dashed line, and can be recovered within a 3-σ region (2-σ for PhenomDNRTv2). In order to
quantify deviations seen in Fig. 6.4, we perform a Kolmogorov-Smirnov (KS) test for all models. Our
KS statistic results, Dn, confirm that the deviations for the chirp mass, mass ratio, and the effective
spin parameter are smallest for our injection model ranging up to Dn,Mc

= 0.1, Dn,q = 0.17, and
Dn,χeff

= 0.1, respectively.
As PhenomDNRT has the same point-particle description as PhenomDNRTv2, one expect it to

2We note that we employ the existing publicly available TF2 implementation in LALSuite that was used for the
analysis of previous GW detections but does not incorporate recently updated 7PN and 7.5PN order terms [305,
464].
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FIGURE 6.4
Percentile-percentile plot for chirp mass Mc, mass ratio q, and χeff for all waveform models. p is
the probability contained in a given credible interval and CDF(p) is the fraction of the injections
with their injected values laying inside that interval. The black dashed lines indicates the ideal 1-to-1
relation for the recovery of unbiased parameters. Shaded regions refer to 1-, 2-, and 3-σ regions.

have similar degree of performance as PhenomDNRTv2. Indeed, the PhenomDNRT’s KS statistic are
close to the one of PhenomDNRTv2. The KS statistic for chirp mass, mass ratio, and effective spin
parameter are Dn,Mc = 0.11, Dn,q = 0.2, and Dn,χeff

= 0.11.
Because PhenomD reduces to TF2 at low frequency, the systematics induced by using TF2 should

be less than the one by using SEOB. This matches our results with the TF2’s KS statistic for chirp
mass, mass ratio and effective spin parameter being Dn,Mc

= 0.12, Dn,q = 0.19, and Dn,χeff
= 0.12,

respectively. Because the tidal contribution is only included up to 7PN order for PhenomDNRT, while
TF2 has included up to 7.5PN order, that could contributed to the marginally stronger systematics
for mass ratio in PhenomDNRT.

While the largest deviation from the x = y relation is present for SEOBNRTv2 ranging up to 0.12
for Mc, 0.22 for q, and up to 0.17 for χeff , we conclude that systematics are not pronounced for these
source parameters regardless of waveform model in use.
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This chapter is based on the article by Nina Kunert, Jonathan Gair, Peter T. H. Pang, and Tim
Dietrich published in Physical Review D (2024), Vol. 110, 4, 043520. The analysis in this study builds
upon data from my previous work [Phys. Rev. D, 105(6):L061301, 2022]. I conducted data analysis
under guidance of Dr. Jonathan Gair, visualized the results, and authored the manuscript.

Editorial notes: Additional citations and explanations have been included beyond those in the pub-
lished version.

Abstract: Matching GW observations of binary neutron stars with theoretical model predictions
reveals important information about the sources, such as the masses and the distance to the stars.
The latter can be used to determine the Hubble constant, the rate at which the universe expands.
One general problem of all astrophysical measurements is that theoretical models only approximate
the real underlying physics, which can lead to systematic uncertainties introducing biases. However,
the extent of this bias for the distance measurement due to uncertainties of gravitational waveform
models is unknown. In this study, we analyze a synthetic population of 38 binary neutron star sources
measured with Advanced LIGO and Advanced Virgo at design sensitivity. We employ a set of four
different waveform models and estimate model-dependent systematic biases on the extraction of the
Hubble constant using the bright siren method. Our results indicate that systematic biases are below
statistical uncertainties for the current generation of GW detectors.
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7.1 Introduction

The measurement of the local expansion rate of the Universe, also known as the Hubble constant, H0,
is one of the most intriguing problems in cosmology. The knowledge of the cosmological expansion
rate at different times, given through the Hubble-Lemâıtre parameter, is essential for understanding
the history of the Universe and to infer its age and composition.

A big puzzle in cosmology is to piece together the measurements from the early and late Universe.
While the SH0ES Collaboration [546] using the cosmic distance ladder method constrained the local
expansion rate to H0 = 74.03 ± 1.42 km s−1Mpc−1, the Planck Collaboration [43] estimated H0 =
67.4 ± 0.5 km s−1Mpc−1 at 68% credibility from observations of the CMB radiation. This leads to
the well-known Hubble-Lemâıtre tension with a discrepancy at a 4.4 sigma level [546].

This discrepancy has spurred scientific efforts, with researchers proposing numerous independent
studies to elucidate the underlying cause. The use of acoustic baryonic oscillations [404], the grav-
itational lensing method [105], or calibrating the tip of the red giant branch (TRGB) to Type Ia
supernovae [261] exemplify prominent attempts to resolve this enigma. Meanwhile, the possibility
of a need for new physics is actively debated, suggesting that a new cosmological model may be
necessary to reconcile the distinct measurements [93, 115, 412, 510].

Using GW observations as a probe to infer the cosmic expansion rate was first proposed by Schutz
in 1986 [583]. The GW emission of compact binary coalescences involving black holes or neutron stars
can serve as cosmic distance indicators or so-called standard sirens and provide a measurement of
the luminosity distance of the source. The landmark detection of GW170817 [10, 16], a BNS merger,
by the LIGO and Virgo detectors [1, 34] along with its associated EM counterparts, GRB170817A
and AT2017gfo ([11] and refs. therein), marked a pivotal milestone in the field of cosmology. This
event enabled the first direct measurement of the Hubble constant using a GW standard siren [7, 23].
Although current constraints from GW observations are not yet able to resolve the Hubble tension,
future observations could place further constraints on this cosmological parameter [170, 247, 245, 248].
Multi-messenger observations especially hold significant promise for improving the accuracy of Hubble
constant determinations. This advantage arises from being able to combine the GW measurement of
the distance to the source with an electromagnetic measurement of its redshift [7, 291, 317, 657, 214,
140, 489].

While the standard siren methodology offers the advantage of not requiring recalibration, as is
common practice in the distance ladder method, there are different sources of systematic uncertainties
that must be addressed. Previous studies such as Ref. [319] investigated the impact of instrumental
calibration uncertainties on Hubble constant measurements. They found that for single BNS events
with a SNR of 50 for a network consisting of Advanced LIGO and Advanced Virgo operating at
design sensitivity, the introduced bias is smaller than statistical uncertainties, but could accumulate
as more events are detected. Reference [644] examined the influence of galaxy redshift uncertainties
using different galaxy redshift uncertainty models, with particular emphasis on photometric redshifts,
which are known to exhibit substantial errors. Their findings indicate that while there may exist a
potential bias, it remains smaller than statistical uncertainties. Furthermore, systematic uncertainties
arising from the viewing angle of BNS mergers and EM selection effects can be major challenges [169,
171, 411]. Building on [209], this work explores the systematic biases introduced by BBH waveform
models. The analysis reveals that these biases become more pronounced with increasing detector-
frame total mass, binary asymmetry, and spin-precession effects. Notably, the study demonstrates
on the basis of three high SNR events (golden events) that current waveform models lead to biased
measurement of the Hubble constant, even for current detectors.

In contrast to Ref. [209], our study delves into the issue of systematic uncertainties originating
from BNS waveform models potentially influencing the determination of the distance to the source
and, hence, the Hubble constant. Until now, this question remains, up to the best of our knowledge,
unanswered. We analyze a synthetic population of 38 BNS sources, previously published in Ref. [370],
with a set of four different waveform models and study model-dependent systematic errors. We employ
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the most recent Planck CMB measurement [43] as a benchmark and investigate whether estimating
H0 using different models than the one used to generate the data introduces a systematic bias. As
our results will demonstrate, GW model-dependent biases have a minimal influence on the inferred
value of the Hubble constant for current detector networks.

This chapter is organized as follows. Section 7.2 provides details on modeling GW standard sirens,
the simulated BNS source population, and on the Bayesian framework employed to extract estimates
of H0. Our results of combined H0 estimates are presented in Sec. 7.3 and Sec. 7.4 summarizes the
key takeaways.

7.2 Methodology

The standard siren method utilizes the detection of GW signals and their correlation with EM
observations of the same astrophysical events to infer the Hubble constant. When a source’s red-
shift can be measured directly or through an association with its host galaxy, it is denoted as
a bright siren. When an EM counterpart is absent, statistical methods can be used to ascertain
possible redshifts of the source. Notable examples of these techniques include the galaxy catalog
method [203, 170, 252, 287, 29, 289, 288, 425, 122], the cross correlation method [477, 455, 92], and
the spectral siren technique [245, 424, 454, 243].

In our study, we will employ the bright siren technique to infer a joint estimate of the local
expansion rate of the Universe, assuming the standard ΛCDM cosmology. In accordance, we utilize
the latest Planck CMB measurement [43] as a reference value for our Bayesian analysis.

7.2.1 Modeling standard sirens

Gravitational waveform models describe the amplitude Ã and the phase ϕ of standard sirens emitted
from coalescing compact objects like neutron stars and black holes. The evolution of a gravitational
waveform h̃(f) over frequency can be written as

h̃(f) = Ã(f) exp(−iϕ(f)), (7.1)

in which both, the amplitude as well as the phase carry information about the intrinsic source prop-
erties. GW detectors measure a linear combination of two polarizations of the GW signal. At leading
order, these can be written as [287]

h̃+(f) ∝
M5/6

z

DL

1 + cos2(ι)

2
f−7/6 exp(iϕ(Mz, f)), (7.2)

h̃×(f) ∝
M5/6

z

DL
cos ιf−7/6 exp(iϕ(Mz, f) + iπ/2), (7.3)

where Mz ≡ M(1 + z) denotes the detector-frame (or “red-shifted”) chirp mass, which is better
constrained by the signal’s phase as compared its amplitude, and f represents the redshifted frequency.
It can be seen that the amplitude of a GW signal decreases in proportion to the luminosity distance
DL of its source. This inverse relationship is a fundamental property of GWs and plays a crucial role
in their detection and interpretation. On the other hand, gravitational waveform models including
only the quadrupole mode show a limited capability to accurately infer the luminosity distance to
an astrophysical source due to its interdependence with the inclination angle ι. This degeneracy
fundamentally limits our ability to measure both parameters so that the dominant uncertainty in the
signal’s amplitude arises from the uncertainties on the luminosity distance and the inclination angle.
The inclusion of higher-order modes can be a way to break this degeneracy, as shown in Ref. [148].
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7.2.2 Population of synthetic BNS sources

In this study, we use the large set of mock data obtained in Ref. [370] and exploit the inferred posterior
on the luminosity distance to study the impact of model uncertainties on the estimation of the Hubble
constant. Below, we recap the key elements of the study.

The population of 38 synthetic binary neutron star sources was simulated with stationary Gaussian
noise into a network of interferometers assuming Advanced LIGO [1] and Advanced Virgo [34] design
sensitivity. In light of current observations suggesting a uniform distribution for neutron star masses
in gravitational-wave binaries [382], we adopt a uniform prior sampled within m1,2 ∈ [1, 2] M⊙. All
sources were uniformly sampled in comoving volume with an optimal network SNR, ρ, ranging within
ρ ∈ [7, 100] and lie within a maximum or threshold luminosity distance of Dthr

L = 100 Mpc. Hence,
the population lies within a volume in which cosmology can be well modeled under the linear Hubble
relation (for redshifts z ≪ 1) given as

DL(z) ≈
cz

H0
, (7.4)

in which c is the speed of light. For all BNS signals in our population, we employed IMRPhe-
nomD NRTidalv2 (PhenDNRTv2) [212] as our reference model that we use for the creation of the
simulated data. We performed parameter estimation runs using parallel bilby [606] for all sources
in the population with four different models, which were TaylorF2 (TF2) [578, 110, 192, 111, 112,
448, 444, 61, 117, 448, 194, 654, 103, 195], IMRPhenomD NRTidal (PhenDNRT) [322, 349, 626,
210, 213, 456, 96], IMRPhenomD NRTidalv2 (PhenDNRTv2) [322, 349, 626, 456, 96, 212], and
SEOBNRv4 ROM NRTidalv2 (SEOBNRTv2) [118, 521, 212] resulting in a total of 152 simula-
tions. For further details on our simulation setup, we refer the interested reader to Ref. [370].

7.2.3 Bayesian framework

In this section, we outline our method for estimating the Hubble constant by utilizing the posterior
distributions on luminosity distance obtained for the discussed BNS population. In order to compute
the posterior probability distribution of the Hubble constant for a set of GW events {xGW}, we
employ Bayes’ theorem

p(H0| {xGW}) ∝ p(H0)p({xGW} |H0) (7.5)

where p(H0) is the prior on H0 and p({xGW} |H0) is the likelihood of the measured GW data given
a certain value of H0.

Our analysis follows the bright siren approach, which utilizes the joint information from GW
detections {xGW} and electromagnetic observations providing information on the redshift {ẑ} [7].
Consequently, we determine the joint posterior, p(H0| {xGW, ẑ}), for Nobs events in our population
as follows

p(H0| {xGW, ẑ}) ∝ p(H0)

Ns(H0)Nobs

NobsY

i=1

Z

λ⃗

Z

DL

p(xi
GW|DL, H0, λ⃗)p(ẑi|DL, H0)p(DL)p(λ⃗)dDLdλ⃗, (7.6)

where p(DL) is the prior on the luminosity distance, and other waveform parameters are denoted by

λ⃗, similar to the notation employed in Ref. [7]. Hence, p(λ⃗) relates to priors for other GW parameters.
Analogous to the approach used in Ref. [7], Ns(H0) incorporates the selection effect imposed by the
finite sensitivity of GW detectors and is

Ns(H0) =

Z

det

p(xGW|DL, H0, λ⃗)p(DL)p(λ⃗)dDLdλ⃗dxGW, (7.7)

integrated over the prior probability distributions of the parameters DL, λ⃗ and over “detectable” GW
datasets. This factor is constructed on the assumption that the choice of whether or not an event is
included in the analysis is a property purely of the observed data, xGW. In this analysis (as in [7])
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we assume that selection effects are dominated by the GW data; i.e., there are no selection effects
for the EM counterpart. Additionally, we assume that GW detection is based on the observed SNR
of the source.1 At the distances to which BNS events can be observed with current GW detectors,
such a selection becomes a threshold in the luminosity distance of the source, which is what the
GW detectors measure. As a consequence, the selection function has no dependence on the unknown
cosmological parameters and so can be set to unity.

Since our dataset lacks direct redshift measurements for each BNS merger event, we need to model
this information. We consider all EM observations as securely detected and, hence, neglect a correction
for EM selection effects. In the absence of actual electromagnetic observational data for redshifts, we
simulate a redshift measurement ẑ for the ith BNS merger event using a Gaussian probability density
function

p(ẑi|DL, H0) =
1√
2πσz

exp
h
−1

2

� ẑ − z

σz

�2i
. (7.8)

This allows us to associate each BNS source with a simulated measured redshift sampled from a
Gaussian distribution centered on its true redshift value. We use the same Gaussian likelihood in
Eq. (7.6) to obtain our Hubble constant posteriors. We examine the dependence of our analysis on
the choice of the fractional error term, C, which contributes to the overall redshift uncertainty, σz,
defined by the linear relationship σz = z · C. This aims to quantify the sensitivity of our results to
variations in the assumed fractional error value and, hence, in the precision of the EM measurement
of the redshift. To infer joint constraints on H0, we convert the measured redshift values to luminosity
distances using Eq. (7.4). In our study, we do not explore different redshift uncertainty models as
demonstrated in [644]. Their work showed that the impact of different uncertainty models is much
smaller than the current statistical errors. Hence, we expect that different redshift uncertainty models
will not alter our results, which we will present in the next section.

7.3 Results

In accordance with the methodology detailed in Sec. 7.2.3, we obtained combined H0 estimates for
each GW model. As described, we aim to investigate the sensitivity of our results to variations in the
fractional redshift error value C, which we explore for C = 0.5% and 3%. Our choice of the fractional
error is driven by the inherent differences in redshift measurement techniques. Spectroscopic redshifts
offer increased precision compared to photometric redshifts. Typical uncertainties for spectroscopic
redshifts can be as low 0.01% [614], while photometric redshift uncertainties can range up to 10% or
more [644]. Hence, we intend to mimic a more precise spectroscopic and a less precise photometric
measurement of the redshift.

First of all, we study how our estimate on H0 changes with the number of successively combined
GW signals for each BNS event for C = 0.03, i.e., a 3% fractional error in the modeling of the
observed redshift. The result is shown in Fig. 7.1 and shows that all models recover the Planck
measurement at H0 = 67.4 kms−1Mpc−1 within their uncertainty bands at 95% credible interval.
Consistent with theoretical expectations, incorporating more GW events gradually decreases the
uncertainties associated with the H0 estimates. Among 38 combined GW events, PhenDNRTv2 (the
“true” model) and PhenDNRT align best with the Planck value, while SEOBNRTv2 and TF2 show
slightly larger deviations. From Fig. 7.1, we find that systematic biases in the extraction of the Hubble
constant are below statistical uncertainties.

1In practice, we impose selection on the true, rather than the observed, luminosity distance of the source. This is
the approach used widely in the literature. Selection on source parameters rather than observed data should really
be treated differently [266], but in practice this approximation does not change the results.
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FIGURE 7.1
H0 results versus the number of successively combined GW events for the GW models PhenDNRT
(yellow), TF2 (purple), SEOBNRTv2 (orange), and the reference model PhenDNRTv2 (blue). Con-
straints on H0 are reported at 95% credible interval. The reference value of the Planck measurement
[43] is shown as a black dashed line. For this result, we modeled a 3% uncertainty on the true redshift
as described in Sec. 7.2.3.

Second, we show the results for a 0.5% fractional error in Fig. 7.2, i.e., assuming more precise EM
measurements of the observed redshift. We find that our reference model, PhenDNRTv2, recovers
the Planck measurement within 95% credible interval. Likewise, analyses employing the GW models,
PhenDNRT and TF2, recover this value when considering the combined data from all BNS events. The
only exception is the model SEOBNRTv2 which does not recover the reference value when data from
roughly 30 BNS events have been combined. Moreover, we find that there is a slight overestimation for
all models when comparing with the Planck measurement. This is most likely due to a combination
of statistical fluctuations and GW model-dependent differences in estimating the luminosity distance
(as seen for TF2 in Fig. 7.1). The initial selection of GW events within our sample introduces another
source of statistical fluctuation. However, the present bias is not significant for our conclusions as the
true value lies within the posterior uncertainty.

At this point, it is crucial to acknowledge that our recovered H0 values presented in Fig. 7.2
depend upon the specific random realization of observed redshifts generated through Eq. (7.8). This
implies that any variation in the random realization of redshift measurements for each event would
lead to a corresponding change in the inferred H0 posterior. While we present a single realization in
Fig. 7.2, we investigated the dependence of our results concerning different random realizations of the
redshift measurement. Notably, while maintaining a fixed fractional error of 0.5%, we observed that
the final, combined H0 estimates exhibit a tendency to converge closer to the reference value of the
Planck measurement under certain realizations (not shown in Fig. 7.2).
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FIGURE 7.2
H0 results versus the number of successively combined GW events for the GW models PhenDNRT
(yellow), TF2 (purple), SEOBNRTv2 (orange), and the reference model PhenDNRTv2 (blue). Con-
straints on H0 are reported at 95% credible interval. The Planck measurement [43] is shown as a
black dashed line. For this result, we modeled a 0.5% uncertainty on the true redshift as described in
Sec. 7.2.3.

In order to minimize the impact of stochastic redshift realizations and of specific BNS event orderings
in our sample, we implement a double randomization procedure.2 In this procedure, we draw 100
random redshift values assuming a Gaussian distribution with a 0.5% uncertainty for each BNS event
within the sample. Equation (7.6) is then used to compute the combined H0 value for 100 times. In
each iteration, the order of the BNS events is randomized, and a different drawn redshift value is
used for each event. This procedure yields 100 independent realizations of the combined H0 posterior
distribution. Finally, we compute the median of the distribution to extract the final results of H0.
The results are shown in Fig. 7.3, for which we modeled a 0.5% uncertainty on the true redshift.
Our result depicts a convergence towards the Planck value for all GW models. Consistent with prior
findings, it also reveals a progressive uncertainty reduction and that all GW models recover the Planck
measurement.
From Figs. 7.2 and 7.3, we find that PhenDNRT tends to yield smaller H0 values as compared
to PhenDNRTv2. This could result from the fact that the PhenDNRTv2 includes an amplitude
tidal correction term [212], while this is not the case for PhenDNRT. Because of this correction,
the amplitude for PhenDNRT waveforms will be larger as compared to PhenDNRTv2. In order to
compensate, PhenDNRT needs to go to higher luminosity distances and, hence, will predict smaller

2Despite this procedure, our GW posteriors are not randomized, which can lead to slight offsets or biases as we can
see in our study.
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FIGURE 7.3
H0 results versus the number of successively combined GW events for the GW models PhenDNRT
(yellow), TF2 (purple), SEOBNRTv2 (orange), and the reference model PhenDNRTv2 (blue) for
both, using the SH0ES measurement of H0 = 74.03 ± 1.42 km s−1Mpc−1 (top panel) [546] and
the Planck measurement of H0 = 67.4 ± 0.5 km s−1Mpc−1 (bottom panel) [43] as reference values.
We use the same credible interval and fractional error on the redshift uncertainty as in Fig. 7.2, but
randomly shuffled the order of BNS events in our sample for 100 times, while employing 100 random
realizations of redshift measurements.

values for the Hubble constant. Another distinctive feature is that the uncertainty is smallest for TF2
when all data has been taken into account. To investigate this observation, we computed the Fisher
information matrix (FIM) for both TF2 and PhenDNRTv2 across all events using GWFAST [325,
326]. The FIM analysis revealed that 55% of the events exhibited a lower distance error for TF2 as
compared to PhenDNRTv2. This finding suggests that TF2 can achieve a narrower posterior width
or lower variance. However, we would still expect it to have a larger bias, which would eventually
dominate the uncertainty once sufficiently many events have been combined. Moreover, we repeat the
analysis employing the Hubble constant measurement reported by the SH0ES Collaboration [546] as
the reference value, H0 = 74.03 ± 1.42 km s−1Mpc−1. Figure 7.3 shows that we obtain consistent
results compared to the scenario where we utilize the Planck measurement. Consequently, our primary
conclusions remain unchanged.

Overall, our results indicate that waveform model-dependent biases on the extraction of the Hubble
constant are small for current detectors. Ascribing the subtle discrepancies observed in the combined
H0 estimates solely to specific model descriptions or assumptions presents a significant challenge.
First, GW models only possess a limited capability to accurately infer the distance and, consequently,
the Hubble constant, so we are dominated by statistical rather than systematic uncertainties. Sec-
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ond, our employed GW models exhibit interdependencies within specific regimes, which hamper an
unambiguous explanation attributable to individual models.

Finally, we use our results compared to the Planck measurement shown in Fig. 7.3 to estimate how
many cumulative BNS events will be required to achieve a statistical uncertainty that falls below the
waveform model systematics. To understand how much the final measurement of the Hubble constant
might be affected by the choice of a certain model, we calculate the difference between the final H0

value obtained using our reference model PhenDNRTv2 and the final values obtained using all the
other models. The largest systematic shift of ∆H0 = 0.18 km s−1Mpc−1 is present when comparing to
PhenDNRT, while the final result of TF2 has the smallest shift with ∆H0 = 0.08 km s−1Mpc−1. As
the statistical uncertainty drops as ∼ 1/

√
Nobs, we can estimate the number of BNS events required

to fall below the above-reported values. For our reference model PhenDNRTv2 to possess statistical
uncertainties smaller than the systematic shift of ∆H0 = 0.18(0.08) km s−1Mpc−1 roughly 3500
(16,500) BNS observations would be required with the current generation of GW detectors.

7.4 Conclusions

In this study, we investigated the impact of gravitational waveform systematics on the extraction of the
Hubble constant. Employing the bright siren approach, we obtained combined estimates on the Hubble
constant by using previous simulated GW data from a population containing 38 BNS sources published
in [370] and by modeling a corresponding EM observation to provide information on the redshift.
Overall, our analysis reveals that the uncertainty in the luminosity distance arising from GW models
exerts a negligible influence on the determination of the Hubble constant for the current generation
of GW detectors. However, our analysis is limited because our employed GW models are based on the
quadrupolar mode and do not include any higher-order modes. While current systematic biases on
the Hubble constant are below statistical uncertainties, this picture will change with upcoming third
generation detectors like the Einstein Telescope (ET) [520, 410, 128] or the Cosmic Explorer (CE)
[541, 241]. Projected BNS detection rates of 104 BNS/year for ET [538, 601, 128] or 105 BNS/year
for a network consisting of ET and CE [656] imply diminishing statistical uncertainties, necessitating
an increased focus on reducing systematic biases in the future.
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This chapter is based on the article by Nina Kunert, Sarah Antier, Vsevolod Nedora, Mattia
Bulla, Peter T. H. Pang, Shreya Anand, Michael W. Coughlin, Ingo Tews, Jennifer Barnes, Thomas
Hussenot-Desenonges, Brian Healy, Theophile Jegou du Laz, Meili Pilloix, Weizmann Kiendrebeogo,
and Tim Dietrich published in Monthly Notices of the Royal Astronomical Society, Volume 527, Issue
2, January 2024, Pages 3900–3911. I collected and processed the X-ray data, while the remaining
observational data were primarily compiled by my colleagues, Dr. Sarah Antier and Prof. Dr. Michael
Coughlin. I conducted all parameter estimation simulations, performed data analysis, visualized the
results, and authored the manuscript.

Editorial notes: Table 8.1 has been updated to include the correct number of model parameters for
the core collapse supernova scenario.

Abstract: Although GRB 211211A is one of the closest GRBs, its classification is challenging because
of its partially inconclusive electromagnetic signatures. In this paper, we investigate four different
astrophysical scenarios as possible progenitors for GRB 211211A: a binary neutron-star merger, a
black-hole–neutron-star merger, a core-collapse supernova, and an r-process enriched core collapse of
a rapidly rotating massive star (a collapsar). We perform a large set of Bayesian multi-wavelength
analyses based on different models describing these scenarios and priors to investigate which astro-
physical scenarios and processes might be related to GRB 211211A. Our analysis supports previous
studies in which the presence of an additional component, likely related to r-process nucleosynthesis,
is required to explain the observed light curves of GRB 211211A, as it can not solely be explained
as a GRB afterglow. Fixing the distance to about 350 Mpc, namely the distance of the possible host
galaxy SDSS J140910.47+275320.8, we find a statistical preference for a binary neutron-star merger
scenario.
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8.1 Introduction

The joint detection of gravitational waves (GWs) and electromagnetic (EM) signatures originating
from the merger of BNSs on August 17th 2017 [10, 11] has been a breakthrough in multi-messenger
astronomy. In addition to the GW signal GW170817, an associated kilonova, AT2017gfo, and a
gamma-ray burst, GRB 170817A, were observed [11]. This multi-messenger detection allowed for an
independent way of measuring the expansion rate of the Universe [7], placed new constraints on the
properties of supranuclear-dense matter [83, 562, 529, 451, 183, 153, 214, 324], and proved that at
least some short GRBs are connected to compact binary mergers [9]. However, it was also reported
that short GRBs could originate from collapsars [45], indicating that the classification of astrophys-
ical scenarios associated with GRBs is more complex [684, 554]. Additional signatures associated
with GRBs and their afterglows, such as kilonovae, significantly help to identify the origin of the
progenitors. The kilonova AT2017gfo was certainly an exemplary case for such an EM signal, and
spectral features connected to the creation of new elements [658, 218] in the outflowing material have
possibly been observed. In addition to AT2017gfo, there is a large number of kilonova candidates that
could be connected to other GRB observations, e.g., GRB 060614, GRB 130603B, GRB 150101B,
GRB 150424A, GRB 160821B, GRB 060505 e.g., [624, 95, 677, 335, 254, 639, 378, 344, 336, 641, 337];
cf. e.g. [64] for a review about some of these kilonova candidates. The most recent example that has
to be added to the list is the kilonova candidate connected to GRB 211211A.

This GRB signal was discovered on the 11th December 2021 at 13:09:59 (UTC) by the Burst
Alert Telescope of the Swift Observatory and its optical and near-infrared counterpart observed by,
e.g., [533] and [642]. This GRB signal is characterized by a complex emission phase lasting approxi-
mately 50 s and shows several overlapping pulses lasting for about ∼ 12 s [533]. Given this duration,
GRB 211211A would be classified as a long GRB typically arising from the core-collapse of mas-
sive stars (e.g., [613, 393]) and not from compact binary mergers. Hence, for a scenario such as
GRB 211211A, one would not necessarily expect to observe an associated kilonova. Based on inten-
sive follow-up observations [533, 642], it seems plausible that SDSS J140910.47+275320.8 was the
host galaxy of GRB 211211A, at 98.6% confidence [533].

Numerous groups, e.g., [533, 642, 678, 430], and also other groups explained these observations by
invoking a kilonova in association with GRB 211211A. This was suggested for different reasons: (i) the
profile of the prompt emission showed an initially complex structure followed by an extended softer
emission, (ii) a predominant signature of a supernova was lacking for up to 17 days post-discovery,
(iii) the color evolution of the optical counterpart had similar properties as AT2017gfo, and (iv) the
offset of the GRB location concerning the center of the host galaxy was larger than for typical long
GRBs.

The origin of GRB 211211A is highly debated, e.g., [678] suggested that it has similar properties as
GRB 060614, another event associated with a kilonova candidate. They conclude that the significant
excess in the near-infrared and optical afterglow at late observations points more towards a neutron
star-white dwarf merger which leaves behind a rapidly spinning magnetar as a central engine providing
additional heating to the ejecta. [620] mentioned a possible gamma-ray precursor before the main
emission which was caused by the resonant shattering of one star’s crust prior to the merger. In
contrast, [272] concluded the presence of a strong magnetic field from the precursor surrounding
the central engine of the GRB. This would result in the prolongation of the accretion process and,
thus, could explain the duration of the hard spiky emission detected for GRB 211211A. Similarly,
[674] supposes that a magnetar participated in the merger and caused a quasi-periodic precursor.
[283] analyzed the spectra of the prompt emission of GRB 211211A by using synchrotron spectrum
models and concluded that the rapid evolution of synchrotron emission is the main driver its extended
emission. While the kilonova observed for GRB 211211A argues for a BNS merger, a NSBH scenario
cannot be fully ruled out. Finally, [80] investigated the possibility that collapsars could explain the
origin of GRB 211211A and found that the afterglow-subtracted emission of GRB 211211A is in best
agreement for collapsar models with high kinetic energies.
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Following the discussion in the literature, we will use our NMMA framework [492]1 to explore different
astrophysical scenarios for the origin of GRB 211211A. We will consider the possibility of two merger
scenarios, a BNS merger and an NSBH merger, and in addition two supernova scenarios, a core-
collapse supernova, and an r-process enriched collapsar. At this point, we emphasize that while
multiple scenarios (e.g. different supernova types) could possibly explain the origin of GRB 211211A,
we restrict our study to the four scenarios mentioned above, and to particular models representing such
scenarios. Hence, our study will only provide estimates for this narrow parameter space of possible
scenarios. For our model selection study, the NMMA framework allows us to simultaneously fit the
observed data across the full electromagnetic range with multiple models, e.g., we can simultaneously
employ GRB afterglow and kilonova models without the need of splitting the observational data in
chunks and processing them separately.

8.2 Observational data

In order to perform our model selection, we collect a set of multi-wavelength data observed for
GRB 211211A. However, we do not use any data from the prompt emission phase of the GRB in our
analysis since our framework is, at the current stage, not able to handle such high-energetic emission.
With regard to the X-ray data, we use the available information from the Swift X-ray Telescope.
In particular, we use the 0.3 - 10 keV flux light curve observed at late times (t = 104 s after BAT
trigger time) and convert it to 1 keV flux densities following [274]. For our optical study in UV, we
use results from Swift-UVOT of Tab. 2 provided by [533] in the bands v, b, u, uvw1, uvm2, uvw2,
and white. To supplement these UVOT data, we incorporate measurements from “supplement Table
1” provided by [642]. Whenever measurements overlap within a 30-minute window in the same band
between [642] and [533], we remove duplicates, as such measurements represent variations in analysis
binning during the early epoch between the two publications.2 For the remaining optical data, we
exclusively utilize measurements directly analyzed by [533] (cf. Tab. 1 in the appendix, references
(1)).

We follow a similar approach for the published data from [642]. (cf.“supplement Table 1”). Fur-
thermore, we augment our dataset with measurements exclusively published in General Coordinates
Network3 (GCNs) [494, 415] for instance. In this manner, we try to obtain an almost complete set
encompassing available optical data for this particular GRB, including the latest publicly accessible
measurements when possible. The data were all corrected from the foreground Galactic extinction
AV = 0.048 mag [580].

Furthermore, we use the 6 GHz radio detection of GRB 211211A observed 6.27 days after the
initial trigger with a 5σ upper limit flux density of 16 µJy [533]. With regard to available GeV data,
as reported in [685] and [430], we do not include this data since our employed GRB model does not
provide mechanisms to explain their origin.

8.3 Methods

Our analysis is based on the nuclear physics and multi-messenger astronomy framework NMMA [492]
that allows us to perform joint Bayesian inference runs of multi-messenger events containing GWs,

1https://github.com/nuclear-multimessenger-astronomy
2Moreover, we ensure in this way that the statistical analysis will not be biased by including redundant data, which
would give more weight to specific bands during the likelihood estimation.

3https://gcn.gsfc.nasa.gov/other/211211A.gcn3
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kilonovae, supernovae, and GRB afterglow signatures. For this article, we extended the code infras-
tructure to include the description of r-process enriched collapsars following the model of [79].

We use the EM data of GRB 211211A to investigate which model or which combination of models
describe the observational data best.

8.3.1 Bayesian Inference

According to Bayes’ theorem, we compute posterior probability distributions, p(θ⃗|d,M), for model

source parameters θ⃗ under the hypothesis or model M with data d as

p(θ⃗|d,M) =
p(d|θ⃗,M)p(θ⃗|M)

p(d|M)
→ P(θ⃗) =

L(θ⃗)π(θ⃗)
Z(d)

, (8.1)

where P(θ⃗), L(θ⃗), π(θ⃗), and Z(d) are the posterior, likelihood, prior, and evidence, respectively. In
order to investigate the plausibility of competing models, we evaluate the odds ratio O1

2 for two
models M1 and M2 which is given by

O1
2 =

p(d|M1)

p(d|M2)

p(M1)

p(M2)
≡ B1

2Π
1
2, (8.2)

where B1
2 and Π1

2 are the Bayes factor and the prior odds, respectively. Under the assumption that
the different astrophysical scenarios considered here are equally likely to explain GRB 211211A,
we impose unity prior odds, i.e., Π1

2 = 1, for all comparisons of models describing these scenarios.
Therefore, we simply compute the Bayes factor B1

2. In our study, we report the natural logarithm of
the Bayes factor,

lnB1
ref = ln

�
p(d|M1)

p(d|Mref)

�
, (8.3)

relative to our best fitting model as a reference (ref.), which we will denote as lnBref hereafter. Fol-
lowing [331] and [346], we interpret lnB1

ref as the evidence favoring our reference model as:

ln[B1
ref ] < −4.61 decisive evidence,

−4.61 ≤ ln[B1
ref ] ≤ −2.30 strong evidence,

−2.30 ≤ ln[B1
ref ] ≤ −1.10 substantial evidence,

−1.10 ≤ ln[B1
ref ] ≤ 0 no strong evidence.

However, we point out that these classifications should only be considered as estimates and that the
Bayes factor is generally a continuous quantity. In addition to the Bayes factor, we also provide infor-
mation about the ratio of the maximum likelihood, or the difference of the maximum log-likelihood
point estimates ln[L1

2(θ̂)] supporting our analysis in Sec. 8.4.1. We will denote this as ln[Lref(θ̂)] when
we compare the maximum log-likelihood against our reference model.

8.3.2 Employed models

As described in the introduction, we investigate four different scenarios in our study from which
GRB 211211A could have emerged. In particular, we consider two merger scenarios: a BNS merger
and an NSBH merger, and two supernova cases: a phenomenological long GRB supernova template
and an r-process enriched collapsar scenario. As a word of caution, we emphasize that all these scenar-
ios can only be considered when employing characteristic models describing such a scenario. Strictly
speaking, our results will only favor or disfavor particular models employed for the analysis, but we
will not be able to rule out an entire astrophysical scenario, e.g., disfavoring the employed SN98bw
and rCCSNe will not be sufficient to rule out the supernova origin completely.
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BNS scenario: For this case, we use the kilonova models of [214] (hereafter ‘BNS-KN-Bulla’) and of
[342] (hereafter ‘BNS-KN-Kasen’). BNS-KN-Bulla is based on the time-dependent three-dimensional
Monte Carlo radiation transfer code possis [138, 139], which computes light curves, spectra, and
luminosities for kilonovae depending on the viewing-angle θObs. The ejected material is classified
through the dynamical ejecta mass, Mdyn

ej , and the disk-wind ejecta mass, Mwind
ej . The tidal dy-

namical ejecta component is assumed to be distributed within a half opening angle Φ. In the same
way, BNS-KN-Kasen uses the multi-dimensional Monte Carlo code sedona that solves the multi-
wavelength radiation transport equation in a relativistically expanding medium [343, 558]. In this
paper, we use the one-dimensional model provided by [342], which assumes spherical symmetry and
uniform composition for our analysis. The model, ‘BNS-KN-Kasen’, depends on the ejecta mass, Mej,
a characteristic expansion velocity, vej, and the mass fraction of lanthanides, Xlan, which affects the
opacity.

NSBH scenario: For this case, we also use a possis model grid of KN spectra tailored to NSBH
mergers which was used in the study of [51] (hereafter ‘NSBH-KN-Bulla’). This model depends on
the same model parameters as BNS-KN-Bulla but excludes the dependence on the half opening angle
of the dynamical ejecta, fixed to Φ = 30◦.

Supernova: In order to assess the possibility of a typical core-collapse supernova (CCSN) as-
sociated with a long GRB, we use the nugent-hyper model from sncosmo [392] with the absolute
magnitude, Smax, as the main free parameter. This model is a template constructed from observations
of the supernova SN1998bw associated with the long GRB 980425 and is hereafter abbreviated as
‘SN98bw’.

r-process enriched Collapsar: Rapidly rotating massive star core collapses [145, 523] are an-
other possible astrophysical site for r-process nucleosynthesis. As massive stars undergo a core col-
lapse, material is disrupted and forms an accretion disk which can become neutron-rich through weak
interactions [90] and can launch winds which power emission of r-process-enriched core-collapse SNe
(rCCSNe). We use the semi-analytic model for rCCSNe of [79] (hereafter denoted as ’SNCol’). The
model depends on five free parameters: the total ejecta mass, Mej, a characteristic ejecta velocity,
vej, the

56Ni mass, MNi, the r-process material mass, Mrp, and the mixing coordinate, Ψmix. The
ejecta are assumed to be spherically symmetric, with r-process elements of mass mrp concentrated
in an inner core whose total mass is Ψmixmej, with Ψmix ≤ 1. An r-process-free envelope surrounds
the core, and 56-Ni is distributed uniformly throughout the core and the envelope. The velocity vej
is defined such that the total kinetic energy of the ejecta Ekin is equal to 1

2Mejv
2
ej.

4

GRB afterglow: For modeling the GRB afterglow light curves, we employ the semi-analytic
model of [651] and [566], available in the public afterglowpy library (denoted as ‘GRB-M’). The
model computes GRB afterglow emission and takes the following free parameters as input: the
isotropic kinetic energy, EK,iso, the viewing angle, θObs, the half-opening angle of the jet core, θc,
the outer truncation angle of the jet, θw, the interstellar medium density, n, the electron energy dis-
tribution index, p, and the fractions of the shock energy that go into electrons, ϵe, and magnetic fields,
ϵB . The model allows for several angular structures of the GRB jet. For our simulations, we assume
a Gaussian or a top-hat jet structure (hereafter, ‘Gauss’ and ‘top’)5. It is important to note that,
while we try to be agnostic concerning GRB 211211A’s origin, the GRB-M model that we employ has
some limitations. Specifically, it does not include the emission from the reverse shock that might be
important at early times. Additionally, it does not include the wind-like interstellar medium, which
is expected in the case of a collapsar.

In Fig. 8.1, we summarize our approach to analyze GRB 211211A based on the data set described in
Sec. 8.2. We employ two different priors for the luminosity distance, i.e., a narrow Gaussian luminosity
distance prior centered around 350 Mpc as reported by [533] and a uniform prior on the luminosity
distance ranging between 0 and 3 Gpc. This allows us to investigate the potential influence of the
distance on the GRB classification. Furthermore, we employ five models or model combinations to

4[80] also compared rCCSNe with observational data from GRB 211211A. However, not within a Bayesian approach
as employed here and with an updated version of their model originally described in [79].

5In addition, we tested a power law jet structure for which we found consistent results.
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FIGURE 8.1
Schematic illustration of our comprehensive Bayesian inference campaign performed to analyze
GRB 211211A. We use one observational data set as described in Sec. 8.2, two prior settings in
which we mainly vary the luminosity distance prior while prior settings for other model parameters
remained fixed and are reported in Table 8.2, five models (including two different BNS kilonova mod-
els) or model combinations for four different astrophysical scenarios, and two GRB jet types (Gaussian
and top-hat), totaling in 20 Bayesian inferences.

describe the different astrophysical scenarios. For the choice of a Gaussian luminosity distance prior,
we report the prior settings for all parameters of the employed models in Table 8.2. Moreover, we use
two different GRB jet types, totaling in 20 Bayesian inference simulations.

8.4 Multi-wavelength Analyses

In the following three subsections, 8.4.1-8.4.3, we discuss our results for a narrow Gaussian prior on the
luminosity distance in order to compare with previous studies. In subsection 8.4.4, we will investigate
the influence of the distance prior choice and employ a wide uniform prior on the luminosity distance.

8.4.1 Model Comparison

As indicated in the introduction, one of the main differences between previous studies and our work
is that most previous works fitted first the X-ray and radio data with a GRB afterglow model, and
then used the afterglow-subtracted optical and near-infrared photometry for fitting a kilonova model.
In contrast, but similar to [678] we perform a joint analysis of the GRB afterglow and a possible
additional contribution such as a kilonova signature or emission from a rCCSN or CCSN. Moreover,
in order to consider systematic uncertainties arising from different assumptions made in each model,
we employ a 1 mag uncertainty in our simulations.
In Table 8.1, we summarize our main findings for the investigated astrophysical scenarios. We found
that the BNS-GRB-MKasen

top model describes the observational data best, and hence, we pick it as
our reference model. Consequently, the Bayes factors and likelihood ratios in Table 8.1 are reported
relative to this best-fit inference run. With reference to Table 8.1, we show the maximum log-likelihood
light curve fits in Fig. 8.2 for each assessed scenario, which we will refer to as ”best-fitting light curves”
hereafter.

Comparing only the two different BNS kilonova models, we find differences in the log-Bayes
factors of about 4, disfavouring the BNS-GRB-MBulla

Gauss/top model compared to our reference model.
Different GRB afterglow models lead only to a change of about 1 in the log-Bayes factor. Similarly, the
employed GRB afterglow model has only a very small imprint of the maximum log-likelihood values,
while different kilonova models lead to a change of order 3. These differences can be seen in Fig. 8.3
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Name Astrophysical GRB Jet Model Bayes factor Likelihood

Processes Structure dimension ln[B1
ref ] ln[L1

ref (θ̂)]

BNS-GRB-MKasen
top Kilonova + GRB Tophat 11 ref. ref.

BNS-GRB-MKasen
Gauss Kilonova + GRB Gaussian 12 -1.21 ± 0.12 0.04

BNS-GRB-MBulla
top Kilonova + GRB Tophat 11 -4.51 ± 0.12 -3.24

BNS-GRB-MBulla
Gauss Kilonova + GRB Gaussian 12 -6.26 ± 0.12 -3.31

NSBH-GRB-Mtop Kilonova + GRB Tophat 11 -8.41 ± 0.12 -9.30
NSBH-GRB-MGauss Kilonova + GRB Gaussian 12 -10.56 ± 0.12 -8.99

SNCol-GRB-Mtop rCCSNe + GRB Tophat 14 -15.24 ± 0.13 -8.41
SNCol-GRB-MGauss rCCSNe + GRB Gaussian 15 -16.97 ± 0.13 -8.34

SN98bw-GRB-Mtop CCSNe + GRB Tophat 9 -12.66 ± 0.12 -14.69
SN98bw-GRB-MGauss CCSNe + GRB Gaussian 10 -12.59 ± 0.12 -13.01

GRB-Mtop GRB Tophat 8 -12.47 ± 0.12 -13.01
GRB-MGauss GRB Gaussian 9 -12.65 ± 0.12 -14.67

TABLE 8.1
Results for the logarithmic Bayes factors, ln[B1

ref ], and maximum logarithmic likelihood ratios,

ln[L1
ref(θ̂)], relative to the best-fit, joint inference using BNS-GRB-MKasen

top (ref.). The four investi-
gated scenarios of possible astrophysical origins (BNS, NSBH, SNCol, and SN98bw) are each being
assessed assuming a Gaussian or a Top-hat jet structure. As reference, we list results for a stand-alone
GRB-M investigation for both jet structures.

especially in the bands bessel-v, ps1-i, 2massj, and 2massks. Although the maximum likelihood light
curve for the BNS-GRB-MKasen

Gauss simulation is slightly favored as compared to our reference scenario,
the difference is of the order of the statistical uncertainties. It is worth pointing out that statistical
uncertainties, as stated in the table, are noticeably smaller than model differences, i.e., our results
are dominated by systematic uncertainties in the underlying light curve models.

Considering the differences between the NSBH and BNS scenarios, we find strong evidence that
GRB 211211A was connected to a BNS rather than an NSBH system. This is reflected both in Bayes
factors as well as maximum log-likelihood values as shown in Table 8.1. Comparing the respective
best fitting light curves in Fig. 8.2, we see that NSBH-GRB-MBulla

top fits the NIR-band data worse

compared to BNS-GRB-MKasen
top .

With regard to the relative Bayes factors for the collapsar scenario, we find that there is decisive
evidence that a BNS scenario is preferred over a collapsar origin for GRB 211211A when employing
the light curves models outlined in the previous section. However, it is important to note that the
collapsar model depends on more parameters. Because of this, Occam’s razor penalizes the model.

As indicated by [533], and confirmed by our study, we find that a Ni-powered SN event or an
SN98bw-GRB-M scenario is noticeably less favored compared to a BNS merger. This is depicted in
Fig. 8.2 in which SN98bw-GRB-MBulla

top fails to fit late-time NIR data, resulting in a larger, negative
log-likelihood ratio. Moreover, the upper SN limits reported for the r- and i-band in [642] rule out
other supernova models.

Finally, our study confirms that the BNS-GRB-MKasen
top scenario provides decisive evidence when

compared with GRB-Mtop simulations, even though the latter sampled over fewer parameters in
respective parameter estimation runs. Considering the impact of the choice of a Gaussian vs. top-hat
jet structure on our Bayes factor results, we find a slight preference for the top-hat jet structure for
all assessed scenarios, except for SN98bw-GRB-Mtop.

8.4.2 Presence of an additional component

Given the overall narrative that GRB 211211A was a GRB connected to a kilonova, we study the
ability of the GRB-M with top-hat jet structure to describe the observational data and compare this
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FIGURE 8.2
Best fitting light curve from joint Bayesian inferences listed in Table 8.1 for possible scenarios: BNS-
GRB-MKasen

top (red), NSBH-GRB-Mtop (cyan), SNCol-GRB-Mtop (orange), and SN98bw-GRB-Mtop

(blue). The observational data of GRB 211211A in X-ray-1keV, radio-6GHz, UV, optical, and NIR
band as discussed in Sec. 8.2 are shown as black dots, whereas black triangles refer to upper detection
limits. Note that we are employing the naming convention of the sncosmo library [75] for our work.
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with two BNS merger scenarios. For this purpose, we show the best-fitting light curves for BNS-GRB-
MBulla

top , BNS-GRB-MKasen
top , and GRBtop in Fig. 8.3 for a selection of the most informative bands.

We find that the GRB-M achieves a good representation of the data in the X-ray and UV bands
(not all are shown in Fig. 3). However, the optical bands such as uvot-b and bessel-v already show
that an additional component is required to describe the dimmer observational data observed roughly
one day after trigger time. This becomes even more pronounced in NIR bands especially in the ps1-i
and 2massks band where our reference model achieves the best representation. Overall, the joint
model inferences of BNS-GRB-MBulla

top and BNS-GRB-MKasen
top achieve a better representation in the

mentioned bands and the observational data points lie within the estimated 1 magnitude uncertainty
(shaded band) of the best-fit light curves. Hence, our analysis suggests that an additional source of
energy generation is required to generate bright light curves in optical and NIR bands and to fit the
observed data.

8.4.3 Source properties of the potential compact binary mergers

For the scenario that GRB 211112A was connected to a compact binary merger, which is favored
by our analysis, we now determine the source properties of the potential progenitor system. For this
purpose, we use the inferred GRB afterglow and kilonova properties for both BNS-KN-Kasen and
BNS-KN-Bulla and connect information about the ejecta and debris disk to the BNS properties fol-
lowing [214]; cf. [304] for a recent discussion about uncertainties in the employed numerical-relativity
informed phenomenological relations.

In Fig. 8.4, we show our inference results for a possible BNS source using BNS-GRB-MKasen
top ,

BNS-GRB-MKasen
Gauss, and BNS-GRB-MBulla

top and contrast these to the prior probability regions for
each parameter, in order to show how constraining the observational data is. Comparing inference
results for BNS-GRB-MKasen

Top and BNS-GRB-MKasen
Gauss, we find that estimated source masses and tidal

deformabilities are very similar. For the BNS-GRB-MKasen
Top simulation, we find that a BNS merger with

a primary mass of 1.52+0.49
−0.38M⊙ and a secondary mass of 1.30+0.24

−0.32M⊙ was the likely progenitor. The

associated dimensionless tidal deformability of the system lies within Λ̃ = 348+855
−320. With regard to a

similar analysis for BNS-GRB-MBulla
Top , we find a primary mass of 1.57+0.34

−0.28M⊙ and a secondary mass of

1.32+0.19
−0.24M⊙. The corresponding tidal deformability is 320+426

−218. Comparing estimated masses for BNS-
GRB-MKasen

Top and BNS-GRB-MBulla
Top , we find overall good agreement within the stated uncertainties.

Overall, our estimated masses are consistent with [533], who concluded that GRB 211211A origi-
nated from a 1.4 M⊙+1.3 M⊙ BNS merger. We expect that the remaining small differences are caused
by the different analyses of the observed GRB 211211A data and by the fact that [533] assumed the
inclination angle, under which the binary was observed, to be zero. Moreover, [533] assumed a fixed
equation of state from the EOS set of [214] using additional information from [471]. In contrast, we
leave the inclination angle as a free parameter in our analysis and use the updated EOS set of [324].
This set incorporates information from theoretical nuclear-physics computations and from astrophys-
ical observations of neutron stars such as [214], but also heavy-ion collision experimental data. With
regard to investigated binary merger scenarios, we find that the inferred inclination angle is around
θObs ≈ 0.02+0.02

−0.02rad, while a larger inclination angle of θObs ≈ 0.04+0.03
−0.02rad is estimated for the

considered supernova scenario (see Table 8.2).
[533] deduced a total r-process ejecta mass of Mej = 0.047+0.026

−0.011M⊙, of which 0.02 M⊙ correspond
to lanthanide-rich ejecta, 0.01 M⊙ to intermediate-opacity ejecta, and 0.01 M⊙ to lanthanide-free
material. In addition, [678] reported a total ejecta mass of Mej = 0.037+0.008

−0.004M⊙. With our reference

inference result from BNS-GRB-MKasen
top , we find a total ejecta mass of MBNS

ej,Kasen = 0.016+0.013
−0.009M⊙

which is smaller than the result estimated by [533]. Concerning our analysis based on BNS-GRB-
MBulla

top , we found a total ejecta mass of MBNS
ej = 0.022+0.021

−0.013M⊙, of which 0.012M⊙ can be attributed
to lanthanide-rich ejecta, 0.006M⊙ to intermediate-opacity mass, and 0.001M⊙ to lanthanide-free
material. We note that during our analysis of GRB 211211A, we have also performed simula-
tions not including the Swift-UVOT data. In such a case, we find larger total ejecta masses of
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FIGURE 8.3
Best-fitting light curves from joint Bayesian inferences of BNS-GRB-MBulla

top (yellow) and BNS-GRB-

MKasen
top (red) compared to a stand-alone GRB-Mtop inference (black) for X-ray, UV, optical and NIR

bands on a logarithmic time scale in days since trigger time.
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FIGURE 8.4
Component masses m1,2 and the dimensionless tidal deformability Λ̃ based on our inference results of
BNS-GRB-MKasen

Gauss (orange), BNS-GRB-MKasen
Top (red) and BNS-GRB-MBulla

Top (blue). Different shadings
mark the 68%, 95%, and 99% confidence intervals. For the 1D posterior probability distributions, we
give the 90% confidence interval (dashed lines) and report median values above each panel. Grey
shaded areas give the prior probability regions.

MBNS
ej,Kasen = 0.021+0.017

−0.013M⊙ and MBNS
ej,Bulla = 0.031+0.033

−0.018M⊙ comparable to [533] and [678]. This
finding sheds some light on the impact of different data sets being used to analyze astronomical
sources such as GRB 211211A in a Bayesian context.

For completeness, we have performed a similar investigation for our NSBH-GRB-Mtop and NSBH-
GRB-MGauss models to infer the corresponding NSBH properties by making use of the relations
provided in [259] and [364]. Although the observational data does not provide a strong constraint
on the NSBH source properties, our NSBH-GRB-Mtop analysis suggests that an NSBH merger with
a BH mass of 3.11+5.53

−2.23M⊙ and an NS mass of 1.40+0.74
−0.81M⊙ could have been the progenitor of

GRB 211211A, with a total ejecta mass of MNSBH
ej = 0.006+0.006

−0.004 M⊙. Likewise, the BH spin is

weakly constrained to χ1 = 0.00+0.59
−0.60 for the NSBH-GRB-Mtop inference. Our inferred NS masses are

in agreement with previous GW population analyses [30, 25, 15] and with the maximum non-spinning
NS mass of 2.7+0.5

−0.4M⊙ estimated at 90% credibility by [679]. Within the estimated uncertainties, the
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inferred BH mass is close to the NSBH mass gap for which the lightest BH masses were estimated to
be ∼ 5M⊙ [690, 244].

8.4.4 Influence of the prior choice

Finally, we discuss the influence of a different luminosity distance prior on our results. The distance
of GRB 211211A was relatively precisely estimated based on the redshift of the potential host galaxy,
z = 0.0763 ± 0.0002 [533]. However, we are generally interested in the influence of a wide uniform
luminosity distance prior on our results. For this reason, we widen the prior range and allow a distance
between 0 and 3 Gpc.

FIGURE 8.5
Corner plot for BNS-GRB-MKasen

top with a narrow Gaussian luminosity distance prior centered around
350 Mpc (orange) and a wide uniform luminosity distance prior ranging up to 3 Gpc (blue). The
inferred model parameters are shown at 68%, 95%, and 99% confidence (shadings from light to
dark). For the 1D posterior probability distributions, we report the median values and show the 90%
confidence intervals as dashed lines.

Following the procedure in Sec. 8.4.1, we have computed the logarithmic Bayes factors and found
that BNS-GRB-MKasen

top remains to be the best-fitting model. Moreover, the differences in logarithmic
Bayes factors between BNS-KN-Bulla and BNS-KN-Kasen remain the same. The Bayes factors are
slightly smaller for all assessed scenarios when comparing to the results in Tab. 8.1. Interestingly, the
SN98bw-GRB-MGauss/top and the GRB-MGauss/top are least favored, while the NSBH and collapsar
scenario are more favored. Overall, our main conclusions remain valid also for the wider distance
prior.

We have investigated the posterior probability distributions obtained for a wide uniform distance
prior and compare these with the ones obtained for a narrow Gaussian distance prior setting. In
Fig. 8.5, we show an example for the obtained luminosity distance and the total ejecta mass distribu-
tions using BNS-GRB-MKasen

top . As can be seen, the wide distance prior leads to a noticeably weaker
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constraint on the distance and the total ejecta mass. The latter is caused by a degeneracy between the
luminosity distance and the ejecta mass. Generally, larger ejecta masses could compensate for larger
distances and vice versa, which explains the shape of the 2D correlation plot of Fig. 8.5. Similarly (not
shown in the figure), also the SNCol model predicts higher ejecta masses for larger distances. With
respect to the SN-GRB and the GRB inferences, the GRB isotropic energy, log10(EK,iso), tends to
increase for larger distances, which is expected as brighter signals can be detected to further distances.

8.5 Conclusion

In this paper, we have performed multiple multi-wavelength analyses for GRB 211211A assuming
four different scenarios, i.e., a BNS merger, an NSBH merger, an rCCSN, as well as a CCSN. On
the basis of joint multi-wavelength Bayesian inferences combining respective kilonova or SN models
with a gamma-ray burst afterglow model, we studied for which scenario we find the highest statistical
evidence to explain the data detailed in Sec. 8.2. While emphasizing again that our study is only
considering a small part of possible astrophysical scenarios and thus our results need to be considered
with caution, we summarize our main conclusions below:

1. On the basis of the four assessed scenarios and the employed models, we find statistical
evidence for a BNS merger scenario; cf. Table 8.1. However, we can not fully rule out other
scenarios.

2. Our study confirms that GRB 211211A can not solely be explained as a GRB afterglow
and that an additional emission process (likely related to r-process nucleosynthesis) is re-
quired for a good description of the observational data, mostly in optical and NIR bands
(cf. Fig. 8.3). This emphasizes that near-infrared data at late times are essential to inves-
tigate the astrophysical origin of interesting transient objects.

3. Assuming a BNS origin, our study suggests that this system was a 1.52+0.49
−0.38M⊙ -

1.30+0.24
−0.32M⊙ binary, leading to a total ejecta mass of MBNS

ej,Kasen = 0.016+0.013
−0.009M⊙. As-

suming a NSBH origin of GRB 211211A, our study suggests a 3.11+5.53
−2.23M⊙ - 1.40+0.74

−0.81M⊙
system with a total ejecta mass of MNSBH

ej = 0.006+0.006
−0.004 M⊙.

8.6 Appendix

Inference settings: All parameter estimation runs were performed using the nuclear physics and
multi-messenger astronomy framework NMMA [492]. In this framework, joint Bayesian inferences of
electromagnetic signals are carried out on the basis of the nested sampling algorithm implemented in
pymultinest ([135]). Each simulation used 2048 live points, and the prior settings for each of the
employed models, as well as the median values and 90% credible ranges, are provided in Table 8.2.

Inference results: In the following, we present the posterior distribution for our reference model
GRBKasen

top employing a narrow distance prior centered around 350 Mpc. Figure 8.6 summarizes our

results. As discussed in the main text, we obtain an average velocity of 10−0.92+0.46
−0.45c and a total ejecta

mass of 10−1.79+0.35
−0.32 M⊙, whereas the latter is slightly smaller as compared to previous findings in the

literature. Interestingly, our analysis prefers a higher lanthanide fraction compared to the one inferred
for AT2017gfo using the same kilonova models [182], i.e., we predict a slightly redder kilonova (similar
to [533] who predict a larger mass of the red component, but opposite to e.g. [430]).
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Parameter Prior
Posterior

BNS-GRB-
MBulla

top

BNS-GRB-
MKasen

top

NSBH-GRB-
Mtop

SNCol-
GRB-Mtop

SN98bw-
GRB-Mtop

GRB-M
log10(EK,iso) [erg] [47, 55] 50.74+1.03

−0.86 50.63+0.90
−0.86 50.79+1.13

−0.94 50.72+0.99
−0.89 50.40+1.01

−0.70

θObs [rad] [0, π
4 ] 0.02+0.02

−0.02 0.02+0.02
−0.02 0.02+0.02

−0.02 0.02+0.02
−0.02 0.04+0.03

−0.02

θc [rad] [0.01, π
10 ] 0.03+0.03

−0.02 0.03+0.03
−0.02 0.03+0.03

−0.02 0.03+0.03
−0.02 0.06+0.05

−0.03

log10(n) [cm
−3] [-6, 2] -5.00+1.46

−1.00 -5.05+1.29
−0.95 -4.96+1.58

−1.04 -5.05+1.30
−0.95 -4.77+1.15

−1.23

p [2.01, 3] 2.42+0.19
−0.18 2.47+0.19

−0.18 2.42+0.19
−0.19 2.45+0.19

−0.17 2.49+0.18
−0.17

log10(ϵe) [-5, 0] -0.10+0.10
−0.22 -0.09+0.09

−0.17 -0.10+0.10
−0.24 -0.09+0.09

−0.19 -0.08+0.08
−0.18

log10(ϵB) [-10, 0] -0.66+0.66
−1.43 -0.59+0.59

−1.25 -0.72+0.72
−1.55 -0.65+0.65

−1.30 -0.59+0.59
−1.28

DL[Mpc] N (350, 2) 350.13+3.49
−3.63 350.04+3.57

−3.69 350.32+3.81
−3.56 350.28+3.75

−3.47 350.00+3.60
−3.77

BNS-KN-Bulla

log10(M
ej
dyn) [M⊙] [-3, -1] -1.89+0.66

−0.49

log10(M
ej
wind)

[M⊙]
[-3, -0.5] -2.23+0.48

−0.72

Φ [deg] [15, 75] 69.78+5.22
−16.11

BNS-KN-
Kasen
log10(Mej) [M⊙] [-2.5, -1] -1.79+0.35

−0.32

log10(vej) [c] [-1.8, -1] -0.92+0.46
−0.45

log10(Xlan) [-4.5, -1] -1.69+0.69
−0.82

NSBH-KN-
Bulla

log10(M
ej
dyn) [M⊙] [-3, -1] -2.56+0.49

−0.44

log10(M
ej
wind)

[M⊙]
[-3, -0.5] -2.56+0.50

−0.40

SNCol
Mej [M⊙] [0, 0.5] 0.02+0.06

−0.02

MNi [M⊙] [0, 0.03] 0.00+0.00
−0.00

vej [c] [0, 0.21] 0.20+0.01
−0.02

Mrp [M⊙] [0, 0.05] 0.01+0.02
−0.01

Ψmix [0, 0.9] 0.84+0.06
−0.13

SN98bw
Smax [0, 60] 34.41+24.54

−24.81

TABLE 8.2
Model parameters and prior bounds employed in our Bayesian inferences. We report median posterior
values at 90 % credibility from simulations that were run with Top-hat jet structure and with a narrow
Gaussian luminosity distance prior N (µ,σ), with mean µ = 350 Mpc and standard deviation σ = 2
Mpc. We employ a conditional prior on the inclination angle depending on the jet core opening angle,
p(θObs|θc), using a truncated Gaussian distribution, NT (µ,σ), where µ = 0 and σ = θc.



Appendix 129

0

500

1000

350.04+3.57
−3.69

−3
.2

−2
.4

−1
.6

lo
g 1

0
(X

la
n
)

0

250

500

750

−1.69+0.69
−0.82

−2
.0

−1
.6

−1
.2

lo
g 1

0
(M

ej
)[
M

�
]

0

500

1000

1500
−1.79+0.35

−0.32

−1
.6

−1
.2

−0
.8

−0
.4

lo
g 1

0
(v

ej
)[
c]

0

500

1000
−0.92+0.46

−0.45

0.
03

0.
06

0.
09

ι[
ra
d
]

0

1000

2000

0.02+0.02
−0.02

51
.0

52
.5

54
.0

lo
g 1

0
(E

0
)[
er
g]

0

1000

2000

50.63+0.90
−0.86

−4
−2

0

lo
g 1

0
(n

0
)[
cm

−
3
]

0

1000

2000

−5.05+1.29
−0.95

2.
25

2.
50

2.
75

p

0

500

1000

1500

2.47+0.19
−0.18

0.
08

0.
16

0.
24

θ c
[r
ad
]

0

2000

4000

0.03+0.03
−0.02

−3
.0

−1
.5

� e

0.0

0.5

1.0
×104−0.09+0.09

−0.17

34
4

34
8

35
2

35
6

DL[Mpc]

−7
.5

−5
.0

−2
.5

� B

−3
.2

−2
.4

−1
.6

log10(Xlan)

−2
.0

−1
.6

−1
.2

log10(Mej)[M�]

−1
.6

−1
.2

−0
.8

−0
.4

log10(vej)[c]

0.
03

0.
06

0.
09

ι[rad]

51
.0

52
.5

54
.0

log10(E0)[erg]

−4 −2 0

log10(n0)[cm
−3]

2.
25

2.
50

2.
75

p

0.
08

0.
16

0.
24

θc[rad]

−3
.0

−1
.5

�e

−7
.5

−5
.0

−2
.5

�B

0

2000

4000
−0.59+0.59

−1.25

FIGURE 8.6
Corner plot for BNS-GRB-MKasen

top with a narrow Gaussian luminosity distance prior centered around
350 Mpc, in which we show the inferred parameters at 68%, 95%, and 99% confidence (shadings from
light to dark). For the 1D posterior probability distributions, we report the median values and show
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Abstract: Nuclear systems, ranging from atomic nuclei to dense matter probed in neutron stars, are
governed by strong interactions. Three-nucleon forces have been found to be a crucial ingredient for
the reliable description of these systems. Here, we explore how astrophysical data on neutron stars
and their mergers from current and next-generation observatories will enable us to distinguish nuclear
Hamiltonians. In particular, we investigate two different nuclear Hamiltonians that have been adjusted
to reproduce two-nucleon scattering data and properties of light nuclei, but differ in the three-nucleon
interactions among neutrons. We find that no significant constraints can be obtained from current
data, but that the proposed Einstein Telescope could provide strong evidence to distinguish among
these Hamiltonians.

9.1 Introduction

Neutron stars (NSs) are among the most extreme objects in the universe [385, 161, 691, 271] and
contain observable matter at the highest densities realized anywhere in nature. Inside NSs, densities
up to several times the nuclear saturation density, corresponding to ρsat ≈ 2.7 × 1014 g cm−3 can be
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reached. However, the structural properties of typical NSs, i.e., their masses, radii, and deformabili-
ties, are determined to a large extent by dense matter up to 2−3 ρsat. At these densities, neutron-star
matter consists mainly of neutrons and protons whose microscopic interactions determine the macro-
scopic properties of NSs. The macroscopic NS properties can, in turn, be extracted from analyses
of data from astrophysical observations, for example gravitational wave (GW) [10, 13, 16] and elec-
tromagnetic (EM) signals [83, 529, 451, 183, 214] from NS mergers, or EM observations of isolated
NSs, e.g., from the Neutron star Interior Composition Explorer (NICER) [547, 446, 548, 447]. Hence,
by comparing predictions of theoretical models for dense nuclear matter and astrophysical data on
typical neutron stars, one can infer properties of microscopic nuclear interactions.

In the previous decade, tremendous progress has been made in calculating the properties of nuclear
systems from microscopic nuclear theory. This progress was driven mainly by the development of
systematic interactions from chiral effective field theory (EFT) [236, 406] as well as improvements
to many-body computational methods. These methods solve the many-body Schrödinger equation
numerically for a system described by a nuclear Hamiltonian that entails the kinetic energy of the
particles as well as their interactions, H = T + VNN + V3N + · · · , where VNN denotes two-nucleon
(NN) interactions, V3N denotes three-nucleon (3N) interactions, and the dots indicate additional
many-body forces. Calculations of properties of atomic nuclei and isotopic chains [482, 665], and
studies of nuclear matter [199, 223, 400] have shown that 3N interactions are an important ingredient
in nuclear Hamiltonians and crucial to accurately describe data.

In chiral EFT, 3N interactions are usually constructed to reproduce properties of light nu-
clei [465, 300, 402] and then used to study heavier atomic nuclei and neutron-rich matter relevant
for astrophysics. The latter requires the extrapolation of these interactions from nearly symmetric
to almost pure neutron systems, which might suffer from systematics if interactions among neutrons
are poorly constrained. Hence, it is desirable to investigate if one can constrain these interactions
directly in neutron-rich systems. In this article, we examine how well we can distinguish between
nuclear Hamiltonians that include different 3N interactions by analyzing GW signals of NS mergers,
fully taking into account present uncertainties in nuclear theory. We probe how different tidal prop-
erties, due to the different 3N contributions, can be extracted from a catalogue of synthetic signals
as observed in future third-generation detectors, e.g., the Einstein Telescope (ET) [519, 307].

9.2 Methods

This text is invisible.

9.2.1 Equations of state for different three-nucleon interactions

To analyze the impact of 3N interactions on the equation of state (EOS) of NSs, we follow Ref. [633]
and construct two EOS sets constrained by auxiliary field diffusion Monte Carlo calculations [581,
155, 403] of pure neutron matter for two local Hamiltonians from chiral EFT [278, 279, 401]. These
Hamiltonians differ in their 3N interactions in pure neutron matter (the interactions of Ref. [401]
named TPE and VE,�

1), but they give a similar description in atomic nuclei [399].
The difference in the neutron-matter description originates from regulator artifacts in the EOS

due to the 3N contact interaction VE [401]. In pure neutron matter, without any regulators, the
two-pion–exchange (TPE) interaction is the only 3N contribution because the shorter-range one-
pion-exchange–contact interaction VD and 3N contact VE vanish due to their spin-isospin structure
and the Pauli principle, respectively [301]. However, when local regulators are applied, the contact
interactions acquire a finite range and start to contribute also to pure neutron systems [401, 323]. Here,

1We do not investigate the VE,τ interaction of Ref. [401] because it leads to negative pressure in pure neutron matter
below 2 ρsat.
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we use these regulator artifacts to our advantage to test the sensitivity of the EOS to different 3N
interactions2. The first Hamiltonian only contains the TPE interaction, while the second Hamiltonian
additionally contains a repulsive 3N contact piece with the identity operator, VE,�.

For both Hamiltonians, we calculate the EOS up to 2 ρsat and estimate the truncation uncertainties
according to the description used in Ref. [401]. We stress that this choice for the upper EFT density
is less conservative but will enable us to demonstrate more clearly the impact of third-generation
detectors. We extend these calculations to beta equilibrium and include a crust following the descrip-
tion of Ref. [628]. This crust model includes EFT uncertainties. We translate this to a band in the
density–speed-of-sound plane from which we sample 3000 low-density EOSs for each Hamiltonian. For
simplicity, we refer to the two sets as TPE and VE,�, too. We can then extend each of them to higher
densities using the speed-of-sound extrapolation scheme introduced in Ref. [633]. For the extension,
the prior in the radius of a typical 1.4M⊙ NS is “natural”, i.e., we directly use the generated EOSs
as prior and do not post-select EOSs to generate a certain prior shape. Hence, both EOS sets enable
us to explore the impact of different 3N interaction strengths while taking into account all theoretical
uncertainties.

Including these uncertainties is key in answering the question of whether current and future ob-
servations can distinguish between nuclear Hamiltonians and, in our case, can reveal the strength of
3N interactions. First, uncertainties in the nuclear EOS are not solely originating from unknown 3N
interactions, which is reflected by the truncation uncertainty separately estimated for each Hamilto-
nian employed here. Second, at higher densities in the core of NSs, a description in terms of nucleonic
degrees of freedom alone might fail as exotic forms of matter might appear. Using the speed-of-sound
extrapolation allows us to account for all possible density behavior at high densities. Both uncertain-
ties soften the constraining power of multimessenger data but are crucial to make robust statements
about prospects of constraining nuclear Hamiltonians.

Our approach, thus, differs significantly from Refs. [423, 567], who first investigated the impact
of GW measurements with current and future GW detectors on inferring 3N forces in the nuclear
Hamiltonian. In contrast to our work, Refs. [423, 567] employed phenomenological NN and 3N Hamil-
tonians and constructed a set of EOSs by varying one parameter that quantifies the strength of the
phenomenological 3N contact potential. Here, instead, we use two realistic nuclear Hamiltonians based
on chiral EFT that are both adjusted to reproduce experimental data on atomic nuclei and for which
we can estimate theoretical uncertainties. Furthermore, Refs. [423, 567] assumed their nuclear models
to be valid throughout the whole density range of NSs, neglecting the possibility of changes to the
high-density equation of state due to novel phases of matter. We, instead, include such uncertain-
ties by using a general EOS extension scheme. Finally, they assumed a noise-free realization of GW
measurements in their injection campaign, whereas we include detector noise.

9.2.2 Injection campaign

The EOS links to GW measurements of NS mergers due to tidal deformations of the stars during the
inspiral phase. This leaves a characteristic imprint on the observable gravitational waveform [165]. It
is most commonly expressed by the (effective) tidal deformability

Λ̃ :=
16

13

(M1 + 12M2)M
4
1Λ1 + (1 ←→ 2)

(M1 +M2)5
, (9.1)

a mass-weighted average of both components’ tidal deformability Λ := 2k2R
5

3M5 . Here k2 denotes the
tidal Love number which, like the radius R, depends on the EOS [308]. Together with the component
masses Mi, the EOS is therefore sufficient to determine Λ̃. Conversely, M − Λ and M − R relations
directly map back to the EOS. Three-nucleon interactions increase the pressure in the EOS, leading
to an increase in the tidal deformability compared to NN interactions only. As different 3N interaction

2In principle, these regulator artifacts can be thought of as sub-leading 3N contact interactions, appearing first at
N4LO in chiral EFT.
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FIGURE 9.1
M-Λ (a) and M-R relation (b) for EOS prior and injections. Shaded bands indicate regions in prior
space covered by 90% and 50% of EOSs, respectively. The two sets are well distinguishable at low
masses. As central densities and masses rise, smaller sections of the stars are governed by the EFT
regime and the parameter spaces increasingly overlap by construction. The injected EOS from each
set (dashed lines) is therefore chosen based on the Λ-distribution at a relatively low mass of 1.2 M⊙.
We inject the EOS from the distribution’s 50th percentile which has a TOV-mass closest to a fiducial
value of 2.2 M⊙.

models do this to a different degree, we can use information on the tidal deformability to constrain
3N forces. The EOSs in the VE,� set are stiffer at low densities due to the additional repulsion term
in the nuclear Hamiltonian. This usually leads to a larger radius at low masses and the stars are
more susceptible to deformations, i.e., we generally expect to observe a higher Λ̃ than for the softer
TPE set. Four-nucleon forces, on the other hand, have been shown to be small and can safely be
neglected [629, 365]. The contour lines in Fig. 9.1 indicate the 50 and 90%-range of both M −Λ and
M −R relations allowed by either EOS set.

A re-analysis of the GW transient GW170817 with respect to 3N interactions proves uninforma-
tive, though (see appendix 9.5.1 for details). In principle, the EOS is linked to EM observables, too, as
it determines NS radii and, thus, affects the properties of ejected matter. Intricate models of this con-
nection to EM counterparts are under development, but current uncertainties do not allow stringent
constraints on 3N interactions. These modelling efforts will profit from additional multimessenger
events observed with the present detector generation [34, 1]. Yet event rates are highly uncertain and
kilonova rates are especially poorly constrained [30, 26, 501, 178]. We conclude that significantly im-
proved constraints may not be expected before future detector technology becomes operational [484].
In the GW sector, this refers to the third-generation ET [519] in Europe and the proposed Cosmic
Explorer (CE) [541] in the US. We, therefore, explore synthetic GW signals detected with ET. To
that end, we choose an example EOS for both Hamiltonians and perform a volume-limited injection
study that analyzes 20 realistic NS mergers [691]. For each injected signal, we compare Bayesian
parameter estimation over the TPE and VE,� set, amounting to a total of 80 inference runs. Subject
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to the population model under consideration, the detection of 20 such systems will amount to at least
two years of observations at ET [32, 413].

The injected component masses M1,2 are drawn from a Gaussian distribution N (µ = 1.33,σ =
0.09) that is characteristic for galactic BNS systems [691]. They cover a range from 1.14 M⊙ to
1.53 M⊙. The systems are uniformly distributed in a comoving volume with a distance cutoff at
200 Mpc. In a larger random sample of 1000 binaries within 500 Mpc, the detections’ average chirp
mass settles at this distance near the injected distribution’s mean, indicating that the volume is
sufficiently large to characterize the underlying distribution. We further limit our analysis to systems
with a signal-to-noise ratio (SNR) above 30. This value is sufficiently high to expect measurements of
significant tidal contributions without introducing a bias towards higher masses, where tidal effects
would again become less prominent. The dimensionless aligned spins χ1,2 are constrained to a uniform
distribution subject to |χi| < 0.05, as implied for realistic sources of NS mergers [618, 146]. We leave
the sky location (declination and right ascension), inclination angle θJN , orbital phase at coalescence
ϕ, and polarization angle ψ totally unconstrained.

From our two EOS sets, we select one EOS each for the injection campaigns with 20 binaries
according to the following considerations. We naturally expect to obtain the strongest constraints on
3N interactions from low-mass binaries because the densities explored in these systems are closer to the
densities that can comfortably be described by nucleonic models of matter. They are, therefore, more
influenced by the EFT calculations and less so by the high-density extrapolations. Fig. 9.1 shows
how the parameter spaces of the EOS sets largely overlap at high masses, corresponding to core
densities far beyond the breakdown of the chiral EFT approach. In order to minimize biases resulting
from the choice of injection EOS, we base our selection on both sets’ associated Λ-distribution at a
relatively low mass of 1.2 M⊙. This mass is supported by observations and neutron star formation
theories [422, 621]. We then choose to inject the EOS from each distribution’s 50th percentile which
has a TOV mass3 closest to a fiducial value of 2.2 M⊙. In that sense, the chosen EOS is representative
for its EFT Hamiltonian in a low-mass regime and it is sufficiently realistic at high masses. We use the
IMRPhenomD NRTidalv2 approximant to generate a measurable gravitational wave from these
parameters in the frequency range 30 Hz to 2048 Hz [322, 349, 626, 212]. This is then superposed by
random detector noise to simulate a realistic GW strain in ET.

9.2.3 Parameter estimation

We analyze the resulting strain in the framework of Bayesian inference. This makes use of Bayes’
theorem,

p(θ|d) = L(d|θ)π(θ)
Z(d)

, with (9.2)

Z(d) =

Z

Θ

L(d|θ)π(θ) dθ, (9.3)

to determine a posterior distribution p(θ|d) in the multi-dimensional parameter space Θ that charac-
terizes an event’s GW signal. We obtain the posterior by reweighting a parameter set’s prior prob-
ability π(θ) by the likelihood L that the parameter set describes the data d. In the context of GW
analyses, we determine how well a waveform model computed from various input parameters matches
the observed GW strain. The likelihood evaluations follow the usual matched filter approach with the
IMRPhenomD NRTidalv2 approximant to efficiently and robustly generate waveforms including
tidal effects [322, 349, 626, 212]. Because this reweighting cannot be done analytically, we have to
resort to a statistical approximation by numerically sampling over Θ. The sampling parameters that
describe the waveform space of our injection study are given in table 9.1.
These include observational parameters (e.g., luminosity distance dL, phase, inclination angles of the
merger) and intrinsic binary parameters (e.g., chirp mass M, mass ratio, tilts). We considerably

3The TOV mass is the limiting mass above which the neutron star structure equations have no stable solution.
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parameter symbol prior bounds

ob
se
rv
at
io
n
al luminosity distance [Mpc] dL 5 – 500

inclination cos θJN -1 – 1
phase [rad] ϕ 0 – 2π
polarization [rad] ψ 0 – π
right ascension [rad] α 0 – 2π
declination [rad] δ −π – π

o
rb
it
a
l

chirp mass [M⊙] M 1.20 – 1.30*
source chirp mass [M⊙] Ms 1.15 – 1.30*
mass ratio q 0.125 – 1
source comp. mass [M⊙] Mi,s >0.5
aligned component spin χi -0.15 – 0.15

hyper Equation of State EOS 1 – 3000

TABLE 9.1
GW Sampling Parameters in the ET-Analysis: Most priors are uniform within given bounds. The
declination δ is uniform in cosine, and the luminosity distance dL is uniform within a co-moving
volume of the specified dimension. The EOS prior is weighted by the ability to support massive
pulsars. Prior ranges in italics indicate constraints that are not used as sampling parameters. Starred
priors are adjusted to the injected signal.

extend the range above the injection distribution for the luminosity distance and aligned spins in
order to avoid boundary effects from the prior distribution. This comes at the cost of a bias towards
unequal mass ratios in the parameter estimation, though. As stated above, each EOS uniquely defines
the tidal deformabilities, which are required as input to the waveform approximant, for any given
component mass. We can, therefore, use the EOS as a sampling parameter that is constrained by
tidal terms in the observed waveform. The EOS prior is weighted conservatively by incorporating a
lower bound on the TOV mass in agreement with precise pulsar observations [57, 63, 256] (compare
Fig. S1 of Ref. [214]).

In order to reduce the significant computational cost of waveform evaluations during the likelihood
computation, we apply a Reduced-Order-Quadrature (ROQ) rule [605]. This requires limiting the
chirp mass space to 0.1M⊙ intervals. ROQs apply to the observed signal and hence to mass parameters
as seen in a detector frame. It is redshifted against the source frame of the system, whose non-
redshifted masses determine the tidal effects. As we sample over chirp masses in the source frame, we
invoke a corresponding prior adapted to the injected signal in order to avoid computational issues.
Since the chirp mass is by far the most accurately measured quantity, the prior is still wide enough
to avoid the introduction of prior-driven artifacts in the parameter estimation.

Due to this high dimensionality of the GW parameter space, parameter estimation is a computa-
tionally challenging problem for which we use nested sampling [603, 636]. Nested sampling algorithms
aim at calculating the evidence Z and yield the posterior en passant. We employ the implementation
of parallel-bilby with 2048 live points [606]. This is an efficient parallelization package relying on
nested sampling routines from bilby [603, 65], with some minor modifications to accommodate EOS
sampling. The frequency range of 30 Hz to 2048 Hz is chosen to reduce computational costs with
signals lasting less than two minutes4. In this setting, each inference run requires about 80 000 hours
of computing time.

4While tidal effects are hardly measurable before, ET will certainly be able to detect a GW signal below 10 Hz.
From this frequency range, most information on other GW parameters can be obtained [216]. We discuss the
consequences of this choice in 9.3.2.
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9.2.4 Model selection

The big advantage of nested sampling is that we can use it not only for parameter estimation, but
also for model selection. This relies on the observation that a higher evidence Z can only be achieved
by the more complex (i.e., with a less compact prior π) among two competing models if it matches
the data significantly better. Treating both models of 3N interaction beforehand as equally likely, we
follow common practice to express model preference for the TPE or VE,� Hamiltonians by a Bayes

factor BVE,�

TPE =
ZVE,�

ZTPE
or its logarithm lnBVE,�

TPE = lnZVE,�
− lnZTPE. Moreover, the strength of 3N

interactions is a universal property. The evidence for either model explaining a suite of N independent
observations is given by

Z =

Z NY

i=1

Li(θi,EOSi)π(θi,EOSi) dθidEOSi (9.4)

=
NY

i=1

Z
Li(θi,EOSi)π(θi,EOSi) dθidEOSi (9.5)

=
NY

i=1

Zi. (9.6)

This has subsumed all system parameters besides the EOS in θi. The corresponding Bayes factor

BVE,�

TPE =
NY

i=1

ZVE,�,i

ZTPE,i
(9.7)

then expresses the statistical support for the notion that the N systems are characterized by the VE,�

description instead of TPE.
We highlight that this is a statement on the EOS set and hence the 3N interactions we explore,

not on the EOS itself. In principle, all neutron stars should be described by the same EOS. This
assumption is built into our EOS sampling because the algorithm always tests one EOS on both
stars. We may therefore treat the EOS as a hyperparameter and derive a joint posterior p(EOS). Its
distribution after observing N systems is given by

p(EOS) = const. ·
QN

i=1 pi(EOS)

π(EOS)N−1
, (9.8)

with pi(EOS) denoting the posterior distribution obtained from the i-th event, marginalized over
all parameters but the EOS. We can use this to define posteriors of EOS-associated quantities, e.g.,
a 1.4 M⊙ NS’s radius R1.4 := R(EOS,M = 1.4 M⊙) or tidal deformability Λ1.4 := Λ(EOS,M =
1.4 M⊙). However, one needs to be cautious when including this knowledge in the computation
of Bayesian evidence for either EOS model. The EOS parameter space conveys present modeling
uncertainties in nuclear theory. This leads to unequal prior densities in the associated observables.
Hence, an EOS set of which only one model EOS survives after the inference might be erroneously
favored over a set where multiple EOSs remain. We further discuss this subtlety in appendix 9.5.2.
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FIGURE 9.2
Joint EOS posteriors and Bayes Factors. For a TPE (left) and VE,� (right) injection, we show model
preference as expressed by a cumulative Bayes factor (a), color-coded by the event’s signal-to-noise
ratio (SNR). While the evidence in favor of a TPE injection piles up almost linearly, some runs with
low SNR disfavor the VE,� set when injected. Below, we show for each injected EOS the results of
parameter estimation with both EOS sets. Joint posteriors on the observable tidal deformability Λ
(b) and radius R (c) of a 1.4 M⊙ NS are displayed as a function of total signals observed in random
order. The smaller windows show the same posteriors as a probability density function (PDF) after
all 20 events.

9.3 Results

This text is invisible.

9.3.1 Population analysis

Combining the information from each event into a cumulative EOS posterior using Eq. 9.8 and a
joint model evidence using Eq. 9.6, we obtain the results illustrated in Fig. 9.2. On the left, we show
the EOS posterior – expressed by the observable tidal deformability Λ1.4 (middle) and the radius
R1.4 (bottom) of a fiducial 1.4 M⊙ NS – for both EOS sets when injecting a TPE EOS. Evidence
in favor of the TPE Hamiltonian accumulates very quickly and essentially independent of further
system parameters (top). Particularly, we see no correlation with the color-coded SNR. We obtain

lnBVE,�

TPE = −53.5±1.3 after all 20 mergers, i.e., strong preference for the injected TPE model, although
the injected EOS has only 0.04% weight in the joint TPE posterior.

Some considerations are in order to properly interpret these findings. As an increasing amount
of observations is made, the TPE posterior (orange) narrows down continuously and the median
estimate for Λ1.4 decreases until it settles at Λ1.4,TPE = 204+4

−10 (90% CI). This falls just below
the corresponding injection value Λ1.4,inj = 212. In contrast, the posterior obtained from individual
runs typically overestimates the injected tidal deformability. This relates to our conservative prior
choice which only penalizes low TOV masses. EOSs that allow for higher TOV masses are typically
associated with higher Λ values, too. Individual runs are therefore biased towards overestimates of Λ
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at any reference mass. The joint estimate approaches a more realistic limit only as data from more
runs and a wider range of component masses is included.

That the injection value is not recovered within 90% CI of the joint posterior is primarily due to
a systematic overestimate of the luminosity distance dL or, equivalently, the redshift. The observed
mass parameters are degenerate in redshift, while Λ is determined by the component masses in their
source frame (i.e., not redshifted). The overestimate in dL leads to an underestimate of these masses.
Low masses correspond to higher deformability, an effect that the sampling algorithm will naturally
compensate by selecting EOSs of more compact NSs to match the measured tidal effects. The even
larger underestimate of a 1.4 M⊙ NS’s radius with R1.4,TPE = 10.80+0.12

−0.10 km is aided by the fact
that our injection EOS happens to exhibit the highest radius (R1.4,inj = 11.0 km) among the EOSs
that live in a narrow Λ-band around the injection value at 1.4 M⊙. Since observations of the inspiral
signal are not radius sensitive, we would thus expect a radius underestimate even if we had observed
a more accurate Λ recovery. This highlights the fact that the NS radius and its tidal deformability
are not fully equivalent quantities.

Similar arguments apply to the overall trend in the VE,� posterior (blue). It overestimates the
tidal deformability at the reference mass 1.4 M⊙ for individual runs and decreases as we include data
from additional observations. However, the overall capability of this set to explain the injected TPE
signals is very low. The soft injection covers a low-Λ regime that is only sparsely populated by the
on-average stiffer VE,� EOSs. It requires a very peculiar extrapolation in the high-density end for
a VE,� EOS to soften sufficiently already for medium-mass stars to provide decent agreement with
the TPE injection while still allowing for a sufficiently high TOV mass. This explains the strong
preference for the TPE Hamiltonian. The tighter and better fit of the VE,� posterior therefore must
not be mistaken for evidence of better agreement with the observational data. To the contrary, this
indicates the narrow range and low number of EOSs that provide a mildly plausible description of the
data. After the 13th detection, only two EOSs populate more than 90% of the VE,� posterior space
and cause the apparent jumps of the observables’ median estimate. The seemingly better agreement
with the injection, particularly for R1.4, should therefore not lead us astray: ET’s high resolution
effectively rules out VE,� after a sufficient amount of signals.

Conversely, the corresponding plot for the VE,� injection on the right of Fig. 9.2 demonstrates a

much weaker model preference at lnBVE,�

TPE = 3.8±1.3 (top, note the different scales). This links to the
fact that the TPE model naturally provides better support for the VE,� set’s Λ distribution than vice
versa: As the VE,� set is characterized by higher tidal deformability at lowest masses, the injected
Λ values are then best matched by EOSs in the TPE set that stiffen considerably and early-on in
comparison to the full prior. These are likely to yield high TOV masses which our prior does not
penalize due to the lack of confidently measured upper bounds, in contrast to the softening VE,�

EOSs in case of the TPE injection.
The six events with the lowest SNR even seem to favor the TPE model to various degree. A

low SNR in the considered distance range is typically related to low inclination angles. Due to the
well-known inclination-distance degeneracy, these systems are especially prone to overestimates of
the luminosity distance. In the apparent source frame, component masses appear then lower than
injected. If we knew the true EOS, we could use tidal deformability measurements to break this
degeneracy. But as we explore the EOS, these observations erroneously indicate a soft EOS which
favors the TPE model.

Nevertheless, the joint VE,� posterior after all runs is at Λ1.4,VE,�
= 299+10

−7 in good agreement with

Λ1.4,inj = 300 (dashed line), while the TPE posterior overestimates it at Λ1.4,TPE = 315+6
−3. Fig. 9.3

illustrates the reason for this. It shows the ten most likely EOSs from each set together with the VE,�

injection. Fainter lines correspond to subdominant posterior contributions and background contours
match the prior ranges (90% CI) in Λ (left) as well as radius (right). Since merging binaries form a
distinct sub-population of all NSs, our injection was guided by the mass distribution of galactic BNS
systems. We see that Λ is best recovered around that distribution’s mode at 1.33M⊙ [691]. TPE EOSs
matching this value despite their lower deformability at low mass ’overshoot’ the VE,� injection in the
M -Λ plane above 1.33 M⊙. That the joint TPE posterior overestimates Λ1.4 is therefore indicative
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FIGURE 9.3
M-Λ (a) and M-R relation (b) for EOS prior and posterior. Similar to Fig. 9.1, shaded bands indicate
regions in prior space covered by 90% of EOSs. We show the VE,� injection as a dashed line alongside
the ten dominant EOSs in each set’s corresponding posterior. Note how the tidal deformability is best
constrained around the mean mass of the underlying mass distribution.

of the probed mass range. It does not contradict the fact that TPE provides in general softer EOSs.
The latter is further indicated by the lower radius estimate in case of the TPE model. Here, too, the
final posterior is dominated by a very low number of remaining EOSs.

9.3.2 Validation

As we have discussed above, the lack of symmetry in the degree of model preference for the respective
injection is linked to our prior choice. The VE,� model’s ability to reproduce the TPE injection is
limited due to the prior penalty on low TOV masses. However, there is some evidence for the formation
of a short-lived hypermassive NS in the GW170817 merger [542, 416, 591, 562]. Its rapid collapse to
a black hole would be in conflict with the most preferred TPE EOSs in case of the VE,� injection.
We see in the mass-radius plot in Fig. 9.3 that these EOSs mostly have TOV masses of 2.4 M⊙ and
above. While we consider a maximum limit on the TOV mass too uncertain at the moment to include
it in our more conservative main analysis, we acknowledge that new observations could provide a
more confident upper limit on this mass. A corresponding penalty in the EOS prior could reduce the
erroneous TPE preference and shift the Bayes factor in favor of the injection. We therefore reanalyze
a signal with particularly poor parameter estimation in the VE,� injection, using a different EOS
prior that additionally penalizes TOV limits above 2.16+0.17

−0.15 M⊙ [542]. This step does not significantly
improve the VE,� estimation for observable parameters, while it does lead to a modified EOS posterior.
The TPE sampling, in contrast, does not converge within acceptable runtime because the adjusted
prior effectively outlaws EOSs that previously provided suitable waveform descriptions. This makes it
much harder for the nested sampling algorithm to find parameters with better likelihood. Enforcing
convergence by allocating significantly more computing resources would certainly have removed the
model preference for TPE against the injection.
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Significantly better data will be available in real observations. We based our analysis on observa-
tions above 30 Hz where tidal effects begin to contribute. Inference on the full detection band would
have further increased the high computational cost of this study by orders of magnitude. The mass
and spin parameters of a compact binary, however, are best determined at 5 Hz to 9 Hz in ET [216].
Measuring them with high precision in this range would naturally constrain the inference of other
parameters, too. Similarly, a signal recorded by a GW detector network or even identified in optical
counterparts would constrain the sky location much tighter. To mimic these effects, we re-analyze
the same signal with our usual priors, but under the assumption, that a) mass parameters and sky
location were tightly constrained – as expected from a full bandwidth detection in a GW detector
network –, and that b) the luminosity distance was known to high precision, as expected from the
identification of the host galaxy to an EM counterpart.

Fig. 9.4 shows that option a) already leads to a more accurate description of the tidal effects. In our
original analysis, the distance overestimate drives the EOS sets to EOSs with lower tidal deformability
to counter the underestimate in the (redshifted) source-frame mass parameters. These are associated
with more compact neutron stars that typically have a lower TOV limit. Because our prior penalizes
low TOV limits, good waveform fits had previously worse prior support, particularly for VE,�. Properly
identifying the detected mass within narrow margins of 0.01 M⊙ reduces this source of uncertainty
considerably and resolves the erroneous model preference for TPE against the injected VE,� EOS.
Constraining the luminosity distance even further in b), for instance by identifying a host galaxy,
does not improve the estimation of other parameters and in particular Λ̃. These findings support the
conclusion that realistic GW detections in the ET era with improved priors from upcoming detections
will be capable of quickly distinguishing 3N interactions.

9.3.3 Discussion

Our analysis comes with some caveats. First, Ref. [370] has shown in a comparable framework how
systematic errors in available waveform approximants affect the determination of tidal effects. Given
the greatly increased sensitivity of ET and the prospect of advances in waveform modelling in the
upcoming years, we are optimistic that these uncertainties will be reduced significantly when analyzing
future detections.

Second, we have drawn the component masses from a N (µ = 1.33,σ = 0.09)-distributed popula-
tion. In principle, the impact of three-nucleon interactions on the observable structure is strongest for
low masses, and high-mass systems will be less constraining. The relatively tight distribution from
which we have drawn masses is based on observations of close NS binaries in the milky way. Its differ-
ence to the mass distribution of isolated NSs indicates peculiar formation channels which benefit our
study [627]. The fact that the only other confidently measured NS merger GW190425 contained at
least one component with significantly higher masses could indicate selection effects in current radio
surveys and the underestimation of other formation channels in population evolution studies [19, 267].
Nevertheless, a higher fraction of massive NSs does not harm our analysis: It would only take longer
to reach a desired level of confidence with less constraining high-mass mergers. Moreover, for the low-
to medium-mass range of our study, we found the quality of the strain (i.e., SNR) to outweigh effects
due to the component masses.

Third, our analysis naturally depends on the true EOS, too. If it exhibited extremely low (or high)
tidal effects that the VE,� (or TPE) model cannot reproduce, the amount of detections necessary to
reach a desired level of model preference will drastically reduce. If, by contrast, the true EOS covered
just the middle of both models’ associated M −Λ-space, a misidentification could only be avoided by
studying extremely low-mass systems or by employing more advanced modelling.
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scription improve when assuming knowledge on the mass parameters. Further limiting the luminosity
distance does not improve the quality of other parameters.
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9.4 Conclusions

We have performed an ET injection study to investigate if future GW observations can help to
constrain the nuclear Hamiltonian in NS matter. For our TPE and VE,� injection choices, constrained

by chiral EFT at low densities and observations at high densities, we have found lnBVE,�

TPE = −53.5±1.3

and lnBVE,�

TPE = 3.8±1.3, respectively. The strength of model preference will naturally change for more
or less extreme EOSs as well as for denser EOS sets.

These outcomes need to be seen in context of computational limitations and our rather conser-
vative approach. We performed inference on the frequency domain above 30 Hz to limit this study’s
computational cost. While tidal terms are hardly distinguishable below, this has in fact cut the most
promising information on the mass parameters which contribute most information in ET around 5 Hz
to 9 Hz [216]. Additionally, we have only taken a detection by ET alone into consideration. Network
operation with CE and other GW detectors as well as sky localization by detection of EM counter-
parts would greatly improve inference on GW parameters, including the luminosity distance, under
realistic conditions and reduce the observed bias towards the TPE model. Moreover, upper limits on
the TOV mass will be refined by further multi-messenger detections of NS mergers. We can therefore
be optimistic to achieve significantly better constraints in actual science runs.

That we have not recovered our injected EOSs in our inference runs, but closely similar models,
reminds us that we only probe the limited mass range of merging NSs. While we will be able to mitigate
some systematic effects by taking into account other aspects of the expected multi-messenger signals,
we cannot expect to fully recover our injections.

However, even under our conservative assumptions, we found clear evidence in support of either
injected Hamiltonian, particularly when considering the systems with high SNR. This suggests that
observations with 3rd generation GW detectors alone will be able to amass the required data to
decisively distinguish nuclear Hamiltonians. Joint detections then reduce the amount of necessary
events to surpass a desired level of confidence, underlining the potential of multi-messenger astronomy
to inform nuclear theory. Naturally, if the true EOS proves more extreme, our results will be more
constraining than if the true EOS can be described well by either Hamiltonian. Notwithstanding, our
approach is not limited to 3N interactions but can in principle be used to constrain other parts of
the Hamiltonian, too.

9.5 Appendix

...

9.5.1 Re-analysis of GW170817

For a re-analysis of GW170817 [28], we use the available information on the GRB afterglow and
kilonova, motivating the modified prior distribution given in Table 9.2. We also use a more informative
EOS prior that is weighted by minimum mass constraints from precise pulsar observations [552, 63, 57,
256], evidence for the formation of a hypermassive neutron star in the merger [542, 416], and NICER
analysis of millisecond pulsars [547, 548, 446, 447]. Each measurement is assumed to be subject to
Gaussian errors characterized by the respectively published uncertainty.
Fig. 9.5 displays the recovered spread of several key parameters which are consistent with the original
findings and recent re-analysis [10, 463]. The luminosity distance peaks sharply near 46 Mpc, matching
the spread in source chirp mass. This is slightly lower than originally reported. We can associate this
effect with the wide spread of mass ratios, falling even below 0.6. The low mass ratios correspond to the
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parameter symbol prior bounds

ob
se
rv
at
io
n
al lum. distance [Mpc] dL 1 – 75

inclination cos θJN -1 – 1
phase [rad] ϕ 0 – 2π
polarization [rad] ψ 0 – π
right ascension [rad] α 3.44616 (exact)
declination [rad] δ -0.408084 (exact)

or
b
it
a
l chirp mass [M⊙] M 1.18 – 1.21

mass ratio q 0.125 – 1
component mass [M⊙] Mi >1.0
aligned component spin χi -0.15 – 0.15

hyper Equation of State EOS 1 – 3000

TABLE 9.2
GW Sampling Parameters in GW170817-Analysis: Most priors are uniform within given bounds.
Luminosity distance dL is uniform within a comoving volume of the specified radial dimension. The
EOS prior is weighted by the ability to support mass constraints from high-mass pulsars, NICER
observations, and the kilonova observations that suggested the formation of a hypermassive NS. The
component mass prior indicates a constraint that is not used as a sampling parameter.

extended prior range for the aligned spin components in comparison with Ref. [10] that considered
the case |χi| < 0.05. Since we find the spins (not shown) to deviate only slightly from the prior
distribution and to be strongly anti-correlated, we conclude that there is no evidence for significant
spin effects. The tidal deformability is relatively tightly constrained, falling way below the limits
in nuclear-physics agnostic analysis of the original discovery [13, 200, 16] and matching findings of
80 ≤ Λ̃ ≤ 580 in a similar chiral EFT framework [633]. This is a prior-driven conclusion, though,
and we find that the EOS distribution has hardly relaxed from the prior. This is due to the fact
that GW170817 and chiral EFT up to 2 ρsat provide similar information on the EOS [153]. Since
this run at the upper limit of plausible deformabilities is uninformative, no better constraints can
be expected from a TPE recovery on these data. This analysis does, therefore, suggest no preference
for any particular realization of 3N interactions. Other GW detections with neutron stars have so
far proven even less informative with respect to tidal effects. Further measurements of NS mergers
are expected in the next observing runs, but current population models make it unlikely that these
include signals that are considerably stronger than GW170817.

9.5.2 Computation of evidence

Equation 9.6 does not incorporate the fact that all neutron stars should be described by only one
EOS. Including this knowledge leads to a slightly different expression for the resulting evidence:

Z =

Z NY

i=1

Li(θi,EOSi)π(θi,EOSi) · δ(EOSi − EOS1) dθi dEOSi (9.9)

=

Z NY

i=1

Li(θi,EOS)π(θi,EOS) dθi dEOS (9.10)

=

Z NY

i=1

Zipi(EOS) dEOS (9.11)

=
NY

j=1

Zj

Z NY

i=1

pi(EOS) dEOS. (9.12)
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Comparison of Bayes Factors. Bayes factors as in Fig. 9.2, using eq. 9.6 (a) and eq. 9.12 (b), re-
spectively. Note the different scales. For the TPE (top) injection, the model preference becomes less
decisive and the inclusion of some runs favors the VE,� model when assuming that all observations
result from the same EOS. For the VE,� injection (bottom), the overall model preference remains
nearly constant, while the contribution of some runs varies greatly.

However, this prescription is misleading for the purpose of selecting among competing nuclear models.
Consider, for instance, a segment of Λ space at relatively low mass that is only approximately met by
a single TPE EOS, whereas multiple VE,� EOS provide similarly good agreement with observations.
This would naturally happen if VE,� described the true EOS, independent of the total number of
EOSs in each set. After some mergers with near-solar-mass NSs, eq. 9.12 would still suggest model
preference for the inappropriate TPE description because it matches the expectation of a single true
EOS better.
We see this effect in Fig. 9.6. The model preference in case of the TPE injection reduces massively.
Even more prominent is the effect for the tenth event in case of the VE,�injection. In our analysis,
it leads to a reduction of the cumulative Bayes factor because of the distance overestimate which
suggests lower component masses in the source frame. If, however, we include the demand that all
observations should be explained by the same EOS, we observe that the same detection has the
opposite effect. This traces back to the circumstance that this system contained the most massive
primary star and the second highest chirp mass in our sample. It therefore probes a low Λ regime
that is not probed by other measurements. While the effects of a distance overestimate as discussed
above favor the TPE model in this individual run, there are virtually no remaining TPE EOSs that
agree decently with data from the lower-mass detections, too.
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masundaram, Violetta Sagun, and Tim Dietrich published in Phys.Rev.D 110 (2024) 10, 103033. My
contributions include consultation during data analysis and contributing to the manuscript through
review and proofreading.

Abstract: If dark matter (DM) accumulates inside neutron stars (NS), it changes their internal
structure and causes a shift of the tidal deformability from the value predicted by the dense-matter
equation of state (EOS). In principle, this shift could be observable in the gravitational-wave (GW)
signal of binary neutron star (BNS) mergers. We investigate the effect of fermionic, noninteracting
DM when observing a large number of GW events from DM-admixed BNSs with the precision of the
proposed Einstein telescope (ET). Specifically, we study the impact on the recovery of the baryonic
EOS and whether DM properties can be constrained. For this purpose, we create event catalogs of
BNS mock events with DM fraction up to 1%, from which we reconstruct the posterior uncertainties
with the Fisher matrix approach. Using this data, we perform joint Bayesian inference on the baryonic
EOS, DM particle mass, and DM particle fraction in each event. Our results reveal that when falsely
ignoring DM effects, the EOS posterior is biased toward softer EOSs, though the offset is rather small.
Further, we find that within our assumptions of our DM model and population, ET will likely not
be able to test the presence of DM in BNSs, even when combining many events and adding Cosmic
Explorer (CE) to the next-generation detector network. Likewise, the potential constraints on the
DM particle mass will remain weak because of degeneracies with the fraction and EOS.
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10.1 Introduction

The detection of gravitational waves (GW) from compact binary mergers involving neutron stars
(NSs) has provided the opportunity to constrain the equation of state (EOS) for dense, strongly
interacting matter [13, 529, 451, 531, 416, 542], also in combination with additional recent data from
nuclear and astrophysics [524, 357, 324, 153, 107, 56]. Due to their finite size, NSs experience tidal
distortion if placed in an inhomogeneous gravitational field. During the inspiral of a binary neutron
star (BNS) or black-hole-neutron-star binary (BHNS), this distortion causes a phase shift on the
emitted GW signal. When this phase shift is measured, Bayesian inference allows for the recovery of
the tidal deformability parameter Λ which in turn restricts the underlying EOS for NSs.

The usual assumption in the aforementioned studies is to consider compact stars in a vacuum.
Yet, it has been suggested that NSs might be embedded in a dark matter (DM) halo or rapidly
accrete DM clumps while passing through an overdense region in a subhalo [126]. The latter scenario
is supported by many cosmological models predicting formation of primordial DM gravitationally
collapsed objects residing in subhalos [238, 136]. In fact, because of their extreme gravity, NSs may
accumulate a significant amount of DM over their lifetime [124, 550, 99, 201], especially when located
close to the respective galactic center [202]. Furthermore, it is possible that upon the creation of the
NS, DM is inherited from the progenitor star [612, 442, 162]. In particular, BNS systems could have
a relatively high amount of DM, since they are old systems that went through several stages of stellar
evolution and the joint gravitational pull of the binary traps more DM particles in comparison to an
isolated NS [89].

DM in the NS interior would alter the interior structure and thereby impact properties such as
radius, mass, and tidal deformability [205, 99, 341, 197, 391, 281, 338], for a recent review see Ref. [127].
This makes NS potential probes for DM [235] but it also complicates the analysis in regards to the EOS
for strongly interacting matter, because more unknown parameters with possible degeneracies need to
be considered [568, 281]. In Ref. [565], the authors examined how future mass-radius measurements
of NS with next-generation X-ray telescopes can be used to detect bosonic asymmetric dark matter,
finding that with present uncertainties about the baryonic EOS, constraining intrinsic DM properties
will not be feasible. In Ref. [569] it was shown that the reported low mass and radius for HESS
J1731-347 can be explained by asymmetric, noninteracting DM and several values for the particle
masses and fractions for DM would be possible.

In the present article, we investigate how future tidal deformability measurements of DM-admixed
BNS with next-generation GW observatories impact the inference of the underlying baryonic EOS
and whether they can be used to study intrinsic properties of DM. Next-generation observatories are
necessary for this purpose, since the precision of current GW measurements is not sufficient to identify
the small offset in the tidal deformability induced by DM. With two detected BNS mergers [10, 19] and
three BHNS candidates [27, 3], detector sensitivity limits have only allowed for meaningful constraints
on Λ in the case of GW170817 [524, 357]. Depending on the vicinity and rate of occurring events,
tighter EOS constraints may be achieved during the advanced LIGO-Virgo observational runs O4 and
O5 [251, 74], though the next major leap in precision will arise from next-generation detectors, such
as the proposed Einstein telescope (ET) [307, 519, 577, 128] or Cosmic Explorer (CE) [8, 541, 241].
Several studies for next-generation observations show that these facilities will be able to infer the
EOS with high accuracy [484, 251, 656, 74, 518, 327]. In particular, the effective tidal deformability

Λ̃ =
16

13

(1 + 12q)Λ1 + (12 + q)q4Λ2

(1 + q)5
(10.1)

in a binary with mass ratio q and component deformabilities Λ1,2 will be measurable with an uncer-
tainty of ∼ O(10) at the 90% credibility limit [518, 517, 128, 327]. For comparison, the 90%-credible
interval from GW170817 is set at Λ̃ = 356+479

−217 [15]. Hence, the question arises how to disentangle the
contributions from DM and the unknown EOS, when tidal deformabilities can be determined with
high precision in next-generation detectors.
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For this purpose, we create BNS mock events where the tidal deformabilities are determined by
an injected EOS together with DM effects taken into account. The posteriors on Λ̃ that would be
recovered by the next-generation GW observatories are approximated through the Fisher matrix
approach [649]. This mock posterior data is then used to perform a subsequent Bayesian analysis
to infer the baryonic EOS jointly with the parameters of the DM model. We focus mainly on BNS
measurements with ET, while we provide conclusions for a joint detector network of ET and CE in
the Appendix.

We consider asymmetric, noninteracting, fermionic DM that does not annihilate, and, therefore,
steadily accumulates inside the compact stars. Asymmetric DM is consistent with the ΛCDM model
predicting cold (nonrelativistic) collisionless DM particles and reproduces the existing observational
data [43]. The amount of accrued DM in BNSs depends on the surrounding medium, particularly
the DM particle density, and could differ for each system [362]. This aspect poses a complication
to the analysis of the observational data, but also offers the potential to firmly detect DM when
significant variation in the tidal signatures is observable after comparing many events. The present
study addresses this question by considering BNS merger events with different DM fractions up to
1%, reflecting deviations of DM density in each galaxy and at different distances from the galactic
center [202].

The present article is organized as follows: In Sec. 10.2, we describe our baryonic EOS set and
how we add the effects of DM for the determination of the tidal deformability. Thereafter in Sec. 10.3,
we describe how we create the mock event data and lay out the details of the subsequent Bayesian
statistical analysis. In Sec. 10.4, we present our findings for the impact of DM on the inference of
the EOS and assess whether ET will be able to distinguish between populations of BNSs with and
without DM. Finally, we summarize and discuss our findings in Sec. 10.5.

10.2 Constructing NS with DM

This text is invisible.

10.2.1 EOS construction

We construct our set of nucleonic EOSs using the metamodel of Refs. [418, 419]. The construction is
similar to that of Ref. [357] but with the difference that, in this work, we use the metamodel at all
densities, i.e., we do not allow for the presence of non-nucleonic degrees of freedom in NSs. The EOS
predicted by the metamodel is determined by the nuclear empirical parameters which are given by
the expansion of the energy per particle in symmetric nuclear matter E(n), and the symmetry energy
S(n), around the nuclear saturation density, nsat,

E(n) = Esat +
1

2
Ksatx

2 +
1

6
Qsatx

3 +
1

24
Zsatx

4 + . . . , (10.2)

S(n) = Esym + Lsymx+
1

2
Ksymx

2 +
1

6
Qsymx

3 +
1

24
Zsymx

4 + . . . , (10.3)

where x = n−nsat

3nsat
. In this work, we fix Esat = −16 MeV and nsat = 0.16 fm−3. The higher-order

isoscalar parameters are varied uniformly in the ranges specified in Table 10.1. Similarly, Table 10.1
also contains the ranges for the isovector parameters. By drawing the nuclear empirical parameters
from the specified ranges, we create a large set of EOS candidates from the metamodel. Furthermore,
we require that our EOS candidates satisfy the following constraints:

1. A maximum mass of MTOV > 1.97M⊙ to account for the radio observations of heavy
pulsars [206, 187, 256].
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2. Positive symmetry energy S(n) > 0 at all NS densities, see Ref. [419].

3. Causality in the speed of sound, cs ≤ c for n < 1.2nTOV, where nTOV is the central density
of a NS with the maximum mass MTOV.

Metamodel draws that do not satisfy the above criteria are discarded. In this manner, we generate a
set of 5000 nucleonic EOSs that constitute our EOS prior.

TABLE 10.1
The distributions from which the empirical parameters are drawn to generate the EOS candidates.
The parameters Esat and nsat are fixed at −16 MeV and 0.16 fm−3, respectively. We denote uniform
distributions by U .

Parameter Distribution

Ksat [MeV] U(210, 260)
Qsat [MeV] U(−1000, 1000)

Zsat [MeV] U(−1000, 1000)

Esym [MeV] U(28, 35)
Lsym [MeV] U(30, 100)
Ksym [MeV] U(−200, 200)

Qsym [MeV] U(−1000, 1000)

Zsym [MeV] U(−1000, 1000)

10.2.2 Adding DM to the NS properties

We model the DM component as a relativistic Fermi gas of noninteracting spin-one-half particles
minimally coupled to Standard Model particles. This model has been extensively studied in the
literature, for instance in Refs. [467, 328]. Hence, the DM pressure is given by

p(µχ) =
m4

χc
5

24π2ℏ3

�
x
p
x2 − 1(2x2 − 5) + 3 log

�
x+

p
x2 − 1

��
, (10.4)

where x is the ratio of the chemical potential µχ to the DM particle mass mχ. By adopting the
noninteracting Fermi gas model, we keep the number of parameters needed to describe DM to just
two: the particle mass and fraction, while preserving the essential physics. In this way, the fermionic
pressure is sufficient to balance the gravitational pull of DM, allowing for stable configurations and
preventing DM-admixed NSs from collapsing into black holes, aligning with the observation of old
compact stars.

The relation between NS mass, radius, and tidal deformability is determined by solving the two-
fluid Tolman–Oppenheimer–Volkoff (TOV) and Love equations, discussed in detail in [328]. Note,
that the star’s tidal deformability is obtained considering the effective speed of sound derived in
Ref. [281]. Unlike the one-fluid case, where the mass-radius curve is solely determined by the EOS,
here the possible NS configurations will also depend on the DM particle mass mχ and the fraction fχ
of (gravitational) DM mass over the total (gravitational) mass of the NS. For each of our 5000 baryonic
EOS candidates, we calculate the stable NS configurations on a grid of 12× 12 combinations for the
DM particle masses and fractions. The possible grid values are distributed log-uniformly between
170–3000 MeV and 0.01–1% and listed in Table 10.2. The two-fluid TOV equations are solved up to
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TABLE 10.2
Grid values for the DM particle mass mχ and DM fraction fχ for which NS configurations were
determined. In total this amounts to 12× 12 combinations. The values are distributed log-uniformly.

mχ in MeV

170

221

286

372

483

627

814

1056

1371

1780

2311

3000

×

fχ in %

0.01

0.015

0.023

0.035

0.053

0.081

0.123

0.187

0.285

0.433

0.658

1

the point where the NS mass starts to decrease with higher central density to ensure stability of the
NS against radial perturbations [559].

The choice of the DM particle mass range is motivated by previous studies [328, 564] where
it was shown that light fermionic DM with mχ ≲ 170 MeV forms an extended halo around the
NS. Similar configurations could be obtained for most bosonic DM models, the range of parameters
across different models is essentially equivalent [341]. Such extended DM halos could overlap at the late
inspiral phase of the merger which makes existing waveform models inapplicable (for details see [564]).
We thus focus on DM core configurations, considering only small changes in tidal deformability and
assuming that the waveform description remains otherwise unaltered. As typical DM fractions for
NS remain unknown, the choice for the range of fχ remains arbitrary, though for instance Ref. [328]
argue that considering only the Bondi accretion of DM onto an NS close to the Galactic center could
yield fχ = 0.01%. Higher fractions could occur through the other mechanisms mentioned in Sec. 10.1
and we consider 1% as a realistic upper limit. We note that other works also have investigated NS
configurations with higher fractions [565, 443, 281].

10.3 EOS inference through BNS mergers

For our analysis, we create sixteen distinct catalogs of mock ET events, each encompassing 500 BNS
events with a signal-to-noise ratio (SNR) larger than 100. The catalogs are identical in terms of the
underlying population model, i.e., the NS masses and distances stay the same, but differ in terms
of the injected baryonic EOS, DM particle mass, or DM fraction population. Specifically, for each
catalog we pick one baryonic EOS, one value for mχ and decide whether the DM fraction fχ is
sampled log-uniformly or uniformly between 10−4 and 10−2. In total, we inject two different EOSs
with four possible values mχ (170 MeV, 483 MeV, 1056 MeV, or 3000 MeV), which then with the
choice for the fχ distribution amounts to 2× 4× 2 combinations that represent our sixteen different
catalogs. We show the distribution of the event parameters for one of our catalogs in Fig. 10.1. For
the purpose of background checking, we also create two event catalogs that do not contain any DM
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effects. In these catalogs, the tidal deformability is solely determined by the baryonic EOS. We refer
to them as “no DM” catalogs.

TABLE 10.3
Distributions from which the parameters for the individual events are drawn. Our event catalogs are
created by sampling from these distributions and discarding any event with an SNR lower than 100.
The event catalogs only differ in the choice for the EOS, mχ and the distribution for fχ. The draws
for the masses, spins, and observational parameters remain the same.

parameter symbol distribution

in
tr
in
si
c

Component mass [M⊙] m1,m2 Eq. (10.5)
Spin magnitude a1, a2 U(0, 0.05)
DM fraction fχ Log or U(10−4, 10−2)
Tidal deformability Λ1,Λ2 from EOS, mχ, fχ

ob
se
rv
at
io
n
al Luminosity distance [Mpc] dL Ucom. vol.(1, 1000)

Sky position [rad] φ, θ U(0, 2π), Cos(0,π)
Trigger time [GPS] tc U(1 yr)
Phase [rad] ϕc U(0, 2π)
Inclination [rad] ι Cos(0,π)
Polarization [rad] ψ U(0, 2π)

From these events, we create mock posteriors on the tidal deformability using gwfast [326, 325] and
use those to perform inference on our EOS candidate set. The following two subsections first provide
more details on how we draw the events for our catalogs and then about the statistical analysis of
our Bayesian inference of the EOS.

10.3.1 Creating mock events

To create a mock GW detection for ET, we need to specify a parameter vector θ⃗ for each event.
This parameter vector encompasses the masses and tidal deformabilities of the NSs, their spins and
other observational parameters. We list the distributions from which we draw each quantity in Ta-
ble 10.3. The mass function for merging BNSs is largely unconstrained, therefore, we use the following
distribution

P (m1,m2) ∝
(
(m2/m1)

2 if 1.1M⊙ ≤ m2 < m1 ≤ 2M⊙
0 else

(10.5)

based on the analysis of GW170817 and GW190425 in Ref. [382]. The tidal deformabilities are deter-
mined through the combination of baryonic EOS, mχ and fχ. We inject one of two baryonic EOSs
that were arbitrarily chosen from our candidate set. We refer to one as the ”stiffer” EOS. For a

canonical 1.4 M⊙ NS without any DM this EOS predicts a tidal deformability of Λ
(bar)
1.4 = 534. The

superscript here indicates that it is the expectation from the baryonic EOS alone and no DM effects

are taken into account. The other EOS is the ”softer” one with Λ
(bar)
1.4 = 293. The EOS and mχ are

fixed in each catalog, the DM fraction fχ varies between individual events. We assume that both NSs
in a binary have the same fraction fχ that is either drawn from a log-uniform distribution between
0.01% and 1%, or from a uniform distribution in the same range.
To draw conclusions about the EOS from a BNS signal dGW, one has to consider the posterior
P (Λ̃,M, η|dGW) for the (source frame) chirp mass M, symmetric mass ratio η, and effective tidal
deformability Λ̃. This posterior is usually inferred from a full Bayesian sampling with a likelihood
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given by

lnL(θ⃗|dGW) =− 2

Z fmax

fmin

|dGW(f)− h(f, θ⃗)|2
S(f)

df . (10.6)

Here, h(f, θ⃗) is the waveform model prediction for the parameter point θ⃗, and S(f) denotes the
detector power spectral density. However, especially for long high-SNR signals, sampling over the
entire parameter space turns out to be rather expensive. Instead, for the type of loud signals we are
interested in, we assume that P (Λ̃,M, η|dGW) is well approximated by a Gaussian centered around
the injected (true) value. The Fisher matrix

Fjk = E

 
∂ lnL(θ⃗|dGW)

∂θj

∂ lnL(θ⃗|dGW)

∂θk

!
, (10.7)

is then used to construct the uncertainty of this posterior. Specifically, the covariance matrix for
P (Λ̃,M, η|dGW) is the inverse Fjk. To determine Eq. (10.7) and its inverse, we use the gw-
fast package [326, 325]. The waveform model for the determination of the likelihood was set to
IMRPhenomD NRTidalv2 [322, 349, 212]. For the ET detector, we assume the triangle configuration
located in Sardinia [518, 128], the power spectral density was taken from Ref. [102].

When assessing the detection probabilities of DM, it is necessary to compare against the case
when no DM is present in the events. For this reason, we also create two event catalogs in a similar
manner as described here, but the tidal deformabilities are solely determined by the baryonic EOS.
For each of these two “no DM” catalogs we use either the stiff or soft EOS from above.

10.3.2 Analyzing the events

The probability to observe a posterior P (Λ̃,M, η|dGW) from an event dGW when taken an EOS, a
value fχ for the DM fraction, and a value mχ for the DM particle mass as given, is proportional to

L(EOS,mχ, fχ|dGW) =

Z
dM dη P (Λ̃(M, η),M, η|dGW) (10.8)

Here, the relationship Λ̃(M, η) is determined through the EOS, fχ, and mχ. We are interested in the
posterior probability for an EOS given a mock observation. From the likelihood in Eq. (10.8) it can
be derived as

P (EOS|dGW) =

Z
dmχ dfχ P (EOS,mχ, fχ|dGW)

∝
Z

dmχ dfχ L(EOS,mχ, fχ|dGW) π(EOS,mχ, fχ) .

(10.9)

For the prior π(EOS,mχ, fχ), we assume all the baryonic EOSs to be of equal prior likelihood, whereas
the prior in mχ is taken to be log-uniformly distributed between 170–3000 MeV. The prior for fχ
is chosen to match the distribution used to generate the events, i.e., either log-uniform or uniform
between 0.01–1 %. Therefore, we may approximate Eq. (10.9) by taking the log-uniform samples
{mχ,j} and {fχ,k} from Table 10.2 and sum over them

P (EOS|dGW) ≈ 1

NmχNfχ

X

j,k

L(EOS,mχ,j , fχ,k|dGW). (10.10)

The number of samples for mχ and fχ from Table 10.2 is Nmχ
= Nfχ = 12. In those cases where

we want a uniform prior on fχ, the summation over the fraction samples is performed with corre-

sponding weights. It is worth pointing out that when combining multiple events d
(1)
GW, d

(2)
GW, one has
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FIGURE 10.1
Overview of the 500 mock BNS events. The upper panels show the distribution of the component
masses m1, m2, and luminosity distance dL, these values remain the same across all event catalogs.
The bottom panels show the difference between Λ(bar), i.e., the tidal deformability expected from the
baryonic EOS, and the actual tidal deformability when accounting for the presence of DM. The upper
dashed gray line shows the limit on the deviation of the tidal deformability from the baryonic value,
i.e., from the M -Λ relationship for a NS with 1% DM. For this plot, we chose the event catalog with
the stiff baryonic EOS, mχ = 483 MeV and the fraction fχ was distributed log-uniformly.

to marginalize over the fraction for each event individually, i.e.,

L(EOS,mχ,j |d(1)GW) ≈ 1

Nfχ

X

k

L(EOS,mχ,j , f
(1)
χ,k|d

(1)
GW) , (10.11)

L(EOS,mχ,j |d(1)GW, d
(2)
GW) =

L(EOS,mχ,j |d(1)GW) L(EOS,mχ,j |d(2)GW) .
(10.12)
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The posterior on the EOS is simply obtained by marginalizing the likelihood with a log-uniform prior
on the DM particle mass:

P (EOS|d(1)GW, d
(2)
GW) ∝ 1

Nmχ

X

j

L(EOS,mχ,j |d(1)GW, d
(2)
GW) . (10.13)

To obtain a posterior on the DM particle mass instead, we can also marginalize Eq. (10.12) with
a uniform prior on the baryonic EOS. We establish two hypotheses, to explore the potential biases
when analyzing the DM-admixed BNSs without accounting for the effects of DM:

• H0: The null-hypothesis states that for a given set of BNS events, the data is simply described by
one baryonic EOS.

• H1: The alternative hypothesis claims that the BNS events are best described by DM-admixed
BNS and the Λ̃(M, η) relationship experiences some variation from event to event.

The hypothesis H1 corresponds to using the likelihood in Eq. (10.8), whereas for H0 the likelihoods
need to be determined with

L(EOS|dGW) =

Z
dM dη P (Λ̃(bar)(M, η),M, η|dGW) , (10.14)

i.e., the relationship for the tidal deformability is simply given by the baryonic EOS without any DM
effects.

10.4 Results

For each event in our 16 catalogs, we determine the likelihood in Eq. (10.8) across our EOS candidates
and the parameter grid for mχ and fχ from Table 10.2. From these likelihood values we obtain the
posterior distribution on the baryonic EOS as described in Eq. (10.13). Similarly, we also obtain a
posterior on the DM particle mass mχ and further determine the Bayes factor for H1 vs. H0. In this
section, we summarize the findings of our Bayesian analysis.

10.4.1 Recovering the underlying baryonic EOS

For the DM model and DM parameter ranges we consider in the present article, the tidal deformabil-
ities of BNS are systematically lowered. Hence, over many events a bias toward softer baryonic EOSs
could arise if one were to analyze a set of DM-admixed BNS events simply through a baryonic set of
EOS candidates. Our analyses confirm that small biases in the EOS recovery appear, if the events in
a catalog with DM are analyzed according to H0, i.e., ignoring DM effects. Figure 10.2 compares how

the posterior estimate on the canonical baryonic tidal deformability Λ
(bar)
1.4 evolves over the course of

multiple BNS events, when the DM effects are included in the inference vs. when they are ignored.

Note that Λ
(bar)
1.4 here refers to the tidal deformability without any DM effects, as we simply use this

quantity as an indicator to describe the recovery of the injected baryonic EOS.
The strength of the bias depends on whether the population for the DM fraction is log-uniform

or uniform. In case of the latter, more BNS events will have a higher fχ and already after around
50–100 events, a discrepancy between the H0-analyses and the injected true EOS is noticeable. At

the same time, this bias is generally small, as the posterior estimates deviates from the true Λ
(bar)
1.4

in the range of 10–20. When the DM fraction in the BNS events is log-uniformly distributed, the
discrepancy between the injected value and the analysis without DM is even smaller and the 95%
credible region excludes the true EOS only after ≳ 150 events. The analyses for the event catalogs
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FIGURE 10.2
Evolution of the posterior estimate for the baryonic Λ

(bar)
1.4 with rising number of observed BNS events.

The purple bands show the 95% credibility interval when the events are analyzed according to H1, i.e.,
when DM effects are included, whereas the red band indicates the credibility interval if DM effects
are not accounted for, corresponding to H0. The circle and cross indicate the posterior medians,
respectively. The panels correspond to distinct event catalogs, where the injected DM particle mass
and the population for the DM fraction are described in the bottom left label. The panels of the left
side correspond to those catalogs, where the injected baryonic EOS is stiffer, the panels on the right

to the softer EOS. The true value for Λ
(bar)
1.4 from the injected baryonic EOS is shown as black dashed

line.
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with injected mχ = 483 MeV, and mχ = 1056 MeV are not shown in Fig. 10.2 but show the same
trend.

However, we note that even the H1-inference is not always successful at recovering the true EOS.
This happens in those cases where the injected particle mass is high, as seen in Fig. 10.2 for those
catalogs where mχ = 3000 MeV. The reason is that the core configurations get more compact with
higher DM particle mass, hence the reduction of the tidal deformability from the pure baryonic EOS
is larger than for lower mχ. However, this reduction in Λ can also be mimicked by EOSs that are
softer than the actual injected EOS when they are combined with a low DM particle mass. Because
we marginalize over all DM particle masses, and lower masses are preferred in the log-uniform prior,
the final result is biased toward these slightly softer EOSs. The bias disappears when using a prior
that is more favorable for higher mχ. This indicates the sensitivity of the H1-inferences to the prior
choice for the DM parameters.

Conversely to the bias we receive when H1 is true but we instead assume H0 in our analysis, we
can also look at the bias that arises when we consider the events without any DM and analyze them
according to H1. For this purpose we reran the analysis for our two “no DM” catalogs. Analyzing
these events with H0, we found no bias at all in the recovery of the true baryonic EOS, as expected.

When performing the analysis with H1, the posterior on Λ
(bar)
1.4 is biased toward stiffer EOSs than the

true one, though the offset is only 5–15 and the true injected value leaves the 95% credible interval
only after 400 events.

We point out that the uncertainties with which we determine Λ
(bar)
1.4 in the catalogs with the softer

baryonic EOS (right panels in Fig. 10.2), are likely underestimated. This is because the softer EOS
lies in a region of our EOS prior that is not very densely sampled, so after ≳ 300 events only few EOS

with nonzero likelihood remain. Hence, the posterior on Λ
(bar)
1.4 is undersampled and the 95% credible

intervals become too narrow.

10.4.2 Detectability of DM

To assess whether ET would allow the detection of DM from our BNS population, one may look at
the Bayes factor B for H1 against H0. It is given as the evidence ratio of H1 over H0. We approximate
the evidences by averaging the likelihood over the prior samples for mχ, fχ, and the EOS. The Bayes
factor will change, depending on how many events are combined in the likelihood.
In the top panels of Fig. 10.3, we determine ln(B) for each event individually and plot the distribution.
The individual log-Bayes-factors range mostly from -0.02 to 0.25. Thus, a single event is not very
indicative whether DM was present in the NS or not. This is expected, as a single event only provides
one data point for Λ̃ that likely can be well matched by some baryonic EOS.

However, even when combining multiple events together, the detectability of DM does not increase
in our setup. In the middle and bottom panels of Fig. 10.3, we randomly group 10, respectively 20
events together, determine the Bayes factor for these batches and show the distribution. Generally,
with growing number of combined events, the Bayes factor decreases and becomes mostly negative.
The reason is that we average over the likelihood values with our prior to determine the evidence, and
when multiple likelihoods from different events are combined, the average over the larger parameter
space will generally decrease quicker than over the smaller one, when both models have the same
ability to describe the data. The preference for the simpler model is a general property of the Bayes
factor often attributed to Occam’s razor. We note that the distribution of ln(B) is rather independent
of the value formχ. When comparing the Bayes factors in a forward-background approach, we see that
ET is not capable to distinguish between H1 and H0. The two “no DM” catalogs, i.e., the catalogs for
which H0 is actually true, serve as background model and the distribution of their log-Bayes-factors
are shown as gray patches in the panels of Fig. 10.3. They cover a similar range as the evidence
ratios for the catalogs where DM is present, indicating that one cannot decide H1 over H0 based on
B. This is definitely true when fχ is distributed log-uniformly, whereas ln(B) sometimes rises above
the maximum from the background catalog when the fraction instead follows a uniform distribution.
However, ln(B) stays close to 0 and for neither DM catalog it raises above the 5–σ level estimated
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FIGURE 10.3
Distribution of ln(B) for the sixteen event catalogs with DM and the two event catalogs without
DM. The top panels show how the Bayes factor is distributed when analyzing each of the 500 events
individually, the middle panels show the distribution for batches of 10 events, the bottom panels for
batches of 20 events. The first panel column refers to the event catalogs where the stiff EOS is used
and fχ is distributed log-uniformly. The different colors indicate the different injected mχ-values, the
gray patch refers to the evidence distribution when no DM is present in the events. Likewise, the
second panel column uses the stiff EOS and a uniform fχ-distribution, the third the soft EOS and a
log-uniform fχ-distribution, and the fourth the soft EOS and a uniform fχ-distribution.

from the background model with kernel-density estimation. For the case of the soft EOS, there is an
additional caveat: As discussed in Sec. 10.4.1, the soft EOS lies in a slightly undersampled region of
the EOS prior. Therefore, the corresponding analyses assume stronger a priori knowledge about the
EOS and are thus more capable of distinguishing between the tidal deformabilities from the baryonic
and DM cases. The slightly stronger separation of ln(B) in case of the catalogs with the soft EOS
indicates that potent constraints about the baryonic EOS, e.g., from nuclear physics or other data
points, may enable detection of DM through tidal information from BNS, though it is unclear to
which extent the baryonic EOS would need to be constrained. Yet, when inferring the EOS and DM
properties simultaneously as we do in the present work, combining up to 20 BNS events will not be
sufficient to observe the presence of DM from tidal signatures of BNS.

In Table 10.4 we show the values for ln(B) when combining all 500 events together. For all cata-
logs, the log-Bayes factor is negative, indicating that even with 500 events, H0 is equally capable of
describing the data as H1. The expected number of BNS detections with SNR > 100 for ET is hard
to assess due to uncertainties in the BNS population and the eventual detector design, but estimates
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TABLE 10.4
Log-Bayes factors ln(B) for H1 against H0 after 500 events. The first column specifies which baryonic
EOS was used in the respective event catalog, the second one whether fχ was distributed log-uniform
or uniform. The log-Bayes factors are listed in the columns for each injected mχ and for the no-DM
catalogs.

EOS distribution
for fχ

mχ in MeV

170 483 1056 3000 no
DM

stiff Log −4.54 −4.32 −4.23 −4.23 −4.09
stiff U −3.78 −2.41 −2.23 −2.16 −3.68

soft Log −1.98 −2.56 −2.62 −2.71 −2.53
soft U −2.92 −2.93 −2.70 −2.65 −1.79

range from 50–150 per year [123, 241, 128]. Hence, we expect that ET will not be able to identify
DM from tidal signatures of BNS within its first years of operation. In the Appendix we confirm that
this assessment does not change, when the same set of events is analyzed in a detector network with
ET and CE.

10.4.3 Inference of the DM particle mass

Since the DM particle mass impacts the change in tidal deformability of the NS, one could in principle
infer the value of mχ from the GW data. In practice however, we find that this is difficult to achieve
when inferring the EOS and DM properties simultaneously. An individual event is only one data
point about the tidal deformability, hence getting a useful estimate on mχ and fχ is infeasible. In
Fig. 10.4, we show the distribution on mχ and fχ after one event, in one instance after the event with
the highest SNR and in the other for an event with average SNR. When marginalizing over all prior
EOS candidates, i.e.,

L(mχ, fχ|dGW) =
X

EOS

L(mχ, fχ,EOS|dGW) . (10.15)

the likelihood is relatively constant across the mχ-fχ space, even for the high SNR event. Higher
masses and fractions seem to have slightly higher likelihoods, though the variation is only on the
order of a few percent. This offset of the maximum likelihood from the true values arises because
DM reduces the tidal deformabilities in the signal by an interval ≈ ∆Λ(mχ, fχ). The likelihood for a
pair of mχ and fχ thus depends on how many baryonic EOSs are available within the range of the
tidal deformability as measured plus ∆Λ(mχ, fχ). Our EOS prior set is not exactly uniform in tidal
deformability and in this case there are just slightly more baryonic EOSs available to match the data
when the values for mχ and fχ are high compared to when they are low, hence the offset arises.

To get an estimate of the DM particle mass, multiple events are needed to infer the true baryonic
EOS simultaneously with the deviation in the observation away from it. In the bottom panel of
Fig. 10.4 we show the likelihood for mχ and fχ after the event with modest SNR, where we only
consider the contribution from the true injected EOS. On the one hand, it demonstrates that, when
the true underlying EOS is known, the maximum likelihood aligns well with the true values of mχ

and fχ. However, the variation in likelihood is still small, and even for high SNR events we find that
it is only on the order of a couple ∼ 10%. Moreover, the bottom panel of Fig. 10.4 also exhibits
a degeneracy between mχ and fχ. An event with high DM particle mass and low fraction may be
equally well described by a low DM particle mass. When the DM particle mass is large, but the
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FIGURE 10.4
Likelihood across the mχ-fχ plane after individual events. The top panel shows the likelihood after
one event with high SNR where mχ = 1056 MeV and fχ = 0.032% (both values shown as dashed
blue lines), when marginalizing over all EOS candidates. Similarly, the middle panel shows an event
with a modest SNR where mχ = 1056 MeV and fχ = 0.029%. The bottom panel shows the same
event as in the middle panel, but here the likelihood is just taken from the true EOS to showcase the
degeneracy between low mχ and high mχ with small fractions.
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fraction small, the shift in tidal deformability from the baryonic EOS is only slight. The likelihood of
the large particle mass will only be high when the fraction is small. But the likelihood for the smaller
DM particle mass will be high regardless the value of fχ. By restricting the DM fraction to below 1%,
the resulting DM profile for light DM particles does not exceed the baryonic radius, meaning that
halo configurations are not possible. Instead, the formed DM core causes only a small shift in tidal
deformability, which remains within the measurement uncertainty.

This is an inherent problem when trying to infer the DM particle mass from multiple events. Our
event catalogs contain many events with small DM fraction. Since we marginalize over the fraction
for each event individually, the events with low fraction will have a small preference for lower mχ,
as they are able to explain the data across all fractions. The preference is only very small, but can
accumulate over many events, which after ≳ 100 events skews the combined posterior heavily toward
lower masses. This effect can be seen in Fig. 10.5 for the posterior on mχ after 500 events. Events with
high fraction can correct the estimate again toward larger masses, however, even when the population
of fχ is uniform, there are not enough events with high fraction to overcome the opposite trend toward
small mχ. We point out that this problem remains even if the baryonic EOS was perfectly known,
i.e., if one does not marginalize the likelihood Eq. (10.12) over the EOSs, but instead just considers
the contribution from the true injected one.
This means that tidal signatures of BNS events alone are not sufficient to measure mχ. However, we
briefly note a method here how to deduce a lower limitmχ,min on the DM particle mass. Namely, when
we assume that the maximum DM-fraction a BNS can have is fχ,max, and we consider a particular
baryonic EOS together with DM particle masses that yield core configurations, we can determine
the minimum effective tidal deformability Λ̃min a BNS can have. This will be a function of the chirp
mass M, symmetric mass ratio η and additionally depends on the EOS, as well as the DM parameter
bounds mχ,min and fχ,max, i.e.,

Λ̃min(M, η) = Λ̃(M, η,EOS,mχ,min, fχ,max) . (10.16)

Now, when many events have been observed, one can select the single event d
(⋆)
GW where the observed

Λ̃ deviates the most from the expectation of the baryonic EOS. It is reasonable to assume that it had
the maximum DM fraction fχ,max, so we can then derive the probability that mχ is smaller than the
boundary mχ,min as

P (mχ ≤ mχ,min|d(⋆)GW, fχ,max,EOS) =
Z

dM
Z

dη

Z ∞

Λ̃min(M,η)

dΛ̃ P (M, η, Λ̃|d(⋆)GW) .
(10.17)

The lower bound in the last integral is determined by Eq. (10.16). Typically, the higher one sets
fχ,max, the lower mχ,min can be. This is because a larger deviation from the baryonic EOS can also
be explained by small DM particle masses when the DM fraction is high enough.

Note that this approach requires assumptions about the baryonic EOS and the maximum DM
fraction in NS. However, one could for instance marginalize Eq. (10.17) over the EOS posterior
from the 500 events and likewise marginalize with a prior on fχ,max. An additional practical issue

concerns the determination which event d
(⋆)
GW has the highest deviation from the baryonic EOS. For

our purposes here, we simply look at the posterior mean Λ̃ from the data and compare it to the value
determined from the baryonic EOS alone with the posterior mean for M and η. We point out that

in practice, determining d
(⋆)
GW is potentially more difficult, since for real data the posterior mean does

not always need to be well centered and other methods to identify d
(⋆)
GW could be more suitable. Our

results however show that the constraints on mχ,min remain weak anyway. Even when the true value

for mχ is 3000 MeV, we still find P (mχ ≤ 170 MeV|d(⋆)GW, fχ,max = 1%) = 34%. This indicates again
that even the events that show the strongest signs for DM only restrict the particle mass weakly.
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FIGURE 10.5
Posterior distributions on mχ after 500 events. The colors indicate which DM particle mass was
injected in the respective event catalog. The four different injection values are also drawn as vertical
dotted lines. We only show event catalogs with the stiff EOS, the top panels considers those where
fχ was log-uniformly distributed, the bottom panel the ones where fχ is uniform. The purple dashed
lines show the posterior after 50 events with an injected DM particle mass of 3000 MeV to illustrate
that the posterior skew to low masses is a cumulative effect from the degeneracy mentioned in the
text.

10.5 Discussion and Conclusions

In the present article, we studied how ET measurements of the tidal deformability of DM-admixed
NS can be used to recover the baryonic EOS and infer properties of DM. To this end, we created a
catalog of 500 high-SNR BNS events and used the Fisher matrix approach to obtain estimates of the
posterior uncertainties. In different instances of the catalog the injected baryonic EOS, injected DM
particle mass, and the chosen distribution for the DM fraction were varied.

Using these event catalogs as our mock dataset, we performed joint Bayesian inference on the
EOS, mχ, and fχ. We find that DM in BNS can bias the inference of the baryonic EOS when its
presence is not accounted for, though the effect is very small. The offset in the tidal deformability

Λ
(bar)
1.4 between the true baryonic EOS and the EOS posterior depends on the injected value for mχ
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as well as the population for fχ, but is generally ≲ 20. Similarly, the posterior on the canonical NS
radius R1.4 likewise is only off up to ≲ 0.1 km. Note, that the effect could be stronger for heavier DM
particles and higher fractions.

Even when DM is present in the data, we generally observe that the hypothesis for the presence of
DM is disfavored by the Bayes factor when combining many events. This is because the observational
signatures of DM are not strong and hence over many events the easier hypothesis requiring only the
baryonic EOS is preferred. Comparison to a background analysis where the events actually lack DM
reveals that the Bayes factor is not able to distinguish between the two cases. This is even true for
the more favorable setups where fχ is distributed uniformly instead of log-uniformly, though we also
find indication that if the true EOS was perfectly known, ET might be able to deliver some evidence
about the presence of DM.

Likewise, inferring the DM particle mass seems infeasible because of an inherent degeneracy be-
tween fχ and mχ. When the particle mass is large and the fraction low, the data may be equally
well described by a small particle mass and higher DM fraction within the measurement uncertainty.
Alternatively, we attempted to construct a lower limit on mχ based on the assumed maximum DM
fraction a BNS can have. In our setup though, this does not deliver any pertinent result either, since
the statistical uncertainties on the event that deviates the most from the purely baryonic expectation
are still too large.

The conclusions drawn in the present work depend on the choice of our DM model as well as on
the assumptions about the ranges for the DM particle mass and DM fraction. Stronger observational
signatures could be achieved with a different DM model, higher fractions, and different particle
masses. Based on our results though, firm detection of DM would require a much larger variation
of the NS tidal deformability than we consider in our event catalogs. Alternatively, if the baryonic
EOS is well-constrained from other independent sources, DM detection might be possible. We leave
the investigation into the necessary variability of tidal deformability or the required accuracy on the
baryonic EOS for confident DM detection to future work.

While our analysis can be seen as cautious for the range of fχ and mχ, we point out that our
statistical analysis benefits from some advantages a real-life application would not have. Namely,
the NSs in our binary events always share the same fraction and we imposed the correct prior for
fχ based on the population distribution that we injected in the event catalog. Further, the Fisher
matrix is generally considered a lower bound on the statistical uncertainties, and in a full Bayesian
parameter estimation the uncertainty on Λ̃ can be significantly larger [327]. It has been shown that
the Fisher matrix approach can also overestimate the uncertainty on certain parameters [551], though
this mainly applies when parameters display mutual degeneracies or when the Fisher matrix implies
support within a nonphysical range, e.g., negative values for the luminosity distance [226]. However,
in our event catalogs, the Fisher matrix uncertainties on Λ̃ cover a range between 4–80, which agrees
well with posterior estimates from full Bayesian parameter estimations for ET [518, 327]. Hence, we
do not expect that our Fisher matrix approach overestimates the accuracy with which ET would
recover the tidal deformability, especially when additionally considering systematic uncertainties in
the waveform models [370, 535, 572, 483, 269]. Nevertheless, full Bayesian parameter estimation could
be implemented in future to test if biases in other parameters arise when DM effects in BNSs are
ignored.

Reduction of the tidal deformability in NS is not the only way DM could be observable through
future GW telescopes. With the precision of next-generation detectors, several alternative possibilities
for DM detection have been suggested, e.g., an additional feature in the BNS postmerger signal [234,
619], continuous GW signals around superradiant black holes [81], observing sub-2-M⊙ black holes
from DM-collapsed NS [600, 100, 198], or direct interaction of DM particles with the detector test
masses [504, 643, 168]. However, based on our analysis we conclude that within our assumptions
about the DM particle mass and DM fractions in NS, confident detection of DM cores through tidal
measurements of BNSs by ET is unlikely.
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10.6 Appendix

Including cosmic explorer in the detection network

The inference of BNS parameters from GW signals will have notably lower uncertainties if ET is
joined by the other proposed third-generation detector CE. To see how our conclusions would change
if CE was included in the detector network, we reran the analysis for some of our event catalogs.
To obtain the reduced statistical uncertainties on M, η, and Λ̃, one needs to simply add the Fisher
matrices of the individual detectors

Fjk = F
(ET)
jk + F

(CE)
jk . (10.18)

This is implemented directly in gwfast. We assume that the CE detector is located in Idaho, with the
PSD taken from Ref. [101]. With this setup, we recreate the mock posteriors for the event catalogs
where the stiff baryonic EOS was injected and mχ was set to 170 MeV or 3000 MeV. Hence, we
consider ET and CE for 1× 2× 2 DM catalogs plus one additional no-DM catalog. The subsequent
Bayesian inference of the EOS and DM parameters is conducted in the same manner described in
Sec. 10.3.

The recovery of the baryonic EOS shows similar behavior to Sec. 10.4.1, though the statistical
uncertainties on the recovered baryonic EOS are now even further reduced. In particular, undersam-
pling effects in our baryonic EOS prior now become noticeable even for the stiff EOS after ≳ 300
events. The detectability of DM however is not improved by the reduced uncertainties on Λ̃, M, and
η. In Fig. 10.6, we show the distribution of ln(B) for the four event catalogs we included CE in. The
forward-background approach still shows that the Bayes factor will not allow to distinguish whether
DM was present within 20 events. Moreover, B decreases the more events are added, similar to the
cases with ET only. When we combine all events, excluding only the one with the highest SNR, we
find ln(B) = −9.01 (−6.68) for the catalog with 170 MeV and where fχ distributed log-uniformly
(uniformly). Likewise, the log-Bayes factors for the catalog with 3000 MeV is −6.77 (−5.27) and
−9.48 (−7.82) for the no-DM catalog.

We excluded here the one event with the highest SNR of 3158 which originates from an event
with two 1.5 M⊙ NSs at 41 Mpc distance. Its DM fraction is 0.07% and the Fisher matrix error on
the tidal deformability lists at σΛ̃ = 1.4. If this event was included, the log-Bayes factor for the event
catalog with mχ = 3000 MeV and fχ ∼ U(10−4, 10−2) formally becomes 14.62 after all 500 events,
correctly indicating positive support for H1. We note that the event on its own does not yield the
detection of DM, in fact the Bayes factor only starts showing substantial support for H1 when it is
combined with ≳ 40 other events.

While it might be possible that particular ”golden” events with very accurate determination of Λ̃
warrant the detection of DM when combined with a sufficient amount of other data about the baryonic
EOS, we note a couple of caveats. In the other event catalogs which include similar versions of this
event, the log-Bayes factor remains negative, indicating that the formally positive ln(B) originates
from undersampling effects in our EOS prior, i.e., the likelihood is so constraining that only a few
of our EOS candidate samples remain. Hence, further research, preferably employing full Bayesian
parameter estimation, seems needed to confirm if one ”golden event” can indeed reverse the evidence.
Furthermore, in the real-life application, systematic errors in the waveform models could potentially
prevent the extraction of Λ̃ at such accuracy [370, 535, 572, 483, 269].

Overall, we therefore still conclude that even with a joint network of CE and ET, tidal BNS
signatures would likely not enable the detection of the DM candidate adopted in the present work.
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FIGURE 10.6
Distribution of ln(B) for the four event catalogs where we included CE into the detector network.
Figure arrangement and color coding as in Fig. 10.3.
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This chapter is based on an article in preparation by Nina Kunert, Edoardo Giangrandi, Guilherme
Grams, Anna Puecher, Hauke Koehn, Violetta Sagun, and Tim Dietrich. The abstract below provides
an overview of preliminary key findings. I conducted all parameter estimation simulations, developed
and implemented the new sampling routine to additionally sample dark matter parameters, and per-
formed the data analysis.

Abstract: The exact properties of the neutron star equation of state remain an open problem in
astrophysics. Beyond the fundamental challenge of understanding the behavior of nuclear matter at
extreme densities, an additional layer of uncertainty lies within the universe itself: dark matter. As
binary neutron star mergers reside in galactic dark-matter halos, they may incorporate an additional
non-luminous dark matter contribution in addition to their luminous baryonic matter. We simulate
gravitational-wave observations of binary neutron star mergers and perform parameter estimation
simulations to investigate the capability of next-generation detectors to constrain both nuclear and
dark-matter properties. While the bright side is studied with different microphysical models describing
the neutron star equation-of-state, the dark side assumes dark matter to be fermionic and interact-
ing with baryonic matter only gravitationally. Our results indicate that moderate constraints for
some nuclear-physics parameters could be expected from observations with next-generation detec-
tors. Conversely, our results reveal no constraints on dark matter properties within the framework of
our assumed model, suggesting that next-generation gravitational-wave detectors may have limited
sensitivity to test the presence of dark matter in binary neutron star mergers.
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11.1 Introduction

One of the primary open challenges in astrophysics is the determination of the properties of the neu-
tron star (NS) equation-of-state (EOS), which encapsulates the behavior of matter under extremes
of density and pressure and governs the internal structure and composition of NSs [385, 386, 383].
Understanding the EOS requires integrating information from both terrestrial experiments and as-
trophysical observations, each of which probes different density regimes and offers complementary
insights into the nature of dense matter [492, 357].

Experimental constraints from terrestrial facilities, such as heavy-ion-collision experiments [563],
the PREX-II [37] or CREX experiment [38] well as theoretical calculations of nuclear matter within
the framework of chiral effective field theory (EFT) [401, 312, 223, 503, 348] have been essential for
studying the behavior of nuclear matter in regimes up to about twice the nuclear saturation density,
nsat ≈ 0.16 fm−3. However, the cores of NSs extend into significantly higher-density regimes, where
direct experimental access is no longer possible. In these regimes, macroscopic observables such as
NS masses, radii, and tidal deformabilities become key probes of the EOS, as they are sensitive to
the properties of matter at densities of approximately 2 − 3nsat. Astrophysical observations, most
notably gravitational-wave (GW) detections from binary neutron star (BNS) mergers [10, 13, 16] and
electromagnetic (EM) measurements of isolated NSs from missions such as NICER [547, 446, 548, 447],
provide essential constraints in this higher-density domain. By confronting theoretical models of dense
nuclear matter with such astrophysical data, it becomes possible to infer macroscopic NS properties
and gain insight into the microscopic behavior of strongly interacting matter under extreme conditions.

The first multi-messenger observation of a BNS merger [11] through GWs (GW170817) [10] and
EM waves (GRB 170817A and AT2017gfo) [9, 282, 186, 342, 58, 398, 648] allowed new constraints
on the NS EOS [13, 83, 529, 451, 633, 182, 214, 324]. Using data from available GW observations,
different studies investigated how nuclear-matter parameters are constrained with current-generation
detectors. For example, the study of [686] showed that GW170817 when combined with NS mass and
radius measurements allowed to constrain the nuclear symmetry energy, Esym, at twice saturation
density to Esym(2nsat) = 46.9 ± 10.1 MeV.

Next-generation GW detectors, such as the Einstein Telescope (ET) [519, 263, 306, 307] and
Cosmic Explorer (CE) [8, 541, 241], are anticipated to significantly enhance our ability to constrain
nuclear-physics parameters. Assuming two proposed designs for ET and simulating BNS coalescences
with the Fisher information formalism (FIM) for different EOS models, the study of [327] showed that
with ≥ 500 detections, NS properties and the underlying injected EOS can be recovered with great
precision. Moreover, their results indicate the presence of interdependent degeneracies among nuclear
matter parameters that cannot be resolved when relying solely on information from β-equilibrated
matter, as was also shown in [449, 675].

Additional uncertainties may arise if the EOS is influenced not only by baryonic matter (BM) but
also by dark matter (DM). Astrophysical observations leave little doubt about the cosmic abundance
of DM, but its nature, properties, and interaction with BM remain largely unknown [688, 689, 560,
175, 421, 36, 43]. Although it is widely accepted that galaxies are embedded within DM halos, the
distribution of DM, whether it is smoothly distributed throughout the Galactic halo or forms dense
sub-halo structures [94, 126], remains an open question.

Several studies indicate that compact objects such as NSs may accrete DM as they move
through regions of overdense DM regions, where scattering interactions could facilitate capture of DM
[89, 94, 126]. Over time, this process can lead to substantial DM accumulation within NSs [550, 99, 201]
with BNS systems possibly retaining more due to their extended lifetimes and stronger gravitational
fields. DM, whether concentrated in the core or clustered around a NS, can alter its internal structure,
affecting key properties such as mass, radius, and tidal deformability [99, 341, 328, 281, 338]. These
structural modifications influence the NS EOS and leave distinct imprints on GW signals, making
BNS mergers potential observational probes for the presence and effects of DM. The extent of these
imprints is governed by the DM particle mass and the DM fraction. However, due to the current



Methodology 171

lack of information on both quantities, the resulting change to the tidal deformability, and hence
the GW signal, may be minimal. Detecting such subtle effects requires the increased sensitivity of
next-generation GW observatories, such as ET and CE. In our previous study [356], we investigated
whether DM properties can be constrained with next-generation GW detectors, particularly focusing
on ET. This study assumed asymmetric, noninteracting, fermionic DM and adopted a two-fluid ap-
proximation to model DM-admixed BNS mergers, used in previous studies, e.g., [467, 328, 361]. This
analysis utilized posterior information derived using the FIM approximation.

This article aims to investigate both the ’bright side’ of BNS mergers, referring to their compo-
sition of luminous BM, and the ’dark side’, which considers the possibility that BNS mergers may
contain an admixture of DM. Specifically, we investigate whether next-generation GW detectors can
constrain nuclear matter parameters relevant for modeling the NS EOS, as well as properties of DM,
thereby possibly offering insights into its unknown nature. In contrast to our previous study in [356],
we perform full parameter estimation simulations to infer both BNS source parameters and DM prop-
erties, while assuming the same DMmodel and GW detector setup. This article is organized as follows:
Sec. 11.2 outlines the methodology, including the Bayesian inference framework, the construction of
baryonic and DM EOSs, the adopted dark-matter model, the GW data and detector configuration,
and the approach used to infer information on nuclear matter and DM parameters. Sec. 11.3 presents
preliminary findings of nuclear-physics constraints when analyzing BNS mergers with different micro-
physical models. Sec. 11.4 reports the results from our investigation of DM-admixed BNS mergers,
aimed at constraining DM properties. Sec. 11.5 provides concluding remarks and an outlook on further
planned investigations.

11.2 Methodology

To investigate GW observations of both baryonic and DM-admixed BNS mergers, we employ a
Bayesian framework that allows us to incorporate information from nuclear and DM physics. In
this Section, we recap the Bayesian methodology explained previously and outline the construction
of baryonic EOS sets based on different nuclear models, the assumed dark matter model, the con-
struction of DM EOSs, and the inference of posterior distributions of nuclear and DM parameters.

11.2.1 Bayesian inference

Adhering to a Bayesian approach, we employ Bayes’ theorem

p(θ|d,H) =
p(d|θ,H)p(θ|H)

p(d|H)
≡ L(d|θ)π(θ)

Z , (11.1)

to obtain information on the posterior probability distributions p(θ|d,H) of model parameters
θ = {θBM,θDM} describing either BM or BNS mergers admixed with DM, hereafter referred
to as DM-admixed BNS mergers. In Eq. (11.1), L(θ), π(θ), and Z refer to the likelihood, prior, and
evidence, respectively. Assuming stationary Gaussian noise, the likelihood function for a GW signal
h(θ) given observational data d is expressed as [652]:

LGW ∝ exp

�
−1

2
⟨d− h(θ)|d− h(θ)⟩

�
, (11.2)

where the inner product ⟨a|b⟩ is defined as

⟨a|b⟩ = 4ℜ
Z fhigh

flow

ã(f)b̃∗(f)
Sn(f)

df, (11.3)
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where ã(f) representing the Fourier transform of a(t), ∗ denoting complex conjugation, and Sn(f)
corresponding to the one-sided power spectral density of the noise. The high-dimensional likelihood
landscape is explored using nested sampling [603], as implemented within the Bayesian inference
framework Bilby [65]. This library serves as a core component of the NMMA framework, a pipeline
designed for multi-messenger analyses in nuclear physics and astrophysics [492]. In this study, we
extend its capabilities to incorporate the inference of DM properties, operating under the assumption
that BNS mergers may contain an admixture of DM.

To assess the degree of constraint on both nuclear-physics and DM parameters, we compare the
posterior distributions with their corresponding priors. To quantitatively evaluate the extent to which
the posterior deviates from the prior, we compute the Jensen–Shannon divergence (JSD). This metric
provides a symmetrized and finite measure of the difference between two probability distributions p1
and p2 and is defined as [396],

DJS(p1(x)||p2(x)) =
1

2

"X

x

p1(x) ln
�p1(x)
m(x)

�
+
X

x

p2(x) ln
�p2(x)
m(x)

�#
, (11.4)

in which m(x) = 0.5(p1(x) + p2(x)). A JSD of zero implies identical distributions, while larger values
indicate increasing dissimilarity.

11.2.2 Construction of baryonic matter equation-of-states

Throughout this article, distinct models are utilized for modeling the NS EOS of baryonic nuclear
matter, each capturing different microphysical properties.

i) Metamodel approach with phase transitions (MM-wPT):We employ the EOS set presented
in previous studies [359, 357] based on the metamodel (MM) approach [418, 419]. Here, we recap main
construction steps, while further details can be found in [357]. All EOSs in this set use the crust model
from [219], which is applied up to its predicted crust-core transition density at 0.076 fm−3. The EOS
of the outer NS core assumes nucleonic matter in beta equilibrium up to a transition density nbreak,
randomly drawn from 1−2 nsat to account for possible non-nucleonic degrees of freedom [609]. Below
nbreak, the MM of [418, 419] is used, a density functional approach incorporating nuclear-physics
knowledge through Nuclear Empirical Parameters (NEPs) defined via a Taylor expansion of the
energy per particle in symmetric matter, esat, and the symmetry energy, esym, around the saturation
density nsat as:

esat(n) = Esat +Ksat
x2

2
+Qsat

x3

3!

+Zsat
x4

4!
+ . . . , (11.5)

esym(n) = Esym + Lsymx+Ksym
x2

2
+Qsym

x3

3!

+Zsym
x4

4!
+ . . . , (11.6)

where x := (n−nsat)/(3nsat) is the expansion parameter. To account for nuclear-physics uncertainties
and to generate a broad EOS prior, NEPs are varied uniformly within the ranges in Table 11.1. This
defines the EOS for 0.12 fm−3 < n < nbreak, with the lower limit chosen arbitrarily. Above
nbreak, non-nucleonic degrees of freedom are incorporated using a modified speed-of-sound approach,
originally introduced in [633] (see [357] for details). This framework allows for arbitrarily soft EOSs
that emulate first-order phase transitions (PTs), leading to the designation of this EOS set as ”MM-
wPT.”
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Following this methodology, a set of 100,000 EOSs was generated and utilized in previous studies,
including [359, 357]. Unless stated otherwise, most analyses are conducted on a subset presented in
[357] to reduce computational costs, which excludes EOSs that are inconsistent with the most reli-
able constraints (cf. Refs. in [357]), such as heavy pulsar mass measurements via radio timing, and
theoretical predictions from χEFT and perturbative QCD.

TABLE 11.1
The prior distributions for NEPs used for the construction of both EOS below nbreak sets: MM-wPT
and MM-wo-PT. Uniform priors are denoted by U . For MM-wPT, the parameters Esat and nsat are
fixed at −16 MeV and 0.16 fm−3, respectively.

Parameter Prior

MM-wPT MM-wo-PT

nbreak [nsat] U(1, 2) -

Esat [MeV] - U(−17,−14.5)

nsat [fm
−3] - U(0.14, 0.17)

Ksat [MeV] U(150, 300) U(130, 300)
Qsat [MeV] U(−500, 1100) U(−900, 900)

Zsat [MeV] U(−2500, 1500) U(−1000, 1000)

Esym [MeV] U(28, 45) U(28, 60)
Lsym [MeV] U(10, 200) U(25, 160)
Ksym [MeV] U(−300, 100) U(−300, 200)

Qsym [MeV] U(−800, 800) U(−800, 800)

Zsym [MeV] U(−2500, 1500) U(−1000, 1000)

ii) Metamodel approach without phase transitions (MM-wo-PT): We generate a second
set of roughly 35,000 EOSs using the MM [418] approach mentioned in Section i). There are two
main differences from the previous set: a) Here, we construct a unified EOS for the NS crust and
core. The crust is modeled with a compressible liquid drop model (CLDM) as presented in [285]
where the underlying NEP of the crust are the same as the NS core; b) We do not include phase
transitions at higher densities. This construction assumes the nucleonic hypothesis and uses the MM
at all densities. The NEPs are, therefore, explored in all regions of the star, from the crust to the core.

Figure 11.1 shows the different EOS sets in the mass-radius and mass-tidal deformability planes,
respectively. The injected EOSs, which were selected based on the symmetry energy and its slope, as
outlined in Subsec. 11.2.5, are represented by dashed lines.

11.2.3 Dark matter model

In this study, DM is modeled as a relativistic Fermi gas assuming minimal interaction with standard-
model particles, interacting solely through gravity. Specifically, we adopt the two-fluid approximation,
widely used in previous studies, e.g., [467, 328, 361], in which the two-fluid Tolman-Oppenheimer-
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FIGURE 11.1
Overview of employed EOS sets illustrating their modeling of macroscopic NS properties. The left
panel depicts the mass-radius relationship, while the right panel shows the mass-tidal deformability
plane. The MM-wPT EOS set is represented in blue and the MM-wo-PT EOS set in orange. Injected
EOSs within each set are indicated by dashed lines maintaining the same color scheme.

Volkoff (TOV) equations for a DM-admixed NS in hydrostatic equilibrium can be formulated as
[328]

dpj
dr

= − (ϵj + pj)(M + 4πr3p)

r2(1− 2M/r)
. (11.7)

The subscript index j in Eq. (11.7) represents the different fluid components, namely baryonic and
dark matter. Accordingly, the total mass and pressure are given by Mtot = MB(r) + MD(r) and
ptot = pB(r)+ pD(r) respectively, where r denotes the radial distance from the center of the NS. The
DM model is characterized by two parameters: the DM particle mass, mχ, and the DM mass fraction,
fχ. The DM fraction,

fχ =
MD(RD)

Mtot
, (11.8)

quantifies the proportion of DM mass relative to the total NS mass enclosed within its radius. The
choice of these DM parameters yields two distinct configurations: the core configuration, where DM is
entirely confined within the NS, and the halo configuration, where DM extends beyond the baryonic
core, forming a diffuse halo surrounding the NS. Consequently, these configurations will affect NS
properties such as mass, radius, and tidal deformability, as shown in [328, 281].

While core configurations generally lead to a reduction in the maximum mass, halo configurations
result in an increase in the maximum NS mass at higher DM fractions. As extended DM halos may
overlap during the late stages of BNS inspirals, DM-induced modifications in tidal deformabilities
would need to be taken into account to accurately model GW signals for these systems. However,
existing gravitational waveform models do not incorporate such effects. For this reason, this study
completely focuses on core configurations, similar to our previous study [356].



Methodology 175

11.2.4 Construction of dark matter equation-of-states

In order to obtain DM-informed NS masses, radii, and tidal deformabilities, we solve the two-fluid
TOV and Love equations for different choices of DM particle masses and fractions, yielding DM-
admixed NSs. In this study, we utilize the same set of DM EOS calculations derived in our previous
work [356]. Consequently, we provide only a brief summary of the construction methodology.

The EOS for baryonic matter is formulated using the metamodel approach [418, 419], for which
nuclear empirical parameters were sampled within the parameter ranges specified in Table 10.1 in
Chapter 10. It is important to emphasize that the metamodel EOS set utilized here differs from
those presented in Subsec. 11.2.2. The primary distinctions arise from variations in the parameter
ranges used for sampling nuclear empirical parameters, as well as the inclusion or absence of phase
transitions. Additional nuanced differences are discussed in detail in [356, 357]. Moreover, ongoing
research efforts are directed toward achieving a more consistent usage of baryonic EOS sets.

The baryonic EOS set constructed with the metamodel in [356] comprises 5000 nucleonic EOSs,
for which the two-fluid TOV and Love equations were solved over a 12 x 12 parameter grid of DM
particle masses and fractions, as outlined in Table 10.2 in Chapter 10. The choice of DM parameter
ranges, discussed in [356], is based on two key considerations: (i) DM-admixed NSs with particle
masses mχ ≲ 170 MeV exhibit halo-forming behavior and are therefore excluded [328, 564], and (ii)
while DM mass fractions fχ remain uncertain, estimates based on Bondi accretion suggest a lower
bound of 0.01%, with other mechanisms allowing for values up to 1% [328].

This approach enables a systematic mapping of each underlying baryonic EOS to variations in
DM particle mass and mass fraction, yielding insights into the DM-informed NS mass mDM and DM-
informed tidal deformability ΛDM. Integrating these quantities into existing gravitational waveform
models allows us to simulate GW observations from DM-admixed BNS mergers.

11.2.5 Employed GW data and detector setup

This study explores GW signals from both baryonic and DM-admixed BNS mergers, with a focus
on next-generation GW observatories such as the ET and CE. To generate synthetic GW data, we
adopt a default configuration featuring a triangular ET design with a 10 km arm length, positioned in
Limburg [128, 410, 102], and set a minimum frequency of fmin = 5 Hz. Additionally, for selected BNS
sources, we incorporate the baseline 40 km detector CE setup [8, 541, 241, 101], enabling analysis
with a detector network comprising both ET and CE.

To this end, four different BNS configurations were simulated and analyzed. These configurations,
along with their key characteristics, are listed in Table 11.2.
Concerning Event A, this BNS source is tailored to BNS parameters inferred from the multi-messenger
observation of GW170817 [492], except for the tidal deformabilities, which are informed by the injected
EOS from the different EOS sets described in Subsec. 11.2.2. The other BNS sources, associated with
Events B-D, are drawn from one of the catalogs generated for the analysis presented in Chapter 10
[357].

The selection of injected EOSs from each EOS set is motivated by previous findings presented
in [357], where the symmetry energy Esym and its slope Lsym were estimated to be approximately
Esym ≈ 32 MeV and Lsym ≈ 50 MeV, respectively. For our analysis, we choose a slightly smaller
value for Lsym ≈ 45 MeV, as shown in Figure 11.2.
In addition to synthetic data, we utilize GW data from GW170817 [10] to assess the capability of
current-generation GW detectors [1, 34] in constraining DM properties. The result of this analysis is
presented in Subsec. 11.4.1.

Furthermore, we note that all simulations of GW observations, excluding the analysis of observed
data presented in Sec. 11.4.1, were conducted under the assumption of aligned-spin BNS configura-
tions, utilizing the waveform model IMRPhenomD NRTidalv2 [322, 349, 626, 212]. A repeated analysis
using the more recent waveform model IMRPhenomXAS NRTidalv3 [511, 2] confirms that the results
presented in the following remain unaffected.
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Parameter Event A Event B Event C Event D

Mc[M⊙] 1.19 1.32 1.28 1.41

q 0.96 0.97 0.97 0.67

a1 0.00 0.03 0.02 0.04

a2 0.00 0.05 0.04 0.04

DL [Mpc] 40.00 609.45 41.20 116.09

δ [rad] -0.41 2.72 2.14 2.02

α [rad] 3.45 5.20 1.18 6.28

cos θN [rad] -0.90 0.95 0.84 0.95

ψ [rad] 0.87 0.69 3.75 4.69

ϕc [rad] 1.22 0.29 2.04 0.88

ρET
opt 643.03 123.15 813.31 573.12

TABLE 11.2
Overview of the BNS merger configurations analyzed in this study along with their key parameters.
The quantityMc[M⊙] denotes the source-frame chirp mass, while tidal deformabilities are determined
by the respective injected EOSs, as outlined in Subsec. 11.2.5, and are therefore omitted for brevity.
The parameter ρET

opt refers to the optimal SNR as would be detected with a triangular ET design.
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FIGURE 11.2
Normalized distribution of the symmetry energy Esym and symmetry energy slope Lsym for the
different EOS sets described in Subsec. 11.2.2. The selected EOS injections are shown as dashed lines
for each of the EOS sets and are motivated through findings reported in [357].

11.2.6 Inference of nuclear and dark matter properties

The inference of nuclear-physics parameters is enabled through the joint sampling of EOS and binary
parameters. This methodology allows for the integration of additional information on NS properties,
provided by distinct nuclear-physics models, during parameter estimation. In particular, the BNS
parameters, under the assumption that the binary consists of BM, are defined as,

θBM
BNS = {mi, aspin,i,Λ

BM
i (mi; EOS), DL, tc,ϕc,α, δ, ι,ψ} (11.9)

where i = 1, 2 indexes the two NSs in the binary. Here, mi denote the binary masses composed of
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BM, aspin,i the aligned spin magnitudes, DL the luminosity distance, tc the coalescence time, ϕc the
phase, (α, δ) the sky location, ι the inclination angle, and ψ the polarization. We note that we do not
directly sample the tidal deformabilities, but instead sample the baryonic EOS and obtain (ΛBM

1,2 ) by
interpolation for given masses mi obtained in the sampling. Since the baryonic EOS is determined
by the choice of nuclear parameters, mapping each posterior EOS sample back to its corresponding
choice of nuclear parameters allows for the extraction of posterior distributions for these parameters.

Concerning the inference of DM properties, our DM model, as described in Sec. 11.2.3, intro-
duces two parameters, i.e., the DM particle mass and fraction. To infer posteriors on DM quantities,
we expand our sampling routine to sample on these two additional parameters. Consequently, the
parameter vector for DM-admixed BNS mergers extends to

θDM
BNS = {mi, aspin,i,Λ

DM
i (mi; fχ,mχ,EOS), DL, tc,ϕc,α, δ, ι,ψ} (11.10)

in which the EOS refers to the underlying baryonic EOS, which was used for solving the two-fluid TOV
and Love equations, as detailed in Subsec. 11.2.4. To obtain DM-informed tidal deformabilities ΛDM

i ,
we gather a set of samples for the mass and the EOS. For a given EOS sample, ΛDM

i is then obtained
by interpolation in the parameter space fχ−mχ. These DM tidal deformabilities are incorporated into
conventional GW models to analyze GW signals from DM-admixed BNS mergers, as GW waveform
models that explicitly account for DM effects are currently unavailable.

Analyzing GW signals detected by next-generation GW detectors, which are expected to ob-
serve hours-long signals, significantly increases the computational burden associated with likelihood
evaluations. Furthermore, the inclusion of two additional DM parameters further expands the di-
mensionality of the likelihood space, leading to considerable computational challenges and prolonged
sampling times. To mitigate these computational demands and enhance sampling efficiency, we em-
ploy the parameter estimation acceleration technique proposed in [450], utilizing a multi-banding
accuracy factor of L = 50.

11.3 The bright side: nuclear-physics constraints

In this section, we present a detailed analysis of our four BNS configurations, assuming a purely BM
composition. The investigation is conducted using a range of microphysical EOS models, as intro-
duced in Subsection 11.2.2. By mapping nuclear-physics parameters to their corresponding EOSs, we
extract posterior distributions for these parameters, as detailed in Subsec. 11.2.6. This analysis aims
to assess the constraints that GW observations with next-generation detectors could place on nuclear
parameters and to investigate potential biases introduced by different microphysical EOS descriptions.

11.3.1 Studying constraints across different microphysical models

Analyzing BNS events with MM-wPT: Injecting all BNS events listed in Table 11.2 using the MM-
wPT EOS and performing recovery with the same EOS set, we find that key BNS parameters,
such as the source-frame chirp mass and the combined dimensionless tidal deformability under the
assumption of purely BM, are tightly constrained and reliably recovered within their respective 90%
credible intervals. A comparison between the posterior and prior distributions of the NEPs reveals
slight constraints on Lsym, Ksym, and Qsat across all events, whereas the remaining NEPs show no
significant deviation from their prior distributions. In the following, we present and analyze these
findings using Event A as a representative example, as shown in Figure 11.3.
We observe modest constraints on Lsym,Ksym, and Qsat, with the constraints on Lsym and Ksym being
more pronounced relative to those on Qsat, as given by larger JSD values. This trend is consistent
with expectations, as Qsat represents a higher-order term in the expansion of the symmetry energy as
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FIGURE 11.3
Corner plot of the simulated BNS Event A analyzed with ET under Gaussian-noise conditions in-
jected and recovered with MM-wPT. The posterior distributions for the source-frame chirp mass Mc,
combined dimensionless tidal deformability of pure BM Λ̃BM as well as nuclear parameters including
Lsym, Ksym, and Qsat are shown in blue. The prior is shown in gray and injected values as solid red
lines. The median posterior values are reported at 90% credible interval and the JSD values are listed
in the table for each parameter. Different shadings mark the 68%, 95%, and 99% confidence intervals.

compared to the other two parameters and is therefore less tightly constrained by the data. Applying
this analysis to the other BNS with varying SNR events listed in Table 11.2, we obtain consistent
results with JSD values remaining of the same order of magnitude.
Analyzing BNS events with MM-wo-PT: Injecting each BNS event with the MM-wo-PT EOS and
performing the recovery with the same EOS set, we likewise tightly recover key BNS parameters
within their respective 90% credible intervals such as the source-frame chirp mass and the combined
dimensionless tidal deformability. In contrast to analyzing the different BNS events with the MM-wPT
EOS set, constraints on nuclear parameters remain largely absent except for the symmetry energy
slope. Figure 11.4 shows our results when analyzing Event A with the MM-wo-PT EOS set. The JSD
values indicate that there is a moderate constraint on Lsym MeV, while posterior distributions of the



The bright side: nuclear-physics constraints 179

64
5

66
0

67
5

Λ̃
B
M

40

80
12
0

16
0

L
sy
m
[M

eV
]

−1
50

0

15
0

K
sy
m
[M

eV
]

1.
18
3
1.
18
6
1.
18
9
1.
19
2

Mc[M�]

−5
00

0
50
0

Q
sa
t[
M
eV

]

64
5

66
0

67
5

Λ̃BM

40 80 12
0

16
0

Lsym[MeV]
−1
50 0

15
0

Ksym[MeV]

Posterior Prior JSD

Mc[M�] 1.19+0.00
−0.00 1.19+0.04

−0.05 0.63

Λ̃BM 662.04+10.35
−12.11 450.71+210.18

−263.76 0.57

Lsym [MeV] 85.02+42.79
−41.43 86.02+46.97

−48.00 0.01

Ksym [MeV] 0.31+175.26
−220.91 0.86+177.57

−235.19 0.00

Qsat [MeV] 170.71+603.33
−679.75 101.05+691.80

−649.56 0.00

−5
00 0

50
0

Qsat[MeV]

MM-wo-PT posterior Prior MM-wo-PT injection

FIGURE 11.4
Corner plot of the simulated BNS Event A analyzed with ET under Gaussian-noise conditions injected
and recovered with MM-wo-PT. The posterior distributions for the source-frame chirp mass Mc,
combined dimensionless tidal deformability of pure BM Λ̃BM as well as nuclear parameters including
Lsym, Ksym, and Qsat are shown in blue. The prior is shown in gray and injected values as solid red
lines. The median posterior values are reported at 90% credible interval and the JSD values are listed
in the table for each parameter. Different shadings mark the 68%, 95%, and 99% confidence intervals.

other NEPs, listed in Table 11.1, resemble their respective prior distributions. Extending the analysis
to the remaining BNS events yields results consistent with those obtained for Event A.
Our results indicate that next-generation GW detectors can tighten the bounds on Lsym, while still
leaving larger uncertainties on higher-order parameters like Ksym and Qsat. These findings are consis-
tent with previous studies, such as [158, 357]. Comparing our results across the different EOS models,
we find that constraints become more apparent when including PTs. Incorporating a PT (as in the
MM-wPT model) can introduce a sharp change in the EOS above certain densities. The abrupt change
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in the pressure-density relation is strongly influenced by the choice of nuclear-matter parameters and
affects NS properties such as the radius and tidal deformability [490]. Since GW signals are sensitive
to stellar deformability, they offer the potential to place tighter constraints on the underlying nuclear
parameters in the presence of a PT. On the other hand, when we do not include PTs (as in MM-
wo-PT) the EOS remains nucleonic across all densities and abrupt structural changes remain absent.
In addition, EOSs in this set are modeled with more free parameters as shown in Table 11.1. This
extra freedom diminishes how sharply nuclear parameters show up in the tidal-deformability, leading
to weaker constraints for the same data.

11.4 The dark side: constraining dark matter properties

This section examines DM-admixed BNS mergers to evaluate the potential of GW observations in
constraining the DM properties considered in this study. We begin by reanalyzing the observed event
GW170817 and extend our investigation to next-generation GW detectors by analyzing four simulated
BNS merger events, as detailed in Subsec. 11.2.5.

11.4.1 Analyzing GW170817 assuming the presence of dark matter

To assess whether current-generation GW detectors can constrain the DM properties considered in
this study, we reanalyze GW170817 under the assumption of DM presence. The analysis employs
the waveform model IMRPhenomPv2 NRTidalv2 [322, 349, 212] and utilizes GW data from the Grav-
itational Wave Open Science Center [649], covering the frequency range of 20 Hz to 2048 Hz to
encompass the detected BNS inspiral [16]. In addition to standard BNS parameters, we sample the
DM particle mass mχ and DM fraction fχ, with the resulting posteriors presented in Figure 11.5.
The comparison between the posterior and prior distributions of the DM particle mass and DM frac-
tion in Figure 11.5 demonstrates that GW170817 does not impose constraints on the DM properties
investigated in this study. However, the inferred BNS parameters, including the chirp mass, luminos-
ity distance, and combined tidal deformability, are consistent with the LIGO-Virgo results reported in
[10]. Given the sensitivity limitations of current-generation GW detectors, we extend our analysis to
GW signals as observed with next-generation observatories to assess their potential for constraining
DM properties.

11.4.2 Studying synthetic signals with next-generation detectors

To assess the potential of next-generation GW detectors to constrain DM properties, we simulate
Events B–D from Table 11.2, employing both the triangular ET detector setup and a detector network
composed of ET and CE, as described in Subsec. 11.2.5. All injections are generated with the aligned-
spin waveform model IMRPhenomD NRTidalv2 [212]. In the following, we present and discuss our
findings using Event D as a representative case, as the results remain unchanged for the other events
listed in Table 11.2.
Figure 11.6 shows the results for Event D analyzed with ET and under zero-noise conditions. The
injected values for both the source-frame chirp mass and the DM tidal deformability are tightly con-
strained. In contrast, the posterior distributions for the DM parameters remain largely consistent
with their respective priors. This conclusion is further supported by the JSD values, listed in Fig-
ure 11.6. We repeat this analysis by injecting this signal under zero noise into a detector network
assuming ET and CE. The results remain consistent with the single-detector case, indicating that the
inclusion of another detector in a network does not lead to improved constraints on the DM properties.

Additionally, we performed a parameter estimation simulation for Event D using the purely baryonic
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EOS set that served as the baseline for constructing the corresponding DM EOS set. This investigation
aimed to compute the Bayes factor to assess which scenario is statistically favored by the data. To
evaluate the relative plausibility of these competing hypotheses, we compute the natural logarithm
of the Bayes factor, as defined in Chapter 8,

lnBBM
DM = ln

�
p(d|MBM)

p(d|MDM)

�
, (11.11)

in which model MBM refers to the hypothesis that the BNS merger consists solely of BM, and MDM

denotes the alternative scenario in which the BNS is admixed with DM. Using this definition, more
negative values provide stronger support for the presence of DM in a BNS merger. Analyzing Event D
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FIGURE 11.6
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using a detector network comprising ET and CE under zero-noise conditions yields a Bayes factor of
lnBBM

DM = −0.39, indicating no significant statistical preference for the presence of DM. Furthermore,
a comparison of the posterior distributions for the BNS parameters under the purely baryonic and
DM-admixed scenario reveals consistent results.

As mentioned above, we find similar results for the other events listed in Table 11.2. However,
we repeat our analyses when assuming ET under Gaussian-noise conditions. Notably, the injection
of Gaussian noise can introduce a measurable impact on both the Bayes factor and the inferred
constraints on DM properties. For instance, analyzing Event D under an identical Gaussian noise
realization with both the purely baryonic EOS set and the DM-admixed EOS set yields a Bayes factor
of lnBBM

DM = −1.35, indicating a noticeable statistical preference for the DM-admixed scenario. In this
case, the posterior distributions for the DM fraction and DM particle mass show slight deviations
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from their priors. This outcome underscores that noise effects can induce spurious constraints on the
inferred DM properties, emphasizing the necessity for caution when interpreting such results.

11.4.3 Comparison to Fisher matrix informed posteriors

We compare the results obtained by sampling additional DM properties through DM EOSs with
posterior distributions derived using the Fisher matrix approximation. Specifically, we focus on two
Events, B and D, drawn from one of the catalogs analyzed in the study [356] and presented in
Chapter 10.

A comparison of the source-frame chirp mass posterior distributions for both events reveals con-
sistent recovery of the injected values. The posteriors obtained by sampling DM EOSs exhibit a
narrower width compared to those derived from the Fisher matrix approximation. With regard to
the DM-informed tidal deformability Λ̃DM, the injected values are also well recovered in both events.
Sampling over the DM EOSs leads to slightly tighter constraints on Λ̃DM, reflecting improved pre-
cision. However, as shown in Subsec. 11.4.2, the marginally improved accuracy in the DM-informed
tidal deformability Λ̃DM does not translate into tighter constraints on the underlying DM properties.
Based on the limited number of performed simulations, our results suggest that the Fisher matrix
approximation, as applied in Chapter 10, offers a reasonable approach for analyzing the considered
DM-admixed BNS mergers, showing good agreement with full parameter estimation. Consequently, it
appears that extending full parameter estimation to a larger population of DM-admixed BNS mergers
may not lead to new insights into the DM properties considered in this study.

11.5 Concluding remarks

This work explored the potential of next-generation GW detectors to constrain both nuclear matter
parameters governing the NS EOS and DM properties in BNS mergers, thereby probing both bright
and dark constituents.

With regard to the bright side, initial results indicate that next-generation GW detectors can pro-
vide constraints on some nuclear parameters. While the symmetry energy slope was constrained more
tightly, higher-order terms in the expansion of symmetric matter and the symmetry energy, including
Ksym and Qsat, exhibited larger uncertainties. Furthermore, we find that our results are sensitive to
the incorporation of PTs. Future investigations can extend the scope of this part of the analysis by
including distinct nuclear-physics models, e.g. Skyrme interaction models [469] or density-dependent,
relativistic-mean-field models [645, 646]. Furthermore, simulations of BM BNS mergers could be re-
visited using a detector network comprising ET and CE to assess whether such a network enables
tighter constraints on nuclear matter parameters. Moreover, we note that our Bayesian parameter
estimation framework does not sample directly over the microscopic nuclear-physics parameters that
determine the EOS. As a result, some granularity is lost when inferring nuclear-physics parameters
from precomputed EOS tables. Hence, tighter constraints could be achieved by performing direct
sampling over microscopic parameters, an approach that has recently begun to be explored in the
literature, e.g., [537].

Concerning the dark side, full parameter estimation simulations of DM-admixed BNS mergers did
not reveal any constraints on the sampled DM particle mass and fraction. Moreover, the comparison
between DM–informed tidal deformability posteriors obtained through full Bayesian parameter esti-
mation and those derived via the FIM approximation revealed good agreement. This suggests that
extending full parameter estimation to a larger population of DM–admixed BNS mergers is unlikely
to yield additional insights into the DM properties considered in this study. Consequently, the re-
sults suggest that next-generation GW detectors may have limited capacity to identify or exclude
the presence of DM within BNS mergers under the specific conditions assumed. However, it is im-
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FIGURE 11.7
Comparison between posterior distributions obtained via the Fisher matrix approximation (black)
and those derived from sampling of DM properties through DM EOSs (blue). Shown are the source-
frame chirp mass Mc and the combined dimensionless tidal deformability Λ̃DM when assuming the
presence of DM in BNS mergers. The top panel corresponds to the lower SNR Event B, while the
bottom panel displays results for the higher SNR Event D. The injected values are indicated by solid
red lines.

portant to note the major assumptions underlying this analysis. First, we sampled DM properties
by precomputing DM EOSs on a restricted grid of DM particle masses and fractions to estimate the
DM-informed tidal deformability. This means that we expect to lose granularity to some extent as
mentioned above. Second, we simulated DM-admixed BNS merger signals using existing GW models,
which do not explicitly incorporate DM effects. Finally, we focused only on one specific DM type. Fu-
ture work could explore a unified analysis that simultaneously accounts for both the bright and dark
constituents. Such an approach would enable a systematic investigation into whether the presence of
DM leads to biases in the inference of nuclear-physics parameters, such as those governing the NS
EOS. Such efforts may be crucial for developing a more complete and unbiased understanding of the
fundamental physics encoded in GW observations of BNS mergers.



Part VII

Conclusions





187

The first joint detection of a BNS merger via both gravitational and EM waves marked the beginning
of a new era in multi-messenger astronomy, providing unprecedented insights across a wide spectrum
of scientific disciplines. Compact binaries, particularly BNS mergers, serve as natural laboratories for
multi-messenger studies, highlighting their remarkable versatility as probes of fundamental physics.
Their messengers offer valuable insights into extreme gravity, dense nuclear matter, and the universe’s
expansion rate, positioning them as key observables in unraveling the most profound mysteries of the
cosmos. Additionally, BNS mergers have been proposed as potential sites for exploring interactions
with exotic matter, including hypothetical connections to dark matter, though direct evidence remains
an open question.

This thesis pursued three primary objectives in the context of multi-messenger studies of compact
binaries, with a particular emphasis on BNS mergers. First, it examined the impact of gravitational
waveform model-dependent biases on the inference of key physical parameters, including the NS radius
and the cosmic expansion rate, critical to nuclear physics and cosmology. Second, it investigated how
Bayesian model selection, applied to multi-wavelength observations of GRBs, can be used to identify
BNS mergers in the absence of direct GW detections. Third, it explored how future observations
with next-generation detectors could constrain dense nuclear matter and DM properties, offering key
insights into their fundamental nature.

The impact of gravitational waveform model systematics

Gravitational waveform models come with inherent systematic uncertainties stemming from approx-
imations in modeling the relativistic two-body problem. With an increasing number of GW obser-
vations from BNS mergers, systematic errors are expected to grow, though the full extent remains
uncertain. By simulating GW signals from 38 BNS mergers with current-generation GW detectors
and analyzing them using four different waveform models, Chapter 6 and Chapter 7 investigated the
impact of model-dependent biases on the inference of the NS radius and the cosmic expansion rate,
respectively.

The findings in Chapter 6 showed that while the statistical uncertainty on the NS radius can
shrink to about ± 250 m, systematic biases between waveform models can be up to twice as large.
Incorporating EM observations from potential multi-messenger observations could further intensify
these inconsistencies, stressing the urgency for more accurate waveform models. Given the substantial
uncertainties in BNS detection rates and the limited number of current detections, the timescale for
gravitational waveform model systematics to impact the inference remains rather uncertain.

In contrast, the findings, outlined in Chapter 7, revealed that the uncertainty in the luminosity
distance arising from GW models exerts a negligible influence on the determination of the Hubble
constant for current-generation GW observations. These findings are independent of the cosmic bench-
mark employed, i.e., the expansion rate as derived from the cosmic distance ladder by SH0ES or from
the CMB radiation measured by the Planck collaboration. Still, these conclusions omit higher-order
modes and assume idealized redshift measurements, implying the real-world impact may be more
complex.

With next-generation detectors like ET and CE, which are expected to detect thousands of BNS
merger events annually, statistical uncertainties will decrease, making the mitigation of systematic
biases a key priority. Consequently, improved GW models will be essential for precise inference of NS
radii and the cosmic expansion rate, which are fundamental to nuclear physics and cosmology.

Exploring progenitors: Bayesian multi-wavelength analyses of gamma-ray bursts

The limited number of observed BNS mergers motivates alternative strategies for identifying such
events. This thesis explored the use of Bayesian multi-wavelength analyses of GRBs as a comple-
mentary approach for inferring compact binary mergers and demonstrated that such events can be
investigated in the absence of direct GW detections, with partial characterization possible through
EM observations. Applying Bayesian model selection to GRB 211211A under four scenarios, i.e., a
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BNS merger, an NSBH merger, a rCCSN, and a CCSN, revealed the highest statistical evidence for
a BNS merger, offering the best fit to multi-wavelength light curves and suggesting an additional
emission component that is consistent with r-process nucleosynthesis. However, since the analysis
only considered a limited subset of potential astrophysical origins, these findings must be interpreted
cautiously, underscoring the need for further investigations encompassing a broader range of progeni-
tor scenarios and models. Expanding this method to a broader range of astrophysical scenarios could
refine our understanding of GRB progenitors and their associations with compact binaries, including
BNS mergers, especially in periods when GW signals are absent.

BNS mergers as probes of nuclear and dark matter

NSs unite extreme matter and extreme gravity, making BNS mergers prime venues for probing
supranuclear densities and potential DM admixtures. The NS EOS and the nature of DM remain
unresolved questions. However, GW observations of BNS mergers offer a unique probe of dense nu-
clear matter and potentially DM, enabling constraints on nuclear-physics parameters and phenomena
beyond the Standard Model of particle physics.

Chapter 9 investigated the ability to distinguish between nuclear Hamiltonians with different
3N interactions derived from chiral EFT. A Bayesian model selection study, based on an injection
campaign for a BNS population, demonstrated that ET could provide strong evidence to differentiate
between distinct nuclear interaction models. However, the analysis was restricted to frequencies above
30 Hz to reduce computational cost, excluding crucial mass parameter information most accessible
around 5-9 Hz. Despite this limitation, the study demonstrated that future GW observations of BNS
mergers could distinguish nuclear Hamiltonians and serves as a framework for constraining additional
components of the Hamiltonian.

Chapter 10 explored the potential of ET measurements of the tidal deformability in DM-admixed
NS mergers to constrain the baryonic EOS and to infer DM properties. Using the Fisher matrix
approach, the study varied the baryonic EOS, DM particle mass, and DM fraction distribution. The
results indicate that the presence of DM in NSs is disfavored. However, DM in BNS mergers can
introduce a small bias in the inference of the baryonic EOS if not properly accounted for. These
findings are subject to limitations, as they depend on the choice of the DM model and the assumed
parameter ranges for the DM particle mass and fraction. Stronger observational GW signatures
could arise under alternative DM models, higher DM fractions, different DM particle masses or with
improved constraints on the baryonic EOS. Furthermore, the Fisher matrix approach provides only
a lower bound on statistical uncertainties and does not account for DM-induced biases in other BNS
parameters, which full Bayesian parameter estimation could reveal, along with larger uncertainties in
tidal deformability measurements.

The preliminary results presented in Chapter 11 aimed to explore the potential of future GW
detectors to constrain both nuclear matter parameters governing the NS EOS and DM properties
in BNS mergers, thereby probing both bright and dark constituents. First results indicate moderate
constraints on some nuclear parameters. Further analyses are envisioned with different microphysical
models. Bayesian parameter estimation simulations of DM–admixed BNS mergers reveal no signifi-
cant constraints on DM properties within the framework of the assumed model. This result suggests
that next-generation gravitational-wave detectors may have limited sensitivity to test the presence of
dark matter in BNS mergers. The comparison between DM-informed tidal deformability posteriors
from Bayesian parameter estimation and the FIM approximation presented in Chapter 10 shows good
agreement, suggesting that parameter estimation for a larger set of DM-admixed BNS mergers is un-
likely to provide further insights into the examined DM properties. As in Chapter 10, these results
are model-dependent, limited by assumptions on DM mass and fraction, and were conducted with
existing waveform models that do not incorporate DM effects. Moreover, a main limitation extending
to both analyses is that we do not directly sample over the microscopic nuclear-physics or DM pa-
rameters, but instead rely on precomputed baryonic EOSs or DM EOSs. Future work could address
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this limitation by implementing direct sampling methods.

Outlook

The first multi-messenger observation represents a landmark event, demonstrating the capability
of BNS mergers to enhance our understanding of extreme gravity, dense nuclear matter, cosmic
expansion, cosmic synthesis of heavy elements, and potentially DM. This thesis has addressed both
fundamental challenges, such as waveform model biases and BNS merger studies in the absence of
GW observations, as well as broader objectives, including the exploration of extreme matter, and
physics beyond the Standard Model.

Looking forward, next-generation GW detectors such as CE and ET are expected to mark a
transformative advancement in GW astronomy. These instruments will significantly enhance the abil-
ity to observe BNS mergers, with projected detection rates ranging from 104 − 105 BNS events per
year [538, 601, 128, 656, 241]. ET alone is expected to observe over a thousand events annually, in-
cluding thousands accompanied by kilonova emission and a subset with jet-related signatures [179],
thereby vastly expanding our ability to probe fundamental physics across a broad spectrum of sci-
entific fields. CE is expected to facilitate high-precision measurements of the tidal deformability,
constraining NS radii to within 0.1 km for hundreds of systems each year [241]. These observations
will tightly constrain the supranuclear EOS and may reveal a PT to quark matter in NS cores. Despite
these promising prospects, significant challenges remain. These include the mitigation of systematic
uncertainties in waveform and noise modeling, the precise quantification of model misspecification,
and the advancement of data analysis frameworks to address the limitations in current likelihood
approximations and computational approaches [70].

By the time next-generation GW detectors become operational, improvements in high-precision
waveform modeling, advancements in data analysis techniques, and computational methods coupled
with coordinated EM follow-up campaigns will be critical for maximizing the scientific return from
each BNS detection. Ultimately, the synergy of future multi-messenger observations, refined theo-
retical models, and advanced computational techniques will establish BNS mergers as unparalleled
cosmic laboratories, where the brightest and darkest aspects of physics may be explored in unison.
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[475] M. Obergaulinger and M. Á. Aloy. Magnetorotational core collapse of possible GRB progenitors.
III. Three-dimensional models. Mon. Not. Roy. Astron. Soc., 503(4):4942–4963, 2021.



222 Bibliography

[476] R. Oechslin, H. T. Janka, and A. Marek. Relativistic neutron star merger simulations with
non-zero temperature equations of state. 1. Variation of binary parameters and equation of
state. Astronomy & Astrophysics, 2006.

[477] M. Oguri. Measuring the distance-redshift relation with the cross-correlation of gravitational
wave standard sirens and galaxies. Phys. Rev. D, 93:083511, Apr 2016.

[478] J. H. Oort. The force exerted by the stellar system in the direction perpendicular to the galactic
plane and some related problems. Bulletin of the Astronomical Institutes of the Netherlands,
6:249, August 1932.

[479] J. R. Oppenheimer and H. Snyder. On continued gravitational contraction. Phys. Rev., 56:455–
459, Sep 1939.

[480] J. R. Oppenheimer and G. M. Volkoff. On massive neutron cores. Phys. Rev., 55:374–381, 1939.

[481] R. W. O’Shaughnessy et al. Constraining population synthesis models via empirical binary
compact object merger and supernovae rates. Astrophys. J., 672:479–488, 2008.

[482] T. Otsuka et al. Three-body forces and the limit of oxygen isotopes. Phys. Rev. Let., 105:032501,
2010.

[483] C. B. Owen et al. Waveform accuracy and systematic uncertainties in current gravitational
wave observations. Phys. Rev. D, 108(4):044018, 2023.

[484] C. Pacilio et al. Ranking Love Numbers for the Neutron Star Equation of State: The Need for
Third-Generation Detectors. Phys. Rev. Let., 128(10):101101, 2022.

[485] B. Paczynski. Gamma-ray bursters at cosmological distances. Astrophys. J., 308:L43, sep 1986.

[486] B. Paczynski. Cosmological gamma-ray bursts. Acta Astron., 41:257–267, 1991.
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[561] M. H. Ruffert, H. T. Janka, and G. Schäfer. Coalescing neutron stars: A step towards physical
models. I: Hydrodynamic evolution and gravitational- wave emission. Astronomy & Astro-
physics, 311:532–566, 1996.

[562] M. Ruiz, S. L. Shapiro, and A. Tsokaros. GW170817, General Relativistic Magnetohydrody-
namic Simulations, and the Neutron Star Maximum Mass. Phys. Rev. D, 97(2):021501, 2018.

[563] P. Russotto et al. Results of the ASY-EOS experiment at GSI: The symmetry energy at
suprasaturation density. Phys. Rev. C, 94(3):034608, 2016.
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