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Abstract
Variations in strength of a sextupole magnet in a storage

ring result in changes to the closed orbit, phase functions
and tunes which depend on the position of the beam relative
to the center of the sextupole and on the beam size. Such
measurements have been carried out with 6 GeV positrons
at the Cornell Electron Storage Ring. The initial analysis
presented at IPAC21 has been extended to both transverse
coordinates, introducing additional tune shifts and coupling
kicks caused by skew quadrupole terms arising from the
vertical position of the positron beam relative to the center
of the sextupole. Variations of strength in each of the 76
sextupoles provide measurements of difference orbits, phase
and coupling functions. An optimization procedure applied
to these difference measurements determines the horizontal
and vertical orbit kicks and the normal and skew quadrupole
kicks corresponding to the the strength changes. Continu-
ously monitored tune shifts during the sextupole strength
scans provide a redundant, independent determination of the
two quadrupole terms. Following the recognition that the
calculated beam size is highly correlated with the calibra-
tion of the sextupole, a campaign was undertaken to obtain
precise calibrations of the sextupoles and to measure their
offsets relative to the reference orbit, which is defined by
the quadrupole centers. We present the measured distribu-
tions of calibration correction factors and sextupole offsets
together with the accuracy in their determination.

2D ANALYTIC DERIVATION FOR BEAM
SIZE DETERMINATION USING

SEXTUPOLE STRENGTH CHANGE
Following the line of argument of our IPAC21 paper [1]

to derive the quadrupole kick d𝑘1𝑙 and the dipole kicks
d𝑥′ and d𝑦′ from a change in sextupole strength d𝑘2𝑙 using
the sextupole field components 𝑞𝑙

𝑝0
𝐵x = 𝑘2𝑥𝑦 and 𝑞𝑙

𝑝0
𝐵y =

1
2𝑘2(𝑥2 −𝑦2), we obtain three equations with four unknowns:

d𝑘1𝑙 = d𝑘2𝑙 (𝑋0 + d𝑥) (1)

d𝑦′ = d𝑘2𝑙 (𝑋0 + d𝑥) (𝑌0 + d𝑦) (2)

2 d𝑥′ = d𝑘2𝑙 ⎡⎢
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(3)
We note that these quantities are differences, not differentials.
The equations are exact; there is no expansion.

Assuming initial 𝑘2𝑙 = 0 and including all terms:

𝜎2
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(4)

Including only terms linear in d𝑘2𝑙, we have:

𝜎2
X − 𝜎2

Y = −2 d𝑥′

d𝑘2𝑙 + 𝑌2
0 − 𝑋2

0 , (5)

where 𝑋0, 𝑌0 is the initial position of the beam relative to
the center of the sextupole. The is the two-dimensional
generalization of Eq. (5) in our IPAC21 paper.

ANALYSIS OF DIFFERENCE ORBIT AND
PHASE MEASUREMENTS: EXAMPLE
Record phase and orbit measurements for eleven sex-

tupole settings. Reference the ten sets of measurements
with nonzero 𝐾2 settings to the 𝐾2=0 orbit and phase mea-
surements. Fit for the linear terms in Δ𝑏1(Δ𝑘2𝑙), Δ𝑦′(Δ𝑘2𝑙)
and Δ𝑥′(Δ𝑘2𝑙). We obtain an estimate for the measurement
uncertainties in Δ𝑏1, Δ𝑦′ and Δ𝑥′ by setting them such that
the 𝜒2/NDF is unity. The results are shown in Fig. 1 .

The linear term for Δ𝑏1 gives the initial horizon-
tal position of the beam relative to the sextupole cen-
ter: 𝑋0 = 4.943 ± 0.029 mm. The linear term for Δ𝑝𝑦
gives the initial value for the product of horizontal
and vertical beam positions relative to the sextupole
center: 𝑋0𝑌0 = 3.79 ± 0.13 mm2. From this we ob-
tain 𝑌0 = 0.766 ± 0.26 mm. The linear term for Δ𝑝𝑦
(−12.45 ± 0.28 × 10−6 rad/m−2) and Eq. (5) are used to cal-
culate the value 𝜎2

𝑥 − 𝜎2
𝑦 = 1.03 ± 0.53 mm2. The vertical

beam size is typically 20x smaller than the horizontal, so we
can deduce with good accuracy 𝜎𝑥 = 1.01 ± 0.26 mm. This
result is consistent with the value expected from the optics.

FIRST-ORDER 2D ANALYSIS OF
TUNE SHIFTS FROM NORMAL (𝑏1)

AND SKEW QUAD (𝑎1) TERMS
Defining the normal and skew quad multipole coefficients,

𝑏1 = 1
2!

𝑞𝐿
𝑃0

d𝐵Y
dx = K2𝐿 x (6)

𝑎1 = 1
2!

𝑞𝐿
𝑃0

d𝐵X
dx = K2𝐿 y (7)

we have the familiar results for the tune shifts from the nor-
mal quad term:

Δ𝜇𝑥 = −𝑏1𝛽𝑥/2 (8)

Δ𝜇𝑦 = 𝑏1𝛽𝑦/2 (9)

The tune shifts from the skew quad terms can be shown [2]
to be

Δ𝜇𝑥 = −𝑎2
1

𝛽𝑥𝛽𝑦 sin 𝜇𝑦

4 (cos 𝜇𝑥 − cos 𝜇𝑦)
(10)
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Figure 1: These three plots show the results of fitting dif-
ference orbit and phase measurements with values for the
normal quadrupole kick (Δ𝑏1, top), and the vertical (Δ𝑦′,
middle) and horizontal (Δ𝑥′, bottom) dipole kicks at the sex-
tupole when its strength d𝑘2𝑙 was varied. The annotations
show that the linear terms in these polynomial fits provide
values for the horizontal and vertical beam positions relative
to the center of the sextupole, as well as for the squared beam
size difference 𝜎2

𝑥 − 𝜎2
𝑦 .

Δ𝜇𝑦 = 𝑎2
1

𝛽𝑥𝛽𝑦 sin 𝜇𝑥

4 (cos 𝜇𝑥 − cos 𝜇𝑦)
(11)

Superposing the two contributions to the tunes and isolat-
ing 𝑎1 and 𝑏1, we obtain their values as functions of known
quantities when the tune shifts are measured:

sin 𝜇𝑥Δ𝜇𝑥 + sin 𝜇𝑦Δ𝜇𝑦 + −𝑏1
2 (𝛽𝑥 sin 𝜇𝑥 − 𝛽𝑦 sin 𝜇𝑦)

(12)

𝛽𝑦Δ𝜇𝑥 +𝛽𝑥Δ𝜇𝑦 +𝑎2
1

𝛽𝑥𝛽𝑦 (𝛽𝑥 sin 𝜇𝑥 − 𝛽𝑦 sin 𝜇𝑦)
4 (cos 𝜇𝑥 − cos 𝜇𝑦)

(13)

The second equation shows that

𝑏1 = 2 (
Δ𝜇𝑦
𝛽𝑦

− Δ𝜇𝑥
𝛽𝑥

) (14)

is more independent of 𝑎1 than 𝑏1 derived from either Δ𝜇𝑥
or Δ𝜇𝑦 alone.

The 2D calculations of 𝑏1 and 𝑎1 are sensitive to cancel-
lation divergences. The values of the initial tunes are such

Figure 2: Example of the measurement and analysis proce-
dure to obtain the calibration correction factor and horizontal
offset relative to the reference orbit, which is defined by the
quadrupole centers. See text for details.

that sin 𝜇𝑥 ≃ −0.4 and sin 𝜇𝑦 ≃ −0.8. Thus the formula for
𝑏1 and 𝑎1 both diverge for 𝛽𝑥 ≃ 2𝛽𝑦.

For simplicity of presentation, we have used here the
approximation cos (𝜇 + Δ𝜇) − cos 𝜇 = Δ𝜇 sin 𝜇. This
approximation breaks down near the half-integer resonance.
In fact, the quadratic term in Fig. 1 of Ref. [1] was later
shown to arise from this approximation, rather than from the
quadratic term d𝑘2𝑙 d𝑥. With this approximation removed,
the quadratic term is consistent with the horizontal beam
motion arising from the sextupole strength term. Our choice,
however, is to use only linear terms in the calculation of beam
size, since these are much more accurately determined.

SEXTUPOLE CALIBRATION AND OFFSET
MEASUREMENT PROCEDURE

Inspection of the equation for the beam size shows 1) the
most accurate beam size measurement is obtained when the
beam is at the center of the sextupole, since the uncertainties
in 𝑋0 and 𝑌0 do not contribute, and 2) in that case, the value
of the beam size and the uncertainty in d𝑘2𝑙 are perfectly
correlated. The procedure for determining the beam size
is at cross purposes to obtaining the sextupole calibration,
since one cannot calibrate a sextupole with the beam at the
center of it.

The procedure developed for obtaining the calibration of
each sextupole consisted of measuring the horizontal and
vertical tune changes for a given change in 𝑘2 for five beam
positions set by a closed bump. For this analysis we neglect
small corrections arising from the beam motion consequen-
tial to the beam size.

The example of such measurements shown in Fig. 2 again
uses the method of estimating uncertainties in the slope
and offset determinations by adjusting the residual weights.
The slopes are of opposite sign and approximately in the
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Figure 3: Results for the calibration correction factor (top)
and horizontal offset (bottom) for each of the 76 CESR
sextupoles. The RMS spread in correction factors (offsets)
is 9.5% (0.83 mm).

ratio of the beta values, modulo a coupling contribution (e.g.
vertical sextupole offset.) The two measurements provide in-
dependent determinations of the horizontal sextupole offset
relative to the reference orbit.

The calibration correction factors were obtained by using
the beta-weighted difference of the horizontal and vertical
tune shifts, which is insensitive to skew contributions and
thus largely independent of vertical offset of the sextupole
as can be inferred from the full 2D derivation of the tune
shifts presented in the previous section.

RESULTS FOR SEXTUPOLE
CALIBRATION CORRECTION FACTORS

AND HORIZONTAL OFFSETS
The procedure described in the previous section resulted

in the values for the calibration correction factors and hor-
izontal offsets shown in Fig. 3 for the 76 sextupoles in the

east and west arcs of the CESR ring. Horizontal and vertical
tunes were measured by shaking the beam and locking to the
tune [3]. Thirty-two single-pole-filtered 60-Hz samples were
averaged, resulting in tune measurement RMS fluctuations
between about 20 and 200 Hz. Those values are 174 Hz
(horizontal) and 69 Hz (vertical) in the example shown in the
previous section. This procedure required about 3 minutes
per sextupole. The accuracy was shown to improve when ad-
ditional 1-second averaging was included. For an additional
16 measurements, the tune accuracy improved by nearly a
factor of four and the duration increased from three to ten
minutes.

The calibration correction factor is derived from a mea-
sured/theory ratio for the beta-weighted tune shift differ-
ences, where the theory value assumes the nominal cali-
bration value used for the sextupoles during operations. A
rough estimate of 5% for the variations due to construction
tolerances was made during the initial field measurements
in 1998 [4]. Our measurements show an RMS deviation
of 9.5% with a mean value of 1.009 ± 0.010. The uncertain-
ties average 2.9% with an RMS spread of 2.0%.

The values of the horizontal offsets relative to the
quadrupole centers are obtained by identifying the horizontal
position at the sextupole which results in zero tune shift. The
weighted average of the two values shown in the example in
the previous section provides the value 0.543 ± 0.045 mm
The values for all sextupoles are shown in Fig 3. With sev-
eral exceptions, the RMS spread in the offsets is found to
be 0.83 mm. The uncertainties average 43 microns with an
RMS spread of 28 microns.

SUMMARY
These measurements improve our model of the CESR

ring optics and provide valuable information to our beam
size analysis.
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