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Abstract: The field-theoretic renormalization group is applied to a simple model of a random
walk on a rough fluctuating surface. We consider the Fokker—Planck equation for a particle in a
uniform gravitational field. The surface is modeled by the generalized Edwards-Wilkinson linear
stochastic equation for the height field. The full stochastic model is reformulated as a multiplicatively
renormalizable field theory, which allows for the application of the standard renormalization theory.
The renormalization group equations have several fixed points that correspond to possible scaling
regimes in the infrared range (long times and large distances); all the critical dimensions are found
exactly. As an example, the spreading law for the particle’s cloud is derived. It has the form
R2(t) ~ t*/8e with the exactly known critical dimension of frequency A, and, in general, differs
from the standard expression R?(t) ~ t for an ordinary random walk.

Keywords: stochastic growth; kinetic roughening; random walk; renormalization group

1. Introduction

Over decades, stochastic growth processes, kinetic roughening phenomena, and fluc-
tuating surfaces or interfaces have been attracting constant attention. The most prominent
examples include the deposition of a substance on a surface and the growth of the corre-
sponding phase boundary; propagation of flame, smoke, and solidification fronts; growth of
vicinal surfaces and bacterial colonies; erosion of landscapes and seabed profiles; molecular
beam epitaxy; and many others, see [1-13] and references therein.

Another vast area of research is that of diffusion and random walks in a random envi-
ronment, such as disordered, inhomogeneous, porous, or turbulent media, see, e.g., [14-24].

In this paper, we study a simple model of a random walk on a rough fluctuating
surface. We consider the Fokker-Planck equation for a particle in a uniform gravitational
field. The surface is modeled by the generalized Edwards-Wilkinson linear stochastic
equation for the height field [1]. The generalized model involves two arbitrary exponents,
¢ and 7, related to the spectrum and the dispersion law of the height field, respectively.
A detailed description of the model and its relation to various special cases is given in
Section 2.

Using the general Martin-Siggia—Rose—de Dominicis—Janssen theorem, the original
stochastic problem is reformulated as a certain field-theoretic model. This allows one to ap-
ply the well-developed formalism of Feynman diagrammatic techniques, renormalization
theory, and a renormalization group (RG). The model is shown to be multiplicatively renor-
malizable, so that the RG equation can be derived in a standard way. The corresponding
renormalization constants and the RG functions (anomalous dimensions and § functions)
are explicitly calculated in the leading one-loop order of the RG perturbation theory. These
issues are discussed in Sections 3 and 4.
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The RG equations have two Gaussian (free) fixed points and two nontrivial ones.
Those points are infrared (IR) attractive depending on the values of the parameters ¢ and
1, which implies the existence of scaling (self-similar) asymptotic regimes in the IR range
(long times and large distances) for the various response and correlation functions of the
model (Section 4). The critical dimensions for those regimes are found exactly as functions
of e and 7. As an indicative application, the time dependence of the mean-square radius of
a cloud of randomly walking particles is obtained (Section 5). It is described by a power
law with the exponent that depends on the fixed point, is known exactly as a function of ¢
and 7, and for nontrivial points, it differs from the ordinary random walk: R?(t) ~ t.

Some implications and possible generalizations are discussed in Section 6.

2. Description of the Model

We consider the random walk of a point particle on a two-dimensional rough surface
embedded into the (d 4 1)-dimensional space. The particle is located on the surface on
the height h(t,x), where x(t) = {x;(t)} is the particle’s coordinate projection on the d-
dimensional substrate, i = 1...d. Thus, d is an arbitrary (for generality) dimension of the
substrate x space.

While the coordinates x; with i = 1,...,d determine the particle’s location, the co-
ordinate x; with i = (d 4 1) is not treated as an independent Cartesian coordinate but is
restricted to the surface, h(t,x) = X(g4+1)- This setup excludes the possibility for a particle
to “jump off” or “escape” the surface; such interesting phenomena are not included in our
simple model.

The basic stochastic equation of motion of a particle located at the point x(f) = {x;(t)}
in an external drift field F has the form [14-24]:

orxi = Fi(t,x) + Ti,  (Gi(H)T(t))g = 206 (t — ). ey

Here, {; = (;(t) is a Gaussian noise with zero mean and a given pair correlation
function, vg > 0 will play a role of the diffusion coefficient, and F is an external drift field
(a force or an advecting velocity, depending on the specific context).!

The probability distribution function P(t, x) satisfies the Fokker-Planck equation

{0t +9;(F; — v9;) } P(t,x) = 0. ()

Here and below, summation over repeated indices is implied.

From physics reasons, the drift F in a gravitational field should obey the O(d) symme-
try and the invariance with the respect to the shift 1 — h-+const, so that it should be built of
gradients of the field /. Thus, in the simplest linear approximation, it is taken in the form

F; = —Aodih, 3)

with the parameter Ay > 0 proportional to the particle’s mass m and the gravitational
acceleration g. Possible higher-order corrections to the linear approximation should also
be constructed from gradients of the field & and obey the O(d) symmetry, for example,
0;(0;ho;h)". They have higher canonical dimensions in comparison with (3) (see Section 3),
are IR irrelevant (in the sense of Wilson), and should be dropped in the analysis of IR scaling.

Careful interpretation of the gradient d;1 for a rough surface and the very existence
(in a rigorous mathematical sense) of corresponding continuous equations is a serious
problem. Recently, important progress was achieved for the Kardar-Parisi-Zhang (KPZ)
model, see [25-29] and references therein.

From a more practical physical point of view, there is a very small microscopical scale a
below which the field & becomes smooth and differentiable. In our and the KPZ'’s treatment,
this scale is tacitly set to zero, so that the field becomes rough. There is an apparent analogy

1 Here and below, the subscript 0 refers to bare parameters which will be renormalized in the following.
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with the well-known dissipative anomaly in turbulence, see, e.g., [30]. Practically, in this
study, we use the formal perturbation theory, where this problem does not arise, and the
expression (3) is applied without further comments.

The simplest model of surface roughening, proposed within the context of landscape
erosion, is the one due to Edwards and Wilkinson [1]. In the continuous formulation, it is
described by the diffusion-type stochastic equation for the height field h = h(t, x):

{0 — x00*} h(t,x) = f(t,x), (4)

where xy > 0 is (a kind of) surface tension coefficient, 0% = 9;9; is the Laplace operator, and
f is a Gaussian random noise with zero mean and a given pair correlation function. The
most popular choices are the white noise

(ftX)f(E,x'))f = Dod(t —')d(x —x) ®)

with the positive amplitude Dy > 0 and the quenched noise; the simplified version of the
latter is

(f(EX)f(E,x)) = Dod(x — x'). (6)

In this paper, we consider a generalized equation
{0r + xkok> T} h(t,x) = f(t,x), @)

written here in the symbolic notation with k being the wave number,” while the correlation
function is taken in a power-like form:

(X)) = Dos(t—t) [ (f;‘)d R explik(x —x) ). ®)

Here, 17 and y are arbitrary exponents and d is the dimension of space. Clearly, the
choice 7 = 0,2 —d —y = 0 corresponds to the model (4) and (5); as we will see, the
model (4) and (6) can also be obtained from (7) and (8).

For a linear stochastic equation with a Gaussian additive random noise, the field & is
also a Gaussian field defined by its pair correlation function. For the model (7) and (8), the
latter has the following form in the Fourier (w-k) representation

Dy k2—d-y . gouol/g k2—d-n—e
W2 + [10k2 12 w2 + [ugugk? 12’

Dy(w, k) = )

In the second relation, we introduced the new variables: the exponent ¢ and the
amplitudes gy, 1o, defined by the relations

3
e=y—1, Kg=ugvp, Dy= gouovp. (10)
They are convenient, in particular, because the equal-time correlation function

DuK) = [ 2 D(e,k) o g0k (1)
involves the parameters g, ¢, while the dispersion law
w(k) o« ugrpk®~" (12)

is expressed only via uy, 77.
The choice 7 # 0 can be justified by the ideas of self-organized criticality (SOC),
according to which the evolution of a sandpile surface is not an ordinary diffusion-type

2 Detailed discussion of fractional derivatives can be found in [21].
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process but involves several discrete steps: expectation period, reaching a threshold, and
avalanche, see, e.g., [31-33].

Thus, according to [32], self-organized critical dynamical systems give rise to the
so-called 1/ f* noise because the characteristic size of an avalanche is related to its lifetime
via a power law s o t1*7, where the exponent 1 is the rate at which the event propagates
across the system, see also, e.g., Section 1.3.2 in the book [31] and papers [33,34]. In
the w-k representation, this corresponds to the dispersion law (12) with the exponent
7 = (14+29)/(1+ ). Itis also worth noting that the 1/ f* noise appears also in models of
random walks in random media, see, e.g., [14,15].

The model (9) includes two special cases interesting on their own. In the limit 1y — oo
and g, = g0/ 1o fixed, the function D(w, k) becomes independent of the frequency w, and
the field (t, x) becomes white in time. Indeed, one obtains in the (t-k) representation

D(t—t,k) = 6(t —t') ghvd k=24, (13)

Here, the exponent 0 < (e — 1) < 2 plays a role of a Holder’s exponent that measures
“roughness” of the field h (“Batchelor limit” (¢ — #7) — 2 corresponds to a smooth field).
In the limit uy — 0 and go fixed, the function Dy, (k) in (11) remains finite, so that (9)
tends to
Dy (w, k) = mé(w) gova k™97, (14)

which corresponds to the time-independent (quenched or frozen) field k. Surprisingly

enough, for ¢ = 4 — d, this reproduces the model (4) and (6) where one has D, « é(w)/ k*.

Substituting the gravitational force (3) with the random height field from (7) and (8)

into the Fokker-Planck equation (2) turns the latter into a stochastic equation in its own
right. It has the form

010 = 19?0 + Ag0;(09;h) + f, (15)

where the random field 6(¢, x) can be interpreted as the density of walking particles, while
the role of the (deterministic) probability distribution function P(t,x) is now conveyed to
the linear response function, see Equation (44) in Section 5.

This completes formulation of the problem.

3. Field-Theoretic Formulation and Renormalization of the Model

According to the general theorem (see, e.g., Section 5.3 in the monograph [35]), the
full stochastic problem (8) , (15) is equivalent to the field-theoretic model for the doubled
set of fields ® = {¢’, I/, 0, h} with the de Dominicis-Janssen action functional:

S(®@) =6 [fate 10 + /\oai(eaih)] S, (1), (16)
1
Sy, 1) = WDyl +1f [—at + xokzﬂ h. (17)

Here, Dy is the correlator (8), 6 is the density field, & is the height field, and ¢’, i’ are
the corresponding Martin-Siggia—Rose response fields; all the needed integrations over
their arguments x = {t,x} and summations over repeated indices are implied. The field-
theoretic formulation means that various correlation and response functions of the original
stochastic problem are represented by functional averages with the weight exp S(®). The
field /' can easily be removed by Gaussian integration, then S;,(I’, h) would be replaced
with Sy, (h) = —hD,, 11/2 with Dy, from (9), but the expanded representation (17) is more
convenient for the renormalization purposes. The constant Ay can be removed by rescaling
of the fields h, i’ and other parameters. Thus, in the following, with no loss of generality,
weset Ag = 1.

The model (16) and (17) corresponds to Feynman diagrammatic technique with bare
propagators (6'0), (hh)o, (W'h)o (the latter does not enter into relevant diagrams) and the
only vertex 6/9;(60;h).
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It is well known that an analysis of ultraviolet (UV) divergences is based on an analysis
of canonical dimensions, see, e.g., [35] (Sections 1.15 and 1.16). In contrast to conventional
static models, dynamic ones have two independent scales: a time scale [T] and a spatial
scale [L], see [35] (Sections 1.17 and 5.14). Thus, the canonical dimension of any quantity F
(a field or a parameter) is determined by two numbers: the frequency dimension d¥ and
the momentum dimension d%:

[F) ~ [T] (L)%,
The dimensions are found from obvious normalization conditions
dy=—di=1, df=d¢ =0, d =df=0, d9=—-dy=1

and from the requirement that all terms in the action functional be dimensionless with
respect to both the canonical dimensions separately. The total canonical dimension is
defined as dr = d]f: +2d¥ (the coefficient 2 follows from the relation 9; o 92 in the free
theory). In the renormalization procedure, dr plays the same role as the conventional
(momentum) dimension does in static models, see Section 5.14 in [35].

Canonical dimensions of all the fields and parameters of our model are given in Table 1.
It also involves renormalized parameters (without subscript “0”) and the reference mass ,
an additional parameter of the renormalized theory; they all will appear later on.

Note that for the fields ¢, 6 all these dimensions can be unambiguously defined only
for the product 6’6. Formally, this follows from the invariance of the action functional (16)
under the dilatation 6’ — A¢’, 6 — A~16.

Table 1. Canonical dimensions for the action functional (16) and (17).

F 0’0 W h Vo, V g0 uy g u pum
% d d+2 -2 -2 e " 0 1
d%" 0 -1 1 1 0 0 0 0
dr d d 0 0 € 1 0 1

As can be seen from Table 1, the model becomes logarithmic (both coupling constants
0, o become dimensionless) for 7 = y = 0 (or equivalently for ¢ = y = 0) and arbitrary d.?
According to the general strategy of renormalization, the exponents 7, y, or € that “measure”
the deviation from the logarithmicity should be treated as formal small parameters of the
same order. The UV divergences manifest themselves as singularities at y — 0, etc., in the
correlation functions; in the one-loop approximation, they have the form of simple poles.

The total canonical dimension of a certain 1-irreducible Green’s function is given by

dr = (d + 2) - chchp, (18)
(o]

where Ng are the numbers of the fields ® = {6',///, 6, h} entering the Green’s function and
dg are their total canonical dimensions.

The formal index of divergence dr is the total dimension of the Green'’s function in the
logarithmic theory (y = 1 = 0), that is, or = dr|,—;=o. Superficial UV divergences, whose
removal requires introducing counterterms, can be present in the Green’s function I' if r is
a non-negative integer.

3 Although ujg is not an expansion parameter in perturbation theory, its renormalized counterpart is dimension-

less, enters into renormalization constants and RG functions, and should be treated on equal footing with gp.
We also recall that A = 1.
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When analyzing the divergences in the model (16) and (17), the following addi-
tional considerations should be taken into account, see, e.g., [35] (Section 5.15) and [36]
(Section 1.4).

(i) For any dynamic model of this type, all the 1-irreducible functions without the
response fields contain closed circuits of retarded propagators (06’)( and vanish. Thus, it is
sufficient to consider the functions with Ny + Ny > 1.

(ii) For all non-vanishing functions, Ny¢ = Ny (otherwise no diagrams can be con-
structed). Formally, this is a consequence of the invariance of the action functional (16) with
respect to dilatation 8’ — A6, 0 — A~16.

(iii) Using integration by parts, one derivative in the vertex can be moved onto the
field ¢/, i.e., 0'0;(60;h) ~ —(9;0")(9;h)0. Thus, in any 1-irreducible diagram, each external
field 0’ or I’ “releases” the external momentum, and the real index of divergence decreases
by the corresponding number of units, i.e., ' = 6 — Ny — Nj,. Furthermore, these fields
enter the counterterms only in the form of spatial gradients. This observation excludes the
counterterms 0'9;0 and (6'6)?, the latter allowed by the formal index for d < 2.

(iv) Tt is clear that the fields €', § do not affect the statistics of the field k. In the field-
theoretic terms, this “passivity” means that any 1-irreducible Green'’s function with Ny = 0,
Np > 0, and Nj, + Njy > 0 vanishes: no corresponding diagrams can be constructed.

Taking into account these considerations, one obtains:

§=(d+2)—d(Ng+Ny), & =(d+2)—(d+1)Nyg — N, —dNy (19)

(we recall that Ny» = Ny, so that only Ny is indicated).

Then, the straightforward analysis shows that the superficial divergences in our model
are present only in the 1-irreducible functions (6'6) and (0'6h), and the corresponding
counterterms necessarily contract to the forms 6'9%0 (6 = 2,8’ = 1) and (9,0)(9;)60 (6 = 2,
8" = 0). Such terms are already present in the action (16), which means that our model (16)
and (17) is multiplicatively renormalizable with only two independent renormalization
constants Z; and 7.

The renormalized action has the form

Sg(®) = ¢’ [—ate + Zvd0 + zza,-(eaih)} + S (I, h), (20)

which is naturally reproduced as renormalization of the field / and the coefficient vy; no
renormalization of the product 06’ is needed:

Vo = VZV, ZV = Zl/ Zh = Zz, Zgg/ =1. (21)

The functional (17) is not renormalized, Syr(h',h) = S;, (I, k), but it should be ex-
pressed in renormalized variables, taking into account Equations (8) and (9):

80 = 8WZg, ug=upZy, Ko =xZy, (22)

where the renormalization mass y is introduced so that renormalized couplings g and u are
completely dimensionless. Then, it follows from the absence of renormalization of S, that

ZyZy =1, ZhZeZ,Z3=1, Z,Z,=Z.=1. (23)
Along with (21), this finally gives the following relations:
Zo=2327", Z,=12{', Z,=12,. (24)

We calculated the renormalization constants Z; and Z; in the leading one-loop approx-
imation (the first order of the perturbative expansion in g). It is sufficient to find them for
n = 0, because the anomalous dimensions in the minimal subtraction (MS) renormalization
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scheme are independent of the parameters such as 77 and y, while the exponent y alone
provides UV regularization. Then, one obtains:

1
(u+1)%’

Gy (u—1)
2d (u+1)2

_,_8 _1.8G
7, =1 y , ZZ*Hyzd (25)

with the higher-order corrections in g. Here, C; = S;/(27)%, S; = 27?2 /T(d/2) is the
surface area of the unit sphere in d-dimensional space. It is convenient to absorb overall
factors into the coupling constant g, which gives

1

8 (-1 1.8
Z1=1 y(u+1)2' Z2—1+y(u+1)2. (26)

For 7 # 0, the expressions (25) and (26) would be infinite sums, see, e.g., [37].

4. RG Equations, RG Functions, and Fixed Points

Because our model is multiplicatively renormalizable, the corresponding RG equations
are derived in a standard fashion. In particular, for a certain renormalized (full or connected)
Green’s function WX, the RG equation reads

{DM + Bg9g + Pudu — 1Dy — ZN<1>’Y<1>} WR(g,u,v,;...) =0. (27)
3

Here, the ellipsis stands for other variables (times and coordinates or frequencies
and momenta), dy = 9/9x, Dy = x0dy for any variable x, and the sum runs over all fields
®={0',1,0,h}.

The coefficients in the RG differential operator (27)—the anomalous dimensions y and
the B functions—are defined as

Yo = ZSH InZ, forany «, B¢= 5;4 S Bu= 5;; u, (28)

where ﬁﬂ is the differential operation D, at fixed bare (unrenormalized) parameters, see,
e.g., Sections 1.24 and 1.25 in the monograph [35].
From (21)—(24) and definition (28), it follows that
Yoo =0, 1= =72 V=220 Y= o= S (29)
Bs =gl—e =gl Bu=ul-1—i. (30)

From (30) and the one-loop result (26), one obtains

u—1 1
T :gm/ Y2 = —gm, (31)
2 —1
pe=s|-ersgamg) s )

with the higher-order corrections in g.

The IR asymptotic behavior of the Green’s functions is determined by IR attractive
fixed points of the corresponding RG equations. The coordinates of fixed points g*, u* are
found from the requirement that all the § functions vanish simultaneously:

Bs(8™ u®) = Pu(g”,u") =0. (33)

The type of a fixed point is determined by the matrix of derivatives Q);; = 9;8;(¢")
at the given point g; = {g, u}: for an IR attractive point, all the eigenvalues should have
positive real parts.
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An analysis of the expressions (32) reveals four fixed points:
(i) Gaussian (free) fixed point:

=0, u" =0 (34)
(i) Nontrivial fixed point:
o 20e-m)? L
8 = e—2y ' " Ce—2y (35

The point (i) is IR attractive for ¢ < 0,7 < 0, while the point (ii) is IR attractive for
e>0,7 <e/2

Two more points are found in the following way. In order to explore the limiting case
u — oo with g/u fixed, we have to pass to new variables: g’ = ¢/u and w = 1/u. For this
case, we obtain

ﬁg/=g’[v—e+wi1], ﬁw=w{n+g’ﬁ} (36)

Finding the zeros of the B functions, we find two additional fixed points:
(iii) Gaussian (free) fixed point:

§ =0, w' =0 37)
(iv) Nontrivial fixed point:
¢ =e—y, w'=0. (38)

The point (iii) is IR attractive if e > 0,¢/2 < < ¢, and the point (iv) is IR attractive if
e<0,7>00re>0,7>e¢

The general stability pattern of the fixed points in the e plane is shown in Figure 1.

In the one-loop approximation, the regions of IR stability for all the points are given
by sectors that cover the full plane without gaps or overlaps between them.

Figure 1. Regions of stability of the fixed points (i)-(iv).

Some remarks are in order. Clearly, the Gaussian points correspond to cases in which
the dynamics of the field 0 are not affected by the statistics of the height field / (only in
the leading order of the IR asymptotic behavior!). In these cases, we deal with an ordinary
random walk.



Universe 2023, 9, 139

9of 12

The point (iv) corresponds to the limiting case (13) when the field &, in comparison
with 6, behaves as if it was J correlated in time.

However, we did not find a nontrivial point that would correspond to the frozen
limit (14). This follows from the fact that the function B¢ in (32) becomes trivial for
u — 0: Bo = —eg. A similar triviality was observed earlier in models of diffusion in
time-independent potential vector fields where it was shown to be exact in all orders of
perturbation theory [18,19]. Because those models have a close formal resemblance with
the limit (14) of our model and its special case (4) and (6), we believe that in the latter cases
By is also trivial exactly.

5. Critical Dimensions and Scaling Behavior

The existence of IR attractive fixed points of the RG equations implies the existence of
the scaling behavior of the correlation functions in the IR range.

In dynamical models, the critical dimension of any quantity F (a field or a parameter)
is given by the expression (see, e.g., Sections 5.16 and 6.7 in [35] and Section 2.1 in [36])

Ap =d5 4+ Apd¥ + 95, Ao =2—7} (39)

(with the standard normalization convention that A, = —Ax = 1). Here and below, ¢*
denotes the value of the anomalous dimension - at a fixed point.
For the Gaussian points (i) and (iii), one has

Ngg=d, Ay =2. (40)
For the fixed point (ii), one obtains the exact results from the relation (29) and definition (30):
AG’@ = d, Aw =2 . (41)

As already mentioned, the point (iv) corresponds to the limit (13), where the propaga-
tor (hh)o becomes d-correlated in time. As a result, closed circuits of retarded propagators
(60")( appear in almost all diagrams relevant for a renormalization procedure and they
therefore vanish. The only exception is the one-loop diagram contributing to Z;. Thus,
one has Z, = 1 identically, while Z; is given exactly by the one-loop expression, cf. the
discussion of Kraichnan’s rapid-change model of passive scalar advection [38]. Then, one
readily derives the exact expressions for the critical dimensions:

AQ’G = d, Aw = 2—8+17 (42)

As an illustrative application, consider the mean-square distance of a random walker
on a rough surface. For such a particle that started moving at ¢t = 0 from the origin x = 0, it
is given by

R2(t) = / dxx2(6(t,x)8'(0,0)), 43)

where t > 0 is a later time and x is the corresponding current position. Substituting the
scaling representation for the linear response function

P(t,x) = (0(t,x)0'(0,0)) =~ % F(tr~5«) (44)
gives
R2(t) o $ld+2=8gp)/ B (45)

Taking into account the exact relation Agg = d, valid for all fixed points (i)-(iv), one
arrives at the spreading law
R2(t) o 12/ 8, (46)

with the exact expressions A, = 2 for the points (i), (iii), A, = 2 — 7 for (ii), and A, =
2 — e+ 1 for (iv).
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6. Conclusions

We studied a model of a random walk of a particle on a rough fluctuating surface
described by the Fokker—Planck equation for a particle in a constant gravitational field
while the surface was modeled by the (generalized) Edwards—Wilkinson model. The full
stochastic problem, (2), (3), (7) and (8), is mapped onto a multiplicatively renormalizable
field-theoretic model (16) and (17).

The corresponding RG equations reveal two Gaussian (free) and two nontrivial fixed
points, which means that the system exhibits various types of IR scaling behavior (long
times and large distances). Although the practical calculation is confined within the leading
one-loop approximation, the main critical dimensions are found exactly.

As an illustrative example, we considered the mean-square displacement of a walking
particle (in another interpretation, the radius of particles’ cloud). It shows that the particle
is not trapped in a finite area but travels all across the system with a spreading law similar
to the ordinary random walk but, in general, with different exponents, see (46) and the
text below.

As one can see, even a comparatively simple model demonstrates interesting types
of IR behavior. Thus, it is interesting to study more involved situations. There are several
directions for possible generalizations.

Linear stochastic equations such as (4) and (7) (corresponding to Gaussian statis-
tics for the height field) can be replaced by nonlinear models, such as the KPZ [2] or
Pavlik’s [5,8] ones.

Although our expressions (41) and (42) for the critical dimensions are exact, they are
derived within perturbation theory based on the assumption that the expansion parameters
€ and 7 are small. Then, it is supposed that the one-loop pattern of fixed points is qualita-
tively correct. However, in some cases, a crossover in the scaling behavior occurs for finite
values of parameters analogous to € and # [37,39]. In the field-theoretic approach, this effect
can be related to the appearance of composite operators with negative dimensions [37].
This issue requires a special investigation.

On some occasions, the motion of a particle is not an ordinary random walk (1) but is
described, e.g., by Lévy flights, see, e.g., [21]. This possibility is supported by the ideas of
self-organized criticality that the underlying surface evolves via avalanches [31-34], while
the particle can slide upon the surface. If so, it is natural to replace the Laplace operator
in the Fokker—Planck equation (2) with a fractional derivative, —9% ~ k* — K21, with a
certain new exponent 7’

It is especially interesting to include anisotropy (as a consequence of an overall
tilt of the surface). This can be done by describing the field & by the Pastor-Satorras—
Rothman model for an eroding landscape [9,10] or the Hwa-Kardar model of a running
sandpile [40,41].

This work remains for the future and is partly in progress.
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