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Discrete Random Spacetimes:
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Abstract

Within causal set theory, growth dynamics form a novel realisation of the path integral for

quantum gravity. This thesis presents recent developments in growth dynamics, focusing

on general covariance and quantization. In causal set theory, where spacetime takes the

form of a discrete causal set, general covariance takes the form of label-invariance. Here

we present the first manifestly covariant growth dynamics, namely models of random

unlabeled graphs. These models, like their label-dependent predecessors, are classically

stochastic. The decoherence functional offers a stochastic-like formulation of quantum

theory particularly suited to quantum gravity and a proposal for a decoherence functional

for causal sets based on growth dynamics has previously been put forward, but it was

shown to fail in certain cases due to a technical pathology. We provide new criteria for

when the procedure is well-defined and apply these to obtain the first known examples

of quantum dynamics for causal sets. We generalise the construction of the decoherence

functional to a wide class of growth dynamics and discuss its application to dynamics

which give rise to bouncing cosmologies. Finally, we explore whether growth dynamics,

labeled and unlabeled, can accommodate cosmologies in which time has no beginning.
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Preface

The causal set approach to quantum gravity (also known as “causal set theory”) pos-

tulates that spacetime is fundamentally discrete. This leap—motivated by theorems in

Lorentzian geometry [Hawking, 2014; Kronheimer and Penrose, 1967; Malament, 1977],

by the search for a resolution to the infinities of General Relativity and quantum field

theory and by the Bekenstein-Hawking formula for the entropy of black holes—is bold

and holds huge promise to unify General Relativity with quantum mechanics, a problem

described by J.A. Wheeler as the “greatest crisis of physics of all time” [Rees et al., 1974].

In causal set theory, the smooth continuum spacetime of General Relativity is replaced

with a “causal set”—a large collection of discrete “elements” organised by means of

“relations” into a locally finite partial order [Bombelli et al., 1987]. Physically, each

element is a discrete unit of spacetime volume, an event localised in space and time.

The relation, denoted by ≺, is a causal relation, i.e. if elements x and y are related as

x ≺ y then we say “x precedes y” or “x is in the past of y”. In this way, the atomicity

of quantum theory and the causality of General Relativity are married in an underlying

reality which is purely combinatorial and requires no continuum concept to describe it.1

This novel framework is geared towards high (Planckian) energy scales and comple-

ments the continuum methods prevalent in modern theoretical physics, as evidenced by

major successes which reach beyond causal set theory and into other areas of theoretical

physics and cosmology. These include a formulation of quantum field theory [Sorkin,

2011a, 2017] which led to a proposal for a distinguished vacuum state for quantum fields

in curved spacetime [Afshordi et al., 2012; Surya et al., 2019]; insights into quantum

fields on topology-changing spacetimes [Buck et al., 2017] and into entanglement entropy

1It is worth noting that unlike other discretizations (e.g. regular lattice), in causal set theory Lorentz
invariance is preserved in an appropriate sense [Bombelli et al., 2009b; Dowker, 2011].
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[Sorkin, 2014; Sorkin and Yazdi, 2018]; a concrete study of the Hartle-Hawking wavefunc-

tion [Glaser and Surya, 2016]; a proposal which resolves the current tensions between the

different measurements of the cosmological constant [Ahmed et al., 2004; Zwane et al.,

2018]; and a successful prediction for the magnitude of the cosmological constant [Sorkin,

1990]—the only prediction by any quantum gravity theory to be verified so far.

Research in causal set theory explores a host of interrelated themes including2: how

continuum attributes such as geometry, topology, etc. emerge from a causal set on macro-

scopic scales [Bombelli and Meyer, 1989; Bombelli et al., 2009a; Eichhorn et al., 2017,

2019a,b; Major et al., 2007, 2009]; the behaviour of matter fields living on a causal set

[Dable-Heath et al., 2020; Johnston, 2010; X et al., 2017]; phenomenology [Dowker, 2013;

Dowker et al., 2010a]; the causal set action [Benincasa and Dowker, 2010; Buck et al.,

2015; Dowker and Glaser, 2013; Machet and Wang, 2021]; and growth dynamics, pio-

neered in [Rideout and Sorkin, 2000]. This thesis presents a contribution to the latter.

2The following citations are not exhaustive. For a comprehensive review of causal set theory see
[Surya, 2019].
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Chapter 1

Introduction

There are many forks on the road to a theory of quantum gravity. The current state

of play in which quantum matter is coupled to a classical spacetime leaves much to the

imagination and has led to a proliferation of ideas. But a common expectation shared

by many is that spacetime itself should be governed by a quantum dynamics and exhibit

quantum fluctuations on small length scales that would be most keenly felt in regimes of

strong gravity, for example near the singularity of a black hole or in the early universe.

Even with this consensus, the quantization of gravity is plagued with obstructions.

The non-linearity of the Einstein-Hilbert action is an impediment to the operator formal-

ism [Hawking, 1978]; the general covariance of General Relativity hinders the canonical

quantization via the so-called “problem of time” [Carlip, 1990; Isham, 1992]; spacetimes

with exotic topologies do not admit a foliation into spatial hypersurfaces and thus resist

the canonical formalism altogether [Anderson and DeWitt, 1986]; and the observer-based

interpretation of quantum mechanics is incompatible with the regimes we wish to explore

since they host no observers [Bell, 2004].

These struggles have led some to believe that the path integral is the most suitable

framework for a quantum theory of gravity [Gibbons and Turok, 2008; Hawking, 1978;

Sorkin, 1997]. Perhaps its most appealing feature in the context of gravity is its compat-

ibility with general covariance: the integral sums over complete spacetime histories and

therefore does not require a foliation or a distinguished time parameter while covariant

“observables” can be defined independently of observers as attributes of histories. But

8



establishing the path integral as the fundamental foundation of quantum mechanics re-

mains a challenge and in its application to gravity it is not clear which histories should

be contained in the domain of the integral nor whether the integration measure is well-

defined [Gibbons et al., 1978, 1987]. Thus, one may be justified in regarding the path

integral as a guiding principle rather than an exact prescription.

In the causal set approach, where the continuum spacetime of General Relativity is

replaced by a discrete causal set, the path integral is replaced by a “sum-over-histories”

whose precise definition and interpretation pose a momentous challenge. This is the

challenge that the growth dynamics program aims to meet.

A growth dynamics is a probabilistic process in which a causal set comes into being

ex nihilo by accretion of elements. This growth process plays a dual role: it embodies the

sum-over-histories (e.g. by providing a mechanism from which the action is emergent) and

it offers a novel route for accounting for the passage of time within physics [Dowker, 2014,

2020; Norton, 2018; Sorkin, 2007; Wuthrich and Callender, 2017]. Crucially, the growth

does not happen in time—it constitutes the passage of time. The birth of an element

is the happening of that event, while the existence of an element signifies that the event

has already happened. Thus heuristically, the growth process is a physical process whose

phenomenological manifestations is the passage of time.1

Motivated by Quantum Measure Theory—an approach to quantum foundations which

views quantum mechanics as a generalised form of classical stochastic theory [Sorkin,

2012, 1994]—the growth dynamics program has furthered our understanding of the causal

set sum-over-histories by exploiting tools from probability theory, measure theory and the

theory of random walks. Still, many open questions remain and these can be roughly

partitioned into three overarching themes:

What is the domain of the sum-over-histories? The domain of the sum corresponds

to the sample space of the growth process (i.e. to the causal sets which it can

grow). Should it contain “labeled” or “unlabeled” causal sets2? Should it contain

all infinite causal sets or only those which are past-finite?

1While the work presented here is motivated by this interpretation, our results are not contingent on
it.

2We make these notions precise in chapter 2.

9



What is the amplitude by which each history should be weighted? In the Lagrangian

formulation of dynamics, it is the role of the action to pick out the histories which

best describe physical reality. In the growth dynamics framework, this role is played

by the transition probabilities which govern the stochastic growth of the causal

set. How should these transition probabilities be constrained to obtain physical

dynamics? And how can these transition probabilities be generalised into transition

amplitudes so that the resulting dynamics exhibits quantum interference?

What are the physical observables? In the growth framework, the observables are

sets of histories (known in the probability literature as “events”). While these can

be formally defined as elements of a σ-algebra, it is a challenge to seek out their

physical interpretation in a setting where key concepts such as “local” and “global”

are up for debate.

1.1 Synopsis

This thesis presents recent developments in growth dynamics for causal sets, focusing

on general covariance and quantization. In chapter 2 we discuss how label-invariance

plays the role of general covariance in causal set theory, and introduce some terminology

which will underpin the discussion in the subsequent chapters. In chapter 3 we review

the Classical Sequential Growth (CSG) models, with emphasis on three key features

which will serve as foundation for the new work presented thereafter: label-dependence,

observables and cosmic renormalisation. In chapter 4, building on the discussion of

label-invariance as general covariance and of observables in CSG models, we present the

first manifestly covariant (label-independent) growth dynamics and extend the cosmic

renormalisation to these new models. The covariant models, like their label-dependent

predecessors, are classically stochastic. The decoherence functional offers a stochastic-like

formulation of quantum theory particularly suited to quantum gravity and a proposal for

a decoherence functional for causal sets based on the CSG models has previously been

put forward, but it was shown to fail in certain cases due to a technical pathology. In

chapter 5 we provide new criteria for when the procedure is well-defined, apply these

10



to obtain the first known examples of quantum dynamics for causal sets and generalise

the construction of the decoherence functional to a wide class of growth dynamics. In

chapter 6, motivated by cosmic renormalisation, we identify a class of observables within

classical labeled dynamics which give rise to bouncing cosmologies and apply our results

from the previous chapter in discussing the quantization of these models. In chapter 7, we

explore whether growth dynamics, labeled and unlabeled, can accommodate cosmologies

in which time has no beginning. We conclude in chapter 8. Glossaries of causal set and

measure theory terminology are provided in appendices A.1 and A.2.
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Chapter 2

Labels and label-invariance

In causal set theory—where the continuum spacetime of General Relativity is replaced

by a discrete causal set—spacetime points and their coordinates are replaced by causal

set elements and their “labels”. Thus, Einstein’s struggle between the formulation of

generally covariant laws of nature and the intrinsic (in)distinguishability of spacetime

points [Rovelli, 1991; Schilpp, 1949; Stachel, 2014] manifests in causal set theory as tension

between label-dependence and label-independence. This tension can be expressed via a

myriad of interrelated questions: What is the physical status which one should assign to

the causal set elements and to their labels? Should we conflate the “label” of an element

with the “intrinsic identity” of an element or should they be considered separately? What

are the precise mathematical concepts which are best suited for formulating a physical

theory of causal sets? In particular, could the theory be formulated without any reference

to “labels”?

Mathematically, the elements of a causal set are distinguishable (in so far as a causal

set is a set) and the notion of labeling these elements appears in pure mathematics and in

its applications, including in causal set theory where labels naturally arise within the Clas-

sical Sequential Growth models of [Rideout and Sorkin, 2000]. Physically, it is a postulate

of causal set theory that no information is contained in any individual identity or label of

the elements, so that stripped from ordering the elements are physically indistinguishable.

This combination of label-dependent mathematics and label-independent physics led to

understanding general covariance within causal set theory as label-invariance [Brightwell
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et al., 2002, 2003; Rideout and Sorkin, 2000].

This chapter is dedicated to choosing the right concepts for the discussion of general

covariance in causal set theory. We review the evolution of the relevant concepts through

the literature (section 2.1) and present the definitions coined by the author of this thesis

and her collaborators during their work (section 2.2). These definitions will form the

basic vocabulary for the remainder of this thesis.

2.1 A brief history of labelings

A partial order is a pair, (Π,≺), where ≺ is a transitive, irreflexive relation on the ground-

set Π. A linear order (also known as a total order) is a partial order in which any two

elements are comparable. In the following, we use� to denote a linear order on a generic

ground-set and reserve the use of < to denote the usual linear order on the integers.

A “labeling” of a set Π is a mapping λ from Π to an index set I. When Π carries

additional structure, it may be desirable that the labeling reflect this additional structure.

In particular, when labeling a partially ordered set (Π,≺) one often endows the index set

with a total order � and requires that the labeling is order-preserving, i.e. x ≺ y =⇒

λ(x) � λ(y) ∀x, y ∈ Π. In this way, the labeling extends the partial order into a linear

order and thus can be thought of as a “linear extension”. We now survey the usage

of the terms “linear extension” and “labeling” in the relevant mathematics and physics

literature.

Perhaps the simplest definition of linear extension is,

Definition 2.1.1 (Linear extension (definition 1)). A linear extension of a partial order

(Π,≺) is a linear order (Π,�) such that x ≺ y =⇒ x� y ∀x, y ∈ Π [Alon et al., 1994;

Brightwell, 1994].

Definition 2.1.1 can be abstracted by allowing the ground-set of the linear order to be

any set I satisfying |I| = |Π|. In this case the term “linear extension” does not refer to

the linear order (I,�) but to an order-preserving bijection from (Π,≺) to (I,�),

Definition 2.1.2 (Linear extension (definition 2)). A linear extension of (Π,≺) is a
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bijection λ from Π to some linear order (I,�) such that x ≺ y =⇒ λ(x)� λ(y) ∀x, y ∈

Π [Brightwell, 1988].

Therefore, we can think of a linear extension as a labeling by a totally ordered index

set. A special case of the linear extension is the “natural extension”, or “natural labeling”

as it is known in the physics literature,

Definition 2.1.3 (Natural labeling). A natural labeling or natural extension is a bijection

λ from Π to the linear order (N, <) such that x ≺ y =⇒ λ(x) < λ(y) ∀x, y ∈ Π

[Brightwell and Luczak, 2011].

In words, a natural labeling is an enumeration of the causal set elements which respects

the partial order ≺. It is worth noting that a natural labeling is sometimes defined as a

mapping from N to Π so that its inverse is order-preserving.

The notion of natural labeling is a useful one and can be adapted to partial orders

of finite cardinality n by replacing (N, <) with one of the ordered intervals ({1, ..., n}, <)

or ({0, 1, ..., n− 1}, <). The former is common in the mathematics literature [Brightwell

and Winkler, 1991] while the latter is common in the physics literature [Brightwell et al.,

2003; Rideout and Sorkin, 2000]. We leave discussion of partial orders which are not of

order-type N (e.g. (Z, <)) to chapter 7.

Equipped with the notion of labeling, one may use the term “labeled partial order”

to mean a partial order together with a natural labeling of it [Brightwell et al., 2003],

which suggests that we should think of a labeled partial order as a triple (Π,≺, λ). In

practice, one often discusses labeled partial orders without specifying the ground-set Π by

repackaging the information contained in the order relation ≺ and the natural labeling λ

into a partial order on a set of natural numbers. For example, if |Π| = |N| and λ : N→ Π

then the corresponding labeled partial order is given simply as the partial order (N,≺λ),

where x ≺λ y ⇐⇒ λ(x) ≺ λ(y) [Ash and McDonald, 2003; Brightwell et al., 2003;

Sorkin, 2011b].

The term “unlabeled partial order” is borrowed from graph theory and means that

the elements of the partial order are indistinguishable when stripped of the relation

≺. Therefore, an “unlabeled partial order” is not in fact a partial order but an order-

isomorphism equivalence class of partial orders. Which partial orders are contained in a
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given equivalence class depends on one’s universe of discourse (e.g. partial orders on a

specified ground-set).

2.2 Labeled causets, orders and their stems

We now present the terminology distilled by the author and her collaborators for the

purpose of discussing general covariance in causal set theory in a way which is both

mathematically precise and physically clear. This is the vocabulary used in the remainder

of this thesis, unless specified otherwise.

Recall that a causal set (or causet) is a locally finite partial order. For any natural

number n, let [0, n] denote the set {0, 1, ..., n} (devoid of any ordering).

Definition 2.2.1 (Labeled causet). A labeled causet is any causet ([0, n],≺) or (N,≺)

satisfying x ≺ y =⇒ x < y.

Definition 2.2.2 (n-causet). An n-causet is a labeled causet of cardinality n.

Given some n > 0, we denote the set of n-causets by Ω̃(n). The set of finite labeled

causets is denoted by Ω̃(N), i.e. Ω̃(N) :=
⋃
n>0

Ω̃(n). The set of all infinite labeled causets

is denoted by Ω̃.

Our universe of discourse contains all labeled causets and their subcausets. (Note that

a subcauset of a labeled causet is not necessarily a labeled causet because its ground-set

may not be an interval of integers of the form {0, 1, ..., n}.) We denote labeled causets

and their subcausets by capital Roman letters with a tilde, e.g. C̃. We often (but not

always) use a subscript to denote the cardinality of an n-causet, e.g. C̃n.

Definition 2.2.3 (Order). An order (or “unlabeled causet”) is an order-isomorphism

equivalence class of labeled causets.

We denote orders by capital Roman letters without a tilde. Given an order, the Hasse

diagrams of its representatives differ from each other only by the labeling of nodes (i.e.

they are graph-isomorphic). Therefore, we represent an order by a Hasse diagram without

node labels (Fig.2.1).
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Figure 2.1: C̃ and C̃ ′ are order-isomorphic labeled causets. Each is a representative of the
order C, shown on the right as a Hasse diagram without labels.

Definition 2.2.4 (Cardinality of an order). The cardinality of an order is defined to be

the cardinality of a representative of it.

We denote the cardinality of an order C by |C|.

Definition 2.2.5 (n-order). An n-order is an order of cardinality n.

In other words, an n-order is an order whose representatives are n-causets. We often

(but not always) use a subscript to specify the cardinality of an n-order, e.g. Cn.

We use Ω(n), Ω(N) and Ω to denote the set of n-orders, the set of finite orders and the

set of infinite orders, respectively. Note that these are equivalent to the quotient spaces

Ω̃(n)/ ∼=, Ω̃(N)/ ∼= and Ω̃/ ∼=, where ∼= denotes equivalence under order-isomorphism.

In similarity to the way an order “inherits” the cardinality of its representatives, the

width and height of an order are defined to be those of its representatives. Likewise, an

order is future-finite if its representatives are future-finite etc. We may also refer to an

element of an order, meaning an element of a representative of it—the meaning should

be clear from the context.

Finally, we discuss the “stems” of labeled causets and extend the concept of “stem”

to orders. A stem in a labeled causet C̃ is a finite subcauset D̃ ⊆ C̃ which contains its

own past, i.e. if x ∈ D̃ and y ≺ x in C̃ then y ∈ D̃. In particular, for any finite integer

n satisfying 0 ≤ n ≤ |C̃|, the restriction C̃|[0,n] is a stem in C̃.1

Definition 2.2.6 (Stems). A finite order S is a stem in the order C if there exists a

representative of S which is a stem in some representative of C. When S is a stem C,

we may also say that S is a stem in any representative C̃ of C.

1C̃|[0,n] denotes the restriction of C̃ to the interval [0, n].
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Hence, the meaning of “stem” depends on the context (Fig.2.2).

Figure 2.2: Labeled causets C̃, S̃ and L̃ are representatives of orders C, S and L, respectively.
S̃ is a stem in C̃. L̃ is not a subcauset of C̃ so it is not a stem in C̃. S and L are stems in C̃
and in C.

Definition 2.2.7 (n-stem). An n-stem is a stem of cardinality n.

In the literature, a “rogue” is a causet which cannot be fully specified by its stems

[Brightwell et al., 2003]. We can rephrase this definition using our terminology: an infinite

causet C̃ ∈ Ω̃ is a rogue if there exists some D̃ ∈ Ω̃ such that C̃ 6∼= D̃ and S ∈ Ω(n)

is a stem in D̃ if and only if S is a stem in C̃. In that case we say that C̃ and D̃ are

“equivalent rogues” or a “rogue pair”. The term “rogue” can also be used to describe

orders: we say that an order is a rogue if its representatives are rogues. Equivalently, C

and D are a rogue pair when S ∈ Ω(n) is a stem in D if and only if S is a stem in C

(Fig.2.3). Rogue equivalence, denoted by C ∼R D, is an equivalence relation on Ω.

Figure 2.3: C is a countable union of 2-chains and D is the union of C with a single unrelated
element. C and D have the same stems—any union of finitely many 2-chains and a finite,
unrelated antichain—hence, C and D are equivalent rogues.
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Chapter 3

CSG models: a modern review

Classical Sequential Growth (CSG) models are the archetype of growth dynamics for

causal sets. They are inspired by the notion of becoming, namely that the causal set

“comes into being” through a sequential accretion of elements, somewhat akin to a tree

growing at its tips. Since their introduction in [Rideout and Sorkin, 2000], they have

been the subject of much further study and have proved to be a fruitful arena in which

to explore pertinent questions, including those relating to general covariance [Brightwell

and Luczak, 2011, 2012] and generally covariant observables [Brightwell et al., 2002, 2003;

Dowker and Surya, 2006]; causality [Dowker and Surya, 2006; Varadarajan and Rideout,

2006]; the continuum approximation [Brightwell and Georgiou, 2010; Rideout and Sorkin,

2001]; quantal dynamics [Dowker et al., 2010c]; the nature of time [Dowker, 2014, 2020;

Sorkin, 2007; Wuthrich and Callender, 2017]; and cosmology [Ahmed and Rideout, 2010;

Ash and McDonald, 2003, 2005; Bombelli et al., 2008; Dowker and Zalel, 2017; Martin

et al., 2001; Sorkin, 2000].

This chapter is a modern review of the CSG models. We introduce the CSG models

(section 3.1), collate their representations (section 3.2) and present examples and varia-

tions (section 3.3). We then review the construction of covariant observables (section 3.4)

and of cosmic renormalisation (section 3.5). This chapter relies on the terminology es-

tablished in chapter 2 (section 2.2) and serves as a foundation for the new work presented

in chapters 4-7.
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3.1 Key features

Classical Sequential Growth (CSG) models are models of causal set growth in which

causal set elements are born sequentially (i.e. one after the other, in a sequence) and

form relations with each other according to model-dependent classical probabilities (i.e.

according to probabilities which obey the usual rules of probability theory so that the

model is classically stochastic and does not display quantum interference effects). Each

CSG model is encoded in a countable set of coupling constants from which the probabil-

ities can be computed. The functional form of the probabilities ensures that the models

satisfy mathematical constraints motivated by general covariance and local causality,

earmarking the CSG models as interesting models for cosmology.

The growth process: A CSG process is made up of stages. Starting with a single

element, at each stage a new element is born. The stages are labeled by the strictly

positive integers, 1,2,3,... At the beginning of stage n, the growing causet contains n

elements. In the limit n→∞, the process generates an infinite causal set.

The ground-set: For concreteness, we choose the initial element to be the integer 0,

and we choose the element born at stage n to be the integer n. Namely, one starts with a

causet containing the single element, 0. During stage 1, a new element—the integer 1—is

born. At the subsequent stage, the element 2 is born, etc., so that by the end of stage n

the causet has the ground-set {0, 1, ..., n}. In the limit n→∞, the process generates an

infinite causal set with ground set N.

Internal temporality: CSG models satisfy the condition of “internal temporality”

which states that an element cannot be born to the past of an already-existing element.

Physically, the birth of an element is the happening of an event, while the existence of an

element signifies that the event has already happened. Internal temporality reflects the

intuitive notion that an event cannot happen before an event in its causal past happens.

Labeled Causets: Our choice of ground-set together with the condition of internal

temporality mean that CSG models grow labeled causets: the process produces an n-
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causet by the beginning of stage n and an infinite labeled causet in the n→∞ limit.

Parents, children and stems: We can think of stage n as a transition between labeled

causets: C̃n → C̃n+1. We call C̃n and C̃n+1 the “parent” and the “child”, respectively.

Internal temporality is equivalent to requiring that the parent be a stem in the child.

Thus, each child has a unique parent. A parent has as many children as it has stems

since for each stem S̃ ⊆ C̃n there exists a unique child in which past(n) = S̃.

The transition probabilities: Given some parent-child pair, C̃n and C̃n+1, each CSG

model furnishes an answer to the question “What is the probability P(C̃n → C̃n+1) to

transition from C̃n to C̃n+1?” via the following relations,

P(C̃n → C̃n+1) =
λ($,m)

λ(n, 0)
, (3.1)

λ(k, p) :=

k−p∑
i=0

(
k − p
i

)
tp+i, (3.2)

where $ and m are the number of relations and links, respectively, formed by the new-

born element and (t0 > 0, t1, t2, ...) is an infinite sequence of real non-negative couplings

which defines the specific CSG model. An illustration is given in figure 3.1. The probabil-

ity P(C̃n) of growing the n-causet C̃n by the beginning of stage n is equal to the following

product of transition probabilities,

P(C̃n) =
n−1∏
i=1

P(C̃i → C̃i+1), (3.3)

where for each i, C̃i is the unique parent of C̃i+1.

Figure 3.1: An illustration of the CSG transition probabilities. A transition between a parent
and its child is shown. During the transition, the element n = 5 is born. It forms m = 2 links
(with elements 2 and 3) and $ = 4 relations (with elements 0,1,2 and 3). Thus the probability

for the transition is equal to λ(4,2)
λ(5,0) , as given by equation (3.1).
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General covariance and causality: The CSG transition probabilities (3.1) are ex-

actly the transition probabilities which satisfy both the “discrete general covariance”

and the “Bell causality” conditions, discrete analogues of general covariance and local

causality. “Discrete general covariance” is a label-invariance condition which states that

order-isomorphic n-causets are equally likely to be grown by the process,

C̃n ∼= C̃ ′n =⇒ P(C̃n) = P(C̃ ′n). (3.4)

The “Bell causality” condition is a generalisation of Bell’s local causality condition [Bell,

2004] to a discrete framework in which the causal structure is itself dynamical. It states

that a transition probability can depend only on the past of the element which is born in

the transition and takes the form of an equality between ratios of transition probabilities,

P(C̃n → C̃n+1)

P(C̃n → C̃ ′n+1)
=

P(B̃l → B̃l+1)

P(B̃l → B̃′l+1)
, (3.5)

where B̃l+1, B̃′l+1 and B̃l are obtained from C̃n+1, C̃ ′n+1 and C̃n, respectively, by removing

the “spectators” (elements which are unrelated to the new-born element in both tran-

sitions C̃n → C̃n+1 and C̃n → C̃ ′n+1) and relabeling consistently to form a new pair of

transitions, B̃l → B̃l+1 and B̃l → B̃′l+1 . An example is shown in figure 3.2. While

B̃l+1, B̃′l+1 and B̃l will depend on our choice of relabeling, the right hand side of (3.5) is

label-independent when discrete general covariance holds.

A CSG model as a random walk: A CSG model can be viewed as a random walk

up “labeled poscau”, the partial order of finite labeled causets where each child is directly

above their parent,

Definition 3.1.1 (Labeled poscau). Labeled poscau is the partial order (Ω̃(N),≺), where

S̃ ≺ R̃ if and only if S̃ is a stem in R̃.1

The first three levels of labeled poscau are shown in figure 3.3. A CSG model is a

directed random walk on labeled poscau with transition probabilities of the form (3.1).

1We use the symbol ≺ to denote the relation for several different partial orders in this work. The
meaning of ≺ in each case is to be inferred from the context.
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Figure 3.2: An illustration of the Bell causality condition. The parent C̃7 and two of its
children are shown on the top line. From these, the parent B̃6 and two of its children, shown on
the bottom line, can be constructed by removing the spectators (in this example, the element
4 is the only spectator) and relabeling. The new-born element in each child is shown in white.
The past of the new-born element in each transition is shown in red.

Figure 3.3: The first three levels of labeled poscau. The random walk starts at the root and
proceeds upwards.
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3.2 Parameterisations

The t-parameterisation: A CSG model can be parameterised by a countable sequence

of real non-negative couplings (t0, t1, t2, ...) satisfying t0 > 0 from which the transition

probabilities can be computed via equations (3.1)-(3.2). This is a projective parameter-

isation, since any two sequences related by an overall positive factor, (tk) = c(t′k), yield

the same transition probabilities and thus parameterise the same model [Martin et al.,

2001]. For simplicity, we often fix t0 = 1.

This parameterisation has a meaningful interpretation in the context of growth: at

stage n, a subset R̃ ⊆ C̃n is selected with relative probability t|R̃| and the new element

n is put above all elements which are below or equal to some element in R̃. R̃ acts as a

“proto-past” from which the past of n is constructed and the transition probabilities (3.1)

reflect this: the numerator is a sum over all proto-pasts which contribute to a particular

transition C̃n → C̃n+1 while the denominator sums over the proto-pasts which contribute

to all possible transitions from the parent C̃n. An illustration is shown in figure 3.4.

Figure 3.4: A pictorial representation of transition probability (3.1). Each diagram on the
right hand side represents a proto-past R̃ (shown in white) and contributes a factor of t|R̃|. The
numerator is a sum over all proto-pasts which contribute to the transition on the left hand side.
The denominator sums over all possible proto-pasts.

The q-parameterisation: A CSG model can be parameterised by a countable sequence

(q0, q1, q2, ...) related to (t0, t1, ...) via a binomial transform,

1

qn
=

n∑
k=0

(
n

k

)
tk,

tk =
k∑

n=0

(−)k−n
(
k

n

)
1

qn
.

(3.6)
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The qn are strictly positive2 and each qn is bounded from above by a function of q0, q1, ..., qn−1.

This is a projective parameterisation. When fixing t0 = q0 = 1, qn is the probability to

transition from the n-antichain to the (n+ 1)-antichain [Rideout and Sorkin, 2000].

The p-parameterisation: A CSG model can be parameterised by a countable sequence

(p1, p2, ...) related to (t0, t1, ...) via,

pm =

∑m
k=1

(
m−1
k−1

)
tk

λ(m, 0)
. (3.7)

The pm satisfy 0 ≤ pm < 1 and each pm is bounded from below by p1, ..., pm−1 (e.g.

p2 ≥ p1
p1+1

). pm is the probability of transition from the m-chain to the (m + 1)-chain.

Equivalently, pm is the probability that a given element n < m is included in the proto-

past of element m,

pm =
E|R̃|
m

=

∑m
k=0

(
m
k

)
ktk

mλ(m, 0)
, (3.8)

where R̃ is the proto-past of the element m and E denotes an expectation value [Brightwell

and Luczak, 2016].

3.3 Examples and variations

We present key examples of CSG models and introduce the family of Originary CSG

models. For simplicity, we set t0 = q0 = 1.

The Dust Universe: This CSG model is given by t0 = 1, tk = 0 ∀ k > 0 or equivalently

qn = 1 ∀ n ≥ 0. It produces an infinite antichain with unit probability.

The Infinite Forest of Infinite Trees: t0 = t1 = 1, tk = 0 ∀ k > 1, this model

generates a disjoint union of infinitely many trees with no maximal elements with unit

probability.

2This is a consequence of Bell causality (3.5). Weaker variations of Bell causality allow qn = 0 [Dowker
and Surya, 2006; Varadarajan and Rideout, 2006].
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Transitive Percolation: Transitive Percolation (TP) is a 1-parameter family of CSG

models given in the various parameterisations by,

tk = tk, t ∈ R+,

qn = qn, 0 < q ≤ 1,

pm = p, 0 ≤ p < 1,

(3.9)

where the relationship between the parameterisations is given by p = t
1+t

and q = 1− p.

In this special case, the transition probabilities (3.1) can be recast into the form,

P(C̃n → C̃n+1) = pmqn−$. (3.10)

The interpretation of equation (3.10) is that the new element born in the transition

forms a relation with each already-existing element with probability p independently and

then the transitive closure is taken to obtain C̃n+1. This reflects the “local” nature of

TP and all other CSG models can be seen as non-local generalisations of it in which

the probability of forming a relation with a given element depends on whether or not a

relation is formed with each of the other elements.

The Dust Universe is the special case where p = t = 0. When p 6= 0, the model is

probabilistic but produces a causet with infinitely many posts with unit probability [Alon

et al., 1994]. TP is also known as the model of “random graph orders”.

Originary CSG Models: Originary CSG (OCSG) models are a family of growth

models which differ from the CSG models only by the requirement that t0 = 0 and

t1 > 0. These models are generally probabilistic but the causets that they produce are

always originary.

3.4 Observables

In which sense is a CSG model a dynamics for causal sets? In the sense that it pro-

vides answers to the physical questions that one could ask about the causet spacetime.
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Each question corresponds to a measurable event3, or “observable”, while each answer

corresponds to the probability measure assigned to the observable by the CSG model.

The sample space, Ω̃: The sample space is the set of all infinite causets which can be

grown by a CSG process in the n→∞ limit, i.e. it is the set of infinite labeled causets,

Ω̃.

The labeled algebra, R̃: For each C̃n, its “cylinder set” is defined as,

cyl(C̃n) := {C̃ ∈ Ω̃|C̃n is a stem in C̃}. (3.11)

We denote the σ-algebra generated by the cylinder sets by R̃. (Ω̃, R̃) is a measurable

space on which each CSG model induces a unique probability measure µ̃ satisfying,

µ̃(cyl(C̃n)) = P(C̃n) ∀ C̃n ∈ Ω̃(N), (3.12)

where P(C̃n) is given by equation (3.3). This construction is guaranteed by standard

results in measure theory [Kolmogorov and Fomin, 1975].

The covariant algebra, R: We say that an event Ẽ ∈ R̃ is covariant if it does not

distinguish between order-isomorphic causets, namely if whenever C̃ ∈ Ẽ and C̃ ∼= D̃

then D̃ ∈ Ẽ . The collection of covariant events is a σ-algebra and we denote it by R

[Brightwell et al., 2003]. (Ω̃,R) is a measurable space on which each CSG model induces

a probability measure µ via the restriction of µ̃ to R.

The stem algebra, R(S): For each n-order Cn, its “stem set” is defined as,

stem(Cn) :={D̃ ∈ Ω̃ | Cn is a stem in D̃}, (3.13)

and is equal to the union of cylinder sets of the labeled causets in which Cn is a stem.

We denote the σ-algebra generated by the stem sets by R(S) and note that R(S) ⊂ R
3See appendix A.2 for a glossary of measure theory terminology.
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[Brightwell et al., 2003]. (Ω̃,R(S)) is a measurable space on which each CSG model

induces a probability measure µS via the restriction of µ̃ (or µ) to R(S).

Observables: Which of the σ-algebras R̃ ⊃ R ⊃ R(S) should be crowned the “algebra

of observables”? The labeled algebra R̃ is too large, since it contains events which

are not covariant and hence unphysical. The covariant algebra R is a good candidate

since (by definition) it contains exactly the covariant events, but it provides no useful

information about the physical interpretation of these events. The stem algebraR(S) may

be the best candidate of the three since it contains covariant events with a clear physical

interpretation: each event corresponds to a logical combination of (at most countably

many) statements about which finite orders are stems in the causet C̃ grown by the

process in the n → ∞ limit, e.g. the event
(
stem(A) ∩ stem(B)

)
∈ R(S) is interpreted

as “both A and B are stems in C̃”. This kinematical heuristic is strengthened by the

dynamical result that in every CSG model it suffices to know the measure on R(S) in

order to reconstruct the measure of every event in R [Brightwell et al., 2003]. Thus, in a

precise sense the events in R(S) exhaust the set of observables in any CSG model.

Quotient Spaces: One can conceive ofR as a σ-algebra on Ω, the set of infinite orders,

via the projection p : Ω̃ → Ω which assigns to each causet C̃ the order C of which it

is a representative. Whether a covariant event is a set of causets or a set of orders is

of no consequence for our purposes and we will use the two interchangeably. Similarly,

since R(S) contains exactly all the covariant events which do not distinguish between

equivalent rogues (i.e. E ∈ R(S) ⇐⇒ whenever C ∈ E and C ∼R D then D ∈ E) it can

be thought of as a σ-algebra on Ω/ ∼R, the space of rogue equivalence classes.
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3.5 Cosmic renormalisation

The “cosmic renormalisation” transformations are a family of transformations which act

in the space of (t0, t1, ...). They play a central role in causal set cosmology.

The transformations: Define the linear transformation M ,

M : tk 7→ tk + tk+1. (3.14)

For any integer a ≥ 0, the “post renormalisation transformation” is given by [Martin

et al., 2001],

Sa : (tk) 7→ (t
(a)
k ), t

(a)
k =

 0 : k = 0

Ma(tk) =
∑a

l=0

(
a
l

)
tk+l : k > 0

(3.15)

For any pair of integers a ≥ r > 0, the “break renormalisation transformation” is given

by [Dowker and Zalel, 2017],

Qa,r : (tk) 7→ (t
(a,r)
k ), t

(a,r)
k =

 Ma−r(tr) =
∑a−r

l=0

(
a−r
l

)
tr+l : k = 0

Ma(tk) =
∑a

l=0

(
a
l

)
tk+l : k > 0

(3.16)

The transformations satisfy the following composition rules,

SbSa = SbQa,r = Sa+b,

Qb,sQa,r = Qb,sSa = Qa+b,s.
(3.17)

A growth model (tk) is a stationary point of Sa if it is mapped onto itself (i.e. if (t
(a)
k ) =

c(tk) for some positive constant c). The stationary points of Qa,r are similarly defined.

For any a > 0, the stationary points of Sa are the Originary Transitive Percolation models

(t0 = 0, tk = tk ∀ k > 0) and the stationary points of Qa,r are the CSG models defined by

t0 = 1, tk =
(

1+t
t

)r
tk ∀ k > 0. Neither transformation has cycles of length greater than 1.

Physical interpretation: The renormalisation transformations express a relationship

between different growth models which arises via a process of conditioning. Consider
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some CSG dynamics and condition that the element a is a post with some fixed past Ã

in the growing causet.4 Then, the growth of the future of the post “decouples” from the

past and can be treated independently by deleting the past of the post and relabeling

the remaining elements n→ n− a. This new growth process is governed by conditional

transition probabilities which can be expressed in the form (3.1)-(3.2), with (tk) replaced

by the “renormalised” or “effective” couplings (t
(a)
k ) given in (3.15). The coupling t

(a)
k is

the relative probability that a proto-past of cardinality k is chosen from the undeleted

elements. It is a remarkable feature of CSG models that the effective dynamics depends

only on a, i.e. only on the cardinality of the past, not on its causal structure.

Similarly, when conditioning on a break with a fixed past Ã, the growth of the future

decouples from the past and can be treated independently by deleting the past and

relabeling n → n − a, where a := |Ã|. The new transition probabilities are given by

(3.1)-(3.2), with (tk) replaced by the (t
(a,r)
k ) of (3.16), where r is the number of maximal

elements of Ã.

Note that the event “a is a post” is the same as the event “there is a break with a past

of cardinality a + 1 and 1 maximal element”. Thus, Sa and Qa+1,1 give two equivalent

descriptions of the same system. The former yields an originary effective dynamics (since

t
(a)
0 = 0), ensuring that every element is born above the post. The latter yields a non-

originary dynamics, where the post condition is enforced at the level of the kinematics.

(Another way to say this is, in the former formulation the post is not “deleted” while in

the latter it is.)

The composition rules (3.17) express the behaviour of the dynamics under successive

conditionings, e.g SbSa = Sa+b is the statement that first conditioning on a being a post

and then conditioning on the bth element to be born to the future of a being a post is

equivalent to conditioning that the element a + b is a post, reflecting that the effective

couplings depend only on the cardinality of the past of the post, not on its ordering.

Illustrations are shown in figures 3.5-3.6.

Application to cosmology: Posts and breaks are discrete analogues of Big Crunch-

Big Bang singularities. When composed in a sequence, they are used to model “bounc-

4When a = 0, Ã = ∅.
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ing” or “cyclic” cosmologies in which the universe goes through subsequent epochs of

expansion and collapse. Conditioning on such a bouncing cosmology, the corresponding

renormalisation transformations create a flow in parameter space echoing proposals by J.

A. Wheeler, L. Smolin and others that the parameters of nature are modified each time

the universe is “squeezed through” a singularity [Bičák, 2009; Rees et al., 1974; Smolin,

1992, 2008]. This evolutionary mechanism is at the heart of the causal set cosmological

paradigm, a heuristic which aims to explain the emergence of a flat, homogeneous and

isotropic cosmos directly from the quantum gravity era5 [Sorkin, 2000]. The narrative is

that, given that the renormalisation flow generated by the successive epochs has certain

features6, then the dynamics evolves into growing larger, flatter epochs as the universe

cycles repeatedly. It is then only a matter of time until the universe displays the desired

behaviour.

Figure 3.5: The growth of the future of a post or a break decouples from the past and can
be treated independently. Figures (a) and (b) illustrate the process of deleting the past and
relabeling the remaining elements n→ n− a, where a is the cardinality of the past. Figure (c)
shows a sequence of epochs separated by posts and breaks and the effective dynamics which
governs each epoch.

5This paradigm pertains only to the causal set spacetime, not to any matter living on it. Whether a
causal set is enough to give rise to matter degrees of freedom [Rideout and Sorkin, 2000] or whether one
requires additional structure such as a field living on the causal set is still unknown. Whichever the case
may be, this simplified cosmological paradigm will act as a guide to building a causal set cosmology.

6For instance, that its stationary points grow causal sets with the desired cosmological features, that
the basin of attraction of these stationary points is large and that it contains an abundance of dynamics
which are likely to give rise to posts/breaks.
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Figure 3.6: A pictorial representation of the relationship between (tk) and (t
(a)
k ) for a = 1.

Each diagram represents a proto-past R̃ shown in white (cf. Fig.3.4). First line: each diagram
on the right hand side contributes a factor of t|R̃|. The numerator is a sum over all proto-pasts
which contribute to the transition on the left hand side. The denominator is a sum over all
possible proto-pasts consistent with the condition that 1 is a post. Second line: each diagram

on the left hand side contributes a factor of t
(1)

|R̃|, as indicated by the subscripts. The numerator

is a sum over all proto-pasts which contribute to the transition on the right hand side and the
denominator sums over all possible proto-pasts.
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Chapter 4

Manifestly covariant dynamics

Einstein’s efforts to distinguish between the physical and the unphysical were central to

the development of the generally covariant field equations of General Relativity. Indeed,

this struggle between gauge and physical degrees of freedom is inherent in the nature

of General Relativity as a gauge theory and one might expect that grappling with the

corresponding issues within quantum gravity will be important to its development too.

One facet of this struggle can be summarised by the question: can the laws of physics be

formulated using only physical degrees of freedom? [Berkovits, 2000; Carlip, 1990; Witten,

1989] Physics has thus far favoured gauge theories, rendering this problem extremely

difficult. But there is an expectation shared by some workers that the difficulty stems

from the incompleteness of our current theories and that a resolution will come hand in

hand with a theory of quantum gravity.

In causal set theory—where general covariance takes the form of label invariance, a

discrete precursor to the continuous diffeomorphism invariance of General Relativity1—

the CSG models are a gauge formulation (since they refer to labeled causets) and our

question can be framed as: is it possible to define physically interesting causal set growth

dynamics which refer only to orders, not to labeled causets? We call such dynamics

“manifestly covariant”.

From the start, one can identify three challenges. First, orders are mathematically

more difficult to handle (e.g. enumerating unlabeled graphs is generally more difficult

1Whether label invariance alone is enough to give rise to diffeomorphism invariance is subsumed in
the question of whether causal sets can give rise to a continuum approximation at all.
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than enumerating labeled graphs [Harary and Palmer, 1973]), echoing the difficulties often

encountered in physics when working with global degrees of freedom. Second, physical

dynamics are often arrived at by imposing invariance under gauge transformations. This

is the case in the CSG models, where the discrete general covariance condition (3.4) is akin

to the requirement that the Einstein-Hilbert action is invariant under diffeomorphisms.

Therefore even if a label-independent framework did exist at the level of the kinematics,

how are the physically meaningful dynamics to be picked out from the plethora of available

models? Finally, our intuitive notion of growth is inherently sequential: elements are born

one after the other in a kind of global time which renders the elements distinguishable

(e.g. in a CSG model, the element n is born at stage n). How does one reconcile a physical

process of becoming with manifest covariance? The prevailing view in causal set theory

is that one should seek a form of “asynchronous becoming”, namely a growth process

in which elements are born in a partial (not a total) order [Dowker, 2014, 2020; Sorkin,

2007]. What could it mean for elements to be born in a partial order? It is the role

of mathematics to make sense of notions which lie beyond our everyday experience, and

it may be that new mathematics is what is needed to better understand asynchronous

becoming and its consequences for the nature of time. It has been suggested in [Wuthrich

and Callender, 2017] that this could be achieved via a “novel and exotic” framework in

which questions such as “which element is born at stage n?” are left unanswered (not

because of ignorance but because they are unphysical), but there has been no concrete

proposal for such a framework until now.

This chapter presents original work on manifestly covariant growth dynamics. We

begin with a technical formulation of the problem before defining a new structure which

we call “covtree” and proving that it provides a manifestly covariant framework for growth

dynamics (section 4.1). We obtain key results regarding cosmic renormalisation and the

growth of posts and breaks within this new framework (section 4.2) and illustrate with a

toy example how a better understanding of the structure of covtree can be used to solve

for physically interesting dynamics (section 4.3).
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4.1 Introducing covtree

We seek a manifestly covariant analogue of the CSG models. Let us make this statement

precise. Recall that a CSG model is formally a measure space (Ω̃, R̃, µ̃) where µ̃ is related

to the CSG transition probabilities via (3.12). However, R̃ contains events which are not

covariant and hence unphysical. At the physical level, a CSG model can be thought of

as the measure space (Ω,R, µ) where µ is the restriction of µ̃ to the covariant algebra R.

Finally, we can further economise by denoting a CSG model by (Ω,R(S), µS) where µS is

the restriction of µ to R(S), since one can show that in this case µ is the unique extension

of µS to R 2 [Brightwell et al., 2003]. This has the advantage that each event in R(S) has

a physically meaningful interpretation: each event corresponds to a logical combination of

statements about which finite orders are stems in the growing order. Although this latter

formulation is manifestly covariant at the level of the kinematics (i.e. the sample space

is the space of orders, Ω), the measure µS is defined via a label-dependent mechanism,

i.e. via a random walk up labeled poscau which gives rise to the measure µ̃ which is then

restricted to µS . We seek to define a measure on R(S) via a random walk on a new tree

structure which makes no reference to labeled causets, only to orders. To be interpreted

as a growth dynamics, the new tree must be equipped with a map from Ω to the set

of infinite upward-going paths. This map should be an isomorphism between the tree’s

topological σ-algebra3 and R(S) so that a measure induced by a random walk on the

former can be carried over to the latter. In particular, the map should be surjective. This

guarantees that some order is grown in every realisation of the process or equivalently

that µS(∅) = 0. Finally to allow us to interpret the random walk as a physical process,

each node should carry a clear physical meaning. To illustrate this final point, let us

consider “poscau” 4,

Definition 4.1.1 (Poscau). Poscau is a partial order on finite orders, (Ω(N),≺), where

2The proof can be sketched as follows: one shows that (i) in any CSG model µ(Θ) = 0, where Θ ∈ R
is the set of rogues, and (ii) that for every A ∈ R the event A \ Θ ∈ R(S). Thus, µ(A) = µ(A \ Θ) =
µS(A \ Θ), where the first equality follows from (i) and the second from (ii). Therefore the measure of
every event in R is fixed by µS [Brightwell et al., 2003].

3This is the σ-algebra generated by the “cylinder sets”, where the cylinder set of a given node is the
set of all paths which contain it.

4Rideout and Sorkin originally used poscau to introduce the CSG models.
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A ≺ B if and only if A is a stem in B.

Albeit not a tree, there is a natural correspondence between poscau paths and infinite

orders. Hence if one identifies each node A in poscau with the set stem(A) (cf. (3.13)), one

might be tempted to try to define a dynamics as a random walk up poscau where arriving

at the node A corresponds to the occurrence of the covariant event stem(A). Intuitively,

this does not work because our physical interpretation of the nodes implies that each

order contains only one n-stem for each n > 0 (which is clearly untrue). Thinking in this

way, however, suggests the solution: the walk should be on a tree formed of countably

many levels in which the nodes in level n are not single n-orders but sets of n-orders.

Each set of n-orders in level n will correspond to the covariant event “the n-stems of

the growing order are the elements of this set.” We call this tree “covtree”, short for

“covariant tree”.

This section is dedicated to defining covtree (4.1.1-4.1.2), to proving the existence of

a surjection from Ω to the set of covtree paths and to proving that covtree’s topological

σ-algebra is equivalent to R(S) (4.1.3).

Figure 4.1: The first three levels of poscau.
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4.1.1 Certificates

This section introduces the notion of “certificate” which will play a key role in the defi-

nition of covtree and in its interpretation as a framework for growth dynamics.

Let Γn ⊆ Ω(n) be a non-empty set of n-orders.

Definition 4.1.2 (Certificate). A finite or infinite order C is a certificate of Γn if Γn is

the set of all n-stems in C.

Given some Γn, it may or may not have a certificate. We will be interested in those

Γn which do have a certificate.

Definition 4.1.3 (Λ, the collection of certified sets). Λ is the collection of sets of n-

orders, for all n, for which there exists a certificate:

Λ :=
⋃
n>0

{Γn ⊆ Ω(n)|∃ a certificate for Γn}. (4.1)

One can show that each Γn ∈ Λ has infinitely many certificates, including infinitely

many finite certificates and infinitely many infinite certificates. We will often work with

the “minimal” certificates:

Definition 4.1.4 (Minimal certificate). Given some Γn ∈ Λ, we order its finite certifi-

cates as follows: let C,C ′ be finite certificates of Γn, then C � C ′ if C is a stem in C ′.

A minimal certificate of Γn is minimal in this partial order of certificates.

At times it may be easier to work with labeled causets rather than with orders. To

this end we define the labeled analogue of the certificate.

Definition 4.1.5 (Labeled certificate). A labeled certificate of Γn is a representative of

a certificate of Γn. A labeled minimal certificate of Γn is a representative of a minimal

certificate of Γn.

Illustrations are shown in figure 4.2.
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Figure 4.2: Certificates. C, C ′ and C ′′ are finite certificates of Ω(3)={ qqq , q q q, �Aq qq
, q qq��BB , qqq q}.

The ≺ relation indicates inclusion by stem. C is a minimal certificate of Ω(3). The labeled
causets shown are representatives of C and hence are labeled minimal certificates of Ω(3).

4.1.2 Definition of covtree

We begin by introducing the map O.

Definition 4.1.6 (The map O). For any n > 1 and any Γn, the map O takes Γn to the

set of (n− 1)-stems of elements of Γn:

O(Γn) := {Bn−1 ∈ Ω(n− 1) | ∃ An ∈ Γn s.t. Bn−1 is a stem in An} . (4.2)

An illustration is shown in figure 4.3. The exponentiation Ok takes Γn to the set of

(n− k)-stems of elements of Γn. If C is a certificate of Γn, then C is also a certificate of

Ok(Γn) for any k < n.5 The converse is not true: if C is a certificate of O(Γn), then C

may or may not be a certificate of Γn (in fact, Γn may have no certificates at all).

Figure 4.3: Illustration of the map O.

5The proof may be summarised by the mnemonic: a stem in a stem is a stem, not a stem in any stem
is not a stem
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Definition 4.1.7 (Covtree). Covtree is the partial order (Λ,≺), where Γn ≺ Γm if and

only if n < m and Om−n(Γm) = Γn.

We note some key points about covtree:

• Covtree is the partial order on Λ defined by putting each Γn directly above O(Γn)

and taking the transitive closure. Thus, covtree is a tree.

• Covtree has no maximal nodes. Every covtree node is contained in uncountably

many inextendible upward-going paths.

• We label the levels of covtree by 1,2,... where level 1 contains the root. The nodes

at level n are the sets of n-orders which have certificates (this is the motivation for

the term certificate: a certificate of Γn certifies that Γn is a node in covtree.)

• A certificate of a node Γn is also a certificate of every node below Γn.

• Given a node Γn, repeated applications of O generate the unique path downwards

from Γn to the root.

• In order to construct level n of covtree, one considers all the non-empty subsets of

Ω(n). These are the “candidate nodes” for level n. To determine whether a candi-

date node is a node in covtree one needs to determine whether it has a certificate.

In general, this is a difficult problem.

• Given any n-order Cn, the set {Cn} is a node at level n since Cn is a certificate of

{Cn}.

• The first three levels of covtree are shown in figure 4.4. Levels 1 and 2 contain

all candidate nodes, while level 3 contains 22 nodes out of 31 candidates. The 9

“non-nodes” are shown in figure 4.5.
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(a) The structure of the first three levels of covtree.

(b) The level 3 nodes which are directly above the node { qq , q q } are shown
together with their respective certificates.

Figure 4.4: The first three levels of covtree.

Figure 4.5: The sets shown in the figure have no certificates and therefore are not nodes. For
every set shown, if an order contains all the elements of that set as stems then it also containsqqq q as a stem.

39



4.1.3 The sample space

We now prove that there is a surjection from Ω to the space of inextendible upward-going

covtree paths.

Let P denote an inextendible covtree path from the origin upwards, Γ1 ≺ Γ2 ≺ . . .

Definition 4.1.8 (Certificate of path). An infinite order C is a certificate of P if it is a

certificate of every node in P. A labeled certificate of P is a representative of a certificate

of P.

We propose that the surjection we seek is given by the correspondence between paths

and their certificates. In the following we show that this correspondence is indeed a sur-

jection, since it is a function on Ω (lemma 4.1.9) and it is surjective (theorem 4.1.10).

Thus, each infinite order C ∈ Ω is mapped onto the path P of which it is a certificate.

This establishes Ω as the sample space of the covtree growth process. The narrative is

that in any realisation of the process, the growing order is the certificate of the path

traced by the random walk. However, we must point out two subtleties with this inter-

pretation. First, a path may have more than one certificate: C and C ′ are two distinct

certificates of the same path if and only if they are equivalent rogues. In other words,

since equivalent rogues cannot be distinguished by their stems, the covtree process cannot

distinguish between equivalent rogues. How one should resolve this depends on the phys-

ical interpretation that one assigns to rogues. If one believes that rogues are unphysical

and should never be grown by the process6 then the resolution can be to only consider

random walks in which the measure of the set of the “rogue paths” is null. An alternative

is to allow rogues to arise but propose that they are physically indistinguishable (since

they can only be distinguished globally, not by any local observer living on them). This

is equivalent to replacing Ω with the space of rogue equivalence classes Ω/∼R, where

each path corresponds to exactly one class. The second subtlety relates to the notion of

growth. To what extent can we say that an order is growing as the covtree walk advances?

At stage n, we do not know which finite order has grown thus far nor its cardinality, only

6Reasons to think this include that in the CSG models rogues never happen, i.e. µ(Θ) = 0 where Θ
is the set of rogues, and that every rogue contains an infinite antichain corresponding to infinite space
[Brightwell et al., 2003].
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which n-stems it contains. While in the CSG models the growth is explicit, on covtree it

is implicit or “vague” [Wuthrich and Callender, 2017]. But if there is a process of growth

which can be associated with a covtree walk, then it may be that it is this quality of

vagueness which embodies asynchronous becoming.

Lemma 4.1.9. Let C be an infinite order. Then C is a certificate of exactly one path P.

Proof. By definition of certificate 4.1.3, C is a certificate of exactly one node Γn for each

n > 0. Hence, C is a certificate of at most one path. Additionally, if C is a certificate of

Γn then C is a certificate of O(Γn). Hence the nodes of which C is a certificate form a

path P of which C is a certificate.

Theorem 4.1.10. Every path P has at least one certificate.

We begin with some lemmas.

Lemma 4.1.11. Let Γn = {A1
n, ..., A

k
n} be a set containing k ≥ 1 n-orders and let C be a

minimal certificate of it. Then n ≤ |C| ≤ kn. Additionally, |C| = n if and only if k = 1.

Proof. Clearly, |C| ≥ n. Now, consider a labeled representative C̃ of C. For each Ain,

i = 1, 2, . . . k, let Ãin denote a stem in C̃ which is order-isomorphic to a representative

of Ain and take their union Ũ :=
⋃
i Ã

i
n (i.e. Ũ is the subcauset of C̃ defined by x ∈

Ũ ⇐⇒ x ∈ Ãin for some i). Let U denote the order of which Ũ is (order-isomorphic to)

a representative. Then U is a stem in C, U is a certificate of Γn and |U | ≤ kn. Since C

is a minimal certificate, C = U and hence |C| ≤ kn. Finally, if |C| = n then C is the

only n-stem in C and therefore Γn = {A1
n}, where A1

n = C.

Lemma 4.1.12. Let Γn ∈ P. Then there exists a node Γm ∈ P which contains a

certificate of Γn as an element.

Proof. When Γn = {Cn} for some order Cn, a node with the required property is Γn+1 ∈ P

since it follows from definition 4.1.6 that Cn is the unique n-order in every Cn+1 ∈ Γn+1

and therefore each Cn+1 is a certificate of Γn.

Suppose Γn contains k > 1 orders and recall that if C is a minimal certificate of Γn

then n < |C| ≤ nk (lemma 4.1.11). Define N := nk and consider ΓN ∈ P . Let D be a
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finite certificate of ΓN and hence of Γn (since a certificate of a node is also a certificate

of all the nodes below it). By definition of minimal certificate 4.1.4, at least one minimal

certificate of Γn occurs as a stem in D. Choose one, call it C, let m := |C| and consider

Γm ∈ P . C is an m-stem in D. Γm is the set of all m-stems of D and so C is an element

of Γm.

Lemma 4.1.13. Given a path P, there exists a sequence of labeled causets C̃m1 , C̃m2 , . . . ,

such that, for all k > 0,

(i) |C̃mk
| = mk;

(ii) mk < mk+1;

(iii) C̃mk
is a stem in C̃mk+1

;

(iv) C̃mk+1
is a labeled certificate of Γmk

∈ P;

(v) Cmk+1
, the order of which C̃mk+1

is a representative, is an element of Γmk+1
∈ P.

Proof. The required sequence C̃m1 , C̃m2 , . . . is constructed by the following inductive

algorithm.

Step 1:

1.0) Pick some non-zero natural number m0 to start and consider Γm0 ∈ P .

1.1) By lemma 4.1.12, there exists an m1 > m0 such that Γm1 ∈ P contains a certificate

of Γm0 . Call that certificate Cm1 .

1.2) Pick a representative of Cm1 and call it C̃m1 .

1.3) Go to step 2.

Step k > 1:

k.1) By lemma 4.1.12, there exists an mk > mk−1 and such that Γmk
∈ P contains a

certificate of Γmk−1
∈ P as an element. Call that certificate Cmk

.

k.2) Pick a representative C̃mk
of Cmk

such that C̃mk−1
is a stem in C̃mk

(this is always

possible because Cmk−1
is a stem in Cmk

because Cmk
is a certificate of Γmk−1

∈ P and

Cmk−1
∈ Γmk−1

).

k.3) Go to step k + 1.
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Proof of Theorem 4.1.10. Consider a sequence C̃m1 , C̃m2 , . . . generated for P by the al-

gorithm in lemma 4.1.3. The union C̃ :=
⋃∞
k=1 C̃mk

is a labeled certificate of P . The

order C of which C̃ is a representative is a certificate of P .

An alternative proof is given in appendix 4.A.

4.1.4 The algebra and measure

Having established Ω as the sample space, we now discuss the σ-algebra. To each covtree

node assign its “cylinder set” 7, the set of all paths P which contain it. The collection of

all cylinder sets generates covtree’s topological8 σ-algebra. Under the surjection which

maps an infinite order to the path of which it is a certificate, the cylinder set of the node

Γn is the image of the set cert(Γn) defined by,

Definition 4.1.14 (Certificate set). For each covtree node Γn, its certificate set, cert(Γn),

is the set containing all its infinite certificates,

cert(Γn) := {C ∈ Ω | C is a certificate of Γn}. (4.3)

Thus the σ-algebra generated by the certificate sets is the algebra of measurable

events, or observables, in a covtree growth process. This σ-algebra is in fact R(S) (as

we prove in lemma 4.1.15). Standard results in measure theory ensure that each covtree

random walk (defined by a complete set of covtree transition probabilities) gives rise

to a unique measure on R(S), where the measure of cert(Γn) ∈ R(S) is equal to the

probability of reaching Γn (i.e. to the product of transition probabilities on the path

from the root to Γn).9 Thus, we did what we set out to do: we found a label-independent

method to define measures on R(S). We obtained a manifestly covariant framework for

causal set growth dynamics.

7“Cylinder set” is a generic term in stochastic processes and should not be confused with its specific
usage in (3.11). The meaning should be clear from the context.

8It is called “topological” because the cylinder sets are the open balls under the metric topology given
by the metric d(P,P ′) = 1/2n, where n is the number of nodes shared by P and P ′.

9Due to covtree’s tree structure, the certificate sets (together with the empty set) form a semi-ring
on which each covtree walk defines a countably-additive “pre-measure” [Lindstrøm, 2017] which has a
unique extension to R(S) by the Kolmogorov extension theorem [Kolmogorov and Fomin, 1975].
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We now have two ways of defining measures on R(S): via a restriction of a measure

µ̃ on the labeled algebra R̃ (where µ̃ arises from a random walk on labeled poscau10)

or directly via a covtree random walk. Do these methods give rise to different classes

of measures? By reverse engineering our construction, one can show that every measure

on R(S) can be derived from a covtree walk. Additionally, every measure on R(S)

possesses some extension11 to R̃ (as we prove in lemma 4.1.16), meaning that every

measure on R(S) can be obtained via a restriction of some µ̃. The set of manifestly

covariant dynamics and the set of dynamics obtained via the labeled procedure are equal!

For every walk on labeled poscau—whether it satisfies discrete general covariance or not—

there exists a covtree walk which produces the same measure on R(S). There is no easy

relationship between the discrete general covariance condition on a labeled poscau walk

and the manifest covariance of a covtree walk.

Lemma 4.1.15. Let Σ denote the collection of all certificate sets and let R(Σ) denote

the σ-algebra generated by Σ. Then R(Σ) = R(S).

Proof. We will show that any stem set (cf. equation (3.13)) can be constructed by a finite

number of set operations on the certificate sets and vice versa, and the result follows.

Consider an n-order Bn. Let Γin denote the covtree nodes which contain Bn, where i

labels the individual nodes. Suppose C ∈ cert(Γin) for some i. Then Bn is a stem in C

and hence C ∈ stem(Bn). Suppose C /∈ cert(Γin) for all i. Then Bn is not a stem in C

and hence C /∈ stem(Bn). It follows that stem(Bn) =
⋃
i cert(Γ

i
n) =⇒ R(S) ⊆ R(Σ).

Consider some node Γn = {A1
n, ..., A

k
n} in covtree. Let Ω(n) \ Γn = {B1

n, ..., B
l
n}.

Suppose C ∈ cert(Γn). Then A1
n, ..., A

k
n are stems in C, and B1

n, ..., B
l
n are not stems in

C. Hence C ∈
k⋂
i=1

stem(Ain) \
l⋃

j=1

stem(Bj
n). Suppose C /∈ cert(Γn). Then either (i) there

exists some Ain ∈ Γn which is not a stem in C =⇒ C /∈
k⋂
i=1

stem(Ain), or (ii) there exists

some Bj
n ∈ Ω(n) \ Γn which is a stem in C =⇒ C ∈

l⋃
j=1

stem(Bj
n). It follows that,

cert(Γn) =
k⋂
i=1

stem(Ain) \
l⋃

j=1

stem(Bj
n) =⇒ R(Σ) ⊆ R(S).

Lemma 4.1.16. For every measure µS on R(S) there exists an extension µ̃ to R̃.

10The random walk need not be a CSG model nor must it satisfy any physical conditions.
11The extension may or may not be unique.

44



Proof. First note that there is a metric on Ω̃ with respect to which (Ω̃, R̃) is a Polish

space [Brightwell et al., 2003]. Since every Polish space is a Lusin space [Schwartz, 1973],

(Ω̃, R̃) is a Lusin space. Note also that R(S) is a separable sub-σ-algebra of R̃ since there

exists a countable collection of subsets of Ω̃ which generates R(S), namely S (or Σ). The

result follows from the theorem that if (Y,B) is a Lusin space, then every measure defined

on a separable sub-σ-algebra of B can be extended to B [Landers and Rogge, 1974].

4.2 Covtree and causal set cosmology

There is no reason to expect that a generic covtree walk will be physically interesting: the

class of such walks is too vast to be interesting. We need physically motivated conditions

to restrict the models to a sub-class worth studying.

One challenge lies in the translation of physically desirable conditions (e.g. that

manifold-like12 orders are preferred by the dynamics) into conditions on covtree transition

probabilities. Doing so requires an understanding of the relationship between paths

and their certificates (e.g. which paths have manifold-like certificates). Closely related

challenges include formulating a causality condition on covtree and understanding what

additional constraints general covariance may impose on the transition probabilities (cf.

the discrete general covariance condition in the CSG models).

In addition to the relationship between paths and their certificates, an understanding

of the structure of covtree is also important for constraining the dynamics. For example,

any dynamics should satisfy the Markov-sum-rule: the sum of the transition probabilities

from any node Γn must equal 1. But with no knowledge of the number of nodes directly

above Γn or of the relation they bear to it, this constraint is intractable. (In contrast, in

the case of the CSG models knowing that the children of C̃n are in 1-to-1 correspondence

with the stems in C̃n allows to solve the Markov-sum-rule.)

In addressing these challenges, one might be tempted to construct covtree explicitly.

Indeed, we presented the first three levels (Fig.4.4), but brute force methods come up

short in going to higher levels as the number of candidate nodes at level n increases

12We say an order C is manifold-like if a representative of C can be faithfully embedded into a four-
dimensional Lorentzian manifold.
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rapidly as 2|Ω(n)| − 1, where |Ω(3)| = 5, |Ω(5)| = 63 and |Ω(16)| = 4483130665195087

[The On-Line Encyclopedia of Integer Sequences]. In the remainder of this chapter, we

make progress by focusing on structural properties which are independent of level.

In this section, guided by the narrative of causal set cosmology (section 3.5) which

relies on the existence of posts and breaks and on the associated cosmic renormalisation,

we identify the covtree paths whose certificates contain posts and breaks (section 4.2.1),

show that covtree has a self-similar structure (section 4.2.2), use this self-similarity to

obtain a covariant analogue of cosmic renormalisation and conclude with a discussion of

open questions, including a proposal for a causality condition for manifestly covariant

dynamics (section 4.2.3).

4.2.1 Certificates with posts and breaks

We begin with two definitions.

Definition 4.2.1 (A-break/A-post). Let A denote a finite order and let Ã be some

representative of it. We say that an order C contains an A-break (A-post) if it has a

representative which contains an Ã-break (Ã-post).13

Definition 4.2.2 (Covering causet/order). Given an n-causet C̃n, its covering causet̂̃Cn is the (n + 1)-causet formed by putting the element n above every element of C̃n.

Similarly, Ĉn is the covering order of Cn, where ̂̃Cn and C̃n are representatives of the

respective orders.

An illustration is shown in figure 4.6.

We can now state our main theorem which identifies those covtree paths whose cer-

tificates contain posts and breaks,

Theorem 4.2.3. Let the order C be a certificate of the path P.

1. C contains an A-break if and only if {Â} is a node in P.

2. C contains an A-post if and only if { ˆ̂
A} is a node in P (where

ˆ̂
A is the covering

order of the covering order of A).

13Recall that an Ã-break is a break with past Ã. Ã-post is similarly defined.
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In addition to being a kinematical statement, theorem 4.2.3 has implications for the

search for physical dynamics, for our understanding of observables and for the develop-

ment of a covariant analogue of the cosmic renormalisation transformation. Starting with

the former, our theorem implies that a covtree dynamics in which an infinite sequence of

breaks happens with unit probability is one which, with unit probability, passes through

infinitely many nodes of the form {Â}. Such dynamics are of interest to causal set cosmol-

ogy, since they give rise to bouncing universes. In the future, our theorem could be used

in combination with theorems in probability theory and stochastic process (e.g. various

zero-one laws) to solve for covtree random walks which give rise to bouncing cosmologies.

Secondly, our theorem implies that the event “the growing order contains an A-break”

can be affirmed or denied at a finite stage of the covtree process. On the contrary, in

a CSG model the labeled event “the growing causet contains an Ã-break” cannot be

affirmed at a finite stage (although it can be denied). While what we mean by “local” in

this framework is open to interpretation, one could argue that the occurrence of a post

or a break is a non-local event (cf. causal horizon in the continuum) and that it is the

covariant nature of covtree which allows us to access such non-local information which

is inaccessible in the labeled growth process. Finally, we discuss in detail the theorem’s

application to cosmic renormalisation in section 4.2.3.

We now prove theorem 4.2.3, beginning with a lemma.

Lemma 4.2.4. Let C̃ and Ã be labeled causets. The following statements are equivalent:

(i) C̃ contains an Ã-break,

(ii) every (|Ã|+ 1)-stem in C̃ is isomorphic to ̂̃A,

(iii) Ã is the unique |Ã|-stem in C̃.

Proof. Let Ã be a stem in C̃. Let x denote a minimal element in C̃ \ Ã. Let a denote an

element in Ã.

(i) =⇒ (ii) It follows from the definition of an Ã-break that every (|Ã|+ 1)-stem in C̃

is of the form Ã ∪ {x} and that each such stem is isomorphic to ̂̃A.
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(ii) =⇒ (iii) Suppose for contradiction that D̃ 6= Ã is an |Ã|-stem in C̃. Let y be

minimal in D̃ \ Ã. Then Ã ∪ {y} is an (|Ã| + 1)-stem in C̃. By assumption (ii),

y � a for all a in Ã, and therefore (by definition of stem) Ã ∪ {y} ⊆ D̃ which in

turn implies that |D̃| > |Ã|. Contradiction.

(iii) =⇒ (i) By assumption (iii), x � a for all x and a, and hence (by definition of

break) C̃ contains an Ã-break.

The following covariant statement is a corollary:

Corollary 4.2.5. An order C contains an A-break if and only if Â is its unique (|A|+1)-

stem.

Proof of theorem 4.2.3. Let the order C be a certificate of the path P . Recall that by

definition 4.1.8, the set of n-stems of C is the node Γn in P .

To prove part 1, suppose C contains an A-break. Then by corollary 4.2.5, the set

of (|A| + 1)-stems of C is {Â}. By definition of certificate, {Â} is in P . Now suppose

{Â} is in P . Then by definition of certificate, {Â} is the set of (|A|+ 1)-stems of C. By

corollary 4.2.5, C contains an A-break.

Part 2 follows from the fact that C contains an A-post if and only if C contains an

Â-break.

Figure 4.6: The relationship between an order, its covering order and their representatives.
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4.2.2 Covtree self-similarity

Covtree is itself a causal set whose ground-set is Λ (definitions 4.1.3 and 4.1.7). This

section is dedicated to proving that covtree has a “self-similar” structure. We begin with

a definition.

Definition 4.2.6 (Self-similar causal set). A causal set is self-similar if it contains in-

finitely many copies of itself.

For any finite order A, let ΛA ⊂ Λ be the convex subcauset of covtree which contains

the node {Â} and everything above it. We will show that:

Theorem 4.2.7. For any finite order A, ΛA is a copy of covtree. Thus, covtree is self-

similar.

An illustration of covtree’s self-similar structure is shown in figure 4.7.

Figure 4.7: The self-similar structure of covtree. The figure displays the first two levels of
covtree in full and selected nodes from levels 3 and 4. The arrows indicate additional nodes
not shown in the figure. The dashed lines indicate where a new copy of covtree begins. The
ground-set ΛA of each copy is indicated next to each dashed line. Figuratively, we can write
Λ = Λ∅.

To prove theorem 4.2.7, we will need the following definition:

Definition 4.2.8. Given a finite order A and a set Γn ∈ Λ, the map GA takes Γn to

GA(Γn), the set of orders which contain a break with past A and future Bn ∈ Γn, i.e.

GA(Γn) := {C | C is an order which contains a break with past A and future Bn ∈ Γn}.

Examples are shown in figure 4.8.
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Figure 4.8: Illustration of the operation GA.

Proof of theorem 4.2.7: We will show that, for any finite order A,

(i) GA(Λ) = ΛA, and

(ii) the map GA : Λ→ ΛA is an order-isomorphism,

and the result follows.

To prove part (i), we first show that GA(Λ) ⊆ ΛA. Let Γn ∈ Λ and let the m-order Cm

be a certificate of Γn. Let Dk denote the order of cardinality k = m+ |A| which contains

a break with past A and future Cm. Then Dk is a certificate of GA(Γn) =⇒ GA(Γn) ∈ Λ.

Next, note that Â is the unique |Â|-stem in every order in GA(Γn) =⇒ GA(Γn) ∈ ΛA.

Second, we show that ΛA ⊆ GA(Λ). Let Γn ∈ ΛA and let the p-order Ep be a certificate

of Γn. Necessarily, Ep contains a break with past A and some future B. Let Γl denote

the set of l-stems of B, where l = n− |A|. Then Γl ∈ Λ and Γn = GA(Γl).

To prove part (ii), we use the commutativity of the operations O and GA to show

that GA : Λ→ ΛA is order-preserving. Suppose Γn ≺ Γn+1, then by definition of covtree

we have that Γn = O(Γn+1), and therefore

GA(Γn) = GA(O(Γn+1)) = O(GA(Γn+1)) =⇒ GA(Γn) ≺ GA(Γn+1).

Now suppose GA(Γn) ≺ GA(Γn+1). Then

GA(Γn) = O(GA(Γn+1)) = GA(O(Γn+1)) =⇒ Γn ≺ Γn+1.
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4.2.3 Covariant cosmic renormalisation

In this section we apply theorems 4.2.3 and 4.2.7 to obtain the covariant counterpart of

cosmic renormalisation and conclude with a discussion of open questions. In the following,

we denote a covtree transition probability by P(Γn → Γn+1). We use {P} to denote a

complete set of covtree transition probabilities (or a “covariant dynamics”).

Renormalisation after a break: In the CSG models, cosmic renormalisation arises

by first conditioning that the growing causet contains a break with a particular past Ã

and then “deleting and relabeling” the elements in the past of the break to obtain a new

growth process governed by an effective dynamics. The covariant analogue of the first

part is conditioning that the growing order contains an A-break, for some finite order

A. Theorem 4.2.3 tells us that this condition is equivalent to requiring that the random

walk pass through the node {Â}. The covariant analogue of “deleting and relabeling” is

acting on each node in ΛA with G−1
A (the inverse of definition 4.2.8) since this effectively

“deletes” the past A of the break. Theorem 4.2.7 tells us that G−1
A maps ΛA to Λ, so that

the growth of the future of the break (previously described by a walk on ΛA) can now be

treated independently of the past as a walk on the whole of Λ governed by a new set of

“effective” transition probabilities. Given a dynamics {P}, the effective dynamics {PA}

obtained by conditioning on an A-break is given simply by,

RA : {P} 7→ {PA}, PA(Γn → Γn+1) = P(GA(Γn)→ GA(Γn+1)). (4.4)

For a generic covtree dynamics the functional relationship between {P} and {PA} can

depend on any feature of A, and this is signified by the label A on the transformation

RA and on the effective transition probabilities {PA}.

The transformation RA acts on a set of transition probabilities, not on a set of cou-

plings. To emphasise this, we call RA a “similarity” transformation rather than a “renor-

malisation” transformation. If (as one hopes) in the future we are able to characterise

a covtree dynamics by a set of couplings, it may be possible to write the similarity

transformation as a renormalisation transformation which acts on the couplings directly.
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Similarly, we reserve the term “stationary point” for a set of couplings which is mapped

onto itself by the renormalisation transformation. If a covtree dynamics is mapped onto

itself by a similarity transformation RA, we say that it is “self-similar” with respect to

RA. A covtree dynamics {P} is self-similar with respect to RA if and only if it satisfies

the condition

P(Γn → Γn+1) = P(GA(Γn)→ GA(Γn+1)) (4.5)

for every n and every transition Γn → Γn+1. Constructing a self-similar dynamics is

simple: assign any set of transition probabilities to the transitions which lie outside ΛA,

and then use equality (4.5) to set the transition probabilities in ΛA.

It is possible to use this procedure to fix the transition probabilities in ΛA for every

A simultaneously, thus constructing a dynamics which is self-similar with respect to RA

for all A. We call such dynamics “maximally self-similar”.

A dynamics cannot be self-similar with respect to a unique transformation RA. If

a dynamics is self-similar with respect to some transformation RA then it is also self-

similar with respect to (RA)n, for any positive integer n. But (RA)n is itself a similarity

transformation: (RA)n = RAn , where we define An to be the order of cardinality n|A|

which is a stack of n copies of A separated by breaks. Therefore there exists no dynamics

which is self-similar with respect to a unique transformation. We say that a dynamics

{P} is “minimally self-similar” if there exists a unique order A such that {P} is only

self-similar with respect to (RA)n for all n.

Some self-similar dynamics are neither minimally nor maximally self-similar. Consider

a (finite or infinite) collection {Â}, {B̂}, ... of covtree nodes. Does there exist a dynamics

which is only self-similar with respect to RA, RB, ... and their respective powers? If every

pair of nodes are unrelated in covtree then the answer is yes. On the other hand, suppose

that {Â} ≺ {B̂}. Then B contains an A-break, and let us denote the future of the break

by D. Then GB = GDGA, and a dynamics is self-similar with respect to RA and RB if

and only if it is self-similar also with respect to RD.

Renormalisation after a post: Since the occurrence of an A-post is equivalent to the

occurrence of an Â-break, the effective dynamics obtained by conditioning on an A-post
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is given by transformation RÂ, obtained from transformation (4.4) via A→ Â, and given

explicitly by,

RÂ : {P} → {PÂ}, PÂ(Γn → Γn+1) = P(GÂ(Γn)→ GÂ(Γn+1)). (4.6)

RÂ is the covariant counterpart of the labeled non-originary transformation Qa+1,1

(cf. (3.16)). Additionally, an originary formulation also exists in the covariant case

and is analogous to the labeled transformation Sa (cf. (3.15)). We say that a covtree

dynamics {P} is “originary” if P(Γ1 →{ qq }) = 1. In the originary viewpoint of the A-post

condition, a covtree dynamics {P} is mapped onto an originary covtree dynamics {P′A}

via the transformation14:

TA : {P} → {P′A},

P′A(Γ1 → { qq } ) = 1,

P′A(Γn → Γn+1) = P(GA(Γn)→ GA(Γn+1)) ∀ Γn � { qq } ,
P′A(Γn → Γn+1) = 0 otherwise.

(4.7)

A summary of the covariant similarity transformations derived in this section and of

their labeled counterparts is shown in table 4.1.

break post
non-originary originary

labeled Qa,r (3.16) Qa+1,1 (3.16) Sa (3.15)
covariant RA (4.4) RÂ (4.6) TA (4.7)

Table 4.1: Summary of transformations. The first row lists the renormalisation transforma-
tions which act on CSG couplings. The second row lists the similarity transformations which
act on covtree transition probabilities.

Discussion: While our success in adapting the cosmic renormalisation to the covtree

framework bodes well for a covariant causal set cosmology, our results will remain purely

formal until we are able to identify a class of physical covtree dynamics with which to

work. Having said that, our similarity transformations can themselves be exploited to

14The apostrophe on the transition probabilities {P′A} is used to distinguish between the images of
{P} under RA and TA.
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better understand the form that CSG models take on covtree and to obtain new classes

of physical dynamics by considering how these dynamics transform:

1. We have seen that the labeled break transformation Qa,r depends on the past of the

break only via its cardinality and number of maximal elements. Is the condition

on a covtree dynamics {P} that {PA} = {PB} if and only if A and B have the

same cardinality and number of maximal elements necessary for {P} to be a CSG

dynamics? Is it sufficient?

2. Recall that the action of Qa,r can be factorised in terms of the transformation

M of (3.14). Does this property bear any relation to the constraint on a covtree

dynamics {P} that, for any finite order A, the renormalisation transformation can

be factorised as RA = R|A| for some transformation R?

3. If a given CSG model is a stationary point of a labeled transformation, is its corre-

sponding covtree dynamics self-similar?

4. Recall that a CSG dynamics is a stationary point of both Qa,r and Qb,s if and only

if r = s. Is the condition on a covtree dynamics {P} that {P} = {PA} = {PB}

only if A and B have the same number r of maximal elements necessary for {P}

to be a CSG dynamics? Is it sufficient? Such a dynamics is neither maximally

nor minimally self-similar, and it follows from our previous analysis that for any

r > 0 there exists a family of self-similar dynamics which satisfy this condition.

Are these CSG dynamics, or is the relationship between the labeled and covariant

formulations more complex?

5. Let us consider the post condition in the originary formulation. A covtree dynamics

{P} flows to a self-similar dynamics under TA if

(TA)k[P(Γn → Γn+1)]→ (TA)k+1[P(Γn → Γn+1)] as k →∞. (4.8)

If {P} arrives at a self-similar dynamics after N applications of TA, expression (4.8)
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simplifies to:

(TA)k[P(Γn → Γn+1)] = (TA)k+1[P(Γn → Γn+1)] ∀ k ≥ N

=⇒ P(GkA(Γn)→ GkA(Γn+1)) = P(Gk+1
A (Γn)→ Gk+1

A (Γn+1)) ∀ k ≥ N.
(4.9)

The N = 1 case is of special interest to us. It is easy to show that, under an

application of Sa, a Transitive Percolation (TP) dynamics (given by tk = tk for

some constant t) is mapped onto the corresponding Originary Transitive Percolation

(OTP) dynamics (t0 = 0, tk = tk for k > 0), where the latter is a stationary point

of Sa. Does this mean that for a covtree dynamics {P} to be a TP dynamics it

must satisfy condition (4.9) with N = 1?

6. It is known that OTP gives rise to infinitely many posts with unit probability [Alon

et al., 1994]. Is this property related to the fact that OTP is a stationary point?

Do self-similar covtree dynamics give rise to an infinite sequence of posts or breaks?

Could this be a feature of the maximally self-similar dynamics?

7. When the transformation RA factorises as RA = R|A|, the effective dynamics is

independent of the causal structure of the past. Therefore, could the condition that

RA factorises be interpreted as a causality condition on covtree dynamics?

4.3 Further structure of covtree

In this section we present additional results about the structure of covtree and about

certificates. We conclude with a toy example illustrating how an understanding of the

structure of covtree can be a useful tool for constraining covtree dynamics.

4.3.1 Nodes

Here we list properties which pertain to nodes, including criteria for a set of n-orders

to be a node, properties of minimal certificates and a study of direct descendants and

valency.
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Definition 4.3.1 (Singleton and doublet). A node Γn in covtree is a singleton if it

contains a single n-order. A node Γn in covtree is a doublet if it contains exactly two

n-orders.

We start with the simple property:

Property 1. For any finite order Cn, there is a singleton node {Cn} in covtree. Cn is

the unique minimal certificate of {Cn}.

Recall that Γn � Γm in covtree if and only if every certificate of Γn is a certificate of

Γm. Therefore {Cn} � Γm in covtree if and only if Cn is a certificate of Γm. Since every

node in covtree has countably many finite certificates, we find that:

Property 2. Every node in covtree has countably many singleton descendants.

Next we note that, since Cn is the only n-stem in its covering order Ĉn, the node {Ĉn}

is directly above {Cn} in covtree and therefore:

Property 3. Every singleton has at least one direct descendant which is a singleton.

Moreover,

Property 4. If {Ĉn} is the only singleton directly above {Cn} then {Ĉn} is the only node

directly above {Cn}.

To see this, assume for contradiction that there exists some node {A1
n+1, ..., A

k
n+1}

which is directly above {Cn}, where k ≥ 2 . It follows from the definition of covtree that

Cn is the unique n-stem in every Ain+1 ∈ {A1
n+1, ..., A

k
n+1} and therefore each of the nodes

{A1
n+1}, ..., {Akn+1} are singletons directly above {Cn}, which is a contradiction.

Every singleton with valency greater than one has at least one direct descendant which

is a doublet since:

Property 5. If {Dn+1} � {Cn} and Dn+1 6= Ĉn then {Ĉn, Dn+1} � {Cn}.

A corollary of properties 4 and 5 is:

Property 6. No singleton has a valency of 2.
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Singletons which possess property 4 are the only nodes in covtree which have exactly

one direct descendant since:

Property 7. Only singletons can have exactly one direct descendant in covtree.

To prove this, consider the node Γn = {A1
n, ..., A

k
n} with k ≥ 2, and assume for

contradiction that Γn+1 is the only direct descendant of Γn.

First, we show that Γn+1 contains the covering order Âin of every Ain ∈ Γn. Suppose

for contradiction that Γn+1 does not contain the covering order Âin of some Ain ∈ Γn. Let

Cm be an m-order that is a certificate of Γn+1. Then there exists an (m+ 1)-order Dm+1

which contains Cm and Âin as stems (a representative of Dm+1 can be constructed by

taking a representative of Cm and adding an element above the stem which is isomorphic

to a representative of Ain). Dm+1 is a certificate of Γ′n+1 = Γn+1 ∪ {Âin}, and Γ′n+1 � Γn.

This contradicts the assumption that Γn+1 is the only direct descendant of Γn . Hence

Γn+1 contains the covering order Âin for all Ain ∈ Γn.

Now we show that, since Γn+1 contains the covering order Âin of some Ain ∈ Γn, it

cannot be the only direct descendant of Γn. Let the p-order Ep be a minimal certificate of

Γn. Therefore Γn ≺ Γn+1 ≺ {Ep} and hence Ep is a certificate of Γn+1. Then there exists

a (p−1)-order Fp−1 such that Fp−1 is a stem in Ep and Âin is not a stem in Fp−1 (a causet

isomorphic to a representative of Fp−1 can be constructed by taking a representative of Ep

and removing the element which is maximal in the stem isomorphic to a representative

of Ain). Then Fp−1 is a certificate of Γn, which contradicts the assumption that Ep

is a minimal certificate of Γn. Therefore, only singletons can have exactly one direct

descendant in covtree.

Additionally,

Property 8. For any k ≥ 1 there is a singleton {Cn} in covtree with k singletons directly

above it.

An immediate corollary is that the valency of singletons is unbounded. (Note that

k is not the valency of {Cn}, for if k ≥ 2 then {Cn} has additional direct descendants

which are not singletons, cf. property 5.)
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An example of a singleton node with 1 singleton directly above it is Γ4 = { qq qq }. To

show that the statement is true for k > 1, we construct a countable sequence of singletons

{Cn2}, {Cn3}, ..., {Cnk
}, ... such that {Cnk

} has k singletons directly above it. Figure 4.9

shows the first three singletons in the sequence and their respective singleton descendants.

Let us explain the pattern shown in figure 4.9. Each order Cnk
has cardinality nk =

4k − 1. A representative C̃nk
of Cnk

, contains nk−1
2

elements in level 1, nk−1
2

elements in

level 2, and a single element in level 3. Each element in level 1 is below two elements in

level 2. Each element in level 2 is above two elements in level 1. The element in level 3

is above all but one of the elements in level 2.

We construct the singleton descendants of {Cnk
} as follows. Construct a new causet

from C̃nk
by adding a new element directly above all but one of the level 2 elements

subject to the constraint that no level 2 element is maximal in the resulting causet.

There are 2k− 2 ways to do this, leading to a collection of 2k− 2 causets. One can show

that each of these causets is order-isomorphic to exactly one other in the collection, and

taking the corresponding orders gives k−1 distinct (nk +1)-orders whose only nk-stem is

Cnk
. A singleton containing each of these orders is directly above {Cnk

}. The additional

singleton descendant is {Ĉnk
}.

Similarly,

Property 9. For any integer k ≥ 1 there exists a doublet in covtree with k singletons

directly above it.

One can construct an infinite sequence of doublets, {Cm1 , Dm1}, {Cm2 , Dm2}, ..., {Cmk
, Dmk

}, ...,

such that the kth doublet in the sequence has k singletons directly above it. Figure 4.10

shows the first three doublets in the sequence and their direct singleton descendants.

A representative C̃mk
of Cmk

has cardinality mk = 4k + 5 and partial ordering as

described below property 8 (with nk replaced by mk). A representative of Dmk
has these

same properties, except that the element in level 3 is above all but two of the elements

in level 2. The two elements missed out must have a common element in their pasts.

We construct the singleton descendants of {Cmk
, Dmk

} as follows. Construct a new

causet from C̃mk
by adding a new element directly above all but two of the level 2 elements

subject to the constraints that no level 2 element is maximal in the resulting causet and
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Figure 4.9: Illustration of property 8. The elements circled by a dotted line are identified with
each other.

Figure 4.10: Illustration of property 9. The elements circled by a dotted line are identified
with each other.
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that the two elements which are missed out have a common element in their pasts. In

this way, one generates a collection of 2k causets. One can show that each of these

causets is isomorphic to exactly one other in the collection, and taking the corresponding

orders gives k distinct (mk + 1)-orders whose set of mk-stems is {Cmk
, Dmk

}. This proves

property 9.

A key hurdle in the construction of covtree is understanding which sets of n-orders are

covtree nodes. The following property gives a necessary condition in the case of doublets:

Property 10. {An, Bn} is a doublet in covtree only if there exists an (n − 1)-order S

which is a stem in both An and Bn.

To prove property 10, let Ẽ be a labeled minimal certificate of {An, Bn}. Let Ãn and

B̃n be stems in Ẽ which are isomorphic to representatives of An and Bn, respectively.

Define S̃ := Ãn ∩ B̃n. We will show that |S̃| = n− 1 and property 10 follows.

Note that Ẽ = Ãn ∪ B̃n, for otherwise Ẽ would not be minimal. Define k := n− |S̃|

and suppose for contradiction that 1 < k ≤ n. Let Ãn \ B̃n = {v1, v2, ..., vk} and

B̃n \ Ãn = {w1, w2, ..., wk}. Without loss of generality, let F̃ = S̃ ∪ {v1, v2, ..., vk−1, w1}

be an n-stem in Ẽ. Then either F̃ ∼= Ãn or F̃ ∼= B̃n. Suppose F̃ ∼= Ãn. Then Ẽ \ {vk} is

isomorphic to a labeled certificate of {An, Bn} and is a stem in Ẽ, which contradicts the

assumption that Ẽ is minimal. Suppose F̃ ∼= B̃n. Then Ẽ \ {w2, w3, ..., wk} is isomorphic

to a labeled certificate of {An, Bn} and is a stem in Ẽ, which is again a contradiction.

Hence |S̃| = n− 1, which completes the proof.

Property 11 is a corollary:

Property 11. If Γn is a doublet in covtree then all minimal certificates of Γn are (n+1)-

orders.

Therefore, if Γn is a doublet in covtree and Γn ≺ Γn+1 then Γn+1 contains some

minimal certificate of Γn. It is a corollary of properties 9 and 11 that for any integer

k ≥ 1 there exists a doublet in covtree with k minimal certificates.

4.3.2 Paths

Here we present properties of certain covtree paths and their certificates.
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Property 12. In covtree, there are infinite upward-going paths from the origin in which

every node is a singleton.

We call the subset of covtree which contains exactly all these paths “singtree”, since

it is a tree of singletons. Figure 4.11 shows the first three levels of singtree.

Figure 4.11: The first three levels of singtree.

To discuss singtree we will need the concept of the Newtonian order.

Definition 4.3.2 (Newtonian causet/order). A Newtonian causet is a causet in which

every element in level k is above every element in level k − 1. A Newtonian order is an

order whose representatives are Newtonian.

In a Newtonian causet, every pair of elements which are unrelated have the same past

and the same future, alluding to a notion of a Newtonian global time, hence its name15.

A Newtonian causet is a “stack of antichains”, and for any natural number N , the union

of the first N levels is a past of a break. The local finiteness condition implies that every

level whose elements are not maximal must be finite.

To characterise the nodes of singtree and the certificates of singtree paths we will need

the following lemma about Newtonian orders:

Lemma 4.3.3. The following properties of a finite or infinite order, C, are equivalent:

(i) C has a unique representative,

15A Newtonian order is not a good approximation of continuum Euclidean space.
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(ii) for every natural number n ≤ |C| there is a unique n-order which is a stem in C,

(iii) C is Newtonian.

Proof. Let C̃ denote a representative of C. Let L(x) denote the level of element x (e.g.

L(x) = 1 if x is minimal).

(i) =⇒ (ii) Suppose for contradiction that C has two n-stems, Cn 6= C ′n, for some

n ≤ |C|. Then there is a representative of C whose restriction to the interval

{0, 1, ..., n− 1} is a representative of Cn, and similarly for C ′n. Hence C has at least

two representatives. Contradiction.

(ii) =⇒ (iii) Suppose for contradiction that C is not Newtonian, i.e. there exist some

x, y ∈ C̃ such that L(x) > L(y) and x 6� y. Let S̃ be the union of the inclusive past

of x with levels 1, 2, ..., L(y). Note that S̃ ⊂ C̃ is a stem in C̃. Then S̃ \ {x} and

S̃ \ {y} are non-isomorphic stems in C̃. (To see that they are non-isomorphic, note

that S̃ \ {x} contains L(x) − 1 levels and S̃ \ {y} contains L(x) levels.) Hence C

has at least two n-orders as stems, where n = |S̃| − 1. Contradiction.

(iii) =⇒ (i) Let f : C̃ → C̃ ′ be an order-isomorphism between two representatives of

C. The Newtonian condition restricts the action of f on each level in C̃ to be a

permutation, and therefore f must be an automorphism. Hence C has a unique

representative.

The equivalence of statements (ii) and (iii) in lemma 4.3.3 implies that:

Property 13. A singleton {Cn} is in singtree if and only if Cn is Newtonian.

If {Cn} is a node in singtree then it has exactly two direct descendants in singtree:

{Ĉn} and {Dn+1}, where Dn+1 is the Newtonian order whose representative is constructed

from a representative of Cn by adding a new element to its maximal level. If {Cn} is

a node in singtree then it has exactly three direct descendants in covtree: its singtree

descendants, {Ĉn} and {Dn+1}, and the doublet {Ĉn, Dn+1}.

A second corollary of lemma 4.3.3 is:
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Property 14. An infinite order C is Newtonian if and only if it is a certificate of a

singtree path.

Given property 14, it is now a simple matter to solve for the family of covtree dynamics

in which the set of non-Newtonian orders is null: it is the set of covtree walks in which

the walker stays in singtree with probability 1, i.e.

P(Γn) = 0 ∀ Γn not in singtree. (4.10)

This family of Newtonian dynamics acts as a proof of principle, illustrating how an

understanding of covtree could allow one to solve for a dynamics with particular features.

But, since these dynamics are unphysical, this is very much a case of “looking under the

lamp-post”. Where are we to look if not under the lamp-post? One avenue for exploration

is to ask: what role, if any, do rogues play in the physics of covtree walks?

Since in CSG models the set of rogues is null [Brightwell et al., 2003], identifying

covtree dynamics which possess this property is a step towards understanding what form

CSG dynamics take on covtree. Moreover, if following [Brightwell et al., 2003] we are to

choose R to be our σ-algebra of observables then—unless the covtree measure on R(S)

has a unique extension to R—one is faced with ambiguities both in interpretation and

calculation. It is sufficient that the set of rogues be null for there to exist a unique

extension, and therefore rogue-free dynamics are compatible with this approach. Finally,

rogue-free dynamics are cosmologically interesting. A rogue causet contains an infinite

level and as a result cannot contain an infinite sequence of posts or breaks. Therefore,

that the dynamics is rogue-free is a necessary condition for the dynamics to be relevant

for our cosmological paradigm.

One can draw an analogy between the condition that the set of rogues is null and the

condition that the set of non-Newtonian orders is null: the former is the condition that

the set of paths with more than one certificate is null, the latter the condition that the

set of paths with more than one labeled certificate is null. However, while we were able to

solve for the latter, solving for the former poses a new challenge because it is a limiting

condition: at no finite stage of the covtree walk can the claim that the growing order is
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a rogue be verfied or falsified. This is because for every node in covtree there exist both

an infinite certificate which is a rogue and an infinite certificate which is not a rogue.

This means that there is no rogue analogue to singtree. Instead, we must look for

other ways to obtain rogue-free dynamics. Pursuing the strictly stronger condition that

the dynamics gives rise to infinitely many posts or breaks with unit probability is a

promising route. We already know the defining feature of these covtree walks: that, with

unit probability, they pass through infinitely many nodes of the form {Â}. The challenge

ahead is to formulate this feature in terms of covtree transition probabilities.

4.A Supplementary material

Alternative proof to theorem 4.1.10. Recall that ∼R denotes the rogue equivalence rela-

tion, and let p : Ω→ Ω/ ∼R be the associated canonical quotient map. Let [A]R denote

an element of Ω/ ∼R, where A ∈ Ω is a representative of [A]R.

Define the following metric on Ω/ ∼R: d([A]R, [B]R) = 1
2n

, where n is the highest

integer such that the set of n-stems of A is the set of n-stems of B. One can show that

(Ω/ ∼R, d) is a complete metric space.

Let [cert(Γn)]R ⊂ Ω/ ∼R denote the image of the certificate set cert(Γn) ⊂ Ω under

the quotient map p. Then one can show that [cert(Γn)]R is both open16 and closed in

(Ω/ ∼R, d).

The diameter of [cert(Γn)]R, d([cert(Γn)]R), is defined to be the maximum distance

between any two elements in [cert(Γn)]R and is equal to 1
2n

. Hence d([cert(Γn)]R)→ 0 as

n→∞.

Given a path in covtree, P = Γ1 ≺ Γ2 ≺ ..., then the following is a nested sequence:

[cert(Γ1)]R ⊃ [cert(Γ2)]R ⊃ . . . .

Now, Cantor’s Lemma states that a metric space (X, d) is complete if and only if, for

every nested sequence {Fn}n≥1 of nonempty closed subsets ofX, that is, (a) F1 ⊇ F2 ⊇ . . .

and (b) d(Fn)→ 0 as n→∞, the intersection
⋂∞
n=1 Fn contains one and only one point

[Shirali and Vasudeva, 2006].

16[cert(Γn)]R are exactly the open balls under the metric topology.
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Chapter 5

Quantum dynamics

If spacetime is itself quantal (rather than a classical background for quantum matter) then

it is to be governed by a quantum dynamics. In the causal set approach, discreteness

and non-locality resist the canonical Hamiltonian time-evolution. Instead, we seek to

“quantize” the growth dynamics via a formulation of quantum mechanics which does not

rely on states but on histories1 by means of a decoherence functional [Dowker et al.,

2010b; Halliwell, 1995; Hartle, 1992; Sorkin, 1994],

Definition 5.0.1 (Decoherence functional). Let X be a space of histories, and let A

be an event algebra of subsets of X. A decoherence functional is a complex function

D : A× A→ C which is

1. finitely-biadditive: for any α, β, γ ∈ A where α ∩ β = 0

D(α + β, γ) = D(α, γ) +D(β, γ) and D(γ, α + β) = D(γ, α) +D(γ, β);

2. Hermitian: for any α, β ∈ A D(α, β) = D(β, α)∗;

3. normalised: D(X,X) = 1;

4. strongly positive: for any finite subset {αi} of A the matrix Mij ≡ D(αi, αj) is

positive semi-definite (i.e. Mij has only non-negative eigenvalues).

1A state in a Hilbert space gives a description of reality at a particular moment in time (e.g. at time
t the particle is at spatial position x), while a history is a complete description of reality (e.g. a complete
trajectory of a particle).
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The decoherence functional encodes the quantum mechanical interference between

pairs of events. That it has two arguments is a reflection of the nature of quantum

mechanics, namely that interference is displayed between pairs of events but not between

members of a larger collection of events2.

Obtaining a decoherence functional for causal sets has been a longstanding obstruction

in the path to quantum gravity. A proposal for deriving a decoherence functional from

the CSG models was first put forward in [Dowker et al., 2010c]. In this proposal, the

tk parameters take complex values and give rise to a complex measure from which a

decoherence functional can be obtained. But in the same paper it was shown by example

that there are cases in which this procedure fails because the complex measure does not

extend to the full σ-algebra and it remained unclear whether there were any cases in

which the procedure was successful.

In the remainder of this chapter we review the proposal and the problem of extension

(section 5.1), provide criteria for when the proposal gives rise to a decoherence func-

tional on the labeled σ-algebra R̃ (section 5.2) and apply our criteria to provide the

first known examples of decoherence functionals, and hence of quantum dynamics for

causal sets (section 5.3). We conclude by generalising our results to a broad class of

σ-algebras (section 5.4).

5.1 A decoherence functional from CSG models

In this section we review the proposal of [Dowker et al., 2010c] for deriving a decoherence

functional from the CSG models. We conclude with a statement about the range of

validity of the proposal.

We begin by defining the “complex CSG models”. Complex CSG models are a gener-

alisation of the CSG models in which the tk are allowed to take complex values. Thus the

real transition probabilities P(C̃n → C̃n+1) are replaced by complex transition amplitudes

2Classical stochastic phenomena do not display any interference so they can be described by a function
whose argument is a single event, i.e. by a probability measure.
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A(C̃n → C̃n+1) of the form,

A(C̃n → C̃n+1) =
λ($,m)

λ(n, 0)
, (5.1)

where λ(k, p) is as defined in equation (3.2). The amplitude to reach a given C̃n by stage

n is denoted by A(C̃n) and is equal to the product of transition amplitudes along the path

from the empty set to C̃n. As with the (real) CSG models, (t0, t1, t2, ...) is a projective

parametrisation and we will assume t0 = 1, unless explicitly stated otherwise. Note that

equation (5.1) is well-defined only when λ(n, 0) 6= 0, i.e when,

n∑
k=0

(
n

k

)
tk 6= 0. (5.2)

We will only consider complex CSG models in which inequality (5.2) holds for all n. In

these models, the amplitudes satisfy the sum rule,

∑
i

A(C̃n → C̃i
n+1) = 1, (5.3)

where i labels the children of C̃n. Equation (5.3) is reminiscent of the classical Markov-

sum-rule and we define,

Definition 5.1.1 (Complex Markovian dynamics). A complex Markovian dynamics is a

complete set of transition amplitudes A(C̃n → C̃n+1) satisfying the sum rule (5.3).

The complex CSG models are the subset of complex Markovian dynamics satisfying (5.1).

Let a denote the collection of finite unions of cylinder sets, and note that it is an event

algebra (but not a σ-algebra). Given a complex Markovian dynamics one can define the

complex measure µ̃v on a via,3

µ̃v(cyl(C̃n)) := A(C̃n) ∀C̃n ∈ Ω̃(N). (5.4)

If µ̃v extends to a complex measure µ̃v,ex on R̃, then one can define a decoherence

3The subscript v is used to distinguish µ̃v from the real probability measure given in (3.12).
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functional on R̃ × R̃,

D(Ẽ , H̃) := µ̃∗v,ex(Ẽ)µ̃v,ex(H̃) ∀ Ẽ , H̃ ∈ R̃, (5.5)

where ∗ denotes complex conjugation. The key phrase here is if µ̃v extends, and indeed

it was shown in [Dowker et al., 2010c] that there are complex CSG models in which it

does not. When does µ̃v possess an extension? We begin with a definition.

Definition 5.1.2 (Variation and bounded variation). Let X be a space of histories, and

let A be an event algebra of subsets of X. Let F be a complex measure on A. The

variation of F is the extended non-negative function |F | whose value on a set α ∈ A is

given by

|F |(α) = sup
π

∑
β∈π

|F (β)|, (5.6)

where the supremum is taken over all partitions π of α into a finite number of pairwise

disjoint members of A. If |F |(X) <∞ then F is said to be of bounded variation.

We can now state our answer:

Lemma 5.1.3. µ̃v extends to a complex measure µ̃v,ex on R̃ if and only if µ̃v is of bounded

variation. When the extension exists, it is unique.

We leave the proof to appendix 5.A.

5.2 Two theorems

In this section, we develop criteria for µ̃v to be of bounded variation in a complex Marko-

vian dynamics (theorem 5.2.1) and in CSG models (theorem 5.2.7).

Given an n-causet C̃n, we denote its children by C̃i
n+1, where i labels the individual

children. For each complex Markovian dynamics, define the mapping ζ from the set of

68



finite labeled causets to the non-negative real numbers,

ζ : Ω̃(N)→ R+,

ζ(C̃n) :=
∑
i

|A(C̃n → C̃i
n+1)| − |

∑
i

A(C̃n → C̃i
n+1)|

=
∑
i

|A(C̃n → C̃i
n+1)| − 1,

(5.7)

where the equality follows from (5.3). For each n > 0 we define the maximum and

minimum of ζ over Ω̃(n),

ζmaxn := max
C̃n∈Ω̃(n)

ζ(C̃n),

ζminn := min
C̃n∈Ω̃(n)

ζ(C̃n).

(5.8)

We can now state our first theorem.

Theorem 5.2.1. In a complex Markovian dynamics, if
∑∞

n=1 ζ
max
n converges then µ̃v is

of bounded variation. If
∑∞

n=1 ζ
min
n diverges then µ̃v is not of bounded variation.

In order to develop some intuition, let us restrict our attention to complex CSG mod-

els. Then one can think of the function ζ as a measure of how “different” a complex

CSG model is to a (non-complex) CSG model. Roughly speaking, the larger the relative

phases between the couplings—the further the departure of a complex CSG model from

the (non-complex) CSG models—the larger ζ becomes. When all the tk have vanishing

phases then ζ(C̃n) = 0 for all C̃n. In this case
∑∞

n=1 ζ
max
n = 0, µ̃v is a real probability

measure of bounded variation and a decoherence functional on R̃ × R̃ can be defined.

These models define a quantum dynamics in the sense that there is intereference between

pairs of alternatives (i.e. the decoherence functional is not diagonal). But since all the

amplitudes have vanishing phases these models only exhibit constructive interference.

Therefore they cannot display the typical quantum behaviour which arises from destruc-

tive interference (cf. the double-slit experiment)4. For this reason, the interesting cases

are those in which some of the tk have a non-vanishing phase. When some of the tk have

4Another way to state this is that in these dynamics there is no set of zero measure which has a
susbset of non-zero measure.
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non-vanishing phases then ζ(C̃n) > 0 for some or all of the C̃n. Therefore
∑∞

n=1 ζ
min
n

may diverge in which case one cannot define a decoherence functional via equation (5.5).

Theorem 5.2.1 makes this notion precise by quantifying the behaviour that ζ must show

in order for µ̃v to be of bounded variation.

We now prove theorem 5.2.1 through a series of lemmas. Recall that Ω̃ is the set

of infinite labeled causets and a is the event algebra which contains all finite unions of

cylinder sets. Let Ẽ denote an element of a. We refer to a cylinder set cyl(C̃n) as a

“cylinder set at level n”. Let π denote a partition of Ω̃ into a finite number of pairwise

disjoint members of a. For each n > 0, define,

Sn :=
∑

C̃n∈Ω̃(n)

|µ̃v(cyl(C̃n))| =
∑

C̃n∈Ω̃(n)

|A(C̃n)|. (5.9)

Lemma 5.2.2. For any finite partition π of Ω̃ there exists an n ∈ N such that Sn ≥∑
Ẽ∈π |µ̃v(Ẽ)|.

Proof. We note that for any Ẽ ∈ a there exists a p ∈ N such that Ẽ can be written as a

union of cylinder sets at level m ∀m > p. Therefore, there exists an n ∈ N such that every

Ẽ ∈ π can be written as a union of cylinder sets at level n. Therefore,
∑
Ẽ∈π |µ̃v(Ẽ)| ≤ Sn,

where the inequality is saturated in the special cases when µ̃v(Ẽ) ∈ R+ ∀ Ẽ ∈ π or when

π = {cyl(C̃n)|C̃n ∈ Ω̃(n)}.

Since |µ̃v|(Ω̃) = supπ
∑
Ẽ∈π |µ̃v(Ẽ)| (definition 5.1.2), a direct corollary of lemma 5.2.2

is that |µ̃v|(Ω̃) = supn Sn and therefore,

Corollary 5.2.3. |µ̃v|(Ω̃) <∞ if and only if supn Sn <∞.

Corollary 5.2.3 relates |µ̃v| to the Sn. In the following, we translate this into a relation

between |µ̃v| and ζ.

Lemma 5.2.4. (1 + ζminn−1)Sn−1 ≤ Sn ≤ (1 + ζmaxn−1 )Sn−1.
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Proof.

Sn =
∑

C̃n∈Ω̃(n)

|A(C̃n)|

=
∑

C̃n−1∈Ω̃(n−1)

|A(C̃n−1)|
∑
i

|A(C̃n−1 → C̃i
n)|

=
∑

C̃n−1∈Ω̃(n−1)

|A(C̃n−1)|(1 + ζ(C̃n−1)),

(5.10)

where it is understood that for each C̃n−1 ∈ Ω̃(n− 1) the label i labels the children of it

(so that i depends on C̃n−1 and the sums in the second line of equation (5.10) cannot be

commuted).

Therefore,

Sn ≤
∑

C̃n−1∈Ω̃(n−1)

|A(C̃n−1)|(1 + ζmaxn−1 )

=⇒ Sn ≤ (1 + ζmaxn−1 )Sn−1.

(5.11)

Similarly,

Sn ≥
∑

C̃n−1∈Ω̃(n−1)

|A(C̃n−1)|(1 + ζminn−1)

=⇒ Sn ≥ (1 + ζminn−1)Sn−1.

(5.12)

Lemma 5.2.4 implies that the sequence {Sn}n>0 is monotonically increasing over n

and therefore,

Corollary 5.2.5. |µ̃v|(Ω̃) <∞ if and only if limn→∞Sn <∞.

All that remains in order to prove theorem 5.2.1 is to show that if
∑∞

n=1 ζ
max
n converges

then limn→∞Sn <∞, and if
∑∞

n=1 ζ
min
n diverges then limn→∞Sn =∞.

Lemma 5.2.6.
∏n−1

r=1 (1 + ζminr ) ≤ Sn ≤
∏n−1

r=1 (1 + ζmaxr ).
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Proof. By lemma 5.2.4 we have,

Sn ≤ (1 + ζmaxn−1 )Sn−1

≤ (1 + ζmaxn−1 )(1 + ζmaxn−2 )Sn−2

...

≤
n−1∏
r=1

(1 + ζmaxr )S1.

(5.13)

Since S1 = 1 we arrive at the result that Sn ≤
∏n−1

r=1 (1+ζmaxr ). That
∏n−1

r=1 (1+ζminr ) ≤ Sn

can be similarly derived.

Given an infinite product
∏∞

1 (1 + an), if all an are positive, or all are negative, a

necessary and sufficient condition for the convergence of
∏∞

1 (1 + an) is that
∑
an shall

converge [Jeffreys and Swirles, 1966]. Therefore we have,

∞∑
n=1

ζmaxn <∞ =⇒ limn→∞Sn <∞ =⇒ |µ̃v|(Ω̃) <∞,

∞∑
n=1

ζminn =∞ =⇒ limn→∞Sn =∞ =⇒ |µ̃v|(Ω̃) =∞,
(5.14)

where in each line, the first implication (“ =⇒ ”) is by lemma 5.2.6 and the second by

corollary 5.2.5. This proves theorem 5.2.1.

Next, we restrict ourselves to the complex CSG models and use the functional depen-

dence of the amplitude A on the tk (5.1) to identify ζmaxn and ζminn for all n. Let C̃a
n and

C̃c
n denote the n-antichain and n-chain, respectively. Define the abbreviations,

ζan :=ζ(C̃a
n)

ζcn :=ζ(C̃c
n)

(5.15)

Theorem 5.2.7. In any complex CSG model, ζmaxn = ζan and ζminn = ζcn.

Proof. First, we show that ζmaxn = ζan. Given some parent C̃n, every choice of proto-past
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in C̃n leads to a unique transition if and only if C̃n = C̃a
n. Hence we have,

ζan = −1 +

∑n
k=0

(
n
k

)
|tk|

|λ(n, 0)|
≥ ζ(C̃n) ∀C̃n ∈ Ω̃(n), (5.16)

where the inequality follows from the triangle inequality.

Next, we proceed by induction to show that ζminn = ζcn. One can show that ζminn = ζcn

when n = 1, 2. Suppose true for all n = 1, 2, 3, ..., r − 1, and note that

ζcr = −1 +
|λ(r − 1, 0)|
|λ(r, 0)|

(ζminr−1 + 1) +
|U |
|λ(r, 0)|

,

U =
r−1∑
k=0

(
r − 1

k

)
tk+1,

(5.17)

where U is the relative probability of the transition C̃c
r → C̃c

r+1 in which the new element

r is born above the element r − 1.

Consider some C̃r ∈ Ω̃(r). Let C̃r−1 denote the restriction of C̃r to {0, 1, ..., r − 2}

and note that C̃r−1 is a stem in C̃r. Then we have,

ζ(C̃r) =− 1 +
|λ(r − 1, 0)|
|λ(r, 0)|

(ζ(C̃r−1) + 1) +
|V |
|λ(r, 0)|

≥ − 1 +
|λ(r − 1, 0)|
|λ(r, 0)|

(ζminr−1 + 1) +
|V |
|λ(r, 0)|

,

(5.18)

where on the first line, the last term on the RHS contains the contributions from all

transitions in which the new element r is born above the element r−1. If C̃r has a single

maximal element then V = U =⇒ ζ(C̃r) ≥ ζcr . If C̃r has at least two maximal elements

it follows from the triangle inequality that |V | ≥ |U | =⇒ ζ(C̃r) ≥ ζcr . This completes

the proof.

5.3 Examples

We now apply theorems 5.2.1 and 5.2.7 to determine whether various families of complex

CSG models give rise to a decoherence functional.
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Dynamics with vanishing phases: As we have seen in the previous section, when

all the tk have vanishing phases then ζ(C̃n) = 0 for all C̃n. Therefore, in these cases a

decoherence functional on R̃ × R̃ can be defined.

Dynamics with two non-zero couplings: The simplest case with non-vanishing

phases occurs when only two of the couplings are non-vanishing: t0 = 1, tk = seiφ (s > 0

and 0 ≤ φ < 2π) for some k > 0 and tl = 0 otherwise. In this case,

ζan =
1 +

(
n
k

)
s√

1 + 2s
(
n
k

)
cosφ+ s2

(
n
k

)2
− 1, (5.19)

and it can be shown by the comparison test against
∑

1
nx (with x > 1) that

∑
ζan

converges for all values of s and φ when k ≥ 2. Let us sketch the proof. Since ζan ≥ 0,

ζan ≤ 1
nx if and only if,

(
− 2

nx
− 1

n2x

)(
1 + s2

(
n

k

)2)
+ 2s

(
n

k

)(
(1− cosφ)−

(
− 2

nx
− 1

n2x

)
cosφ

)
≤ 0. (5.20)

When n� k,
(
n
k

)
∼ nk

k!
and the dominant contribution to the LHS is

≈ 2s

k!
nk
(
− s

k!
nk−x + (1− cosφ)

)
, (5.21)

which is negative for large n if k > x > 1 for all values of s and φ. Indeed one can show

that given some s, φ and k > 1 there exists some N(k, s, φ) ∈ N such that ζan ≤ 1
nx for all

n > N(k, s, φ) and some x > 1. Thus, the decoherence functional is well-defined for any

choice of tk as long as k ≥ 2.

When k = 1, it can be shown by the comparison test against
∑

1
nx (with x < 1) that∑

ζcn diverges when φ 6= 0. In this case,

ζcn =
ns+ 1√

1 + n2s2 + 2ns cos(φ)
− 1, (5.22)

and the dominant contribution at large n scales as 1
n
. A decoherence functional cannot

be defined in this case.
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The qualitative difference between the k > 1 case which gives rise to a decoherence

functional and the k = 1 case which does not stems from the fact that for large n the

number of 2-element subsets of an n-causet is significantly greater than the number of 1-

element subsets [Georgiou, 2005]. When k > 1, the amplitudes at large n are dominated

by contributions from tk and the effect of the phase difference between t0 and tk becomes

negligible, leading to small ζ values. When k = 1, the number of 1-element subsets

does not grow fast enough with n to drown out the contribution from t0 and the phase

difference between t0 and t1 registers as large ζ values.

Dynamics with N non-zero couplings: Our example of two non-zero couplings can

be generalised to any finite number of non-zero couplings. Consider a complex CSG

model with N non-zero couplings t0, tk1 , tk2 , . . . tkN , where kN > kN−1 . . . > k1 > 0. For

each i, let tki = sie
iφi . In this case,

ζan =
1 +

∑N
i=1

(
n
ki

)
si

|1 +
∑N

i=1

(
n
ki

)
sieiφi |

− 1, (5.23)

and ζan ≤ 1
nx (with x > 1) if and only if,

(
− 2

nx
− 1

n2x

)(
1 +

∑
i

(
n

ki

)2

s2
i

)
+ 2

∑
i

(
n

ki

)
si

(
1− cosφi +

(
− 2

nx
− 1

n2x

)
cosφi

)
+ 2

∑
i,j,i6=j

(
n

ki

)(
n

kj

)
sisj

(
1− cos(φi − φj) +

(
− 2

nx
− 1

n2x

)
cos(φi − φj)

)
≤ 0.

(5.24)

For n� N > 1, the dominant contributions to the LHS arise from tkN and tkN−1
and are

given by,

− 2s2
N

(kN !)2
n2kN−x +

2sNsN−1

kN !kN−1!
nkN+kN−1(1− cos(φN − φN−1)), (5.25)

which is negative when kN − kN−1 > x for all values of si, φi. Choosing 1 < x < 2, we

see that a decoherence functional can be defined whenever kN − kN−1 > 1. Intuitively,

the condition that kN − kN−1 > 1 ensures that the difference between the number of

N -element and (N − 1)-element subsets of an n-causet (n > N) is large enough for tN to

dominate so that the difference in the phases of tkN and tkN−1
is ironed out leading to ζ
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values small enough for convergence.

Dynamics with an infinite number of non-zero couplings: We can use the in-

tuition we developed in the previous cases to infer the behaviour of ζ in complex CSG

models which have infinitely many non-zero couplings. If there exists an N such that all

the tk with k > N have the same phase (or are vanishing) then at n > N the contributions

to the transition amplitudes will be dominated by collinear couplings leading to small ζ

values and a well-defined decoherence functional. More generally, to define a decoherence

functional the phase difference between tk and tk+1 has to go to zero fast enough with k.

Complex Transitive Percolation: Complex Transitive Percolation (CTP) is defined

by tk = tk for some constant t ∈ C. Therefore, when t is not real and positive, the

phase of tk oscillates with k, the phase difference between tk and tk+1 does not approach

zero and a decoherence functional cannot be defined. Indeed, it was shown in [Dowker

et al., 2010c] that a decoherence functional cannot be defined in this case, and our results

shed light on why this is the case. To confirm that our intuition is correct and to give a

new proof of this result, we sketch how in this case limn→∞ ζ
min
n > 0 and hence

∑
n ζ

min
n

diverges. We can write t = 1−q
q

, q ∈ C, where t is real and positive unless (i) q ∈ C and

|q| > 1, (ii) q 6∈ R+ and |q| = 1, or (iii) q 6∈ R+ and |q| < 1. The minimum of ζ is given

by,

ζminn =− 1 + |q|n + |q|n−1|1− q|
n−1∑
k=0

|q|−k, (5.26)

and therefore in case (i),

ζminn =(1− |q|n)(
|1− q|
1− |q|

− 1) =⇒ lim
n→∞

ζminn = −sign
( |1− q|

1− |q|
− 1
)
∞ =∞, (5.27)

in case (ii),

ζminn =n|1− q| =⇒ lim
n→∞

ζminn =∞, (5.28)
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and in case (iii),

ζminn = (1− |q|n)(
|1− q|
1− |q|

− 1) =⇒ lim
n→∞

ζminn =
|1− q|
1− |q|

− 1 > 0. (5.29)

5.4 Beyond labeled poscau

As defined in 5.1.1, complex Markovian dynamics are complex random walks on labeled

poscau. We now generalise the usage of the term “complex Markovian dynamics” by al-

lowing to replace labeled poscau with any tree T which (i) contains no maximal elements,

and (ii) in which every node has a finite valency. A complex Markovian dynamics on T

is a complete set of complex transition amplitudes A(x→ y) satisfying
∑

y A(x→ y) = 1

for all x, y ∈ T and y directly above x.

Given any T and a complex Markovian dynamics, define,

ζ : T → R+,

ζ(x) :=
∑
y

|A(x→ y)| − 1,
(5.30)

ζmaxn := max
x∈Tn

ζ(x),

ζminn := min
x∈Tn

ζ(x),

(5.31)

where Tn ⊂ T is the set of nodes at level n. With these definitions, we can now interpret

theorem 5.2.1 in the context of a complex Markovian dynamics on any T . The generalised

proof can be obtained from the proof in the text by replacing labeled poscau’s sample

space, cylinder sets and nodes with those of T .

This generalisation paves the way for novel quantum dynamics. In particular, one

could consider complex Markovian dynamics on covtree, although currently this remains

a purely formal development. We discuss applications of the generalised theorem to other

tree structures in section 6.2.
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5.A Supplementary material

Proof of lemma 5.1.3: Let F be a complex measure on an algebra A. If F has an exten-

sion to the σ-algebra generated by A then F has bounded variation [Dowker et al., 2010c;

Rudin, 1987]. We now show that bounded variation is also sufficient for extension. The

Caratheodory-Hahn-Kluvanek (CHK) extension theorem (theorem 2 in [Diestel and Uhl,

1977]) states that a bounded weakly countably additive vector measure F : A → X has

a unique countably additive extension F̄ : Σ → X to the σ-algebra Σ generated by A if

and only if F is strongly additive. Note that bounded variation =⇒ strong additivity

=⇒ boundedness [Diestel and Uhl, 1977]. Note also that countable additivity =⇒

weak countable additivity. Finally in any complex Markovian dynamics, µ̃v is countably

additive since no cylinder set can be written as a countable disjoint union of cylinder

sets [Lindstrøm, 2017]. Therefore, when µ̃v has bounded variation then µ̃v is a bounded

weakly countably additive vector measure and it is strongly additive, and therefore it

possesses a unique extension by the CHK extension theorem.
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Chapter 6

Labeled dynamics with posts and

breaks

In causal set theory, cycles of cosmic expansion and collapse are modeled by sequences of

posts and breaks and a special role is played by dynamics which favour cyclic causal set

spacetimes [Ahmed and Rideout, 2010; Ash and McDonald, 2003, 2005; Bombelli et al.,

2008; Dowker and Zalel, 2017; Martin et al., 2001; Sorkin, 2000].

This chapter is dedicated to the occurrence of posts and breaks in labeled dynamics

(where by a “labeled dynamics” we mean a random walk on labeled poscau). We compute

the probability that the element n is a post in any CSG dynamics (section 6.1). We

then consider two classes of “cyclic dynamics” and identify their respective σ-algebras

of observables (section 6.2.1). We discuss the random walks which induce a probability

measure on these algebras (section 6.2.2) and apply the results of chapter 5 to study their

complex counterparts (section 6.2.3).

6.1 Probability of a post

In this section we consider CSG dynamics. For each n ≥ 0, define:

λ(n)(i, 0) :=
i∑

k=0

(
i

k

)
t
(n)
k =

i∑
k=1

(
i

k

)
t
(n)
k , (6.1)

where t
(n)
k are the effective couplings given in (3.15).
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We will show that,

Lemma 6.1.1. In any CSG dynamics and any fixed n ≥ 0, the probability that the

element n is a post in the completed causal set is,

P(n is a post) = F (n)
∞∏
i=1

λ(n)(i, 0)

λ(n+ i, 0)
, (6.2)

where F (n) is the probability that n is related to all other existing elements at the end of

stage n and is given by,

F (n) =

 1 : n = 0,∑
C̃n∈Ω̃(n) P(C̃n)λ(n,M(C̃n))

λ(n,0)
: n > 0,

(6.3)

and M(C̃n) denotes the number of maximal elements in C̃n.

We note that (6.2) agrees with two previously known special cases: the probability

that the element 0 is a post in any CSG dynamics and the probability that n ≥ 0 is a

post in Transitive Percolation. In any CSG dynamics,

P(0 is a post) =
∞∏
i=1

1− qi, (6.4)

where qi = t0
λ(i,0)

is the probability that the element i is born unrelated to all the existing

elements. In the special case of Transitive Percolation, order-reversal invariance1 implies

that, ∑
C̃n

P(C̃n)
λ(n,M(C̃n))

λ(n, 0)
=

n∏
i=1

1− qi (6.5)

and therefore for any n > 0 [Bombelli et al., 2008],

P(n is a post) =
n∏
i=1

1− qi
∞∏
i=1

1− qi = (q, q)n(q, q)∞, (6.6)

where in the last line we used the definition of the q-Pochhammer symbol, (q, q)n ≡∏n
i=1 1 − qi. (q, q)n decreases with n, and so the probability of n being a post decreases

1Two causets C̃n and C̃ ′n are related by order-reversal when x ≺ y in C̃n ⇐⇒ y ≺ x in C̃ ′n. A
dynamics is order-reversal invariant if P(C̃n) = P(C̃ ′n) whenever C̃n and C̃ ′n are related by order-reversal.
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with n, but is bounded below by (q, q)2
∞ > 0 for all 0 < q < 1. Hence whilst the

probability that n is a post decreases with n, it is finite for all n.

Proof of lemma 6.1.1. Given s > r > n, we write [r, s] � n to mean that every element

in the interval [r, s] is above n. We write {r, ...} � n to mean that every element greater

or equal to r is above n.

First note that for any s > n+ 1,

P(s � n
∣∣[n+ 1, s− 1] � n) =

∑s−n
k=1

(
s−n
k

)∑n
l=0

(
n
l

)
tk+l

λ(s, 0)
=
λ(n)(s− n, 0)

λ(s, 0)
, (6.7)

where the sum over k counts the non-empty subsets of {n, n+1, ..., s−1} and the sum over

l counts all subsets of {0, ..., n − 1} so that together they count all possible proto-pasts

consistent with the condition s � n, and we have performed the sum over l to obtain t
(n)
k

via equation (3.15) and then performed the sum over k to obtain λ(n)(s− n, 0) via (6.1).

Similarly,

P(n+ 1 � n) =

∑n
l=0

(
n
l

)
tl+1

λ(n+ 1, 0)
=

λ(n)(1, 0)

λ(n+ 1, 0)
. (6.8)

Define F (n) to be the probability that n is related to all x < n and note that it is

given by expression (6.3). Thus,

P(n is a post) =F (n)P({n+ 1, ...} � n)

=F (n)P(n+ 1 � n)
∞∏
i=2

P(n+ i � n
∣∣[n+ 1, n+ i− 1] � n)

=F (n)
∞∏
i=1

λ(n)(i, 0)

λ(n+ i, 0)
.

(6.9)

6.2 Cyclic dynamics

This section is about labeled dynamics which generate infinitely many breaks or posts

with unit probability. We begin by considering classical random walks on labeled poscau

(i.e. a complete set of transition probabilities P(C̃n → C̃n+1)), or equivalently a proba-
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bility measure (Ω̃, R̃, µ̃) (where µ̃
(
cyl(C̃n)

)
= P(C̃n)). Since we will be concerned with

the covariant observables of these models, we may refer to R, the covariant algebra, and

to µ, the restriction of µ̃ to R. We will restrict our attention to two families of labeled

dynamics which are of particular interest to cosmology. Let B∞ ∈ R denote the event

that there are infinitely many breaks,

B∞ = {C̃ ∈ Ω̃|C̃ contains infinitely many breaks}, (6.10)

and similarly, P∞ ∈ R denotes the event that there are infinitely many posts. We will

consider the family of dynamics which satisfy µ(B∞) = 1 and the family of dynamics

which satisfy the strictly stronger condition µ(P∞) = 1. We call models in either of these

families “cyclic”. A cyclic model may or may not be a CSG model and a CSG model

may or may not be cyclic, though the best-understood growth dynamics—Transitive

Percolation—is both, since it is a CSG model which almost surely gives rise to infinitely

many posts.

6.2.1 Observables

Consider the family of cyclic dynamics satisfying µ(B∞) = 1. What are the physical

observables in these models? R is the algebra of covariant events2 but the condition

µ(B∞) = 1 enables us to identify a strictly smaller algebra as the algebra of observables3.

We propose that the set of observables in cyclic models satisfying µ(B∞) = 1 are those

events which do not distinguish between causal sets which contain finitely many breaks,

since such causal sets cannot be generated by the growth process. More precisely, we

propose that the physical observables are the events A ∈ R which satisfy Bc∞ ⊆ A or

Bc∞ ⊆ Ac, where the superscript c denotes the set complement. Indeed, using the standard

2This is a consequence of the “kinematics”, namely the structure of labeled poscau, which gives rise
to the measurable space (Ω̃, R̃). It is independent of the measure µ.

3This is analogous to the CSG models, where µ(Θ) = 0 was used to identify R(S) ⊂ R as the algebra
of observables (see sections 3.4 and 4.1).
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set theory results,

X ⊆ Y ⇐⇒ Y c ⊆ Xc,

(
⋃
i

Xi)
c =

⋂
i

Xc
i ,

(6.11)

one can show that the set of all such observables is a σ-algebra and we denote it by Rb,

Rb := {A ∈ R|Bc∞ ⊆ A or Bc∞ ⊆ Ac}. (6.12)

For each E ∈ R, E ∩ B∞ ∈ Rb. Therefore in any dynamics satisfying µ(B∞) = 1, the

measure of each E ∈ R is uniquely determined by the measure of an event in Rb via

µ(E) = µ(E ∩ B∞). It is in this sense that Rb exhausts the σ-algebra of observables in

dynamics which almost surely give rise to infinitely many breaks. The discussion for the

family of dynamics satisfying µ(P∞) = 1 is completely analogous, and in this case the

algebra of observables is given by,

Rp := {A ∈ R|Pc∞ ⊆ A or Pc∞ ⊆ Ac}. (6.13)

Now, we prove theorems 6.2.1-6.2.2 which provide further insight into the nature of

the algebras Rb and Rp. The following terminology will be useful. Recall that for any

n > 1 the labeled causet C̃n ∈ Ω̃(N) is a covering causet (of some causet C̃n−1) if it

has a unique maximal element (definition 4.2.2). We say that C̃n is a “super-covering

causet” if it is a covering causet of a covering causet. In our convention, the 1-causet

C̃1 is both a covering and a super-covering causet. We say that cyl(C̃n) is a covering

(super-covering) cylinder set if C̃n is a covering (super-covering) causet. Let R̃b and R̃p

denote the σ-algebras generated by the covering and the super-covering cylinder sets,

respectively. The corresponding covariant algebras are R̃b ∩R and R̃p ∩R.

Theorem 6.2.1. Rb = R̃b ∩R.

Theorem 6.2.2. Rp = R̃p ∩R.

Thus, Rb (Rp) is the collection of covariant events which can be built from covering

(super-covering) cylinder sets by a countable number of set operations. Note that the
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connection between covering causets and breaks (super-covering causets and posts) is

reminiscent of the covariant theorem 4.2.3, with the important difference that in the

covariant case we can make statements about a finite number of breaks while in the

labeled case we cannot.

We now prove theorem 6.2.1. The proof of theorem 6.2.2 is analogous. Let F̃ ⊂ Ω̃

denote the set of all infinite causets which contain finitely many covering causets as

stems.4

Lemma 6.2.3. C̃ ∈ Bc∞ if and only if there exists some D̃ ∈ F̃ such that D̃ ∼= C̃.

An illustration is shown in figure 6.1.

Proof. Note that F̃ ⊂ Bc∞, since a causet with infinitely many breaks necessarily contains

infinitely many covering causets as stems. Therefore, if there exists some D̃ ∈ F̃ such

that D̃ ∼= C̃ then C̃ ∈ Bc∞.

To prove the converse, let C̃ ∈ Bc∞ and let N be the cardinality of the past of the last

break in C̃. Suppose C̃ contains infinitely many covering causets as stems and consider

the infinite sequence,

n1 < n2 < ... ≡ (ni)

of integers ni > N + 1 for which the restriction C̃|[0,ni] is a covering causet (i.e. ni �

x ∀ x < ni).

We now construct a bijection g : C̃ → N and define D̃ ∈ Ω̃ to be the infinite causet in

which x ≺ y ⇐⇒ g−1(x) ≺ g−1(y) in C̃. The definition of D̃ ensures that D̃ ∼= C̃ and

our construction of g ensures that D̃ ∈ F̃ . This proves the claim.

Set g(x) = x ∀ x < n1. Set g(n1) = n1 + 1 (this ensures that D̃|[0,n1] will not be a

covering causet). Let n∗1 denote the smallest integer greater than n1 which satisfies both

n∗1\n1 and n∗1 6� y for at least one y < n1−1 in C̃.5 (Such an integer surely exists because

otherwise C̃ would contain a break with past [0, n1 − 1], which is a contradiction.) Set

g(x) = x+ 1 ∀ n1 < x < n∗1 and g(n∗1) = n1.

4Another way to say this is, C̃ ∈ F̃ ⇐⇒ ∃ m ∈ N such that, for all n > m, C̃|[0,n] contains at least
two maximal elements.

5Where for any two elements a, b the notation a\b denotes that a and b are unrelated, i.e. a 6� b and
a 6≺ b.
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Now, define m2 to be equal to the smallest entry in (ni) which is larger than n∗1. Set

g(x) = x ∀ n∗1 < x < m2. Set g(m2) = m2 + 1 (this ensures that D̃|[0,m2] will not be a

covering causet). Let n∗2 denote the smallest integer greater than m2 which satisfies both

n∗2\m2 and m∗2 6� y for at least one y < m2 − 1 in C̃. Set g(x) = x + 1 ∀ m2 < x < n∗2

and g(n∗2) = m2. Repeat this process with m2 → m3, n
∗
2 → n∗3 etc.

Figure 6.1: Illustration of lemma 6.2.3. C̃ ∈ Bc∞, since it contains no breaks. C̃ 6∈ F̃ , since
C̃|[0,2n] is a covering causet ∀ n ∈ N. D̃ ∈ F̃ , since D̃|[0,n] is not a covering causet ∀ n > 0.

Corollary 6.2.4. If A ∈ R and F̃ ⊂ A then Bc∞ ⊆ A.

Lemma 6.2.5. Let A ∈ R̃b ∩R. A ∩ Bc∞ 6= ∅ =⇒ Bc∞ ⊆ A.

Proof. For each covering causet C̃n ∈ Ω̃(N) let S(C̃n) ⊂ Ω̃(N) denote the set of covering

causets with cardinality greater than n whose restriction to [0, n− 1] is C̃n, and define

ΓC̃n
:= cyl(C̃n) \

⋃
D̃m∈S(C̃n)

cyl(D̃m). (6.14)

ΓC̃n
is the set of infinite causets which (i) contain the covering causet C̃n as a stem and

(ii) contain no covering causet of cardinality greater than n as a stem. We will use the

following properties:

1. Each ΓC̃n
is an atom of R̃b (i.e. the elements of ΓC̃n

cannot be separated by the

covering cylinder sets).

2. The collection of all the ΓC̃n
is a partition of F̃ (since every C̃ ∈ F̃ is contained in

some ΓC̃n
and for any two covering causets C̃n 6= D̃m we have ΓC̃n

∩ ΓD̃m
= ∅).
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Given a covering causet C̃n, let X̃C̃n
∈ Ω̃ denote the infinite causet whose restriction

to [0, n− 1] is C̃n and in which all elements m ≥ n are unrelated to all others. Let X̃ ′
C̃n

denote a causet isomorphic to X̃C̃n
in which the element 0 is unrelated to all others. Then

X̃C̃n
∈ ΓC̃n

and X̃ ′
C̃n
∈ ΓC̃1

.

Suppose ΓC̃1
⊂ A ∈ R̃b ∩R. Since ΓC̃1

⊂ A we have X̃ ′
C̃n
∈ A for all covering causets

C̃n. Since A is covariant, X̃C̃n
∈ A for every covering C̃n. Hence, by property 1, ΓC̃n

⊂ A

for every covering C̃n. By property 2, F̃ ⊂ A and by corollary 6.2.4, Bc∞ ⊆ A.

Now, consider any A ∈ R̃b ∩ R for which A ∩ Bc∞ 6= ∅ and let C̃ ∈ A ∩ Bc∞. Then

there exists some D̃ ∼= C̃ and some C̃n such that D̃ ∈ ΓC̃n
and therefore ΓC̃n

⊂ A. Hence

X̃C̃n
∈ ΓC̃n

. Since A is covariant, X̃ ′
C̃n
∈ A. Therefore ΓC̃1

⊂ A, which completes the

proof.

Lemma 6.2.6. B∞ ∈ R̃b.

Proof. Let C̃ be a finite or infinite causet. A “segment” in C̃ is a subcauset which lies

between two consecutive breaks. More precisely, if {A1, B1}, {A2, B2}, ... are breaks in C̃

then the segments of C̃ are A1, A2 \A1, A2 \A3, .... If C̃ contains 0 < k <∞ breaks then

Bk is also a segment. If C̃ contains no breaks then C̃ is the only segment in C̃.

Consider the collection of finite labeled causets which contain no breaks. We enumer-

ate these causets using the label i ∈ N, so that C̃ni
is the ith finite causet which contains

no breaks and its cardinality is ni. We will use the string C̃ni1
...C̃nik−2

̂̃Cnik−1
to represent

the finite covering causet whose kth segment is (canonically isomorphic to) C̃nik
.

For each finite order C̃ni1
which contains no breaks, define the set,

B1(C̃ni1
) :=

∞⋂
k=2

⋃
cyl(C̃ni1

C̃ni2
...C̃nik−1

̂̃Cnik
), (6.15)

where the union is over all sequences (i2, ...., ik) of natural numbers. Note that if C̃ ∈

B1(C̃ni1
) then C̃ni1

is the first segment in C̃, and therefore C̃ contains at least one break.

Additionally, if C̃ ∈ B∞ and C̃ni1
is the first segment in C̃ then C̃ ∈ B1(C̃ni1

).

We now generalise (6.15) to any l ≥ 1. Given a string C̃ni1
...C̃nil

of finite causets
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which contain no breaks define the set

Bl(C̃ni1
...C̃nil

) :=
∞⋂

k=l+1

⋃
cyl(C̃ni1

...C̃nil
C̃nil+1

...̂̃Cnik
) (6.16)

where the union is over all sequences (il+1, ...., ik) of natural numbers. If C̃ ∈ Bl(C̃ni1
...C̃nil

)

then C̃ni1
, ..., C̃nil

are the first l segments in C̃ (and therefore C̃ contains at least l

breaks). Additionally, if C̃ ∈ B∞ and C̃ni1
, ..., C̃nil

are the first l segments in C̃ then

C̃ ∈ Bl(C̃ni1
...C̃nil

). Define,

Bl :=
⋃
Bl(C̃ni1

C̃ni2
...C̃nil

), (6.17)

where the union is over all sequences (i1, ..., il). For each l, Bl ⊃ B∞ and if C̃ ∈ Bl then

C̃ contains at least l breaks. Therefore,

B∞ =
∞⋂
l=1

Bl. (6.18)

Proof of theorem 6.2.1. By lemma 6.2.5, R̃b ∩ R ⊆ Rb. To prove the converse, it is

sufficient to prove that A ∈ R̃b ∩ R whenever A ∈ R and A ⊆ B∞. Let A ∈ R and

A ⊆ B∞. Then A ∈ R(S) and moreover A is in the restriction of R(S) to B∞, i.e.

A ∈ {E ∩ B∞|E ∈ R(S)}, and therefore A can be obtained from countably many set

operations on sets of the form stem(Cn) ∩ B∞ = (
⋃
cyl(D̃m)) ∩ B∞, where the union is

over all covering cylinder sets contained in stem(Cn). It follows from lemma 6.2.6 that

every set of the form (
⋃
cyl(D̃m)) ∩ B∞ is contained in R̃b ∩R. Thus A ∈ R̃b ∩R.

6.2.2 Classical dynamics

Our new understanding of the covariant algebraRb as a meaningful algebra of observables

strongly suggests that we should seek to understand the measures which can be defined

on it. We will consider measures which can be obtained via a restriction of a measure

on the non-covariant algebras R̃ or R̃b. The advantage in doing so is that we know that
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these algebras are countably generated by the cylinder sets and covering cylinder sets,

respectively, and that therefore each measure can be conceived of as a random walk up a

tree. A measure on R̃ corresponds to a walk up labeled poscau, while a measure on R̃b

corresponds to a walk up a new tree which we dub “reduced poscau”.

We can think of reduced poscau as obtained from labeled poscau by merging groups of

nodes into one, so that in reduced poscau each node at level n is a collection of n-causets.

Covering causets are never merged with others, so each covering causet is contained in

a node on its own. Given a covering causet, all its children (except for the one which is

itself a covering causet) are merged into one node. Thus, in reduced poscau each covering

causet has two nodes directly above it. A node at level n which contains r causets has

r+1 nodes above it: r nodes each of which contains a single covering causet (one for each

causet in the parent node) and an additional node which contains all other (n+1)-causets

in which the elements of the parent node are stems. The meaning of each node is “one of

these causets is a stem in the growing causet”. The first three levels of reduced poscau

are shown in figure 6.2.

Each classical walk on reduced poscau induces a probability measure on R̃b, where the

measure of a covering cylinder set is equal to the probability of reaching the corresponding

node. Each walk on labeled poscau induces a walk on reduced poscau by fixing the

probability of reaching each covering causet. The converse is also true, each (classical)

walk on reduced poscau induces a (classical) walk on labeled poscau.6 Thus walks on

labeled poscau and on reduced poscau yield the same class of probability measures on the

covariant Rb. At the classical level, the only advantage of working directly with reduced

poscau is that its structure could potentially lead to new physical constraints and hence

to identifying new classes of physically interesting dynamics.

Note that the discussion relating to measures on Rp is completely analogous. In that

case, measures on R̃p correspond to walks up “super-reduced poscau” whose description

is obtained from the above by replacing “covering” with “super-covering” (so only super-

covering causets are contained in nodes of their own).

6The proof is analogous to the proof that every probability measure on R(S) has an extension to R̃
(cf. lemma 4.1.16).
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Figure 6.2: The first three levels of reduced poscau.

6.2.3 Quantization

As discussed in section 6.2.2, each probability measure on R̃b extends to R̃. However, it

is unknown to the author of this thesis whether every complex measure on R̃b extends

to R̃. If there exist complex measures on R̃b which do not extend to R̃, then our

new understanding of the covariant algebra Rb as a meaningful algebra of observables

combined with the understanding of complex measures as quantum dynamics (cf. chapter

5) strongly suggest that we should search for them.

For example, Transitive Percolation is a cyclic dynamics whose complex counterpart,

Complex Transitive Percolation, does not induce a measure on R̃ (cf. section 5.3). But

can it induce a measure on the smaller algebra R̃b? Consider the complex Markovian dy-

namics induced on reduced poscau by Complex Transitive Percolation. In this dynamics,

the amplitude to transition from a covering causet to its covering causet descendant is

equal to p ∈ C, hence the function ζ (cf. equation (5.30)) takes the value |p|+ |1− p| − 1

on each covering causet (since each covering causet has valency equal to 2). We solved

numerically for ζminn (cf. equation (5.31)) as a function of p for n = 2, 3, 4 and found that

ζmin2 = |p|+ |1−p|−1 =⇒ ζmin3 = |p|+ |1−p|−1 =⇒ ζmin4 = |p|+ |1−p|−1, as shown

by the nested regions in figure 6.3a. Our result suggests that for any p ∈ C satisfying

p 6∈ [0, 1], there exists an m ∈ N such that ζminn = |p| + |1 − p| − 1 for all n > m. If

this is borne out then, by theorem 5.2.1, Complex Transitive Percolation cannot induce

a measure on R̃b when p is not a real number satisfying 0 ≤ p ≤ 1.

Can Complex Transitive Percolation induce a measure on the smaller algebra R̃p?
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Theorem 5.2.1 cannot answer this question because every level n > 1 in super-reduced

poscau contains nodes with valency equal to 1. On these nodes, ζ vanishes and therefore∑
n ζ

min
n = 0, so the theorem cannot be used to prove for the lack of bounded variation.7

To conclude this discussion, we sketch how the derivation of theorem 5.2.1 can be amended

to provide further scrutiny in the special case where there are nodes with valency equal

to 1.

We build on the definitions and notation of section 5.4. Let T denote a tree satisfying

the criteria outlined in section 5.4 and let Tn ⊂ T denote the set of nodes at level n. Let

xn denote a node at level n. Let Tn ⊂ Tn be the set of level n nodes which have valency

greater than 1, and define,

ζminn = min
xn∈Tn

ζ(xn). (6.19)

Recall that Sn =
∑

xn∈Tn
|A(xn)| and define,

Sn :=
∑
xn∈Tn

|A(xn)|,

Sv=1
n := Sn − Sn.

(6.20)

Then in analogy to lemma 5.2.4, one can show that,

Sn ≥(1 + ζminn−1)Sn−1 − ζminn−1S
v=1
n−1. (6.21)

In analogy to lemma 5.2.6 one can show that,

Sn ≥
n−1∏
r=1

(1 + ζminr )−
n−1∑
r=1

[
Sv=1
n−r ζ

min
n−r

r−1∏
i=1

(1 + ζminn−r+i)

]
. (6.22)

To prove the lack of bounded variation, one needs to show that supn Sn =∞.

We now return to Complex Transitive Percolation on super-reduced poscau. Numeri-

cal solutions for ζminn as a function of p for n = 2, 3, 4 (shown in figure 6.3b) suggest that

for any p ∈ C, there exists an m ∈ N such that ζminn = |p|+|1−p|−1 for all n > m. If this

7That the theorem cannot be used to prove for bounded variation when p is not a real number
satisfying 0 ≤ p ≤ 1 follows from ζmax

n ≥ |p|+ |1− p| − 1 > 0 for all n, since ζ is equal to |p|+ |1− p| − 1
on every super-covering causet under Complex Transitive Percolation.
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is borne out then, when p 6∈ [0, 1], the first term in (6.22) diverges as n → ∞. Whether

supn Sn = ∞ will depend on the behaviour of Sv=1
n−r in the second term. We note that,

since Sv=1
n−r is the sum over absolute values of amplitudes of reaching a super-covering

causet by stage n− r− 1, it could be computed using techniques similar to those used to

obtain the probability of a post in section 6.1. We leave this calculation for future work.

(a) Reduced poscau. (b) Super-reduced poscau.

n ≥ 2
n ≥ 3
n ≥ 4

Figure 6.3: Complex Transitive Percolation. Figure (a) shows the values of p ∈ C for which
ζminn = |p|+ |1− p| − 1 when n = 2, 3, 4 on reduced poscau. For example, if p is in the orange
region then ζmin2 < |p| + |1 − p| − 1 and ζmin3 = ζmin4 = |p| + |1 − p| − 1. Figure (b) shows the
values of p ∈ C for which ζminn = |p|+ |1− p| − 1 when n = 2, 3, 4 on super-reduced poscau.
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Chapter 7

Two-way infinite dynamics

In this chapter we consider whether the growth dynamics paradigm is compatible with

two-way infinite cosmologies (i.e. cosmologies in which time has neither a beginning nor

an end).1 We adapt our terminology to this new set-up (section 7.1) and modify the CSG

models to accommodate growth of two-way infinite causets (section 7.2). Already from

the outset, conceptual problems arise. Perhaps the most pressing of these is that our new

framework requires that elements be born to the past of existing ones, making it (nearly

if not entirely) impossible to conceive of the growth process as a physical phenomenon.

However, we are able to identify a set of physically meaningful observables—namely the

“convex-events” which describe the convex suborders contained in the growing causal

set—which sets the stage for our pursuit of a manifestly covariant framework for two-way

infinite growth. We construct a variation of covtree, show that the resulting framework

is compatible with two-way infinite growth and prove that the observables in this case

are exactly the formerly identified convex-events (section 7.3).

7.1 Preliminaries

In section 2.2 we introduced the terminology of “labeled causet” and “order” which laid

the foundation for the constructions in chapters 3-6. Now we generalise these concepts

to facilitate discussion of two-way infinite causal sets.

1The possibility of generalising growth dynamics to past-infinite cosmologies was also suggested in
[Wuthrich and Callender, 2017].
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We emphasise that the definition of labeled causets which we give here is different to

definition 2.2.1, and correspondingly the definitions deriving from labeled causets (e.g.

the definition of an n-order) and the symbols we use to denote spaces of labeled causets

and orders (e.g. Ω̃(n) and Ω) take a different meaning in this chapter than they did in

previous chapters.

For any pair of integers k ≤ l, let [k, l] := {k, k+1, ..., l−1, l} (devoid of any ordering).

Definition 7.1.1 (Labeled causet). A labeled causet is any causet ([k, l],≺) or (Z,≺)

or (Z−,≺) or (N,≺) satisfying x ≺ y =⇒ x < y. An n-causet is a labeled causet of

cardinality n.

We denote labeled causets and their subcausets by capital Roman letters with a tilde,

e.g. C̃. We often (but not always) use a subscript to denote the cardinality of an n-causet.

We will use the following notation to denote certain collections of labeled causets:

for any n > 0, Ω̃(n) is the set of n-causets,

Ω̃N is the set of labeled causets with ground-set N,

Ω̃Z is the set of labeled causets with ground-set Z,

Ω̃Z− is the set of labeled causets with ground-set Z−,

Ω̃ is the set of all infinite causets.

Thus, Ω̃ = Ω̃N t Ω̃Z t Ω̃Z− (note that the union is disjoint).

Definition 7.1.2 (Order). An order is an order-isomorphism class of labeled causets.

We denote orders by capital Roman letters without a tilde.

We will use the following notation to denote certain collections of orders:

for any n > 0, Ω(n) is the set of n-orders,

Ω := Ω̃/ ∼= is the set of all infinite orders,

ΩN is the set of orders which have a representative in Ω̃N,

ΩZ− is the set of orders which have a representative in Ω̃Z− ,
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ΩZ is the set of orders which have a representative in Ω̃Z.

Thus, Ω = ΩZ ∪ ΩZ− ∪ ΩN (where the union is not disjoint).

The following lemma provides a characterisation of infinite causets:

Lemma 7.1.3. Let Π be any countably infinite causet.

• Π is past-finite if and only if Π ∼= C̃ for some C̃ ∈ Ω̃N.2

• Π is future-finite if and only if Π ∼= C̃ for some C̃ ∈ Ω̃Z−.

• If Π ∼= C̃ for some C̃ ∈ Ω̃Z then (at least)3one of the following holds:4

(i) Π is two-way infinite,

(ii) Π is past-finite and has infinitely many minimal elements,

(iii) Π is future-finite and has infinitely many maximal elements.

Lemma 7.1.3 ensures that all order-types are included in Ω̃ and hence in Ω (i.e. we

are not missing any partial order structures by working only with labeled causets).

The following is a covariant corollary:

Corollary 7.1.4. Let C be an infinite order.

• C is past-finite if and only if C ∈ ΩN.

• C is future-finite if and only if C ∈ ΩZ−.

• If C ∈ ΩZ then (at least) one of the following holds:

(i) C is two-way infinite,

(ii) C is past-finite and has infinitely many minimal elements,

(iii) C is future-finite and has infinitely many maximal elements.

Finally, we will also need the notions of an n-suborder and convex-rogue. Let C and

D be orders with representative C̃ and D̃, respectively.

2From [Brightwell and Luczak, 2011].
3Families (ii) and (iii) are disjoint from (i) but not from each other, e.g. the infinite antichain is

contained in both.
4From [Gupta, 2018; Honan, 2018].
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Definition 7.1.5 (Convex suborder/n-suborder). C is a convex suborder in D if D̃

contains a copy of C̃. In that case we may also say that C is a convex suborder in D̃. If

additionally C is an n-order, we say that C is an n-suborder in D or in D̃.

Definition 7.1.6 (Convex-rogue). C is a convex-rogue if there exists another order

D 6∼= C which has the same n-suborders as C for all n. In that case we say that C

and D are a convex-rogue pair. We may also refer to C̃ and D̃ as convex-rogues or as a

convex-rogue pair.

An example of a convex-rogue pair is shown in figure 7.1.

Figure 7.1: The “infinite comb” (left) and the infinite comb disjoint union a single element
(right) are convex-rogues since they contain the same convex suborders as each other.

7.2 Labeled growth

In this section we generalise the sequential growth paradigm to accommodate two-way

infinite cosmologies (section 7.2.1). We consider what form various physical conditions

take in this new framework and whether they are satisfied by a naive generalisation of the

CSG models, and we identify a class of observables for the new models (section 7.2.2).

7.2.1 Alternating growth

The labeled growth models considered thus far, cannot generate past-infinite causal sets

since they satisfy the Internal Temporality condition which states that a new element

cannot be born to the past of an existing one.5 Indeed, the first challenge in generalising

the labeled models to the two-way infinite case is generalising the condition of Internal

Temporality. If we are to both generate two-way infinite causal sets and keep the essence

of sequential growth (i.e. that starting from a single element, new elements are born one

5See section 3.1.
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by one), we must loosen the condition of Internal Temporality to allow elements to be

born to the past of already-existing ones. Although at first this may seem like a complete

departure from Internal Temporality and from the physical motivation behind it, it is not

necessarily so. In the past-finite case, Internal Temporality reduces to the requirement

that the growing causal set is an element of Ω̃N. Reformulating Internal Temporality

as a statement about labeled causets reveals a candidate generalisation of it to the two-

way infinite case: the requirement that the growing causal set is contained in Ω̃Z. Some

freedom remains in how to translate this condition back into a statement about the birth

of elements. To fix this freedom we choose that the positive and negative integers are

born in an alternating sequence, 0,−1, 1,−2, 2..., so that at stage n, if n is even the

element n
2

is born and if n is odd the element −n+1
2

is born. Internal Temporality then

becomes: positive elements cannot be born to the past of existing elements, negative

elements cannot be born to the future of existing elements. In particular, no element

can be born in-between two existing elements so that at each stage the finite causet

is a convex subcauset of the growing infinite causet. We call a transition in which a

positive element is born a “forward transition”. Similarly, a “backward transition” is one

in which a negative element is born. A transition C̃n → C̃n+1 is forward when n is even

and backward when n is odd.

We dub the resulting dynamical framework “alternating growth”. The alternating

growth process can be represented as a random walk on “alternating poscau”, a directed

tree whose nodes are finite labeled causets. More precisely,

Definition 7.2.1. Alternating poscau is the partial order on the collection of finite labeled

causets whose ground set is [−n, n] or [−n, n+1] for any n > 0, where S̃ ≺ R̃ if and only

if S̃ is a convex subcauset in R̃.

The first three levels of alternating poscau are shown in figure 7.2. There is a bijection

between the space of infinite paths and Ω̃Z, where an infinite path C̃1 ≺ C̃2 ≺ ... cor-

responds to C̃ =
⋃
n>0 C̃n. The measurable events are generated by the “cylinder sets”

which are associated with each node, where cyl(C̃n) ⊂ Ω̃Z is the set of causets which con-

tain C̃n as a convex subcauset. Any random walk on alternating poscau is a well-defined

measure on this measurable space (and vice versa, every measure corresponds to a unique
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random walk).

By generalising the Internal Temporality condition we are thus able to extend the

sequential growth paradigm to include growth of two-way infinite causets. One could

extend Internal Temporality in other ways, leading to new trees and sample spaces.6

Finally, recall that by lemma 7.1.3 the collection of two-way infinite causets is only one

of three families contained in the sample space Ω̃Z, and therefore it will be up to the

dynamics (i.e. the random walk) to pick out this family of causets (family (i) in lemma

7.1.3) over the alternatives.

Figure 7.2: The first three levels of alternating poscau.

7.2.2 Alternating growth dynamics

While any random walk on alternating poscau gives rise to a well-defined measure on

Ω̃Z, not every such walk is of interest to physics and it remains for us to identify classes

of interest. This is completely analogous to the past-finite case, where the CSG models

were identified as a physically-meaningful subclass of random walks on labeled poscau.

Could the CSG models be generalised for alternating growth? Indeed, equation (3.1)

can be adapted for alternating growth simply by letting C̃n and C̃n+1 denote nodes in

alternating poscau—we dub this new family of models the “Alternating CSG” dynamics.

6See [Bento, 2018] for further variations, including sequential growth models in which the identity of
the element born at each stage is determined at random.
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Do the Alternating CSG dynamics retain the features that make CSG models in-

teresting for physics? For example, can the Alternating CSG models be considered

causal? To answer this question we must first understand what form causality takes

within the alternating growth framework. In the remainder of this section we identify

the form which four key attributes—covariance, causality, causal immortality and mean-

ingful observables—take in the alternating growth framework and discuss whether the

Alternating CSG models possess these attributes.

We will pay special attention to Transitive Percolation and its alternating growth

counterpart, Alternating Transitive Percolation, since the two models share many simi-

larities. For example, let C̃n and D̃n be nodes in labeled poscau and alternating poscau

respectively, and let C̃n ∼= D̃n. Then the probablity of reaching C̃n under a given CSG

dynamics is equal to the probability of reaching D̃n under its alternating growth coun-

terpart if and only if the dynamics in question is Transitive Percolation [Gupta, 2018;

Honan, 2018].

Covariance: The discrete general covariance condition (3.4) can be generalised to the

alternating sequential growth framework simply by letting C̃n and C̃ ′n denote nodes in

alternating poscau.

Every CSG model satisfies the discrete general covariance condition. In contrast, the

only Alternating CSG dynamics which satisfies discrete general covariance is Alternating

Transitive Percolation:

Lemma 7.2.2. An Alternating CSG model satisfies the discrete general covariance con-

dition if and only if it is an Alternating Transitive Percolation model.

Proof. First we show that an Alternating CSG model is not covariant if it is not Alternat-

ing Transitive Percolation. Consider the (2n+1)-order C which contains a (2n)-antichain

of which n elements have a common ancestor, as shown in figure 7.3.

Let C̃ denote the representative of C which is grown in the alternating framework in

the following way: the element 0 and the elements born in the first 2n − 2 stages form

an antichain, the element born at stage 2n − 1 is born to the past of n of the existing

elements, and the element born at stage 2n is unrelated to all existing elements. The
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Figure 7.3: The (2n + 1)-order C, which contains a (2n)-antichain of which n elements have
a common ancestor.

probability of growing C̃ in an Alternating CSG dynamics is P(C̃) = t2n−2
0 tnt0 = t2n−1

0 tn.

Let C̃ ′ denote another representative of C which is grown in the alternating framework

in the following way: the elements born in forward transitions are all born to the future

of the element 0, and the elements born in backward transitions are all born unrelated

to all existing elements. The probability of growing C̃ ′ in an Alternating CSG dynamics

is P(C̃ ′) = tn1 t
n
0 . An Alternating CSG model is covariant only if P(C̃) = P(C̃ ′), i.e. only

if
tn1
tn

= tn−1
0 . This is Alternating Transitive Percolation and can be cast into the form

tn = tn by setting t0 = 1.

That Alternating Transitive Percolation is covariant follows from equation (3.10) since

it implies that the probability of reaching some C̃n in alternating poscau is P(C̃n) =

pLq(
n
2)−R, where L and R are the number of links and relations in C̃n, respectively.

Causality: What form can the Bell causality condition take within the alternating

growth framework? At first glance it may seem that we can simply interpret the labeled

causets in equation (3.5) as nodes in alternating poscau, but this is not so. To see the

problem, let C̃n be a node in alternating poscau, and let C̃n+1 and C̃ ′n+1 denote two of its

children. Now, construct B̃l from C̃n by removing the spectators and relabeling. Next,

remove the spectators from C̃n+1 and relabel—this is where the problem arises since

there may be no relabeling which produces a child of B̃l. In particular, this failure occurs

whenever the number of spectators is odd because in that case if C̃n → C̃n+1 is a forward

transition7 then B̃l → B̃l+1 must be a backward transition, which leads to a contradiction.

An example is shown in figure 7.4. It is in these cases that the generalisation of equation

(3.5) to the alternating dynamics becomes ill-defined. Instead, we will use a weakened

causality condition (in similarity to the weakened causality conditions of [Dowker and

Surya, 2006; Varadarajan and Rideout, 2006]) which states that an alternating dynamics

7Recall that a transition C̃n → C̃n+1 is forward when n is even and backward when n is odd.
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is causal if equation (3.5) is satisfied whenever it is well-defined.

Having arrived at a causality condition for the alternating framework, we can ask

whether the Alternating CSG dynamics are causal. We begin by examining Alternating

Transitive Percolation. Since the Alternating Transitive Percolation models are covariant

(cf. lemma 7.2.2), the labeling ambiguity in the Bell causality condition is alleviated and

we can use equation (3.10) to verify that equality (3.5) is satisfied,

P(C̃n → C̃n+1)

P(C̃n → C̃ ′n+1)
=

pmqn−$

pm′qn−$′
=

pmql−$

pm′ql−$′
=

P(B̃l → B̃l+1)

P(B̃l → B̃′l+1)
, (7.1)

where $′ and m′ denote the number of relations and links, respectively, formed by the

element which is born at stage n in the transition C̃n → C̃ ′n+1. In this sense, the Alter-

nating Transitive Percolation models are causal. Since the remaining Alternating CSG

dynamics are not covariant, to ascertain whether they are causal requires specifying a

canonical choice of labeling by which B̃l+1 should be obtained from C̃n+1 etc., which

renders the Bell causality condition itself label-dependent and hence not covariant. Since

causal structure is fundamentally frame-independent, this suggests that the Bell causality

condition is only physically-meaningful within covariant growth dynamics.

While we have had some success in formally adapting equality (3.5) to the alternating

growth framework, the physical interpretation of this new causality condition is far from

clear. In the framework of past-finite growth, the Bell causality is interpreted as the

statement that the probability for each transition depends only on the past of the new-

born element. But this interpretation is obliterated in the alternating growth framework.

In a forward transition, the transition probability depends only on the past of the new-

born element—but not on its entire past, since some of it has not yet been determined.

The situation is even worse in the backward transitions where the transition probabilities

depend on the future of the new-born element. One resolution is to require that equality

(3.5) holds only for the forward transitions (i.e. when n is even), leaving the backward

transitions unconstrained by causality. Or it may be that we need an altogether new way

of thinking about causality in the alternating framework.
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Figure 7.4: The Bell Causality condition is ill-defined in the alternating growth framework.
The parent C̃4 and two of its children are shown on the top line. The new-born element in
each child is shown in white. The past of the new-born element in each transition is shown in
red. B̃3 is constructed from C̃4 by removing the element 1 (i.e. the spectator) and relabeling.
Removing the spectator from C̃5 and C̃ ′5 results in the causets shown in the box, but there is
no relabeling of these which corresponds to children of B̃3.

Causal immortality: In past-finite sequential growth, the sample space is the space

of all infinite past-finite causets, Ω̃N. This space contains a variety of cosmologies: some

are future-infinite and some are future-finite, some contain infinite antichains and some

do not. But in the CSG models, only a subset of all these potential configurations

can be realised because the CSG models generate, with unit probability, causets which

have no maximal elements [Brightwell et al., 2003]. We say that the CSG models have

the property of “causal immortality” because the effect of each element/event reaches

infinitely far into the future.

Similarly, in alternating sequential growth the sample space Ω̃Z contains several causal

set families (given in lemma 7.1.3) but only a subset of these is realised by the Alternating

CSG dynamics because these dynamics generate causets which have no maximal nor

minimal elements, as we show in lemma 7.2.3. This “two-way causal immortality” means

that not only does the effect of each event reaches infinitely far into the future, but that

the cause of each event can be traced infinitely far into the past.

Lemma 7.2.3. Every element in a causal set grown in Alternating CSG dynamics with

tk > 0 for some k > 0 almost surely has an element to its future and an element to its
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past.

Proof. Consider a growth process with an Alternating CSG dynamics with tk > 0 for

some k > 0. Suppose that the labeled causet C̃n has been grown by the beginning of

stage n > k, and let x ∈ C̃n be a maximal element.

First, we show that the probability that x is maximal in the complete causal set is

zero. Let r ≥ n be an even integer. Then the probability that x is maximal at the end

of stage r (given that x is maximal at the beginning of stage r) is,

1− pr =
λ(r − 1, 0)

λ(r, 0)
. (7.2)

where pr is the effective parameter of [Brightwell and Luczak, 2016]. Therefore the

probability that x is maximal in the complete causet is,

lim
s→∞

P(x is maximal at end of stage s) = lim
s→∞

∏
even n≤r≤s

1− pr (7.3)

which converges to a non-zero value if and only if the following series converges [Jeffreys

and Swirles, 1966],

lim
s→∞

∞∑
even n≤r≤s

pr. (7.4)

Rearranging equation (7.2) we have,

pr =

∑r
l=1

(
r−1
l−1

)
tl

λ(r, 0)
=

1

r

(∑r
l=1

r!
(r−l)!(l−1)!

tl

λ(r, 0)

)
≥ 1

r

( ∑r
l=1

(
r
l

)
tl

t0 +
∑r

l=1

(
r
l

)
tl

)
≥ 1

r

(
tk

t0 + tk

)
(7.5)

and therefore the series (7.4) is divergent and probability (7.3) vanishes.

The argument can be adapted to show that every element has an element to its past

by letting x be a minimal element and letting r take odd values.

Observables: In the past-finite CSG models, the role of observables is played by “stem-

events”, namely elements of the algebra R(S).8 What are the observables within the

alternating growth framework? The freedom to grow past-infinite causal sets means that

8See section 3.4.
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the stem-events have a weak distinguishing power—they tell us nothing about the past-

infinite part of a casual set and they cannot distinguish between causets which contain

no minimal elements. We can make progress by noticing that stems are to past-finite

growth what convex suborders are to alternating growth. The ordering of labeled poscau

is determined by the stem relation (i.e. the order of labeled poscau is order-by-inclusion-

as-stem, cf. definition 3.1.1), while the ordering of alternating poscau is determined by

the convex relation (cf. definition 7.2.1). Each node in labeled poscau is a stem in

the growing causet, while each node in alternating poscau is a convex subcauset in the

growing causet. Therefore, it is reasonable to expect that “convex-events”—the convex

analogue of stem-events—play the role of observables for alternating growth.

To make this precise, for each finite order Cn let convex(Cn) ⊂ Ω̃Z be the collection

of causets which contain Cn as a convex suborder. A “convex-event” is any set which

can be generated from the convex(Cn)’s via countable set operations (i.e. a convex-event

is an element of the σ-algebra generated by the convex(Cn)’s). Each convex-event is a

covariant measurable event with a clear physical meaning—it corresponds to a logical

combination of statements about which finite orders are convex suborders in the growing

causet.

Convex-events form an extensive class of observables which provide us with informa-

tion about the structure of the causal set at arbitrarily early times/infinitely far into the

past. But they are not fully-distinguishing as they cannot distinguish between pairs of

convex-rogues (cf. definition 7.1.6). In the past-finite framework, the stem-events are

also not fully-distinguishing since they fail to distinguish between pairs of rogues. But it

was shown in [Brightwell et al., 2003] that in any CSG dynamics the set of rogues has

measure zero and therefore, in a precise mathematical sense, the stem-events exhaust

the set of physical observables in any CSG dynamics. Crucially, the result of [Brightwell

et al., 2003] depends on the specifics of the CSG dynamics and does not hold for a generic

random walk on labeled poscau but only for those models in which the set of rogues has

measure zero.

Can convex-events similarly be considered to exhaust the set of physical observables

in the alternating CSG dynamics? For Alternating Transitive Percolation, the answer
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is no. Like in Transitive Percolation, in Alternating Transitive Percolation, every finite

order is almost surely a convex suborder in the growing causet (i.e. the measure of every

convex(Cn) is equal to 1) [Brightwell and Luczak, 2016]. This means that the convex-

events cannot distinguish between the various possible outcomes of the growth process

(which only generates convex-rogues) and therefore the dynamics is deterministic with

respect to the convex-events. But not every Alternating CSG model is deterministic with

respect to the convex-events:

Lemma 7.2.4. A CSG dynamics is not deterministic with respect to convex-events when

its couplings are given by,

t0 = 1 and tn = f(n)λ(n− 1, 0) ∀n ≥ 1, (7.6)

where f(n) is a function satisfying
∑

1
f(n)

<∞ (e.g. f(n) = xn with x > 1 or f(n) = ns

with s ≥ 2).

Proof. Let A2 denote the 2-antichain order, and let C∞ denote the two-way infinite chain

order. Note that P(C∞) = 1−µ(convex(A2)), where P(C∞) is the probability of growing

C∞ and µ(convex(A2)) is the measure of convex(A2). Note also that µ(convex(A2)) >

t0/λ(1, 0) > 0 in any CSG dynamics. We will show that in the dynamics above, P(C∞) >

0 and therefore 0 < µ(convex(A2)) < 1 and the result follows.

Note that P(C∞) =
∏

n>0 pn, where (as in claim 7.2.3) pn is the effective parameter

given by,

pn =

∑n−1
k=0

(
n−1
k

)
tk+1

λ(n, 0)
=
λ(n, 0)− λ(n− 1, 0)

λ(n, 0)
, (7.7)

and the product converges to a non-zero value if and only if the series
∑

1−pn converges

[Jeffreys and Swirles, 1966]. We can write the mth term of this series as,

1− pm =
λ(m− 1, 0)

λ(m, 0)
=

(∑m−1
r=0

(
m
r

)
tr

λ(m− 1, 0)
+

tm
λ(m− 1, 0)

)−1

, (7.8)
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and then substitute the couplings given in (7.6) to find,

1− pm =

(∑m−1
r=0

(
m
r

)
tr

λ(m− 1, 0)
+ f(m)

)−1

≤ 1

f(m)
. (7.9)

It follows that in the models given in (7.6) the sum
∑

1− pn converges by the com-

parison test against
∑

1
f(n)

and hence P(C∞) > 0.

That the convex-events are in some sense interesting or sufficient to describe an alter-

nating dynamics (e.g. that the dynamics almost surely does not generate convex-rogues,

or that the dynamics is not deterministic with respect to the convex-events) can be used

as a constraint or guiding principle in searching for new/physical alternating dynamics.

7.3 Manifestly covariant growth

How can the covariant framework of chapter 4 be adapted for two-way infinite growth?

Pursuing the analogy between stems and convex suborders, here we propose a new covari-

ant framework, dubbed Z-covtree, whose sample space is ΩZ and whose set of observables

is exactly the set of convex-events. While in the past-finite case, label-independence came

at the cost of an explicit process of growth, in the two-way infinite case the masking of the

birth of elements by the covariance is a gain, since it alleviates the difficulty of interpreting

a growth in which a new element is born to the past of existing elements.

We begin by defining “convex-covtree”, a variation of covtree in which stems are

replaced by suborders (section 7.3.1). We prove that convex-covtree’s sample space is

strictly greater than ΩZ (section 7.3.2) and that it can be consistently truncated into a

new tree, Z-covtree, whose sample space is the desired ΩZ (sections 7.3.3-7.3.4).

7.3.1 Defining convex-covtree

Convex-covtree is a directed tree whose nodes at level n are certain subsets of Ω(n). Some

Γn ⊂ Ω(n) is a node in convex-covtree if and only if it is the set of n-suborders of some

order C. In the following, we formalise this notion.
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Definition 7.3.1 (Convex-certificate). An order C is a convex-certificate of Γn if Γn is

the set of n-suborders of C. A labeled convex-certificate of Γn is a representative of a

convex-certificate of Γn.

A convex-certificate may be finite or infinite, and if it is infinite it may be past-finite,

future-finite or neither. Note that some Γn ⊂ Ω(n) have no convex-certificates at all. If Γn

has an infinite convex-certificate then it has a finite convex-certificate, but the converse

is not true. Examples are shown in figure 7.5.

Figure 7.5: Illustration of convex-certificates. C and D are convex-certificates of Γ3. Γ′3
has no convex-certificates since any order which contains the 3-chain and the 3-antichain as
3-suborders also contains qqq q as a 3-suborder. E is a convex-certificate of Γ4. Γ4 has no infinite
convex-certificates.

Definition 7.3.2 (χ, the collection of convex-certified sets). χ is the collection of sets of

n-orders, for all n, for which there exists a convex-certificate:

χ :=
⋃
n>0

{Γn ⊆ Ω(n) | ∃ a convex-certificate of Γn}. (7.10)

Definition 7.3.3 (The map Oc). For any n > 1 and any Γn, the map Oc takes Γn to the

set of (n− 1)-suborders of elements of Γn:

Oc(Γn) := {B ∈ Ω(n− 1) | ∃ A ∈ Γn s.t. B is an (n− 1)-suborder in A} (7.11)

One way to think about the operation Oc on Γn is to pick an n-order in Γn and delete

a maximal or minimal element of it to form an (n− 1)-order. The set Oc(Γn) is the set
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of all (n− 1)-orders which can be formed in this way. An illustration is shown in figure

7.6.

Figure 7.6: Illustration of the operation Oc.

Definition 7.3.4 (Convex-covtree). Convex-covtree is the partial order (χ,≺), where

Γn ≺ Γm if and only if n < m and Ocm−n(Γm) = Γn.

The nodes in the first three levels of convex-covtree are shown in figure 7.7. We will

also need the following definition,

Definition 7.3.5 (Convex-certificate of a path). An order C is a convex-certificate of a

path P if it is a convex-certificate of every node in P.

The definition of convex-covtree is obtained from that of covtree (cf. chapter 4) simply

by replacing n-stems with n-suborders. Indeed the two resulting structures share some

similarities, including:

(1) if C is a (convex-)certificate of a node Γn in (convex-)covtree then C is a

(convex-)certificate of all nodes below Γn,

(2) every inextendible path in (convex-)covtree has a (convex-)certificate.9

Properties (1) and (2) allow us to interpret a random walk on convex-covtree as a

covariant process of growth: the growing order is a convex-certificate of the path which is

traced by the random walk. Each node in the path corresponds to a covariant property

of the growing order, i.e. Γn is the set of n-suborders of the growing order.

But which orders are produced by the process? In contrast to all existing growth

models, a dynamics on convex-covtree can produce finite orders. This is because convex-

covtree contains maximal nodes, meaning that some of its inextendible paths are finite.

9We will prove this in lemmas 7.3.9 and 7.3.11.
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A finite inextendible path has only a finite convex-certificate, and so if a random walk

traces a finite path then a finite order is generated. We leave further discussion of maximal

nodes and finite inextendible paths to section 7.3.2. The convex-certificates of infinite

paths are necessarily infinite (since they contain n-suborders for every n > 0) and every

infinite order (past-finite, future-finite or neither) is a convex-certificate of some infinite

path in convex-covtree.

In summary, the sample space is vast and contains all infinite orders and many (but

not all) finite orders. In keeping with the motivation of this chapter—to develop growth

dynamics for two-way infinite orders—it is natural to ask whether there is a way to

consistently restrict the sample space to ΩZ. We will show in section 7.3.3 that it is

possible and that in this case the observables are the convex-events. We will also show

that an inconsistency arises (property (2) no longer holds) when restricting the sample

space to ΩN, suggesting that convex suborders are unsuitable for describing past-finite

growth.

7.3.2 The sample space of convex-covtree

We begin by considering finite inextendible paths. Each finite inextendible path ends at

a maximal node characterised by the following lemma.

Lemma 7.3.6. If Γn is maximal in convex-covtree then it is a singleton Γn = {Cn} whose

only convex-certificate is Cn.

Proof. Let Γn = {Cn} and let its only convex-certificate be Cn. Suppose for contradiction

that Γn+1 � Γn. Then there exists some D with cardinality > n which is a convex-

certificate of Γn+1 and hence of Γn. Contradition. Therefore Γn is maximal.

Suppose that Γn = {Cn} has a convex-certificate D 6= Cn. Then D has cardinality

> n and therefore {D} � Γn =⇒ Γn is not maximal. Similarly, if Γn is not a singleton

then it has a convex-certificate D with cardinality > n =⇒ {D} � Γn.

The singleton Γ4 = { qq qq } is an example of a maximal node. To see that Γ4 has no

convex-certificate of cardinality > 4 it is sufficient to attempt to construct such a convex-

certificate by adding a single element to (a representative of) qq qq . For example, we can
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(a) The first three levels of convex-covtree.

(b) 22 nodes of convex-covtree and their convex-certificates. These are the
level 3 nodes which appear directly above the doublet.

Figure 7.7: The first three levels of convex-covtree.

109



add the new element to form the 5-order qq qq q , but this 5-order is not a convex-certificate

of Γ4 since it contains qq q q as a 4-suborder. Continuing in this way, we find that it is

impossible to form a convex-certificate of Γ4 by adding an element to qq qq . Indeed, qq qq is
the unique convex-certificate of Γ4.

The existence of maximal nodes implies the existence of finite inextendible paths. We

can characterise finite inextendible paths as follows:

Lemma 7.3.7. An inextendible path P is finite if and only if it contains a singleton

{Cn}, where Cn is not the n-chain or the n-antichain.

To prove lemma 7.3.7 we will need:

Lemma 7.3.8. Let Cn be an n-order which is not the n-chain or the n-antichain. Then

every convex-certificate of {Cn} has cardinality less than n2.

Proof. For any (finite or infinite) order C, let w(C) and h(C) denote the width and height

of C, respectively. Note that |C| ≤ h(C)w(C). Additionally, if C is a convex-certificate

of {Cn} then w(C) = w(Cn) < n. We will show that if C is a convex-certificate of {Cn}

then h(C) ≤ n and the result follows.

Let C be an order with h(C) > n and suppose for contradiction that C is a convex-

certificate of {Cn}. Let D be a chain of length n + 1 in C and let H be the convex hull

of D. Then |H| = n + k for some k > 0. Note that H is an interval by construction,

i.e. it has a single maximal element and a single minimal element. We will now show by

induction that H is a chain and therefore C is not a convex-certificate of {Cn}.

One way to obtain Cn fromH is to remove the minimal element ofH to form the order

H−1, then remove a minimal element of H−1 to form H−2 and so on until H−k = Cn.

Since H has a unique maximal element, H−k = Cn has a unique maximal element.

Another way to obtain Cn from H is to remove the maximal element of H to form the

order H−1, then remove a minimal element of H−1 to form H−1
−1, then remove a minimal

element of H−1
−1 to form H−1

−2 and continue to remove minimal elements until H−1
−k+1 = Cn.

The top level of H−1
−k+1 = Cn is level h(C)− 1 of H, and since Cn has a unique maximal

element we learn that H has only one element at level h(C)− 1.
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Suppose H has only one element at each of the levels h(C), h(C)− 1, ..., h(C)− r+ 1

for some r < h(C). Then H−r−k+r = Cn is constructed by removing the top r levels of H

and therefore the top level of H−r−k+r = Cn is level h(C) − r of H. Since H−r−k+r = Cn

has a unique maximal element we learn that H has only one element at level h(C) − r.

Therefore, by induction H has a single element at each level, i.e. H is a chain.

Proof to lemma 7.3.7. Let {Cn} ∈ P and suppose for contradiction that P is infinite.

Then for any N > n2 there exists a node ΓN ∈ P . Let C denote a convex-certificate of

ΓN and note that |C| ≥ N > n2. Since ΓN � {Cn}, C is a convex-certificate of {Cn}.

Contradiction. That the converse is true follows from the fact that every maximal node

is a singleton (lemma 7.3.6).

We can also identify the convex-certificates of the finite inextendible paths:

Lemma 7.3.9. If P = Γ1 ≺ Γ2 ≺ .. ≺ Γk is a finite inextendible path then Ck ∈ Γk is

the unique convex-certificate of P.

Proof. Clearly, Ck is a convex-certificate of P and there are no other convex-certificates

of P with cardinality ≤ k. Suppose Cl is a convex-certificate of P with cardinality l > k.

Then {Cl} � Γk. Contradiction.

A corollary is that the corresponding sample space contains spacetimes of finite vol-

ume, namely the convex-certificates of the finite inextendible paths. An n-order Cn is an

element of the sample space if there is no order D 6= Cn whose only n-suborder is Cn. For

example, the sample space contains the 4-order qq qq , but it does not contain the 3-order

qqq q since { qq q } ≺ { qq qq }.
Lemma 7.3.10. The sample space contains countably many finite orders.

Proof. Let Q(n) denote the number of singletons {Cn} at level n in convex-covtree, where

Cn is not the n-chain or the n-antichain. Each of these Q(n) nodes is in at least one finite

path and no two are in the same path. Therefore there are at least limn→∞Q(n) finite

inextendible paths.
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It may seem that the sample space is entropically dominated by the infinite configura-

tions, as there are uncountably many of these and only countably many finite configura-

tions. But if one assigns transition probabilities uniformly such that the probabilities to

transition from a given node to any of its children are equal, then the event that spacetime

has finite volume happens with probability > 1
22

(since 1
22

is the probability of reaching

a singleton which does not contain a chain or an antichain by level 3). Dynamics which

only give rise to infinite universes are exactly those which satisfy P(Γ) = 0 whenever Γ is

a singleton which does not contain a chain or an antichain.10

Finally, we note that every infinite order is a convex-certificate of some infinite inex-

tendible path. Additionally,

Lemma 7.3.11. Every infinite path in convex-covtree has a convex-certificate.

The proof is analogous to that of theorem 4.1.10.

Together, lemmas 7.3.9 and 7.3.11 enable us to interpret a walk on convex-covtree as a

growth process—they guarantee that each realisation of the walk will produce some order.

A path has more than one convex-certificate if its convex-certificates are convex-rogues

and, in this case, which convex-certificate is the growing order is up for interpretation

(e.g. we can consider all convex-certificates of a given path to be physically equivalent).

7.3.3 Z-covtree

Since our motivation in this chapter is to find a covariant analogue to alternating growth,

it is natural for us to ask whether convex-covtree can be truncated into a tree whose

sample space corresponds to ΩZ. For a start, we can consider the subtree of convex-covtree

which contains only the nodes which have infinite convex-certificates or equivalently the

subtree of convex-covtree which contains exactly all infinite paths. By truncating the

finite inextendible paths we remove the finite orders from the sample space and lemma

7.3.11 guarantees that each inextendible path in this truncated covtree has a convex-

certificate in Ω. However, there is no guarantee that every path has a convex-certificate

10For any n > 1, if Γn is a singleton which contains a chain then it is contained in a unique inextendible
path, { q } ≺ { qq} ≺ { qqq} ≺ ... . Similarly, if Γn is a singleton which contains an antichain then it is
contained in a unique inextendible path, { q } ≺ { q q} ≺ { q q q} ≺ ... .
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in ΩZ. Indeed, there exist infinite paths which only have convex-certificates in ΩN and

others which only have convex-certificates in ΩZ− . The following theorem identifies the

paths which have convex-certificates in ΩZ and which are therefore of interest to us,

Theorem 7.3.12. An infinite path P has a convex-certificate in ΩZ if and only if every

node in P has a convex-certificate in ΩZ.

Proof. Given an infinite path P = Γ1 ≺ Γ2 ≺ ... each of whose nodes has a convex-

certificate in ΩZ, the following inductive algorithm generates an infinite nested sequence

of causal sets, C̃t1 ⊂ C̃t2 ⊂ ..., whose ground-sets [r1, s1], [r2, s2], ... respectively, satisfy

r1 > r2 > .... and s1 < s2 < ...:

Step 1:

1.0) Pick some natural number m0 > 0 and consider Γm0 ∈ P .

1.1) Let Γm1 ∈ P contain some convex-certificate Cm1 of Γm0 (cf. lemma 4.1.12). Pick a

representative C̃m1 of Cm1 and set C̃t1 := C̃m1 .

1.2) Go to step 2.

Step k > 1:

k.1) Let Γmk
∈ P contain some convex-certificate Cmk

of Γtk−1
∈ P (cf. lemma 4.1.12).

Additionally, there exists a representative C̃mk
of Cmk

with ground-set [pk, qk] which

contains C̃tk−1
as a sub-causet and satisfies at least one of (a) pk < rk−1 or (b) qk > sk−1.

If there exists some C̃mk
which satisfies both (a) and (b), set C̃tk := C̃mk

. Otherwise,

pick a representative C̃mk
that satisfies (a) or (b). Go up one node along the path to

Γ1+mk
∈ P . Let C̃ ∈ Ω̃Z be an infinite convex-certificate of Γ1+mk

which contains C̃mk
as

a subcauset. Set C̃tk := C̃|[pk,qk+1] if C̃mk
satisfies (a) or C̃tk := C̃|[pk−1,qk] if C̃mk

satisfies

(b).

k.2) Go to step k + 1.

By construction, the union C̃ :=
⋃∞
i=1 C̃ti ∈ Ω̃Z is a labeled convex-certificate of P .

Therefore, if every node in P has a convex-certificate in ΩZ then P has a convex-certificate

in ΩZ. That the converse is true follows from definition 7.3.5.

Finally, we can define:

Definition 7.3.13 (Z-covtree). Z-covtree is the subtree of convex-covtree which contains
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exactly all nodes which have a convex-certificate in ΩZ.

Z-covtree is the two-way infinite analogue of covtree which we have set out to build.

Theorem 7.3.12 guarantees that every inextendible path in Z-covtree has at least one

convex-certificate in ΩZ and thus allows for every random walk on Z-covtree to be inter-

preted as a dynamics with sample space ΩZ.

To see the relationship between a walk on Z-covtree and the corresponding dynamics,

for each Γn in Z-covtree let certZ(Γn) ⊂ Ω̃Z denote the set of labeled convex-certificates of

Γn whose ground-set is Z. A dynamics is given by a measure µ on the σ-algebra generated

by the certZ(Γn)’s, where µ(certZ(Γn)) = P(Γn). The observables in these dynamics are

exactly the convex-events since,

Lemma 7.3.14. The σ-algebra generated by the certZ(Γn) is equal to the σ-algebra gen-

erated by the convex(Cn).

The proof is analogous to that of lemma 4.1.15.

Lemma 7.3.14 strengthens the analogy between covtree and Z-covtree—the observ-

ables of covtree are the stem-events while the observables of Z-covtree are the convex-

events. Z-covtree is to alternating poscau what covtree is to labeled poscau. Convex

suborders are to two-way infinite dynamics what stems are to past-finite dynamics.

7.3.4 The non-existence of N-covtree

This section highlights the technicalities which enabled us to define Z-covtree in the

previous section. For comparison, we show that one cannot truncate convex-covtree into

a tree whose sample space is ΩN.

Why do some infinite paths in convex-covtree have no convex-certificates in ΩZ? The-

orem 7.3.12 tells us that an infinite path in convex-covtree has a convex-certificate in ΩZ

if and only if each of its nodes has a convex-certificate in ΩZ, and therefore the reason

that some paths have no convex-certificate in ΩZ is because they contain nodes which

have no convex-certificate in ΩZ.

In other words, there exist nodes all of whose infinite convex-certificates are contained

in ΩN, and an infinite path which contains such nodes can only have convex-certificates in
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ΩN. For example, consider the node Γ3 = { q qq��BB , qqq } whose unique minimal convex-certificate

is q qqq��BB . We can construct any convex-certificate of Γ3 by starting with its minimal convex-

certificate and then adding elements to it. In particular, if Γ3 has a convex-certificate

in ΩZ or ΩZ− then we should be able to grow a convex-certificate of Γ3 by adding an

element which is below or unrelated to every element in q qqq��BB. There are 5 ways to add

such an element, but none produces a convex-certificate of Γ3 (e.g. q qqq��BB q contains the

3-antichain as a convex-suborder). Therefore, Γ3 has no convex-certificates in ΩZ or in

ΩZ− . Finally, note that Γ3 does have a convex-certificate in ΩN, namely the order which

contains q qq��BB topped with an infinite chain. Therefore the infinite path containing Γ3 only

has convex-certificates in ΩN. Similarly, there exist nodes all of whose infinite convex-

certificates are contained in ΩZ− , and an infinite path which contains such nodes can only

have convex-certificates in ΩZ− . The node { �Aq qq
, qqq } is an example.

In contrast, there exists no node in convex-covtree all of whose infinite convex-

certificates are contained in ΩZ, since if a node has a convex-certificate in ΩZ then it

has a convex-certificate in ΩN and in ΩZ− .11 Despite this, there exist infinite paths in

convex-covtree whose infinite convex-certificates are only contained in ΩZ. For example,

consider the path,

P = { q } ≺ { qq , q q} ≺ { qqq , q qq��BB, �Aq qq
} ≺ { qqq

q
, q qqq��BB, �Aq qq q , �Aqq qq�A

} ≺ ... , (7.12)

whose convex-certificate is the order D shown on the right of figure 7.8. Each node in P

has a convex-certificate in ΩN (as illustrated in figure 7.8) but there is no one order in

ΩN which is a convex-certificate of every node in P .12

We find that for every node in an infinite path to have a convex-certificate in ΩN is

11To see this, let C̃ ∈ Ω̃Z be a labeled convex-certificate of some Γn and let C̃|[k,l] be a finite convex-

certificate of Γn. Then C̃|[k,∞) is order-isomorphic to some D̃ ∈ Ω̃N and D̃ is a convex-certificate of Γn.

Similarly, C̃|(∞,l] is order-isomorphic to some Ẽ ∈ Ω̃Z− and Ẽ is a convex-certificate of Γn.
12One way to see this is to notice that for every n > 3, Γn ∈ P has a unique minimal convex-certificate,

namely the diamond sandwiched between two (n− 3)-chains. Now, pick some n > 3 and without loss of
generality pick a representative of its minimal convex-certificate, C̃2n−6, with ground-set [0, 2n− 6]. We
seek a labeled minimal convex-certificate C̃2n−4 of Γn+1 which contains C̃2n−6 as a subcauset, and find
that C̃2n−4 must have ground-set [−1, 2n− 5]. Next we seek a labeled minimal convex-certificate C̃2n−2
of Γn+2 which contains C̃2n−4 as a subcauset, and find that C̃2n−2 must have ground-set [−2, 2n − 4]
etc. Since at each stage we add a positive and a negative integer to the ground-set, in the infinite limit
the labeled convex-certificate must have ground-set Z.
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Figure 7.8: The order D ∈ ΩZ shown on the right is a convex-certificate of the path P. Every
node in P has a convex-certificate in ΩN: D3 is a convex-certificate of Γn ∈ P only for n ≤ 3,
D4 is a convex-certificate of Γn ∈ P only for n ≤ 4, D5 is a convex-certificate of Γn ∈ P only
for n ≤ 5, etc. There is no order in ΩN which is a convex-certificate of every node in P.

necessary but not sufficient for the path to have a convex-certificate in ΩN. There is no

analogue to theorem 7.3.12 in the past-finite case.

Altogether, this reveals that the subset of convex-covtree which contains exactly the

paths whose convex-certificates are in ΩN is ill-defined. This is because, if it exists then

it must contain every node which has a convex-certificate in ΩN, and therefore it must

contain paths which do not have a convex-certificate in ΩN (e.g. P of (7.12)), which is

a contradiction. There is no N-covtree. This suggests that convex-events are not rich

enough to exhaust the set of observables in past-finite dynamics. This is also true in the

future-finite case.

One can understand this difference between ΩN and ΩZ using the language of metric

spaces. For any two orders C and D, let C ∼ D if and only if C and D are a convex-

rogue pair, i.e. if they share the same n-suborders for all n. Let ΩN/ ∼ and ΩZ/ ∼

be quotient spaces under the convex-rogue equivalence relation, so that their elements

are equivalence classes of orders denoted by [C] etc. We can consider these quotient

spaces as metric spaces with metric d([C], [D]) = 1
2n

, where n is the largest integer for

which representatives of [C] and [D] have the same sets of n-suborders. Given a node

Γn in convex-covtree we can associate with it a subset [certN(Γn)] ⊆ ΩN/ ∼, namely

the set of elements of ΩN/ ∼ whose representatives are convex-certificates of Γn, and

similiarly [certZ(Γn)] ⊆ ΩZ/ ∼. Given a path P = Γ1 ≺ Γ2 ≺ ..., we can associate with it

the sets [certN(P)] =
⋂

Γn∈P [certN(Γn)] and [certZ(P)] =
⋂

Γn∈P [certZ(Γn)]. The metric

space (ΩZ/ ∼, d) is complete, and therefore by Cantor’s lemma [certZ(P)] is non-empty

whenever all the [certZ(Γn)]’s are non-empty (cf. theorem 7.3.12). On the other hand,
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the metric space (ΩN/ ∼, d) is not complete (as shown by example in figure 7.8) and

therefore [certN(P)] can be empty when all the [certZ(Γn)]’s are non-empty.
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Chapter 8

Conclusion

This thesis presents a contribution to the growth dynamics program whose aim is to

interpret the path integral for quantum gravity as a generalised stochastic process of

spacetime growth. Our work was motivated by two pillars of modern theoretical physics:

general covariance and quantum interference.

General covariance, the gauge invariance of General Relativity, must emerge from

quantum gravity and as such can be used to formulate guiding precepts for each quantum

gravity approach. Additionally, its importance in the development of General Relativity

suggests that it also has an important part to play in the development of a theory of

quantum gravity. We focused on one particular facet of general covariance by asking

whether one can formulate the laws of physics in a way which makes reference only to

physical (and not to gauge) degrees of freedom. Physics has thus far favoured gauge

theories, but we were encouraged by the thought that the unified nature of quantum

gravity combined with the discreteness of causal sets may offer new possibilities. In-

deed, we were able to make progress. Building on the understanding that in causal set

theory labels play the role of spacetime coordinates, we set out to find a formulation of

growth dynamics which made no reference to labels and to understand its relationship

to the existing label-dependent (gauge) formulation. We have been successful in building

a label-independent framework (dubbed “covtree”) and in making a precise mathemat-

ical statement to the effect that the set of label-independent dynamics and the set of

label-dependent dynamics are equal. But at the physical level the relationship between
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the two remains far from clear. In particular, understanding the relationship between

label-independent models and those label-dependent models which satisfy the so-called

“discrete general covariance” condition remains an open problem.

We had another purpose in seeking a label-independent formulation for growth dy-

namics: the label-dependent dynamics have thus far resisted quantization and this new

formulation may offer a new route to quantum dynamics. Indeed, a label-independent

formulation may prove necessary since concepts unrelated to each other in our current

theories, such as general covariance and quantum interference, may prove inseparable in

quantum gravity. Building on an existing—but never before realised—proposal for deriv-

ing a decoherence functional from growth dynamics, we proved theorems which determine

when the proposal is valid and applied it to obtain the first examples of (label-dependent)

quantum dynamics for causal sets. We generalised the construction to a wide class of

growth dynamics, including our new label-independent models. Our results are an impor-

tant proof of principle that quantal generalisations of growth dynamics can be obtained,

but the examples we provided are unphysical toy models and obtaining a physical quan-

tum dynamics remains a challenge.

8.1 Summary of main results

(Chapter 2). Building on the existing literature, we established a coherent language which

enabled us to handle unlabeled objects directly.

(Chapter 4). We defined covtree, a tree whose nodes are certain sets of n-orders, and

proved that in a well-defined sense a random walk on covtree is a label-independent

growth dynamics. We proved that the stem algebra, R(S), is the algebra of observ-

ables for these dynamics and that therefore every walk on labeled poscau induces a

walk on covtree. Additionally, we proved that every covtree walk can be extended to

a walk on labeled poscau, revealing the complex nature of the relationship between

the label-independent models and the “covariant” label-dependent models.

We identified the covtree paths which correspond to orders with posts and breaks,

and proved that covtree is self-similar. We used these results to obtain the label-
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independent analogue of cosmic renormalisation and to provide a classification of

self-similar dynamics. This led to speculative proposals regarding a causality con-

dition and the relationship between covtree dynamics and the CSG models.

We provided further results about the structure of covtree and a toy example of how

a better understanding of this structure can be used to obtain physically interesting

dynamics.

(Chapter 5). Building on an existing—but never before realised—proposal for deriving a

decoherence functional from growth dynamics, we proved theorems which determine

when the proposal is valid, applied it to obtain the first examples of quantum

dynamics for causal sets and generalised the construction to a wide class of growth

dynamics.

(Chapter 6). We obtained a functional form of the probability that the element n is a post

in any CSG dynamics.

We identified the physical observables in two classes of (labeled) cyclic dynamics as

those measurable events which cannot distinguish between non-cyclic cosmologies.

We proved that the σ-algebras containing these observables are countably generated

by certain subsets of cylinder sets. This enabled us to conceive of these cyclic

dynamics as random walks on the associated trees and we applied our generalised

theorem from chapter 5 to consider their quantization.

(Chapter 7). We considered whether the growth dynamics paradigm can accommodate

cosmologies in which time has no beginning. We modified the CSG models to allow

for two-way growth, leading to the identification of the convex-events as the observ-

ables in two-way growth dynamics. Building on this, we constructed a variation of

covtree (dubbed Z-covtree) and proved that it provides a framework for two-way

growth dynamics.
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8.2 Outlook

We were successful in building frameworks for growth dynamics by identifying σ-algebras

of observables and establishing new methods for defining measures on them. But these

frameworks accommodate vast classes of models and identifying which of these models

are physically interesting remains an open problem.

Which physically meaningful constraints can be imposed on the covtree transition

probabilities to obtain physical dynamics? We can no longer impose a label-invariance

condition, since covtree makes no reference to labels, while the tension between the global

nature of covtree and the local nature of causality poses a challenge in identifying a

suitable causality condition. It is the opinion of the author that solving for cyclic covtree

dynamics (namely, dynamics which give rise to infinitely many posts or breaks with unit

probability) would be a worthwhile pursuit in which progress can be made by building on

the results of section 4.2. Solving for those covtree dynamics which correspond to CSG

models and/or in which the set of rogues is null may also be worthwhile, but considerably

more ambitious.

Cyclic dynamics could also play a key role in the development of quantum growth

models. Transitive Percolation is a cyclic dynamics which resisted our attempts at quan-

tization and it is natural to wonder whether this is a feature shared by all cyclic models or

whether there exist cyclic models which can be quantized through the prescription which

we considered. This problem could be approached by building on the work in [Ash and

McDonald, 2003, 2005] which says that a CSG model is cyclic whenever its sequence of

couplings (t0, t1, t2, ...) is the sequence of moments of a probability distribution satisfying

certain criteria. It would be interesting to understand whether an analogous statement

can be made when the couplings take complex values since this will enable a systematic

study of whether such models are amenable to quantization by applying the theorems we

proved in section 5.2. Another avenue which one can explore in the search for quantum

dynamics is, given a pair of σ-algebras Σ1 ⊂ Σ2, under which conditions does a complex

measure on Σ1 extend to Σ2? This would shed light on whether, when the complex

measure fails to extend to the σ-algebra, it is worthwhile to seek a sub-σ-algebra of ob-

servables, as we did in section 6.2.3. Seeking alternative prescriptions for quantization is
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also worthwhile. One route to such an alternative has already been suggested by Rafael

Sorkin and Jason Wien in unpublished work where they provided a new derivation of the

CSG models in which the causality condition is replaced by an ansatz for the transition

probabilities. The hope is that generalising the ansatz to the quantum case would be an

easier task than formulating a quantum causality condition, but this remains an open

problem to date.

Finally, we must acknowledge that real progress requires a better understanding of

quantum foundations, in particular within an irreproducible cosmological setting which

hosts no observers. This will guide us towards more realistic formulations of quantum

dynamics (e.g. ones in which the measure is valued in a higher dimensional vector space)

and will enable extracting meaningful predictions from our models. Advances in this

direction will enable the heuristic of becoming to be realised as a physical quantum

dynamics for discrete spacetimes. In the meantime, growth dynamics remain a rich and

fruitful research area in which to explore the challenges which arise en route to a theory

of quantum gravity.
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Appendix A

Glossaries

A.1 Causal sets

A partial order (or “partially ordered set” or “poset”) is a pair, (Π,≺), where ≺

is a transitive, irreflexive relation on the ground-set Π. We may use the ground-set to

denote the partial order (e.g. we may write “the partial order Π” instead of “the partial

order (Π,≺)”). The meaning should be clear from the context.

Let x, y ∈ Π. For any relation x ≺ y, the interval int(x, y) is defined to be the set of

elements which lie between x and y in the order, namely, int(x, y) := {z|x ≺ z ≺ y}.

A partial order is locally finite if all of the intervals it contains are finite.

A causal set (or “causet”) is a locally finite partial order.

An order-isomorphism is an order-preserving bijection between two causets. If there

exists an order-isomorphism between Π and Ψ we say that Π and Ψ are order-isomorphic

and write Π ∼= Ψ.

The restriction of a causet (Π,≺) to Ψ ⊂ Π is the partial order (Ψ,≺Ψ) where

x ≺Ψ y ⇐⇒ x ≺ y ∀x, y ∈ Ψ . We say that (Ψ,≺Ψ) is a subcauset in Π.

Let Ψ be a subcauset in Π. If {z|z ∈ Π and x ≺ z ≺ y} ⊂ Ψ ∀ x, y ∈ Ψ then Ψ is a

convex subcauset in Π.

The convex hull of Ψ is the smallest convex subcauset of Π which contains Ψ.

We say that Π contains a copy of Φ if there exists a convex subcauset Φ′ ⊆ Π such that

123



Φ ∼= Φ′.

If x ≺ y is a relation in Π, we say that x is below y or that y is above x or that x is an

ancestor of y or that y is a descendant of x.

A relation x ≺ y is called a link if int(x, y) = 0. If x ≺ y is a link, we say that x is

directly below y or that y is directly above x or that x is a direct ancestor of y or

that y is a direct descendant of x.

The valency of x is the number of direct descendants of x.

The past of x ∈ Π is the subcauset past(x) := {y ∈ Π|y ≺ x}. This is the non-inclusive

past, i.e x 6∈ past(x). The future of x ∈ Π is the subcauset future(x) := {y ∈ Π|y � x}.

This is the non-inclusive future.

The inclusive past of x ∈ Π is the subcauset past(x) := past(x) ∪ {x}. The inclusive

future of x ∈ Π is the subcauset future(x) := future(x) ∪ {x}.

A finite subcauset Ψ of Π is a stem in Π if x ∈ Ψ =⇒ past(x) ⊆ Ψ.

A causet Π is a rogue if there exists another causet Φ 6∼= Π such that Ψ is a stem in Π if

and only if Φ contains a copy of Ψ as stem.

x ∈ Π is minimal if past(x) = ∅. Similarly, x ∈ Π is maximal if future(x) = ∅.

Π is originary if it contains a unique minimal element.

Π is a tree if it is originary and every element in Π is directly above at most one other

element. We call the minimal element of the tree the root.

Π is past-finite if |past(x)| <∞ ∀ x ∈ Π. Similarly, Π is future-finite if |future(x)| <

∞ ∀ x ∈ Π. Π is past-infinite (future-infinite) if it is not past-finite (future-finite). Π

is two-way infinite if it is both past-infinite and future-infinite.

An antichain is a causet all of whose elements are unrelated to each other. An n-

antichain is an antichain with n elements.

A chain is a causet all of whose elements are related to each other. An n-chain is a chain

with n elements.

A path in Π is a convex subcauset of Π which is a chain.
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An element x ∈ Π is in level L in Π if the longest chain of which x is the maximal

element has cardinality L, e.g. level 1 comprises the minimal elements. For any x ∈ Π,

L(x) is an integer which denotes the level of x, e.g. L(x) = 1 if x is minimal.

The width of Π, w(Π), is the cardinality of the largest antichain in Π. The height of

Π, h(Π), is the cardinality of the longest chain in Π, or equivalently the number of levels

in Π.

A post is an element x ∈ Π which is related to every other element in Π.

A break in Π is an ordered pair, (Ψ,Φ), of nonempty subsets of Π such that

(i) ψ ∈ Ψ, φ ∈ Φ =⇒ ψ ≺ φ, and

(ii) {Ψ,Φ} is a partition of Π.

We call Ψ and Φ the past and future of the break, respectively. If Π contains a break

with past Ψ we say that Π contains a Ψ-break. If Π contains a post x with past(x) = Ψ

we say that Π contains a Ψ-post.

We will often represent a causet using a Hasse diagram, a graph in which elements are

represented by nodes and links are represented by upward-going edges, i.e. there is an

upward-going edge from the node x to the node y if and only if x ≺ y is a link.

A.2 Measure theory

For the benefit of the reader, we present some terminology of measure theory used in

the text. The following is adapted from [Diestel and Uhl, 1977; Kolmogorov and Fomin,

1975].

Let X denote a fixed set. We call X the sample space, history space or space of

histories. An element of X is a history or an outcome.

A system of sets is a set whose elements are themselves sets. In the following, the

elements of a given system of sets are assumed to be certain subsets of X, unless otherwise

stated.
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A nonempty system of sets R is called a ring if A4B ∈ R and A ∩ B ∈ R whenever

A,B ∈ R. Equivalently, a ring is a system of sets closed under finite unions, intersections,

differences and symmetric differences.

A ring of sets is called a σ-ring if it contains the union
⋃∞
n=1An whenever it contains the

sets A1, A2, ..., An, .... It follows that a σ-ring is also closed under countable intersections

and under complements.

A set E is called the unit of a system of sets S if E ∈ S and A∩E = A for every A ∈ S.

A ring with a unit E is called an event algebra or algebra. An element of an algebra

is called a measurable event or event.

A σ-ring with a unit E is called a σ-algebra.

Given any nonempty system of sets S, there is a unique σ-algebra σ(S) containing S and

contained in every σ-algebra containing S. σ(S) is called the σ-algebra generated by

S.

A system of sets S is called a semiring if

1. S contains the empty set;

2. A ∩B ∈ S whenever A ∈ S,B ∈ S;

3. if S contains the sets A and A1 ⊂ A, then A can be represented as a finite union

A =
⋃n
k=1Ak of pairwise disjoint sets, with the given A1 as its first term.

A set function µ is called a (real probability) measure if

1. The domain of definition Sµ of µ is a semiring;

2. µ takes values in [0, 1];

3. µ is finitely additive in the sense that if A is a set in Sµ such that A =
⋃n
k=1Ak,

where A1, ..., An are pairwise disjoint sets in Sµ then µ(A) =
∑n

k=1 µ(Ak).

A measure µ with domain of definition Sµ is said to be countably additive if whenever

A is a set in Sµ such that A =
⋃∞
k=1 Ak, where A1, ..., An, ... are pairwise disjoint sets in

Sµ then µ(A) =
∑∞

k=1 µ(Ak).
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A measure µ is called an extension of a measure m if Sm ⊂ Sµ and µ(A) = m(A) for

every A ∈ Sm. Given a measure m on Sm ⊂ Sµ, if there exists an extension µ we say

that m possesses an extension or m extends to Sµ.

A measure µ is called a restriction of a measure m if Sm ⊃ Sµ and µ(A) = m(A) for

every A ∈ Sm.

Let A be an algebra of subsets of X, and let B be a Banach space. Let B∗ denote the

dual (or conjugate) space of B whose elements b∗ are continuous linear functions on X

(with respect to the norm topology). A vector measure F is a finitely additive function

F : A→ B. If B = C we say that F is a complex measure.

Given a vector measure F , its semi-variation ||F || is defined by

||F ||(E) := sup{|b∗F |(E) : ||b∗|| ≤ 1}, (A.1)

where |b∗F | is the variation (definition 5.1.2). If ||F ||(X) <∞ then F is bounded.

Let (En) denote a sequence of pairwise disjoint members of A. F is strongly additive

if, for any (En), the series
∑∞

n=1 F (En) converges in the norm topology. F is countably

additive if, for any (En) such that
⋃∞
n=1En ∈ A, F (

⋃∞
n=1En) =

∑∞
n=1 F (En) in the norm

topology. F is weakly countably additive if, for any (En) such that
⋃∞
n=1En ∈ A,

F (
⋃∞
n=1En) =

∑∞
n=1 F (En) in the weak topology (where the weak topology is the coarsest

topology on B such that each element of B∗ remains a continuous function).
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