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Abstract

Within causal set theory, growth dynamics form a novel realisation of the path integral for
quantum gravity. This thesis presents recent developments in growth dynamics, focusing
on general covariance and quantization. In causal set theory, where spacetime takes the
form of a discrete causal set, general covariance takes the form of label-invariance. Here
we present the first manifestly covariant growth dynamics, namely models of random
unlabeled graphs. These models, like their label-dependent predecessors, are classically
stochastic. The decoherence functional offers a stochastic-like formulation of quantum
theory particularly suited to quantum gravity and a proposal for a decoherence functional
for causal sets based on growth dynamics has previously been put forward, but it was
shown to fail in certain cases due to a technical pathology. We provide new criteria for
when the procedure is well-defined and apply these to obtain the first known examples
of quantum dynamics for causal sets. We generalise the construction of the decoherence
functional to a wide class of growth dynamics and discuss its application to dynamics
which give rise to bouncing cosmologies. Finally, we explore whether growth dynamics,

labeled and unlabeled, can accommodate cosmologies in which time has no beginning.
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Preface

The causal set approach to quantum gravity (also known as “causal set theory”) pos-
tulates that spacetime is fundamentally discrete. This leap—motivated by theorems in
Lorentzian geometry [Hawking, 2014; Kronheimer and Penrose, 1967; Malament, 1977],
by the search for a resolution to the infinities of General Relativity and quantum field
theory and by the Bekenstein-Hawking formula for the entropy of black holes—is bold
and holds huge promise to unify General Relativity with quantum mechanics, a problem
described by J.A. Wheeler as the “greatest crisis of physics of all time” [Rees et al., 1974].

In causal set theory, the smooth continuum spacetime of General Relativity is replaced
with a “causal set”—a large collection of discrete “elements” organised by means of
“relations” into a locally finite partial order [Bombelli et al., 1987]. Physically, each
element is a discrete unit of spacetime volume, an event localised in space and time.
The relation, denoted by <, is a causal relation, i.e. if elements = and y are related as
x < y then we say “z precedes y” or “x is in the past of y”. In this way, the atomicity
of quantum theory and the causality of General Relativity are married in an underlying
reality which is purely combinatorial and requires no continuum concept to describe it.!

This novel framework is geared towards high (Planckian) energy scales and comple-
ments the continuum methods prevalent in modern theoretical physics, as evidenced by
major successes which reach beyond causal set theory and into other areas of theoretical
physics and cosmology. These include a formulation of quantum field theory [Sorkin,
2011a, 2017] which led to a proposal for a distinguished vacuum state for quantum fields
in curved spacetime [Afshordi et al., 2012; Surya et al., 2019]; insights into quantum

fields on topology-changing spacetimes [Buck et al., 2017] and into entanglement entropy

1Tt is worth noting that unlike other discretizations (e.g. regular lattice), in causal set theory Lorentz
invariance is preserved in an appropriate sense [Bombelli et al., 2009b; Dowker, 2011].



[Sorkin, 2014; Sorkin and Yazdi, 2018]; a concrete study of the Hartle-Hawking wavefunc-
tion [Glaser and Surya, 2016]; a proposal which resolves the current tensions between the
different measurements of the cosmological constant [Ahmed et al., 2004; Zwane et al.,
2018]; and a successful prediction for the magnitude of the cosmological constant [Sorkin,
1990]—the only prediction by any quantum gravity theory to be verified so far.
Research in causal set theory explores a host of interrelated themes including?: how
continuum attributes such as geometry, topology, etc. emerge from a causal set on macro-
scopic scales [Bombelli and Meyer, 1989; Bombelli et al., 2009a; Eichhorn et al., 2017,
2019a,b; Major et al., 2007, 2009]; the behaviour of matter fields living on a causal set
[Dable-Heath et al., 2020; Johnston, 2010; X et al., 2017]; phenomenology [Dowker, 2013;
Dowker et al., 2010a]; the causal set action [Benincasa and Dowker, 2010; Buck et al.,
2015; Dowker and Glaser, 2013; Machet and Wang, 2021]; and growth dynamics, pio-

neered in [Rideout and Sorkin, 2000]. This thesis presents a contribution to the latter.

2The following citations are not exhaustive. For a comprehensive review of causal set theory see
[Surya, 2019].



Chapter 1

Introduction

There are many forks on the road to a theory of quantum gravity. The current state
of play in which quantum matter is coupled to a classical spacetime leaves much to the
imagination and has led to a proliferation of ideas. But a common expectation shared
by many is that spacetime itself should be governed by a quantum dynamics and exhibit
quantum fluctuations on small length scales that would be most keenly felt in regimes of
strong gravity, for example near the singularity of a black hole or in the early universe.

Even with this consensus, the quantization of gravity is plagued with obstructions.
The non-linearity of the Einstein-Hilbert action is an impediment to the operator formal-
ism [Hawking, 1978]; the general covariance of General Relativity hinders the canonical
quantization via the so-called “problem of time” [Carlip, 1990; Isham, 1992]; spacetimes
with exotic topologies do not admit a foliation into spatial hypersurfaces and thus resist
the canonical formalism altogether [Anderson and DeWitt, 1986]; and the observer-based
interpretation of quantum mechanics is incompatible with the regimes we wish to explore
since they host no observers [Bell, 2004].

These struggles have led some to believe that the path integral is the most suitable
framework for a quantum theory of gravity [Gibbons and Turok, 2008; Hawking, 1978;
Sorkin, 1997]. Perhaps its most appealing feature in the context of gravity is its compat-
ibility with general covariance: the integral sums over complete spacetime histories and
therefore does not require a foliation or a distinguished time parameter while covariant

“observables” can be defined independently of observers as attributes of histories. But



establishing the path integral as the fundamental foundation of quantum mechanics re-
mains a challenge and in its application to gravity it is not clear which histories should
be contained in the domain of the integral nor whether the integration measure is well-
defined [Gibbons et al., 1978, 1987]. Thus, one may be justified in regarding the path
integral as a guiding principle rather than an exact prescription.

In the causal set approach, where the continuum spacetime of General Relativity is
replaced by a discrete causal set, the path integral is replaced by a “sum-over-histories”
whose precise definition and interpretation pose a momentous challenge. This is the
challenge that the growth dynamics program aims to meet.

A growth dynamics is a probabilistic process in which a causal set comes into being
ex nihilo by accretion of elements. This growth process plays a dual role: it embodies the
sum-over-histories (e.g. by providing a mechanism from which the action is emergent) and
it offers a novel route for accounting for the passage of time within physics [Dowker, 2014,
2020; Norton, 2018; Sorkin, 2007; Wuthrich and Callender, 2017]. Crucially, the growth
does not happen in time—it constitutes the passage of time. The birth of an element
is the happening of that event, while the existence of an element signifies that the event
has already happened. Thus heuristically, the growth process is a physical process whose
phenomenological manifestations is the passage of time.!

Motivated by Quantum Measure Theory—an approach to quantum foundations which
views quantum mechanics as a generalised form of classical stochastic theory [Sorkin,
2012, 1994]—the growth dynamics program has furthered our understanding of the causal
set sum-over-histories by exploiting tools from probability theory, measure theory and the
theory of random walks. Still, many open questions remain and these can be roughly

partitioned into three overarching themes:

What is the domain of the sum-over-histories? The domain of the sum corresponds
to the sample space of the growth process (i.e. to the causal sets which it can
grow). Should it contain “labeled” or “unlabeled” causal sets*? Should it contain

all infinite causal sets or only those which are past-finite?

"'While the work presented here is motivated by this interpretation, our results are not contingent on
it.
2We make these notions precise in chapter 2.



What is the amplitude by which each history should be weighted? In the Lagrangian
formulation of dynamics, it is the role of the action to pick out the histories which
best describe physical reality. In the growth dynamics framework, this role is played
by the transition probabilities which govern the stochastic growth of the causal
set. How should these transition probabilities be constrained to obtain physical
dynamics? And how can these transition probabilities be generalised into transition

amplitudes so that the resulting dynamics exhibits quantum interference?

What are the physical observables? In the growth framework, the observables are
sets of histories (known in the probability literature as “events”). While these can
be formally defined as elements of a o-algebra, it is a challenge to seek out their
physical interpretation in a setting where key concepts such as “local” and “global”

are up for debate.

1.1 Synopsis

This thesis presents recent developments in growth dynamics for causal sets, focusing
on general covariance and quantization. In chapter 2 we discuss how label-invariance
plays the role of general covariance in causal set theory, and introduce some terminology
which will underpin the discussion in the subsequent chapters. In chapter 3 we review
the Classical Sequential Growth (CSG) models, with emphasis on three key features
which will serve as foundation for the new work presented thereafter: label-dependence,
observables and cosmic renormalisation. In chapter 4, building on the discussion of
label-invariance as general covariance and of observables in CSG models, we present the
first manifestly covariant (label-independent) growth dynamics and extend the cosmic
renormalisation to these new models. The covariant models, like their label-dependent
predecessors, are classically stochastic. The decoherence functional offers a stochastic-like
formulation of quantum theory particularly suited to quantum gravity and a proposal for
a decoherence functional for causal sets based on the CSG models has previously been
put forward, but it was shown to fail in certain cases due to a technical pathology. In

chapter 5 we provide new criteria for when the procedure is well-defined, apply these
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to obtain the first known examples of quantum dynamics for causal sets and generalise
the construction of the decoherence functional to a wide class of growth dynamics. In
chapter 6, motivated by cosmic renormalisation, we identify a class of observables within
classical labeled dynamics which give rise to bouncing cosmologies and apply our results
from the previous chapter in discussing the quantization of these models. In chapter 7, we
explore whether growth dynamics, labeled and unlabeled, can accommodate cosmologies
in which time has no beginning. We conclude in chapter 8. Glossaries of causal set and

measure theory terminology are provided in appendices A.1 and A.2.

11



Chapter 2

Labels and label-invariance

In causal set theory—where the continuum spacetime of General Relativity is replaced
by a discrete causal set—spacetime points and their coordinates are replaced by causal
set elements and their “labels”. Thus, Einstein’s struggle between the formulation of
generally covariant laws of nature and the intrinsic (in)distinguishability of spacetime
points [Rovelli, 1991; Schilpp, 1949; Stachel, 2014] manifests in causal set theory as tension
between label-dependence and label-independence. This tension can be expressed via a
myriad of interrelated questions: What is the physical status which one should assign to
the causal set elements and to their labels? Should we conflate the “label” of an element
with the “intrinsic identity” of an element or should they be considered separately? What
are the precise mathematical concepts which are best suited for formulating a physical
theory of causal sets? In particular, could the theory be formulated without any reference
to “labels”?

Mathematically, the elements of a causal set are distinguishable (in so far as a causal
set is a set) and the notion of labeling these elements appears in pure mathematics and in
its applications, including in causal set theory where labels naturally arise within the Clas-
sical Sequential Growth models of [Rideout and Sorkin, 2000]. Physically, it is a postulate
of causal set theory that no information is contained in any individual identity or label of
the elements, so that stripped from ordering the elements are physically indistinguishable.
This combination of label-dependent mathematics and label-independent physics led to

understanding general covariance within causal set theory as label-invariance [Brightwell

12



et al., 2002, 2003; Rideout and Sorkin, 2000].

This chapter is dedicated to choosing the right concepts for the discussion of general
covariance in causal set theory. We review the evolution of the relevant concepts through
the literature (section 2.1) and present the definitions coined by the author of this thesis
and her collaborators during their work (section 2.2). These definitions will form the

basic vocabulary for the remainder of this thesis.

2.1 A brief history of labelings

A partial order is a pair, (II, <), where < is a transitive, irreflexive relation on the ground-
set I1. A linear order (also known as a total order) is a partial order in which any two
elements are comparable. In the following, we use < to denote a linear order on a generic
ground-set and reserve the use of < to denote the usual linear order on the integers.

A “labeling” of a set II is a mapping A from II to an index set Z. When II carries
additional structure, it may be desirable that the labeling reflect this additional structure.
In particular, when labeling a partially ordered set (II, <) one often endows the index set
with a total order < and requires that the labeling is order-preserving, i.e. © <y —
Az) < Ny) Vz,y € II. In this way, the labeling extends the partial order into a linear
order and thus can be thought of as a “linear extension”. We now survey the usage
of the terms “linear extension” and “labeling” in the relevant mathematics and physics
literature.

Perhaps the simplest definition of linear extension is,

Definition 2.1.1 (Linear extension (definition 1)). A linear extension of a partial order
(IT, <) is a linear order (I, ) such that x <y = x <K y Va,y € Il [Alon et al., 1994;
Brightwell, 1994].

Definition 2.1.1 can be abstracted by allowing the ground-set of the linear order to be
any set Z satisfying |Z| = |II|. In this case the term “linear extension” does not refer to

the linear order (Z, <) but to an order-preserving bijection from (II, <) to (Z, <),

Definition 2.1.2 (Linear extension (definition 2)). A linear extension of (II, <) is a

13



bijection X from 11 to some linear order (I, <) such thatx <y = Ax) < A(y) Vz,y €
IT [Brightwell, 1988].

Therefore, we can think of a linear extension as a labeling by a totally ordered index
set. A special case of the linear extension is the “natural extension”, or “natural labeling”

as it is known in the physics literature,

Definition 2.1.3 (Natural labeling). A natural labeling or natural extension is a bijection
A from II to the linear order (N, <) such that x <y = Mx) < AMy) Yo,y € II
[Brightwell and Luczak, 2011].

In words, a natural labeling is an enumeration of the causal set elements which respects
the partial order <. It is worth noting that a natural labeling is sometimes defined as a
mapping from N to II so that its inverse is order-preserving.

The notion of natural labeling is a useful one and can be adapted to partial orders
of finite cardinality n by replacing (N, <) with one of the ordered intervals ({1,...,n}, <)
or ({0,1,...,n — 1}, <). The former is common in the mathematics literature [Brightwell
and Winkler, 1991] while the latter is common in the physics literature [Brightwell et al.,
2003; Rideout and Sorkin, 2000]. We leave discussion of partial orders which are not of
order-type N (e.g. (Z, <)) to chapter 7.

Equipped with the notion of labeling, one may use the term “labeled partial order”
to mean a partial order together with a natural labeling of it [Brightwell et al., 2003],
which suggests that we should think of a labeled partial order as a triple (II, <, \). In
practice, one often discusses labeled partial orders without specifying the ground-set I by
repackaging the information contained in the order relation < and the natural labeling A
into a partial order on a set of natural numbers. For example, if |II| = |[N| and A : N — II
then the corresponding labeled partial order is given simply as the partial order (N, <)),
where z <, y <= A(z) < A(y) [Ash and McDonald, 2003; Brightwell et al., 2003;
Sorkin, 2011b].

The term “unlabeled partial order” is borrowed from graph theory and means that
the elements of the partial order are indistinguishable when stripped of the relation
<. Therefore, an “unlabeled partial order” is not in fact a partial order but an order-

isomorphism equivalence class of partial orders. Which partial orders are contained in a

14



given equivalence class depends on one’s universe of discourse (e.g. partial orders on a

specified ground-set).

2.2 Labeled causets, orders and their stems

We now present the terminology distilled by the author and her collaborators for the
purpose of discussing general covariance in causal set theory in a way which is both
mathematically precise and physically clear. This is the vocabulary used in the remainder
of this thesis, unless specified otherwise.

Recall that a causal set (or causet) is a locally finite partial order. For any natural

number n, let [0, n] denote the set {0,1,....,n} (devoid of any ordering).

Definition 2.2.1 (Labeled causet). A labeled causet is any causet ([0,n], <) or (N, <)

satisfying x <y = x <y.

Definition 2.2.2 (n-causet). An n-causet is a labeled causet of cardinality n.

Given some n > 0, we denote the set of n-causets by 2(n). The set of finite labeled

causets is denoted by Q(N), i.e. Q(N) := |J Q(n). The set of all infinite labeled causets
is denoted by (0. "

Our universe of discourse contains all labeled causets and their subcausets. (Note that
a subcauset of a labeled causet is not necessarily a labeled causet because its ground-set
may not be an interval of integers of the form {0,1,...,n}.) We denote labeled causets

and their subcausets by capital Roman letters with a tilde, e.g. C. We often (but not

always) use a subscript to denote the cardinality of an n-causet, e.g. C.,.

Definition 2.2.3 (Order). An order (or “unlabeled causet”) is an order-isomorphism

equivalence class of labeled causets.

We denote orders by capital Roman letters without a tilde. Given an order, the Hasse
diagrams of its representatives differ from each other only by the labeling of nodes (i.e.

they are graph-isomorphic). Therefore, we represent an order by a Hasse diagram without

node labels (Fig.2.1).

15



0 1 1 0
c c’ C

Figure 2.1: C and C’ are order-isomorphic labeled causets. Each is a representative of the
order C, shown on the right as a Hasse diagram without labels.

Definition 2.2.4 (Cardinality of an order). The cardinality of an order is defined to be

the cardinality of a representative of it.
We denote the cardinality of an order C' by |C|.
Definition 2.2.5 (n-order). An n-order is an order of cardinality n.

In other words, an n-order is an order whose representatives are n-causets. We often
(but not always) use a subscript to specify the cardinality of an n-order, e.g. C,,.

We use (n), Q(N) and 2 to denote the set of n-orders, the set of finite orders and the
set of infinite orders, respectively. Note that these are equivalent to the quotient spaces
Q(n)/ =, Q(N)/ = and Q/ =2, where 2 denotes equivalence under order-isomorphism.

In similarity to the way an order “inherits” the cardinality of its representatives, the
width and height of an order are defined to be those of its representatives. Likewise, an
order is future-finite if its representatives are future-finite etc. We may also refer to an
element of an order, meaning an element of a representative of it—the meaning should
be clear from the context.

Finally, we discuss the “stems” of labeled causets and extend the concept of “stem”
to orders. A stem in a labeled causet C is a finite subcauset D - C' which contains its
own past, i.e. if z € D and y < 2 in C then y € D. In particular, for any finite integer

n satisfying 0 < n < |C|, the restriction C|p, is a stem in C.!

Definition 2.2.6 (Stems). A finite order S is a stem in the order C if there exists a
representative of S which is a stem in some representative of C. When S s a stem C,

we may also say that S is a stem in any representative C of C.

1C~’|[O,n] denotes the restriction of C' to the interval [0, n].

16



Hence, the meaning of “stem” depends on the context (Fig.2.2).

NN ACA L

Figure 2.2: Labeled causets C , S and L are representatives of orders C, Sand L, respectively.
S is a stem in C. L is not a subcauset of C so it is not a stem in C'. S and L are stems in C
and in C.

Definition 2.2.7 (n-stem). An n-stem is a stem of cardinality n.

In the literature, a “rogue” is a causet which cannot be fully specified by its stems
[Brightwell et al., 2003]. We can rephrase this definition using our terminology: an infinite
causet C' €  is a rogue if there exists some D € Q such that C' % D and S € Q(n)
is a stem in D if and only if S is a stem in C. In that case we say that C' and D are
“equivalent rogues” or a “rogue pair”. The term “rogue” can also be used to describe
orders: we say that an order is a rogue if its representatives are rogues. Equivalently, C'
and D are a rogue pair when S € Q(n) is a stem in D if and only if S is a stem in C'

(Fig.2.3). Rogue equivalence, denoted by C' ~p D, is an equivalence relation on (.

13l WML

Figure 2.3: C is a countable union of 2-chains and D is the union of C' with a single unrelated
element. C and D have the same stems—any union of finitely many 2-chains and a finite,
unrelated antichain—hence, C' and D are equivalent rogues.
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Chapter 3

CSG models: a modern review

Classical Sequential Growth (CSG) models are the archetype of growth dynamics for
causal sets. They are inspired by the notion of becoming, namely that the causal set
“comes into being” through a sequential accretion of elements, somewhat akin to a tree
growing at its tips. Since their introduction in [Rideout and Sorkin, 2000], they have
been the subject of much further study and have proved to be a fruitful arena in which
to explore pertinent questions, including those relating to general covariance [Brightwell
and Luczak, 2011, 2012] and generally covariant observables [Brightwell et al., 2002, 2003;
Dowker and Surya, 2006]; causality [Dowker and Surya, 2006; Varadarajan and Rideout,
2006]; the continuum approximation [Brightwell and Georgiou, 2010; Rideout and Sorkin,
2001]; quantal dynamics [Dowker et al., 2010c]; the nature of time [Dowker, 2014, 2020;
Sorkin, 2007; Wuthrich and Callender, 2017]; and cosmology [Ahmed and Rideout, 2010;
Ash and McDonald, 2003, 2005; Bombelli et al., 2008; Dowker and Zalel, 2017; Martin
et al., 2001; Sorkin, 2000].

This chapter is a modern review of the CSG models. We introduce the CSG models
(section 3.1), collate their representations (section 3.2) and present examples and varia-
tions (section 3.3). We then review the construction of covariant observables (section 3.4)
and of cosmic renormalisation (section 3.5). This chapter relies on the terminology es-
tablished in chapter 2 (section 2.2) and serves as a foundation for the new work presented

in chapters 4-7.
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3.1 Key features

Classical Sequential Growth (CSG) models are models of causal set growth in which
causal set elements are born sequentially (i.e. one after the other, in a sequence) and
form relations with each other according to model-dependent classical probabilities (i.e.
according to probabilities which obey the usual rules of probability theory so that the
model is classically stochastic and does not display quantum interference effects). Each
CSG model is encoded in a countable set of coupling constants from which the probabil-
ities can be computed. The functional form of the probabilities ensures that the models
satisfy mathematical constraints motivated by general covariance and local causality,

earmarking the CSG models as interesting models for cosmology.

The growth process: A CSG process is made up of stages. Starting with a single
element, at each stage a new element is born. The stages are labeled by the strictly
positive integers, 1,2,3,... At the beginning of stage n, the growing causet contains n

elements. In the limit n — oo, the process generates an infinite causal set.

The ground-set: For concreteness, we choose the initial element to be the integer 0,
and we choose the element born at stage n to be the integer n. Namely, one starts with a
causet containing the single element, 0. During stage 1, a new element—the integer 1—is
born. At the subsequent stage, the element 2 is born, etc., so that by the end of stage n
the causet has the ground-set {0,1,...,n}. In the limit n — oo, the process generates an

infinite causal set with ground set N.

Internal temporality: CSG models satisfy the condition of “internal temporality”
which states that an element cannot be born to the past of an already-existing element.
Physically, the birth of an element is the happening of an event, while the existence of an
element signifies that the event has already happened. Internal temporality reflects the

intuitive notion that an event cannot happen before an event in its causal past happens.

Labeled Causets: Our choice of ground-set together with the condition of internal

temporality mean that CSG models grow labeled causets: the process produces an n-
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causet by the beginning of stage n and an infinite labeled causet in the n — oo limit.

Parents, children and stems: We can think of stage n as a transition between labeled
causets: én — C’n+1. We call C’n and C’n+1 the “parent” and the “child”, respectively.
Internal temporality is equivalent to requiring that the parent be a stem in the child.
Thus, each child has a unique parent. A parent has as many children as it has stems

since for each stem S C C,, there exists a unique child in which past(n) = S.

The transition probabilities: Given some parent-child pair, C,, and C~'7H_1, each CSG
model furnishes an answer to the question “What is the probability P(C’n — C’n+1) to
transition from C,, to é'n+1 ?” via the following relations,

~ ~ Ao, m)

Ak, p) = Z (’“ ;p)tpﬂ-, (3.2)

=0
where w and m are the number of relations and links, respectively, formed by the new-
born element and (9 > 0,¢y,t,...) is an infinite sequence of real non-negative couplings
which defines the specific CSG model. An illustration is given in figure 3.1. The probabil-
ity ]P’(én) of growing the n-causet C, by the beginning of stage n is equal to the following

product of transition probabilities,
P(C,) = [[P(Ci = Cita), (3.3)

where for each i, C; is the unique parent of Cj,;.

3 284 3 284
—_—
1 N/o. 1 0
Figure 3.1: An illustration of the CSG transition probabilities. A transition between a parent

and its child is shown. During the transition, the element n = 5 is born. It forms m = 2 links

(with elements 2 and 3) and @ = 4 relations (with elements 0,1,2 and 3). Thus the probability
A(4,2)

for the transition is equal to 2(5.0)?

as given by equation (3.1).
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General covariance and causality: The CSG transition probabilities (3.1) are ex-
actly the transition probabilities which satisfy both the “discrete general covariance”
and the “Bell causality” conditions, discrete analogues of general covariance and local
causality. “Discrete general covariance” is a label-invariance condition which states that

order-isomorphic n-causets are equally likely to be grown by the process,

Ch

I

' — P(C,) =P(C"). (3.4)

The “Bell causality” condition is a generalisation of Bell’s local causality condition [Bell,
2004] to a discrete framework in which the causal structure is itself dynamical. It states
that a transition probability can depend only on the past of the element which is born in

the transition and takes the form of an equality between ratios of transition probabilities,

P(én — C~Yn+1) _ ]P)(Bl — BlJrl) (3 5)
P(C, —Cl.) P(B— B,

where Bl+17 Bz/ 41 and B, are obtained from én+1, C~’T’l 41 and C.,,, respectively, by removing
the “spectators” (elements which are unrelated to the new-born element in both tran-
sitions é’n — én—l—l and é’n — é’,’l +1) and relabeling consistently to form a new pair of
transitions, Bl — Bl+1 and Bl — BI’H . An example is shown in figure 3.2. While
B, Bl’ 41 and By will depend on our choice of relabeling, the right hand side of (3.5) is

label-independent when discrete general covariance holds.

A CSG model as a random walk: A CSG model can be viewed as a random walk
up “labeled poscau”, the partial order of finite labeled causets where each child is directly

above their parent,

Definition 3.1.1 (Labeled poscau). Labeled poscau is the partial order (Q(N), <), where
S < R if and only if S is a stem in R.}

The first three levels of labeled poscau are shown in figure 3.3. A CSG model is a

directed random walk on labeled poscau with transition probabilities of the form (3.1).

'We use the symbol < to denote the relation for several different partial orders in this work. The
meaning of < in each case is to be inferred from the context.
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Bﬁ B7 B7 !
Figure 3.2: An illustration of the Bell causality condition. The parent Cr and two of its
children are shown on the top line. From these, the parent Bg and two of its children, shown on
the bottom line, can be constructed by removing the spectators (in this example, the element

4 is the only spectator) and relabeling. The new-born element in each child is shown in white.
The past of the new-born element in each transition is shown in red.

Z=h

Figure 3.3: The first three levels of labeled poscau. The random walk starts at the root and
proceeds upwards.
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3.2 Parameterisations

The t-parameterisation: A CSG model can be parameterised by a countable sequence
of real non-negative couplings (o, t1, 2, ...) satisfying ¢y > 0 from which the transition
probabilities can be computed via equations (3.1)-(3.2). This is a projective parameter-
isation, since any two sequences related by an overall positive factor, (tx) = c(t},), yield
the same transition probabilities and thus parameterise the same model [Martin et al.,
2001]. For simplicity, we often fix to = 1.

This parameterisation has a meaningful interpretation in the context of growth: at
stage n, a subset R C C,, is selected with relative probability t,p and the new element
n is put above all elements which are below or equal to some element in R. R acts as a
“proto-past” from which the past of n is constructed and the transition probabilities (3.1)
reflect this: the numerator is a sum over all proto-pasts which contribute to a particular
transition C,, — C’n+1 while the denominator sums over the proto-pasts which contribute

to all possible transitions from the parent C,.. An illustration is shown in figure 3.4.
1 [ 1 [
lg @2 1002 0 0
P(Y - )= -
0 0 i210g]21y210021 21.}321V

Figure 3.4: A pictorial representation of transition probability (3.1). Each diagram on the
right hand side represents a proto-past R (shown in white) and contributes a factor of t| 7~ The
numerator is a sum over all proto-pasts which contribute to the transition on the left hand side.
The denominator sums over all possible proto-pasts.

The ¢-parameterisation: A CSG model can be parameterised by a countable sequence

(90, q1, G2, ---) related to (g, ty,...) via a binomial transform,
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The g, are strictly positive? and each ¢, is bounded from above by a function of qg, q1, ..., Gn_1-
This is a projective parameterisation. When fixing to = g9 = 1, ¢, is the probability to

transition from the n-antichain to the (n + 1)-antichain [Rideout and Sorkin, 2000].

The p-parameterisation: A CSG model can be parameterised by a countable sequence

(p1,p2, -..) related to (tg, ty,...) via,

_ 221:1 (T/r;:l)t"C

Prm A(m, 0) (3.7)

The p,, satisfy 0 < p,, < 1 and each p,, is bounded from below by pi,....,pm_1 (e.g.

P2 > pf’}H). Pm is the probability of transition from the m-chain to the (m + 1)-chain.
Equivalently, p,, is the probability that a given element n < m is included in the proto-

past of element m, .
_ E[R| _ kazo (?)ktk
m mA(m,0) ’

Dm (3.8)

where R is the proto-past of the element m and E denotes an expectation value [Brightwell

and Luczak, 2016].

3.3 Examples and variations

We present key examples of CSG models and introduce the family of Originary CSG

models. For simplicity, we set tg = qo = 1.

The Dust Universe: This CSG modelis given by tg = 1, = 0V k£ > 0 or equivalently

¢n =1V n > 0. It produces an infinite antichain with unit probability.

The Infinite Forest of Infinite Trees: ty =t = 1, tx = 0V k > 1, this model
generates a disjoint union of infinitely many trees with no maximal elements with unit

probability.

2This is a consequence of Bell causality (3.5). Weaker variations of Bell causality allow g,, = 0 [Dowker
and Surya, 2006; Varadarajan and Rideout, 2006].
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Transitive Percolation: Transitive Percolation (TP) is a 1-parameter family of CSG

models given in the various parameterisations by,

ty =t t e R,
m=q", 0<q<1, (3.9)

pm=p, 0<p<1,

_t

where the relationship between the parameterisations is given by p = 15

and ¢ =1 —p.

In this special case, the transition probabilities (3.1) can be recast into the form,

P(C, — Chi1) =p™¢" 7. (3.10)

The interpretation of equation (3.10) is that the new element born in the transition
forms a relation with each already-existing element with probability p independently and
then the transitive closure is taken to obtain C’nﬂ. This reflects the “local” nature of
TP and all other CSG models can be seen as non-local generalisations of it in which
the probability of forming a relation with a given element depends on whether or not a
relation is formed with each of the other elements.

The Dust Universe is the special case where p =t = 0. When p # 0, the model is
probabilistic but produces a causet with infinitely many posts with unit probability [Alon

et al., 1994]. TP is also known as the model of “random graph orders”.

Originary CSG Models: Originary CSG (OCSG) models are a family of growth
models which differ from the CSG models only by the requirement that ¢, = 0 and
t; > 0. These models are generally probabilistic but the causets that they produce are

always originary.

3.4 Observables

In which sense is a CSG model a dynamics for causal sets? In the sense that it pro-

vides answers to the physical questions that one could ask about the causet spacetime.
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Each question corresponds to a measurable event®, or “observable”, while each answer

corresponds to the probability measure assigned to the observable by the CSG model.

The sample space, (: The sample space is the set of all infinite causets which can be

grown by a CSG process in the n — oo limit, i.e. it is the set of infinite labeled causets,

Q.

The labeled algebra, R: For each C,, its “cylinder set” is defined as,
eyl(C,) = {C € Q|C, is a stem in C}. (3.11)

We denote the o-algebra generated by the cylinder sets by R. (Q,ﬁ) is a measurable

space on which each CSG model induces a unique probability measure fi satisfying,

fi(eyl(C)) = P(Cy) ¥ G, € Q(N), (3.12)

where P(C),) is given by equation (3.3). This construction is guaranteed by standard

results in measure theory [Kolmogorov and Fomin, 1975].

The covariant algebra, R: We say that an event £ € R is covariant if it does not
distinguish between order-isomorphic causets, namely if whenever C' € € and C = D
then D € €. The collection of covariant events is a o-algebra and we denote it by R
[Brightwell et al., 2003]. (Q, R) is a measurable space on which each CSG model induces

a probability measure p via the restriction of i to R.

The stem algebra, R(S): For each n-order C,,, its “stem set” is defined as,

stem(C,) :=={D € Q | C,, is a stem in D}, (3.13)

and is equal to the union of cylinder sets of the labeled causets in which C,, is a stem.

We denote the o-algebra generated by the stem sets by R(S) and note that R(S) C R

3See appendix A.2 for a glossary of measure theory terminology.
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[Brightwell et al., 2003]. (Q,R(S)) is a measurable space on which each CSG model

induces a probability measure s via the restriction of i (or u) to R(S).

Observables: Which of the o-algebras R D R D R(S) should be crowned the “algebra
of observables”? The labeled algebra R is too large, since it contains events which
are not covariant and hence unphysical. The covariant algebra R is a good candidate
since (by definition) it contains exactly the covariant events, but it provides no useful
information about the physical interpretation of these events. The stem algebra R(S) may
be the best candidate of the three since it contains covariant events with a clear physical
interpretation: each event corresponds to a logical combination of (at most countably
many) statements about which finite orders are stems in the causet C grown by the
process in the n — oo limit, e.g. the event (stem(A) N stem(B)) € R(S) is interpreted
as “both A and B are stems in C”. This kinematical heuristic is strengthened by the
dynamical result that in every CSG model it suffices to know the measure on R(S) in
order to reconstruct the measure of every event in R [Brightwell et al., 2003]. Thus, in a

precise sense the events in R(S) exhaust the set of observables in any CSG model.

Quotient Spaces: One can conceive of R as a o-algebra on €2, the set of infinite orders,
via the projection p : @ — Q which assigns to each causet C' the order C' of which it
is a representative. Whether a covariant event is a set of causets or a set of orders is
of no consequence for our purposes and we will use the two interchangeably. Similarly,
since R(S) contains exactly all the covariant events which do not distinguish between
equivalent rogues (i.e. £ € R(S) <= whenever C' € £ and C ~ D then D € &) it can

be thought of as a o-algebra on 2/ ~g, the space of rogue equivalence classes.
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3.5 Cosmic renormalisation

The “cosmic renormalisation” transformations are a family of transformations which act

in the space of (tg,t1,...). They play a central role in causal set cosmology.

The transformations: Define the linear transformation M,
M :t, — t, + tht1- (314)

For any integer a > 0, the “post renormalisation transformation” is given by [Martin

et al., 2001],

@ 4@_) 0 k=0
Sa () = (ty)), t. = (3.15)

Me(tr) = 30 (trer 1k >0

For any pair of integers a > r > 0, the “break renormalisation transformation” is given

by [Dowker and Zalel, 2017],

Mor(t,) =0 (" k=0
Qar : (tr) — (), %7 = (1) = X ()b (3.16)

Ma(tk) = Z?:O ((ll)tk—f—l k>0

The transformations satisfy the following composition rules,

SbSa = San,r = Sa-‘,—ba

Qb,sQa,r = Qb,sSa = Qa+b,s'

(3.17)

A growth model (%) is a stationary point of S, if it is mapped onto itself (i.e. if (tl(f)) =
c(ty) for some positive constant ¢). The stationary points of @, are similarly defined.
For any a > 0, the stationary points of S, are the Originary Transitive Percolation models
(to = 0,t, = t* V k > 0) and the stationary points of Q,, are the CSG models defined by

to=1,1, = (%)Ttk V k > 0. Neither transformation has cycles of length greater than 1.

Physical interpretation: The renormalisation transformations express a relationship

between different growth models which arises via a process of conditioning. Consider
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some CSG dynamics and condition that the element a is a post with some fixed past A
in the growing causet.* Then, the growth of the future of the post “decouples” from the
past and can be treated independently by deleting the past of the post and relabeling
the remaining elements n — n — a. This new growth process is governed by conditional
transition probabilities which can be expressed in the form (3.1)-(3.2), with (¢x) replaced
by the “renormalised” or “effective” couplings (t,(ca)) given in (3.15). The coupling tfca) is
the relative probability that a proto-past of cardinality k& is chosen from the undeleted
elements. It is a remarkable feature of CSG models that the effective dynamics depends
only on a, i.e. only on the cardinality of the past, not on its causal structure.

Similarly, when conditioning on a break with a fixed past A, the growth of the future
decouples from the past and can be treated independently by deleting the past and
relabeling n — n — a, where a := |/~1] The new transition probabilities are given by
(3.1)-(3.2), with (t)) replaced by the (t{*")) of (3.16), where r is the number of maximal
elements of A.

Note that the event “a is a post” is the same as the event “there is a break with a past
of cardinality @ + 1 and 1 maximal element”. Thus, S, and (Q,+11 give two equivalent
descriptions of the same system. The former yields an originary effective dynamics (since
t(()a) = 0), ensuring that every element is born above the post. The latter yields a non-
originary dynamics, where the post condition is enforced at the level of the kinematics.
(Another way to say this is, in the former formulation the post is not “deleted” while in
the latter it is.)

The composition rules (3.17) express the behaviour of the dynamics under successive
conditionings, e.g SpS, = S,y is the statement that first conditioning on a being a post
and then conditioning on the b"* element to be born to the future of a being a post is
equivalent to conditioning that the element a + b is a post, reflecting that the effective
couplings depend only on the cardinality of the past of the post, not on its ordering.

[lustrations are shown in figures 3.5-3.6.

Application to cosmology: Posts and breaks are discrete analogues of Big Crunch-

Big Bang singularities. When composed in a sequence, they are used to model “bounc-

“When a =0, A = 0.
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ing” or “cyclic” cosmologies in which the universe goes through subsequent epochs of
expansion and collapse. Conditioning on such a bouncing cosmology, the corresponding
renormalisation transformations create a flow in parameter space echoing proposals by J.
A. Wheeler, L. Smolin and others that the parameters of nature are modified each time
the universe is “squeezed through” a singularity [Bicdk, 2009; Rees et al., 1974; Smolin,
1992, 2008]. This evolutionary mechanism is at the heart of the causal set cosmological
paradigm, a heuristic which aims to explain the emergence of a flat, homogeneous and
isotropic cosmos directly from the quantum gravity era® [Sorkin, 2000]. The narrative is
that, given that the renormalisation flow generated by the successive epochs has certain
features®, then the dynamics evolves into growing larger, flatter epochs as the universe
cycles repeatedly. It is then only a matter of time until the universe displays the desired

behaviour.

QC,ZSb Qa,4

(a)

() (c)

Figure 3.5: The growth of the future of a post or a break decouples from the past and can
be treated independently. Figures (a) and (b) illustrate the process of deleting the past and
relabeling the remaining elements n — n — a, where a is the cardinality of the past. Figure (c)
shows a sequence of epochs separated by posts and breaks and the effective dynamics which
governs each epoch.

>This paradigm pertains only to the causal set spacetime, not to any matter living on it. Whether a
causal set is enough to give rise to matter degrees of freedom [Rideout and Sorkin, 2000] or whether one
requires additional structure such as a field living on the causal set is still unknown. Whichever the case
may be, this simplified cosmological paradigm will act as a guide to building a causal set cosmology.

SFor instance, that its stationary points grow causal sets with the desired cosmological features, that
the basin of attraction of these stationary points is large and that it contains an abundance of dynamics
which are likely to give rise to posts/breaks.
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Figure 3.6: A pictorial representation of the relationship between (¢;) and (t;a) ) for a = 1.
Each diagram represents a proto-past R shown in white (cf. Fig.3.4). First line: each diagram
on the right hand side contributes a factor of ¢, z. The numerator is a sum over all proto-pasts
which contribute to the transition on the left hand side. The denominator is a sum over all

possible proto-pasts consistent with the condition that 1 is a post. Second line: each diagram
1)
) | O iy . |
is a sum over all proto-pasts which contribute to the transition on the right hand side and the

denominator sums over all possible proto-pasts.

on the left hand side contributes a factor of ¢, as indicated by the subscripts. The numerator
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Chapter 4

Manifestly covariant dynamics

Einstein’s efforts to distinguish between the physical and the unphysical were central to
the development of the generally covariant field equations of General Relativity. Indeed,
this struggle between gauge and physical degrees of freedom is inherent in the nature
of General Relativity as a gauge theory and one might expect that grappling with the
corresponding issues within quantum gravity will be important to its development too.
One facet of this struggle can be summarised by the question: can the laws of physics be
formulated using only physical degrees of freedom? [Berkovits, 2000; Carlip, 1990; Witten,
1989] Physics has thus far favoured gauge theories, rendering this problem extremely
difficult. But there is an expectation shared by some workers that the difficulty stems
from the incompleteness of our current theories and that a resolution will come hand in
hand with a theory of quantum gravity.

In causal set theory—where general covariance takes the form of label invariance, a
discrete precursor to the continuous diffeomorphism invariance of General Relativity'—
the CSG models are a gauge formulation (since they refer to labeled causets) and our
question can be framed as: is it possible to define physically interesting causal set growth
dynamics which refer only to orders, not to labeled causets? We call such dynamics
“manifestly covariant”.

From the start, one can identify three challenges. First, orders are mathematically

more difficult to handle (e.g. enumerating unlabeled graphs is generally more difficult

"'Whether label invariance alone is enough to give rise to diffeomorphism invariance is subsumed in
the question of whether causal sets can give rise to a continuum approximation at all.
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than enumerating labeled graphs [Harary and Palmer, 1973]), echoing the difficulties often
encountered in physics when working with global degrees of freedom. Second, physical
dynamics are often arrived at by imposing invariance under gauge transformations. This
is the case in the CSG models, where the discrete general covariance condition (3.4) is akin
to the requirement that the Einstein-Hilbert action is invariant under diffeomorphisms.
Therefore even if a label-independent framework did exist at the level of the kinematics,
how are the physically meaningful dynamics to be picked out from the plethora of available
models? Finally, our intuitive notion of growth is inherently sequential: elements are born
one after the other in a kind of global time which renders the elements distinguishable
(e.g. in a CSG model, the element n is born at stage n). How does one reconcile a physical
process of becoming with manifest covariance? The prevailing view in causal set theory
is that one should seek a form of “asynchronous becoming”, namely a growth process
in which elements are born in a partial (not a total) order [Dowker, 2014, 2020; Sorkin,
2007]. What could it mean for elements to be born in a partial order? It is the role
of mathematics to make sense of notions which lie beyond our everyday experience, and
it may be that new mathematics is what is needed to better understand asynchronous
becoming and its consequences for the nature of time. It has been suggested in [Wuthrich
and Callender, 2017] that this could be achieved via a “novel and exotic” framework in
which questions such as “which element is born at stage n?” are left unanswered (not
because of ignorance but because they are unphysical), but there has been no concrete
proposal for such a framework until now.

This chapter presents original work on manifestly covariant growth dynamics. We
begin with a technical formulation of the problem before defining a new structure which
we call “covtree” and proving that it provides a manifestly covariant framework for growth
dynamics (section 4.1). We obtain key results regarding cosmic renormalisation and the
growth of posts and breaks within this new framework (section 4.2) and illustrate with a
toy example how a better understanding of the structure of covtree can be used to solve

for physically interesting dynamics (section 4.3).
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4.1 Introducing covtree

We seek a manifestly covariant analogue of the CSG models. Let us make this statement
precise. Recall that a CSG model is formally a measure space (Q, R, i) where [ is related
to the CSG transition probabilities via (3.12). However, R contains events which are not
covariant and hence unphysical. At the physical level, a CSG model can be thought of
as the measure space (2, R, ) where p is the restriction of i to the covariant algebra R.
Finally, we can further economise by denoting a CSG model by (Q, R(S), ps) where ps is
the restriction of u to R(S), since one can show that in this case p is the unique extension
of s to R 2 [Brightwell et al., 2003]. This has the advantage that each event in R(S) has
a physically meaningful interpretation: each event corresponds to a logical combination of
statements about which finite orders are stems in the growing order. Although this latter
formulation is manifestly covariant at the level of the kinematics (i.e. the sample space
is the space of orders, 2), the measure us is defined via a label-dependent mechanism,
i.e. via a random walk up labeled poscau which gives rise to the measure ji which is then
restricted to us. We seek to define a measure on R(S) via a random walk on a new tree
structure which makes no reference to labeled causets, only to orders. To be interpreted
as a growth dynamics, the new tree must be equipped with a map from €2 to the set
of infinite upward-going paths. This map should be an isomorphism between the tree’s
topological o-algebra® and R(S) so that a measure induced by a random walk on the
former can be carried over to the latter. In particular, the map should be surjective. This
guarantees that some order is grown in every realisation of the process or equivalently
that ps(@) = 0. Finally to allow us to interpret the random walk as a physical process,
each node should carry a clear physical meaning. To illustrate this final point, let us

consider “poscau” 4,

Definition 4.1.1 (Poscau). Poscau is a partial order on finite orders, (Q2(N), <), where

2The proof can be sketched as follows: one shows that (i) in any CSG model 1(©) = 0, where © € R
is the set of rogues, and (ii) that for every A € R the event A\ © € R(S). Thus, u(A) = u(A\ 0) =
us(A\ ©), where the first equality follows from (i) and the second from (ii). Therefore the measure of
every event in R is fixed by us [Brightwell et al., 2003].

3This is the o-algebra generated by the “cylinder sets”, where the cylinder set of a given node is the
set of all paths which contain it.

4Rideout and Sorkin originally used poscau to introduce the CSG models.
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A < B if and only if A is a stem in B.

Albeit not a tree, there is a natural correspondence between poscau paths and infinite
orders. Hence if one identifies each node A in poscau with the set stem(A) (cf. (3.13)), one
might be tempted to try to define a dynamics as a random walk up poscau where arriving
at the node A corresponds to the occurrence of the covariant event stem(A). Intuitively,
this does not work because our physical interpretation of the nodes implies that each
order contains only one n-stem for each n > 0 (which is clearly untrue). Thinking in this
way, however, suggests the solution: the walk should be on a tree formed of countably
many levels in which the nodes in level n are not single n-orders but sets of n-orders.
Each set of n-orders in level n will correspond to the covariant event “the n-stems of
the growing order are the elements of this set.” We call this tree “covtree”, short for
“covariant tree”.

This section is dedicated to defining covtree (4.1.1-4.1.2), to proving the existence of
a surjection from €2 to the set of covtree paths and to proving that covtree’s topological

o-algebra is equivalent to R(S) (4.1.3).

Figure 4.1: The first three levels of poscau.



4.1.1 Certificates

This section introduces the notion of “certificate” which will play a key role in the defi-

nition of covtree and in its interpretation as a framework for growth dynamics.
Let I';, € Q(n) be a non-empty set of n-orders.

Definition 4.1.2 (Certificate). A finite or infinite order C' is a certificate of T, if Ty, is

the set of all n-stems in C.

Given some I',,, it may or may not have a certificate. We will be interested in those

I',, which do have a certificate.

Definition 4.1.3 (A, the collection of certified sets). A is the collection of sets of n-

orders, for all n, for which there exists a certificate:

A= U{Fn C Q(n)|3 a certificate for T, }. (4.1)

n>0

One can show that each I',, € A has infinitely many certificates, including infinitely
many finite certificates and infinitely many infinite certificates. We will often work with

the “minimal” certificates:

Definition 4.1.4 (Minimal certificate). Given some I',, € A, we order its finite certifi-
cates as follows: let C,C" be finite certificates of I'y,, then C <X C" if C is a stem in C".

A minimal certificate of T',, is minimal in this partial order of certificates.

At times it may be easier to work with labeled causets rather than with orders. To

this end we define the labeled analogue of the certificate.

Definition 4.1.5 (Labeled certificate). A labeled certificate of Ty, is a representative of
a certificate of I',,. A labeled minimal certificate of T',, is a representative of a minimal

certificate of T',,.

[lustrations are shown in figure 4.2.
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Figure 4.2: Certificates. C, C’ and C" are finite certificates of Q(3)={1, . . VoA s
The < relation indicates inclusion by stem. C'is a minimal certificate of ©(3). The labeled
causets shown are representatives of C' and hence are labeled minimal certificates of 2(3).

4.1.2 Definition of covtree

We begin by introducing the map O.
Definition 4.1.6 (The map O). For any n > 1 and any T',,, the map O takes T',, to the
set of (n — 1)-stems of elements of T',,:

O,) ={By1€Qn—-1) |3 A, el st. B,y is a stem in A,}. (4.2)

An illustration is shown in figure 4.3. The exponentiation OF takes I',, to the set of
(n — k)-stems of elements of I',,. If C' is a certificate of T',,, then C' is also a certificate of
OF(T,) for any k < n.> The converse is not true: if C is a certificate of O(T',,), then C

may or may not be a certificate of I';, (in fact, I';, may have no certificates at all).

0 ({A,V,Io}) = {I,oo}

06h. 1) -

Figure 4.3: Illustration of the map O.

5The proof may be summarised by the mnemonic: a stem in a stem is a stem, not a stem in any stem
is not a stem
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Definition 4.1.7 (Covtree). Couvtree is the partial order (A, <), where I';, < 'y, if and
only if n < m and O™ (') =T,,.

We note some key points about covtree:

e Covtree is the partial order on A defined by putting each T',, directly above O(T,)

and taking the transitive closure. Thus, covtree is a tree.

e Covtree has no maximal nodes. Every covtree node is contained in uncountably

many inextendible upward-going paths.

e We label the levels of covtree by 1,2,... where level 1 contains the root. The nodes
at level n are the sets of n-orders which have certificates (this is the motivation for

the term certificate: a certificate of T',, certifies that I',, is a node in covtree.)
e A certificate of a node I',, is also a certificate of every node below I',,.

e Given a node I',,, repeated applications of O generate the unique path downwards

from I',, to the root.

e In order to construct level n of covtree, one considers all the non-empty subsets of
Q(n). These are the “candidate nodes” for level n. To determine whether a candi-
date node is a node in covtree one needs to determine whether it has a certificate.

In general, this is a difficult problem.

e Given any n-order C,, the set {C,,} is a node at level n since C,, is a certificate of

{Cn}.

e The first three levels of covtree are shown in figure 4.4. Levels 1 and 2 contain
all candidate nodes, while level 3 contains 22 nodes out of 31 candidates. The 9

“non-nodes” are shown in figure 4.5.
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(a) The structure of the first three levels of covtree.
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(b) The level 3 nodes which are directly above the node {I, .. } are shown
together with their respective certificates.

Figure 4.4: The first three levels of covtree.

{&Y) {d‘.,i} {o..,i} {Weeel
(PN eeel {.’»ME}{.’»,...,E}

{".’,...,i} { ."o’,...,i}

Figure 4.5: The sets shown in the figure have no certificates and therefore are not nodes. For
every set shown, if an order contains all the elements of that set as stems then it also contains

. as a stem.
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4.1.3 The sample space

We now prove that there is a surjection from 2 to the space of inextendible upward-going

covtree paths.

Let P denote an inextendible covtree path from the origin upwards, I'y < 'y < ...

Definition 4.1.8 (Certificate of path). An infinite order C is a certificate of P if it is a
certificate of every node in P. A labeled certificate of P is a representative of a certificate

of P.

We propose that the surjection we seek is given by the correspondence between paths
and their certificates. In the following we show that this correspondence is indeed a sur-
jection, since it is a function on 2 (lemma 4.1.9) and it is surjective (theorem 4.1.10).
Thus, each infinite order C' € €2 is mapped onto the path P of which it is a certificate.
This establishes ) as the sample space of the covtree growth process. The narrative is
that in any realisation of the process, the growing order is the certificate of the path
traced by the random walk. However, we must point out two subtleties with this inter-
pretation. First, a path may have more than one certificate: C' and C” are two distinct
certificates of the same path if and only if they are equivalent rogues. In other words,
since equivalent rogues cannot be distinguished by their stems, the covtree process cannot
distinguish between equivalent rogues. How one should resolve this depends on the phys-
ical interpretation that one assigns to rogues. If one believes that rogues are unphysical
and should never be grown by the process® then the resolution can be to only consider
random walks in which the measure of the set of the “rogue paths” is null. An alternative
is to allow rogues to arise but propose that they are physically indistinguishable (since
they can only be distinguished globally, not by any local observer living on them). This
is equivalent to replacing €2 with the space of rogue equivalence classes Q/~pg, where
each path corresponds to exactly one class. The second subtlety relates to the notion of
growth. To what extent can we say that an order is growing as the covtree walk advances?

At stage n, we do not know which finite order has grown thus far nor its cardinality, only

6Reasons to think this include that in the CSG models rogues never happen, i.e. () = 0 where ©
is the set of rogues, and that every rogue contains an infinite antichain corresponding to infinite space
[Brightwell et al., 2003].
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which n-stems it contains. While in the CSG models the growth is explicit, on covtree it
is implicit or “vague” [Wuthrich and Callender, 2017]. But if there is a process of growth
which can be associated with a covtree walk, then it may be that it is this quality of

vagueness which embodies asynchronous becoming.
Lemma 4.1.9. Let C' be an infinite order. Then C is a certificate of exactly one path P.

Proof. By definition of certificate 4.1.3, C' is a certificate of exactly one node I',, for each
n > 0. Hence, C' is a certificate of at most one path. Additionally, if C' is a certificate of
[, then C' is a certificate of O(T',). Hence the nodes of which C' is a certificate form a

path P of which C' is a certificate. O]
Theorem 4.1.10. Fvery path P has at least one certificate.
We begin with some lemmas.

Lemma 4.1.11. Let T, = {AL ..., Ak} be a set containing k > 1 n-orders and let C be a

minimal certificate of it. Then n < |C| < kn. Additionally, |C| = n if and only if k = 1.

Proof. Clearly, |C| > n. Now, consider a labeled representative C' of C. For each A,
1=1,2,...k, let flﬁl denote a stem in C' which is order-isomorphic to a representative
of Al and take their union U := |J, A% (i.e. U is the subcauset of C' defined by = €
U <= z € Al for some i). Let U denote the order of which U is (order-isomorphic to)
a representative. Then U is a stem in C, U is a certificate of I';, and |U| < kn. Since C'
is a minimal certificate, C' = U and hence |C| < kn. Finally, if |C| = n then C is the

only n-stem in C' and therefore T',, = {Al}, where AL = C. O

Lemma 4.1.12. Let I',, € P. Then there exists a node I',, € P which contains a

certificate of I'), as an element.

Proof. When T, = {C,,} for some order C,,, a node with the required property is ', ;1 € P
since it follows from definition 4.1.6 that C,, is the unique n-order in every C,1 € ',
and therefore each ), is a certificate of T',,.

Suppose I',, contains £ > 1 orders and recall that if C' is a minimal certificate of I',

then n < |C| < nk (lemma 4.1.11). Define N := nk and consider I'y € P. Let D be a
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finite certificate of I'y and hence of T',, (since a certificate of a node is also a certificate
of all the nodes below it). By definition of minimal certificate 4.1.4, at least one minimal
certificate of I';, occurs as a stem in D. Choose one, call it C, let m := |C| and consider
I',, € P. Cisan m-stem in D. I',, is the set of all m-stems of D and so C' is an element

of I',,. O

Lemma 4.1.13. Given a path P, there exists a sequence of labeled causets éml, Crgs -+

such that, for all k >0,
(Z) |C~’mk| = Mg,
(ZZ) my < M1,

(iii) Cp, is a stem in Cp, . ;

(iv) Crny., is a labeled certificate of T, € P;

(v) Cpy.y» the order of which C, ,, is a representative, is an element of I'p,, ., € P.

k+1

Proof. The required sequence C,,,,Cy,,... is constructed by the following inductive
algorithm.

Step 1:

1.0) Pick some non-zero natural number mg to start and consider I',,, € P.

1.1) By lemma 4.1.12, there exists an m; > mg such that I';,, € P contains a certificate
of I'y,,. Call that certificate C,,, .

1.2) Pick a representative of C,,, and call it C,, .

1.3) Go to step 2.

Step k > 1:

k.1) By lemma 4.1.12, there exists an my > my_; and such that I',,, € P contains a
certificate of I';,,, , € P as an element. Call that certificate C,, .

k.2) Pick a representative C.. of Cy,, such that C~’mkf1 is a stem in émk (this is always

k
possible because C,
Omk—1 € ka—1)'

k.3) Go to step k + 1. O

., 1s a stem in C),, because C),, is a certificate of I';,, , € P and
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Proof of Theorem 4.1.10. Consider a sequence é’ml, C~’m2, ... generated for P by the al-
gorithm in lemma 4.1.3. The union C' := [J2, C,,, is a labeled certificate of P. The

order C' of which C is a representative is a certificate of P. n

An alternative proof is given in appendix 4.A.

4.1.4 The algebra and measure

Having established €2 as the sample space, we now discuss the o-algebra. To each covtree
node assign its “cylinder set” 7, the set of all paths P which contain it. The collection of
all cylinder sets generates covtree’s topological® o-algebra. Under the surjection which
maps an infinite order to the path of which it is a certificate, the cylinder set of the node

[',, is the image of the set cert(I',) defined by,

Definition 4.1.14 (Certificate set). For each covtree node Iy, its certificate set, cert(I',),

1s the set containing all its infinite certificates,
cert(l'y,) :=={C € Q| C is a certificate of I',,}. (4.3)

Thus the o-algebra generated by the certificate sets is the algebra of measurable
events, or observables, in a covtree growth process. This g-algebra is in fact R(S) (as
we prove in lemma 4.1.15). Standard results in measure theory ensure that each covtree
random walk (defined by a complete set of covtree transition probabilities) gives rise
to a unique measure on R(S), where the measure of cert(I',)) € R(S) is equal to the
probability of reaching I';, (i.e. to the product of transition probabilities on the path
from the root to I',).Y Thus, we did what we set out to do: we found a label-independent
method to define measures on R(S). We obtained a manifestly covariant framework for

causal set growth dynamics.

T“Cylinder set” is a generic term in stochastic processes and should not be confused with its specific
usage in (3.11). The meaning should be clear from the context.

81t is called “topological” because the cylinder sets are the open balls under the metric topology given
by the metric d(P,P’) = 1/2", where n is the number of nodes shared by P and P’.

9Due to covtree’s tree structure, the certificate sets (together with the empty set) form a semi-ring
on which each covtree walk defines a countably-additive “pre-measure” [Lindstrgm, 2017] which has a
unique extension to R(S) by the Kolmogorov extension theorem [Kolmogorov and Fomin, 1975].
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We now have two ways of defining measures on R(S): via a restriction of a measure
it on the labeled algebra R (where ji arises from a random walk on labeled poscau'®)
or directly via a covtree random walk. Do these methods give rise to different classes
of measures? By reverse engineering our construction, one can show that every measure
on R(S) can be derived from a covtree walk. Additionally, every measure on R(S)
possesses some extension'! to R (as we prove in lemma 4.1.16), meaning that every
measure on R(S) can be obtained via a restriction of some fi. The set of manifestly
covariant dynamics and the set of dynamics obtained via the labeled procedure are equal!
For every walk on labeled poscau—whether it satisfies discrete general covariance or not—
there exists a covtree walk which produces the same measure on R(S). There is no easy
relationship between the discrete general covariance condition on a labeled poscau walk

and the manifest covariance of a covtree walk.

Lemma 4.1.15. Let ¥ denote the collection of all certificate sets and let R(3) denote
the o-algebra generated by ¥.. Then R(X) = R(S).

Proof. We will show that any stem set (cf. equation (3.13)) can be constructed by a finite
number of set operations on the certificate sets and vice versa, and the result follows.
Consider an n-order B,. Let I'! denote the covtree nodes which contain B,,, where i
labels the individual nodes. Suppose C € cert(I'}) for some i. Then B, is a stem in C
and hence C € stem(B,). Suppose C' & cert(I'?) for all i. Then B, is not a stem in C
and hence C' ¢ stem(B,,). It follows that stem(B,) = |, cert(l’;) = R(S) C R(%).
Consider some node I',, = {AL .., A*} in covtree. Let Q(n)\ T, = {B! ..., B.}.
Suppose C € cert(l',). Then Al .., A* are stems in C, and B}, ..., B! are not stems in

n

k I
C. Hence C € () stem(A%)\ U stem(B?). Suppose C' ¢ cert(T',). Then either (i) there
i=1 =1

k
exists some A’ € I',, which is not a stem in C = C ¢ () stem(A%), or (ii) there exists

i=1
!
some BJ € Q(n)\ T, which is a stem in C = C € |J stem(B’). It follows that,
j=1
k I
cert(T,) = ) stem(A") \ U stem(B!) = R(XZ) C R(S). O
i=1 j=1

Lemma 4.1.16. For every measure pus on R(S) there exists an extension fi to R.

10The random walk need not be a CSG model nor must it satisfy any physical conditions.
HThe extension may or may not be unique.
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Proof. First note that there is a metric on Q with respect to which (Q,R) is a Polish
space [Brightwell et al., 2003]. Since every Polish space is a Lusin space [Schwartz, 1973],
(Q,R) is a Lusin space. Note also that R(S) is a separable sub-c-algebra of R since there
exists a countable collection of subsets of  which generates R(S), namely S (or X). The
result follows from the theorem that if (Y, B) is a Lusin space, then every measure defined

on a separable sub-o-algebra of B can be extended to B [Landers and Rogge, 1974]. [

4.2 Covtree and causal set cosmology

There is no reason to expect that a generic covtree walk will be physically interesting: the
class of such walks is too vast to be interesting. We need physically motivated conditions
to restrict the models to a sub-class worth studying.

One challenge lies in the translation of physically desirable conditions (e.g. that
manifold-like!? orders are preferred by the dynamics) into conditions on covtree transition
probabilities. Doing so requires an understanding of the relationship between paths
and their certificates (e.g. which paths have manifold-like certificates). Closely related
challenges include formulating a causality condition on covtree and understanding what
additional constraints general covariance may impose on the transition probabilities (cf.
the discrete general covariance condition in the CSG models).

In addition to the relationship between paths and their certificates, an understanding
of the structure of covtree is also important for constraining the dynamics. For example,
any dynamics should satisfy the Markov-sum-rule: the sum of the transition probabilities
from any node I';, must equal 1. But with no knowledge of the number of nodes directly
above T',, or of the relation they bear to it, this constraint is intractable. (In contrast, in
the case of the CSG models knowing that the children of C, are in 1-to-1 correspondence
with the stems in C, allows to solve the Markov-sum-rule.)

In addressing these challenges, one might be tempted to construct covtree explicitly.
Indeed, we presented the first three levels (Fig.4.4), but brute force methods come up

short in going to higher levels as the number of candidate nodes at level n increases

12\We say an order C' is manifold-like if a representative of C' can be faithfully embedded into a four-
dimensional Lorentzian manifold.
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rapidly as 2/%M™| — 1 where |Q(3)| = 5,|2(5)| = 63 and |Q(16)| = 4483130665195087
[The On-Line Encyclopedia of Integer Sequences|. In the remainder of this chapter, we
make progress by focusing on structural properties which are independent of level.

In this section, guided by the narrative of causal set cosmology (section 3.5) which
relies on the existence of posts and breaks and on the associated cosmic renormalisation,
we identify the covtree paths whose certificates contain posts and breaks (section 4.2.1),
show that covtree has a self-similar structure (section 4.2.2), use this self-similarity to
obtain a covariant analogue of cosmic renormalisation and conclude with a discussion of
open questions, including a proposal for a causality condition for manifestly covariant

dynamics (section 4.2.3).

4.2.1 Certificates with posts and breaks

We begin with two definitions.

Definition 4.2.1 (A-break/A-post). Let A denote a finite order and let A be some
representative of it. We say that an order C' contains an A-break (A-post) if it has a

representative which contains an A-break (A-post).'?

Definition 4.2.2 (Covering causet/order). Given an n-causet C,, its covering causet
C,, is the (n 4 1)-causet formed by putting the element n above every element of C,.
Similarly, 6’,: is the covering order of C,, where C, and C, are representatives of the

respective orders.

An illustration is shown in figure 4.6.
We can now state our main theorem which identifies those covtree paths whose cer-

tificates contain posts and breaks,
Theorem 4.2.3. Let the order C' be a certificate of the path P.

1. C contains an A-break if and only if {2} is a node in P.

2. C' contains an A-post if and only if {A} is a node in P (where A is the covering

order of the covering order of A).

13Recall that an A-break is a break with past A. A-post is similarly defined.
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In addition to being a kinematical statement, theorem 4.2.3 has implications for the
search for physical dynamics, for our understanding of observables and for the develop-
ment of a covariant analogue of the cosmic renormalisation transformation. Starting with
the former, our theorem implies that a covtree dynamics in which an infinite sequence of
breaks happens with unit probability is one which, with unit probability, passes through
infinitely many nodes of the form {ﬁ} Such dynamics are of interest to causal set cosmol-
ogy, since they give rise to bouncing universes. In the future, our theorem could be used
in combination with theorems in probability theory and stochastic process (e.g. various
zero-one laws) to solve for covtree random walks which give rise to bouncing cosmologies.
Secondly, our theorem implies that the event “the growing order contains an A-break”
can be affirmed or denied at a finite stage of the covtree process. On the contrary, in
a CSG model the labeled event “the growing causet contains an A-break” cannot be
affirmed at a finite stage (although it can be denied). While what we mean by “local” in
this framework is open to interpretation, one could argue that the occurrence of a post
or a break is a non-local event (cf. causal horizon in the continuum) and that it is the
covariant nature of covtree which allows us to access such non-local information which
is inaccessible in the labeled growth process. Finally, we discuss in detail the theorem’s
application to cosmic renormalisation in section 4.2.3.

We now prove theorem 4.2.3, beginning with a lemma.
Lemma 4.2.4. Let C and A be labeled causets. The following statements are equivalent:
(i) C contains an A-break,
(i1) every (|A| + 1)-stem in C is isomorphic to fl,
(i11) A is the unique |A|-stem in C.

Proof. Let A be a stem in C. Let x denote a minimal element in C'\ A. Let a denote an

element in A.

(i) = (i) It follows from the definition of an A-break that every (|A| + 1)-stem in C

is of the form AU {z} and that each such stem is isomorphic to A.
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(1) = (iii) Suppose for contradiction that D # A is an |A|-stem in C. Let y be
minimal in D\ A. Then AU {y} is an (|A| 4+ 1)-stem in C. By assumption (ii),
y > a for all a in A, and therefore (by definition of stem) A U {y} C D which in

turn implies that |D| > |A|. Contradiction.

(i7i) == (i) By assumption (iii), z > a for all  and a, and hence (by definition of

break) C' contains an A-break. =

The following covariant statement is a corollary:

Corollary 4.2.5. An order C' contains an A-break if and only if A is its unique (|A|+1)-

stem.

Proof of theorem 4.2.3. Let the order C' be a certificate of the path P. Recall that by
definition 4.1.8, the set of n-stems of C' is the node I',, in P.

To prove part 1, suppose C' contains an A-break. Then by corollary 4.2.5, the set
of (JA| + 1)-stems of C is {A}. By definition of certificate, {4} is in P. Now suppose
{A} is in P. Then by definition of certificate, {A} is the set of (|A| + 1)-stems of C. By
corollary 4.2.5, C' contains an A-break.

Part 2 follows from the fact that C' contains an A-post if and only if C' contains an

A-break. O
3
L e, — I/I
 ———
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Figure 4.6: The relationship between an order, its covering order and their representatives.
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4.2.2 Covtree self-similarity

Covtree is itself a causal set whose ground-set is A (definitions 4.1.3 and 4.1.7). This
section is dedicated to proving that covtree has a “self-similar” structure. We begin with

a definition.

Definition 4.2.6 (Self-similar causal set). A causal set is self-similar if it contains in-

finitely many copies of itself.

For any finite order A, let Ay C A be the convex subcauset of covtree which contains

the node {A} and everything above it. We will show that:

Theorem 4.2.7. For any finite order A, Ay is a copy of covtree. Thus, covtree is self-

stmilar.

An illustration of covtree’s self-similar structure is shown in figure 4.7.

{I/I}Ax. A

T b (1
{I o} {a*.,...} {.".} {-o-}{'v' }{'s’}{ }

NN

o0, 3}  foo} 1 {I} A

{e}

Figure 4.7: The self-similar structure of covtree. The figure displays the first two levels of
covtree in full and selected nodes from levels 3 and 4. The arrows indicate additional nodes
not shown in the figure. The dashed lines indicate where a new copy of covtree begins. The
ground-set A4 of each copy is indicated next to each dashed line. Figuratively, we can write
A=Ay

To prove theorem 4.2.7, we will need the following definition:

Definition 4.2.8. Given a finite order A and a set I, € A, the map G takes T'), to

Ga(Ly), the set of orders which contain a break with past A and future B, € [y, i.e.

Ga(l'n) :={C | C is an order which contains a break with past A and future B,, € I, }.

Examples are shown in figure 4.8.
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Figure 4.8: Illustration of the operation G4.
Proof of theorem 4.2.7: We will show that, for any finite order A,
(1) Ga(A) = Ay, and
(77) the map G4 : A — A4 is an order-isomorphism,

and the result follows.

To prove part (i), we first show that G4(A) C Aa. Let I';, € A and let the m-order C,,
be a certificate of I',,. Let Dy denote the order of cardinality & = m + | A| which contains
a break with past A and future C,,. Then Dy is a certificate of Ga(I'y,) = Ga(I',) € A.
Next, note that A is the unique |A]-stem in every order in G4(T') = Ga(T',) € A4.

Second, we show that Ay € G4(A). Let I';, € A4 and let the p-order E, be a certificate
of I'y,. Necessarily, E, contains a break with past A and some future B. Let I'; denote
the set of [-stems of B, where | =n — |A|. Then I'; € A and T',, = Ga(I)).

To prove part (ii), we use the commutativity of the operations O and G, to show
that G4 : A — A4 is order-preserving. Suppose I',, < I';,11, then by definition of covtree

we have that I';, = O(T',,41), and therefore
G4(T') = Ga(O(Tir)) = O(Ga(Tosr)) = Ga(T) < Ga(Tra).
Now suppose Ga(I'y) < Ga(I'ys1). Then

Ga(ln) = O(Ga(lni1)) = Ga(OTnp1)) = T < Topa.
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4.2.3 Covariant cosmic renormalisation

In this section we apply theorems 4.2.3 and 4.2.7 to obtain the covariant counterpart of
cosmic renormalisation and conclude with a discussion of open questions. In the following,
we denote a covtree transition probability by P(I',, — I';,11). We use {P} to denote a

complete set of covtree transition probabilities (or a “covariant dynamics”).

Renormalisation after a break: In the CSG models, cosmic renormalisation arises
by first conditioning that the growing causet contains a break with a particular past A
and then “deleting and relabeling” the elements in the past of the break to obtain a new
growth process governed by an effective dynamics. The covariant analogue of the first
part is conditioning that the growing order contains an A-break, for some finite order
A. Theorem 4.2.3 tells us that this condition is equivalent to requiring that the random
walk pass through the node {ﬁ} The covariant analogue of “deleting and relabeling” is
acting on each node in A4 with G;' (the inverse of definition 4.2.8) since this effectively
“deletes” the past A of the break. Theorem 4.2.7 tells us that G;' maps A4 to A, so that
the growth of the future of the break (previously described by a walk on A 4) can now be
treated independently of the past as a walk on the whole of A governed by a new set of
“effective” transition probabilities. Given a dynamics {P}, the effective dynamics {IP4}

obtained by conditioning on an A-break is given simply by,

Ry : {P} = {P4}, Pa(T, = Tos1) = P(Ga(Th) — Ga(Tnin)). (4.4)

For a generic covtree dynamics the functional relationship between {P} and {P4} can
depend on any feature of A, and this is signified by the label A on the transformation
R, and on the effective transition probabilities {P4}.

The transformation R4 acts on a set of transition probabilities, not on a set of cou-
plings. To emphasise this, we call R4 a “similarity” transformation rather than a “renor-
malisation” transformation. If (as one hopes) in the future we are able to characterise
a covtree dynamics by a set of couplings, it may be possible to write the similarity

transformation as a renormalisation transformation which acts on the couplings directly.
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Similarly, we reserve the term “stationary point” for a set of couplings which is mapped
onto itself by the renormalisation transformation. If a covtree dynamics is mapped onto
itself by a similarity transformation R4, we say that it is “self-similar” with respect to
R4. A covtree dynamics {P} is self-similar with respect to R, if and only if it satisfies

the condition

Py = Tni1) = P(Ga(Tn) = Ga(l'ni1)) (4.5)

for every n and every transition I', — I',, ;. Constructing a self-similar dynamics is
simple: assign any set of transition probabilities to the transitions which lie outside A4,
and then use equality (4.5) to set the transition probabilities in A 4.

It is possible to use this procedure to fix the transition probabilities in A4 for every
A simultaneously, thus constructing a dynamics which is self-similar with respect to R4
for all A. We call such dynamics “maximally self-similar”.

A dynamics cannot be self-similar with respect to a unique transformation R,. If
a dynamics is self-similar with respect to some transformation R4 then it is also self-
similar with respect to (R4)", for any positive integer n. But (R4)" is itself a similarity
transformation: (R4)" = Run, where we define A™ to be the order of cardinality n|A]
which is a stack of n copies of A separated by breaks. Therefore there exists no dynamics
which is self-similar with respect to a unique transformation. We say that a dynamics
{P} is “minimally self-similar” if there exists a unique order A such that {P} is only
self-similar with respect to (R4)" for all n.

Some self-similar dynamics are neither minimally nor maximally self-similar. Consider
a (finite or infinite) collection {A}, {B}, ... of covtree nodes. Does there exist a dynamics
which is only self-similar with respect to R4, Rp, ... and their respective powers? If every
pair of nodes are unrelated in covtree then the answer is yes. On the other hand, suppose
that {A} < {B}. Then B contains an A-break, and let us denote the future of the break
by D. Then Gg = GpGa, and a dynamics is self-similar with respect to R4 and Rp if

and only if it is self-similar also with respect to Rp.

Renormalisation after a post: Since the occurrence of an A-post is equivalent to the

occurrence of an ﬁ—break, the effective dynamics obtained by conditioning on an A-post
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is given by transformation Rz, obtained from transformation (4.4) via A — A\, and given

explicitly by,

Ry AP} = {P3}, Pi(I'n = Dup) = P(G2(Tn) = G4(Tnia))- (4.6)

R is the covariant counterpart of the labeled non-originary transformation Qq1,1
(cf. (3.16)). Additionally, an originary formulation also exists in the covariant case
and is analogous to the labeled transformation S, (cf. (3.15)). We say that a covtree
dynamics {P} is “originary” if P('y —{[}) = 1. In the originary viewpoint of the A-post
condition, a covtree dynamics {IP} is mapped onto an originary covtree dynamics {I,}

via the transformation!?:

Ta: {P} = {P,},
Py(M = {1}) =1,

(4.7)
P;x(rn — Fn-&-l) = P(gA(Fn) — gA(Fn-i-l)) VI, = {I} )

P, (T, = ['yy1) = 0 otherwise.

A summary of the covariant similarity transformations derived in this section and of

their labeled counterparts is shown in table 4.1.

break post

non-originary ‘ orgInary
labeled || Q.. (3.16) | Qut11 (3.16) | S, (3.15)
covariant | R, (4.4) R3 (4.6) Ty (4.7)

Table 4.1: Summary of transformations. The first row lists the renormalisation transforma-
tions which act on CSG couplings. The second row lists the similarity transformations which
act on covtree transition probabilities.

Discussion: While our success in adapting the cosmic renormalisation to the covtree
framework bodes well for a covariant causal set cosmology, our results will remain purely
formal until we are able to identify a class of physical covtree dynamics with which to

work. Having said that, our similarity transformations can themselves be exploited to

14The apostrophe on the transition probabilities {P’,} is used to distinguish between the images of
{P} under R4 and Tq.
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better understand the form that CSG models take on covtree and to obtain new classes

of physical dynamics by considering how these dynamics transform:

1. We have seen that the labeled break transformation ), , depends on the past of the
break only via its cardinality and number of maximal elements. Is the condition
on a covtree dynamics {P} that {P4} = {Pg} if and only if A and B have the
same cardinality and number of maximal elements necessary for {P} to be a CSG

dynamics? Is it sufficient?

2. Recall that the action of (),, can be factorised in terms of the transformation
M of (3.14). Does this property bear any relation to the constraint on a covtree
dynamics {P} that, for any finite order A, the renormalisation transformation can

be factorised as R4 = R for some transformation R?

3. If a given CSG model is a stationary point of a labeled transformation, is its corre-

sponding covtree dynamics self-similar?

4. Recall that a CSG dynamics is a stationary point of both @), , and @) s if and only
if » = s. Is the condition on a covtree dynamics {P} that {P} = {P4} = {Pp}
only if A and B have the same number r of maximal elements necessary for {P}
to be a CSG dynamics? Is it sufficient? Such a dynamics is neither maximally
nor minimally self-similar, and it follows from our previous analysis that for any
r > 0 there exists a family of self-similar dynamics which satisfy this condition.
Are these CSG dynamics, or is the relationship between the labeled and covariant

formulations more complex?

5. Let us consider the post condition in the originary formulation. A covtree dynamics

{P} flows to a self-similar dynamics under T} if

(TP, = Thir)] = (TP, — Thit)] as k — oo. (4.8)

If {P} arrives at a self-similar dynamics after NV applications of T4, expression (4.8)
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simplifies to:

(TA)k[P(Fn — Pn—l—l)] = (TA)k+1[P(Fn — Fn—l—l)] Vk>N
(4.9)

— P(GA(T) = GA(Tpsr)) =PG5 (T) = G5 (Tai)) V k> N.

The N = 1 case is of special interest to us. It is easy to show that, under an
application of S,, a Transitive Percolation (TP) dynamics (given by t, = t* for
some constant ¢) is mapped onto the corresponding Originary Transitive Percolation
(OTP) dynamics (tg = 0,t; = t* for k > 0), where the latter is a stationary point
of S,. Does this mean that for a covtree dynamics {P} to be a TP dynamics it

must satisfy condition (4.9) with N =17

. It is known that OTP gives rise to infinitely many posts with unit probability [Alon
et al., 1994]. Is this property related to the fact that OTP is a stationary point?
Do self-similar covtree dynamics give rise to an infinite sequence of posts or breaks?

Could this be a feature of the maximally self-similar dynamics?

. When the transformation R4 factorises as R4 = RII, the effective dynamics is
independent of the causal structure of the past. Therefore, could the condition that

R 4 factorises be interpreted as a causality condition on covtree dynamics?

4.3 Further structure of covtree

In this section we present additional results about the structure of covtree and about

certificates. We conclude with a toy example illustrating how an understanding of the

structure of covtree can be a useful tool for constraining covtree dynamics.

4.3.1 Nodes

Here we list properties which pertain to nodes, including criteria for a set of n-orders

to be a node, properties of minimal certificates and a study of direct descendants and

valency.
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Definition 4.3.1 (Singleton and doublet). A node T',, in coviree is a singleton if it
contains a single n-order. A node I',, in covtree is a doublet if it contains exactly two

n-orders.
We start with the simple property:

Property 1. For any finite order C,, there is a singleton node {C,} in covtree. C,, is

the unique minimal certificate of {Cy}.

Recall that I',, = I',, in covtree if and only if every certificate of I',, is a certificate of
[',,. Therefore {C,} > T, in covtree if and only if C), is a certificate of T',,. Since every

node in covtree has countably many finite certificates, we find that:
Property 2. Every node in covtree has countably many singleton descendants.

Next we note that, since C), is the only n-stem in its covering order (/Z’,\l, the node {6’;}

is directly above {C} in covtree and therefore:
Property 3. Every singleton has at least one direct descendant which is a singleton.
Moreover,

Property 4. If {6’;} is the only singleton directly above {C,} then {6‘;} is the only node
directly above {C,,}.

To see this, assume for contradiction that there exists some node {A!, ..., A¥ ,}
which is directly above {C,,}, where k > 2 . It follows from the definition of covtree that
C, is the unique n-stem in every A%, € {A} ., ..., A%} and therefore each of the nodes
{AL. 1}, ... {AF. |} are singletons directly above {C,,}, which is a contradiction.

Every singleton with valency greater than one has at least one direct descendant which

is a doublet since:
Property 5. If {D,.1} = {Cy} and Dy.1 # C, then {Cy, Dyy1} = {Cy}.
A corollary of properties 4 and 5 is:

Property 6. No singleton has a valency of 2.

26



Singletons which possess property 4 are the only nodes in covtree which have exactly

one direct descendant since:
Property 7. Only singletons can have exactly one direct descendant in covtree.

To prove this, consider the node I', = {ALl ..., A*} with &k > 2, and assume for
contradiction that I',,;; is the only direct descendant of I',,.

First, we show that I',,; contains the covering order ;12 of every A? € T',,. Suppose
for contradiction that ', ;1 does not contain the covering order ;12 of some A’ €T, Let
C,, be an m-order that is a certificate of ', ;1. Then there exists an (m + 1)-order D, 1
which contains C,, and ;12 as stems (a representative of D,, 1 can be constructed by
taking a representative of C,, and adding an element above the stem which is isomorphic
to a representative of A%). D,y is a certificate of I, | = T',pq U {1/42}, and I, = I,
This contradicts the assumption that I',,; is the only direct descendant of I';, . Hence
I',, 11 contains the covering order ;12 for all Afl erl,,.

Now we show that, since I',, {1 contains the covering order :42 of some A’ € T, it
cannot be the only direct descendant of I'),. Let the p-order £, be a minimal certificate of
I',,. Therefore I';, < I';,41 < {E,} and hence E, is a certificate of I',,;1. Then there exists
a (p—1)-order F,_; such that Fj,_; is a stem in E, and ;1\% is not a stem in F,_; (a causet
isomorphic to a representative of F,_; can be constructed by taking a representative of £,
and removing the element which is maximal in the stem isomorphic to a representative
of AY). Then F,_; is a certificate of I',, which contradicts the assumption that E,
is a minimal certificate of I',,. Therefore, only singletons can have exactly one direct

descendant in covtree.

Additionally,

Property 8. For any k > 1 there is a singleton {C,,} in covtree with k singletons directly

above it.

An immediate corollary is that the valency of singletons is unbounded. (Note that
k is not the valency of {C,}, for if £ > 2 then {C,,} has additional direct descendants

which are not singletons, cf. property 5.)
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An example of a singleton node with 1 singleton directly above it is I'y = {I I} To
show that the statement is true for k£ > 1, we construct a countable sequence of singletons
{Cry}, {Chs}, s {Ch, }, ... such that {C,, } has k singletons directly above it. Figure 4.9
shows the first three singletons in the sequence and their respective singleton descendants.

Let us explain the pattern shown in figure 4.9. Each order C),, has cardinality n, =

nk—l
2

4k — 1. A representative C’nk of C,,, contains ”kT_l elements in level 1, elements in
level 2, and a single element in level 3. Each element in level 1 is below two elements in
level 2. Each element in level 2 is above two elements in level 1. The element in level 3
is above all but one of the elements in level 2.

We construct the singleton descendants of {C,,, } as follows. Construct a new causet
from CN’nk by adding a new element directly above all but one of the level 2 elements
subject to the constraint that no level 2 element is maximal in the resulting causet.
There are 2k — 2 ways to do this, leading to a collection of 2k — 2 causets. One can show
that each of these causets is order-isomorphic to exactly one other in the collection, and
taking the corresponding orders gives k — 1 distinct (ny + 1)-orders whose only ng-stem is
Ch,. A singleton containing each of these orders is directly above {C,, }. The additional

singleton descendant is {5;}

Similarly,

Property 9. For any integer k > 1 there exists a doublet in covtree with k singletons

directly above it.

One can construct an infinite sequence of doublets, {Cyy, Dy by {Cings Ding s oo {Crmss Dy }s oo
such that the k" doublet in the sequence has k singletons directly above it. Figure 4.10
shows the first three doublets in the sequence and their direct singleton descendants.

A representative C,,, of Ch,, has cardinality m; = 4k + 5 and partial ordering as

K
described below property 8 (with ny replaced by my). A representative of D,,, has these
same properties, except that the element in level 3 is above all but two of the elements
in level 2. The two elements missed out must have a common element in their pasts.
We construct the singleton descendants of {C,,, Dy, } as follows. Construct a new

causet from CN'mk by adding a new element directly above all but two of the level 2 elements

subject to the constraints that no level 2 element is maximal in the resulting causet and
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{Cr,} Directsingletondescendants of {C}, }

Figure 4.9: Ilustration of property 8. The elements circled by a dotted line are identified with

each other.

k {Cmy D, } Direct singleton descendants of {C,, D, }

b,y [

Figure 4.10: Illustration of property 9. The elements circled by a dotted line are identified

with each other.

29



that the two elements which are missed out have a common element in their pasts. In
this way, one generates a collection of 2k causets. One can show that each of these
causets is isomorphic to exactly one other in the collection, and taking the corresponding
orders gives k distinct (my + 1)-orders whose set of my-stems is {C,,, , Dy, }. This proves
property 9.

A key hurdle in the construction of covtree is understanding which sets of n-orders are

covtree nodes. The following property gives a necessary condition in the case of doublets:

Property 10. {A,, B,} is a doublet in covtree only if there exists an (n — 1)-order S

which is a stem in both A, and B,,.

To prove property 10, let E be a labeled minimal certificate of {A,, B,}. Let A, and
B,, be stems in E which are isomorphic to representatives of A,, and B,, respectively.
Define S := A, N B,. We will show that |S| = n — 1 and property 10 follows.

Note that E = A, U B,, for otherwise £ would not be minimal. Define k := n — |S]
and suppose for contradiction that 1 < k < n. Let A, \ B, = {v1,vs,...,v;} and
B, \ A, = {wy, ws, ..., wi}. Without loss of generality, let F=Su {v1,v9, ..., k1, w1 }
be an n-stem in E. Then either F = A, or F = B,,. Suppose FF = A,,. Then E \ {vg} is
isomorphic to a labeled certificate of {A,, By} and is a stem in F, which contradicts the
assumption that E is minimal. Suppose F = B,,. Then F \ {ws, ws, ..., w } is isomorphic
to a labeled certificate of {A,, B,} and is a stem in E, which is again a contradiction.
Hence |S| = n — 1, which completes the proof.

Property 11 is a corollary:

Property 11. IfT',, is a doublet in covtree then all minimal certificates of Iy, are (n+1)-

orders.

Therefore, if T', is a doublet in covtree and I', < T',,.; then I',,; contains some
minimal certificate of I',,. It is a corollary of properties 9 and 11 that for any integer

k > 1 there exists a doublet in covtree with k& minimal certificates.

4.3.2 Paths
Here we present properties of certain covtree paths and their certificates.

60



Property 12. In covtree, there are infinite upward-going paths from the origin in which

every node is a singleton.

We call the subset of covtree which contains exactly all these paths “singtree”, since

it is a tree of singletons. Figure 4.11 shows the first three levels of singtree.

{o0e} {N) {E} {%}
\/ N/
{00} 1)

{e}
Figure 4.11: The first three levels of singtree.

To discuss singtree we will need the concept of the Newtonian order.

Definition 4.3.2 (Newtonian causet/order). A Newtonian causet is a causet in which
every element in level k is above every element in level k — 1. A Newtonian order is an

order whose representatives are Newtonian.

In a Newtonian causet, every pair of elements which are unrelated have the same past
and the same future, alluding to a notion of a Newtonian global time, hence its name!®.
A Newtonian causet is a “stack of antichains”, and for any natural number N, the union
of the first N levels is a past of a break. The local finiteness condition implies that every
level whose elements are not maximal must be finite.

To characterise the nodes of singtree and the certificates of singtree paths we will need

the following lemma about Newtonian orders:
Lemma 4.3.3. The following properties of a finite or infinite order, C', are equivalent:

(i) C has a unique representative,

15 A Newtonian order is not a good approximation of continuum Euclidean space.
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(i1) for every natural number n < |C| there is a unique n-order which is a stem in C,
(iii) C is Newtonian.

Proof. Let C' denote a representative of C. Let L(z) denote the level of element z (e.g.

L(z) =1 if z is minimal).

(1) = (ii) Suppose for contradiction that C' has two n-stems, C,, # C/, for some
n < |C|. Then there is a representative of C' whose restriction to the interval
{0,1,...,n— 1} is a representative of C,,, and similarly for C/. Hence C has at least

two representatives. Contradiction.

(11) == (417) Suppose for contradiction that C' is not Newtonian, i.e. there exist some
z,y € C such that L(z) > L(y) and x % y. Let S be the union of the inclusive past
of = with levels 1,2, ..., L(y). Note that S C C is a stem in C. Then S\ {z} and
S\ {y} are non-isomorphic stems in C. (To see that they are non-isomorphic, note
that S\ {z} contains L(z) — 1 levels and S\ {y} contains L(z) levels.) Hence C

has at least two n-orders as stems, where n = |S| — 1. Contradiction.

(i4) = (i) Let f: C'— C’ be an order-isomorphism between two representatives of
C. The Newtonian condition restricts the action of f on each level in C to be a
permutation, and therefore f must be an automorphism. Hence C' has a unique

representative.

The equivalence of statements (i) and (#i7) in lemma 4.3.3 implies that:
Property 13. A singleton {C,} is in singtree if and only if C,, is Newtonian.

If {C,} is a node in singtree then it has exactly two direct descendants in singtree:
{6’;} and {D,1}, where D, is the Newtonian order whose representative is constructed
from a representative of C, by adding a new element to its maximal level. If {C),} is
a node in singtree then it has exactly three direct descendants in covtree: its singtree
descendants, {6’,\1} and {D,1}, and the doublet {6’,\1, Dy}

A second corollary of lemma 4.3.3 is:
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Property 14. An infinite order C is Newtonian if and only if it is a certificate of a

singtree path.

Given property 14, it is now a simple matter to solve for the family of covtree dynamics
in which the set of non-Newtonian orders is null: it is the set of covtree walks in which

the walker stays in singtree with probability 1, i.e.

P(I',,) = 0 ¥ I', not in singtree. (4.10)

This family of Newtonian dynamics acts as a proof of principle, illustrating how an
understanding of covtree could allow one to solve for a dynamics with particular features.
But, since these dynamics are unphysical, this is very much a case of “looking under the
lamp-post”. Where are we to look if not under the lamp-post? One avenue for exploration
is to ask: what role, if any, do rogues play in the physics of covtree walks?

Since in CSG models the set of rogues is null [Brightwell et al., 2003], identifying
covtree dynamics which possess this property is a step towards understanding what form
CSG dynamics take on covtree. Moreover, if following [Brightwell et al., 2003] we are to
choose R to be our g-algebra of observables then—unless the covtree measure on R(S)
has a unique extension to R—one is faced with ambiguities both in interpretation and
calculation. It is sufficient that the set of rogues be null for there to exist a unique
extension, and therefore rogue-free dynamics are compatible with this approach. Finally,
rogue-free dynamics are cosmologically interesting. A rogue causet contains an infinite
level and as a result cannot contain an infinite sequence of posts or breaks. Therefore,
that the dynamics is rogue-free is a necessary condition for the dynamics to be relevant
for our cosmological paradigm.

One can draw an analogy between the condition that the set of rogues is null and the
condition that the set of non-Newtonian orders is null: the former is the condition that
the set of paths with more than one certificate is null, the latter the condition that the
set of paths with more than one labeled certificate is null. However, while we were able to
solve for the latter, solving for the former poses a new challenge because it is a limiting

condition: at no finite stage of the covtree walk can the claim that the growing order is
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a rogue be verfied or falsified. This is because for every node in covtree there exist both
an infinite certificate which is a rogue and an infinite certificate which is not a rogue.
This means that there is no rogue analogue to singtree. Instead, we must look for
other ways to obtain rogue-free dynamics. Pursuing the strictly stronger condition that
the dynamics gives rise to infinitely many posts or breaks with unit probability is a
promising route. We already know the defining feature of these covtree walks: that, with
unit probability, they pass through infinitely many nodes of the form {E} The challenge

ahead is to formulate this feature in terms of covtree transition probabilities.

4.A Supplementary material

Alternative proof to theorem 4.1.10. Recall that ~x denotes the rogue equivalence rela-
tion, and let p : Q — €/ ~pg be the associated canonical quotient map. Let [A]r denote
an element of 2/ ~g, where A € ) is a representative of [A]x.

Define the following metric on Q/ ~g: d([A]g, [B]r) = 5=, where n is the highest
integer such that the set of n-stems of A is the set of n-stems of B. One can show that
(Q/ ~pg,d) is a complete metric space.

Let [cert(I'y)|r C ©/ ~g denote the image of the certificate set cert(I',,) C 2 under
the quotient map p. Then one can show that [cert(T,)|x is both open'® and closed in
()~ d).

The diameter of [cert(T',,)|g, d([cert(T',)|r), is defined to be the maximum distance
between any two elements in [cert(T', )]z and is equal to 5. Hence d([cert(T,)]r) — 0 as
n — 0o.

Given a path in covtree, P = I'y < I's < ..., then the following is a nested sequence:
[cert(T'y)]r D [cert(T2)]r D .. ..

Now, Cantor’s Lemma states that a metric space (X, d) is complete if and only if, for
every nested sequence { F}, },,>1 of nonempty closed subsets of X, thatis, (a) F1 O Fy D ...
and (b) d(F,) — 0 as n — oo, the intersection () _, F), contains one and only one point

[Shirali and Vasudeva, 2006]. O

16(cert(T', )| g are exactly the open balls under the metric topology.
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Chapter 5

Quantum dynamics

If spacetime is itself quantal (rather than a classical background for quantum matter) then
it is to be governed by a quantum dynamics. In the causal set approach, discreteness
and non-locality resist the canonical Hamiltonian time-evolution. Instead, we seek to
“quantize” the growth dynamics via a formulation of quantum mechanics which does not
rely on states but on histories’ by means of a decoherence functional [Dowker et al.,

2010b; Halliwell, 1995; Hartle, 1992; Sorkin, 1994],

Definition 5.0.1 (Decoherence functional). Let X be a space of histories, and let 2
be an event algebra of subsets of X. A decoherence functional is a complex function

DA x A — C which is

1. finitely-bradditive: for any o, B,y € A where aN B =0
Do+ B,7) = D(a,v) + D(B,7) and D(v,a+ ) = D(v,a) + D(v, 8);

2. Hermitian: for any o, € A D(a, B) = D(B, )*;
3. normalised: D(X,X) = 1;

4. strongly positive: for any finite subset {a;} of A the matriz M;; = D(o,a;) is

positive semi-definite (i.e. M;; has only non-negative eigenvalues).

LA state in a Hilbert space gives a description of reality at a particular moment in time (e.g. at time
t the particle is at spatial position x), while a history is a complete description of reality (e.g. a complete
trajectory of a particle).
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The decoherence functional encodes the quantum mechanical interference between
pairs of events. That it has two arguments is a reflection of the nature of quantum
mechanics, namely that interference is displayed between pairs of events but not between
members of a larger collection of events?.

Obtaining a decoherence functional for causal sets has been a longstanding obstruction
in the path to quantum gravity. A proposal for deriving a decoherence functional from
the CSG models was first put forward in [Dowker et al., 2010c|. In this proposal, the
tr parameters take complex values and give rise to a complex measure from which a
decoherence functional can be obtained. But in the same paper it was shown by example
that there are cases in which this procedure fails because the complex measure does not
extend to the full g-algebra and it remained unclear whether there were any cases in
which the procedure was successful.

In the remainder of this chapter we review the proposal and the problem of extension
(section 5.1), provide criteria for when the proposal gives rise to a decoherence func-
tional on the labeled o-algebra R (section 5.2) and apply our criteria to provide the
first known examples of decoherence functionals, and hence of quantum dynamics for
causal sets (section 5.3). We conclude by generalising our results to a broad class of

o-algebras (section 5.4).

5.1 A decoherence functional from CSG models

In this section we review the proposal of [Dowker et al., 2010¢| for deriving a decoherence
functional from the CSG models. We conclude with a statement about the range of
validity of the proposal.

We begin by defining the “complex CSG models”. Complex CSG models are a gener-
alisation of the CSG models in which the ¢, are allowed to take complex values. Thus the

real transition probabilities ]P’(C’n — C’nﬂ) are replaced by complex transition amplitudes

2(lassical stochastic phenomena do not display any interference so they can be described by a function
whose argument is a single event, i.e. by a probability measure.
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A(C,, = Cyyy) of the form,

~ ~ Ao, m)

ACo = Cos) = S04 (5.1)

where A(k,p) is as defined in equation (3.2). The amplitude to reach a given C, by stage
n is denoted by A(C’n) and is equal to the product of transition amplitudes along the path
from the empty set to C,,. As with the (real) CSG models, (to,t1,ts,...) is a projective

parametrisation and we will assume ty = 1, unless explicitly stated otherwise. Note that

equation (5.1) is well-defined only when A(n,0) # 0, i.e when,

n

3 (Z) ty # 0. (5.2)

k=0

We will only consider complex CSG models in which inequality (5.2) holds for all n. In

these models, the amplitudes satisfy the sum rule,
Y AC, = Ciyy) =1, (5.3)

where i labels the children of C,,. Equation (5.3) is reminiscent of the classical Markov-

sum-rule and we define,

Definition 5.1.1 (Complex Markovian dynamics). A complex Markovian dynamics is a

complete set of transition amplitudes A(C,, — C\1) satisfying the sum rule (5.3).

The complex CSG models are the subset of complex Markovian dynamics satisfying (5.1).
Let a denote the collection of finite unions of cylinder sets, and note that it is an event
algebra (but not a o-algebra). Given a complex Markovian dynamics one can define the

complex measure /i, on a via,?

fi(cyl(C)) := A(C,,) VC,, € QUN). (5.4)

If fi, extends to a complex measure fi,., on R, then one can define a decoherence

3The subscript v is used to distinguish fi,, from the real probability measure given in (3.12).
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functional on R x R,

D(E,H) = i}, 0 (E) it ea(H) ¥V E,H € R, (5.5)

where * denotes complex conjugation. The key phrase here is if fi, extends, and indeed
it was shown in [Dowker et al., 2010c| that there are complex CSG models in which it

does not. When does ji,, possess an extension? We begin with a definition.

Definition 5.1.2 (Variation and bounded variation). Let X be a space of histories, and
let A be an event algebra of subsets of X. Let F' be a complex measure on A. The
variation of F' is the extended non-negative function |F| whose value on a set a € A is
given by

|[Fl(a) =sup > [F(B)], (5.6)

g BeT
where the supremum is taken over all partitions m of « into a finite number of pairwise

disjoint members of A. If |F|(X) < oo then F' is said to be of bounded variation.
We can now state our answer:

Lemma 5.1.3. [i, extends to a complex measure [i, ¢, 0N R if and only if fu, is of bounded

variation. When the extension exists, it is unique.

We leave the proof to appendix 5.A.

5.2 Two theorems

In this section, we develop criteria for fi, to be of bounded variation in a complex Marko-
vian dynamics (theorem 5.2.1) and in CSG models (theorem 5.2.7).
Given an n-causet C’n, we denote its children by C’}L 41, where 4 labels the individual

children. For each complex Markovian dynamics, define the mapping ¢ from the set of
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finite labeled causets to the non-negative real numbers,

¢: Q(N) —» RY,

C(Cy) == Z JA(C = Ciy) — | ZA(én = Ol (5.7)

=S JAG, Gyl - 1,

where the equality follows from (5.3). For each n > 0 we define the maximum and

minimum of ¢ over Q(n),

We can now state our first theorem.

Theorem 5.2.1. In a complex Markovian dynamics, if Y~ ("™ converges then [, is

of bounded variation. If Y 07 (™™ diverges then fi, is not of bounded variation.

In order to develop some intuition, let us restrict our attention to complex CSG mod-
els. Then one can think of the function ( as a measure of how “different” a complex
CSG model is to a (non-complex) CSG model. Roughly speaking, the larger the relative
phases between the couplings—the further the departure of a complex CSG model from
the (non-complex) CSG models—the larger ¢ becomes. When all the t; have vanishing
phases then ¢(C,) = 0 for all C,,. In this case Y00 (7% = 0, fi, is a real probability
measure of bounded variation and a decoherence functional on R x R can be defined.
These models define a quantum dynamics in the sense that there is intereference between
pairs of alternatives (i.e. the decoherence functional is not diagonal). But since all the
amplitudes have vanishing phases these models only exhibit constructive interference.
Therefore they cannot display the typical quantum behaviour which arises from destruc-
tive interference (cf. the double-slit experiment)?. For this reason, the interesting cases

are those in which some of the t; have a non-vanishing phase. When some of the t; have

4Another way to state this is that in these dynamics there is no set of zero measure which has a
susbset of non-zero measure.
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non-vanishing phases then ( (é’n) > 0 for some or all of the C,. Therefore Sooe | Gman
may diverge in which case one cannot define a decoherence functional via equation (5.5).
Theorem 5.2.1 makes this notion precise by quantifying the behaviour that ¢ must show
in order for /i, to be of bounded variation.

We now prove theorem 5.2.1 through a series of lemmas. Recall that Q is the set
of infinite labeled causets and a is the event algebra which contains all finite unions of
cylinder sets. Let € denote an element of a. We refer to a cylinder set cyl(é’n) as a
“cylinder set at level n”. Let m denote a partition of  into a finite number of pairwise

disjoint members of a. For each n > 0, define,

Sum D0 lilel @)l = Y 4G (59)

éneﬁ(n) nEQ(TL)

Lemma 5.2.2. For any finite partition © of Q there exists an n € N such that S, >

Y gen l1o(E)]-

Proof. We note that for any £ € a there exists a p € N such that £ can be written as a
union of cylinder sets at level m ¥V m > p. Therefore, there exists an n € N such that every
£ € m can be written as a union of cylinder sets at level n. Therefore, Y éer | fio(E)] < S,
where the inequality is saturated in the special cases when ji,(§) € RT ¥ £ € 7 or when

7= {eyl(C,)|C, € Q(n)}. O

Since |ji,](Q) = sup, Y- zc, |fio(€)| (definition 5.1.2), a direct corollary of lemma 5.2.2

is that |fi,|(Q) = sup,, S, and therefore,

Corollary 5.2.3. |,|(2) < oo if and only if sup,, S, < 0.

Corollary 5.2.3 relates |fi,| to the S,,. In the following, we translate this into a relation

between |fi,| and (.

Lemma 5.2.4. (1 +¢™)S, 1 < S, < (1+¢™%)S, 1.

n—1 n—1
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Proof.

Cnefi(n)

- ¥ \A(C‘n,l)\Z!A(C“M%@i)\ (5.10)

Cn-1€Q(n—1)

= Y JAC)I +¢(Can)),

én—leﬁ(n—l)

where it is understood that for each C\,_; € Q(n — 1) the label i labels the children of it

(so that i depends on C,_; and the sums in the second line of equation (5.10) cannot be

commuted).
Therefore,
S S G+ g
Cr_1€Q(n—1) (5.11)
s )< (14 CM) S,
Similarly,

S,z Y JAC I+

Cr_1€Q(n—1) (5.12)
= S, > (14 () St
O

Lemma 5.2.4 implies that the sequence {S,},>0 is monotonically increasing over n

and therefore,

Corollary 5.2.5. |i,|(Q2) < oo if and only if lim,—00S, < 00.

All that remains in order to prove theorem 5.2.1 is to show that if >~  (** converges

then lim,, oS, < 0o, and if Y 7 (™" diverges then lim, S, = 0.

Lemma 5.2.6. [['Z) (14 ¢™") < S, < [1'21 (1 + ¢mae).
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Proof. By lemma 5.2.4 we have,

Sn < (L4 GX)Sn

n—1

< (1 +GE) I+ GM5) S
(5.13)

n—1

< ] +GM)5
1

ﬁ
Il

Since S; = 1 we arrive at the result that S, < [['—; (14+¢7). That [['Z; (1+¢™") < S,

can be similarly derived. O]

Given an infinite product [[°(1 + a,), if all a,, are positive, or all are negative, a
necessary and sufficient condition for the convergence of [[{°(1 + ay,) is that ) a, shall

converge [Jeffreys and Swirles, 1966]. Therefore we have,

ZCVTMC <0 = llmn%oosn <0 = |I[1U|(Q) < o0,
2 (5.14)

S0 = 00 =5 limyseeSn = 00— |fi|() = o0,

n=1

where in each line, the first implication (“ = 7) is by lemma 5.2.6 and the second by

corollary 5.2.5. This proves theorem 5.2.1.

Next, we restrict ourselves to the complex CSG models and use the functional depen-
dence of the amplitude A on the t;, (5.1) to identify (/% and ™" for all n. Let C* and

C’,’i denote the n-antichain and n-chain, respectively. Define the abbreviations,

(o =¢(C)
(¢ =((CY)

(5.15)

Theorem 5.2.7. In any complex CSG model, (™ = ¢* and (™" = (¢.

Proof. First, we show that ("** = (. Given some parent C.,, every choice of proto-past
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in C,, leads to a unique transition if and only if C, = C’g Hence we have,

a_ Do () [t -
=1+ |kA(n—0)| > ((Cr) VO, € Q(n), (5.16)

where the inequality follows from the triangle inequality.
Next, we proceed by induction to show that (™" = (¢. One can show that (™" = (¢

when n = 1,2. Suppose true for all n = 1,2,3,...,r — 1, and note that

L A —1.0)
=T

-1
r—1
U= t
( k )’““’
k=0

where U is the relative probability of the transition C¢ — C¢ 41 in which the new element

DT o
(5.17)

r is born above the element r — 1.
Consider some C, € Q(r). Let C,_; denote the restriction of C, to {0,1,...,r — 2}

and note that C'r_l is a stem in C’T. Then we have,

A =LO) .~ V]
|>\(7“7 0)| (C(Cr—l) + 1) +

|IA(r —1,0)]
[A(r, 0)]

C(ér) =—1+
(5.18)

; V
>—1+ (T +1) + |

where on the first line, the last term on the RHS contains the contributions from all
transitions in which the new element r is born above the element r — 1. If C, has a single
maximal element then V =U = ((C,) > ¢ It C. has at least two maximal elements
it follows from the triangle inequality that |V| > |U|] = ¢(C,) > ¢¢. This completes

the proof. n

5.3 Examples

We now apply theorems 5.2.1 and 5.2.7 to determine whether various families of complex

CSG models give rise to a decoherence functional.
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Dynamics with vanishing phases: As we have seen in the previous section, when
all the ?; have vanishing phases then ¢ (C‘n) = 0 for all C,,. Therefore, in these cases a

decoherence functional on R X R can be defined.

Dynamics with two non-zero couplings: The simplest case with non-vanishing
phases occurs when only two of the couplings are non-vanishing: to = 1, t;, = se’® (s > 0

and 0 < ¢ < 27) for some k > 0 and ¢; = 0 otherwise. In this case,

_ 1+ (})s
\/1 + 25(2) cos ¢ + 82(2)2

Cn -1, (5.19)

and it can be shown by the comparison test against ) nlz (with = > 1) that > (¢
converges for all values of s and ¢ when k > 2. Let us sketch the proof. Since (¢ > 0,

(¢ < L if and only if,

(23 o) () (o) o

When n > k, (Z) ~ 7,2—’,6 and the dominant contribution to the LHS is

~ 2s S k—=x
N (—En + (1 — cos ¢)>, (5.21)

which is negative for large n if £ > x > 1 for all values of s and ¢. Indeed one can show
that given some s, ¢ and k > 1 there exists some N (k, s, ¢) € N such that (¢ < an for all
n > N(k,s,¢) and some > 1. Thus, the decoherence functional is well-defined for any
choice of t;, as long as k > 2.

When k = 1, it can be shown by the comparison test against > - (with « < 1) that
> (¢ diverges when ¢ # 0. In this case,

B ns+1
V/1+ n2s? + 2ns cos(¢)

¢ ~1, (5.22)

and the dominant contribution at large n scales as % A decoherence functional cannot

be defined in this case.
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The qualitative difference between the & > 1 case which gives rise to a decoherence
functional and the £ = 1 case which does not stems from the fact that for large n the
number of 2-element subsets of an n-causet is significantly greater than the number of 1-
element subsets [Georgiou, 2005]. When k& > 1, the amplitudes at large n are dominated
by contributions from ¢, and the effect of the phase difference between t; and ¢, becomes
negligible, leading to small ( values. When k = 1, the number of 1-element subsets
does not grow fast enough with n to drown out the contribution from ¢, and the phase

difference between ty and t; registers as large ( values.

Dynamics with N non-zero couplings: Our example of two non-zero couplings can
be generalised to any finite number of non-zero couplings. Consider a complex CSG
model with /N non-zero couplings %o, tx,, tk,, - - - tky, Where ky > ky_y... > k; > 0. For

each i, let t;, = s;¢'®. In this case,

_ 1+30, (Z)SZ
L+ () sieté

Cn -1, (5.23)

and (¢ < 4 (with z > 1) if and only if,

2 1 n\? , n 2 1
<_E - ﬁ) (1 —1—2 (k:) si) +QZ (k‘i)si(l — cos ¢; + (—E — ﬁ) cosgbi)

2 1
+ 2i§j (IZ) (;) $iS; <1 — cos(¢; — ¢;) + <_E — ﬁ) cos(¢p; — ¢j)> <0.
(5.24)

For n > N > 1, the dominant contributions to the LHS arise from ¢, and ¢j,_, and are

given by,

2
2SN n2k’N—x 4 25]\[8]\[,1

(w1 b (L cos(on —ona), (5:29)

which is negative when ky — ky_1 > x for all values of s;,¢;. Choosing 1 < = < 2, we
see that a decoherence functional can be defined whenever ky — ky_1 > 1. Intuitively,
the condition that ky — kxy_1 > 1 ensures that the difference between the number of
N-element and (N — 1)-element subsets of an n-causet (n > N) is large enough for ¢y to

dominate so that the difference in the phases of ¢;, and t;,_, is ironed out leading to ¢
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values small enough for convergence.

Dynamics with an infinite number of non-zero couplings: We can use the in-
tuition we developed in the previous cases to infer the behaviour of ¢ in complex CSG
models which have infinitely many non-zero couplings. If there exists an N such that all
the ¢, with & > N have the same phase (or are vanishing) then at n > N the contributions
to the transition amplitudes will be dominated by collinear couplings leading to small ¢
values and a well-defined decoherence functional. More generally, to define a decoherence

functional the phase difference between ¢, and t;,; has to go to zero fast enough with k.

Complex Transitive Percolation: Complex Transitive Percolation (CTP) is defined
by t; = t* for some constant ¢t € C. Therefore, when ¢ is not real and positive, the
phase of t; oscillates with k, the phase difference between ¢, and t;,; does not approach
zero and a decoherence functional cannot be defined. Indeed, it was shown in [Dowker
et al., 2010c| that a decoherence functional cannot be defined in this case, and our results
shed light on why this is the case. To confirm that our intuition is correct and to give a
new proof of this result, we sketch how in this case lim, o (7" > 0 and hence Y (™"
diverges. We can write t = 1%, q € C, where t is real and positive unless (i) ¢ € C and
lg| > 1, (i1) ¢ ¢ RY and |q| = 1, or (iii) ¢ ¢ RT and |¢| < 1. The minimum of ¢ is given
by,

n—1

Gt =—1+1q" +lg" 1 =gl > lal ™", (5.26)
k=0

and therefore in case (i),

A 11— ¢ . : 1|
¢ =1-q|") (77— —1) = lim (""" = —sign —1)oo = o0, 5.27
(A=l (= — D = Jim =Y (5.27)
in case (i),
n—o0
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and in case (ii7),

. = . w_ 11—
" =01-|qd")(+—=—-1) = lim " = —-1>0. 5.29
(A=l (G =D = tm g = =g (5.20)

5.4 Beyond labeled poscau

As defined in 5.1.1, complex Markovian dynamics are complex random walks on labeled
poscau. We now generalise the usage of the term “complex Markovian dynamics” by al-
lowing to replace labeled poscau with any tree .7 which (i) contains no maximal elements,
and (ii) in which every node has a finite valency. A complex Markovian dynamics on .7
is a complete set of complex transition amplitudes A(z — y) satisfying >, A(x — y) =1
for all x,y € .7 and y directly above x.

Given any .7 and a complex Markovian dynamics, define,

(: 7 = RT,
5.30
()= Y A 5 )|~ 1, (5:30)
Y
% i max (@),
v&Tn (5.31)
e = min ((z),

where .7, C 7 is the set of nodes at level n. With these definitions, we can now interpret
theorem 5.2.1 in the context of a complex Markovian dynamics on any 7. The generalised
proof can be obtained from the proof in the text by replacing labeled poscau’s sample
space, cylinder sets and nodes with those of 7.

This generalisation paves the way for novel quantum dynamics. In particular, one
could consider complex Markovian dynamics on covtree, although currently this remains
a purely formal development. We discuss applications of the generalised theorem to other

tree structures in section 6.2.
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5.A Supplementary material

Proof of lemma 5.1.3: Let F be a complex measure on an algebra 2. If I’ has an exten-
sion to the o-algebra generated by 2l then F' has bounded variation [Dowker et al., 2010c;
Rudin, 1987]. We now show that bounded variation is also sufficient for extension. The
Caratheodory-Hahn-Kluvanek (CHK) extension theorem (theorem 2 in [Diestel and Uhl,
1977]) states that a bounded weakly countably additive vector measure F' : 2 — X has
a unique countably additive extension F : ¥ — X to the o-algebra ¥ generated by 2 if
and only if F' is strongly additive. Note that bounded variation = strong additivity
— boundedness [Diestel and Uhl, 1977]. Note also that countable additivity =

weak countable additivity. Finally in any complex Markovian dynamics, ji, is countably
additive since no cylinder set can be written as a countable disjoint union of cylinder
sets [Lindstrgm, 2017]. Therefore, when fi, has bounded variation then f, is a bounded
weakly countably additive vector measure and it is strongly additive, and therefore it

possesses a unique extension by the CHK extension theorem. O
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Chapter 6

Labeled dynamics with posts and

breaks

In causal set theory, cycles of cosmic expansion and collapse are modeled by sequences of
posts and breaks and a special role is played by dynamics which favour cyclic causal set
spacetimes [Ahmed and Rideout, 2010; Ash and McDonald, 2003, 2005; Bombelli et al.,
2008; Dowker and Zalel, 2017; Martin et al., 2001; Sorkin, 2000].

This chapter is dedicated to the occurrence of posts and breaks in labeled dynamics
(where by a “labeled dynamics” we mean a random walk on labeled poscau). We compute
the probability that the element n is a post in any CSG dynamics (section 6.1). We
then consider two classes of “cyclic dynamics” and identify their respective o-algebras
of observables (section 6.2.1). We discuss the random walks which induce a probability
measure on these algebras (section 6.2.2) and apply the results of chapter 5 to study their

complex counterparts (section 6.2.3).

6.1 Probability of a post

In this section we consider CSG dynamics. For each n > 0, define:
AP (i, 0) = (k) =3 (k> t, (6.1)
k=0 k=1

where t,(Cn) are the effective couplings given in (3.15).
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We will show that,

Lemma 6.1.1. In any CSG dynamics and any fited n > 0, the probability that the

element n 1s a post in the completed causal set is,

P(n is a post) = H o + i O (6.2)

where F(n) is the probability that n is related to all other existing elements at the end of

stage n and s given by,
F(n)= N (6.3)

and M(C,,) denotes the number of mazimal elements in C,,.

We note that (6.2) agrees with two previously known special cases: the probability
that the element 0 is a post in any CSG dynamics and the probability that n > 0 is a

post in Transitive Percolation. In any CSG dynamics,

o

P(0 is a post) = H 1 — g, (6.4)

where ¢; = ( is the probability that the element 7 is born unrelated to all the existing
elements. In the spemal case of Transitive Percolation, order-reversal invariance! implies

that,

ZPO M"MC) Hl—q (6.5)

and therefore for any n > 0 [Bombelli et al., 2008],

n

P(n is a post) :H 1—¢ H 1—¢" = (¢,9)n(4, 0)oo (6.6)

i=1 i=1

where in the last line we used the definition of the ¢-Pochhammer symbol, (q,q), =

[T, 1 —¢" (¢,q)n decreases with n, and so the probability of n being a post decreases

ITwo causets C,, and CN’;L are related by order-reversal when z < y in C, <= y<zin C’;L. A
dynamics is order-reversal invariant if P(C),) = P(C},) whenever C), and CJ, are related by order-reversal.
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with n, but is bounded below by (g,q)%, > 0 for all 0 < ¢ < 1. Hence whilst the

probability that n is a post decreases with n, it is finite for all n.

Proof of lemma 6.1.1. Given s > r > n, we write [r, s] > n to mean that every element
in the interval [r, s] is above n. We write {r,...} > n to mean that every element greater
or equal to r is above n.

First note that for any s > n + 1,

21 () 2o (Dt _ A™(s —n,0)

P(s>n|[n+1,s—1] =n)= A(s,0)  Ms,0)

(6.7)

where the sum over k counts the non-empty subsets of {n,n+1, ..., s—1} and the sum over

[ counts all subsets of {0,...,n — 1} so that together they count all possible proto-pasts

consistent with the condition s > n, and we have performed the sum over [ to obtain t,(cn)

via equation (3.15) and then performed the sum over k to obtain A™ (s —n,0) via (6.1).

Similarly,

Si (Mt AO(L,0)
An+1,00)  An-+1,0)

Pn+1>n)= (6.8)

Define F'(n) to be the probability that n is related to all x < n and note that it is

given by expression (6.3). Thus,

P(n is a post) =F(n)P({n +1,...} = n)

=F(n)P(n+1=n)[[P(n+i=n|n+1n+i—1]-n)
=2
A (i,0)
P An+1,0)

(6.9)

—F(n)

6.2 Cyclic dynamics

This section is about labeled dynamics which generate infinitely many breaks or posts
with unit probability. We begin by considering classical random walks on labeled poscau

(i.e. a complete set of transition probabilities P(C, — C\11)), or equivalently a proba-
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bility measure (Q, R, i) (where ﬂ(cyl(é’n)) = P(C,)). Since we will be concerned with
the covariant observables of these models, we may refer to R, the covariant algebra, and
to p, the restriction of ji to R. We will restrict our attention to two families of labeled
dynamics which are of particular interest to cosmology. Let B,, € R denote the event

that there are infinitely many breaks,
B.o = {C € Q|C contains infinitely many breaks}, (6.10)

and similarly, P,, € R denotes the event that there are infinitely many posts. We will
consider the family of dynamics which satisfy u(Bs) = 1 and the family of dynamics
which satisfy the strictly stronger condition p(Ps) = 1. We call models in either of these
families “cyclic”. A cyclic model may or may not be a CSG model and a CSG model
may or may not be cyclic, though the best-understood growth dynamics—Transitive
Percolation—is both, since it is a CSG model which almost surely gives rise to infinitely

many posts.

6.2.1 Observables

Consider the family of cyclic dynamics satisfying u(Bs) = 1. What are the physical
observables in these models? R is the algebra of covariant events? but the condition
1(Bs) = 1 enables us to identify a strictly smaller algebra as the algebra of observables?.
We propose that the set of observables in cyclic models satisfying (B ) = 1 are those
events which do not distinguish between causal sets which contain finitely many breaks,
since such causal sets cannot be generated by the growth process. More precisely, we
propose that the physical observables are the events A € R which satisfy B, C A or

B¢, C A where the superscript ¢ denotes the set complement. Indeed, using the standard

2This is a consequence of the “kinematics”, namely the structure of labeled poscau, which gives rise
to the measurable space (Q 7~2) It is independent of the measure p.

3This is analogous to the CSG models, where 1(0) = 0 was used to identify R(S) C R as the algebra
of observables (see sections 3.4 and 4.1).
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set theory results,

XCY << Y°CX°

(6.11)

one can show that the set of all such observables is a o-algebra and we denote it by Ry,
Ry:={AeR|B, C Aor BS, C A°}. (6.12)

For each F € R, EN By € Ry. Therefore in any dynamics satisfying u(Bs) = 1, the
measure of each F € R is uniquely determined by the measure of an event in R, via
w(E) = p(E N By). It is in this sense that R, exhausts the o-algebra of observables in
dynamics which almost surely give rise to infinitely many breaks. The discussion for the
family of dynamics satisfying p(Ps) = 1 is completely analogous, and in this case the

algebra of observables is given by,
R, ={A e R|P, C Aor P, C A} (6.13)

Now, we prove theorems 6.2.1-6.2.2 which provide further insight into the nature of
the algebras R, and R,. The following terminology will be useful. Recall that for any
n > 1 the labeled causet C,, € Q(N) is a covering causet (of some causet C,_;) if it
has a unique maximal element (definition 4.2.2). We say that C, is a “super-covering
causet” if it is a covering causet of a covering causet. In our convention, the 1-causet
C, is both a covering and a super-covering causet. We say that cyl(é’n) is a covering
(super-covering) cylinder set if C,, is a covering (super-covering) causet. Let R, and 7~€p
denote the o-algebras generated by the covering and the super-covering cylinder sets,

respectively. The corresponding covariant algebras are R, N R and 7@1, NR.
Theorem 6.2.1. Ry = 7%1, NRK.
Theorem 6.2.2. R, = 7%1, NR.

Thus, Ry (R,) is the collection of covariant events which can be built from covering

(super-covering) cylinder sets by a countable number of set operations. Note that the
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connection between covering causets and breaks (super-covering causets and posts) is
reminiscent of the covariant theorem 4.2.3, with the important difference that in the
covariant case we can make statements about a finite number of breaks while in the
labeled case we cannot.

We now prove theorem 6.2.1. The proof of theorem 6.2.2 is analogous. Let F C
denote the set of all infinite causets which contain finitely many covering causets as

stems.?

Lemma 6.2.3. C € BS, if and only if there exists some D € F such that D = C.
An illustration is shown in figure 6.1.

Proof. Note that F C BS,, since a causet with infinitely many breaks necessarily contains
infinitely many covering causets as stems. Therefore, if there exists some D € F such
that D = C then C € B,

To prove the converse, let C' € BS, and let N be the cardinality of the past of the last
break in C. Suppose C contains infinitely many covering causets as stems and consider
the infinite sequence,

ny <ng < ..=(n;)

of integers n; > N + 1 for which the restriction C 0] 1S & covering causet (i.e. n; >
xVxr<n).

We now construct a bijection ¢ : C' — N and define D € Q to be the infinite causet in
which # <y <= ¢ '(z) < ¢g”'(y) in C. The definition of D ensures that D = C and
our construction of g ensures that D € F. This proves the claim.

Set g(z) = 2 ¥V 2 < ny. Set g(ni) = ny + 1 (this ensures that D|jg,,,) will not be a
covering causet). Let n] denote the smallest integer greater than n; which satisfies both
nitn, and nj # y for at least one y < ny —1in ok (Such an integer surely exists because
otherwise C' would contain a break with past [0,7; — 1], which is a contradiction.) Set

g(r) =x+1Vn <z <niand g(n}) =n.

4Another way to say this is, CeF < ImeNsuch that, for all n > m, C~'|[0,n] contains at least
two maximal elements.
SWhere for any two elements a, b the notation afb denotes that a and b are unrelated, i.e. a ¥ b and

a A b.
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Now, define msy to be equal to the smallest entry in (n;) which is larger than nj. Set
g(r) = 2V ni < 2 < my. Set g(ng) = mg + 1 (this ensures that D|g,n, will not be a
covering causet). Let nj denote the smallest integer greater than ms which satisfies both

nims and mj % y for at least one y < my —11in C. Set g(z) =z + 1V my < & < n}

and g(n3) = mg. Repeat this process with mgy — mg,ny — nj etc. O
& 7
4 5
2 3
® --- o0 0
01357 012 4686

—~ —

C D

Figure 6.1: Illustration of lemma 6.2.3. C € B, since it contains no breaks. C ¢ F, since

é|[072n} is a covering causet V n € N. D € F, since D\[Om] is mot a covering causet V n > 0.

Corollary 6.2.4. If A€ R and F C A then B, C A.
Lemma 6.2.5. Let A€ RyNR. ANB, #0 — B, C A,

Proof. For each covering causet C,, € Q(N) let S(C,,) € Q(N) denote the set of covering

causets with cardinality greater than n whose restriction to [0,n — 1] is C,,, and define

Te = cyl(Cn) \ U cyl(Dy,). (6.14)
DmeS(Ch)

['s is the set of infinite causets which (i) contain the covering causet C, as a stem and
(ii) contain no covering causet of cardinality greater than n as a stem. We will use the

following properties:

1. Each ' is an atom of Ry (i.e. the elements of ['s cannot be separated by the

covering cylinder sets).

2. The collection of all the I'5 is a partition of F (since every C' € F is contained in

some ' and for any two covering causets C, # D,, we have Le NIy =10).
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Given a covering causet C,,, let X@n € Q denote the infinite causet whose restriction
to [0,n — 1] is C, and in which all elements m > n are unrelated to all others. Let X ,Cn
denote a causet isomorphic to X ¢, in which the element 0 is unrelated to all others. Then
X, €T, and X}, € Tg,.

Suppose ', C A € Ry N'R. Since [s C A we have )N(én € A for all covering causets
C.,.. Since A is covariant, Xén € A for every covering C,. Hence, by property 1, T e CA
for every covering C,,. By property 2, F C A and by corollary 6.2.4, BS, C A

Now, consider any A € R, N'R for which AN BS, # () and let C € AN BS,. Then
there exists some D = (' and some C’n such that D € [ and therefore I's  C A. Hence

Xén € ' . Since A is covariant, X ’C € A. Therefore I's, C A, which completes the

proof. O
Lemma 6.2.6. B, € R,

Proof. Let C be a finite or infinite causet. A “segment” in C' is a subcauset which lies
between two consecutive breaks. More precisely, if {Ay, B}, {43, By}, ... are breaks in C'
then the segments of C are Ay, Ao\ Ay, Ag\ As, .o I C contains 0 < k < 0o breaks then
By, is also a segment. If C' contains no breaks then C' is the only segment in C'.
Consider the collection of finite labeled causets which contain no breaks. We enumer-

ate these causets using the label i € N, so that C,,, is the i*" finite causet which contains

no breaks and its cardinality is n;. We will use the string éml ...C’nik_QC’mkfl to represent

the finite covering causet whose k' segment is (canonically isomorphic to) C’nk

For each finite order énil which contains no breaks, define the set,

Bi(Cy,) = Jewl(Cn, Cn,,..Cr Cn)), (6.15)
k=2
where the union is over all sequences (is, ....,4;) of natural numbers. Note that if C' €

Bl(éml) then C’nil is the first segment in C, and therefore C' contains at least one break.
Additionally, if C' € By, and C’nil is the first segment in C' then C' € Bl(énil).

We now generalise (6.15) to any I > 1. Given a string énil"'énil of finite causets
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which contain no breaks define the set

—

Bi(Cy,, ..Cn,)) : (*] Uevi(C,, -.Cn, Cri,,+-Cni,) (6.16)

k=1+1
where the union is over all sequences (ij41, ..., i) of natural numbers. If C' € Bl(é'ml é”z)
then C’nil,...,CN’nil are the first [ segments in C' (and therefore C' contains at least I

breaks). Additionally, if C € B and C’nil, ...,C‘nil are the first [ segments in C' then
Ce Bl<éml---éml)- Define,

= JBi(Cy,, Cn,,--Cny), (6.17)

where the union is over all sequences (i, ..., 4;). For each [, B, D By, and if C € B, then

C contains at least { breaks. Therefore,

B =()B: (6.18)
=1

]

Proof of theorem 6.2.1. By lemma 6.2.5, Ry N R C Ry. To prove the converse, it is
sufficient to prove that A € Ry N'R whenever A € R and A C B... Let A € R and
A C By. Then A € R(S) and moreover A is in the restriction of R(S) to By, i.e
A € {ENBL|E € R(S)}, and therefore A can be obtained from countably many set
operations on sets of the form stem(C,) N Bso = (U eyl(Dyn)) N Boo, where the union is
over all covering cylinder sets contained in stem(C,,). It follows from lemma 6.2.6 that

every set of the form (| eyl(D,n)) N By is contained in Ry NR. Thus A € RyNR. [

6.2.2 Classical dynamics

Our new understanding of the covariant algebra R, as a meaningful algebra of observables
strongly suggests that we should seek to understand the measures which can be defined
on it. We will consider measures which can be obtained via a restriction of a measure

on the non-covariant algebras R or R;. The advantage in doing so is that we know that
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these algebras are countably generated by the cylinder sets and covering cylinder sets,
respectively, and that therefore each measure can be conceived of as a random walk up a
tree. A measure on R corresponds to a walk up labeled poscau, while a measure on R,
corresponds to a walk up a new tree which we dub “reduced poscau”.

We can think of reduced poscau as obtained from labeled poscau by merging groups of
nodes into one, so that in reduced poscau each node at level n is a collection of n-causets.
Covering causets are never merged with others, so each covering causet is contained in
a node on its own. Given a covering causet, all its children (except for the one which is
itself a covering causet) are merged into one node. Thus, in reduced poscau each covering
causet has two nodes directly above it. A node at level n which contains r causets has
r+ 1 nodes above it: r nodes each of which contains a single covering causet (one for each
causet in the parent node) and an additional node which contains all other (n+1)-causets
in which the elements of the parent node are stems. The meaning of each node is “one of
these causets is a stem in the growing causet”. The first three levels of reduced poscau
are shown in figure 6.2.

Each classical walk on reduced poscau induces a probability measure on R,, where the
measure of a covering cylinder set is equal to the probability of reaching the corresponding
node. Each walk on labeled poscau induces a walk on reduced poscau by fixing the
probability of reaching each covering causet. The converse is also true, each (classical)

6 Thus walks on

walk on reduced poscau induces a (classical) walk on labeled poscau.
labeled poscau and on reduced poscau yield the same class of probability measures on the
covariant R,. At the classical level, the only advantage of working directly with reduced
poscau is that its structure could potentially lead to new physical constraints and hence
to identifying new classes of physically interesting dynamics.

Note that the discussion relating to measures on R, is completely analogous. In that
case, measures on 7~Zp correspond to walks up “super-reduced poscau” whose description

is obtained from the above by replacing “covering” with “super-covering” (so only super-

covering causets are contained in nodes of their own).

6The proof is analogous to the proof that every probability measure on R(S) has an extension to R
(cf. lemma 4.1.16).
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Figure 6.2: The first three levels of reduced poscau.

6.2.3 Quantization

As discussed in section 6.2.2, each probability measure on R, extends to R. However, it
is unknown to the author of this thesis whether every complez measure on R, extends
to R. If there exist complex measures on R, which do not extend to R, then our
new understanding of the covariant algebra R, as a meaningful algebra of observables
combined with the understanding of complex measures as quantum dynamics (cf. chapter
5) strongly suggest that we should search for them.

For example, Transitive Percolation is a cyclic dynamics whose complex counterpart,
Complex Transitive Percolation, does not induce a measure on R (cf. section 5.3). But
can it induce a measure on the smaller algebra R,? Consider the complex Markovian dy-
namics induced on reduced poscau by Complex Transitive Percolation. In this dynamics,
the amplitude to transition from a covering causet to its covering causet descendant is
equal to p € C, hence the function ¢ (cf. equation (5.30)) takes the value |p|+ |1 —p| —1
on each covering causet (since each covering causet has valency equal to 2). We solved
numerically for (™" (cf. equation (5.31)) as a function of p for n = 2, 3,4 and found that

5 = pl+1=pl—=1 = " = |pl+[1-p| -1 = " = |p|+ |1 —p| -1, as shown
by the nested regions in figure 6.3a. Our result suggests that for any p € C satisfying
p & [0,1], there exists an m € N such that (™" = |p| + |1 —p| — 1 for all n > m. If
this is borne out then, by theorem 5.2.1, Complex Transitive Percolation cannot induce
a measure on R, when p is not a real number satisfying 0 < p < 1.

Can Complex Transitive Percolation induce a measure on the smaller algebra 7~2p?
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Theorem 5.2.1 cannot answer this question because every level n > 1 in super-reduced
poscau contains nodes with valency equal to 1. On these nodes, ( vanishes and therefore
3o, ¢mim =0, so the theorem cannot be used to prove for the lack of bounded variation.”
To conclude this discussion, we sketch how the derivation of theorem 5.2.1 can be amended
to provide further scrutiny in the special case where there are nodes with valency equal
to 1.

We build on the definitions and notation of section 5.4. Let .7 denote a tree satisfying
the criteria outlined in section 5.4 and let .7, C .7 denote the set of nodes at level n. Let
x, denote a node at level n. Let .7, C .7, be the set of level n nodes which have valency

greater than 1, and define,

Crin = min ¢ (xy). (6.19)

Tn€In

Recall that S, =), |A(z,)| and define,

Soi= 3 A,

Sr=ti= 8, — S,

Then in analogy to lemma 5.2.4, one can show that,

Sy >(1+ ¢mm)S,,_ — ¢ SY=. (6.21)

n—1 n—1

In analogy to lemma 5.2.6 one can show that,

1 n

n

1 r—1
S, > (1 + T - [ST T+ ;nzm} (6.22)

1 r=1 =1

r

To prove the lack of bounded variation, one needs to show that sup,, S, = oc.
We now return to Complex Transitive Percolation on super-reduced poscau. Numeri-
cal solutions for (™™ as a function of p for n = 2,3, 4 (shown in figure 6.3b) suggest that

for any p € C, there exists an m € N such that (7" = |p|+ |1 —p|—1 for all n > m. If this

"That the theorem cannot be used to prove for bounded variation when p is not a real number
satisfying 0 < p < 1 follows from (%" > |p|+ |1 —p| — 1 > 0 for all n, since ( is equal to |p| + |1 —p| —1
on every super-covering causet under Complex Transitive Percolation.
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is borne out then, when p ¢ [0, 1], the first term in (6.22) diverges as n — oco. Whether

sup,, S, = oo will depend on the behaviour of S*=! in the second term. We note that,

n—r
since S°=! is the sum over absolute values of amplitudes of reaching a super-covering

n—r

causet by stage n —r — 1, it could be computed using techniques similar to those used to
obtain the probability of a post in section 6.1. We leave this calculation for future work.

1.5 1.5

1.0 1.0

0.5 0.5

£ 00 £ 00 mn=2
mnz3
-0.5 -0.5
mn24
-1.0 -1.0
195 -1 0 1 2 19 -1 0 1 2
Re[p] Re[p]
(a) Reduced poscau. (b) Super-reduced poscau.

Figure 6.3: Complex Transitive Percolation. Figure (a) shows the values of p € C for which
7 = |p| + |1 — p| — 1 when n = 2,3, 4 on reduced poscau. For example, if p is in the orange

region then (" < |p| + |1 — p| — 1 and ¢§*" = ("™ = |p| + |1 — p| — 1. Figure (b) shows the
values of p € C for which 7" = |p| + |1 — p| — 1 when n = 2,3,4 on super-reduced poscau.
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Chapter 7

Two-way infinite dynamics

In this chapter we consider whether the growth dynamics paradigm is compatible with
two-way infinite cosmologies (i.e. cosmologies in which time has neither a beginning nor
an end).! We adapt our terminology to this new set-up (section 7.1) and modify the CSG
models to accommodate growth of two-way infinite causets (section 7.2). Already from
the outset, conceptual problems arise. Perhaps the most pressing of these is that our new
framework requires that elements be born to the past of existing ones, making it (nearly
if not entirely) impossible to conceive of the growth process as a physical phenomenon.
However, we are able to identify a set of physically meaningful observables—namely the
“convex-events” which describe the convex suborders contained in the growing causal
set—which sets the stage for our pursuit of a manifestly covariant framework for two-way
infinite growth. We construct a variation of covtree, show that the resulting framework
is compatible with two-way infinite growth and prove that the observables in this case

are exactly the formerly identified convex-events (section 7.3).

7.1 Preliminaries

In section 2.2 we introduced the terminology of “labeled causet” and “order” which laid
the foundation for the constructions in chapters 3-6. Now we generalise these concepts

to facilitate discussion of two-way infinite causal sets.

IThe possibility of generalising growth dynamics to past-infinite cosmologies was also suggested in
[Wuthrich and Callender, 2017].
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We emphasise that the definition of labeled causets which we give here is different to
definition 2.2.1, and correspondingly the definitions deriving from labeled causets (e.g.
the definition of an n-order) and the symbols we use to denote spaces of labeled causets
and orders (e.g. Q(n) and Q) take a different meaning in this chapter than they did in

previous chapters.
For any pair of integers k < [, let [k, 1] := {k,k+1,...,1—1,1} (devoid of any ordering).

Definition 7.1.1 (Labeled causet). A labeled causet is any causet ([k,l], <) or (Z,<)
or (Z=,=<) or (N, <) satisfying xt <y = = < y. An n-causet is a labeled causet of

cardinality n.

We denote labeled causets and their subcausets by capital Roman letters with a tilde,
e.g. C. We often (but not always) use a subscript to denote the cardinality of an n-causet.

We will use the following notation to denote certain collections of labeled causets:
for any n > 0, Q(n) is the set of n-causets,
Qu is the set of labeled causets with ground-set N,
Q) is the set of labeled causets with ground-set Z,
Q- is the set of labeled causets with ground-set Z~,
Q) is the set of all infinite causets.
Thus, Q = Qn L Qz U Q- (note that the union is disjoint).
Definition 7.1.2 (Order). An order is an order-isomorphism class of labeled causets.

We denote orders by capital Roman letters without a tilde.

We will use the following notation to denote certain collections of orders:
for any n > 0, Q(n) is the set of n-orders,
Q := Q/ = is the set of all infinite orders,
Qu is the set of orders which have a representative in Qy,

Q- is the set of orders which have a representative in sz,
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()7 is the set of orders which have a representative in QZ.

Thus, Q = Qz U Qz- U Qy (where the union is not disjoint).

The following lemma provides a characterisation of infinite causets:
Lemma 7.1.3. Let II be any countably infinite causet.

o II is past-finite if and only if I1 = C for some C € Q.2

o II is future-finite if and only if 1= C for some C € Q- .

o IfI1=C for some C € Qy then (at least)>one of the following holds:*

(1) II is two-way infinite,
(ii) I is past-finite and has infinitely many minimal elements,

(23i) 11 is future-finite and has infinitely many mazimal elements.

Lemma 7.1.3 ensures that all order-types are included in Q and hence in € (i.e. we
are not missing any partial order structures by working only with labeled causets).

The following is a covariant corollary:
Corollary 7.1.4. Let C' be an infinite order.
e (' is past-finite if and only if C € Qy.
o (' is future-finite if and only if C € Q.
o [fC € Qy then (at least) one of the following holds:
(i) C is two-way infinite,
(13) C s past-finite and has infinitely many minimal elements,
(1ii) C is future-finite and has infinitely many maximal elements.

Finally, we will also need the notions of an n-suborder and convex-rogue. Let C and

D be orders with representative C' and D, respectively.

2From [Brightwell and Luczak, 2011].

3Families (i7) and (4ii) are disjoint from (i) but not from each other, e.g. the infinite antichain is
contained in both.

4From [Gupta, 2018; Honan, 2018].
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Definition 7.1.5 (Convex suborder/n-suborder). C' is a convex suborder in D if D
contains a copy of C. In that case we may also say that C' is a convex suborder in D. If

additionally C' is an n-order, we say that C' is an n-suborder in D or in D.

Definition 7.1.6 (Convex-rogue). C' is a convex-rogue if there exists another order
D 2 C which has the same n-suborders as C' for all n. In that case we say that C
and D are a convez-rogue pair. We may also refer to C and D as convex-rogues or as a

CONvVeET-rogue pair.

An example of a convex-rogue pair is shown in figure 7.1.

Figure 7.1: The “infinite comb” (left) and the infinite comb disjoint union a single element
(right) are convex-rogues since they contain the same convex suborders as each other.

7.2 Labeled growth

In this section we generalise the sequential growth paradigm to accommodate two-way
infinite cosmologies (section 7.2.1). We consider what form various physical conditions
take in this new framework and whether they are satisfied by a naive generalisation of the

CSG models, and we identify a class of observables for the new models (section 7.2.2).

7.2.1 Alternating growth

The labeled growth models considered thus far, cannot generate past-infinite causal sets
since they satisfy the Internal Temporality condition which states that a new element
cannot be born to the past of an existing one.® Indeed, the first challenge in generalising
the labeled models to the two-way infinite case is generalising the condition of Internal
Temporality. If we are to both generate two-way infinite causal sets and keep the essence

of sequential growth (i.e. that starting from a single element, new elements are born one

5See section 3.1.
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by one), we must loosen the condition of Internal Temporality to allow elements to be
born to the past of already-existing ones. Although at first this may seem like a complete
departure from Internal Temporality and from the physical motivation behind it, it is not
necessarily so. In the past-finite case, Internal Temporality reduces to the requirement
that the growing causal set is an element of Q. Reformulating Internal Temporality
as a statement about labeled causets reveals a candidate generalisation of it to the two-
way infinite case: the requirement that the growing causal set is contained in Q. Some
freedom remains in how to translate this condition back into a statement about the birth
of elements. To fix this freedom we choose that the positive and negative integers are
born in an alternating sequence, 0,—1,1,—2,2..., so that at stage n, if n is even the

element 7 is born and if n is odd the element — is born. Internal Temporality then

ntl
2

becomes: positive elements cannot be born to the past of existing elements, negative
elements cannot be born to the future of existing elements. In particular, no element
can be born in-between two existing elements so that at each stage the finite causet
is a convex subcauset of the growing infinite causet. We call a transition in which a
positive element is born a “forward transition”. Similarly, a “backward transition” is one
in which a negative element is born. A transition C’n — C’n+1 is forward when n is even
and backward when n is odd.

We dub the resulting dynamical framework “alternating growth”. The alternating

growth process can be represented as a random walk on “alternating poscau”, a directed

tree whose nodes are finite labeled causets. More precisely,

Definition 7.2.1. Alternating poscau is the partial order on the collection of finite labeled
causets whose ground set is [—n,n| or [—n,n+1| for any n > 0, where S < R if and only

if S is a convex subcauset in R.

The first three levels of alternating poscau are shown in figure 7.2. There is a bijection
between the space of infinite paths and €z, where an infinite path C; < Cy < ... cor-
responds to C' = Unso C,. The measurable events are generated by the “cylinder sets”
which are associated with each node, where cyl(C,,) C Qg is the set of causets which con-
tain C, as a convex subcauset. Any random walk on alternating poscau is a well-defined

measure on this measurable space (and vice versa, every measure corresponds to a unique
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random walk).

By generalising the Internal Temporality condition we are thus able to extend the
sequential growth paradigm to include growth of two-way infinite causets. One could
extend Internal Temporality in other ways, leading to new trees and sample spaces.’
Finally, recall that by lemma 7.1.3 the collection of two-way infinite causets is only one
of three families contained in the sample space €, and therefore it will be up to the

dynamics (i.e. the random walk) to pick out this family of causets (family (7) in lemma

Bt

7.1.3) over the alternatives.

Figure 7.2: The first three levels of alternating poscau.

7.2.2 Alternating growth dynamics

While any random walk on alternating poscau gives rise to a well-defined measure on
Qz, not every such walk is of interest to physics and it remains for us to identify classes
of interest. This is completely analogous to the past-finite case, where the CSG models
were identified as a physically-meaningful subclass of random walks on labeled poscau.
Could the CSG models be generalised for alternating growth? Indeed, equation (3.1)
can be adapted for alternating growth simply by letting C,, and C’n+1 denote nodes in

alternating poscau—we dub this new family of models the “Alternating CSG” dynamics.

6See [Bento, 2018] for further variations, including sequential growth models in which the identity of
the element born at each stage is determined at random.
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Do the Alternating CSG dynamics retain the features that make CSG models in-
teresting for physics? For example, can the Alternating CSG models be considered
causal? To answer this question we must first understand what form causality takes
within the alternating growth framework. In the remainder of this section we identify
the form which four key attributes—covariance, causality, causal immortality and mean-
ingful observables—take in the alternating growth framework and discuss whether the
Alternating CSG models possess these attributes.

We will pay special attention to Transitive Percolation and its alternating growth
counterpart, Alternating Transitive Percolation, since the two models share many simi-
larities. For example, let C,, and D,, be nodes in labeled poscau and alternating poscau
respectively, and let C,, = D,. Then the probablity of reaching C, under a given CSG
dynamics is equal to the probability of reaching D,, under its alternating growth coun-
terpart if and only if the dynamics in question is Transitive Percolation [Gupta, 2018;

Honan, 2018|.

Covariance: The discrete general covariance condition (3.4) can be generalised to the
alternating sequential growth framework simply by letting C,, and C’;L denote nodes in
alternating poscau.

Every CSG model satisfies the discrete general covariance condition. In contrast, the
only Alternating CSG dynamics which satisfies discrete general covariance is Alternating

Transitive Percolation:

Lemma 7.2.2. An Alternating CSG model satisfies the discrete general covariance con-

dition if and only if it is an Alternating Transitive Percolation model.

Proof. First we show that an Alternating CSG model is not covariant if it is not Alternat-
ing Transitive Percolation. Consider the (2n+1)-order C' which contains a (2n)-antichain
of which n elements have a common ancestor, as shown in figure 7.3.

Let C' denote the representative of C' which is grown in the alternating framework in
the following way: the element 0 and the elements born in the first 2n — 2 stages form
an antichain, the element born at stage 2n — 1 is born to the past of n of the existing

elements, and the element born at stage 2n is unrelated to all existing elements. The
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Figure 7.3: The (2n + 1)-order C, which contains a (2n)-antichain of which n elements have
a common ancestor.

probability of growing C' in an Alternating CSG dynamics is P(C) = 22ty = 13",
Let C’ denote another representative of C' which is grown in the alternating framework
in the following way: the elements born in forward transitions are all born to the future
of the element 0, and the elements born in backward transitions are all born unrelated
to all existing elements. The probability of growing ¢’ in an Alternating CSG dynamics
is P(C") = t7t¢. An Alternating CSG model is covariant only if P(C') = P(C"), i.e. only
if g = t;~!. This is Alternating Transitive Percolation and can be cast into the form
t, = t" by setting to = 1.

That Alternating Transitive Percolation is covariant follows from equation (3.10) since

it implies that the probability of reaching some C, in alternating poscau is P(é’n) =

qu(g)fR , where L and R are the number of links and relations in CN’n, respectively. [

Causality: What form can the Bell causality condition take within the alternating
growth framework? At first glance it may seem that we can simply interpret the labeled
causets in equation (3.5) as nodes in alternating poscau, but this is not so. To see the
problem, let C,, be a node in alternating poscau, and let C’n+1 and C~'7’1 +1 denote two of its
children. Now, construct B, from C, by removing the spectators and relabeling. Next,
remove the spectators from C,.; and relabel—this is where the problem arises since
there may be no relabeling which produces a child of B,. In particular, this failure occurs
whenever the number of spectators is odd because in that case if C, — C'n+1 is a forward
transition” then B; — Blﬂ must be a backward transition, which leads to a contradiction.
An example is shown in figure 7.4. It is in these cases that the generalisation of equation
(3.5) to the alternating dynamics becomes ill-defined. Instead, we will use a weakened
causality condition (in similarity to the weakened causality conditions of [Dowker and

Surya, 2006; Varadarajan and Rideout, 2006]) which states that an alternating dynamics

"Recall that a transition C,, — C’n+1 is forward when n is even and backward when n is odd.
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is causal if equation (3.5) is satisfied whenever it is well-defined.

Having arrived at a causality condition for the alternating framework, we can ask
whether the Alternating CSG dynamics are causal. We begin by examining Alternating
Transitive Percolation. Since the Alternating Transitive Percolation models are covariant
(cf. lemma 7.2.2), the labeling ambiguity in the Bell causality condition is alleviated and
we can use equation (3.10) to verify that equality (3.5) is satisfied,

P(Cp — Cpi1)  p"¢" "  p"¢—®  P(B;— By

~ 3 = / T / 7= ~ ~ ’ 71
P(C, = Cly) PV p"d™=  P(B,— Bj,)) 1)

where @’ and m’ denote the number of relations and links, respectively, formed by the
element which is born at stage n in the transition C,, — é;l +1- In this sense, the Alter-
nating Transitive Percolation models are causal. Since the remaining Alternating CSG
dynamics are not covariant, to ascertain whether they are causal requires specifying a
canonical choice of labeling by which By, should be obtained from C, 1 etc., which
renders the Bell causality condition itself label-dependent and hence not covariant. Since
causal structure is fundamentally frame-independent, this suggests that the Bell causality
condition is only physically-meaningful within covariant growth dynamics.

While we have had some success in formally adapting equality (3.5) to the alternating
growth framework, the physical interpretation of this new causality condition is far from
clear. In the framework of past-finite growth, the Bell causality is interpreted as the
statement that the probability for each transition depends only on the past of the new-
born element. But this interpretation is obliterated in the alternating growth framework.
In a forward transition, the transition probability depends only on the past of the new-
born element—but not on its entire past, since some of it has not yet been determined.
The situation is even worse in the backward transitions where the transition probabilities
depend on the future of the new-born element. One resolution is to require that equality
(3.5) holds only for the forward transitions (i.e. when n is even), leaving the backward
transitions unconstrained by causality. Or it may be that we need an altogether new way

of thinking about causality in the alternating framework.
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Figure 7.4: The Bell Causality condition is ill-defined in the alternating growth framework.
The parent Cy and two of its children are shown on the top line. The new-born element in
each child is shown in white. The past of the new-born element in each transition is shown in
red. Bs is constructed from C4 by removing the element 1 (i.e. the spectator) and relabeling.
Removing the spectator from Cs and C’ results in the causets shown in the box, but there is
no relabeling of these which corresponds to children of Bs.

Causal immortality: In past-finite sequential growth, the sample space is the space
of all infinite past-finite causets, Q. This space contains a variety of cosmologies: some
are future-infinite and some are future-finite, some contain infinite antichains and some
do not. But in the CSG models, only a subset of all these potential configurations
can be realised because the CSG models generate, with unit probability, causets which
have no maximal elements [Brightwell et al., 2003]. We say that the CSG models have
the property of “causal immortality” because the effect of each element/event reaches
infinitely far into the future.

Similarly, in alternating sequential growth the sample space Qz, contains several causal
set families (given in lemma 7.1.3) but only a subset of these is realised by the Alternating
CSG dynamics because these dynamics generate causets which have no maximal nor
minimal elements, as we show in lemma 7.2.3. This “two-way causal immortality” means
that not only does the effect of each event reaches infinitely far into the future, but that

the cause of each event can be traced infinitely far into the past.

Lemma 7.2.3. Every element in a causal set grown in Alternating CSG dynamics with

ty > 0 for some k > 0 almost surely has an element to its future and an element to its
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past.

Proof. Consider a growth process with an Alternating CSG dynamics with ¢, > 0 for
some k > 0. Suppose that the labeled causet C, has been grown by the beginning of
stage n > k, and let « € C,, be a maximal element.

First, we show that the probability that z is maximal in the complete causal set is
zero. Let r > n be an even integer. Then the probability that z is maximal at the end

of stage r (given that = is maximal at the beginning of stage r) is,

A(r—1,0)

7, 0) (7.2)

1_pr:

where p, is the effective parameter of [Brightwell and Luczak, 2016]. Therefore the

probability that z is maximal in the complete causet is,

Sli_)rgo P(z is maximal at end of stage s) = sli—)rgo 11 ) 1—p, (7.3)

which converges to a non-zero value if and only if the following series converges [Jeffreys

and Swirles, 1966,
lim Y p. (7.4)

§—00
even n<r<s

Rearranging equation (7.2) we have,

o= B = (Bt 2 () = () 09

and therefore the series (7.4) is divergent and probability (7.3) vanishes.

The argument can be adapted to show that every element has an element to its past

by letting  be a minimal element and letting r take odd values. O]

Observables: In the past-finite CSG models, the role of observables is played by “stem-
events”, namely elements of the algebra R(S).® What are the observables within the

alternating growth framework? The freedom to grow past-infinite causal sets means that

8See section 3.4.
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the stem-events have a weak distinguishing power—they tell us nothing about the past-
infinite part of a casual set and they cannot distinguish between causets which contain
no minimal elements. We can make progress by noticing that stems are to past-finite
growth what convex suborders are to alternating growth. The ordering of labeled poscau
is determined by the stem relation (i.e. the order of labeled poscau is order-by-inclusion-
as-stem, cf. definition 3.1.1), while the ordering of alternating poscau is determined by
the convex relation (cf. definition 7.2.1). Each node in labeled poscau is a stem in
the growing causet, while each node in alternating poscau is a convex subcauset in the
growing causet. Therefore, it is reasonable to expect that “convex-events”—the convex
analogue of stem-events—play the role of observables for alternating growth.

To make this precise, for each finite order C,, let convez(C,) C Qz be the collection
of causets which contain C), as a convex suborder. A “convex-event” is any set which
can be generated from the convex(C,,)’s via countable set operations (i.e. a convex-event
is an element of the o-algebra generated by the convex(C,)’s). Each convex-event is a
covariant measurable event with a clear physical meaning—it corresponds to a logical
combination of statements about which finite orders are convex suborders in the growing
causet.

Convex-events form an extensive class of observables which provide us with informa-
tion about the structure of the causal set at arbitrarily early times/infinitely far into the
past. But they are not fully-distinguishing as they cannot distinguish between pairs of
convex-rogues (cf. definition 7.1.6). In the past-finite framework, the stem-events are
also not fully-distinguishing since they fail to distinguish between pairs of rogues. But it
was shown in [Brightwell et al., 2003] that in any CSG dynamics the set of rogues has
measure zero and therefore, in a precise mathematical sense, the stem-events exhaust
the set of physical observables in any CSG dynamics. Crucially, the result of [Brightwell
et al., 2003] depends on the specifics of the CSG dynamics and does not hold for a generic
random walk on labeled poscau but only for those models in which the set of rogues has
measure Zzero.

Can convex-events similarly be considered to exhaust the set of physical observables

in the alternating CSG dynamics? For Alternating Transitive Percolation, the answer
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is no. Like in Transitive Percolation, in Alternating Transitive Percolation, every finite
order is almost surely a convex suborder in the growing causet (i.e. the measure of every
convex(C,,) is equal to 1) [Brightwell and Luczak, 2016]. This means that the convex-
events cannot distinguish between the various possible outcomes of the growth process
(which only generates convex-rogues) and therefore the dynamics is deterministic with
respect to the convex-events. But not every Alternating CSG model is deterministic with

respect to the convex-events:

Lemma 7.2.4. A CSG dynamics is not deterministic with respect to convex-events when

its couplings are given by,

to=1andt, = f(n)A\(n —1,0) Vn > 1, (7.6)

S

where f(n) is a function satisfying > ﬁ < oo (e.g. f(n)=2a" withx >1 or f(n)=n

with s > 2).

Proof. Let A; denote the 2-antichain order, and let Cy, denote the two-way infinite chain
order. Note that P(Cw) = 1 — p(convez(As)), where P(Cy) is the probability of growing
Cw and p(convex(Asy)) is the measure of convex(Asz). Note also that p(convexr(As)) >
to/A(1,0) > 0 in any CSG dynamics. We will show that in the dynamics above, P(Cy) >
0 and therefore 0 < p(convex(As)) < 1 and the result follows.

Note that P(Co) = [],,~0Pn, Where (as in claim 7.2.3) p, is the effective parameter

given by,

Z;é (n;)tkﬂ _/\(nu O) - /\(TL - 17 0)

A(n,0) N A(n,0) ’ (7.7)

Pn =

and the product converges to a non-zero value if and only if the series > 1 — p,, converges

[Jeffreys and Swirles, 1966]. We can write the m™ term of this series as,

1_pm:

Am=1,00 (27 (Ot tn =
A(m,0) ()\(m— 1,0) + A(m — 1’0)) ’ (7.8)
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and then substitute the couplings given in (7.6) to find,

i (Mt ol
1—p, = (&= )" < 7.9

= (Faie ) < g )
It follows that in the models given in (7.6) the sum ) 1 — p,, converges by the com-

parison test against ﬁ and hence P(Cy) > 0. O

That the convex-events are in some sense interesting or sufficient to describe an alter-
nating dynamics (e.g. that the dynamics almost surely does not generate convex-rogues,
or that the dynamics is not deterministic with respect to the convex-events) can be used

as a constraint or guiding principle in searching for new/physical alternating dynamics.

7.3 Manifestly covariant growth

How can the covariant framework of chapter 4 be adapted for two-way infinite growth?
Pursuing the analogy between stems and convex suborders, here we propose a new covari-
ant framework, dubbed Z-covtree, whose sample space is {27 and whose set of observables
is exactly the set of convex-events. While in the past-finite case, label-independence came
at the cost of an explicit process of growth, in the two-way infinite case the masking of the
birth of elements by the covariance is a gain, since it alleviates the difficulty of interpreting
a growth in which a new element is born to the past of existing elements.

We begin by defining “convex-covtree”, a variation of covtree in which stems are
replaced by suborders (section 7.3.1). We prove that convex-covtree’s sample space is
strictly greater than Qz (section 7.3.2) and that it can be consistently truncated into a

new tree, Z-covtree, whose sample space is the desired )z (sections 7.3.3-7.3.4).

7.3.1 Defining convex-covtree

Convex-covtree is a directed tree whose nodes at level n are certain subsets of {2(n). Some
[, € Q(n) is a node in convex-covtree if and only if it is the set of n-suborders of some

order C'. In the following, we formalise this notion.
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Definition 7.3.1 (Convex-certificate). An order C' is a convez-certificate of Iy, if T, is
the set of n-suborders of C. A labeled convex-certificate of I',, is a representative of a

convex-certificate of T'y,.

A convex-certificate may be finite or infinite, and if it is infinite it may be past-finite,
future-finite or neither. Note that some I';, C €2(n) have no convex-certificates at all. If T,
has an infinite convex-certificate then it has a finite convex-certificate, but the converse

is not true. Examples are shown in figure 7.5.

B foee 1 oA A A

r’3={i,...}
Iy = {! I} I I

Figure 7.5: Illustration of convex-certificates. C and D are convex-certificates of I's. T
has no convex-certificates since any order which contains the 3-chain and the 3-antichain as
3-suborders also contains I . as a 3-suborder. F is a convex-certificate of I'y. I'4 has no infinite
convex-certificates.

Definition 7.3.2 (x, the collection of convex-certified sets). x is the collection of sets of

n-orders, for all n, for which there exists a convex-certificate:

X = U {T'n, € Q(n) | 3 a convex-certificate of T',,}. (7.10)

n>0

Definition 7.3.3 (The map O.). For anyn > 1 and any I',,, the map O, takes I, to the

set of (n — 1)-suborders of elements of T',,:
O (l,) ={BeQn—-1)|3AeTl, st. Bisan (n—1)-suborder in A} (7.11)

One way to think about the operation O, on I',, is to pick an n-order in I';, and delete

a maximal or minimal element of it to form an (n — 1)-order. The set O.(I',,) is the set
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of all (n — 1)-orders which can be formed in this way. An illustration is shown in figure

7.6.

O ({AN L e}) =200}
OC({OOI,QO’\,II})={ooo,:\,:.}

Figure 7.6: Illustration of the operation O..

Definition 7.3.4 (Convex-covtree). Convex-covtree is the partial order (x, <), where

[, < Ty, if and only if n <m and O, "(I'y,) = T,.

The nodes in the first three levels of convex-covtree are shown in figure 7.7. We will

also need the following definition,

Definition 7.3.5 (Convex-certificate of a path). An order C' is a convez-certificate of a

path P if it is a convez-certificate of every node in P.

The definition of convex-covtree is obtained from that of covtree (cf. chapter 4) simply
by replacing n-stems with n-suborders. Indeed the two resulting structures share some

similarities, including:

(1) if C'is a (convex-)certificate of a node I, in (convex-)covtree then C'is a

(convex-)certificate of all nodes below T'y,,
(2) every inextendible path in (convex-)covtree has a (convex-)certificate.’

Properties (1) and (2) allow us to interpret a random walk on convex-covtree as a
covariant process of growth: the growing order is a convex-certificate of the path which is
traced by the random walk. Each node in the path corresponds to a covariant property
of the growing order, i.e. I',, is the set of n-suborders of the growing order.

But which orders are produced by the process? In contrast to all existing growth
models, a dynamics on convex-covtree can produce finite orders. This is because convex-

covtree contains maximal nodes, meaning that some of its inextendible paths are finite.

9We will prove this in lemmas 7.3.9 and 7.3.11.
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A finite inextendible path has only a finite convex-certificate, and so if a random walk
traces a finite path then a finite order is generated. We leave further discussion of maximal
nodes and finite inextendible paths to section 7.3.2. The convex-certificates of infinite
paths are necessarily infinite (since they contain n-suborders for every n > 0) and every
infinite order (past-finite, future-finite or neither) is a convex-certificate of some infinite
path in convex-covtree.

In summary, the sample space is vast and contains all infinite orders and many (but
not all) finite orders. In keeping with the motivation of this chapter—to develop growth
dynamics for two-way infinite orders—it is natural to ask whether there is a way to
consistently restrict the sample space to 7. We will show in section 7.3.3 that it is
possible and that in this case the observables are the convex-events. We will also show
that an inconsistency arises (property (2) no longer holds) when restricting the sample
space to {ly, suggesting that convex suborders are unsuitable for describing past-finite

growth.

7.3.2 The sample space of convex-covtree

We begin by considering finite inextendible paths. Each finite inextendible path ends at

a maximal node characterised by the following lemma.

Lemma 7.3.6. IfT',, is mazimal in convex-covtree then it is a singleton T',, = {C,} whose

only convex-certificate is C,,.

Proof. Let T',, = {C,,} and let its only convex-certificate be C,,. Suppose for contradiction
that I',;1 > I',. Then there exists some D with cardinality > n which is a convex-
certificate of I',,,; and hence of I',,. Contradition. Therefore I',, is maximal.

Suppose that I';, = {C,} has a convex-certificate D # C,,. Then D has cardinality
> n and therefore {D} = I', = T, is not maximal. Similarly, if I';, is not a singleton

then it has a convex-certificate D with cardinality > n = {D} > T',. O

The singleton Ty = {] ]} is an example of a maximal node. To see that I'y has no
convex-certificate of cardinality > 4 it is sufficient to attempt to construct such a convex-

certificate by adding a single element to (a representative of) I |. For example, we can
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22 nodes, shown ina
separate figure.
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(a) The first three levels of convex-covtree.
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(b) 22 nodes of convex-covtree and their convex-certificates. These are the
level 3 nodes which appear directly above the doublet.

Figure 7.7: The first three levels of convex-covtree.
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add the new element to form the 5-order | |. , but this 5-order is not a convex-certificate
of I'y since it contains |.. as a 4-suborder. Continuing in this way, we find that it is
impossible to form a convex-certificate of I'y by adding an element to | [. Indeed, | lis
the unique convex-certificate of I'y.

The existence of maximal nodes implies the existence of finite inextendible paths. We

can characterise finite inextendible paths as follows:

Lemma 7.3.7. An inextendible path P is finite if and only if it contains a singleton

{C.,.}, where C,, is not the n-chain or the n-antichain.
To prove lemma 7.3.7 we will need:

Lemma 7.3.8. Let C,, be an n-order which is not the n-chain or the n-antichain. Then

every convez-certificate of {C,} has cardinality less than n?.

Proof. For any (finite or infinite) order C, let w(C') and h(C') denote the width and height
of C, respectively. Note that |C| < h(C)w(C). Additionally, if C' is a convex-certificate
of {C,} then w(C) = w(C,) < n. We will show that if C' is a convex-certificate of {C,,}
then hA(C') < n and the result follows.

Let C' be an order with A(C) > n and suppose for contradiction that C' is a convex-
certificate of {C,,}. Let D be a chain of length n + 1 in C' and let H be the convex hull
of D. Then |H| = n + k for some k£ > 0. Note that H is an interval by construction,
i.e. it has a single maximal element and a single minimal element. We will now show by
induction that # is a chain and therefore C' is not a convex-certificate of {C),}.

One way to obtain C,, from H is to remove the minimal element of H to form the order
H_1, then remove a minimal element of H_; to form H_5 and so on until H_;, = C,,.
Since H has a unique maximal element, H_; = (), has a unique maximal element.

Another way to obtain C), from H is to remove the maximal element of H to form the
order H~!, then remove a minimal element of H~' to form "}, then remove a minimal
element of H_} to form H_} and continue to remove minimal elements until H=; ,, = C,,.
The top level of H:;:H = C, is level h(C) — 1 of H, and since C,, has a unique maximal

element we learn that # has only one element at level h(C') — 1.
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Suppose H has only one element at each of the levels h(C),h(C) —1,..,h(C) —7r+1

for some r < h(C'). Then H_; ., = C, is constructed by removing the top r levels of H

Z—H"
and therefore the top level of H™}, = C, is level h(C') —r of H. Since H_}, = C,
has a unique maximal element we learn that H has only one element at level A(C) — r.

Therefore, by induction H has a single element at each level, i.e. H is a chain. O

Proof to lemma 7.5.7. Let {C,} € P and suppose for contradiction that P is infinite.
Then for any N > n? there exists a node I'y € P. Let C denote a convex-certificate of
[y and note that |C| > N > n% Since I'y = {C,}, C is a convex-certificate of {C,,}.
Contradiction. That the converse is true follows from the fact that every maximal node

is a singleton (lemma 7.3.6). O
We can also identify the convex-certificates of the finite inextendible paths:

Lemma 7.3.9. If P =11 < I'y < .. < I’y is a finite inextendible path then C) € T'y is

the unique convex-certificate of P.

Proof. Clearly, Cy is a convex-certificate of P and there are no other convex-certificates
of P with cardinality < k. Suppose (] is a convex-certificate of P with cardinality [ > k.
Then {C;} > I';. Contradiction. O

A corollary is that the corresponding sample space contains spacetimes of finite vol-
ume, namely the convex-certificates of the finite inextendible paths. An n-order C), is an
element of the sample space if there is no order D # (), whose only n-suborder is C),. For

example, the sample space contains the 4-order ] |, but it does not contain the 3-order

[ .since {I. }<{I1]}.
Lemma 7.3.10. The sample space contains countably many finite orders.

Proof. Let Q(n) denote the number of singletons {C),} at level n in convex-covtree, where
(), is not the n-chain or the n-antichain. Each of these Q(n) nodes is in at least one finite
path and no two are in the same path. Therefore there are at least lim,,_,,, @Q(n) finite

inextendible paths. O
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It may seem that the sample space is entropically dominated by the infinite configura-
tions, as there are uncountably many of these and only countably many finite configura-
tions. But if one assigns transition probabilities uniformly such that the probabilities to
transition from a given node to any of its children are equal, then the event that spacetime
has finite volume happens with probability > % (since % is the probability of reaching
a singleton which does not contain a chain or an antichain by level 3). Dynamics which
only give rise to infinite universes are exactly those which satisfy P(I') = 0 whenever I is
a singleton which does not contain a chain or an antichain.!?

Finally, we note that every infinite order is a convex-certificate of some infinite inex-

tendible path. Additionally,
Lemma 7.3.11. Every infinite path in convex-covtree has a convex-certificate.

The proof is analogous to that of theorem 4.1.10.

Together, lemmas 7.3.9 and 7.3.11 enable us to interpret a walk on convex-covtree as a
growth process—they guarantee that each realisation of the walk will produce some order.
A path has more than one convex-certificate if its convex-certificates are convex-rogues
and, in this case, which convex-certificate is the growing order is up for interpretation

(e.g. we can consider all convex-certificates of a given path to be physically equivalent).

7.3.3 Z-covtree

Since our motivation in this chapter is to find a covariant analogue to alternating growth,
it is natural for us to ask whether convex-covtree can be truncated into a tree whose
sample space corresponds to {27. For a start, we can consider the subtree of convex-covtree
which contains only the nodes which have infinite convex-certificates or equivalently the
subtree of convex-covtree which contains exactly all infinite paths. By truncating the
finite inextendible paths we remove the finite orders from the sample space and lemma
7.3.11 guarantees that each inextendible path in this truncated covtree has a convex-

certificate in 2. However, there is no guarantee that every path has a convex-certificate

YOFor any n > 1,if T, [is a singleton which contains a chain then it is contained in a unique inextendible
path, { . } < {I} < {l} < ... . Similarly, if ', is a singleton which contains an antichain then it is
contained in a unique inextendible path, {. } < {..} <{. . .} <....
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in €27. Indeed, there exist infinite paths which only have convex-certificates in 2y and
others which only have convex-certificates in €2;-. The following theorem identifies the

paths which have convex-certificates in {27 and which are therefore of interest to us,

Theorem 7.3.12. An infinite path P has a convex-certificate in Qg if and only if every

node in P has a convez-certificate in .

Proof. Given an infinite path P = I'y < I'; < ... each of whose nodes has a convex-
certificate in €z, the following inductive algorithm generates an infinite nested sequence
of causal sets, C;, C Cy, C ..., whose ground-sets [r1, s1], [r2, S2], ... respectively, satisfy
rL>1Te > ..oand s1 < 89 < ..

Step 1:

1.0) Pick some natural number mgy > 0 and consider I',,, € P.

1.1) Let I';,,, € P contain some convex-certificate Cy,,, of I';;,, (cf. lemma 4.1.12). Pick a
representative C,,, of C,,, and set C;, := C,p,, .

1.2) Go to step 2.

Step k > 1:

k.1) Let I, € P contain some convex-certificate C,,, of I';, | € P (cf. lemma 4.1.12).
Additionally, there exists a representative C’mk of Cp,, with ground-set [py,qx] which
contains C’tk_l as a sub-causet and satisfies at least one of (a) pr < rr_1 or (b) qr > Sk_1-
If there exists some C,,, which satisfies both (a) and (b), set Cy, := C,,. Otherwise,
pick a representative C,,, that satisfies (a) or (b). Go up one node along the path to
Iy, €P. Let C € Qy be an infinite convex-certificate of T'y,,, which contains C,,, as
a subcauset. Set Cy, 1= C|py g 11 if Con, satisfies (a) or Gy, = Clp, 14, if Crmy satisfies
(b).

k.2) Go to step k + 1.

k

By construction, the union C' := U2, C,, € Qy is a labeled convex-certificate of P.
Therefore, if every node in P has a convex-certificate in {2z then P has a convex-certificate

in Q7. That the converse is true follows from definition 7.3.5. O
Finally, we can define:

Definition 7.3.13 (Z-covtree). Z-covtree is the subtree of convex-covtree which contains

113



exactly all nodes which have a convez-certificate in €)y.

Z-covtree is the two-way infinite analogue of covtree which we have set out to build.
Theorem 7.3.12 guarantees that every inextendible path in Z-covtree has at least one
convex-certificate in {27 and thus allows for every random walk on Z-covtree to be inter-
preted as a dynamics with sample space .

To see the relationship between a walk on Z-covtree and the corresponding dynamics,
for each I',, in Z-covtree let certy(I',,) C QZ denote the set of labeled convex-certificates of
I',, whose ground-set is Z. A dynamics is given by a measure p on the o-algebra generated
by the certz(T',)’s, where p(certz(T',)) = P(T',). The observables in these dynamics are

exactly the convex-events since,

Lemma 7.3.14. The o-algebra generated by the certz(I,,) is equal to the o-algebra gen-

erated by the convex(C,,).

The proof is analogous to that of lemma 4.1.15.

Lemma 7.3.14 strengthens the analogy between covtree and Z-covtree—the observ-
ables of covtree are the stem-events while the observables of Z-covtree are the convex-
events. Z-covtree is to alternating poscau what covtree is to labeled poscau. Convex

suborders are to two-way infinite dynamics what stems are to past-finite dynamics.

7.3.4 The non-existence of N-covtree

This section highlights the technicalities which enabled us to define Z-covtree in the
previous section. For comparison, we show that one cannot truncate convex-covtree into
a tree whose sample space is (.

Why do some infinite paths in convex-covtree have no convex-certificates in €257 The-
orem 7.3.12 tells us that an infinite path in convex-covtree has a convex-certificate in 2z
if and only if each of its nodes has a convex-certificate in €1z, and therefore the reason
that some paths have no convex-certificate in {27 is because they contain nodes which
have no convex-certificate in €27.

In other words, there exist nodes all of whose infinite convex-certificates are contained

in {2y, and an infinite path which contains such nodes can only have convex-certificates in
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Q. For example, consider the node I's = {/\ , 1 } whose unique minimal convex-certificate
is /A . We can construct any convex-certificate of I's by starting with its minimal convex-
certificate and then adding elements to it. In particular, if I'3 has a convex-certificate
in Q7 or ()z- then we should be able to grow a convex-certificate of I'3 by adding an
element which is below or unrelated to every element in A There are 5 ways to add
such an element, but none produces a convex-certificate of I's (e.g. . contains the
3-antichain as a convex-suborder). Therefore, I'; has no convex-certificates in €z or in
Q7. Finally, note that I's does have a convex-certificate in {2y, namely the order which
contains A topped with an infinite chain. Therefore the infinite path containing I's only
has convex-certificates in {2y. Similarly, there exist nodes all of whose infinite convex-
certificates are contained in {2z, and an infinite path which contains such nodes can only
have convex-certificates in Q. The node {V, | } is an example.

In contrast, there exists no node in convex-covtree all of whose infinite convex-
certificates are contained in {2z, since if a node has a convex-certificate in )z then it
has a convex-certificate in Qy and in Q- .!' Despite this, there exist infinite paths in
convex-covtree whose infinite convex-certificates are only contained in 2. For example,

consider the path,

AYO} <, (7.12)

whose convex-certificate is the order D shown on the right of figure 7.8. Each node in P

p:{,}<{l,..}<{[,/\,V}<{

has a convex-certificate in Qy (as illustrated in figure 7.8) but there is no one order in
Qy which is a convex-certificate of every node in P.12

We find that for every node in an infinite path to have a convex-certificate in Qy is

1Ty see this, let C € 7 be a labeled convex-certificate of some I, and let C |1,y be a finite convex-
certificate of I',. Then C |[k,00) 18 order-isomorphic to some D € Qu and D is a convex-certificate of T',,.
Similarly, C |(c0,1] is order-isomorphic to some E € Qy- and E is a convex-certificate of T'.

120ne way to see this is to notice that for every n > 3, I',, € P has a unique minimal convex-certificate,
namely the diamond sandwiched between two (n — 3)-chains. Now, pick some n > 3 and without loss of
generality pick a representative of its minimal convex-certificate, Ca,_g, with ground-set [0,2n — 6]. We
seek a labeled minimal convex-certificate an 4 of I';, 41 which contains CQn ¢ as a subcauset, and find
that an 4 must have ground set [—1,2n — 5]. Next we seek a labeled minimal convex—certlﬁcate an,g
of I';,42 which contains Cop_4 as a subcauset, and find that Co,,—o must have ground-set [—2,2n — 4]
etc. Since at each stage we add a positive and a negative integer to the ground-set, in the infinite limit
the labeled convex-certificate must have ground-set Z.
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4y |

D3 D

Figure 7.8: The order D € 7 shown on the right is a convex-certificate of the path P. Every
node in P has a convex-certificate in Qn: D? is a convex-certificate of I';, € P only for n < 3,
D* is a convex-certificate of I',, € P only for n < 4, D is a convex-certificate of T',, € P only
for n <5, etc. There is no order in (dy which is a convex-certificate of every node in P.

necessary but not sufficient for the path to have a convex-certificate in 2. There is no
analogue to theorem 7.3.12 in the past-finite case.

Altogether, this reveals that the subset of convex-covtree which contains exactly the
paths whose convex-certificates are in (y is ill-defined. This is because, if it exists then
it must contain every node which has a convex-certificate in {2y, and therefore it must
contain paths which do not have a convex-certificate in Qy (e.g. P of (7.12)), which is
a contradiction. There is no N-covtree. This suggests that convex-events are not rich
enough to exhaust the set of observables in past-finite dynamics. This is also true in the
future-finite case.

One can understand this difference between )y and €27 using the language of metric
spaces. For any two orders C' and D, let C' ~ D if and only if C' and D are a convex-
rogue pair, i.e. if they share the same n-suborders for all n. Let Qy/ ~ and Qz/ ~
be quotient spaces under the convex-rogue equivalence relation, so that their elements
are equivalence classes of orders denoted by [C] etc. We can consider these quotient
spaces as metric spaces with metric d([C],[D]) = 5=, where n is the largest integer for
which representatives of [C] and [D] have the same sets of n-suborders. Given a node
[',, in convex-covtree we can associate with it a subset [certy(I',)] € Qy/ ~, namely
the set of elements of Qn/ ~ whose representatives are convex-certificates of I',,, and
similiarly [certz(T,)] C Qz/ ~. Given a path P =T'; < 'y < ..., we can associate with it
the sets [certn(P)] = N, eplcertn(T'n)] and [certz(P)] = (p, cpleertz(Ty)]. The metric
space (2z/ ~,d) is complete, and therefore by Cantor’s lemma [certz(P)] is non-empty

whenever all the [certz(T',)]’s are non-empty (cf. theorem 7.3.12). On the other hand,
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the metric space ({2y/ ~,d) is not complete (as shown by example in figure 7.8) and

therefore [certy(P)] can be empty when all the [certz(I',)|’s are non-empty.
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Chapter 8

Conclusion

This thesis presents a contribution to the growth dynamics program whose aim is to
interpret the path integral for quantum gravity as a generalised stochastic process of
spacetime growth. Our work was motivated by two pillars of modern theoretical physics:
general covariance and quantum interference.

General covariance, the gauge invariance of General Relativity, must emerge from
quantum gravity and as such can be used to formulate guiding precepts for each quantum
gravity approach. Additionally, its importance in the development of General Relativity
suggests that it also has an important part to play in the development of a theory of
quantum gravity. We focused on one particular facet of general covariance by asking
whether one can formulate the laws of physics in a way which makes reference only to
physical (and not to gauge) degrees of freedom. Physics has thus far favoured gauge
theories, but we were encouraged by the thought that the unified nature of quantum
gravity combined with the discreteness of causal sets may offer new possibilities. In-
deed, we were able to make progress. Building on the understanding that in causal set
theory labels play the role of spacetime coordinates, we set out to find a formulation of
growth dynamics which made no reference to labels and to understand its relationship
to the existing label-dependent (gauge) formulation. We have been successful in building
a label-independent framework (dubbed “covtree”) and in making a precise mathemat-
ical statement to the effect that the set of label-independent dynamics and the set of

label-dependent dynamics are equal. But at the physical level the relationship between
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the two remains far from clear. In particular, understanding the relationship between
label-independent models and those label-dependent models which satisfy the so-called
“discrete general covariance” condition remains an open problem.

We had another purpose in seeking a label-independent formulation for growth dy-
namics: the label-dependent dynamics have thus far resisted quantization and this new
formulation may offer a new route to quantum dynamics. Indeed, a label-independent
formulation may prove necessary since concepts unrelated to each other in our current
theories, such as general covariance and quantum interference, may prove inseparable in
quantum gravity. Building on an existing—but never before realised—proposal for deriv-
ing a decoherence functional from growth dynamics, we proved theorems which determine
when the proposal is valid and applied it to obtain the first examples of (label-dependent)
quantum dynamics for causal sets. We generalised the construction to a wide class of
growth dynamics, including our new label-independent models. Our results are an impor-
tant proof of principle that quantal generalisations of growth dynamics can be obtained,
but the examples we provided are unphysical toy models and obtaining a physical quan-

tum dynamics remains a challenge.

8.1 Summary of main results

(Chapter 2). Building on the existing literature, we established a coherent language which

enabled us to handle unlabeled objects directly.

(Chapter 4). We defined covtree, a tree whose nodes are certain sets of m-orders, and
proved that in a well-defined sense a random walk on covtree is a label-independent
growth dynamics. We proved that the stem algebra, R(S), is the algebra of observ-
ables for these dynamics and that therefore every walk on labeled poscau induces a
walk on covtree. Additionally, we proved that every covtree walk can be extended to
a walk on labeled poscau, revealing the complex nature of the relationship between

the label-independent models and the “covariant” label-dependent models.

We identified the covtree paths which correspond to orders with posts and breaks,

and proved that covtree is self-similar. We used these results to obtain the label-
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independent analogue of cosmic renormalisation and to provide a classification of
self-similar dynamics. This led to speculative proposals regarding a causality con-

dition and the relationship between covtree dynamics and the CSG models.

We provided further results about the structure of covtree and a toy example of how
a better understanding of this structure can be used to obtain physically interesting

dynamics.

(Chapter 5). Building on an existing—but never before realised—proposal for deriving a
decoherence functional from growth dynamics, we proved theorems which determine
when the proposal is valid, applied it to obtain the first examples of quantum
dynamics for causal sets and generalised the construction to a wide class of growth

dynamics.

(Chapter 6). We obtained a functional form of the probability that the element n is a post

in any CSG dynamics.

We identified the physical observables in two classes of (labeled) cyclic dynamics as
those measurable events which cannot distinguish between non-cyclic cosmologies.
We proved that the o-algebras containing these observables are countably generated
by certain subsets of cylinder sets. This enabled us to conceive of these cyclic
dynamics as random walks on the associated trees and we applied our generalised

theorem from chapter 5 to consider their quantization.

(Chapter 7). We considered whether the growth dynamics paradigm can accommodate
cosmologies in which time has no beginning. We modified the CSG models to allow
for two-way growth, leading to the identification of the convex-events as the observ-
ables in two-way growth dynamics. Building on this, we constructed a variation of
covtree (dubbed Z-covtree) and proved that it provides a framework for two-way

growth dynamics.
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8.2 Outlook

We were successful in building frameworks for growth dynamics by identifying o-algebras
of observables and establishing new methods for defining measures on them. But these
frameworks accommodate vast classes of models and identifying which of these models
are physically interesting remains an open problem.

Which physically meaningful constraints can be imposed on the covtree transition
probabilities to obtain physical dynamics? We can no longer impose a label-invariance
condition, since covtree makes no reference to labels, while the tension between the global
nature of covtree and the local nature of causality poses a challenge in identifying a
suitable causality condition. It is the opinion of the author that solving for cyclic covtree
dynamics (namely, dynamics which give rise to infinitely many posts or breaks with unit
probability) would be a worthwhile pursuit in which progress can be made by building on
the results of section 4.2. Solving for those covtree dynamics which correspond to CSG
models and/or in which the set of rogues is null may also be worthwhile, but considerably
more ambitious.

Cyclic dynamics could also play a key role in the development of quantum growth
models. Transitive Percolation is a cyclic dynamics which resisted our attempts at quan-
tization and it is natural to wonder whether this is a feature shared by all cyclic models or
whether there exist cyclic models which can be quantized through the prescription which
we considered. This problem could be approached by building on the work in [Ash and
McDonald, 2003, 2005] which says that a CSG model is cyclic whenever its sequence of
couplings (to, t1, t2, ...) is the sequence of moments of a probability distribution satisfying
certain criteria. It would be interesting to understand whether an analogous statement
can be made when the couplings take complex values since this will enable a systematic
study of whether such models are amenable to quantization by applying the theorems we
proved in section 5.2. Another avenue which one can explore in the search for quantum
dynamics is, given a pair of g-algebras Y; C Y5, under which conditions does a complex
measure on > extend to 57 This would shed light on whether, when the complex
measure fails to extend to the g-algebra, it is worthwhile to seek a sub-o-algebra of ob-

servables, as we did in section 6.2.3. Seeking alternative prescriptions for quantization is
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also worthwhile. One route to such an alternative has already been suggested by Rafael
Sorkin and Jason Wien in unpublished work where they provided a new derivation of the
CSG models in which the causality condition is replaced by an ansatz for the transition
probabilities. The hope is that generalising the ansatz to the quantum case would be an
easier task than formulating a quantum causality condition, but this remains an open
problem to date.

Finally, we must acknowledge that real progress requires a better understanding of
quantum foundations, in particular within an irreproducible cosmological setting which
hosts no observers. This will guide us towards more realistic formulations of quantum
dynamics (e.g. ones in which the measure is valued in a higher dimensional vector space)
and will enable extracting meaningful predictions from our models. Advances in this
direction will enable the heuristic of becoming to be realised as a physical quantum
dynamics for discrete spacetimes. In the meantime, growth dynamics remain a rich and
fruitful research area in which to explore the challenges which arise en route to a theory

of quantum gravity.
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Appendix A

Glossaries

A.1 Causal sets

A partial order (or “partially ordered set” or “poset”) is a pair, (II, <), where <
is a transitive, irreflexive relation on the ground-set II. We may use the ground-set to
denote the partial order (e.g. we may write “the partial order I1” instead of “the partial

order (II, <)”). The meaning should be clear from the context.

Let z,y € II. For any relation x < y, the interval int(x,y) is defined to be the set of

elements which lie between z and y in the order, namely, int(x,y) := {z|x < z < y}.
A partial order is locally finite if all of the intervals it contains are finite.
A causal set (or “causet”) is a locally finite partial order.

An order-isomorphism is an order-preserving bijection between two causets. If there
exists an order-isomorphism between Il and W we say that Il and ¥ are order-isomorphic

and write II =2 V.

The restriction of a causet (II, <) to W C II is the partial order (¥, <y) where

r<yy <= x<yVr,y e V. Wesay that (I, <y) is a subcauset in II.

Let U be a subcauset in II. If {z|z € [Tandz < z < y} C YV z,y € U then ¥ is a
convex subcauset in II.

The convex hull of ¥ is the smallest convex subcauset of II which contains W.

We say that I contains a copy of @ if there exists a convex subcauset & C II such that
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o =9

If z < y is a relation in II, we say that = is below y or that y is above x or that x is an

ancestor of y or that y is a descendant of z.

A relation x < y is called a link if int(z,y) = 0. If x < y is a link, we say that x is
directly below y or that y is directly above x or that x is a direct ancestor of y or

that y is a direct descendant of x.
The valency of z is the number of direct descendants of x.

The past of = € I is the subcauset past(z) := {y € Il|y < x}. This is the non-inclusive
past, i.e x & past(x). The future of z € II is the subcauset future(z) := {y € Iy > x}.

This is the non-inclusive future.

The inclusive past of x € II is the subcauset past(z) := past(z) U {z}. The inclusive

future of = € II is the subcauset future(x) := future(x)U {x}.

A finite subcauset ¥ of Il is a stem in [T if 2 € ¥ = past(z) C V.
A causet II is a rogue if there exists another causet ® 2 II such that ¥ is a stem in IT if

and only if ® contains a copy of ¥ as stem.
x € I is minimal if past(z) = (. Similarly, z € II is maximal if future(xz) = 0.
IT is originary if it contains a unique minimal element.

IT is a tree if it is originary and every element in II is directly above at most one other

element. We call the minimal element of the tree the root.

IT is past-finite if |past(z)| < oo V x € II. Similarly, IT is future-finite if | future(z)| <
oo V z € II. II is past-infinite (future-infinite) if it is not past-finite (future-finite). II

is two-way infinite if it is both past-infinite and future-infinite.

An antichain is a causet all of whose elements are unrelated to each other. An n-

antichain is an antichain with n elements.

A chain is a causet all of whose elements are related to each other. An n-chain is a chain

with n elements.

A path in II is a convex subcauset of II which is a chain.
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An element x € II is in level L in II if the longest chain of which z is the maximal
element has cardinality L, e.g. level 1 comprises the minimal elements. For any x € 11,

L(z) is an integer which denotes the level of x, e.g. L(x) =1 if x is minimal.

The width of II, w(II), is the cardinality of the largest antichain in II. The height of
I, h(II), is the cardinality of the longest chain in II, or equivalently the number of levels
in II.

A post is an element = € II which is related to every other element in II.

A break in II is an ordered pair, (¥, @), of nonempty subsets of II such that
(i) veV,ped = 1h <9, and
(ii) {U, P} is a partition of II.

We call ¥ and ® the past and future of the break, respectively. If Il contains a break
with past ¥ we say that IT contains a W-break. If IT contains a post x with past(x) = ¥

we say that II contains a W-post.

We will often represent a causet using a Hasse diagram, a graph in which elements are
represented by nodes and links are represented by upward-going edges, i.e. there is an

upward-going edge from the node = to the node y if and only if x < y is a link.

A.2 Measure theory

For the benefit of the reader, we present some terminology of measure theory used in
the text. The following is adapted from [Diestel and Uhl, 1977; Kolmogorov and Fomin,
1975].

Let X denote a fixed set. We call X the sample space, history space or space of

histories. An element of X is a history or an outcome.

A system of sets is a set whose elements are themselves sets. In the following, the
elements of a given system of sets are assumed to be certain subsets of X, unless otherwise

stated.
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A nonempty system of sets R is called a ring if AAB € R and AN B € R whenever
A, B € R. Equivalently, a ring is a system of sets closed under finite unions, intersections,

differences and symmetric differences.

A ring of sets is called a o-ring if it contains the union  J 7, A, whenever it contains the
sets Ay, As, ..., A, .... It follows that a o-ring is also closed under countable intersections

and under complements.
A set F is called the unit of a system of sets S if E € S and ANE = A for every A € S.

A ring with a unit F is called an event algebra or algebra. An element of an algebra

is called a measurable event or event.
A o-ring with a unit F is called a o-algebra.

Given any nonempty system of sets S, there is a unique o-algebra o(S) containing S and

contained in every o-algebra containing S. ¢(.5) is called the o-algebra generated by

S.
A system of sets S is called a semiring if
1. S contains the empty set;

2. ANB € S whenever A € S, B € S,

3. if S contains the sets A and A; C A, then A can be represented as a finite union
A = Jp_; Ay of pairwise disjoint sets, with the given A; as its first term.
A set function p is called a (real probability) measure if
1. The domain of definition S, of i is a semiring;
2. p takes values in [0, 1];
3. p is finitely additive in the sense that if A is a set in S, such that A = (J;_, A,

where Ay, ..., A, are pairwise disjoint sets in S, then p(A) = >0 u(Ax).

A measure p with domain of definition S, is said to be countably additive if whenever

A is a set in S, such that A = |J,—, Ay, where Ay, ..., A, ... are pairwise disjoint sets in
S, then u(A) = S35, Ay,
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A measure p is called an extension of a measure m if S, C S, and p(A) = m(A) for
every A € S,,. Given a measure m on S, C S, if there exists an extension p we say

that m possesses an extension or m extends to S,.

A measure (4 is called a restriction of a measure m if S,, O S, and p(A4) = m(A) for

every A € S,,.

Let 2 be an algebra of subsets of X, and let B be a Banach space. Let B* denote the
dual (or conjugate) space of B whose elements b* are continuous linear functions on X
(with respect to the norm topology). A vector measure F' is a finitely additive function

F: A — B. If B=C we say that F' is a complex measure.

Given a vector measure F', its semi-variation ||F|| is defined by

|FI[(E) = sup{[b"F|(E) : [[b"]] < 1}, (A1)

where |0*F| is the variation (definition 5.1.2). If || F||(X) < oo then F' is bounded.

Let (E,) denote a sequence of pairwise disjoint members of 2. F'is strongly additive
if, for any (E,), the series Y, F(E,) converges in the norm topology. F' is countably
additive if, for any (E,) such that | J.~, E, € 2, F(U _, E,) = > -, F(E,) in the norm
topology. F' is weakly countably additive if, for any (E,) such that | J 2, E, € 2,
F(U, E,) =5 ", F(E,) in the weak topology (where the weak topology is the coarsest

topology on B such that each element of B* remains a continuous function).
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