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Abstract

The Quark-Gluon Plasma is the state of matter in which the quarks and gluons are not

bound into hadrons. This form of matter is observed in large systems of particles that can

be produced in collisions of relativistic Heavy Ions, for example, at the LHC at CERN.

Recent measurements reveal the effects which are considered the signatures of the QGP

also in much smaller proton-proton collisions, where they have no clear explanation. The

thesis includes two independent analyses that may shed light on this novel phenomenon.

The analysis of the multiplicity and kinematic distributions of charged particles pro-

duced in association with an Υ meson measured in proton-proton collisions uses the data

collected by the ATLAS experiment at the LHC. The analysis uses a full Run 2 data set

obtained at
√
s = 13 TeV, corresponding to the integrated luminosity of 139 fb−1. At

zero Υ transverse momentum, the associated charged-particle multiplicity drastically dif-

fers for different Υ states. It is by 17±4% fewer for Υ (3S) and by 12±1% fewer for Υ (2S)

than for Υ (1S). These differences are associated with the underlying event of collisions

and decrease with increasing transverse momentum of the Υ states. This measurement is

a direct suggestion of bottomonia suppression in pp collisions at the LHC.

A global study of the momentum distributions of the mesons at LHC energies uses

an empirical transverse mass scaling approach. This study demonstrates patterns in the

spectral properties of mesons related to their quark content and is instrumental in working

out the differences in the spectral shapes of particles with identical quark content and

close masses. Based on the transverse mass scaling assumption, the excited bottomonia

states are found to be suppressed with respect to the ground state by a factor of 1.6 and

2.4 for Υ (3S) and Υ (2S) respectively. The two measurements must be related to the

same physics mechanism and have to be understood together.
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1 Introduction

Correlations between processes characterized by different momentum scales and corre-

lations between “hard” and “soft” particle production are interesting but relatively un-

explored aspects of high-energy collisions. This topic lies at the intersection of several

research directions pursued in the high-energy and heavy-ion research programs at the

LHC. The underlying event (UE) is an important feature of proton-proton (pp) collisions

and is essential to determine the role that multiparton interactions play in the formation

of the final state. Color fields connect all the strongly interacting partons, and so an

unambiguous assignment of particles to the hard scattering partons or UE is not possible.

Despite this ambiguity, observables such as the multiplicity, transverse momentum, and

angular distributions of charged particles are sensitive to the UE [1–3]. In the context

of heavy-ion physics, the UE may reflect the conditions for Quark-Gluon Plasma (QGP)

formation and may also be used as a metric of event activity.

Heavy-flavor (HF) production in high-energy collisions is a sensitive test of our under-

standing of Quantum Chromodynamics (QCD). Several measurements of Υ (nS) mesons

in pp collisions at the LHC [4–11] have been performed, and these have spurred the de-

velopment of refined models based of perturbative QCD (see a recent review in [12] and

references therein). In addition, the Υ meson is a probe expected to undergo energy loss

in the hot dense medium formed in A+A collisions. Based on lattice-QCD calculations,

it is expected that in a QGP medium, heavy quarkonium states will be “sequentially

suppressed” as the deconfined color charges within the QGP will screen the heavy quark-

antiquark (qq̄) pair. See a review in Ref. [13] and references therein. Analyzing the

correlation between the UE and HF meson formation can provide information about the

density and screening of color charges in the produced matter as a function of the size of

the produced system.

Recently the CMS collaboration measured the event activity dependence of the rela-

tive production of Υ (nS) states in pp collisions [14, 15]. Event activity was represented by

charged-particle multiplicity. In these studies, it was observed that the ratios of Υ (2S) to

Υ (1S) and Υ (3S) to Υ (1S) production cross-sections decrease as a function of the charged

particle multiplicity, i.e., more charged particles are present in events with an observed

Υ (1S) than in events with observed Υ (2S) or Υ (3S). Furthermore, the relative Υ (nS)
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production in different event topologies, as quantified by the transverse sphericity depen-

dence, suggested that the differences between Υ (nS) states are not simply a function of

their mass differences and are not due to effects of jets that balance the Υ (nS) momen-

tum. Reference [15] hypothesized that this might be consistent with a suppression of the

excited Υ states at high charged-particle multiplicity.

The goal of my Ph.D. is to understand the physics nature of the modification of the

Υ (nS) production yields observed in pp collisions and its possible relation to the formation

of the QGP in small systems. The Υ (nS) mesons are excellent candidates for such studies

due to their high sensitivity to the presence of the medium in A+A collisions [16] where

it resides. The presence of the three states of the bb̄ quarkonium with close masses and

different binding energies allows conclusive relative comparison of the effects for which the

bb̄ states can be used as a set analog, yet different probes, that are crucial for pp collisions

in which comparison to other (smaller) systems isn’t feasible. In this study, the UE is

inferred through the number of charged particles (nch) which are differentiated into those

that are directly involved in the formation of the Υ state produced and the particles that

belong to the UE of the collision. i.e., are produced in different multiparton scatterings.

This work studies the UE in pp collisions where Υ (nS) states are present, using the full

statistics of LHC Run-2 at
√
s = 13 TeV. This approach differs from the CMS [15] that

measured Υ (nS) rates as a function of the UE multiplicity in several ways. First of all,

measuring charged-particle distributions in collisions with different Υ (nS) states rather

than the Υ (nS) rates as a function of multiplicity allowed better signal extraction and, as

a result, smaller systematic uncertainties. This became possible due to the Pileup (PU)

subtraction method used in this work. Furthermore, it allows handling data collected at

much higher instantaneous luminosities, which in turn opens the possibility of using much

larger
√
s = 13 TeV data. To isolate the effects possibly related to the new physics, one

needs to understand the effects coming from the difference in jet containing the meson or

from the feed-down of upper Υ states into lower states which is assessed using Pythia8

Monte-Carlo physics generator [17].

If the suppression of excited Υ states is indeed the mechanism that is present in pp

collisions, it should be possible to directly measure it in some other unrelated analysis.

The presence of the three Υ states with identical quark content and very close masses

allows doing it based on the first-principle physics assumptions. Particles with identical
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quark content and identical masses shall possess the same kinematic distributions. An

effect caused by a small, less than 10% difference in masses between the states can be

estimated, implying a so-called transverse mass scaling (mT-scaling). The scaling is not

based on any solid physics principles, nevertheless, it has been observed to work with

remarkable precision in many collision systems and in a broad range of incident energies

from the SPS to RHIC, and LHC [18–20]. The observed scaling is different for baryons

and mesons, and this part of the project presents a comprehensive study of the mT scaling

of mesons at LHC energies with a focus on heavier mesons. The analysis uses published

results from pp collisions obtained at
√
s = 7, 8, and 13 TeV by ALICE, ATLAS, CMS, and

LHCb experiments. Global analysis of meson spectra allows us to obtain expectations for

momentum distributions of the excited Υ states that are found to be drastically different

from those that have been measured in the experiment. This is the only known example

of such spectacular ‘failure’ of the mT scaling, which cannot be explained by known other

effects, for example, by the feed-downs coming from heavier particle decays, that have

also been studied.

The thesis is organized as follows. Chapter 2 introduces the theoretical background

for the research project and presents an overview of the current results on observations

of ’heavy-ion’ effects in small collision systems. Chapter 3 discusses experimental char-

acteristics of the ATLAS detector at the LHC. Chapters 4 and 5 present a detailed

measurement procedure for extracting final results. Finally, Chapter 6 discusses the re-

sults of this work in the context of the current status of the field and possible underlying

physics that emerges from these measurements.
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2 Theoretical background and current results

2.1 The Standard Model of particle physics

The Standard Model (SM) [21, 22] is a theory based on the gauge symmetry group. It

describes the properties of fermions and their strong and electroweak interactions. These

interactions are mediated by bosons. The strong force is carried by the massless gluon

(g), the weak force is mediated by the massive vector gauge bosons (W±,Z), and the

electromagnetic force is mediated by the photon (γ). The SM does not describe the

gravitational interaction.

Chapter 2

Fundamental overview

In this chapter, we will start by introducing the general context of Standard Model particles
and their properties. We will present the state of matter called QGP which is believed to
be existed at the early stage of Universe evolution after the Big Bang. We will also discuss
the hadronic collisions, di↵erent components of a collision and the observables which will
later be used for the work presented in this thesis.

2.1 The Standard Model of Particle Physics

The Standard Model (SM) [1, 2] is a theory based on the gauge symmetry group. The
theory describes the properties of fermions (spin 1

2 particles) and their strong and elec-
troweak (EW) interactions. These interactions are mediated by bosons (spin 1 particles).
Among the three fundamental forces: the strong force is carried by the massless gluon
(g), the weak force is mediated by the massive vector gauge bosons (W±, Z) and the
electromagnetic force is mediated by the photon (�). The SM theory can not describe the
gravitational interaction, so this will not be a part of the following discussion.

Figure 2.1: Elementary particles of Standard Model [7]

The SM is composed of three families of fermions which are classified in two kinds: quarks
and leptons (shown in Fig.2.1). Leptons carry either only electric charge or neutral charge

3

Figure 1: Elementary particles of Standard Model [23].

The SM is composed of three generations of matter called fermions. Fermions can

be classified into quarks and leptons (see Figure 1). Leptons carry either only electric

charge (±1 or 0), and quarks carry both color charge and fraction of the electric charge.

The fermions are classified into three generations of particles, where each particle has a

corresponding anti-particle. There are six flavors of quarks and anti-quarks.

The interaction between particles is described by electromagnetic, weak, and strong

interactions. The electromagnetic force governs the interaction among two elementary

particles with an electric charge. The electromagnetic interaction is effective in an infi-

nite range. The electromagnetic interaction theory is called Quantum Electrodynamics

(QED). The weak interaction has a finite range (around 10−18 m). The weak interaction

is unified with the electromagnetic interaction in the electroweak (EW) theory [22, 24].
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Another piece of SM is the Higgs Mechanism. The mechanism that breaks electroweak

symmetry [25] implies the existence of a scalar particle - the Higgs boson H. The discov-

ery of Higgs boson at CERN was reported in 2012 [26, 27]. The strong interaction [28, 29]

acts between particles carrying color charges. The interaction is mediated by gluons which

carry color charge and anti-color charge. Gluons can also interact among themselves. The

theory describing the strong interaction is QCD.

All the leptons in SM can be observed in nature as free particles, as they do not

experience a strong force. On the other hand, quarks and gluons are not seen as individual

particles. This phenomenon is called color confinement. The strong interaction between

color-charged particles forces the quarks and gluons to be confined in hadrons. Hadrons

are colorless. In addition to the valence quarks determining the quantum number of the

hadron, they contain a sea of virtual quarks and gluons, which contribute to the total

energy and momentum. There are two kinds of hadrons - mesons and baryons. Mesons are

composed of a quark-antiquark pair, and baryons are composed of three valence quarks.

Quarks forming particles have different colors and are bound by gluons. In the formalism

of the parton model [30], the constituents of hadrons, quarks, and gluons are referred to

as partons. The scale of strong interaction is the four-momentum transferred between the

partons participating in the hard scattering, Q2. An interaction involving a large transfer

of momentum is called hard, and an interaction involving a small transfer of momentum

is called soft. At the leading order, the strength of the strong coupling is given by the

dependence of the strong coupling constant αs on Q
2 [31] that can be written as

αs(Q
2) =

4π(
11− 2

3
nf

)
ln Q2

Λ2
QCD

(1)

where nf is the number of quark flavors and ΛQCD ≈ 200 MeV is a constant which corre-

sponds to the limit where the perturbative QCD (pQCD) calculations are not applicable

anymore.

The strong coupling constant αs(Q
2) gets asymptotically reduced as Q is increased.

pQCD can then be fully applied to the asymptotic free regime since the strong coupling

constant is small. This phenomenon is known as asymptotic freedom [32, 33]. As seen in

Figure 2, the intensity of the strong force increases when the energy scale is reduced or the

distance is increased. At low Q2, the coupling constant becomes large, such that soft pro-

cesses cannot be calculated using a perturbative expansion. The large distance behavior

of the coupling constant leads to the confinement properties of the strong interaction.
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di↵erent color such as proton(uud), neutron(udd), etc. Protons and neutrons are bound
together to form a nucleus by the nuclear force. The matter observed in nature is made
of atoms which are composed of a nucleus and one or more electrons bound to the nucleus.

In the formalism of the parton model [12], the constituents of a hadron are referred as
partons. The scale of a strong interaction is the four momentum transferred between the
partons participating in the hard scattering, Q2. An interaction involving a large transfer
of momentum is called hard and an interaction involving a small momentum transfer
is called soft. At the leading order the strength of the strong coupling is given by the
dependence of the strong coupling constant (↵s) with Q2 [3] and can be written as:

↵s(Q
2) =

4⇡

(11 � 2
3nf )ln Q2

⇤2
QCD

(2.1)

where nf is the number of quark flavors and ⇤QCD ( ⇠ 200 MeV) is a constant which cor-
responds to the limit where, for smaller energy transfers, the perturbative QCD (pQCD1)
calculations is not applicable anymore.

Figure 2.2: Summary of measurements of ↵s as a function of the energy scale Q [7].

The strength of the strong force gets asymptotically reduced as the energy scale is in-
creased. Perturbative QCD can then be fully applied to the asymptotic free regime since
the strong coupling constant is small. Fig.2.2 shows that at small distances, or high Q2 ,
the strength of the coupling constant ↵s becomes small and this phenomenon is known as
asymptotic freedom [13, 14].

The intensity of the strong force increases when the energy scale is reduced or the distance
is increased as seen in Fig. 2.2. At low Q2, the coupling becomes large, such that soft
processes cannot be calculated using a perturbative expansion. The large distance behavior
of the coupling constant leads to the confinement properties of the strong interaction.

1pQCD is a perturbative treatment of QCD which is valid for small values of ↵s (at large Q2).

5

Figure 2: Summary of measurements of αs as a function of the energy scale Q [23].

2.2 Quark-gluon plasma

At high enough temperatures, exceeding the Hagedorn temperature [34], it is anticipated

that the energy density in the system is high enough that the hadronic matter undergoes a

phase transition to a state where the constituents are not hadrons but quarks and gluons.

Asymptotic freedom implies that the constituents of the matter effectively experience a

weak interaction, and form a liquid of color charges, historically called the QGP [35].

The phase transition is illustrated in the QCD phase diagram shown in Figure 3, where

different phases of nuclear matter are illustrated as a function of the baryon chemical

potential µB (essentially the difference in the number of quarks and antiquarks) and

the system temperature. The phase transition can be triggered by either compressing

the hadronic matter to a large density or heating it to a high temperature. A first-

order transition from partonic matter to hadronic matter is expected at the critical end

point [37]. The temperature at the critical point is known as critical temperature Tc. At

LHC energies, the energy is sufficiently high so that the produced amount of particles

overrides the initial excess in baryon number coming from the colliding nuclei. Therefore,

a balanced amount of produced quark and antiquark pairs yields essentially µB ≈ 0, while

the produced system has high energy density and temperature, around 300 MeV [38]. This

is almost twice the Tc predicted by lattice QCD calculations [39] and previously motivated

by simple fermion gas models [40].
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Figure 3: The phase diagram of nuclear matter as a function of the baryon chemical

potential and temperature of the system [36].

2.3 Heavy ion collisions

Collisions of Heavy Ions (HI) at high energies is a tool to create a QCD matter at extreme

values of energy densities which gives an excellent opportunity to study and test our

knowledge about the theory of strong interaction.

Since nuclei are objects of finite size and area, the collision can have different geome-

tries. A schematic view of a typical collision of two nuclei is shown in Figure 4. The

geometry of the HI collision largely defines the outcome of the interaction. The axes of

the two nuclei are separated by a distance b called the impact parameter. The collision

is central when the impact parameter is small. In this case, the interaction area is large,

and the number of participating nucleons is high. The collision is called peripheral if the

nuclei are colliding with a large impact parameter or ultra-peripheral when nuclei are just

grazing each other. The impact parameter of the interaction is not a measurable quantity

in any real experiment. To categorize HI interaction by initial geometry, an empirical

quantity called ”centrality” is widely used in HI experiments. Centrality is expressed
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Figure 2.4: Illustration of heavy-ion collision.

if the nuclei are colliding with a large impact parameter or ultra-peripheral when nuclei
are just grazing each other. The overlap region of heavy ions is defined by the key param-
eter called centrality, which depends on the impact parameter. Centrality is expressed in
percentiles, where low values indicate more central collisions. The total number of binary
nucleon-nucleon interactions is usually denoted as Ncoll.

The dynamic evolution of a relativistic heavy-ion collision is shown in Fig. 2.5 where
di↵erent stages of the evolution are identified:

Figure 2.5: The space-time evolution of a heavy-ion collision [21]

(a) Pre-equilibrium: The collision of the nuclei takes place at ⌧ = 0. Pre-equilibrium
phase is created in the beginning of the collision by the multiple hard scatterings
between the partons of the nuclei.
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Figure 5: The space-time evolution of a HI collision [41].

Figure 5 illustrates the evolution of the matter created in HI collisions. A thermalized

system of quarks and gluons is formed over a period of time comparable to the duration

of the ion-ion interaction, i.e., a fraction of a fm/c. The matter remains in this state

for approximately 5-10 fm/c, and then, as it expands and cools down, the system passes

through several different stages. First, it hadronizes, and the mesons and baryons formed

in that process actively interact with each other. With further expansion, hadrons cease

interacting inelastically, leading to the “chemical freeze-out” of the system. At later

stages, elastic scattering also ceases, at which time the kinetic properties of the system
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are formed. This is called the “kinetic freeze-out”.

The QGP cannot be measured directly since it exists only for a very short time. It can

be studied indirectly by measuring how the properties of particles and the system produced

in the collision are modified by the presence of the QGP. The production mechanism of

each experimental probe depends on the momentum scale of the process. The hard probes

are the signatures produced in the process involving large momentum transfer and are

created in the initial stages of the collisions. Most of the particles produced in HI collisions

are soft and constitute the bulk of the system. Soft probes are used to study the thermal

and hydrodynamical evolution of the medium.

An empirical quantity widely used in HI studies is the Nuclear Modification Factor

which is a ratio of the yield in the system of study to the yield measured in pp at the

same energy:

RAB (y, pT) =
1

⟨TAB⟩
(1/Nevt) d

2NAB/dydpT
d2σpp/dydpT

(2)

where (1/Nevt) d
2NAB/dydpT is a per-event yield of an observable in the collisions mea-

sured differentially in pT and rapidity y; d2σpp/dydpT is the cross-section measured in

pp collision, and TAB is the geometric quantity called the nuclear thickness function that

accounts for that fact that the per nucleon luminosity in the A+B collision system is

larger than in pp. TAB can be calculated from the nuclei shapes given by the Woods-

Saxon distribution [42]. The RAB consistent with unity means that a HI collision can

be interpreted as a direct superposition of pp collisions implying no nuclear effects. This

behavior is expected in collisions with the large impact parameter, which are pp-like. As

the impact parameter becomes smaller other effects may show up that are reflected in the

RAB.

2.4 Hints of HI physics in small systems

Small collision systems play an essential role in HI studies. Measurements done in pp are

the baseline for understanding larger collision systems, and p+ A collisions are typically

considered a control system to understand the so-called “cold nuclear matter effects”,

i.e., effects that are present in nuclei prior to interaction. Understanding these effects is

critical to untangle final state effects, such as modification caused by the formation of a

hot medium in A+A interactions from the initial state effects. Extensive studies of pp

and p+Pb collision systems have been performed at the LHC to accomplish these goals.
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In turn, the RHIC program included d+Au and later p+Au collisions that constituted

a significant fraction of the collider operation time.

Accumulated knowledge about large collision systems and techniques developed in

their analysis led to a question that gradually became one of the most discussed topics

in the field: What are the minimal conditions at which a QGP may be formed? This

question is a direct consequence of a series of observations that small systems exhibit the

same signatures that are, or at least were previously, attributed to the formation of QGP

in large systems.

One of the first experimental observations of ‘conventional’ HI effects in a small system

was done by the CMS experiment, which measured the two-particle correlations (2PC)

in high multiplicity pp collisions at
√
s = 7 TeV [43]. In HI collisions, this effect was

understood as a result of the hydrodynamic expansion of the QGP, but the phenomenon

found in high multiplicity pp collisions was completely unexpected, and it is still not fully

understood. Followed by extensive studies in many experiments, the 2PC are clearly seen

in the hadronic collision systems of any size, and recently also in photonuclear collisions

as well [44]. Figure 6 shows 2PC measured in three different systems. An elevation at

Figure 6: Two-particle correlation results in Pb + Pb, p + Pb, and pp collisions at the

LHC. A large cos(2∆ϕ) correlation with peaks at ∆ϕ = 0, π, that extend long-range

in pseudorapidity ∆η (magenta curve). A similar feature is observed in p + Pb and pp

collisions. From Ref. [45].

∆ϕ = 0 spans over the entire measured ∆η range is seen in all three systems, demon-

strating the correlation between particle directions even for the particles separated by

significant rapidity gaps. Further measurements of n-particle cumulants demonstrated

that correlations exist between many particles in the event. Refs. [45, 46] and references
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therein review these measurements. It was shown that the initial geometry plays an im-

portant role in the final magnitude of 2PC in small systems [47] and that the mass ordering

observed in A+A systems is also present in small systems (see e.g. Ref [48]), in agreement

with a flowing liquid description of the system (hydrodynamical models become more and

more instrumental in describing collective effects in small systems [49], even though the

applicability of these models is sometimes marginal). Nevertheless, apparent similarities

in the description of 2PC in large and small systems are the first in a line of shreds of

evidence that the QGP scenario can be considered for small systems.

Another consideration that the QGP can possibly be present in small systems is the

measurement of multi-strange particle production by the ALICE experiment [50]. A

comprehensive study of particle abundances containing strange quarks is published in

Ref. [51]. Figure 7 demonstrates it as ratios of particles contacting strange quarks to

particles built out of light quarks only. The strangeness production at the LHC steadily

Figure 7: Ratio of integrated yields of particles containing strange quark to pions at mid-

rapidity as a function of charged particle multiplicity, reported for several collision systems

and energies. Error bars show the statistical uncertainty, boxes show total systematic

uncertainty. From Ref. [51], see references therein.

increases as a function of multiplicity. pp collisions covering up to approximately 30 tracks

is the system where the strangeness contact increases in the most dramatic way. In p+Pb

interactions that reach higher multiplicities up to 50 tracks, the strangeness keeps rising

before reaching the values observed in A+A collisions. Above a hundred charged particles,
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all curves are essentially flat, showing consistency between Pb+Pb and Xe+Xe collision

systems. Thus, the most dynamical region falls in the interval covered by pp collisions,

with about five charged particles per unit of rapidity at these energies, although much

higher multiplicities can also be registered in pp. The remarkable similarity of strange

particle production in pp, p + Pb, Xe + Xe, and Pb + Pb is a demonstration that also

small collision systems exhibit characteristic features known from high-energy heavy-ion

collisions and understood to be connected to the formation of a deconfined QGP phase

at high temperature and energy density.

These measurements bring convincing evidence that small and large systems may have

more in common than once thought. However, up until recently, there existed no evidence

that hard probes are modified in small systems. Measurements of nuclear modification

for charged particles [52] or jets [53] reveal no evidence of the onset of the QGP in

small systems. A plausible explanation for that might be that the medium created in

such collisions is small, so an average path of energetic partons that loses energy in such a

system is also short; therefore, the hard scattering processes are only modestly affected by

scattering on other partons in the medium. A discussion of the absence of jet quenching in

small systems given in Ref. [45] lists theoretical works that successfully reproduce nuclear

modification measured in large and small systems. One can still speculate that although

the QGP can possibly be formed in small systems and affect partons produced in hard

scattering during the final stage of the system evolution, its impact is insufficient to be

measured with the current precision of detectors using available data samples. On the

other hand, the question about the formation of the QGP in small systems demands some

convincing (positive or negative) confirmation from the hard probe sector observables.

Direct measurement of jet quenching in small systems is challenging, and even if

observed, the effect may have an alternative explanation [54]. This motivates us to explore

hard probe observables that would be more sensitive to droplets of QGP possibly formed in

small systems. Among signatures of QGP measured in A+A systems, different observables

have different magnitudes. Since 2PC and strangeness enhancement both show significant

effects in pp, this system seems more interesting than p + Pb, especially because pp has

orders of magnitude larger statistical samples than p+ Pb at the LHC.

Perhaps, the cleanest demonstration of jet quenching in A+A collisions is the mod-

ification of the energy balance between the leading jet and a photon that is reduced by
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approximately 15–20% in the most central Pb+Pb collision [55], see left panel of Figure 8.

Measurements of di-jets lead to approximately the same magnitudes of misbalance [57] in
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Figure 8: Left: Summary of the total per-photon jet yield Rγ, calculated in the region

xJγ > 0.5, as a function of the mean number of participating nucleons Npart in different pγT

intervals. The bottom panel shows the difference between Pb+Pb centrality selection and

pp collisions [55]. Right: Compilation of results for the nuclear modification factor RAA

vs number of participating nucleons Npart in different channels from the Run 2 Pb + Pb

and pp data [56].

the most central A+A collisions. These results come with systematic uncertainties equal

to 15–30% for the difference between the most central and peripheral collisions. Taking

anticipated magnitudes of the effect in pp of an order of 1% based on calculations pub-

lished in Ref. [54], it is clear that finding any modification of this observable due to QGP

in pp data would be very difficult.

The right panel of Figure 8 presents various observables [58] measured in Pb + Pb

by the ATLAS experiment that shows the signatures of the QGP formed in the most

central collisions. Production of charged hadrons in 26 < pT < 30 GeV is reduced by a

factor of 4. Also, charged hadron modification can be measured with significantly higher

accuracy. The high sensitivity of this observable is due to a combined impact of several

factors: parton energy loss as discussed above, modification of the jet fragmentation that

can also be measured independently, and steepness of the charged particle spectra at a

given energy.

Since the present study is focused on small systems, the modification of hard probe

observables is also expected to be small. Furthermore, hard probes, where such mea-
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surements have not yielded a definitive statement, are rare and require high statistics.

Therefore, it is advantageous to explore the most sensitive probes of the QGP, character-

ized by the widest dynamic range in large systems, although comparing the sensitivity of

different observables to the onset of the QGP is not at all straightforward. Nevertheless,

the suppression of Υ (nS) can be considered as one of the sensitive observables. Figure 9

shows the nuclear modification of different meson states in Pb+Pb collisions as a function

of event centrality, where the level of Υ (1S) suppression reaches the same magnitudes as

Figure 9: Nuclear modification factors for different Υ states as a function of ⟨Npart⟩ [16].

for other hadrons, shown in Fig. 8, but Υ (3S) disappears already at Npart = 50, which

suggests that measuring it in small systems would be sensitive to the onset of the QGP.

Such a measurement (although not presented as such) was recently published by the

CMS experiment [15]. Figure 10 shows the Υ (2S)/Υ (1S) and Υ (3S)/Υ (1S) yield ratios in

different intervals of pT as a function of charged particle multiplicity. This measurement

shows that in pp collisions, the yields of excited Υ (nS) states are suppressed with respect

to lighter states as the event multiplicity grows. The effect is stronger at lower pT of

Υ (nS). By analyzing event sphericity, the CMS related the observed effect to the relative

importance of jet-like particle production vs. underlying event (UE) particle production,

and the statement that is made about their measurement in the Discussion section of
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Figure 10: Ratios of Υ (2S)/Υ (1S) (left) and Υ (3S)/Υ (1S) as a function of multiplicity of

charged particles measured by the CMS experiment. From Ref. [15]

the paper is the following: “It was concluded that the feed-down contributions cannot

solely account for this feature. This is also seen in the present analysis, where the Υ (1S)

meson is accompanied by about one more track on average (ntrk = 33.9 ± 0.1) than the

Υ (2S) (ntrk = 33.0 ± 0.1), and about two more than the Υ (3S) (ntrk = 32.0 ± 0.1). [...]

One could argue that, given the same energy of a parton collision, the lower mass of the

upsilon ground state compared to the excited states would leave more energy available for

the production of accompanying particles. On the other hand, it is also true that, if we

expect suppression of the excited states at high multiplicity, it would also appear as a shift

in the mean number of particles for that state (because events at higher multiplicities would

be missing).”

2.5 Quarkonium production

Quarkonia are bound states of quark and antiquark. Bound states of cc̄ are called charmo-

nia, and bb̄ states are known as bottomonia. The hadron-hadron interaction can produce

a pair of quark and antiquark via QCD-annihilation or via gluon fusion and splitting.

At the LHC, the large distribution of gluons inside each proton makes the gluon fusion

the dominant channel for large-Q2 and small-x processes. The pre-quarkonium state

formed has to emit gluons to equilibrate its degrees of freedom of angular momentum

and/or color. There are various ways to recover the proper quantum numbers for each

quarkonium wave function, shown in Figure 11, and some models have been proposed

to describe the production process (for example, Color Evaporation Model [59], Color
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Singlet Model [60], Non-Relativistic QCD model [61]).
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parameterisation, or BT (black solid lines)

of the potential. The corresponding LC wave functions for
ϒ(1S), ϒ ′(2S) and ϒ ′′(3S) mesons are shown in Fig. 4.

We have also performed calculations of the wave func-
tions and total elastic electroproduction cross sections for
a number of different cc̄ (1S and 2S) and bb̄ (1S, 2S and
3S) vector meson states for five distinct parameterisations of
the interquark potentials and five different parameterisations
for the dipole cross sections, σqq̄(r, x). Since the number
of possible combinations of the parameterisations and states
can be rather extensive, as a part of this project, we created
a webpage on https://hep.fjfi.cvut.cz/vm.php, where one can
find numerical datasets (grids) for each vector meson state
(Figs. 3 and 4), interquark potential (Fig. 2) and the dipole
parameterisation (Fig. 5).

The datasets are available for vector meson wave functions
in the forms of a 3D radial solution of the Schrödinger equa-
tion in the QQ̄ rest frame, ψ(r̃) [shown in Eq. (B6)], the
boosted LC wave function in momentum space, ψ(pT , z),
given by Eq. (3.6), and the boosted LC wave function in
impact parameter space, ψ(r, z), given by Eq. (3.7). An inter-
polating routine written in C++ (including also an example

for calculations) is also available on the same webpage. The
web interface enables to generate plots for the electroproduc-
tion cross sections for a selected combination of the quarko-
nium wave function generated by the explicit Q− Q̄ potential
with the explicit dipole model for σqq̄(r, x). Calculations can
be performed including or neglecting the Melosh spin rota-
tion effects. Numerical results can be presented also in the
form of a table, which can be used for practical purposes.

4 Dipole cross section

The essential ingredient of the color dipole approach, the
universal dipole cross section σqq̄(r, x), has been first intro-
duced a long ago in Ref. [13]. During past three decades, its
kinematic (and energy) dependence has undergone remark-
able development largely promoted by precision experimen-
tal information from the HERA collider. While an exact the-
oretical modelling of the dipole cross section (and the cor-
responding partial dipole amplitude) is not nearly close to
its complete understanding, a number of phenomenological

123

Figure 11: Wave functions for Υ mesons for different quark momentum fractions z [62].

The distribution function is generated by two models for the bb̄ interaction potential:

harmonic oscillator model denoted as HAR(green dotted lines) and Buchmuller-Tye pa-

rameterization, or BT(black solid lines).

Associating a quark and an antiquark of the same flavor in a bound state will result in

constrained spectroscopy. One can model an effective quarkonium potential of the form

V (r) = κr − αCoul.

r
(3)

that considering a non-relativistic interaction potential for two quarks Q and Q̄ [63], where

the string tension κ depends on the temperature T , and solves the Schrodinger equation

to extract spectroscopy, i.e., energy levels that can be compared to experimental data by

simply measuring the mass of each discovered resonance.

A variety of bound states corresponding to different radial (quantum number nr) and

orbital momentum (quantum number L) excitations and to different configurations of

the quark spins (total spin S) are expected. The mass of each quarkonia state depends

primarily on n and L [64]. Relativistic effects generate fine splittings as a result of spin-

orbit and tensor interactions and hyperfine splittings arising from spin-spin interactions.

The spin-parity of a given mass level is determined by its intrinsic quantum numbers:

|L− S| ≤ J ≤ |L+ S|, P = (−1)L+1, C = (−1)L+S. To denote different bb̄, as well as cc̄,

levels, the spectroscopic symbol n2S+1LJPC is used.

For both charm and beauty, the spectroscopy begins with a ground state with quantum

numbers nr = 0, L = 0, S = 0, and J = 0, which is usually identified as an ηc or an

ηb mesons. One finds higher energy bound states of various quantum numbers up to the

D0D̄0 threshold or the B0B̄0 threshold for charm and beauty, respectively. Above the

threshold, the initial QQ̄ system contains enough rest energy to decay dominantly in D
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or B mesons. The bottomonium spectroscopy is depicted in Figure 12. Table 1 represents

40 Chapter 2. Aspects of quarkonium physics

Figure 2.3: Charmonium spectroscopy. The abscissae are JPC indices (spin, parity,
charge conjugation). From [62].

or B mesons. Resonances existing above this threshold are far wider, as for example
⌥(4S),⌥(5S),⌥(6S). For these, all OZI-favored hadronic transitions are measurable,
hence their very large width (for example �(⌥(4S))/�(⌥(nS)) ⇡ 500 for n < 4).

The charmonium spectroscopy is depicted in Figure 2.3. All states appearing are
below the DD̄ threshold. Other states have been discovered, for which a very conse-
quent review is done by the Quarkonium Working Group [51]. The simplest possible
transitions are drawn with arrows, and correspond to radiative deexcitations (dipolar
electric E1 transitions) or emission of one or several light hadrons.

Figure 2.4: Bottomonium spectroscopy. The abscissae are JPC indices (spin, parity,
charge conjugation). The vertical axis, not displayed, would represent increasing the-
oretical rest masses. From [62].

For bottomonia, the picture is somewhat more complicated by the larger gap be-

Figure 12: Bottomonium decay modes with spectroscopy notation [65].

the latest and the most accurate measurements of mass, full width, binding energy, and

the most important decay modes for the three Υ states [23]. It is important to note

the feed-down contribution. The Υ (2S) has around 18% probability of decaying into the

Υ (1S) state plus two pions. The χb mesons can decay into Υ state and a photon. The

Υ (3S) can also decay into Υ (2S) plus two pions or γγ, or into Υ (1S) ππ.

The theoretical study of the quarkonium production mechanism involves both pertur-

bative and non-perturbative aspects of QCD. First, the creation of a QQ̄ pair occurs at

a short distance scale and can be calculated in a perturbative approach. The QQ̄ pair

creation involves a momentum transfer of the order of heavy quark mass mQ, higher than

the QCD scale parameter ΛQCD. Then, the evolution of the QQ̄ pair into the physical

quarkonium is non-perturbative. The typical momentum scale in such a case is the mo-

mentum of the heavy quarks, mQv, in the bound state rest frame, where v is the velocity

of the heavy quark or antiquark in the quarkonium rest frame. An overview of models

describing quarkonia production can be found in [13].
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State Υ (1S) Υ (2S) Υ (3S)

m (MeV/c2) 9460.30± 0.26 10023.26± 0.31 10355.2± 0.5

Γ (keV/c2) 54.02± 1.25 31.98± 2.63 20.32± 1.85

Eb (MeV) 1099 536 204

Main hadronic decays ggg (81.7%) ggg (58.8%) ggg (35.7%)

γgg (2.2%) γgg (8.8%) Υ (2S)π+π− (2.8%)

η
′
anything (2.9%) Υ (1S)π+π− (17.9%) Υ (2S)π0π0 (1.9%)

D∗(±) anything (2.5%) Υ (1S)π0π0 (8.6%) Υ (2S)γγ (5.0%)

Υ (1S)π+π− (4.4%)

Υ (1S)π0π0 (2.2%)

Main leptonic decays e+e− (2.4%) e+e− (1.9%) seen

µ+µ− (2.5%) µ+µ− (1.9%) µ+µ− (2.2%)

τ+τ− (2.6%) τ+τ− (2.0%) τ+τ− (2.3%)

Table 1: Summary of the most important characteristics of Υ states. The percentages

near the decay modes are the branching ratios [23].

3 Experimental methods

This chapter presents an overview of the kinematic variables, the Large Hadron Collider,

and A Toroidal LHC Apparatus (ATLAS). We will also present a detailed description of

different ATLAS sub-detectors.

3.1 Kinematic variables

In high-energy physics, particle kinematics is expressed in terms of azimuthal angle ϕ and

polar angle θ, which at high energies is naturally replaced by its Lorenz-boost translator

quantity called rapidity y (or pseudo-rapidity η). The z-axis is chosen colinear with the

beam direction. Particle momentum, denoted p, has a longitudinal component pz along

the beam direction, whereas the other two components px, py are typically combined into

the transverse momentum pT, defined as

pT =
√
p2x + p2y. (4)
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The rapidity y is defined in terms of particle kinematics and can be written as

y =
1

2
ln
E + pz
E − pz

, (5)

where E is the energy of a particle, E =
√
p2 +m2, where m is the particle rest mass.

The pseudo-rapidity η, mentioned earlier, is the limit η = lim
p≫m

y. Measuring pseudo-

rapidity does not require knowledge of particle mass and therefore is directly related to

the polar angle θ:

η = − ln

(
tan

θ

2

)
. (6)

3.2 The Large Hadron Collider

The Large Hadron Collider (LHC) is the largest and the most complex particle acceler-

ator. The facility has a circumference of 26.7 km and is built at European Organization

for Nuclear Research (CERN) about 100 meters underground across the French-Swiss

border [66]. It consists of a two-ring-superconducting hadron accelerator. Two high-

energy particle beams travel in opposite directions in the ultrahigh vacuum beam pipes.

These beams collide at four locations around the accelerator ring, where four main exper-

iments are located: ATLAS, CMS, ALICE and LHCb. Figure 13 represents the CERN

accelerator complex.

A Toroidal LHC Apparatus (ATLAS) [68] and the Compact Muon Solenoid (CMS) [69]

are general purpose physics experiments, designed to measure established SM processes,

detect the Higgs boson and potential physics beyond the SM. Apart from proton-proton

collisions, these two experiments study HI collisions as well.

A Large Hadron Collider beauty (LHCb) [70] experiment is mainly focused on heavy-

flavor physics. It was designed primarily to measure the parameters of CP violation in

the interactions of b-hadrons. LHCb can also be operated in a fixed-target mode and

investigate cosmic ray physics.

A Large Ion Collider Experiment (ALICE) [71] was designed to study the hot and dense

medium created in HI collisions. ALICE uses pp and p + Pb primarily as a reference for

Pb + Pb measurements but also as a standalone physics program.
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Chapter 4

Experimental facility

In this chapter we will present an overview of the Large Hadron Collider (LHC) and A
Large Ion Collider Experiment (ALICE). We will also present detail description of di↵erent
ALICE sub-detectors which are related to the work presented in this thesis.

4.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is the largest and most complex particle accelerator.
The facility has a circumference of 26.7 km and is built at European Organization for
Nuclear Research (CERN) about 100 meters underground across the French-Swiss bor-
der [82]. It consists of a two-ring-superconducting hadron accelerator. Two high-energy
particle beams travel in opposite directions in the ultrahigh vacuum beam pipes. These
beams collide at four locations around the accelerator ring, where four main experiments
are located: ATLAS, CMS, ALICE and LHCb. Fig. 4.1 represents the CERN accelerator
complex.

Figure 4.1: Schematic view of the CERN accelerator complex and its four largest experi-
ments [83].

A Toroidal LHC Apparatus (ATLAS) [84] and the Compact Muon Solenoid (CMS) [85]

41

Figure 13: Schematic view of the CERN experimental complex and its four largest ex-

periments [67]

3.3 ATLAS experiment

The ATLAS detector [72] at the LHC covers nearly the entire solid angle around the

collision point.The collision point is surrounded by inner tracking devices followed by a

superconducting solenoid providing a 2 T magnetic field, a calorimeter system, and a

muon spectrometer. Below we discuss the main detector subsystems and their properties.

3.3.1 Inner detector.

The inner-detector (ID) system is immersed in the magnetic field and provides charged-

particle tracking in the range |η| < 2.5. To satisfy the physics requirements of physics

analyses for the vertex and momentum resolution, the tracking system is designed as a

multi-layer silicon detector. This enables the hit reconstruction through robust pattern

recognition and high precision in both R-ϕ and z coordinates.

The first hit is usually detected in the insertable B-layer [73–75] and followed by

three more layers of the silicon pixel detector and four double layers of silicon microstrip

trackers (SCT). These silicon detectors are complemented by the transition-radiation

tracker (TRT), which enables radially extended track reconstruction up to |η| = 2.0. In
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HI collisions, the TRT is not used in the track reconstruction due to very high occupancy

in its channels. The ATLAS ID system cross-section summary is shown in Figure 14.

Figure 14: The layout of the ATLAS inner tracking detector: IBL, Pixel, SCT and TRT

detector layers [75].

The primary vertex resolution improves with more activity in collisions, so in pp

collisions, it ranges from 30 µm for events with 70 tracks to about 80 µm for events

with 20 tracks, while in HI collisions, it exceeds 10 µm. The momentum resolution of the

tracking system depends linearly on the track momentum both in pp and A+A systems,

and it grows in the forward η region. Typically, for |η| < 1.9, it ranges from 3% up

to 10 GeV and rises to approximately 10% at 100 GeV. For more forward tracks, the

momentum resolution worsens from 8% to 15% in the same momentum range.

3.3.2 Calorimeters.

The two main components of the ATLAS calorimetry system are the Liquid Argon (LAr)

Calorimeter and the Tile Hadronic Calorimeter (TileCal). They cover a wide range of

|η| < 4.9 and are designed to stop and measure the energy loss of electrons, photons, and

charged hadrons (jets). The total thickness of the electromagnetic (EM) calorimeter is

larger than 22 radiation lengths (X0) in the barrel and larger than 24 (X0) in the end-

caps. The approximate 9.7 interaction lengths (λ) of the active calorimeter in the barrel

(10λ in the end-caps) are adequate to provide a good resolution for high-energy jets. The

cross-section view of the ATLAS calorimeter system is shown in the left panel of Figure 15

with all the subsystems.

LAr calorimeters are divided into EM barrel (|η| < 1.475) and end-cap (1.375 < |η| <
3.2), LAr hadronic end-cap calorimeter (1.5 < |η| < 3.2) and LAr forward calorimeter
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(3.1 < |η| < 4.9). They are placed inside three aluminum cryostats and supplied by

liquid Argon at -183 ◦C. The operation technology is based on the noble-liquid sam-

pling calorimetry where alternating layers of absorbers (lead or copper) and active gas

components with high-voltage Kapton electrodes are used to degrade the energy of an in-

cident particle and measure the ionization signal coming from the EM or hadronic shower.

Electrodes are arranged in the accordion geometry that provides complete ϕ symmetry

without azimuthal cracks. The energy resolution for the EM barrel and end-cap is about

10%/
√
E. A schematic representation of the EM calorimeter basic structure is shown in

the right panel of Figure 15. The barrel calorimeter consists of two identical half-barrels,

separated by a small gap (4 mm) at z = 0. Each end-cap calorimeter is mechanically

divided into two coaxial wheels: an outer wheel covering the region 1.375 < |η| < 2.5,

and an inner wheel covering the region 2.5 < |η| < 3.2.

Figure 15: (Left) Side-view of the ATLAS calorimeter system [76]. (Right) Schematic

view of the structure of the ATLAS EM calorimeter [77].

The forward calorimeters (FCals) are located in the same cryostat as the end-cap

calorimeter, and they consist of three modules in each end-cap: the first, made of copper,

are optimized for electromagnetic measurements, while the other two, made of tungsten,

measure predominantly the energy of hadronic interactions. Due to a very high incoming

particle flux, the design of the FCal modules is based on the electrode structure of small-

diameter rods centered in tubes that are oriented parallel to the beam direction. The LAr

gaps, which are the sensitive element, are smaller than 2mm. The energy resolution of

FCal is about 100%/
√
E.

LAr hadronic end-cap calorimeter (HEC) provides hadronic coverage and provides an
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energy resolution of about 60%/
√
E. It has parallel copper plate absorbers orthogonal to

the beam axis assembled into two consecutive wheels. The FCal consists of three modules

in each end-cap: the first, made of copper, is optimized for electromagnetic measurements,

while the other two, made of tungsten, measure predominantly the energy of hadronic

interactions. The energy resolution of the EM layer is about 30%/
√
E and of the hadronic

modules around 80%/
√
E [78].

TileCal is a sampling calorimeter using iron as absorber material and scintillating

tiles as an active material. It is placed directly outside the EM calorimeter. Both sides

of the tiles are read by wavelength-shifting fibers into two separate photomultipliers. The

calorimeter is split into a barrel and two extended barrel parts. It provides an energy

resolution of approximately 40%/
√
E for pions.

In addition to the calorimeters described above, the ATLAS system also uses Zero-

Degree Calorimeters (ZDC) for detecting forward neutrons with |η| > 8.3 in HI collisions.

The ZDC are divided into two arms and resides inside the TAN (Target Absorber Neu-

tral) absorber ±140 m from the interaction point. Their design is based on scintillating

sampling calorimeter technology using quartz rods as an active material readout by pho-

tomultipliers and tungsten and steel as absorption material. The single neutron energy

resolution for the spectator neutron energy of 2.51 TeV is about 17%. By requiring a

tight coincidence from the two arms of the ZDC, background processes from beam-gas,

and beam-halo effects can be significantly reduced. The ZDC coincidence is also a basis of

the minimum-bias (MB) trigger algorithm in HI collisions. Such triggers are designed to

collect a large fraction of the total inelastic Pb+Pb cross-section while introducing as little

selection bias as possible. By requiring a single-sided ZDC signal or no signal in the ZDC

(below the energy of a single neutron), one can tag photon-nuclear and ultra-peripheral

EM processes that leave one or both of the incident nuclei intact.

3.3.3 Muon spectrometer

The Muon Spectrometer (MS) was designed to detect muons in the pseudorapidity region

up to |η| = 2.7 and to provide better momentum resolution measurement in the central

part of the detector after combining the information with the ID. The measurement

technology is based on the magnetic deflection of muon tracks in the large superconducting

air-core toroid magnets, instrumented with separate triggers and high-precision tracking
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chambers. The layout of the MS is shown in Figure 16. The magnetic system consists of a

barrel toroid magnet that covers the regions of |η| < 1.4 and two smaller end-cap toroids

that deflect muons in the region 1.6 < |η| < 2.7; the magnetic field in the transition region

is provided by a combination of both barrel and end-cap magnets. The bending power

of the magnets, quantified as
∫
Bdl where integral is evaluated between the first and the

last chamber, is in the range from 1 to 7.5 Tm.

Figure 16: The layout of the ATLAS muon spectrometer with all types of muon chambers

indicated [76].

Precision tracking of muons is done by Monitored Drift Tubes (MDTs) in the coverage

of |η| < 2.7. A basic measuring element is a gas-filled tube, 1–6m long, with an anode

that is at +3300 V so that it creates an avalanche of ionization electrons created by an

incident muon. The gas mixture used is Ar-CO2 (93–7%) at 3 bar, where Ar ensures a large

primary ionization yield and CO2 is a quencher gas that absorbs the UV photons from

excited Ar atoms. The tubes are assembled into multilayers inside chambers that finally

provide 50µm position resolution (single drift tube resolution is about 80 µm). Muon

momentum resolution measured with MDTs is from 2–4% for muons from 10–200 GeV

and rises to 12% for 1 TeV muons.

In the region |η| > 2, the counting rate exceeds the MDT requirements for safe op-

eration (above 150 cm2s−1). Therefore, MDTs are replaced with cathode-strip chambers

32



(CSC), which are multiwire proportional chambers with the wires oriented in the radial

direction and segmented into strips to provide the position measurements. The position

resolution of the CSC plane is 60 µm with a good two-track resolution. CSC can be

operated safely up to 103 cm2s−1 rate.

An additional detector subsystem is installed inside the MS for triggering purposes.

In the barrel (|η| ≤ 1.05), Resistive Plate Chambers (RPCs) are used, which are gaseous

parallel electrode-plate detectors. They have good spatial (∼1 mm) and time resolu-

tion (about 2 ns) as well as adequate rate capability. In the end-cap region, Thin Gap

Chambers (TGCs) have been selected, which operate on the same principle as multi-wire

proportional chambers, and they provide good time resolution (∼4 ns) and high rate

capability.

Trigger system A two-level trigger system is used to select events for this analy-

sis. The first-level trigger is implemented in hardware and uses a subset of the detector

information. High-pT muons are identified using RPC and TGC signals as described

above. Calorimeter selections are based on reduced-granularity information from all the

calorimeters. Results from the L1 muon and calorimeter triggers are processed by the

central trigger processor, which implements a trigger ”menu” made up of combinations

of trigger selections. There is a possibility of implementing additional ”event prescales”,

which further reduce the recorded output rate for each trigger in the menu. The L1 trigger

sequence is followed by the software-based High-Level Trigger (HLT) system, which can

run offline reconstruction and calibration software, further reducing the event rate. An

example of this is quality requirements applied to the EM shower associated with electron

and photon HLT objects.
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4 Analysis 1: Correlation of Upsilon meson produc-

tion with the UE

While this analysis was in work, the CMS experiment published the results [15], which

investigate the same physics phenomenon as is studied in this work. The outcome of

the CMS publication is discussed in Section 1. To make statements that go beyond the

admissions of the CMS experiment, this analysis uses a different approach.

Instead of measuring the Υ (nS) yield as a function of the number of charged particles

as a proxy for the size of the Underlying Event, the UE properties are measured for

different Υ (nS) states in different intervals of meson pT. This technical change allows a

more thorough investigation of the nature of the Υ (nS) suppression in pp collisions that

may lead to a more conclusive statement about the nature of this phenomenon. The

analysis uses
√
s = 13 TeV data with more significant statistics, which is possible due to

the pileup (PU) subtraction technique developed by the group of the Weizmann Institute

of Science and used in a previous ATLAS measurement [79].

Even the first look at the ATLAS ‘raw data’ shown in Figure 17 reveals significant
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Figure 17: Black: ⟨nch⟩ vs. the invariant mass of the dimuon. Red: invariant mass

distribution. Tracks are matched to the dimuon vertex, dimuons are matched to the

trigger.

differences in the number of tracks (ntrk) in collisions with different Υ (nS) states. The
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figure shows invariant mass distribution (mµµ) plotted with red markers superimposed

on the graph of ⟨ntrk⟩ in a collision plotted with black markers. Combining two different

quantities on the same plot follows the purpose of visual comparison. This comparison

clearly shows that in the region of Υ (nS) peaks, there are fewer tracks when in the

region of the “substrate”. The substrate is formed by combinatorial muon pairs coming

from di-jets and the Drell-Yan. The average multiplicities, shown in black, are ⟨ntrk⟩ =
f⟨ns

trk⟩ + (1 − f)⟨nb
trk⟩, where ns

trk and nb
trk are signal and background multiplicities and

f = f(mµµ) is the signal fraction. Note that the ⟨nb
trk⟩ has to be approximately the same in

the entire mass interval because at the limits of the interval where the contribution from Υ

mesons is small, the average values of the substrate ⟨nb
trk⟩ are consistent within 1 – 2 tracks.

If the ⟨ns
trk⟩ would also be the same for each of the three Υ (nS) states, the black curve

would mirror the shape of the Υ -peaks in the red curve ⟨ntrk⟩ ∝ 1−
(
1−⟨ns

trk⟩/⟨nb
trk⟩
)
×f =

1 − Const × f(mµµ). This is clearly not the case because the black curve in the Υ (3S)

mass region is just slightly higher than in the Υ (1S) mass region, suggesting that the

signal fraction f is comparable, but this clearly contradicts the red curve, which shows

very different signal fractions in Υ (3S) and Υ (1S) mass regions. Thus ⟨ns
trk⟩ cannot be

the same for all Υ (nS) states.

This analysis utilizes two types of different objects, Υ (nS) produced in hard scattering

processes and soft hadrons that build the UE of the collision. In the course of analysis,

some steps are intended for correcting Υ yields while others deal with charged particles.

The sequence of operations performed in the analysis follows the goal of minimizing final

uncertainties. For example, fitting the invariant mass distributions is done for all UE

multiplicities and all PU conditions to increase the accuracy of the fitting. Also, since the

analysis was performed in a somewhat exploratory manner, i.e., without clear knowledge of

what variables would be most important for the final statement, the analysis is performed

to keep maximum flexibility. For example, all track-based corrections are implemented as

weights on a track-by-track basis so that any kinematic distribution with tracks can be

constructed from the data.

4.1 Data samples

The analysis is based on the entire Run-2 statistics acquired by the ATLAS detector in

2015–2018 from pp collisions produced by the LHC at
√
s = 13 TeV. Data were recorded
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in Main and BPhysLS physics data streams. Events are selected by dimuon Υ triggers1

listed in the Table 2.

Text Name Full HLT Trigger Name 2015 2016 2017 2018

2mu4 2mu4 bUpsimumu 3.1

2mu4 bUpsimumu L1BPH-... 6.9

mu6mu4 mu6 mu4 bUpsimumu 3.9 9.5 [1.7]

mu6 mu4 bUpsimumu L1BPH-... [30.1] [42]

2mu6 2mu6 bUpsimumu 3.9 20 [2.6]

2mu6 bUpsimumu L1BPH-... 47.5 62.8

mu10mu6 mu10 mu6 bUpsimumu 25.1 3

mu11mu6 mu11 mu6 bUpsimumu [48.9] [62.9]

mu11 mu6 bUpsimumu L1LFV-MU11 [62.7]

2mu10 2mu10 bUpsimumu 3.9 29.6 [48.9] [62.9]

Table 2: LHC Run-2 statistics in fb−1 of the dimuon Υ triggers used in this analysis.

The number in square brackets indicates that the trigger was recorded in the BPhysLS

stream, whereas without brackets in the Main stream.

There are several official ATLAS Monte Carlo samples of three different states of

Upsilon mesons used to estimate tracking performance and fit dimuon mass spectra. In

addition, standalone Pythia8 with the A14 tune was run to produce generated-level

distributions. The primary purpose of this production was to generate large statistics

of prompt and feed-down Υ (nS) production, and this truth-level standalone Pythia8

production is used only for comparison with the fully corrected data and not for calculating

corrections or any other data analysis, which is done with the official ATLAS MC samples.

1Full trigger names are:

HLT 2mu4 bUpsimumu L1BPH-1M19-2MU4-BO BPH-0DR34-2MU4

HLT mu6 mu4 bUpsimumu L1BPH-8M15-MU6MU4 BPH-0DR22-MU6MU4-BO

HLT 2mu6 bUpsimumu L1BPH-8M15-2MU6 BPH-0DR22-2MU6
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4.2 Event and track selections

The main goal of event and track selections is to minimize systematic uncertainties by

selecting high-quality data for the physics analyses. The Υ (nS) mesons are reconstructed

from their decay to oppositely charged muon pairs. All events are selected according to

detector quality conditions during the data taking summarized in the ”Good Run List”

(GRL) to ensure a high quality of events selected for the analysis. Each event is assigned

to only one trigger, listed in Table 2, by matching reconstructed muons to HLT objects

using standard ATLAS tools [80]. Four muon types are defined depending on which

subdetectors are used in reconstruction:

• Combined muons - track reconstruction is performed independently in the ID and

MS, and a combined track is formed with a global refit that uses the hits from both

ID and MS subdetectors.

• Segment-tagged muons - a track in the ID is classified as a muon if it is associated

with at least one local track segment in the MDT or CSC chambers.

• Calorimeter-tagged muons - a track in the ID is identified as a muon if it can

be mathced to an energy deposit in the calorimeter compatible with a minimum-

ionizing particle.

• Extrapolated muons - the muon trajectory is reconstructed based only on the MS

track and a loose requirement on compatibility with originating from interaction

point.

In the offline analysis, muons are reconstructed as combined tracks spanning both the

inner-detector system (ID) and the muon spectrometer (MS). Muons are required to

fall within the fiducial acceptance of the ATLAS detector, defined as pµT > 4 GeV and

|ηµ| < 2.4. This offline selection is used for the data obtained with the lowest muon pT

trigger. For the data samples obtained with higher muon-pT triggers, the offline selection

uses higher pT values, matching the nominal momentum of the trigger. Tight quality

requirements are imposed on the muon track both in the ID and MS to suppress back-

grounds [81]. Muons associated with a common vertex must have a longitudinal impact

parameter of less than 0.5 mm, and the significance of the transverse impact parameter

is required to be less than 3.
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Events with two oppositely charged muons that satisfy these criteria and are matched

to HLT objects are selected for analysis. The muons are required to form a pair with

invariant mass in the interval 8.2 ≤ mµµ ≤ 11.8 GeV, and within the rapidity |yµµ| < 1.6.

The rapidity condition is used to avoid detector regions where the acceptance is different

for different Υ (nS) states. The dimuon vertex is required to be within |zvtx| < 140 mm

(see Section 4.5.1). An event is also required to pass the PU cleanup procedure and have

instantaneous luminosity, which is the actual number of interactions per bunch crossing,

µ < 50 (see Section 4.3).

Only primary charged particles, with pT between 0.5 and 10 GeV, and |η| < 2.5,

are considered in the analysis. These are defined as particles with an average lifetime

τ > 0.3×10−10 s and produced directly in the interaction or those from decays of particles

with a shorter lifetime. Charged particles are identified as tracks reconstructed in the ID.

Tracks are required to pass a set of quality requirements in the ID according to the track

reconstruction model [82] and to have pT and η in the same range defined as the charged

particle acceptance. Muon tracks coming from Υ decays are used only to reconstruct the

Υ state and are not counted as charged particles. Only tracks that fall within 0.5 mm

from the averaged vertex position in the transverse direction and within 0.75 mm from

the position of the vertex associated with muons in longitudinal directions are considered.

The latter conditions significantly reduce the number of PU tracks selected for the analysis

but do not eliminate them completely.

4.3 Evaluation of the PU

Pileup, specifically in-time pileup (PU) which is relevant for this analysis, is an increase in

the number of tracks caused by independent pp collisions that occur during the crossing

of two opposite going bunches at the ATLAS interaction point together with the collision

that produces the process of interest. There are two mechanisms by which the PU changes

the number of tracks measured in collisions. One is by adding tracks from other interac-

tions unrelated to the trigger and another by increasing the detector occupancy that leads

to the production of fake tracks, i.e. spurious associations of hits present in the detector.

The two processes can be called ”linear” and ”non-linear” track production mechanisms,

respectively. We note that although it is in some sense a second-order effect the latter one

may have a significant magnitude. Turn-on of the second mechanism is visible in the data
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in Figure 18 which shows the number of tracks in an event per interaction as a function

of the number of interactions per bunch crossing (µ).
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Figure 18: The average value of ntrk per interaction in pp collisions as a function of the

number of inelastic pp interactions per bunch crossing µ.

Below µ = 50, the mean number of tracks scales with µ, but at larger values, it starts

to grow due to increasing occupancy in the detector. Following the recommendation of

the Tracking CP working group [83], this analysis is restricted to events with µ < 50. The

non-linear PU production mechanism is suppressed by this cut but is not eliminated and

is discussed later in Section 4.6. Here the focus is on the linear PU component, dealing

with which follows the methodology developed in the analysis of two-particle correlations

in Z-boson tagged events [79] and detailed in its supporting note [84]. Only the basic

steps of this procedure are reviewed here; other details can be found in the note. Absolute

numbers that appear in some plots in this section include corrections that are explained

later. They are shown here to explain the procedure.

A bigger part of the PU tracks is rejected by matching tracks to the trigger vertex

(the trigger vertex is the vertex associated with the di-muons firing the trigger), and

the irreducible part of the PU is subtracted on a statistical basis using ‘event mixing’

technique. A technical difference between this and the Z-ridge paper analyses is that

when the Z produces two energetic muons, the primary event vertex and the trigger vertex

are almost always the same. When relatively lighter Υ meson decays into less energetic

muons, there exists a non-negligible probability that the primary event vertex (the vertex

with the highest
∑
pT of all track) can be different from the vertex from which the Υ

originates. The width of the tracks-to-vertex matching peak is similar in both analyses
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and is close to about three times the width of the (z0 − zvtx) sin (θ) distribution. This

width is denoted ω0 and is equal to 0.75 mm. Parameter z0 is the longitudinal coordinate

of the point of the closed approach of the track to the beamline, and θ is the track polar

angle. Apart from this technicality, the PU subtraction follows the steps described in [79].

Each recorded event contains subevents:

• Direct subevent consist of tracks that satisfying criterion
∣∣(ztrk0 − zvtx

)
sin (θ)

∣∣ <
ω0 = 0.75 mm. It contains both Signal subevent tracks from the trigger vertex and

Background subevent tracks from PU interactions.

• A sample of events on average identical to the Background subevents can be con-

structed as explained in [84] by picking tracks from other events. This sample is

called the Mixed event sample.

The random selection procedure used to construct such a sample implies that tracks

building each Mixed event shall be picked from an inclusive pp event sample at the point

of the same dµ/dzvtx (longitudinal interaction density) as it is for Direct event and using

the same ω0 selection criterion. The latter requirement is trivial, but finding the point of

the same interaction density requires precise knowledge of the zvtx distribution and µ. The

shape of the zvtx distribution is very well approximated by a Gaussian distribution and can

be characterized with its mean value ⟨zvtx⟩ and the RMS. To compare interaction density

between different events, the analysis uses reduced coordinates: zvtx → z̄vtx = zvtx−⟨zvtx⟩
RMS(zvtx)

and µ → µ̄ = µ
2πRMS(zvtx)

. The same interaction density, therefore, corresponds to the

same value of dµ̄/dz̄vtx in two events.

The key variables that are used to construct µ̄ and z̄vtx are ⟨zvtx⟩, RMS(zvtx) and µ

are studied in each run in each luminosity block (or lumiblock) following the procedure

implemented in [84]. In the ATLAS experiment, a lumiblock is a time interval, usually

around one minute, of data recording over which the experimental conditions are assumed

to be constant [85]. In particular, the instantaneous luminosity is calculated as an aver-

age number over the duration of one luminosity block. If the data-recording configuration

changes, a new luminosity block is started. Figure 19 on the left shows the lumiblock

dependence of µ for one run. Continuous intervals are approximated by a polynomial

function, and the lumiblocks where the measured µ deviates by more than four standard

deviations are marked for rejection. Some lumiblocks are also rejected by eye inspec-

tion. Rejected lumiblocks are marked with red and green markers. For the remaining
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Figure 19: An example of a calibration procedure applied to a single run. Left: Instan-

taneous luminosity µ as a function of the lumiblock number in a selected run. Rejected

points are marked with red and green markers. Right: ⟨zvtx⟩ (magenta) and RMS(zvtx)

(red) as a function of the lumiblock number.

lumiblocks, the ⟨zvtx⟩ and RMS(zvtx) are calculated and approximated by polynomials in

the regions of continuity. These parameterizations are then used to calculate values of

⟨zvtx⟩ and RMS(zvtx) that are used in the analysis in Equation (8). Other parameters are

also inspected for unexpected features as a part of the procedure that, in the end, rejects

about 10% of total statistics.

The Mixed event sample is most straightforwardly constructed from an inclusive event

sample which can be obtained with the random recording of filled bunch crossings. How-

ever, this requires handling additional event samples. Instead, this analysis followed the

same approach as for the Z-ridge paper, where the trigger event sample is also used to

produce Mixed events. This requires an additional condition on the location of zvtx in

two events i and j to ensure that the tails of the trigger events do not add unwanted

tracks:
∣∣(zivtx − zjvtx

)∣∣ > 15 mm. Figure 20 explains the selection procedure, including

all requirements. Each x-y frame in the picture denotes an event in the trigger sample.

An event with the Υ candidate is filled with blue color. All events highlighted in colors

have the same µ̄ and are considered for mixing at this step, while all others are not and

therefore are shown in grey. They, however, can be used for other events. A blue band

denotes the ω0 selection criterion. It is applied to tracks in highlighted events at the same

z̄vtx as in the event with Υ . All tracks in each highlighted event falling within the blue

band would build one Mixed event. The exception is the event drawn in red color, which
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Figure 20: Schematic explanation of the random selection procedure

is rejected because the trigger vertex falls within the red band with the location of the

trigger vertex in Direct event. The write-up given here is only an approximate expla-

nation of the procedure. It jumps between absolute and reduced coordinates and does

not elaborate on the fact that each rejection of an event with close vertices requires that

another event is found to replace it to keep a proper balance between the samples. Those

are detailed that can be implemented in the analysis in different ways. In this analysis,

about 20 Mixed events are built for each Direct one, all within the same data-taking run

to ensure that the detector conditions are the same for the two samples.

The track density distribution dntrk/dω along ω coordinate ω =
(
ztrk0 − zvtx

)
sin (θ) is

shown for Direct and Mixed events in Figure 21. Full markers show Direct events, and

open markers show Mixed events that follow the PU substrate under the peak in Direct

events. Elevations seen in Mixed events away from the peaks are an artifact due to using

the triggered sample rather than an unbiased, inclusive sample for constructing Mixed

events (as explained above). More details about this effect are given in [84]. Lines fitted

to Mixed distributions are the parabolic functions

dntrk

dω
=

dntrk

dω

∣∣∣∣
ω=0

(
1 + Sω + Cω2

)
(7)
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Figure 21: Track pointing to the trigger vertex in Direct (full markers) and Mixed (open

markers) events, at different µ̄ for three location of z̄vtx. The plot is from [84].

from which the values of dntrk/dω at ω = 0 can be extracted. Terms with coefficients

(S)lope and (C)urvature play no role in the analysis since the first cancels out in inte-

gration over ±ω0, and the second produces a negligibly small correction. The left panel

of Figure 22 shows dntrk/dω at ω = 0 as a function of µ̄ plotted for various locations

of z̄vtx. Curves are for Mixed data, and as shown in Ref. [79], fits of the Direct events

give identical results. All curves are consistent with linear behavior, which reflects the

fact that at a fixed vertex location zvtx (z̄vtx), the PU track density is proportional to the

number of interactions per bunch crossing µ (µ̄). Slopes of the linear fits d2ntrk/dωdµ̄

are plotted in the right panel of the figure as a function of z̄vtx. The Gaussian fit gives

the magnitude of the peak, mean value, and width, with the latter two being consistent

with 0 and 1. (Mean and width equal to 0 and 1 are expected due use of the reduced z̄vtx

coordinate.)

Equation (8) defines an estimator of the mean value of the number of PU tracks that

fall within ±ω0 around a given point in an event. This is the PU estimator ν used to

characterize PU condition of events

ν = 2ω0
d2ntrk

dωdµ̄

∣∣∣∣
z̄vtx=0

G (z̄vtx) µ̄ (8)

where G (z̄vtx) is the Gaussian profile of the reduced trigger vertex position. As one

can see from Figure 22, the function accurately fits the data, and that is because the

longitudinal beam profiles in the LHC are very close to Gaussian. The magnitude of the
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Figure 22: The number of tracks per mm at ω = 0 is shown as a function of µ̄ (left panel).

Different marker colors correspond to selected reduced zvtx intervals. Dashed lines are fits

assuming scaling of track density with µ̄. Slopes of the fits shown in the left panel are

fitted to a Gaussian shape as a function of z̄vtx (right panel).

peak d2ntrk/dωdµ̄ at z̄vtx = 0, extracted from the fit, is the parameter that contains the

cross-section of the particle production into the fiducial acceptance of the ATLAS detector

and is a constant. For practical reasons, this parameter is extracted for groups of runs

that correspond to detector stability intervals as defined by the ATLAS QA. Values of

⟨zvtx⟩ and RMS(zvtx) are obtained from fitting the corresponding values like those shown

in Figure 19 as a function of lumiblock number in intervals of stability worked out during

recalibration procedure explained earlier.

The number of tracks in Mixed events is plotted in the left pane of Figure 23 for

different values of ν. By construction, the shape of these distributions shall not depend

on the value of zvtx where those events occur. The right panel of the figure explicitly

shows that the mean values of nch distributions in Mixed event sample are the same in

all vertices. Dashed lines indicate the width of the ν intervals of 0.5 track used to obtain

these distributions, the same as those used in the analysis.

Performance of the PU reconstruction procedure can be demonstrated with Figure 24
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Figure 23: Left: number of tracks in Mixed events for different values of ν used in the

analysis. Right: Average number of tracks in Mixed events, shown with different colors,

as a function of event zvtx for different ν. Dashed lines indicate the width of the ν selection

for plotted curves.

that spans 589 runs recorded between 2015 and 2018. Although other factors affect the

values plotted in the figure, the PU is the dominant contributor. The figure is obtained

with an unprescaled single muon trigger in the invariant mass window of the dimuon

corresponding to the Z boson. Red squares show the average number of charged particle

tracks compatible with the trigger vertex. The largest contribution to this number comes

from the event component that fired the trigger, and it remains constant, but the PU-

induced contribution changes run-by-run and generally increases from the beginning to

the end of the run as the LHC luminosity increases with time since the beginning of the

Run-2. The number of tracks that are not compatible with the trigger vertex, i.e., coming

from the PU, remains constant when this number is divided by µ. This reflects the fact

that the number of tracks per pp interaction is a physical quantity, and as it shown with

blue diamonds in the figure, the ATLAS detector measures it as an invariant number.

The average number of PU tracks estimated by Equation (8) is shown with magenta

squares. It changes run-by-run and generally grows with time since the beginning of the
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Figure 24: Number of direct (red open circles), mixed (magenta open squares), signal

(red circles), pileup (blue diamonds) and ratio of pileup to signal (black circles) tracks as

a function of the run index.

run. The difference between the two curves shown with the red and magenta squares is

the contribution of the tracks coming from the trigger vertex. Due to the presence of

the Z boson in events, it is much larger than in the inclusive sample, and this number

remains constant in most data runs. The black curve is an arbitrarily scaled ratio of the

number of tracks in events with Z boson and inclusive events. This ratio is not very

sensitive to the problems of acceptance but is sensitive to luminosity calibrations. A few

outlying runs, highlighted with cyan circles, are also excluded from the analysis. Overall

the figure demonstrates the sub-percent level detector stability and quality of the PU

estimator throughout the entire run.

4.4 Event corrections

This analysis measures per-event quantities, such as the multiplicity distribution of charged

particles in an event and their kinematic distributions. Nevertheless, accurate removal of

the combinatorial background from that data sample, events that do not have Υ states

but are combinations of muons coming from jets and the Drell-Yan, rely on fitting the

invariant mass distribution of muon pairs. In the course of working on the analysis, it was

observed that correcting the invariant mass spectra improves the quality and stability of
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the fits. Therefore, the invariant mass spectra of dimuons, selected by applying cuts from

Section 4.2, were corrected for losses before the fitting.

Several loss mechanisms are considered here.

• fiducial acceptance of the ATLAS detector to different Υ (nS) states.

• muon reconstruction efficiency to each of the muons.

• trigger efficiency.

• trigger prescale factors.

• quality assurance, both as performed by ATLAS and for PU removal.

In this analysis, event losses caused by the first and second mechanisms listed above are

fully corrected. Trigger efficiency losses are corrected for low-threshold triggers, for which

correction functions are worked out by ATLAS. Data samples obtained by the higher-

threshold triggers are used only where triggers become fully efficient. Losses due to the

last two mechanisms are not corrected as they do not affect signal extraction.

4.4.1 Fiducial acceptance

The fiducial acceptance for Υ → µµ decays is defined as the probability that the decay

products fall within the fiducial volume, characterized by pµT and ηµ thresholds, for a given

transverse momentum and rapidity of an Υ (nS) state. The fiducial acceptance correction

is evaluated from a fast MC simulation of Υ (nS) decays and applied as a weight to a

dimuon pair with the corresponding reconstructed values of pµµT and yµµ in 0.1 GeV-wide

slices of mµµ. Fiducial acceptance that required pµT > 4 GeV implies that above 4 GeV

muons are reconstructed. This is not the case for higher triggers used in the analysis,

which start measuring muons from much higher values. For them, the fiducial acceptance

is redefined, see Figure 25, with the higher momentum of the muon corresponding to its

nominal value in the trigger.

4.4.2 Muon reconstruction efficiency

The factors determining whether the ATLAS detector reconstructs the Υ meson are fidu-

cial acceptance, muon reconstruction efficiency, and di-muon trigger efficiency. The muon

reconstruction efficiencies and di-muon trigger efficiencies are obtained using simulated
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Figure 25: Υ (1S) fiducial acceptance for triggers used in the analysis.

events. The muon reconstruction efficiency is defined as the product of the probability of

a muon reconstructed as an ID track also to be reconstructed in the MS and the proba-

bility that a muon is reconstructed as an ID track [81]. The latter cannot be measured

directly and is replaced by the conditional probability that a muon reconstructed by the

MS is also reconstructed by the ID independently

ϵ(µ) = ϵ(µ|ID)ϵ(ID) ≈ ϵ(µ|ID)ϵ(ID|MS) (9)

where ϵ(µ|ID) is the efficiency of muons reconstructed as ID tracks to be reconstructed

in the MS, ϵ(ID) is the probability that a muon is reconstructed as an ID track, and

ϵ(ID|MS) is the conditional probability that a muon reconstructed by the MS is also

reconstructed by the ID independently. To cover possible differences between data and

simulation, the efficiency values calculated in the simulation are corrected by scale factors

which are the ratios of measured and simulated efficiencies obtained using the tag-and-

probe (TnP) method [81, 86] - a well-established data-driven procedure of evaluating

detector performance by using the information redundancy of various subsystems. The

method selects a sample of high-purity leptons coming from a resonance decay by applying

strict selection on one of the decay products (tag) and on the invariant mass of the
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pair involving this lepton and the second particle (probe) traced from only a part of the

detector. This ensures that the probe is also a lepton, even without identifying it as such in

the detector. This opens the possibility of measuring the properties of the selected probe

in all subsystems of the detector by changing the definition of the probe particle. By

applying conservative selection criteria on the quality of the tag and the properties of the

resonance decay, one can reach a high purity of the probe particle sample. Then, the TnP

method is applied independently to data and simulation, making possible the construction

of scale factors from the evaluated efficiencies. The 2D reconstruction efficiency map used

to correct the pp data is shown in Figure 26.
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Figure 26: Muon reconstruction efficiency map for tight muons obtained from 2015-2018

pp data

4.4.3 Trigger efficiency

The trigger inefficiency for a di-muon pair factorizes as the product of the two single-muon

trigger efficiencies, a term which depends on the distance between two muons, and a term

that accounts for the loss due to online cuts applied to a pair, such as on the invariant mass,

vertex fit quality, etc. [87]. For symmetric triggers HLT 2mu(j) bUpsimumu... listed in

Table 2, for example, HLT 2mu4 bUpsimumu, trigger efficiency can be considered in a

factorized form

ϵ
2mu(j)
trig (µ1, µ2) = ϵ (mu(j), µ1) ϵ (mu(j), µ2)C∆R (µ1, µ2)Ca (y

µµ, τ) (10)

where j is the energy threshold, ϵ (mu(j), µi) is the efficiency of HLT mu(j) single muon

trigger with respect to the reconstructed muon, C∆R (µ1, µ2) is a dimuon correction which
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depends on the distance ∆R between two muons, Ca (y
µµ, τ) is the correlation factor

aiming to recover the event loss due to online cuts applied to a pair such as cut on the

invariant mass, vertex fit quality. The two single muon efficiency terms become strongly

correlated in the case when both muons are contained in the same region of interest (ROI)

since the efficiency of the dimuon chain should be 0 if only a single ROI has been formed.

For asymmetric triggers HLT mu(j)mu(k) bUpsimumu... listed in Table 2, for example

HLT mu6mu4 bUpsimumu, an additional complication should be used

ϵ
mu(j)mu(k),j>k
trig (µ1, µ2) =


ϵ (mu(j), µ1) ϵ (mu(k), µ2)+

ϵ (mu(k), µ1) ϵ (mu(j), µ2)−
ϵ (mu(j), µ1) ϵ (mu(j), µ2))

C∆R (µ1, µ2)Ca (y
µµ, τ) . (11)

The efficiencies are obtained from MC simulation and are corrected by the corresponding

scale factors. Figure 27 shows 2D maps of the trigger efficiencies for the three lowest

dimuon triggers 2mu4, mu6mu4, and 2mu6 used in the analysis.
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Figure 27: Dimuon trigger efficiency maps for 2mu4 (left), mu6mu4(middle) and

2mu6(right) which are averaged over trigger weights in the data sample

4.4.4 Total correction

The total event-based correction is

ωevt
tot =

1

acc (pµµT , yµµ) · ϵ (pµ1

T , η
µ1) · ϵ (pµ2

T , η
µ2) · ϵtrig (µ1, µ2)

(12)

The analysis measures per-event quantities and uses data from each trigger separately;

therefore, trigger prescale values play no role in the results and are not part of the cor-
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rection. The effect of applied corrections is shown in Figure 28. Black markers show the

dimuon mass spectra corrected by only muon reconstruction efficiencies. When we add

correction for trigger efficiencies, we get the spectra shown with red markers. The fully
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Figure 28: Transformation of the shape of the dimuon invariant mass distribution. Black

markers show the distribution after applying muon reconstruction efficiency correction,

red also includes corrections for trigger efficiencies, and blue, in addition to the previous

two, takes into account fiducial acceptance correction.

corrected distribution is shown in Figure 28 with blue markers. Neither trigger correction,

nor the fiducial one, visibly changes the Υ peaks; however, they flatten the combinatorial

background, especially in the low mass region in lower pT bins, which makes the fitting

procedure more stable.

4.5 Corrections for charged particle tracks

4.5.1 General approach

Correcting tracks reconstructed in the detector to the number of primary charged particles

produced in the collisions considers several aspects.

• definition of primary changed particles, secondary particles, and fakes.

• detector efficiency, including the efficiency of the reconstruction algorithm and its

variation with the event geometry, kinematics, detector occupancy, and detector

stability.

The primary charged particle definition used here is almost the same as is used in earlier

ATLAS publication [88]. Primary charged particles are defined as particles with average
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lifetime τ > 0.3 × 10−10s and produced directly in the interaction or those from decays

of particles with a shorter lifetime. According to this definition, however, muons coming

from Υ decays are also considered primary charged particles, but in this analysis, they are

excluded for an obvious reason. All final results are corrected to the numbers of nch that

is the number of primary charged particles in the kinematic range 0.5 < pT < 10 GeV

and |η| < 2.5.

For the second item listed above, corrections implemented in the analysis take into

account the kinematic properties of the tracks and locations of the event vertices. Issues

related to detector occupancy and detector stability are treated differently. Data used

in the analysis were accumulated over four years, during which time the instantaneous

luminosity of the LHC was steadily increasing. For that reason untangling the effects of

occupancy and stability in the detector performance is not always possible. In addition,

final results also require subtraction of the PU, which in turn, is a factor directly sen-

sitive to the detector occupancy. Except for the PU correction, which has a non-linear

component discussed in Section 4.6.5, all other effects are smaller than the systematic

uncertainties and are included in the systematic of the PU subtraction. In this section,

we discuss correcting nch for the losses in the detector.

The general approach to the track-based correction used in this analysis is to calcu-

late the weight for each track. Events in which no track is found are accepted to the

analysis with nch = 0. For each reconstructed track, the weight is defined by two factors

that depend on the track kinematics and its point of origin: 1) track reconstruction effi-

ciency ϵtrk (pT, η, zvtx) and 2) fraction of secondary tracks frac (pT, η) in the sample. Once

the combined efficiency ptrk (pT, η, zvtx) = ϵtrk (pT, η, zvtx) /frac (pT, η) is determined, the

track is accepted to the analysis with the weight, n, which is not equal to 1/ptrk but

is an integer number randomly picked according to the Negative Binomial Distribution

(NBD) which is a discrete probability distribution that models the number of failures in

a sequence of independent and identically distributed Bernoulli trials before a specified

number of successes occurs:

P (n; p, r) =

n− 1

r − 1

 pr (1− p)n−r (13)

where r is the number of successes, n is the number of trials, and p is the probability of

a successful Bernoulli trial.

52



In our case, the evaluation is done for each reconstructed track so that r = 1, then

P
(
n; r, ptrk (pT, η, zvtx)

)
= ptrk (pT, η, zvtx)

(
1− ptrk (pT, η, zvtx)

)n−1
(14)

The advantage of using integer weights instead of just dividing each track by its efficiency

can be seen with the example of Mixed event distributions. Mixed events that used for the

PU correction are worked out from tracks in Direct events after calculating the efficiency.

nch distributions shown in Figure 29.
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Figure 29: nch distributions in Mixed events in intervals of ν. Open markers use weights

equal to 1/ptrk and full markers use weights derived from the NBD.

Open markers show nch distributions obtained by weighting each track with inverse

efficiency, and full markers are distributions obtained using weighting based on the NBD.

At the high end, the distributions are identical, but at low nch the NBD produces smoother

and more realistic results.

4.5.2 Fraction of non-primary particles

In many analyses, correction for the secondary (non-primary) tracks is combined with the

fake track correction. In this analysis, they are treated separately. The fraction of fake

tracks present in a pp event without PU is very small and generally can be neglected [89].

The situation changes when the PU increases, and fake production may grow due to
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increasing occupancy in the detector. This is the non-linear track production mechanism

that was discussed at the beginning of Section 4.3, and its correction will be explained

later in Section 4.6. Here only correction for secondary tracks is discussed. The main

contribution to secondary tracks comes from decays of strange mesons and baryons. A

detailed discussion about the contribution of strange baryons can be found in Ref. [88],

but it primarily relates to the pT regions higher than are considered in this analysis.

Correction for secondary particles is applied differentially in pT and η. The primary

fraction is calculated as follows

frac (pT, η) =
Nprim

rec (pT, η)

Nall
rec (pT, η)

(15)

where Nprim
rec is the number of reconstructed tracks matched to primary and Nall

rec is the

number of all reconstructed tracks.

The fraction of secondary tracks and strange baryons are shown in the left panel

of Fig. 30. To apply it, the correction is parametrized by a second-degree polynomial

function, as shown in the right panel of Fig. 30.
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Figure 30: Left: Fractions of secondary tracks (blue) and strange baryons (green). Right:

Fraction of primary particles.

4.5.3 Track reconstruction efficiency

Track reconstruction efficiency used in this analysis is defined as the number of recon-

structed primary tracks divided by the number of generated primary particles in nominal
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acceptance

ϵtrk =
Nprim

rec

Ngen

(16)

where reconstructed and generated quantities are defined in their variable space (precT , ηrec)

and (pgenT , ηgen) respectively. Defined this way, the efficiency absorbs into itself the bin-

by-bin unfolding correction for the Inner Detector tracking system resolution, which has

limited accuracy. However, in the kinematic region explored in the present analysis, the ID

tracking system efficiency and resolutions are sufficiently high not to affect the results [90].

The PU removal procedure described in Section 4.3 relies on the uniformity of the

detector response to the collision vertex. Therefore, in addition to the dependence on

track kinematics, the efficiency has also been studied as a function of event (track) point

of origin: ϵtrk (pT, η, zvtx). In this analysis, it is assumed that the track reconstruction

efficiency factorizes as follows.

ϵtrk (pT, η, zvtx) = f (η, pT) k (η, zvtx) ϵ
trk (pT) (17)

where the last term is a generic pT-dependence of reconstruction efficiency, f and k are

”tuning” functions for η and zvtx dependencies respectively. The shape of the ϵtrk (pT) =

⟨ϵtrk (pT, η, zvtx)⟩ averaged over η and zvtx is shown in the left panel of Fig. 31. It is used
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Figure 31: Left: pT-dependence of the track reconstruction efficiency. Right: 2D map of

the k (η, zvtx).

as the last term in Equation (17).

The zvtx dependence given by the function k (η, zvtx) is worked out as the 2D lookup

table of the values at a given vertex position and pseudorapidity to a globally averaged

value. This map is shown in the right panel of Figure 31. At the edges of the zvtx dis-

tribution, the η profile of the track reconstruction efficiency gains about 30% asymmetry.
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For the sake of the acceptance uniformity and to keep corrections low, further analysis is

restricted to |zvtx| < 140 mm on an event selection level.

Function f (pT, η) is chosen in the form

f (pT, η) = α (η)

[
1− β (η) exp

(
− pT
pT1 (η)

)][
1 +

pT
pT2 (η)

]
(18)

Parameter pT1 is fixed to 0.1 GeV. It affects only the low-pT part of the efficiency curve.

Parameter pT2 is of the order of hundreds of GeV and makes only a small change in the

10 GeV range. Other parameters have symmetric behavior, as shown in Fig. 32.
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Figure 32: η-dependence of the fit parameters in f (pT, η).

Some examples of ϵtrk (pT, η, zvtx) are shown in Figure 33 together with parameteri-

zations given by Equation (17) which are actually used in calculating corrections. On

average, the correction applied to a single track in the analysis is about 1.2 and never

exceeds 2.5.

The performance of the tracking efficiency parameterization is shown in Figure 34. The

plot compares the true level pT distribution shown with red markers to fully corrected

distributions after applying the procedure explained above. Each track passes the selection

criteria as in Section 4.2 that suppresses the contribution of fakes and secondary particles.

Each track is assigned the efficiency value worked out using parameterizations explained

in Section 4.5.3. Then this efficiency is used to define weight as explained in Section 4.5.1.

The weighted spectrum is plotted with black markers in the upper panel in Figure 34.

The lower panel of Figure 34 shows the ratio of the two.
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Figure 33: Track reconstruction efficiency ϵtrk (pT, η, zvtx) from simulation (markers) and

by parameterization (lines).

Figure 34: Tracking efficiency closure test.

4.6 Signal extraction

4.6.1 General approach

Multiplicity and kinematic distributions of hadrons coming from the event with Υ mesons

can be measured in the data if one knows fractions of events that are coming from the

signal (i.e., those that contain a particular Υ (nS) state) and from the background (spurious
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association of muons from dijets and Drell-Yan). Such separation is typically done by

measuring distributions of interest in several intervals of the muon pair invariant mass

and performing linear transformation to separate signal contribution. This approach is

often called the ”shoulder subtraction method,” and its version is used in this analysis.

The key element to using this method is to define the partial contribution of events coming

from different processes.

These contributions are obtained by fitting the invariant mass distribution mµµ in

slices of pµµT . Steps that are necessary for constructing the invariant mass distributions

are explained in Section 4.2 and Section 4.4. Since triggers used in the analysis have

different thresholds, fits are performed independently for each trigger.

The resulting distributions would still contain tracks coming from the PU, which

can be removed, as explained later. At the same time, the yields of Υ (nS) states only

weakly depend on the PU. This fact is known from experience measuring dimuons in

other analyses and in A+A collisions, in which efficiencies do not drop by more than a few

percent even in the most central collisions [91]. For that reason, fits to mµµ distributions

are done for all PU conditions simultaneously, which greatly increases the statistics of the

fitted samples.

As was already mentioned, data used in the analysis were accumulated over four

years of detector operation, and different triggers were enabled in different data-taking

periods in which average µ increased with time. It will not be surprising if some residual

deviations are still present in the data with different ν (PU estimator, see Section 4.3)

due to a simultaneous change of several different conditions. Nevertheless, fitting larger

data samples gives an obvious advantage, and possible differences in signal extraction at

different ν are considered as perturbations from common performance together with the

systematics of the PU corrections.

The di-muon invariant mass distribution consists of signal peaks produced by the

three meson states and a smooth background “substrate” produced by the association of

muons in jets and by the Drell-Yan (DY) process. The measured distributions can be
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approximated by the form

fit (m) =
∑
nS

NΥ (nS)Fn(m) +NbkgFbkg(m) (19)

Fn(m) = (1− ωn)CBn(m) + ωnGn(m)

Fbkg(m) =
3∑

i=0

ai(m−m0)
i; a0 = 1

having signal contributions with the shape Fn(m) and the background contributions

Fbkg(m). Coefficients NΥ (nS) are the yields of the Υ (nS) states with n running from 1

to 3, and Nbkg is the background normalization coefficient. Following previous ATLAS

analysis [92], the signal shape Fbkg(m) is chosen as a sum of two contributions, one is the

Crystal Ball p.d.f. (CB), and another is Gaussian p.d.f. (G), the coefficient ω is respon-

sible for the relative contribution of these two p.d.f.’s. This shape is known to reproduce

the shape of Υ (nS) peaks with sufficiently high accuracy. The function Fbkg, which is

responsible for the background, is the 3rd degree polynomial whose constant coefficient

is set to unity. It is centered at m0 = 10 GeV, which approximately corresponds to the

center of the fitting region. This formulation gives the advantage of understanding the

transformation of the background shape with the pair momentum, but one shall keep in

mind that normalization coefficients have somewhat different meanings. NΥ (nS) are the

integrated yields of mesons, while Nbkg is the background density per unit of mµµ.

The CB is a modification of the Gaussian function with the power-law tail at low

masses that is intended to accommodate the effects of final-state radiation:

CB (m;µ0, σ, α, p) = N ·

exp
(
−1

2
·
[
m−µ0

σ

]2)
,
[
m−µ0

σ

]
> −α

A
(
B −

∣∣m−µ0

σ

∣∣)−p
,
[
m−µ0

σ

]
≤ −α

(20)

A =

(
p

|α|

)p

· exp
(
−|α|2

2

)
B =

p

|α| − |α|

N =
1

σ (C +D)

C =
p

|α|
1

p− 1
exp

(
−|α|2

2

)

D =

√
π

2

(
1 + erf

( |α|√
2

))
Coefficients µ0 and σ are the first and the second moments of the Gaussian part in the

CB function, and two additional variables, commonly denoted p and α, are responsible
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for the degree of the power-law tail and the point at which the function flips from the

Gaussian to a power law. Term N and its components C and D are responsible for the

normalization of the CB function.

For the shape of the signal peaks, alternative parameterizations were not tried in this

study. However, one shall mention that Fn(m) itself has much flexibility to assume dif-

ferent shapes, and those variations were studied in detail when addressing the systematic

uncertainties. For the shape of the background, some analyses use more elaborate hy-

potheses; however, we found them over-defined. Even the 3rd degree polynomial, in many

cases, does not produce a significant cubic term.

Fitting function to the invariant mass spectra as defined above has 25 parameters,

where parameters are correlated with each other. Nevertheless, that much information

cannot be extracted from an unconstrained direct fit to the data in each pµµT interval. At

the same time, parameters responsible for the shape of the signal and background can

change from one pµµT interval to another only slightly. Therefore, considering information

about fitting parameters also from the adjacent intervals improves fitting quality. To

take advantage of this fact, the yield extraction strategy performed in this analysis is

implemented in the following steps:

• Fit the MC simulated distributions independently for each Υ (nS) and constrain or

fix parameters responsible for the shape of the peaks.

• Parametrize the pµµT dependence of the fit parameters responsible for the shape

• Use parametrizations to fit the data, keeping peak amplitudes and substrate-free

• Invariant mass samples are fitted separately in intervals of pµµT and for different

triggers but combined for all UE and PU conditions.

• Relax shape parameters in the data one at a time and adjust pµµT dependencies for

those parameters that can be reliably extracted from the data

• Parametrize the substrate as a function of pµµT

4.6.2 Fits to the MC simulated samples

The parameter α is a nuisance parameter that can assume a relatively broad range of

values. Here it is set to 1.3 standard deviations of the Gaussian part of the CB function
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for each Υ (nS) state. After fixing the parameter α, the pT-dependence of the widths is

studied. Left panel of Figure 35 shows the pT dependence of σ1S
G .
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Figure 35: Left: pT-dependence of the Gaussian width for Υ (1S). Right: pT-dependence

of the ratio of the width of CB function and the width of the Gaussian function.

Points are parametrized with the function

σ1S
G (pµµT ) = (c0 + c1p

µµ
T ) ·

(
1− c2 exp

(
−p

µµ
T

c3

))
(21)

The Gaussian width for higher Υ (nS) states is obtained by scaling σ1S
G by the ratio of

mnS/m1S using mass values from the PDG [93].

The next parameter responsible for the shape of the peak is the width of the Gaussian

part of the CB function σnS
CB, which is closely related to the width of its pure-Gaussian

counterpart. Therefore, instead of measuring this width, the measurement was done for

the ratio of σnS
CB and σnS

G . Its pT dependence can be parametrized by

σnS
CB (pµµT )

σnS
G (pµµT )

= c0 + c1 exp

(
−p

µµ
T

c2

)
(22)

an example of which is shown in the right panel of Figure 35 for Υ (1S). The same

functional form of the parametrization is used for all Υ states.

Parameter n is the degree of the power law tail, and it was found to be somewhat

different for different Υ (nS) states. The pT-parametrization function for this parameter

is chosen as

nnS (pµµT ) = c0 (p
µµ
T )c3 exp (−c1pµµT ) + c2 (23)

An example of such a parametrization is shown in the left panel in Fig. 36. Finally, the

parameter ω, which balances the contributions of CB and G to the signal peaks, can also
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Figure 36: Left: pT-dependence of the n1S for Υ (1S). Right: pT-dependence of the ratio

of the ω1S.

be slightly different for different Υ (nS) states and is parametrized with a third-degree

polynomial function as is shown in the right panel of Figure 36 for 1S state. Parameters

of mnS
0 are left unconstrained, but they are well-defined by the fits and produce values

consistent with the PDG.

Examples of the fits to three Υ (nS) states in the MC simulations using all parameter-

izations are shown in Figure 37. Red lines are functions FnS, shown together with its G

component in green and CB component in blue. No background is present in the simu-

lation; therefore, the polynomial part is absent. Furthermore, it was mentioned that fits

are applied to the fully corrected data or simulations, but as explained in Section 4.4.1,

each trigger measures Υ (nS) in a slightly different fiducial acceptance. For this reason,

the results of the fits can be different for different triggers, as shown in the next section

for the data. Small differences in fit parameters are also seen in the MC simulations that

imply the triggers.

4.6.3 Fits to the data

Fits to all data in the analysis are done simultaneously for all triggers in all pT bins.

This produces hundreds of fits to histograms, some of which can fail or reach the limit of

allowed values. The latter can indicate that the parameters are not constrained optimally.

It can be seen in some plots shown in this section as points jumping outside statistical

limits or as points with unreasonably large statistical error bars. Visual inspection of all

fits is done during the optimization steps and for all final fits used in the analysis.
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Figure 37: Examples of signal fits for Υ (1S) in different pµµT regions.

Some fit parameters can be extracted from the data with a reasonable confidence

level, while it is impossible for others. For example, the degree of the power-law tail in

CB part of the peaks mixes up with the substrate for Υ (1S), and for higher Υ (nS), the

tail interferes with the neighboring peaks. Besides, parameters ω and n are correlated,

so getting them directly from the data deems problematic. The MC parametrizations

worked out, as explained in the previous section, are directly applied to the data. Some

ideas about the behavior of ω1S can still be extracted from the data since the Υ (1S) is

a relatively isolated, well-defined peak. However, extraction of the same parameters is

problematic for Υ (3S) and certainly for Υ (2S) peaks. Where possible, the MC was verified

against the data and found to be consistent with it.

Parameterization of σ1S
G shown in Figure 35 is the starting value for the fitting of the

data. The fit is constrained to be in the vicinity of the curve shown there but with the

parameter unfixed. New parameterizations for σ1S
G are found for each trigger separately,

and they are used for further fits. Then the same approach is applied to the ratio σ1S
CB/σ

1S
G ,

following which other parameters are inspected in a similar way and some refitted again.

Final parameterizations are shown in Figure 38 together with unfixed points that are
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fitted at the last step. Different markers represent different triggers, and lines show

parametrizations. Results for the 2mu4 trigger are consistent with the parameterization

obtained from the MC fits. Others also produce good new fits, which are different from

MC parametrization due to differences in fiducial acceptance. The parametrizations are

third-degree polynomial functions. After fixing σ1S
G , parametrized to the data, the ratio
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Figure 38: Shape parameters for the data as a function of pµµT

of σ1S
CB/σ

1S
G is studied as a function of pµµT . Right panel of Figure 38 shows that the data

points are consistent with the parametrization, which in this case is the parameterization

from the MC simulations.

Once the peak parameters are adjusted to the data or compared to it, the substrate fit

values are also parametrized. This further stabilizes the fitting procedure. Substrate pa-

rameters an (a0 = 1) are seen in Figure 39. Examples of the background parameterization

function Fbkg for different pµµT regions and 2mu4 trigger are shown in the bottom right

panel of Figure 39. Dynamics of the an coefficients shown in the plot correspond to the

evolution of Fbkg shape shown in the lower-right panel of the Figure. The behavior of the

lowest pµµT bin is explained by the lower acceptance in this region. Then, with increasing

pµµT the Fbkg becomes monotonous and exhibits decreasing behavior with mµµ.

Yields of Υ (nS) and the background are shown in Figure 40. In the analysis, 2mu4

trigger is used from 0 pT, mu6mu4 from 8 GeV and above, 2mu6 from 12 GeV, mu11mu6

from 24 GeV, and mu10mu6 and 2mu10 from 30 GeV. Numbers shown in the plots cor-

respond to the fully corrected yields of Υ (nS) states for the signal and for the background

Nbkg they are integrated in the mass region 8.2 < mµµ < 11.5 GeV. Examples of final fits

to 2mu4 trigger data are shown in Figure 41.
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Figure 39: Parameters of the background parameterization as a function of pµµT (top left,

top right and bottom left panels). Background parametrization (bottom right).

4.6.4 Shoulder subtraction method

Charged particle multiplicity and their kinematic distributions can be measured from

the data by analyzing events in certain mµµ intervals. In order to extract multiplicity

distributions, one has to remove the combinatorial background. Distributions of charged

particles, generally denoted as P , are measured in the data in 5 di-muon invariant mass

intervals [8.2, 9.0], [9.1, 9.7], [9.8, 10.1], [10.2, 10.6], [11.0, 11.5] given in units of GeV and

denoted in the left panel of Figure 42 as mµµ
n , where n = 0 – 4. Distributions in the

lower and upper intervals P (mµµ
0 ) and P (mµµ

4 ) are dominated by background, and the

three middle intervals have significant contributions coming from one of the Υ (nS) states.

Several examples of P (mµµ
n ) measured for nch are shown in the right panel of Figure 42

with open markers.

Fits shown in the left panel of Figure 42 allow determining signal and background

contributions in the intervals n = 0 – 4 to disentangle distributions associated with
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Figure 40: Yields of Υ (nS) and the background as a function of pµµT . Background yield is

integrated in the mass region 8.2 < mµµ < 11.5 GeV.
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Figure 41: Examples of dimuon mass spectra fits for 2mu4 trigger.

different Υ (nS) states. Charged particle distributions coming from collisions with Υ (nS)

in the mass intervals mµµ
k with n = k are denoted as sn and contributions in the intervals

n ̸= k as fnk, they are calculated according to Equation (24).

sn =

∫
mµµ

n
NΥ(nS)Fn (m) dm∫
mµµ

n
fit (m) dm

fnk =

∫
mµµ

n
NΥ(kS)Fk (m) dm∫
mµµ

n
fit (m) dm

(24)
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Figure 42: Left: Invariant mass distribution measured in the data in a 10 ≤ pµµT < 12 GeV

interval of the di-muon pair, fitted to the function used for extracting Υ (nS) yields. Indices

0 – 4 denote mµµ intervals used in the analysis. Right: Several nch distributions measured

in the mass intervals indicated in the left panel. Open markers are distributions before

subtracting the background are shown for four mµµ intervals out of 5. Full markers

are distributions after subtracting the background are shown for three mass intervals.

Hatched markers indicate nch distribution coming from the PU that is measured in mµµ
3 .

PU distributions have the same shape in all intervals.

To assess the background contribution underneath the Υ (nS) peaks, the side-band

subtraction method [94] is used. The contribution of the background in the n-th mass

interval is taken as a weighted sum knP0 + (1− kn)P4 of the background distributions in

mass intervals mµµ
0 and mµµ

4 . Coefficient kn is calculated according to Equation (25).

kn =
⟨Fbkg (m)⟩|mµµ

4
− ⟨Fbkg (m)⟩|mµµ

n

⟨Fbkg (m)⟩|mµµ
4

− ⟨Fbkg (m)⟩|mµµ
0

(25)

Thus P (mµµ
n ) distributions measured in 5 mass intervals can be presented in the form

of a matrix that links them to the contributions coming from Υ (nS) collisions as well as

from the background in the low- and high-mass background intervals. This is given by
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Equation (26).
P (mµµ

0 )

P (mµµ
1 )

P (mµµ
2 )

P (mµµ
3 )

P (mµµ
4 )

 =


1− f01 f01 0 0 0

k1 (1− s1) s1 0 0 (1− k1) (1− s1)

k2 (1− s2 − f21 − f23) f21 s2 f23 (1− k2) (1− s2 − f21 − f23)

k3 (1− s3 − f32) 0 f32 s3 (1− k3) (1− s3 − f32)

0 0 0 0 1




P0

P (Υ (1S))

P (Υ (2S))

P (Υ (3S))

P4

 (26)

There are matrix elements that are explicitly set to zero, reflecting the fact that the

contribution of some physics processes to certain mass intervals is minimal and neglected.

This matrix can be inverted to determine P (Υ (nS)) from P (mµµ
n ) measured in the data.

Examples of the background-dominated distributions for nch in mass intervals mµµ
0

and mµµ
4 that are shown with triangles in the right panel of Figure 42 are seen to be close

to each other, in spite of the fact that P (mµµ
0 ) has a small admixture f01 of the contribu-

tion P (Υ (1S)). This supports the usage of the side-band subtraction method to reliably

determine the shape of the background nch distributions at any mµµ. Transformation by

the matrix given by Equation (26) can be seen as the transition between the curves with

open and closed markers of the same shape. These are shown for mµµ
1 and mµµ

3 intervals

as having the largest and the smallest signal contributions, respectively. nch distributions

for the three Υ (nS) states are shown with full markers. These distributions have visibly

different mean values. All nch distributions have contributions coming from the PU that

is shown only for Υ (3S) with hatched markers because all PU contributions have the same

shape. Fitting of invariant mass distributions and signal extraction is done identically for

all PU intervals that are explained earlier, but independently for each pµµT interval and for

each trigger.

The accuracy of the procedure is checked using pseudo-experiments. High-statistics

MC samples are produced for all signal nch distributions and for the background. Shapes

of the simulated distributions in the pseudo-experiments are matched to be close to the

data. Those distributions are then used to produce P (mµµ
n ) distributions that are used as

input to the procedure described above. This is done for all pµµT measured in the analysis.

At most, 1% deviations are observed for the three Υ (nS) states from the simulated signal

distributions. The difference between reconstructed and actual values is included in the

systematic uncertainties.
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4.6.5 PU removal

Data events are characterized with the PU estimator ν, and the analysis is performed in

0.5 track intervals of ν. The signal-extraction procedure described up to this point is done

in a ‘ν-invariant’ way. All PU intervals have been treated in the same way. Figure 43

shows on the left the nch distributions in mµµ
1 and in the middle the nch distribution in
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Figure 43: nch distributions in mµµ
1 (left) and Υ (1S) (middle) regions in a pT slice, shown

for different values of ν. The right panel shows a Mixed sample with the same number of

events.

events with Υ (1S). The right panel of the figure shows the nch distribution for different ν

in Mixed events. Each ν slice has the same number of events as in Υ (1S) data; however,

the Mixed histogram is much better defined because it benefits from huge statistics of the

Mixed event sample. The PU contribution also varies with pµµT due to the changing mixture

of triggers during the data taking. For the kinematic distributions and for measuring the

moments of the nch distributions, the corresponding matrices are projected onto the x-

axis. The results are subtracted from each other to work out kinematic distributions. For

the moments, they are treated according to the formula for the moments of convolved

distributions.

Msignal
1 = Mmeasured

1 −MPU
1

Msignal
2 = Mmeasured

2 −MPU
2 − 2Mmeasured

1 MPU
1 (27)

where M1 and M2 are the first and the second moments respectively. However, as was

mentioned in Section 4.3, there are two mechanisms of PU track production:
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• The linear component is related to the presence of a track coming from PU events

that are accepted into the analysis.

• The non-linear component is related to the increase of occupancy in the detector

channels due to signal and PU tracks. Thus, this component depends on both types

of tracks.

The procedure of evaluating and removing the linear PU component was discussed in

Section 4.3. Correction for the non-linear PU component is worked out based on Figure 44.

Different panels are for five pµµT intervals used in the analysis. Curves in each panel
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Figure 44: Residual ν dependence in pµµT interval used in the analysis. From left to right

in GeV: [0,5], [5,10], [10,20], [20,30], [30...]. Different curves are for different intervals of ν

as indicated in the panel. Dashed lines are constant fits to data points of the same color.

correspond to several intervals of ν. The analysis is performed in steps of PU estimator ν

equal to 0.5, but this plot uses steps of ν = 2 to increase the statistics of each curve. For

the same reason, the results of different Υ (nS) are summed up. Each curve shown in the

figure is a relative excess in the number of tracks nch in an interval of ν: dnch(ν)/dpT over

the interval with ν = 0: dnch(0)/dpT. Since such an interval is not available, the interval

ν < 2 is used instead. The is plotted relative to the Mixed pT spectrum: dnmix
ch (ν)/dpT, at

the same interval of ν by which it is divided. Data in the left panel does not have high-ν

statistics, and therefore it has less curves.

Two observations can be made from Figure 44. In all panels, the magnitude of the

points increases with increasing ν. In all curves, the pT dependence of the points is weak.

This supports the idea that the difference between the high- and low-ν to first order is a

missing part of the Mixed spectrum, i.e., the PU. This can be due to the deviation of ν
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from its actual value or the non-linear PU component. It also does not contradict possible

detector instability, although it implies that the detector efficiency increases with time

(following the increase of µ), which is less likely. In the first two cases, the residual PU

corrections should make higher-ν data more consistent with low-ν. The curves shown in

all panels are approximated with constant functions, and their dependence on ν is shown

in the left panel of Figure 45. Curves for five pµµT intervals are consistent with each other.
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Figure 45: Left: Excess in ⟨nch⟩ particles in different PU intervals over the lowest PU

interval (ν = 0) as a function of ν for different pµµT intervals. The solid line is the correction

and dashed lines are its uncertainty. Right: Linear and Non-linear (with uncertainties)

components of the PU as a function of pµµT .

The solid line reflects the overall trend of all points and is taken as a correction. The

curves are forced to zero at ν = 0 by construction, as it becomes irrelevant when there is

no PU. The shape of the curve is chosen as parabolic, although it can also be taken as

linear. The curve reaches 0.2 at the highest ν = 20 used in the analysis, reflecting the

fact that such data shall be corrected by subtracting four more tracks in addition to 20

tracks subtracted for the linear PU component. The uncertainty on the correction comes

from the spread between points and the fact that the (relative) correction is only loosely

constrained at low-ν since the correction relies on the assumption that it zeroes out at

ν = 0.

The PU conditions and magnitudes of the corrections are shown in the right panel of

Figure 45. Full circles show the linear PU component, and open circles - non-linear. For
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all Υ (nS) states, the conditions are very similar. Both components have steps where they

increase as a function of pT, which corresponds to the use of higher pT triggers which data

is coming from later runs with higher luminosity µ and correspondingly higher ν. At low

momentum, where all data is coming from a 2mu4 trigger, the PU is less than four tracks

per event on average, and the highest pT reaches ten tracks. The non-linear component

that is coming from ν-distributions of individual pµµT bins is obtained by weighting the

distributions with the curve shown in the left panel. The error bar reflects the uncertainty

defined by the two dashed curves and relates to both linear and non-linear PU components.

4.7 Systematic uncertainties

There are three primary sources of systematic uncertainties that affect the charged particle

multiplicity and kinematic distributions measured in the analysis. The first includes

factors related to the performance of the ID tracking system - material uncertainties and

the physics model used in simulation [89]. The second source of systematic uncertainties,

which is the dominant contribution to the total uncertainty at low pµµT , includes factors

coming from the uncertainties and assumptions made in the Υ (nS) signal extraction.

They are evaluated by varying the parameters of the fitting function, by changing the

limits of invariant mass intervals shown in the left panel of Figure 42, where the charged

distributions are extracted, and by performing the analysis in |yµµ| < 1.05 where the

detector momentum resolution for the muons is higher. In addition, the signal extraction

procedure is tested using MC-based pseudo-experiments, which have distributions closely

matched to the data. This sample is constructed as follows.

• The shapes of Υ (nS) mass peaks are constructed using parametrized MC as shown

in Figure 37 with red curves.

• The mass distributions of the combinatorial background is taken from the data using

the parametrization shown in the bottom-right panel of Figure 39.

• Yields of the three Υ states and the background are taken with the weight obtained

from the black curves (corresponding to trigger 2mu4) according to the curves shown

in the four panels of Figure 40. These steps produce data-like invariant mass dis-

tributions for all pT bins used in the analysis. An example of the invariant mass

distribution is shown in the left panel of Figure 46 for Υ (1S) pT < 5 GeV. This
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peak is a pseudo-experiment analog of the peak shown in the upper-left panel of

Figure 41.

• The distributions of the nch are assumed to obey the negative binomial distribution

with the mean values and the widths resembling the data. For that purpose, the pT-

dependencies ⟨nch⟩ are fitted with smooth lines. Shape for Υ (nS), and background

in low- and high-mass regions, denoted as BL and BH respectively, using the NBD

are shown in the right panel of Figure 46.
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Figure 46: Left: Simulated dimuon mass distribution in the selected pT interval. Right:

Simulated nch distributions for Υ (nS) and combinatorial background.

• The mass dependence of the nch distribution of the background at any given mass

is constructed from BL and BH shapes using Bernoulli trials with the probability

p (m) =
mmax −m

mmax −mmin

• Each pT interval uses 300 times more counts than the data.

• Since the signal extraction is insensitive to the presence of the PU component in

the events, the PU is not a part of the pseudo-experiment.

The input of the pseudo-experiment is used for the fitting procedure, and its output is

used to extract the signal. Figure 47 shows the comparison of the input (lines) and out-

put (markers) of the closure test. Ratios shown in the lower panel demonstrate that the

signal extraction procedure demonstrates better than 1% accuracy for all Υ (nS) at all
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Figure 47: Left: Simulated nch distributions for Υ (nS) and combinatorial background.

Right: Simulated dimuon mass distribution in the selected pµµT interval.

pµµT . It is feasible that the largest deviation seen for Υ (1S) is due to neglecting the contri-

bution of Υ (2S) to mµµ
1 mass region due to zeroing the corresponding matrix element in

Equation (26) and can further be improved. However, being a subdominant contribution

compared to other sources, it is currently added to other systematic uncertainties. The

last source of systematic uncertainties includes PU subtraction, detector stability, and

misreconstructed track production. Since the PU conditions varied significantly over the

time of the data taking, these are considered together and assigned a common uncer-

tainty. This uncertainty is studied by examining collisions with different PU conditions

and evaluating residual discrepancies between the expectation based on the PU track

estimator [79] and the mean number of measured tracks.

The resulting systematic uncertainties from different sources are plotted in Figure 48

for the three Υ (nS) states shown in the panels from left to right. Dominant systematic

uncertainty comes from the difference-making the analysis in |yµµ| < 1.6 and in the

barrel. It is dominant at low pT. Next-to-the-leading systematic uncertainty is due to

PU, and it is somewhat higher at high-pT, where data is coming from high luminosity

runs. Uncertainty due to the track reconstruction is flat at 1%, and other signal-extraction
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Figure 48: Total systematic uncertainties and their partial contributions to the Υ (1S),

Υ (2S), and Υ (3S) states are plotted in the three panels from left to right as a function of

Υ (nS) pT. Dashed red curves corresponding to not applying fiducial acceptance correction

are cross-checks and are not added to the total systematic uncertainty.

uncertainties have smaller magnitudes. Since sources of all uncertainties are independent,

the resulting uncertainty is obtained by adding values in quadrature.

This analysis works out distributions resulting from subtraction nch measured in col-

lisions of Υ (1S) and higher Υ (nS). For those values, tracking uncertainty and PU uncer-

tainty are considered fully correlated and applied only once to the difference. Uncertainty

related to the barrel region of the detector is also correlated. The difference between the

systematics is taken for this source. Other uncertainties are also partially correlated, but

they are small, and the degree of their correlation is difficult to estimate.

Table 3 lists the systematic uncertainties used in final plots for different kinematic

pµµT ≤ 4 GeV 4 < pµµT ≤ 12 GeV 12 < pµµT ≤ 30 GeV pµµT > 30 GeV

Υ (1S) 0.5 – 0.6 0.5 – 0.7 0.7 – 0.8 0.8 – 0.9

Υ (2S) 0.6 – 0.6 0.5 – 0.7 0.7 – 0.8 0.8 – 1.0

Υ (3S) 0.9 – 1.3 0.5 – 0.8 0.7 – 0.8 0.8 – 0.9

Υ (1S)− Υ (2S) 0.11 – 0.15 0.06 – 0.10 0.12 – 0.21 0.2 – 0.5

Υ (1S)− Υ (3S) 0.6 – 0.9 0.14 – 0.36 0.14 – 0.15 0.16 – 0.19

Table 3: Systematic uncertainties for ⟨nch⟩measurements and their differences for different

Υ (nS) states and for the difference between ⟨nch⟩ measured for Υ (1S)−Υ (nS). The values
are the number of charged particles with 0.5 ≤ pT < 10 GeV and |η| < 2.5.
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intervals of Υ (nS). The systematic uncertainty is given in the absolute number of nch.

4.8 Main findings of the Upsilon–UE correlation studies

4.8.1 Kinematic distributions

Figure 49 shows the kinematic distributions of charged particles measured in collisions

with Υ (nS) states. The left panel shows the pT distributions, and the right panel the dis-

tributions of the azimuthal angle between the directions of the particles and the Υ -meson

(∆ϕ). In both panels, cross-shaped markers shown in black are distributions measured in

collisions with Υ (1S) meson for different intervals of the momentum of the muon pair. We

shall discuss them first. The lowest black curves in each panel correspond to the lowest

interval of pµµT < 4 GeV. In the right panel, this distribution is nearly flat, demonstrating

that the direction of the Υ (1S) and charged particles are uncorrelated. With the increasing

momentum of the muon pair, the ∆ϕ curves start to develop characteristic peaks corre-

sponding to the near-side (∆ϕ ≈ 0) and away-side (∆ϕ ≈ π) jets. Notably, the near-side

peaks are weaker, which is due to the fact that Υ (1S), as a leading particle, takes upon

itself a significant part of the jet energy. Thus the near-side peak has lesser particles than

the away-side peak. This also explains the flatness of the ∆ϕ-distribution in the lowest

pµµT < 4 GeV interval as particles forming it are coming from the UE because jets are

constrained by the low momentum of the leading particle and momentum balance. This

allows making the statement that plays a vital role in understanding the results. Kine-

matic distribution of the charged particles in the UE can be approximated by the curves

corresponding to the lowest momentum of Υ (1S). Since there is no other experimental

way to separate the particles of the UE from particles accompanying Υ production, we

rely on the above statement.

Black solid lines drawn close to black markers are calculations made with Pythia8 [17]

MC generator. These results include the feed-down processes of higher Υ (nS) states

decaying into Υ (1S), but they do not take into account χ
b
(mP) → Υ (nS) decay channels.

Generally, Pythia8 does not reproduce the data, especially in the region of the near-side

jet, and it also predicts lower UE than it is measured in the data. Details concerning the

quarkonia production mechanism in Pythia8 that would explain visible discrepancies

are known [95] but are not a part of this project.
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Figure 49: Distributions of charged particles in pT (left) and ∆ϕ (right) in collisions

with different Υ -meson pµµT . Cross-shaped markers correspond to Υ (1S), open markers

to Υ (1S)− Υ (2S), and full markers to Υ (1S)− Υ (3S), respectively. Pythia8 predictions

are plotted in solid black lines for Υ (1S). In the subtracted distributions, Pythia8 sim-

ulations are plotted in colored lines for the pµµT ≥ 30 GeV selections. Solid and dashed

lines are Pythia8 predictions with and without Υ (nS) → Υ (mS) contributions, respec-

tively. Regions filled with yellow represent the difference between the predictions with and

without feed-down decays. Bars and boxes are statistical and systematic uncertainties,

respectively. pT distributions of subtracted results are scaled for plot clarity, as indicated

in the legend.

Other curves shown in Figure 49 with colored markers are the subtracted distributions,

i.e., the differences between the results measured in collisions with Υ (1S) and higher Υ (nS)

states, Υ (1S) − Υ (2S) are shown with blue (open) markers and Υ (1S) − Υ (3S) with red

(full) markers. The distributions are also shown in several intervals of pµµT .

A striking feature that is clearly visible in the data is that all subtracted distributions

are strictly positive, including even the highest measured pµµT interval. This points to the
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fact that there are more charged particles present in collisions with Υ (1S) than in collisions

with excited Υ (nS) states. For both excited states, the effect is more pronounced at the

lower pµµT but retains at any measured momentum. Υ (1S) − Υ (2S) measures up to 0.5

extra charged particles per unit of azimuthal angle, and Υ (1S)−Υ (3S) up to 0.8 particles.

Another striking feature is that the subtracted distributions are consistent in shape

with the Υ (1S) distributions measured for the lowest pµµT < 4 GeV, i.e., as we argued

earlier, they have the kinematics of the UE. This is clearly visible for both species with

pµµT < 30 GeV, and above that, subtracted distributions start to develop jet-like features

and get harder spectrum. To a large extent this departure of the shapes from the UE to-

wards jets can be explained by the feed-down processes of higher Υ (nS) states into Υ (1S).

This is shown with colored lines that are modified Pythia8 distributions corresponding

to pµµT > 30 GeV momentum interval.

The modified Pythia8 distributions are constructed in the following way. Since

Pythia8 does not reproduce the effect of different nch in collisions with different species,

the simulated distributions are first normalized to the data. This normalization is done

by matching integrals of measured and simulated distributions outside the region of the

near-side peak. Then the simulated distributions for Υ (nS) are subtracted from Υ (1S) and

plotted in Figure 49 with colored solid lines. After that, the simulated charged particles

that are coming from the feed-down decay processes Υ (nS) → Υ (1S) are removed from

the subtracted distributions keeping the same normalization, and the results are plotted

with dashed lines. For visibility, the difference between the distributions with and without

feed-downs is highlighted in yellow color. It is easy to see that the hardening of the nch

pT spectra and jet-like peak in Υ (3S)−Υ (1S) can be largely explained by the feed-downs.

Other non-uniformities in subtracted ∆ϕ distributions become pronounced in 12 ≤
pµµT < 30 GeV momentum interval. Several physics processes may contribute to this,

including feed-down decays from χb(mP) mesons into Υ (nS) (which are not accounted

for in the Pythia8 predictions), slightly more energetic jets containing lighter Υ mesons

and other factors. Nevertheless, in the region around ∆ϕ = ±π/2, the difference in the

dnch/d∆ϕ always remains above zero for both Υ (1S) − Υ (2S) and Υ (1S) − Υ (3S) distri-

butions. This allows the conclusion that the difference between collisions of Υ (nS) states

with the same momentum is mainly in the activity of the UE and much less associated

with jets that are correlated to Υ mesons.
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The main finding of the Υ (nS)–UE correlation analysis is that the excited Υ (nS) states

reside in the event with lesser nch. The particles that are present in events with Υ (1S)

and missing in the others have the distribution consistent with the UE. The effect is

most pronounced at lower pT of the Υ meson but is visible at any measured momentum.

Known effects like feed-downs from higher Υ (nS) states into the ground state do not

explain the phenomenon. Pythia8 event generator does not have this effect either. A

similar mismatch between data and Pythia8 was reported in Ref. [96].

4.8.2 Consistency with CMS results

The results presented in this report can be compared to the results obtained by CMS

collaboration [15]. This comparison can only be made quantitatively for two reasons.

The first is that the CMS results are measured at
√
s = 7 TeV. The second is that the

particle ratios published by the CMS are composite values.

Υ (nS)(pT, nch)

Υ (1S)(pT, nch)
=

dσnS/dpT(pT)

dσ1S/dpT(pT)
× P (nS, nch)

P (1S, nch)

The first term,
(
dσnS/dpT(pT)

)
/
(
dσ1S/dpT(pT)

)
, is the ratio of the cross sections and at

√
s = 13 TeV is not yet measured by the ATLAS experiment. On the other hand, this

term is just some numerical factor, and it does not affect the shapes. The second term

in the equation is P (nS, nch)/P (1S, nch) is the ratio of the probability distributions, and

these are directly measured in the ATLAS analysis and unfolded for the PU. They are

shown in Figure 50 for several pµµT intervals.

Comparison to the CMS results is given in Figure 51. Since the P (nS, nch) distribu-

tions are normalized to unity, their ratios are also close to unity. Therefore they are scaled

by arbitrary factors for figure clarity. It is clear that the results of the CMS experiment

can be reproduced in this study with higher statistical accuracy and in wider nch intervals.

To the extent such comparison is adequate, the results are consistent.
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5 Analysis 2. Analysis of meson spectra at the LHC

5.1 Motivation and the goal

This analysis is a direct outcome of the finding made in the process of working on Υ–UE

correlations. Once it became clear that the nch is different in events with different Υ (nS)

it supported the idea of the Υ suppression in pp. In such a case, the yields of the mesons

should be modified and, in principle, measurable in the experiment. Since there is no

a-priory knowledge about the production cross-sections of Υ (nS) states, and available

theoretical calculations [97], although they show significant discrepancies with the data

and have limited accuracy at the lowest pT.

It is also shown in Section 4.8 that the difference in nch between Υ (1S)−Υ (nS) changes
with pT. That hints to the fact that not only the yields but the spectral shapes of different

Υ (nS) states can also be modified. We explored this possible modification starting with

the assumption that particles with identical quark content and identical masses should

have identical pT distribution. Although this only is an assumption, it is well based on

the first principle.

The three Υ (nS) states are all bb̄ states with rather similar masses that only dif-

fer by 9% (between Υ (1S) and Υ (3S)) and have a range from 9.46 GeV to 10.35 GeV.

The difference in spectral shape that results from such difference in masses can be esti-

mated using the so-called transverse mass (mT) scaling. mT-scaling was proposed by R.

Hagedorn [98] and based on a statistical thermodynamic approach. In Ref. [98], it was

suggested that hadron production in proton-proton (pp) collisions scales with the trans-

verse mass of the produced particles. Transverse mass is defined as mT =
√
p2T +m2,

where pT is the momentum of the hadron in the plane orthogonal to the collision axis,

and m is its rest mass. This scaling was demonstrated experimentally in measurements

at the ISR experiment [99, 100]. Although no longer thought to represent a fundamental

hadronic temperature as originally proposed, it has since been used by many experiments

and phenomenological studies to understand particle production in pp and nucleus-nucleus

collisions from the SPS to RHIC and the LHC [18, 19, 19, 20]. Thus the mT scaling, which

is worked out here, is used as an empirical but robust approach to estimate how much

pT distributions of different Υ (nS) states should differ from each other due to different
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masses.

5.2 Data selection

This analysis uses published data from pp collisions at
√
s = 7, 8, and 13 TeV measured

by ALICE [101–113], ATLAS [5, 114–120], CMS [6–8, 121–128], and LHCb [9–11, 129–

137] experiments. The data points and their uncertainties are obtained from the values

reported in the HEP database. The approach used in this analysis is first to validate the

applicability of the mT-scaling for high-energy LHC data and then use it to work out

predictions for Υ (nS) states.

Published experimental data are selected and processed as follows:

• Only measurements of mesons are considered because baryons are known to obey

the mT-scaling with different parameters compared to mesons [138].

• Where available, the prompt production component is used. For charmonia states,

it excludes feed-down contributions from B mesons but includes the feed-down from

decays of heavier charmonium states. These processes may contribute more than

30% of the measured charmonium cross section [122], and even more than that for

bottomonium states [139].

• In measurements that are corrected using different assumptions of the meson polar-

ization, the results corresponding to zero polarization are selected.

• Measurements reported within a detector’s fiducial acceptance are corrected to the

total cross-sections using the zero polarization assumption.

• Since particle ratios for quarkonia states considered in this analysis are typically

measured in dilepton decay channels; the particle ratios also include branching ra-

tios.

• Cross-sections measured to rapidity larger than three but reported deferentially in

rapidity are selected with |y| < 3 for better consistency with the results measured

at mid-rapidity.

Measurements that contain less than 5 data points or span less than several GeV in

transverse momentum are not used in the analysis. Where the same experiment provides
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multiple measurements of the same particle, the measurements are considered to be in-

dependent and combined together using a constant scaling factor applied to one of the

measurements. This factor is calculated to account for small differences in the properties

of the different measurements, for example, the rapidity coverage. The magnitude of the

factor is close to or equal to unity. Measurements of isospin-partner particles made by

the same experiment and measurements of the same particles performed by different ex-

periments are not combined. Altogether, this analysis uses 72 combined data samples of

18 particle species and their isospin partners with 1509 experimental data points and 15

measurements of particle ratios with 327 data points. They span transverse momentum

interval from 0 to 150 GeV and absolute rapidity from 0 to 4.5.

5.3 Establishing the transverse-mass scaling validity

Each data sample is fitted to the functional form given by

d2σ

dydmT

∝
(
1 +

mT

nT

)−n

(28)

that may be derived from Tsallis statistics [138, 140]. Point-by-point uncorrelated uncer-

tainties are used in the fits. Point-by-point fully correlated uncertainties (scaling factors)

are not considered because the spectra of different particles are re-normalized in the anal-

ysis. The point-by-point correlated uncertainties are plotted but not input into the fits.

In addition to the general data handling discussed above, several data exclusions are

made in the fitting procedure. Measurements of π0 and π± with pT < 2 GeV are excluded

based on the considerations discussed in Refs. [20, 105]. Low momentum, pT < 5 GeV,

Υ meson measurements are also excluded from the fitting because in that region there is

a large contribution from χb(mP) → Υ (nS)γ decays with m ≥ n. Correction for feed-

down decays from heavier mesons (χc, χb) is not applied because it cannot be reliably

determined from existing data, although it is expected to be similar in magnitude for all

Υ (nS) states [13].

Since the fit parameters, T and n are strongly correlated; unconstrained fits produce

results that are difficult to interpret coherently. Therefore, the parameter T is fixed to

254 MeV for all analyzed particles. This value is obtained from a simultaneous fit to

several selected data sets at
√
s = 7 GeV and is close to the same parameter used in [20].

The exponent, n, obtained from the fits is plotted versus the particle rest mass in Figure 52
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which shows that the values of n for u,d,s and ground-state heavy quarkonia (qq̄) mesons
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Figure 52: The mass dependence of the mT-spectra exponent n for different measured

species. Symbol shapes denote experiments, open symbols denote open heavy flavor

particles, and larger symbols denote excited quarkonia states. Error bars are uncertainties

of the fits. Encircled points indicate the results which are used in the common fit. Different

colors represent different collision energies.

are similar.

Several trends are visible in Figure 52. Particles produced in collisions with higher
√
s have harder spectra (lower n). The magnitude of n depends on the quark content

of the particle. Open heavy flavor mesons (q||q̄) demonstrate significantly harder spectra

compared to other species and harder for the open bottom (b||b̄) than for open charm

(c||c̄).
At each collision energy, the LHCb results for Υ -mesons are above others because

they are measured at higher rapidity. Comparing results at the same energy as it is done

in [140] shows that n increases with rapidity. Figure 52 shows that the exponent n for

u,d,s and qq̄ mesons are similar. At the same time, (qq̄)⋆ have lower values of n than the

ground-state: nJ/Ψ > nΨ(2S), and for bottomonia states: nΥ (1S) > nΥ (2S) > nΥ (3S).

Based on these observations, the values of n for u,d,s and ground-state qq̄ mesons

measured at midrapidity (circled data points in Figure 52) are fit to extract a common

n. There are 12, 5, and 3 data samples at
√
s = 7, 8, and 13 TeV, respectively. The

√
s = 7 TeV values are fit to a linear function, which becomes constant for T = 254 MeV.

Due to the low number of selected data sets at higher energies, the 8 and 13 TeV data
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are initially fit to a constant. The values of n (
√
s = 7, 8, 13[TeV]) = (6.65, 6.34, 5.44), are

shown in Figure 52 with lines.

5.4 Exploring the common fit

Figure 53 shows the Υ (nS) results at 3 collision energies, divided by the common fit. The
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Figure 53: Spectra of individual particles divided by the common fit. Measurements used

in the common fit are shown in gray. From reference [141].

Υ -points are shown in different colors, regardless of energy, and points that are used in

the common fit are shown in gray. The latter demonstrate reasonable agreement with

unity, although at high-pT qq̄ spectra tend to rise up to a factor of 2, somewhat similar

to what can be seen in Ref. [140]. Using Equation (28) at high mT this translates to

dn/n ≈ 1/n × dσ/σ ≈ 15–18% deviation of n from the ‘true scaling’ value, which is

comparable or even smaller than the difference in n at three measured energies. Similarly,

the LHCb results, which are measured at high rapidity, yield a value of n that is larger

approximately by 1 (see Figure 52) and constitutes approximately the same 20% deviation

from the common n.

A significant rise for all Υ (nS) states at low pT, i.e., mT ≳ m, is clearly visible. The

contribution of χb(1P) → Υ (1S) has been estimated using Pythia8 [142] simulations to

work out the prompt fraction of Υ (1S). Inclusive data that is used in the analysis and

the prompt fraction, estimated from Pythia8 are shown in Figure 54 with full and open
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circles, respectively. The prompt fraction has only a weak excess at mT ≳ m, but it still
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Figure 54: Spectra of Υ (1S) at
√
s = 7 TeV at midrapidity divided by the common fit.

As used in the analysis (full circles), prompt fraction (empty circles), using different n in

a common fit (squares). Points are shifted vertically for visibility.

rises at high pT. Decreasing n by 8% flattens the ratio, as shown in the figure with squares.

Nevertheless, inclusive data with pT > 5 GeV is used in the fit because prompt fractions

for Υ (nS) are not yet reliably measured experimentally nor fully modeled successfully.

5.5 Particle ratios

The ratios of all (qq̄)⋆/qq̄ measured at the LHC are shown in Figure 55. The ratio

curves derived from mT-scaling are drawn normalized to data at pT > 50 GeV, which

uncertainties are shown with thin solid lines. Dashed lines correspond to higher energies.

The shape of the curves can be directly derived from Equation (28) and is governed by

their minimum-to-maximum span:

min

max
≈ 1− ∆m

nT +m
n, (29)

where m corresponding to Υ (1S) is equal to 9.46 GeV and ∆m is 0.9 GeV for Υ (3S).

Equation (29) makes it clear that the value of T has only a minor effect on the shape

because nT ≪ m. Since ∆m ≪ m, even for Υ (3S), the ratio before n in Equation (29)

is ≈ 0.08; therefore the two curves for
√
s = 7 and 13 TeV are close to each other. As

discussed above, residual non-flatness of the common fit and the rapidity dependence
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Figure 55: Measured (qq̄)⋆/qq̄ ratios (markers) and mT-scaling prediction normalized to

the data at pT > 50 GeV with normalization uncertainties (solid lines). The dashed

(dotted) lines correspond
√
s = 8 (13) TeV. From reference [141].

have similar or smaller impacts on n compared to
√
s. None of these effects can explain

the drastic difference between the experimentally measured (bb̄)⋆/bb̄ ratios and the curves

shown in Figure 55. To reconcile Υ (2S)/Υ (1S)-ratio curve with the data, the feed downs

from Pythia8 that are consistent with LHCb results [139] and nearly eliminate the peak

at m ≲ mT in Figure 54, should be increased by 2.5 and even more than that for Υ (3S),

which is not plausible.

5.6 Main findings of the spectra scaling studies

Particle ratios for excited-to-ground state (qq̄)⋆/qq̄ states measured by different LHC

experiments at different incident energies in pp collisions show shapes that are inconsistent
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with the assumption made in Section 5.1 that particles with the same quark content and

the same masses should have the same kinematics. An analysis of all available LHC data

is used to demonstrate the robustness of the mT scaling that holds for mesons in the

mass range from pions to Υ mesons. Certain deviations that are seen in the data from

the common scaling either relate to q||q̄ particles that are not explored in this analysis

or can be explained by differences in the conditions of the measurements. At the same

time, the (qq̄)⋆/qq̄, and especially (bb̄)⋆/bb̄ ratios, violate the scaling, even though the

particle masses of the particles are very close, less than 10% different. None of the known

mechanisms, such as feed-downs, including feed-down from not fully explored χ
b
states,

can reconcile the observed differences.

To quantify the discrepancy between the data and the mT-scaling prediction, one can

build the particles’ ‘missing fraction’: (qq̄)⋆expected/(qq̄)
⋆
measured − 1. This fraction is shown

in the lower panel of Figure 55. Assuming the mT-scaling scenario and the Υ (1S)-meson

production cross-section, expected Υ (2S) production at low pT is approximately twice

higher than the measurement and Υ (3S) is roughly three times higher. Using the ‘missing

fraction’ and the measured differential cross section of Υ (nS) states (for the full list of

references see [141]), one can estimate that the measured cross-sections of Υ (2S) and Υ (3S)

mesons are ‘suppressed’ by factors of 1.6 and 2.4 compared to the expectation from the

production rates of Υ (1S). Despite the quantitative nature of this exploratory analysis,

the leading systematic uncertainty is much smaller than the observed effect.
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6 Results and discussion

6.1 Simultaneous assessment of the results

The mean number of charged particles with transverse momentum between 0.5 and

10 GeV measured in the pseudorapidity range |η| < 2.5 in events with reconstructed

Υ (nS) mesons are shown in the left panel of Figure 56 as a function of Υ pµµT . The upper
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Figure 56: Left: The mean number of charged particles with 0.5 < pT < 10 GeV and

|η| < 2.5 in events with Υ (nS) mesons (top) and difference of this quantity between the

excited and ground Υ (nS) state (bottom). Right: Measured (qq̄)⋆/qq̄ ratios (top) and the

difference of the expected value based on mT-scaling to the measurement divided by the

measurement (bottom).

panel shows the results for the three measured Υ states, and the lower panel shows the

differences Υ (1S) less Υ (2S) and Υ (1S) less Υ (3S) states. The Figure shows significant

differences in ⟨nch⟩. Unlike the data, the Pythia8 prediction shows very similar particle

multiplicity for all three Υ states. This conclusion is unchanged by changing the color

reconnection scheme in the Pythia8 simulation. At the lowest measured pµµT , the differ-
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ence in ⟨nch⟩ for Υ (1S)−Υ (2S) is 3.6±0.4 and for Υ (1S)−Υ (3S) it is 4.9±1.1, where the

uncertainties correspond to systematic and statistical uncertainties added in quadrature.

The pµµT dependencies of the differences between the excited and ground states are similar

for both excited states. This measurement is qualitatively consistent with the finding of

the CMS experiment [15], but ATLAS shows much higher magnitudes than are reported

by the CMS, which observes about one particle between the states. This effect measured

by ATLAS reaches 12 ± 1% for Υ (1S) − Υ (2S) and 17 ± 4% for Υ (1S) − Υ (3S). This

cannot be explained by known effects like the feed-downs between Υ (nS) states, which

are compared in the lower-left panel of Figure 56 to the data using MC simulations based

on Pythia8. The discussion of Figure 49 leads to the conclusion that the effects are

related to the UE and not to the jet part of the collision. The CMS experiment arrived

to the same conclusions based on the analysis of the event sphericity.

Much novel insight into the physics behind the observed phenomenon can be obtained

from the analysis of the expected vs. measured Υ (nS) yields that is done implying the

mT-scaling analysis. The results of this study are shown in the right panel of Figure 56

to enable a side-by-side comparison of the results.

The upper panel of the right panel shows particle ratios are known to only weakly

depend on rapidity and
√
s. Therefore all available LHC data is shown in the same plot.

The data are compared to expectations based on mT-scaling, which are shown with solid

lines for the three collision energies. The mT expectations are normalized to data at pT >

50 GeV, and the uncertainties resulting from the normalization are shown with thin lines.

Employing the mT-scaling to compare particle spectra distributions is a commonly-used

technique performed in many studies (e.g.:Ref. [105]). Such studies typically demonstrate

a very good agreement between the mT-scaling and measured particle ratios.

Figure 56, on the contrary, demonstrate clear differences between the expectation and

the data for (bb̄)⋆ species and significantly better consistency for (cc̄)⋆. To quantify the

discrepancies, the lower panel shows the particles’ ‘missing fraction’ constructed from the

ratios. It is the measured value subtracted from the expected value and normalized to the

measured, this normalization cancels the ground state production rate, and thus the quan-

tity represents the ‘missing’ excited state production equal to (qq̄)⋆expected/(qq̄)
⋆
measured − 1.

The normalization uncertainty is added to the systematic uncertainty drawn at each point.

The curves show that assuming themT-scaling scenario and Υ (1S)-meson cross-section, at

90



low pT, the Υ (2S) production expectation is approximately twice as high as the measure-

ment and Υ (3S) is roughly three times higher. Estimation for Ψ(2S) at low pT is above

zero, suggesting that the (cc̄)⋆ may also be affected, although to a much lesser extent than

the Υ case. With the existing data and understanding of the prompt fraction in J/Ψ , a

conclusion about (cc̄)⋆ cannot be drawn with a large degree of certainty. At higher pT,

Υ (2S) and Υ (3S) points are significantly above zero to at least 30 GeV.

There is a striking similarity between results presented in both lower panels of Fig-

ure 56. Curves shown in the left panel are the difference in the ⟨nch⟩ between Υ (nS)

states, and curves in the right panel showing the missing fraction of events between these

states have the same shape and the same ordering. This level of similarity excludes the

possibility of that being a random coincidence. At the same time, there is a very clear

scenario that can explain the two effects simultaneously. There exists an interaction be-

tween the particles produced in a hard scattering of two energetic partons with the UE of

the pp collision that is coming from different parton-parton interactions. Excited Υ (nS)

states would be destroyed in such interactions more intensely when the UE is larger, and

therefore, the fraction of such events would have the same profile as the excess of ⟨nch⟩ in
the events where they survive. This is the first evidence that such a phenomenon exists

in pp collisions.

The mT-scaling allows us to estimate the magnitude of the effect, i.e., how many

Υ (nS) would be produced is pp collisions if such interactions would not exist. For that,

the missing fraction has to be multiplied by the measured cross-sections and added to

it. This exercise shows that for the Υ (2S), the cross-section has to be 1.6 times larger

for Υ (2S) and 2.4 times larger for Υ (3S) mesons. This estimate, of course, fully relies

on the assumption of the mT-scaling, and within this assumption, the accuracy of the

estimates is rather high and consists of approximately 5% that is coming from the limited

statistics of high-pT normalization of the calculated ratios to the measured ones. It also

has a contribution from the uncertainties of the T and n parameters, which are included

in that number.

Studies described in this report suggest that this interaction significantly changes the

production rates of (bb̄)⋆ states. It would be natural to ask a question what other particles

can be affected? The mT-scaling analysis is also applied for Ψ(2S), for which ratio to J/Ψ

is shown on the right panel of Figure 56. Clearly, the same mechanism does not affect
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the production of Ψ(2S) to the same extent as (bb̄)⋆. However, the effect cannot be fully

excluded either. The most direct way to answer the question about Ψ(2S) is to measure

its correlation to the ⟨nch⟩ UE.

6.2 Connection to HI physics

The effect observed in these studies has a clear ordering such that it is larger for Υ (3S)

than for Υ (2S). This suggests that the effect is related to the binding of the quarks in

the particles or to the size of the particle wave function. If this is the driving parameter,

it would be logical to assume that χb(nP) and possibly χc(nP) states can be affected as

well. Unfortunately, reconstructing these particles is challenging experimentally, but they

can provide another insight into the physics of the observed phenomenon.

Both studies presented in the report use Υ (1S) as a baseline, and therefore they are

insensitive to possible modification of Υ (1S) rates. Indirectly, an insight on whether

Υ (1S) is also modified in pp may be coming from the measurements of RAA performed in

Pb+Pb. Since the effects for Υ (1S) are expected to be smaller than for higher Υ (nS), one

can benefit from the larger size of the system. Figure 57 shows the RAA as a function of

Figure 57: Left: Nuclear modification factors for different Υ states as a function of ⟨Npart⟩
[16]. Right: Compilation of results for the nuclear modification factor RAA vs number of

participating nucleons Npart in different channels from the Run 2 Pb+Pb and pp data [56].

the mean number of participants ⟨Npart⟩ for different Υ states (left) and for other particles

(right). The level of Υ (1S) suppression is comparable to magnitudes registered for other

hadrons, but Υ (2S) and Υ (3S) exhibit much stronger suppression. This does not answer
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the question about Υ (1S) suppression in pp, but it suggests that it should be comparable

to the effect for other hadrons. At the same time, Figure 57 suggests that Υ (1S) has a

higher probability of getting out from the fireball from various points within the size of

the system. With increasing the system size (Npart), it warrants a downward trend with

decreasing centrality (increasing fireball radius). Υ (2S), on the other hand, shows much

flatter behavior above Npart = 100, which suggests that they can get out of the system

only from a relatively limited distance below the surface, and for Υ (3S), this layer should

be even thinner than for Υ (2S). It is directly related to the effects described in the report.

Unfortunately, there is no theoretical guidance for the effect, and the only insight

into the data can be inferred from the Pythia8 event generator. First of all, in the

Pythia8 model, quarkonia are produced through dedicated processes that are distinct

from perturbative quantum chromodynamics (pQCD) hard particle production. This

means that Pythia8 does not produce quarkonia inside of jets. Therefore it contains no

near-side jet, and for that reason, Pythia8 does not describe the near-side peak well.

Secondly, Pythia8 does not have the effect of interactions with the UE, and therefore

it shall be normalized to the data as it was earlier explained. A disadvantage of that

can be seen, for example, in Figure 49 where Pythia8 curves more or less describe the

feed-downs of Υ (nS) → Υ (1S) for Υ (3S) curve shown in the lower-right panel, but not

so well for Υ (2S) shown in the middle-right panel. This may be misleading. Pythia8

curves shown in that panel correspond to open circles, which do have an elevation around

∆ϕ = 0, although smaller than suggested by Pythia8. However, the curves that are

normalized at all ∆ϕ appear even higher. But in the region that is the most interesting

for this analysis, i.e., at ∆ϕ = ±π Υ (2S) points are clearly above zero, and that has

nothing to do with the feed-downs. This has an interesting consequence on the results

shown in the lower-left panel of Figure 56. It can be seen that above 30 GeV Pythia8

curve that includes the feed-downs (solid line) reasonably describes at least Υ (2S) data,

but it can be not so. The discussion given above may suggest that this is just a coincidence

and the excess above zero seen for both Υ (nS)−Υ (1S) curves need to be explained based

on other considerations.
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6.3 Connection to theoretical calculations of Upsilon cross-sections

In Ref. [97], one can find the theoretical study of Υ (nS) and χb production at next-to-

leading order in αs in nonrelativistic QCD (NRQCD) using the LHC data. To fit the

model, authors are using differential cross sections of Υ (nS) measured by ATLAS [5] and

CMS [6], and fractions of Υ (nS) production originating from χb(nP ) feed down contribu-

tions measured by LHCb [139]. Comparisons between the model and data are shown in

Figure 58. One can see the discrepancy of the model in pT < 20 GeV region for all three

Figure 58: Differential pT cross sections for the experimental data of ATLAS, CMS and

CDF. From left to right: Υ (1S), Υ (2S), Υ (3S). The contributions from direct production

are denoted by dashed lines, while those from feed down by dashed-dotted lines. The

χb1(nP )− Υ (nS) and χb2(nP )− Υ (nS) feed down contributions are denoted by the solid

and dotted lines respectively [97].

Υ (nS) states. These differences are larger for higher Υ states; however, the difference be-

tween the data and the model prediction is significant even for Υ (1S). We cannot measure

suppression of Υ (1S) state, but from these plots, one can assume that the ground Υ state

can also be affected.
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6.4 Connection to the Comover Interaction Model

Within the framework of the comover interaction model (CIM) [143–147], quarkonia are

broken by collisions with comovers, i.e., final state particles with similar rapidities. In

this model, recombination effects are neglected. The basic ingredient of this model is

the profile function of the proton, taken as a Fermi function. The comover density is

proportional to the number of binary parton-parton collisions per unit of transverse area

and rapidity at a given impact parameter, which in turn is proportional to the overlap

between protons [148]. The quarkonium abundance is driven by its interaction cross-

section with comovers. One can recall two features of the comover approach:

• Larger particles are more affected by dissociation due to larger interaction cross

sections. As a consequence, excited states are more suppressed than ground states.

• The suppression increases with comover densities, which is proportional to particle

multiplicities.

Figure 59: Relative yields of excited-to-ground state Υ as a function of multiplicity for pp

collisions at 2.76 TeV [14]. The bands follow the uncertainties of the six cross sections that

contribute via the feed down, and uncertainties of phenomenological parameters. [149]

Figure 59 shows the applicability of CIM to describing the yields of Υ mesons. Points

are the relative Υ yields, measured by CMS at 2.76 TeV, as a function of the number of
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charged tracks within pT > 400 MeV and η < 2.4 [14]. From Figure 59, one may confirm

the validity of the model; however, to answer the question of whether the CIM is able

to describe our results or not, one needs to measure 2PC between Υ meson and charged

particle.

6.5 Connection to other species

It is interesting to note that, in spite of the strangeness enhancement, discussed in Sec-

tion 2.4, the particle ratio of K∗0/K, measured by ALICE [150, 151] and STAR [152]

collaborations, also go down with nch for both A+A and pp collision systems (see, for

example, Figure 60). Possibly, it is a manifestation of the same effect.

Figure 60: Ratios of pT-integrated yields of Ξ/ϕ, K∗0/K, and ϕ/K as functions of

⟨dNch/dη⟩ for pp, p+ Pb and Pb + Pb collision systems [150].
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