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Abstract Within a covariant perturbative field-theoretical
approach, the wave-packet modified neutrino propagator
is expressed as an asymptotic expansion in powers of
dimensionless Lorentz- and rotation-invariant variables. The
expansion is valid at high energies and short but macroscopic
space-time distances between the vertices of the proper Feyn-
man macrodiagram. In terms of duality between the propa-
gator and the effective neutrino wave packet, at short times
and distances, neutrinos are deeply virtual and move quasi-
classically. In the lowest-order approximation, this leads
to the classical inverse-square dependence of the modulus
squared flavor transition amplitude and related neutrino-
induced event rate from distance L between the source and
detector, and the above-mentioned asymptotics results in the
corrections to the classical behavior represented by pow-
ers of L?. This is very different from the long-baseline
regime, where similar corrections are given by an asymp-
totic expansion in inverse powers of L. However, in both
short- and long-baseline regimes, the main corrections lead
to a decrease in number of neutrino events.

1 Introduction

A considerable amount of work has been devoted to the
quantum-field theoretical (QFT) analysis of spatial evolu-
tion of mixed massive neutrinos [1-40]. These studies were,
in large part, initiated by a harsh critique of the quantum-
mechanical (QM) theory of plane-wave neutrino oscilla-
tions, burdened with numerous inconsistencies and para-
doxes. A comprehensive discussion of this and related issues,
as well as further references, can be found in books [41,42].
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The QFT-based computations consistently reproduce, as an
approximation, the standard QM formula for the neutrino
flavor transition probability, and usually predict deviations
from it (often different for different authors and nonequiva-
lent approaches), thereby providing proper interpretation of
the QM result, determining the scope of its applicability, and
indicating possible directions of the experimental search for
new related phenomena, such as decoherence and dispersion
effects [43—49] and inverse-square law violation [50-53].

The above-cited works are mainly concerned with study-
ing the neutrino oscillations at long baselines, where the tran-
sition probability is large enough to be detected experimen-
tally. The short baseline oscillation regime was discussed
in Ref. [9] within a solvable QFT model, and later in Ref.
[19] in a more general approach. In this work, we study in
detail just this case, i.e., the neutrino propagation at short dis-
tances in the QFT framework. Here, there is an immediate
need for clarification: By short and long baselines (SBL and
LBL) we will mean the distances L between the neutrino
production and detection points that satisfy the conditions
LK E,/ EéBL and L > E,/ EI%BL respectively, where E,
is the mean neutrino energy, and Xspr. and X g are the rep-
resentative scales of the neutrino energy uncertainty related
to the SBL and LBL regions. Later in the paper we explain
where these conditions come from and what might be inter-
esting about the SBL region (depending on the values of L,
E,, and Xgspr) which may or may not be related to SBL
experiments with accelerator or reactor (anti)neutrinos, or
neutrinos from artificial radioactive sources.

Throughout the paper, we use the natural units (7 =
¢ = 1) and the Feynman metric. The Greek letters w, v, ...
are used for Lorentzian indices, while the Latin indices
k,l, n, ... enumerate the spatial components of vectors and
tensors. The letters o and § are reserved for lepton flavors.
The formalism under consideration does not depend on the
number of flavors or number of the neutrino mass eigen-

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-022-10670-w&domain=pdf
http://orcid.org/0000-0003-1415-4919
mailto:vnaumov@theor.jinr.ru
mailto:dmitry@shkirmanov.com

736 Page 2 of 28

Eur. Phys. J. C (2022) 82:736

Fy

Fig. 1 A generic macrodiagram with virtual neutrino exchange. /; and
1, denote the sets of initial wave-packet states in the source and detector
vertices X and Xy, respectively, Fs and F; denote the sets of the final
states. The vertices X and X4, which may include arbitrary inner lines
and loops, are assumed to be macroscopically separated in space and
time. The inner line connecting X and X, denotes the causal Green’s
function for the neutrino v; with definite mass m;

fields, but, unless otherwise noted, one may have in mind
three generations of the Standard Model.

2 Essentials of formalism

The subsequent discussion is based on the covariant (“dia-
grammatic”) QFT formalism developed in Refs. [27,28]. In
this section, we shortly discuss the features of the formalism
most essential for the aims of the present study, for more
details, see Ref. [37]. The basic idea of the diagrammatic
approach is that the flavor transition of neutrinos is the result
of interference of “macroscopic” Feynman diagrams, such
as the one shown in Fig. 1, perturbatively describing a lepton
number violating process in which the massive neutrinos are
internal lines connecting the vertices of their production and
absorption. In other words, the neutrino mass eigenfields, v;
(i =1,2,3,...), are treated as virtual intermediate states.
The neutrinos with definite flavors, v, (@ = e, «, 7), do not
participate in the formalism at all, although can be used to
compare the predictions with those from other approaches,
in particular, with the standard QM approach based on the
concept of flavor mixing.

The external lines of the macrodiagrams correspond to
asymptotically free incoming (“in”) and outgoing (‘“out”)
wave packets |p,, sq, Xq) (a€ly q) and | py,, sp, xp) (bEFy )
of the following generic form:

dk &' k= P

m¢(ka D)k, s) (D

|p,s,x)=

representing the superposition of the one-particle Fock’s
states |k, s) = «/2Eka;£s|0) with 3-momenta k and energy

@ Springer

Ex = vVk> + m2, which may also depend on discrete vari-
ables s, such as the spin projection; here a};S is the creation
operator, m is the mass of the particle, dk = d°k. Wave-
packet state (1) is characterized by the most probable 3-
momentum p and the space-time coordinate x = (xg, X)
of its barycenter or, simply, center of symmetry, which is
always implicitly assumed. The function ¢ (k, p) is a model-
dependent Lorentz scalar (“form factor”), which determines
the shape of the packet and generally depends on a set of
parameters o that characterize the uncertainty of the momen-
tum p; k = (ko, k) and p = (po, p) are the on-shell 4-
momenta, i.e., k? = p2 = m?. Inthe plane-wave limit (PWL)
equivalent to the definite momenta approximation, the form
factor becomes proportional to the 3d delta function,

¢ (k. p) % 1) 2E,8 (k — p).

and, as a result, the coordinate dependence in Eq. (1) disap-
pears and the wave packet turns into the state with definite
momentum:

PWL
|p,s,x) —> |p,s).

From this point we will consider only very narrow in the
momentum space external wave packets, for which the form-
factor function ¢ (k, p) is strongly peaked at the pointk = p.
Such packets are very close to their plane-wave limit and in
the configuration space are described by simple scalar func-
tion

B dkeikx . 5
W(P’x)—/mfﬁ( . D). (2)

The blocks (vertices) X, and X, (hereinafter referred to
as “source” and “detector”’) symbolically depict the micro-
scopic regions of the in and out particle interactions. The
spatial interval between X and X4 can be arbitrarily large.
Without risk of confusion, we will denote by the same sym-
bols X and X, the 4-vectors that determine the effective
space-time coordinates of the interaction regions; the pre-
cise definition of these coordinates (called “impact points”)
depends on the form factor model and will be done later.
Macroscopic separation between the source and detector ver-
tices means that the values of |X2 - X?| and | X; — X;| are
large compared to the microscopic space-time scales of the
interaction regions (determined by the dynamics) and to the
micro- or even mesoscopic effective dimensions of the in
and out wave packets; this clarifies the meaning of the term
“macroscopic diagram”.

It is further assumed that the particle interactions are
described by the Standard Model (SM) Lagrangian, phe-
nomenologically augmented by a Dirac or Majorana mass
term with the number of the neutrino mass eigenfields N > 3
and by corresponding kinetic terms. So the set of initial or
final states (or both sets) at each vertex must contain a charged
lepton or (anti)neutrino. To avoid Irrelevant complications,
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we rule out the possibility that the external states include
gauge or Higgs bosons.

Wave packets as external lines of macrodiagrams lead to
a modification of Feynman’s rules. For the narrow in and out
packets, they are modified in a rather simple way [27,28]:
for each external line, the standard (plain-wave) factor must
be multiplied by

e—ipa(xa—x)wa (pa’ Xg — x) fora € @1y, (3a)
and
e TPy (p xp — x) forb € F,®Fy, (3b)

where each function v, ( Do x) defined by Eq. (2) is gener-
ally specified by its own form factor ¢, (k, p,,), most proba-
ble 3-momentum p,,, space-time coordinate x,,, and mass #1,,
(% = a, b). The internal lines (including loops) and vertex
factors remain unchanged. The additional factors (3) provide
the following two common multipliers in the integrand of the
scattering amplitude [27,28]:

Voalg) = / dhxe " [T ey, (pg, xa = x)

acls g4

X 1_[ e+ipbxb1ﬂ; (pb, Xp — x) . 4)

beFq

These functions are called overlap integrals, because they
characterize the space-time integrated degree of overlap
between the in and out wave-packet states in the source
and detector vertices. Obviously, in the plane-wave limit
¥ (p,x) — exp(ipx) and integrals (4) turn into the ordi-
nary 4d delta-functions to within a multiplier:

PWL
Via(q) — 2m)*8 (q F gs.a) »

where
G5 =) Pa—p_ b and qa=Y pa—Y po
acl; beF; aely beFy,

are the 4-momentum transfers in the source and detector ver-
tices, respectively.

Our main interest in this paper is to study the space-time
dependence of the count rate of neutrino-induced events. The
expression for the count rate or number of events is obtained
after various averages of the modulus squared amplitude
of the process under study and is primarily determined by
behavior of the causal neutrino propagator

d*q 85(q — 45)84(q + qa)(G +m)e 11X
Qn)* q*> —m? +ie

&)

“dressed” (through the overlap integrals) by the external wave
packets. Here m; is the neutrino mass,

X = (XO’ X)ZXd_XA3

8s.d (¢ F gs.q) are the “smeared” §-functions which provide
approximate energy—momentum conservation at the vertices
of the macrodiagram, and which in the plane-wave limit
become the delta-functions,

8s.d (4 F ds.a) AAE (4 Fqs.a): (6)

in this case, the energy and momentum are exactly conserved
at the microscopic level, while the uncertainty of coordinates
of in and out particles tends to infinity and the space-time
description of the process shown in Fig. 1 loses its physical
meaning. The smeared §-functions are defined by the external
wave packets and therefore their explicit form depends on the
form factors ¢ (k, p), but the limit (6) is model independent.

2.1 Relativistic Gaussian packets

Below we will use the so-called relativistic Gaussian packets
(RGP) proposed in Ref. [27]. The RGP model corresponds to
a very simple form factor ¢ (k, p) o exp [—(kp)/20*] and
the function (2) describing RGP in the coordinate represen-
tation is

_ Ki(gm?/20?)

YO e 20)

=vyg(p,x). (7
Here p and m are the most probable 3-momentum and mass,
respectively, x = (xo, x) is the space-time coordinate of the
packet’s center,! ¢ is the momentum spread (just a constant
assumed small compared to m), K(z) is the modified Bessel
function of the third kind (or Macdonald function) of order
1, and

402

¢ = \/1 = [02x2 +i(px)].

For our aims, it will suffice to restrict ourselves to the simplest
approximate form of Eq. (7)

. o’ 2 2.2

Y (p.x) = exp {sz — s [0 = ]} ®)
(called contracted RGP, or CRGP), which describes a non-
difluent mode characterized by the condition that in the intrin-
sic frame the function |y (p, x)| = | (0, x,)| is independent
of time x?, namely, [ (0, x,)| = exp (—azx%) . An analy-
sis of the asymptotic expansion of In [/ (0, x,)] in powers
of the small parameter o2/(m2¢), taking into account the
inequalities |¢| > 1 and |arg ¢| < /2, provides the neces-
sary and sufficient conditions of the non-difluent behavior:

2 2
m m
? () < =5, 0I5 < = ©)
(o2 o

I RGP is spherically symmetric in its own frame of reference (denoted
by %), which is defined by the condition p, = 0.

@ Springer



736 Page 4 of 28

As is seen, the area of applicability of the CRGP approxima-
tion expands with decreasing o.

2.2 Process under study

Many physical assumptions, limitations, and simplifications
are the same for the SBL and LBL cases; these will be men-
tioned here only briefly. As in the LBL case [27,28,37], we
will limit ourselves with studying the following process:

I;®la — F{+ ¢, ® Fy+ 4, (10)

where @ sign indicates the macroscopic remoteness of the
corresponding subsets of particles. This process is interesting
because it includes virtually all terrestrial experiments with
short baselines. The macroscopic Feynman diagram corre-
sponding to process (10) is shown in Fig. 2; it is a particular
case of diagram Fig. 1. Initial and final states /s 4 and F x/ 41N
Fig. 2 consist of hadronic states, while ZO}L and ZE represent

the final-state leptons with the 4-momenta p, = ( pg, pa)
and pg = (pg, pﬂ), respectively (o, B = e, i, 7). Recall:
it is assumed for definiteness that the subgraphs of the dia-
gram containing lepton and quark lines, W-propagators, the
elementary vertices proportional to the elements Voj‘j and Vg,
of the neutrino mixing matrix, as well as of the quark mixing
matrix (not indicated in Fig. 1), are described by the Stan-
dard Model, but this assumption is not at all a critical part
of the formalism under consideration. As above, X; and X/
symbolically denote the neutrino source and detector blocks
and, at the same time, the impact points macroscopically sep-
arated in space and time.

According to Ref. [27], the amplitude of the process (10)
can be written in the following form:

4
8
Apa = 137 ;”ﬂ‘;vﬂjv&kj
Xi(pg) 0" Gl (P ) O 0(py). (D)

This result is based on a theorem on factorization of hadronic
blocks of the macrodiagram Fig. 2 proved in Ref. [37]. Let
us concisely describe the ingredient of Eq. (11), necessary
for a further presentation of the formalism. Here g is the
SU (2) electroweak gauge coupling, N\ is the normalization
factor, J ; and J are the standard QFT (c-number) hadronic
currents (see Ref. [37] for more details), #(pg) and v(p,,) are
the usual Dirac bispinors, describing the final-state charged
leptons £g and £, respectively, and 0" = y"(1 — y5); p,
and x,, are, respectively, the most probable 3-momentum of
the packet ¥€S@® D and space-time position of the packet’s
center.

@ Springer
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Fig. 2 A diagram of process (10), see text for details

The tensor function Glj) Vi accumulating the effects of
all external wave packets has the form

GJ ie_G_i® d4 —l‘qX@( )

4 ’ - e

e T R T 1
(q+mj)

—— A, (g — Ay (g + 12
qz—m%—i—is vy (q pﬂ) uu(q PaX12)

The so-called overlap tensors 9i; and 9, are given by
R ="TH and NG =T (13)
xeS xeD

respectively, where S = (@ F;, D = [;®Fy,

T/ = 0‘3 (uﬁu; - g‘w) ,

Uy = px/my, = ')y (1,v,) is the 4-velocity and o, is the
momentum spread of the packet x. The tensors Ny and Ny
are inverse to the overlap tensors, i.e.

T () = 8 and TE* (Rg)z, = 81

It is important that both N, 4 and E’ftx,d are symmetric and
positive definite. Therefore, the determinants [N 4| and
|§%s,d| = 1/|NM; 4| are positive and the same is also true for
the principal minors of N 4 and S’ﬁs,d.

The functions A,,/(g — pg) and A, /(g + pe) are the
W -boson propagators, whose explicit form we will not need.
The functions @ (g), &, and ® are defined as

1
@(q) = exp [_ZF(‘])]
E=6,+64, 0O=qgeXq+qsXs, (14)
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where
F(q) =R (q — g0, (q — q5),
+R" (g +94), (@ + 94), -
Gs,d = Z T}ﬁw (xz - Xs,d)lu (xz - Xs,d)u , (15)
xeS,D
and
=50 Y Thxa (16a)
xeS,D
=0y D o ) — Xl (16b)
xeS,D

From Egs. (13) and (16b) follow the identities

Z T;ﬁw (xx - Xs,d)u =0,

xeS,D

from which we see that the impact points represent the
weighted-mean space-time coordinates of the external wave
packets. Considering that S, 4 > 0, the functions exp(—&;)
and exp(—&,) are the geometric suppression factors con-
ditioned by the overlapping degree of the in and out wave
packets in space and time: they suppress the amplitude when
the packets do not intersect or intersect only partially near
the points X and X in the source and detector, respectively.
At the impact points & = G4 = 0; the closer are the world
lines of the packets’ centers to the impact points, the more
probable is the interaction between the packets. The con-
dition that the interaction regions in the source and detec-
tor vertices are macroscopically separated from each other
is therefore equivalent to the macroscopic separation of the
points X and X,. The world line configurations have no
concern with the specific dynamics governed by the interac-
tion Lagrangian, being uniquely defined by the initial (final)
coordinates, group velocities and effective dimensions of the
asymptotically free in (out) wave packets.

3 Long baselines in short

An important tool for studying LBL asymptotics is the
Grimus—Stockinger theorem [4] used in most abovecited
analyses of neutrino oscillations based on QFT approaches
with wave packets. The theorem predicts that the spatial part
of the “dressed” neutrino propagator (5) behaves as 1/L
at L = |X| — oo, which leads to the classical inverse-
square law (ISL) for the detected number of neutrino events.
In Refs. [50,54] it was shown that the classical ISL is vio-
lated at finite L. This is a consequence of an extension of the
Grimus—Stockinger theorem, which allows one to compute
corrections to the long-distance asymptotics of the propaga-
tor (5). The theorem as formulated in Ref. [50] states that for

any Schwartz function ® (q)? the integral

dqg  ®(q)e'1¥
2m)3 g% — % —ie

J(X, ) =

may be represented by the asymptotic series

X0 = %[1 + ; DZEK)}, (17)
where i
s
P = Gy 2 2 (3) panco@| _,

o

Dube = Cabe (l XVq) (b+c) (lvq)a—b—Zc

’

I = X/|X|, and cqp arerecursively defined positive numbers
(given in Ref. [50] for a < 6). Equivalent but recursive-free
formulation of the theorem is given in Ref. [54]. The appli-
cability of the leading (Grimus—Stockinger) approximation
is defined by explicit form of @ (q), but in general case it can
be written as

22eLL/q0 > 1,

where Xppr is an effective parameter dependent on the
momenta, masses, and momentum spreads (o, in the CRGP
model) of the external (in and out) wave packets. It is also
shown in Ref. [50] that | J(X, k) |2 is given by a series in pow-
ers of 1/L? and the lowest (o< 1/L*) ISL violating (ISLV)
correction is negative in the physical region ¥ > 0. The
explicit formula for Xy g obtained within the CRGP model
in the third order saddle-point asymptotic expansion is given
in Ref. [53]. Itis far beyond the scope of this article to analyze
the contribution of the non-physical domain.

Another important consequence of the theorem is that the
virtual neutrinos are on-mass-shell, and both energies and
momenta of different eigenfields v; do not coincide. This
strongly contradicts the standard assumption of the plane-
wave QM theory about the equality of the momenta of the
neutrino states with different masses, but, surprisingly, in the
ultrarelativistic limit leads to the same oscillation phases.

Omitting the rather lengthy calculations, let us write down
the final expression for the number of events in a detector
located at a large distance from the source, obtained within
the framework of the formalism described above:

Ngy = dx/dy/d%v
Vs
X /doupPa,g (Ey,ly —x|). (18)

2 That is, the function d(q) € C ©(R3?) which goes to zero faster
than any inverse power of |g/|, as do all its derivatives. The (positive)
function in the integrand of the neutrino propagator (5) belongs to this

class; k2 = qg — ml2

@ Springer
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The details of the calculations, conditions of applicability,
and interpretation of this somewhat abstract approximate for-
mula can be found in Refs. [28,37]. Here we will only briefly
explain its constituents.

The indices o and B indicate that the final states must
necessarily include the leptons £, and £g. Parameter 74 rep-
resents the detector exposure time, Vs and Vp are the fidu-
cial volumes of, respectively, the source (S) and detector (D)
“devices”; the spacial integrations are performed over these
volumes. The differential form do,p is defined such that the
expression

1
7 dydo,p

represents the differential cross section of neutrino scatter-
ing at the detector D as a whole. In the practically important
case of neutrino scattering on single particles and under the
usual assumption that the momentum distributions of scatter-
ers are very narrow (such as the Maxwellian distribution), the
differential form do,p becomes the elementary differential
cross section for the given reaction multiplied by the num-
ber of scatterers in the volume Vp. The function Pyg (E,, L)
in Eq. (18) is the QFT analogue of the quantum-mechanical
(QM) flavor transition probability; it is a function of neu-
trino energy E, and distance L = |y — x| between the points
x € Sand y € D; for any pair (x, y), L is assumed to
be large compared to the dimensions of S and D. In the
conventional ultrarelativistic approximation, the “probabil-
ity” includes the standard QM oscillation phase factor and
corrections for decoherence effects of different kinds. These
corrections will be discussed in Sect. 6, when comparing the
expressions for the number of events in the LBL and SBL
modes.

Finally, the differential form dg, is the differential neu-
trino flux in D defined such that the quantity

dx [ dg,

Vs J dE,

is the number of neutrinos appearing per unit time and unit
neutrino energy in the elementary 3d volume dx = d’x
around the point x, moving within a unit solid angle in the
direction from point x to point y, and crossing the unit area
placed around y and perpendicular to y — x. According to
the extended Grimus—Stockinger theorem (17),

<,
+Z—|y_x|2n] (19)

n>1

|
A3, o« — |1
Suox Iy—xl2[

As a consequence, ISL is broken. The coefficients of the
series (19) are discussed in Ref. [50]. Recall that ¢; < 0,
so the lowest-order ISLV correction reduces the number of

@ Springer

neutrino events:
1 £3
N, Ba X ﬁ - E . (20)

Here L is the distance between the source and detector
(assumed large compared to their sizes) and £ is an energy-
dependent parameter of dimension of length:

E, E, DA
5 ~ 20 e —— cm.
XipL 1 MeV leV

Lo ~

Recent analysis [53] shows that current reactor antineutrino
data timidly hints that the ISLV effect is already manifesting
itself, although the accuracy of the data is still too low and
the uncertainty of the calculated reactor antineutrino energy
spectra is too large to draw confident conclusions.

4 Short baseline asymptotics

We are now ready to study the short-baseline (SBL) behavior
of the amplitude (11). It will be shown that the SBL formula
for the number of neutrino events leads, like Eq. (18), to an
ISL behavior, which is also violated by higher-order correc-
tions.

To simplify things a bit, we restrict ourselves to the con-
ditions

| @5 — pa)?| ~ | (92 — pp)° | < m%y.

Then the W propagator A,, can be approximated by
—iguv/ m%‘, Next, in a good approximation, we can replace
q with P, where the 4-vector P is the stationary point of
@(q). From Egs. (14) and (15) it immediately follows that

Pu=RuY’, YH =50 — 544, 1)
where R is the tensor inverse of Ri°:
RS =88, Gt =5, + N, (22)

In the exact energy—momentum conservation limit P = g; =
—q4 and, due to the suppression factor (14) in the amplitude,
P ~ gs >~ —q4 even otherwise. So, within the saddle-point
approximation, it is natural to interpret P as the 4-momentum
of the virtual neutrinos. It should be remarked that P is inde-
pendent of the neutrino masses and is determined only by
the momenta, masses and momentum spreads of the exter-
nal wave packets (from both vertices of the macrodiagram),
but it will be shown later that although neutrino virtuality,
P2 — m%, can be rather large compared to m%, Zero Vir-
tuality is the most probable for each (j-th) contribution to

31t may be expedient to recall that the tensors S)N{s,d are inverse of Ny 4;
their explicit form can be found in Ref. [50]. Since these tensors are
symmetric and positive definite, the same is true for the tensor R.
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the full amplitude (11), which, of course, is a trivial conse-
quence of the pole g2 = m? in the neutrino propagator (5).
Another simple but nonetheless important observation: At no
configuration of external momenta can all the neutrinos v;
(j = 1,2,3,...) together be on their mass shell. Thus, at
a substantial neutrino mass hierarchy (which, as the exper-
iments suggest, is the case in the real world), neutrinos at
short baselines are deeply virtual. This is basically differ-
ent from the propagation regime occurring at long baselines,
when all the neutrinos end up on their own mass shell and
have different energies, 3-momenta, and velocities.

Since the Grimus—Stockinger theorem and its extension
(17) are inapplicable at short distances, further analysis is
based on another method, based on an asymptotic expansion
of the full 4d neutrino propagator (Al). The expansion is
derived in Appendix A in terms of the dimensionless vari-
ables §;, n;, and A ; defined by*

5; = EzM 18;] ~ 22|X|, (23a)
Puv P’ P} Pl
¥ x?
= 5 (23b)
Aj = M (23¢)
vap7 v’ \/ /wl lv|P|

which are all assumed to be small (see Appendix A.3), and
under the important additional constraint

X0 > 1. (24

Here we defined

pj=(E;,P), Ej=,/P>+m}.

The 4-vector p; is a convenient intermediate notation for
now, but, as will soon become clear, it can be given the mean-
ing of the most probable 4-momentum of v; in the sense that
the j-th contribution to the amplitude (11) is maximal at
Py = E;. The Lorentz invariant positive-definite function

¥ =Yg = |R|'/B (25)

(where |R| = det(R) = |§T%|_l), characterizes the scale of
the neutrino energy—momentum uncertainty and generally
depends on the momenta, masses, and momentum disper-
sions (spreads) of the external (in and out) wave packets.
The dimensionless tensor p is defined by

W= |RITVARMY, (26)

4 In the Appendix, the index j is omitted to shorten the formulas. Notice
that §; and 7; weakly depend on m if, as will be eventually assumed,
P2~ 73O > m] in this approximation, the index j can be ignored,
and the approximations for |§;], 1;, and |A ;| in Egs. (23) refer just to
this case.

It integrally describe the shapes and asymmetries of the
space-time regions of overlap of the external wave packets
in the vertices of the macrodiagram 2. The conditions of
smallness of Lorentz scalars (23b) and (23c) are briefly sum-
marized in Appendix A.3, and restriction (24) is discussed in
Appendix A.6. All this will be covered in more detail below.

In this article, we will mainly study the leading-order
approximation by putting §; = n; = A; = 0in Eq. (A22),

which gives
R
= 872 /% exp (). @7)
J

The following notations are used here:

. f d*q @ (q)e ¥
1 —2 X
q% — m; +ie

Q;=Q— Pp]—m 21’lep ) ,

1
w5 (

_ (1 1
QCZ—IPX+RM ZYMYV—XHXU _ZFO’
Fo = g’\%qu”tq.w + gigvﬂhiuqdv’ gj = R/LUP;'LP})',

The tensor function (12) now takes the form

R
Glj/vuu ({ph”x’f}) 7 A2 T[é | [Va(P)Vs(P)]
X Ay (P = pp)(P +m ) Ay (P + pa)
X exp (—.Qj - i®) , (28)

where V; ;4 are the overlap integrals defined by Eq. (4), which,
in the framework of the CRGP model, have exactly the same
form as in the LBL case:

Qr)*85.4 (4T 4s.4)
X exp [_Gs,d +i (61 + qAY,d) Xs,d] s

Vs,d(Q) =

where
~ d*x
8s.qa(K) = / W exp <in — ER’:ZXMXV)
1~
exp (—Zmﬁ;[@[(u)

(4m)2 /1N,

The function £2; (not to be confused with the function £2;
used above) is given by

2
7 F ) —iR,wX“p;]
J

FR XX (29)

=iPX + L |: (Pp,

It is convenient to enter the intermediate notation

M= —Jd Awii(pg) O POM v(po) Ay T

@ Springer
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with which and considering that O* 0¥ = 0 the amplitude
(11) can be rewritten as

o = MVTRIIVS(PIVa(P)]
P = 232N

\ZTA%

X Z P ) exp (—.Qj - i@).
~ /G;

Let us now investigate the real part of the function £2; in

more detail. As is seen from Eq. (29), it splits into two parts

with very different physical content:

Re 2; = Ryj + Ry,
o)
_ - m2)
ag; \"Pi M

1 ! ’
Ryj =Ry (X“X” - aRﬂ/v/X“p;X“ p}’) . 30)
J

4.1 Off-shell control

To clarify the physical meaning of R ;, we rewrite this func-
tion as follows:

Rij = 75 B E — P’

! E
4G,

m2 \?
(|P|—7>o+—’> : 31)

~

4%2p; 2P|

where
Pj = P00 — 2,()()mvjm + OPmnVjmVjn > 0,

v; = P/E is the most probable velocity of the j-th neutrino
(see below), of course different from the “virtual velocity”
v = P/Po; the Lorentz scalar ¥ and tensor p are defined by
Egs. (25) and (26), respectively.

Let us digress for a while to clarify the meaning of the
function ¥ by considering a toy model (hereinafter referred
to as w-pu model) in which neutrinos are produced in two-
particle decays (s, for certainty) and, for one reason or
another, contribution to the tensor R from the detector vertex
can be ignored, so that R = Ry = T +T),. Then, neglecting
for further simplification the neutrino mass and assuming
energy—momentum conservation, we find:

. 1 2 2\ ((Mn My
2(ﬂﬂ)=|:50'nO'M (a,,—i—ou) <m——m_ﬂ ’

m

where my ,, (07 ) are the masses (momentum spreads) of
the pion and muon wave packets, respectively. If, e.g., o, =
ox then XM ~ 0.870,. The extreme simplicity of this
example should not, however, be misleading, because for a
process involving three packets already, ¥ (as well as G;,
see below) is an invariant function of external momenta, not
a constant.

@ Springer

Now, returning to the general case, we will restrict our-
selves to the ultra-relativistic approximation:

Po ~ P> > m3.

In fact, this condition is not quite trivial for deeply virtual
neutrinos, since the components of the 4-vector P are for-
mally mutually independent. However, it is a direct conse-
quence, provided by the natural conditions for the energy and
momentum transfers in the vertices of the macrodiagram 2,

2 2
(@) ~a2>m? and () ~ai>md ),

and by the presence of the multipliers 85 (g — g5) and
Ed (g + qa) (smeared §-functions) in the amplitude.5 Itisin
this sense that we will call virtual neutrinos ultrarelativistic.
In this approximation Eq. (31) can be rewritten as

R 1 Pz—m§ :
AR WVSSTE-TH

From this relationship follows that 0 < Ry; < 1 when
0 < [P? —m}| S4IPIZ/p; ~4/G;. (32)

Thus, the factor exp (—R1 j) controls the magnitude of the
neutrino virtuality: it allows a significant escape of the vir-
tual neutrinos from their mass shell, but suppresses the con-
tributions to the amplitude from external 4-momentum con-
figurations that give foo much virtuality |P? — m§|. For a
numerical illustration, consider again the -y model. In the
exact energy—momentum conservation limit, we find:

(ﬂ»u):li[z_ ,2]
gj 8 { mi my — (my, + m,/)
X [m% — (my — mj)z] 03

+2 (m% — mi +m§> 07%}

2 2 2
Nmn—mﬂ 2 mn 2
_T|:20n+<m—i—l>o'ﬂ .

It is apparent that the neutrino mass is completely negligible
here and Q;”'” S m‘}. The dependence of the maximum
virtuality on o and o, is shown in Fig. 3.

It can be seen that although the on-shell neutrinos make
the maximum contribution to the amplitude, the neutrino vir-
tuality can be potentially very large if the dispersions of the
momenta of the external wave packets (o and oy, in this
example) are large enough. It is noteworthy that constraints
(32) (as well as (33) below) are actually independent of neu-
trino mass, provided that P~ Pg > m?

> They also ensure that |g,| ~ |g,| and qso ~ fqg,



Eur. Phys. J. C (2022) 82:736

Page 9 of 28 736

Fig. 3 Maximum permissible neutrino virtuality vs. o and o, esti-
mated in the m-p model. Calculation is made assuming energy—
momentum conservation and neglecting the neutrino mass

Although the virtual neutrinos can behave as a bradyonic,
luxonic, or tachyonic particle, the virtual velocity value |v| =
|P/Po| always remains close to the speed of light,

2% . /pi 2./G;
- s 2~ «l, (33)
Po Py
and the most probable velocity of v; (determined by the con-

dition Ry; = 0) is, as expected,

|'P| _{ m? —l/2~ m;
E; [P 2P

)| = (34)
Figure 4 shows the maximum value of |1 — |v|| calculated in
the - model.

For comparison: the velocity of the real v; from m;,, decay
at rest is equal to

2m2m? N
- a1 =56 x 1078 (o)
(mz% —mM) 0.1eV

4.2 Quasi-classical motion

Consider now the second term in Eq. (30). The factor
exp (—R»;) suppresses the corresponding (j-th) term in the
amplitude when neutrino deviates from its classical world
line. To prove this, let us rewrite Ry; as follows:

1
Ryj = g_j(mep — R Rup) P} pyX"XY (35a)

1
= o RuRsp X" p) (X“ ph - X pj.) . (35b)
J

Maximum |1-|v||

Fig. 4 Maximum permissible deviation of the virtual neutrino veloc-
ity from the speed of light vs. o, and o, estimated in the 77-u model.
Calculation is made assuming energy—momentum conservation and
neglecting the neutrino mass. The virtual neutrino energy in Eqs. (33)
is taken equal to the real neutrino energy in the pion rest frame, that is,
Po = (m3 —m2)/(2my) ~ 29.8 MeV

It is easy to prove that Ry; > 0. In the neutrino rest frame
(checkmarked) Eq. (35a) converts to

1 .y v . v N
Roj = 25— (RooRpu = RouRon ) XX
Roo
1 .y v v v v
= < (RooRkn - ROkROn) X Xn.
Roo
By rotating the coordinate system to align the z-axis along
X, we find
XP o o
Ryj = — (RooR33 — Rz ) -
Roo
This function is positive because the expression in paren-
theses and the denominator are the principal minors of the
symmetric positive-definite matrix || R, ||.
From Eq. (35b) follows that R;; vanishes along the clas-
n

sical trajectory X* = u it where t is the proper time,

uj=pj/mj= (Ej/mj, ’P/mj) is the neutrino 4-velocity,
and it is assumed that m; > 0. Below we will need another
useful representation of the function R;;, which also allows
us to extend the above conclusion to massless neutrinos. After
some manipulations, expression (35b) can be rewritten as

Djin (Xk — vjxXo) (Xn — vjnXo)

Roj = - ; -~
Roo — 2Ronvjn + RinVjkjn

: (36)

where

Djin = RooRin — RoxRon
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+ (RoxRnm — 2Rom Rien + RonRiem) Ujim
+ RimRien — RinRiem) UVimVjl. 37

Although the relativistic invariance and positivity of expres-
sion (36) are not seen explicitly, they certainly take place,
since itis anidentical rewrite of Eq. (35b). Evidently R>; = 0
on the classical trajectory X = v;Xo, where v; = P/E;. It
is easy to verify that the function R;; is invariant under the
group of uniform rectilinear motions (displacements along
the classical word lines)

gi={Xo> Xo+60,.X— X+v;0; 10| <oo}.

This means that the virtual neutrino behaves like a quasi-
classical on-shell particle or, more precisely, like the asym-
metric (“true Gaussian”) wave packet studied in Ref. [55].
In other words, there is a duality between the description of
the virtual neutrino motion by the causal propagator and by
an effective wave packet (see also Ref. [50] and Sect. 5.4
below). One more important fact should be pointed out: as
proved in Ref. [55], the true Gaussian wave packet does not
coincide in any approximation with CRGP, which describes
the neutrino state in the LBL regime [28,37]. Thus, the neu-
trino propagation at short distances is profoundly different
from that at long distances.

5 Microscopic probability

The following important identity

IVs.a(@? = @) *85.4(qFqs.a) Vs.a» (38)

valid for any 4-vector g, was proved in Ref. [37]. Here

1~
exp (—5 zngf;KMKv>

Ss.q4(K) = 3
) = (39)
Voa = [ @ TT e (pyexe =) (40)

xeS,D

and ¥y, (p,,. xx) is the coordinate-dependent part of the wave
function of the packet » in the coordinate representation (8)
with p = p,, x = x,, and m = m,,. The functions §; 4(K),
of course, do not coincide with the functions Sx,d(K ) used
so far, but have the same plane-wave limit (6) as &,d(K ) and
similar properties. The physical meaning of the functions V
and V; is obvious from the integral representation (40); it
implies that they should be treated as 4d (space-time) over-
lap volumes of incoming and outgoing wave packets in the
source and detector, respectively. It can be proved that they
take maximum values when the classical world lines of the
packets intersect at the impact points.

@ Springer

Using identity (38) and taking into account the explicit
form of the normalization factor N [28,37],

N? = (infin)(outjout) = [] 2E.V.(p,).
xeS+D

where
VJ{ (px) = /d3x"¢/%(p){’x)|2

is the effective spatial volume of the wave packet x, one
can derive the following formula for the modulus squared
transition amplitude (neutrino detection probability):

647 [R[8,(P — 45)84(P + qa)VsVa

Agal? =
Al 1 2E.Vy (p,) 11 2ExVy (p,)
xes xeD
2
MV V¥
< [ T exp (~2))| - (41)

RN

At first glance, this expression does not show the ISL-like
behavior (that is I.AﬁO,I2 o« 1/|X|%). However, since the
exponential factor in the right-hand side of Eq. (41) sup-
presses the configurations of the impact points X 4 that devi-
ate significantly from the classical trajectories X; — X5 =
v (Xg — X?), we can expect ISL to hold at least approxi-
mately. In order to see this explicitly, let us first recast Eq. (41)
to a form that is the Lorentz-invariant 4d analogue of the 1d
integral representation proposed by Cardall [14]. For this
purpose, consider the identity

1
27)48s (g — q5) 8 + = T
(2m)*85 (¢ — q5) 8a (g + qa) f(q) IR

1 -
X exp [—5 (Fo—2Y"q, + W‘”quqv)] (@,

in which f(g) is an arbitrary smooth function of g. By inte-
grating this identity with respect to g and using the saddle-
point approximation, we obtain

@2m)? / d*q8s (q — q45) 84 (@ +qa) f(q)

_ P exp [—1(F0 - R””YMYV)} .

V19119119

Then, substituting

Fo— RM Y, Y, = R (P — q0)u(P — gy
+ 9%5”(7’ +90) (P +qa)y

and using definition (39) we arrive at the approximate relation
@)V R8s (P — q5) 84 (P + qa) f(P)

= /d4q5s (g —gs) 84 (q +qa) f(q), (42)
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valid with the same accuracy with which the amplitude itself
was derived (that is, with the accuracy of the saddle point
approximation). Using this result, we can rewrite Eq. (41) in
the desired form:

1673/ [RI85(q — q5)8a(q + qa)
1_[ ZEJ{VJ{ (p}c) l_[ ZEKV" (p%)

xeS xeD
Vai Vigj M (Vi Vej M)
XV Vd
Z N
X exp [1 (q,- — qj) X+i (a)i — a)j)]
X exp [— (le + Ryj + Ry + sz')] , 43)

lAgal* = [ d'q

where

(Ej —qo0) (ROk + Rknv;’) (Xk - vao)
vaj‘v; '

wj =

and v; = (1, q/E}). Of course, it is implicitly assumed that
we replaced Py —> ¢o and P —— ¢ in the functions Ry;,
R1j, Rai, Ryj, w;, and w;. Representation (43) provides the
basis for further study. Its main difference from the corre-
sponding LBL asymptotics is in the last exponential multi-
plier, which takes into account the non-zero virtuality and
deviation from the classical trajectories. Below we will con-
vert it to a 1d integral in order to obtain an expression for
the event count rate as close as possible to the corresponding
LBL result obtained in Ref. [28] for the on-shell regime and,
in particular, to reproduce the inverse-square law.

5.1 Account for virtuality

To simplify expression (43), we take advantage of the fact
that the function exp (—R1 i — Ry j) has a sharp peak at its
saddle point. In the ultrarelativistic limit it has the obvious
meaning of the half-sum of the energies of v; and v; and in
general case it is equal to

o E}Gi + E}Gi
Y Eizgj +E12-gi
EE |, (E: — ) (E2G; — E3G;)
2 (Ei + E5) (E29; +E2gl
2. .2 2,2 2
m; +m5  miym; (m —m?
~ gl | 1+ — o - 4J - 4J
4lq| 8lq| 16]q|

7QIOO - 7efmn lm ln

44
RIVII, “44)

Quite apparently, the latter approximation (not used further)
is valid only in the region |g|*> ~ lq |2 ~ |qu|2 > ml i
which, however, gives the main contribution to the integral
(43). It is notable that the difference with the usual on-shell
neutrino energy appears here only in the fourth order with
respect to m; j/|q|. Given Eq. (44), we can replace go —>
qioj everywhere except the exponent of — (Ry; + Ry;). Inte-
grating the latter in go, we obtain

o0
Io= / dgoexp [— (Rii + Ryj)]
—00

wGiG;
=2 55 a5 SXP
E;Gi+ E5G;

This is the exact formula. Formal expansion of the right-hand
side of Eq. (45) in powers of m,z/ yields:

22 2
E?E; (Ej — Ei)
4(E,?Qj + Efgi)

(45)

Rorle — Rinlil
10 ~ ,/ZﬂRl’wlulv 1+ W
wulv
2 2 2
ml2 + m? (mi - mj) 46)
4|¢I|2 32R#Ul/tlv|q|2

Of course, this expansion is also valid only in the region
lg|> ~ |qs|2 ~ |qd|2 > m .. The last term in square brack-
ets can compete with the second one if
1 (=)’

2.0 < < <1074 eV?,
but both these terms are negligible under experimentally
interesting conditions. The common multiplier & X in
Eq. (46) is however crucial: it shows that the non-zero neu-
trino virtuality, along with other factors to be discussed
below, is responsible for the flavor transition and survival
probabilities. This is an important distinguishing feature of
the neutrino propagation at short distances between a source
and a detector.

5.2 Account for quasi-classical motion

Next, we can integrate over the variables g1 and g2, given that
the virtual neutrinos move almost quasi-classically and so the
main contribution to the integral comes from the region where
lg1] < lg3| and |g2| < |g3] in the coordinate frame where
X1 = X, = 0 (and hence I = (0, 0, 1)). Since all the fac-
tors in the integrand, except the exponent exp (—R2j — R2;),
slowly evolve in the region |q1 2| < |g3|, we can safely put
q1 = g2 = 0 in these factors. The remaining integral can
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be evaluated by the formal expansion of R; and Ry;, repre-
sented according to Eq. (36), in powers of g1 /q3 and ¢2/q3 to
the second order. As a result of simple but time-consuming
calculations, we obtain®:

oo o0

I = /dfh /dezeXP(—Rzi—sz)
—0Q —0oQ

2

gl | REVL,

T 2X2\ RNV, Z(X)
0 : why

2
X exp { — ngl:i—vv_]:i)x(z)
RICLL,
2 . . 2
L [ i (v13+v]3)X0} } 7
v, l, 2
Q4 — (ROOR/w _ ROMROV) lp_lv
= (RooRin — RoxRon) lkln, (48)
ZX)=1+Y.% X3 = Xo)" (49)
- n>1 ! XO .

In this calculation, we neglected the neutrino masses in the
pre-exponential multiplier (49), because taking them into
account would exceed the accuracy.” The same is obviously
true for the term proportional to (vi3 - j3)2 in the exponent;
it could be significant only at very large times satisfying the
condition

[EXO (mi2 — m3>:|2 §
[ S 2 1’

2q32

which, as will soon be shown, strongly contradicts the
restrictions determining the applicability of the formalism
under discussion. Therefore, this term should certainly be
neglected in further calculations. The leading term in the
exponent expectedly shows that the main contributions to
the modulus squared amplitude (41) give the classical trajec-
tories X3 = v;3X¢ of the effective wave packets of virtual
neutrinos v;. The deviations from the classical trajectories
is suppressed by the universal Lorentz-invariant multiplier
l/ETi’“‘l,LlU =0 (22) — perfectly the same as in the LBL
mode [28].

6 Recall that all ingredients in Eq. (47) are written in the coordinate
system, wherel = (0, 0, 1). For the convenience of further calculations,
all tensor convolutions, except those contained in the coefficients ¥,
are written in a form invariant to rotations of the coordinate axes.

7 1t is, however, of interest that series (49) contains all degrees of the
skew symmetric corrections (X3 — X¢)/ X, since they are invariant
with respect to the PT transformation.
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5.3 ISL violation at supershort baselines

The main result of this exercise is, of course, a mere repro-
duction in QFT of the classical ISL at short times, 1 / £sp, K
To < lq|/ ZgBL, which is the SBL analogue to the Grimus—
Stockinger theorem, applicable to asymptotically long dis-
tances, L > |q|/{p; . and also deviations from ISL at
To ~ L < 1/XgspL, defined by the series (49). The dimen-
sionless coefficients ¥, of this series can, in principle, be
calculated for any finite n, but they are too cumbersome to
reproduce here, and, furthermore, they do not seem to be of
practical interest since measurements at the supershort dis-
tances L < 1/¥ ~ 0.2 um (1eV/X) are not feasible.

As a propaedeutic example, we write out only the coeffi-
cient for the leading correction®:

1 1

T=———>5 | —sa33(an +an)

a1 — o, 2

+ar1B + anfii — a2 (Biz + Ba1)

_ _ ) (Ros — Ras
) Z (a350055 — a35005) (Ros 35) ’
Py Roo — 2Ro3 + R33

were

arn = (Roo — 2Ro3 + R33) Rin

— (Rok — Rak) (Ron — R3zn) »
Bin = (Rok — Rak) Ran + (Ro3 — R33) Rin

=2 (Ron — Rau) Rk,
and § = 3 — 5. It follows from dimensional considerations
that all the functions ¥, do not contain large or small dimen-
sional parameters, and the smallness of the ISLV corrections
at supershort baselines is determined by the common expo-
nential factor in Eq. (47). Thus, the corrections
X3 — Xo|" 1

Xo (XX0)"

a ‘

are small under condition (24). As explained in Appendix A.6,
under this condition we must all the more neglect the expo-
nentially small contribution J, defined by Eq. (A26) in
Appendix A.5

5.4 Evolution of neutrino wave packet

Let us summarize at a qualitative level the behavior of the
effective neutrino wave packet (ENWP) over a wide range

8 Recall that the function T is not an explicit rotation invariant. Here
and in similar cases below, it is implicitly assumed that the tensors are
properly transformed at the transition to the rotated coordinate system,
but we do not rename or label them so as not to complicate already cum-
bersome formulas. We hope that this will not lead to misunderstandings,
because it is always clear from the context which coordinate system we
are talking about.
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of distances between the source and the detector. In the
vicinity of the impact point X, up to the “mesoscopic” dis-
tances L ~ 1/X there is still no the duality “propagator
<— wave packet” and the neutrino propagator has the form
Jg(X) + Jy(X) (see Appendix A). At short but macroscopic
distances, 1/¥spL < L < Ly = |ql/ EgBL, the contribu-
tion J,(X) disappears and a “virtual” packet with off-mass-
shell 4-momentum is formed, which moves almost along the
classical world line with a velocity satisfying the condition
(33); the most probable 4-momentum at this stage is however
on shell and the most probable velocity is given by Eq. (34).
The packet evolves with time and distance and at long dis-
tances, L > L{r =|q|/ EEBL, turns into the on-shell ENWP.
The “transition lengths” Ly and Lj. have the same order of
magnitude, but may considerably differ from each other. In
any case, there is a certain transition region where the virtual
ENWP converts into the real (on-shell) one. Needless to say
this region is described by neither SBL nor LBL asymptotics.

5.5 Modulus squared amplitude

Combining Eqs. (45) and (47) together, we obtain the explic-
itly rotation invariant expression:

d 2 Rl
|Af3a|2 = Z/ |q||q|2 ~ o VsVa
T 1673X5\ TR#vl L,

2m)*8s (qi; — q5) 27)*84 (qij + qa)
[12E.V.(p,) 1‘[D 2E.Vy (py)
xe

xeS
|M|2VﬂjVaiV§iV;j -
I e (),
E;G; +Ejgi
- 2 Vi +v; 2
Bij==—|X— Xo
m"‘"lﬂlv 2
. Q! 22
—+1 (E/ —EI)X()-f—mﬂ—vlulv(U/ —vi) XO
EFE; (Ej—Ei) (1
+ﬁ Z (Ej - Ei)
E;Gi + E5G;

iR [u;‘ (X" — v Xo) + ! (X" - v;lxo)]} . (50)

I=0,D,1=X/IX|,qij = (q?j, |q|l),whereql.0j is defined
by Eq. (44). The integration limits in the integral over |q| are
not specified, since the main contribution is determined by a
narrow region where |q| ~ |¢q,| > |q,| allowed by the factor

8 (qij — q5) 8a (qij + qa) -
It is useful to identically rewrite this factor in the form

35 (@ — q5) 8a (q + qa) exp(—6)), (51

where ¢ = (|q|, q) (¢ = |q|l) represents the 4-momentum
of the (fictitious) massless neutrino. This expedient allows
us to factor the functions §; 4 out from the sums in i and j.
Using definition (39) we find

~ ~0
Oij = (q?,- - Iql) [-"i?" (@ — g9, +0" (g + qd)ﬂ]
I 20~
+5 (af — lal) (5 + 50). (52)

In the ultrarelativistic approximation, we arrive at the follow-
ing result:

9] & 0
Oj >~ —— [m?ﬂ (@—aqs), +R/) g+ qd)ﬂ]

|
4
2
(i = m3)

8lql*

rik 8lg|*
5 R, + 3 (Ronly — Rinliln)
RMVI 1L,

2
2 2 2 2
X|:mi+mj (ml+m]>

2

+M (&3}00 + ﬁ}oo) (53)
SIS

Although the expression in the first square brackets in

Eq. (53) can formally be of arbitrary value, the factor

8s(q — q5)84(q + qq) in Eq. (51) guarantees that in the main

approximation,

m.2+

2
m= r ~
O;j = W [?R?“ (q—4qs), + R (g + Qd)u] . (54)

;] = O (m%j/2|q|) inside the integral over |q|. The
function ®;; does not have a constant sign and does not
disappear in the diagonal terms (with i = j) of the mod-
ulus squared amplitude, i.e., the factors exp (—@i j) could
potentially play a role in both transition and survival prob-
abilities, but only for heavy (beyond SM) neutrinos and
extremely small X. Otherwise, they can be ignored. It should
be recorded that the corresponding function in the LBL mode

has (in the same approximation) a very different form:
2 2

m; + m/ Mk (7

4q0 I:Ehs (q - %)M

+ 5 (0" +aa), ] 1 (59)

(LBL)
Ol.j ~

where ¢’ = (qo, gol) = qol. But of course, the functions
(54) and (55) are of the same order of magnitude.
It is easy to show [28] that | M| = |M; M|, where

2

My = ST (@) T A0 0* u(p,).

8
~ —iG—\/gﬁ(q)js”Ouv(Pa),

2
g _ /
Mj = S 0(pp) 0" ATy u— (@),
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GF _ *
~ —172 u(pﬁ)JdMOMM—(QL

G r is the Fermi coupling constant), and u_(q) is the Dirac
bispinor for the left-handed massless neutrino; no need to
justify the reasons for this trick. It should be readily apparent
that M and M represent the matrix elements for the neutrino
production and absorption in the reactions Iy — F,¢} v and
vlg - F QZE’ respectively. As a consequence, we can rewrite
Eq. (50) in the form

diqllq)* | RmvL,L
|-A/3a|2 Z/ q3q 3 ~ r ViV
167> X5\ wnivly,d,

2m)885(q — q5)|Ms|*84(q + qa)|My|?

[T 2ExV () T1 2ExVx (p)
xeSs xeD
Vgj Vai vﬂl Vot]

exXp (—E,'j — @,’j) . (56)

XZ
2 2
ij \JE9j+E;Gi

Here and in what follows, ¢ = (|¢q|, ) is the 4-momentum
of the massless neutrino.

6 Count rate

In order to obtain observable quantities, the generic result
(56) must be averaged over the unmeasurable and/or unused
variables on which the in and out wave-packet states depend.
The averaging procedure can be implemented only by taking
into account the physical conditions of a real experimental
environment. This makes further analysis model-dependent.

Here we will use the same model as in Refs. [28,37]. The
model supposes that the statistical distributions of the incom-
ing wave packets a€l; 4 on the mean momenta, spin projec-
tions and space-time coordinates in the source and detector
devices can be described by single-particle distribution func-
tions fu(Pgs Sa» Xa)s Xa = (xg, x,). Each function f; is nor-
malized to the total number, N, (xg), of the packets a at time

0.
xg

dxadpa
]

To proceed further, we redefine the terms “source” and
“detector”’, which so far have been used to refer to the vertices
of the macrodiagram shown in Fig. 2. We will use these terms
and notations S and D both for the corresponding devices and
for the supports of the product of the distribution functions
fa in space and time, namely,

S:suppl_[fa and D =

{xa aelg

Na(x). aclsq.

supp [ [ fa (57)

Xa acly

which are assumed finite and mutually non-intersecting in
space. We also assume that the spatial dimensions of S and
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D are very large compared with the effective dimensions
(~o, 1) of the wave packets » moving inside S and D. But
we will not use the generally accepted assumption that the
dimensions S and D are small compared to the effective dis-
tance between them, because this assumption is not suitable
for such experiments as GALLEX [56], SAGE [57,58], and
BEST [59,60], where the source is surrounded by a detec-
tor environment. We neglect the background events caused
by outgoing particles produced in S and falling in D; this
issue would not deserve special mention in the case of long
baseline experiments. For certainty, we consider only such
experiments in which the momenta of all or some types of
particles arising in D are measured. To avoid non-principal
complications we suppose a detection efficiency of 100%.
Under all these assumptions, the macroscopically averaged
probability (56) (representing in this instance the number of
events registered in D) reads

Z 1—[ dxadpafa(pa7sd7xa)

{]A
(14pa ™) (27)32E,V,

spins acly

dxpdp,,
b v
X/ HV QO2EN, |
/1—[ dx.dp,fa(Pgs; Sa, Xa)
(2m)32E,V,

acly
dxp|d
beFd(ﬂ) »Vp

y /d|q||q|2 Rl
163X\ whnvl, i,

x (2m)*85(q — q5) I My > 27)*84(q + qa) 1My |?

Vi Vai Vi Vaj

X Z—exp(
ij 1/El.zgj + Elz-gi

The symbol Zspins denotes the averaging over the spin pro-
jections s, of the packets ael; 4 and summation over the
spin projections s, of the packets be Fy 4, supposing that the
projections s, are not measured. The symbol [d p,,] indicates
no integration in py, (i.e. [[d p,1=d p;), and hence that these
momenta are measured. If, however, the momenta of particles
of certain types b’ € F,; are not measured, the brackets must be
removed for b = b’. Therefore, it should be clearly apparent
that the expression (58) means the number (N g, ) of detected
particles » with 3-momenta between p, and p, + dp;, (or
any momenta) in D. As in the LBL case, the indices « and S
indicate that neutrino exchange generally leads to the lepton
number violation (when o # B). The final state leptons £,
and £ g provide the experimental signature of such a violation.

—&j —@ij). (58)
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6.1 Averaging over spatial variables

An approximate multidimensional integration over the spa-
tial variables x,, in Eq. (58) can be performed explicitly using
the integral representation (40) for the 4d overlap volumes

Vs =V ({py.xx}) and Vg =V ({p,. x:})

and naturally assuming that the distribution functions f, and
the factor exp (—E;;j) change significantly only on macro-
scopic scales (comparable with the dimensions of S and D);
most often, in real experiments, spatial variations of the dis-
tribution functions can be neglected altogether. On the other
hand, the integrand

g&,dz 1_[ |w%(va-x}t_x)|2

xeS,D

in Eq. (40) varies on a very short scale; in fact it differs from
zero only when the classical world lines of all wave packets
x pass through a narrow (microscopic or at least mesoscopic)
neighborhood of the integration variable (let the latter be x
for Vi and y for V). Hence, neglecting the possible (micro-
scopic) edge effects in S and D, it is safe to substitute x,
by x (y) for x€S (xe€D) in the mentioned slowly-varying
factors. Then, as is seen from Eq. (16) defining the impact
points, X; = x and Xy = y. The remaining integrals over
the variables x,, yield the factor [],.ggp Vi, Which can-
cels the product of the corresponding (inverse) factor in the
integrand.

To formalize the procedure described above, let us prove
that for an arbitrary 4-vector x there is always a configuration
of spatially separated points {x,} for which & 4 = 1. Let,
for certainty, x €S. Because of the invariance of |, (p,,, X —
x)| withrespect to shifts along the world lines of the centers of
the wave packet x, we can replace the space-time coordinates
X, by X, where

)EB = X? and X, =x, + (X? —xg) V.

Itis apparent that ; = 1asx, = x,i.e., atthe same moment
in time, but at non-matching spatial coordinates x,, = x +
(xg — xo) v,., which are (by construction) remote from each
other. Of course, x = X at X,, = x (recall that X does not
change when x,, is substituted by x,,). Itis implicitly assumed
here that no more than one packet is at rest, but it is clear
that the contribution to the integral from the configurations
in which two or more wave packets have zero velocities is
insignificant — such configurations form a set of measures
Zero.

In consequence of this we can rewrite Eq. (58) as follows:

Nﬁa=2/dx/.dy/dq35/d‘q3d

spins

/ dlqllq)? RUVLI,
1673 |y — x |2\ whHvl,l,

Vgj Vai V/;i V; j

x)

7 JEXNG; + Ejz-gi

Here we made the substitution
1 1

1
—~— |1+0(——)|,
X2 Iy—xlz[ (Ely—xlﬂ

allowed by condition (24), and introduced the differential
forms

d‘l} — 1_[ dpafa(pavsavx) 1_[ dpb
y (2n)32E, (2n)32E,
acly beF,

x (2m)*85(q — q5)| My,

eXp (— El’j - @,’j) . (59)

_ dpafa(pavsaa Y) [dpb]
P =[] (2m)32E, [1 (27m)32E,
acly beFy
x(2m)*8a(q + qa) | Mal*. (60)

6.2 Averaging over time intervals

The next step is to average the number of events (59) over
the S and D running time intervals. This is not the most
general setting of the problem and, moreover, it very much
depends on the specific conditions of an experiment. But it
typical for the current SBL experiments and is useful to clar-
ify the physical meaning of the obtained results and compare
them with the results derived for on-shell regime (long base-
lines, or LBL) in the same terms. For these aims, we will
use the simple model for the particle distribution functions
(59) proposed in Refs. [27,28], in which they do not depend
on time (or very slowly evolve with time) during the source
operating period 1y = xg — x? and detector exposure period
Ty = y(z) - y?, that is

fa(Pgs Sa;x) =0 (xo - x?) 0 (xg —x())
X foa(Pg»sa; x) foracls,
fa(Parsa1y) =0 (yo - y?)g (yg _ yo)
X fo(PasSai y) foracly. 61)

In the case of a detector, the step functions in Eq. (61) can
be considered as “hardware” or “software” trigger condi-
tions. In the context of present study (short distances between
S and D), the steady-state operation periods for S and D
can be long, as in the SBL reactor antineutrino experiments
and experiments with artificial radioactive neutrino sources,
or very short, as in accelerator-based SBL neutrino-tagging
experiments (which, however, requires more specific anal-
ysis). In either case it is assumed that the time intervals
required to turn the devices S and D on and off are neg-
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ligible compared to 73 and 74, respectively. In the general
case, we do not impose any synchronization conditions on
the operation periods of S and D.

As a result of this simplification, the integration over the
source and detector operation times reduces to calculation of
the following integral:

9
/dxofdyoexp (—Eij) .
S

Using the general formula for the double Gaussian integral

S
[ xo [ dvoexp[-a 0o =30 = b 0 = x0)]
Aq

2
JT b? )
=22 P 2 ) 2 0

1,I'=1

b
x lerf |:a (xlo - y?) - 2—] )
a

where

Z

1 e
Terf(z) = /dz/erf(z/) + ﬁ = zerf(z) + ﬁ’
0
the massless neutrino approximation in the pre-exponential
factors, and leading order on Am% = ml2 — m? in the expo-
nent, we can rewrite Eq. (59) in the following relatively com-
pact form (see Appendix B for a more precise formula):

Nﬂ“ Z/dxfdy[dm/dapd

_2

spins
w6 (gl |y — x1)
, 62
X/1”'MMﬁu—xP ©
_ * *
Pap (1g1.1y = x1) =Y Vi Vai Vi Vi
ij
X exp (i(p,',' — .AZ» —C? @ij) Sij (63)
exp( 32
S, = Z (— 1)1
1,I'=1
xkﬁP@(@—any—ﬂ)H&d, (64)

and® =1/,/ 29ty ] wly. The unit vector [ is directed along
the vector y — x. But, given that all structures (tensor con-
volutions) in the above formula are rotation invariants, one
can orient / in any fixed direction, say, along the geometric
centers of S and D, provided they have appropriate symme-
tries. The differential forms B 4 in Eq. (62) are defined by
Eq. (60), in which the distribution functions f,; should be sub-
stituted by 7a, see Eq. (61). Therefore, according to Eq. (57),

@ Springer

integration in x and y is carried out over the volumes of S
and D.

With the same arguments as in the LBL regime [28], the
function (64) can be treated as a QFT generalization of the
QM neutrino flavor transition probability. The ingredients
involved in Eq. (64) are gathered in Table 1, which also con-
tains the corresponding structures arising in the LBL asymp-
totics.

As is seen, the functions .A;; and B;;, as well as the func-
tion ®;; we discussed above (cf. Egs. (54) and (55)) relating
to the SBL and LBL modes have a certain similarities, but not
identical, and do not coincide with each other in any approx-
imation. The positivity of Aizj in the SBL mode is obvious,

given that Q* = RoyRa3 — (R03)2 in the coordinate system,
where I = (0, 0, 1), and this expression is a principal minor
of the positive-definite matrix ||R | (see footnote 8). The

suppression factor exp (—A%) is potentially important for

very long L, but this does not apply to the SBL mode. The
function Cl.zj is absent in the LBL mode, but has the same

order of magnitude as Bl.2< and is also negligibly small for the
SM neutrinos. Although the suppression factors in Eq. (64)
are probably not important from the experimental viewpoint,
they are of interest as a reflection of the process (obscured by
the averaging of various kinds) responsible for the creation
and evolution of ENWP, and shortly discussed in Sect. 5.4.

Remarkably the oscillation phase ¢;; is the same in both
modes and, moreover, the same as in the QM approach,
although it is clear that at short distances this phase is also
small for the standard 3v oscillations. The higher-order cor-
rections to ¢;; are presented in Appendix B, but they are of
potential interest only if there is mixing of standard neutrinos
with hypothetical heavy sterile neutrinos.

6.3 Instrumental factor

Within the approximations made, the function §;; (here-
inafter referred to as decoherence function or instrumental
factor) is the same as in the LBL mode, except for the dif-
ference in the explicit form of the function B;; (see Table 1),
on which S;; depends. The general properties and several
examples of the decoherence function have been studied in
detail in Ref. [37]. Here we briefly discuss an additional sim-
ple example most relevant to SBL-experiments. Namely, we
consider the case when the periods 74 and 74 are large com-
pared to max |y — x|. Then

and, as shown in Ref. [37], the decoherence function is
expressed through the universal (independent of indices 7, j)
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Table 1 Ingredients of Eq. (62) in leading order for off-shell (short dis-
tances) and on-shell (long distances) regimes; the latter are taken from

Ref. [28]. Here L = |y — x| and Amizj = ml2 — m? Last column shows

the order of magnitude (OoM) of the corresponding quantity. Evidently,
E, = |q| in the given approximation

Quantity Off-shell regime On-shell regime OoM
2 2 2
o AmijL Aml.jL |Amij|L
1
! 2lg| 2E, E,
2 2 2 2 P 2
2 AmijL ot AmijL _ 1 Amij -
i 2lq12 | 2RML, 2EZ | 29wl E?
B Amizj ﬁ“vlulv ROHZM Am?j fﬁ‘wlulv Yili |Ami2j|
Y 4)q| 2 R, 4E, 2 YR, SE,
2\ 2 2\ 2
cz Amj; 1 0 Amj
K 2|q| 8RHVI 1, XE,

real-valued function
—p?
S(t,1',b) = %Re [Terf (1 41" +ib)
— lerf (r — ' +ib)] (65)

of three independent dimensionless real variables. In these
terms,

Sij = Sy, D4, Byj). (66)

Here are the simplest properties of function (65):

e 0 < S < 1 for all values of the arguments and decreases
with increasing b;

e atr > 1’ > 1 the function S weakly depends on ¢ and
¢’ and approaches its asymptotic value exp(—b>) with
increasing ¢, so that S;; ~ 1 fori, j = 1,2, 3 (SM neu-
trinos) and S;; = 1 for any i (since B;; = 0);

e S decreases rapidly as the ratio 7/1" increases.

For illustration, Fig. 5 displays three particular cases of the
function S(z,t,b) fort’ = 097¢,t = t,and t' = 1.30z.
The interval of values of b used in the figure is, of course,
unrealistically wide and is chosen only for the convenience of
visualization. The figure shows that S depends very weakly
on b at |b| < 1 (which is the case in the real experimen-
tal circumstances), but the dependence on the parameters ¢
and ¢’ is very significant and should be taken into account
when processing the data and deriving the count rate from
the measured number of events.

6.4 Flavor transition probability

The function (64) matches the QM flavor transition probabil-
ityonly if S;; = 1and A;; = B;; = C;j = ©;; = 0, whichis
not the case. So it really can be interpreted as a QFT refine-
ment of the standard QM result. However, as in the LBL
mode, the probabilistic interpretation of the function Pyg

Fig. 5 Instrumental factor (65) att’ = 0.97¢,¢' =t and ¢’ = 1.30¢ vs.
lg t and b shown by the lower, middle and upper surfaces, respectively.
The middle and upper surfaces merge at very large ¢

can be true only in attenuated form, since the instrumental
factor and the functions A;;, B;;, C;;, and &;; involve the ten-
sor components %t#¥ and R*¥ that depend on the momenta,
masses, and momentum spreads of all external wave packets
and are in general different for the reactions (10) with differ-
ent leptonic pairs (£, £g) in the final states. The distinctions
are determined by kinematics of the subprocesses in S and
D (in particular, by the reaction thresholds) and specific sets
of participating in and out particles. It is also appropriate to
recall that the function ®;; is not sign-definite and ®;; # 0.
As a result, the unitarity relations

Z'Paﬁ = ZPO‘,B =1
« 5
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are generally do not hold, or hold only approximately even
within the kinematic boundaries for the corresponding sub-
processes.

By applying the aforementioned asymptotics S = exp(—b?)
(presumably valid for a wide class of possible SBL experi-
ments), and using the same arguments as in Refs. [27,28,37],
we arrive at formally the same expression as in the LBL case,
represented by Eq. (18), where

Pap (191, 1y —x1) =Y Vg Vi Vi Vi
ij
xexp (igi; — A — B = €% - ©;) (67)
with the exponent very close to unit for the SM neutrinos. In
this extremely simple but quite realistic case, it follows from
Eq. (67) and unitarity of the mixing matrix that

Paﬁ ~ Saﬁ . (68)

Thus, as was to be expected, the flavor transitions are strongly
forbidden at short distances and/or high energies. The same
conclusion follows from the simple QM formula for the flavor
transition probability. It would seem that this leaves no room
for experimental verification of the theory presented here.
However, there is a subtle point: the commonplace result
(68) is only valid when X is large enough, or better to say
not too small; in fact, we have explicitly used this assumption
in deriving the results discussed, as well as in some approx-
imations and simplifications.

On the other hand, in the plane-wave limit, ¥ — 0 and
thus Bizj — 400 and Cl.zj — 400 ati # j, which (together
with the ultrarelativistic approximation) leads to the follow-
ing result’

Pap 5 > Vai 1 Vpi 2, (69)
1
which is completely different from Eq. (68). As is well
known, the oscillationless flavor transitions are ruled out by
a huge number of (terrestrial) neutrino experiments, which
within our formalism indicates that ¥ > 0. At nonzero
(and not very small!) ¥ we have to take into account the
power corrections for the neutrino propagator, derived in
Appendix A.3, which could lead to a potentially observable
consequence not predicted by the QM formalism and basi-
cally distinguishable from the ISLV effect [50] predicted for
the LBL regime. The absence of additional masking factors

9 The derivation of this limit is not entirely trivial because of the factor
exp (—@,- j) in Eq. (67), but becomes more transparent if we rewrite
Eq. (69) in the more accurate form

PWL
85(q = 4)8a(q + q)Pup — 8(q — )8 +qa) ) VeI Vpil*.

1
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(decoherence, damping, and oscillations themselves) would
have helped to detect the presumably small effect.

7 ISL violation at short baselines

The previous discussion was based on using the leading
order of the asymptotic expansion of the neutrino propagator
in small parameters (23). Taking into account the next-to-
leading order terms in the expression for number of events
(18) would require getting rid of several approximations
made in deriving this formula. In particular, the degree of
approximation used in Egs. (42) and (47) should be improved.
We will postpone this issue for the future, and here we will
confine our consideration to the potential effect from the first
sub-leading term o< 82 in series (A23).

Within the approximations made so far, we must neglect
in the series (A23) the terms of order O (), O (A) and higher,
as well as the neutrino mass. Moreover, we can safely put in
Eq. (A23) p ~ g >~ |q|l and X ~ Xo/ =~ |X|l. Then the
series (A23) in the leading order becomes extremely simple:

T~ —g8%.
Here

g1~ Py =6, — 20y + 0], 8~ T*—

and the functions 6», w1, and w; are defined by Eq. (A21) in
which we must put v = [. As a result, the inverse-square law
for the differential neutrino flux d§,, which appears in the
SBL version of Eq. (18), is violated under appropriate con-
ditions (cf. the corresponding results of Refs. [9] and [19]):

1 dely — x|
d&v X ﬁexp _eff—2 (703)
ly — x| lq]
1 4y — x|?
~oE\ T )
ly — x| g

where

S = 2F00%* = 2F00v/| R

-2 [Tr R2 —uATR2 + (IT’Rl)z} .

In Appendix A.4 itis proved (without neglecting the neutrino
mass) that Fpgy > 0. Therefore ngf > (. This means that the
number of neutrino events should decrease compared to what
would be expected in the absence of the ISL violation. This
effect is ultimately associated with incomplete overlap in
space and time of the noncollinearly interacting incoming and
outgoing wave packets involved in the processes of neutrino
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production and absorption, which must lead to a decrease of
the probability of their interactions. Therefore, the positivity
of X4, is natural.

A more intuitive, though more speculative, interpreta-
tion of the ISLV effect relates to the aforementioned duality
“propagator <—> wave packet”. The effective neutrino wave
packet moves quasi-classically, i.e., its center only approx-
imately follows a straight line connecting the neutrino pro-
duction and absorption points. According to Eq. (A24)

T =2 (R%l +2RE, + R%z)

in the coordinate system, where I = (0, 0, 1), i.e. (within our
approximations) 2. is determined only by the spatial com-
ponents of the tensor R, transverse to the vector I. Thus, the
motion of the neutrino wave packet can be roughly thought
as classical motion along / superimposed on the quantum jit-
ter perpendicular to I. The resulting path length, L, is longer
than the length of the classical rectilinear trajectory. There-
fore the number of events (oc 1/L?) must be smaller than for
the classical motion. The formalism automatically accounts
for this effect and gives the expected reduction of the number
of events.

The neutrino virtuality also plays some part in the ISLV
effect, and series (A22) accounts for it with the terms oc A€.
But we neglected these terms (as well as the terms o n”)
because taking them into account would definitely exceed
the accuracy of our estimate.

Regardless of the interpretation, the function X in
Egs. (70) depicts a cumulative effect from overlap of the
external wave-packet states x in the source and detector,
depending (through the tensor R) on their momenta p,,,
masses m,,, and momentum spreads o,,. With suitable values
of these quantities, the ISLV correction can be measurable at
macroscopic distances satisfying the conditions of applica-
bility of the approximations used in the formalism. The basic
constraints can be formulated as the inequalities

2x 107 Tev cm < |y —
S y—x|

(VY (a (71)
_— cm
)y 1 MeV ’

satisfied at sufficiently high neutrino energies and at short
distances, exceeding the “mesoscopic scale” ~ 1/X. They
are virtually independent of the neutrino masses, provided
that the latter are negligible compared to the neutrino energy.
The constraints (71) are illustrated in Fig. 6 for representative
intervals of neutrino energy and values of the scale parameter
X. The energies of the neutrinos from 7, and K, decays
in the meson rest frame are also shown (by vertical planes) to
epitomize acceptable baselines in possible dedicated exper-
iments.

Boundaries (m)

> (eV)

Neutrino energy (MeV)

Fig. 6 The upper and lower limits of applicability of the formalism vs.
neutrino energy and scale parameter ¥ (inclined planes). The vertical
planes show the energies of neutrinos originated from two-particle pion
and kaon decay at rest

Last but not least, the QFT approach predicts the exact
opposite dependence of the ISLV effect on the distance
L = |y — x| for the SBL and LBL asymptotics: the cor-
responding corrections are given by the series in powers of
81.2 & L% and 1/L?, respectively, and the lowest order cor-
rections are inversely proportional to each other to within a
dimensionless positive factor. This feature makes it possi-
ble, at least in principle, to distinguish experimentally these
two asymptotics from each other, as well as from the pre-
dictions of other approaches, in particular from the result of
Ref. [19], which predicts the absence of even an approximate
fulfillment of ISL in the entire region L < |q|/ EéBL. Even-
tually, it is hoped that the transition region, which has not yet
been explored within the formalism under discussion, will
also become the subject of experimental study. A promising
source of (anti)neutrinos could be, e.g., stopped-kaon decays,
which provide a relatively wide range of applicability of the
formalism (see Fig. 6).

8 Summary

In the framework of the covariant perturbative QFT approach
with wave packets as asymptotically free initial and final
states, the wave-packet modified neutrino propagator is
expressed as an initial segment of the triple Taylor series
in powers of dimensionless rotation-invariant variables (23).
This asymptotic expansion is applicable at high energies and
short but macroscopic space-time distances between the ver-
tices of the corresponding Feynman macrodiagram of a fairly
general form (see Fig. 2). It is also worth noting that the
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obtained asymptotic expansion applies not exclusively to the
neutrino propagator.

Using this result, it is shown that in the short-baseline
regime, high-energy neutrinos are deeply virtual and behave
like quasi-classical particles, that is, propagate approxi-
mately along classical trajectories connecting the points of
their production and absorption. In the leading-order approx-
imation, this results in the classical inverse-square depen-
dence of the modulus squared amplitude. But there are two
kinds of corrections to the classical behavior: at supershort
distances and times, | X| ~ Xo, which, however, exceed the
characteristic scale ~ 1/ X, relative corrections are described
by a series in powers of (| X| — Xo) / Xo ~ 1/(2£X0p), while
at1/T <« |X| ~ Xo < |q]/ > — by an expansion in pow-
ers of | X |2, which follows from the above expansion of the
neutrino propagator. As in the LBL regime, the main ISL
violating correction is negative, i.e., it leads to a decrease
in the neutrino event rate. But the functional dependence of
the ISLV correction is radically different from that in the
LBL mode, where the correction is given by an expansion
in inverse powers of | X|?. This makes it potentially possible
to distinguish between the SBL and LBL asymptotics and
thereby test the theory in dedicated experiments with vari-
able baseline or with several identical detectors at different
baselines.

An expression for the time-averaged number of neutrino-
induced events is derived and compared with the correspond-
ing result for the long-baseline mode. It is, in particular,
shown that although the corresponding formulas have the
same structure, the decoherence factors are different and do
not reduce to each other even in the lowest-order approxima-
tion. This results from the fact that the space-time behavior
of the neutrino propagator and, hence, the effective neutrino
wave packet in the two modes is strongly different, and there
is a transition region, | X| ~ (0.1 — 10)|¢|/ =2, in which the
neutrino wave packet transformed from deeply virtual (with
the 4-momentum independent of the neutrino mass) into the
more habitual on-mass-shell packet. Negligible decoherence
and flavor transition probabilities in the SBL regime should
simplify the experimental study of the ISLV effect, and the
specific dependence of the predicted count rate on distance
and energy could potentially help distinguish its reduction
due to ISLV from that caused by possible mixing of active
and sterile neutrinos.
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Appendix A: SBL asymptotics of neutrino propagator

The aim of this Appendix is to represent the integral'”

d'q ®(g)e ¥
J(X) = / —mitic (A1)
where @ (g) is defined by Eq. (14), through certain asymp-
totic expansions over several Lorentz-invariant and rotation-
invariant dimensionless quantities, guaranteed to be small in
absolute value. As will be shown, the resulting representa-
tion is applicable at relatively short macroscopic distances
|X| and times Xy, sufficiently high (not necessary ultrarela-
tivistic) neutrino energies Py, and not too high neutrino vir-
tualities P> — m?, where P = (Py, P) is the saddle point of
@(gq). The exact meaning of these restrictions will become
clear from what follows. The results obtained below are quite
general, in the sense that they do not apply only to neutrinos.

A.1 Transformation of integral J(X)

Performing the 4d Fourier transform

P = / dhx p(x)e' " (A2)
and substituting Eq. (A2) to integral (A1) we get
J(X) = /d4x (p(x)/d3q e i4(x—X)
iq0(xo—X0)
: / quiloqez —m?+ie (A3)

Considering the two possibilities xop =2 Xo and using the
residue theorem, we obtain

iqo(xo—Xo) ;
/ dqoe _ I i vo-Xol
9

@ —q>—m2+ie  Eg

where E;, = /q?> + m?. By substituting this result into
Eq. (A3) and changing the order of integration, we can rewrite
integral (A3) as

3
J(X) = —in / dxo f 4G i(aX~Eqbo-Xol)
Eq

10 For simplicity, hereafter we omit the neutrino mass eigenfield index.
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x/d3x @(x)e 1%, (A4)

Using Eq. (A2) it can be shown that
. 1 .
/d3x p(x)e 1" = Z—/dq()@(q)e_’qoxo.
b4

Applying this identity and shifting the integration variable
from xg to X¢ — xo, we rewrite Eq. (A4) as

d*q _,
J(X) = —i —i(q0X0—¢X) g
X) 1/2E e (q)

q
o0
X/deei(qoxoqu\XOl)'
—00

It is convenient to split this integral into two parts,

J(X) = T4 (X) + J_(X), (A5)

where

d*q .
Jo(X) = —i / S XN g) L),
Eq
0

I-(¢q) = / dxq ¢! (@0 Ea)x0,

—0o0
oo

Li(g) = f dxq ¢! (0~ Ea)x0,
0

Now, representing @ (q) as a 1d Fourier integral

o0

o) = / dyo 9(g. yo)e 0%,

—00

(A6)

we have

d*q i4x [
J (X)) = —l'/felq /d)’ofﬂ(qv Y0)
1 —00

o0 o0
X/dee_iEqXO / dqo e'90(x0—y0—Xo)
0 —0

It is readily seen that

o0 o0
/dxo e iEqX0 / dqo £'90(x0=y0—Xo)
0 —0

= e Fa00HX0g (3 4 Xo)

where 0 is the Heaviside step function. Therefore

d3q .
Jo(X) = =2i —LolaX
+(X) ”T/Zqu

]

x / dyop(q, yo)e EaLotXo),
—Xo

(A7)

In exactly the same way, we get

3
J_(X) = i / d_qein+iEqX()
2E,
—Xo

x / dyop(q. yo)e'Fa).

—00

(A8)

To move on, we must use the explicit form of @ (¢) given by
Egs. (14) and (15). Let us rewrite expression (15) as follows:

F(q) = Fo — 2Y,q" + N,qtq". (A9)

Now, applying Eqgs. (A6) and (A9), we obtain an explicit
expression for the function ¢(q, yo):
l o
9(q. y0) = 5~ / dqo®(q. go)e' ™
2

—00

1 1 ~
= exp |: 7 (Menqrgn + 2Yeqr + Fo)

V790

—i—L (Yo + Nokqr + 2iy0)2}
4No0 '

(A10)
Combining Eq. (A10) with Egs. (A8) and (A8) we arrive at

dq ;
Jr(X) = _inf_qet(qX¢Equ)¢(q, +E,)
2E,

Xo i ~
x| 1+erf | =2 + —Tu(g)y/Too | |, (Al1)
~ 2
v Moo
where
Yo + Roxgr
Ti(9) = —=—FEy.
Noo
Given Eqgs. (14), (AS), and (A11), we obtain:
J(X) = Jg(X) + Ju(X), (A12)
where
dq .
Jo(X) = —infE—qe’(‘IX—EqXO)q)(q,Eq) (A13)
q
and
Jo(X) =i Ve = (X +iY>2
=imexp|—-Fy— ~— —
v p|—;fo S0 o+ %
dq [ <§Ytkn ﬁkoﬁno)
— €X — _— e
2E, P 4 4NRo0 it
Yo ifx(2Xo — Y.
_(_k+ 0k (2Xo O)—iXk>qk]
2 2500
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x [w(Wy) —w (V)] (A14)
Here the following notation is used:
w(x) = e erfe(—ix),
. Xo 1 ~
W, =i — ETi Noo. (A15)

Noo

Although the functions J, (X) and J,, (X) individually are not
exact relativistic invariants, the partitioning (A12) is conve-
nient because, as will be shown in Sect. 1, under some simple
condition valid in the given (laboratory) frame of reference,
the second term in Eq. (A12) can be neglected. This is suffi-
cient for our purposes.

A.2 Fedosov’s lemma

Below we will make extensive use of the important lemma
proved by Fedosov [61, p. 79], which states:

Let p(x) = xAx + ax + ag be a quadratic function on
R”, where A is a complex symmetric matrix with a positive
definite real part, @ and aq are a complex vector and a complex
constant, respectively. Then for any (smooth) function f(x)
the integral

= / d"xf (x) expl—p ()]

may be represented in the form

7-[}1
I = | —expl—¢(z0)] e® Ty (v, 7)| + In,
|A] =0

Iyl < /dr|f(r+ro)—TN(ro, 0l

x exp[—Re ¢(r + 10)],
1 1 & 9 d
Dy=-3A"9 ==Y —@A),,—,
T 4 T T 4 Z 87,',( )r_& B'CS
r,s=1
where Ty (19, T) is the N-th order Taylor polynomial of f (x)
atx = 19 = Rezp, and zg € C" is a stationary point of ¢(z).
Note that the stationary point zo (solution of the linear
system dgp/dx, = 0) is given by z9 = —%A‘la and thus
@(z0) = —%aA_la +ap. If f(x)is analytic at zo then f (7 +
79) — Ty (19, 7) > 0as N — oo and

1= [T explpa)l ™
= mexp—fﬂ(m) e’ f(ro+ 1) o

We will also need a corollary of this lemma: Let

(A16)

o(x;t) =xAx + (a+ibt)x + ag + icot,
f(xt) = folx)exp[—ig(x)r],

@ Springer

where A, a, and ag have the same meaning as above, b € R",
and 7 € RL. It has been proven [55] that

/ dt/d”x fxst)exp[—o(x; 1)]

gl 1,
=2 m exXp ZCIA a—a
1 (aA™"b ?
X ex — | — =
Plpap\ T2 79

g(to+ 1)

D
xe”" fo(to + 7) exp { bATh

x [aA_lb ~2eo — g(t0 + r)] } (A17)

=0

The extension of Fedosov’s lemma and its corollaries to
Minkowski signature is trivial: as long as the integration vari-
ables are independent, it is only necessary to take care of the
correct position of the Lorentz indices in the tensor and vector
convolutions.

A.3 Integral Jg (X)

The integral (A13) can be identically represented as

o0
d4q
1.0 = —i [ av [ E o
L (X) z/ yo/ZEq 4. 40)
-0

X exp [—in + iy (qo — Eq)]

. r d*q 1
=—i f dyo/Ef(q;yo)eXp [—ZF(q)

2

. qp —m
x|,
+l<y0 Ep I >:|

E iyo(EqEp —m* — qp)
f(q;yo)=E—"eXp [— At 4 ,

where

q EP
p=(Ep, p)= <\/P2 +m2,1>), PH = RIY,.

The 4-vector P is the stationary point and R is the tensor
such that R,U\SYV“’ = §),. Here it is also appropriate to recall
that p°¥ = E, # PO = ROMYM and ¢° # Eq.

The seeming complication (representing J, as a 5D inte-
gral) allows us to straightforwardly apply Eq. (A17), which,
after some transformations, gives

R
Jo(X) = —81'712,/ %egel)’eﬂ’

(A18)

=0



Page 23 0f 28 736

Eur. Phys. J. C (2022) 82:736
Here
1 2 e pY 1A 2
Q:QL—E(PP—WL —2iR pN-XV) s

W
=17 [ 4R X, py = We +2(Pp = m?)].

Wr =Ep (Ep+r -
R = Rknll,

Ep) —pt, Dy =0;Ro,
Q=RWP“PV,

and other notations are explained in the main text. Note that
the differential operator Dy is a 3 x 3 matrix, since the func-
tion f(q; yo) does not depend on gp. A direct application of
the operator ¢Pr = >, DI/n!in Eq. (A18) shows that the
function Jg (X) can be represented by the initial segment of
the triple asymptotic series

T|R
Jo(X) = —8in? IR] exp(2)
XD Y fabeli8) 0" A (A19)
a=0b>0c=0
in powers of three dimensionless real variables
X 32 Pp—m?
SZEZM, 77:—2’ and A = p "
P pupy E; PHY pupy

Here ¥ is the energy-dimension scalar defined by Eq. (25)
and assumed small compared to the masses of in and out
wave packets at the source and detector vertices and p is the
tensor with dimensionless space-time components defined
by Eq. (26). We emphasize that § and A are Lorentz scalars,
while 7 is a rotation invariant. Therefore, the dimensionless
coefficient functions f,5. must also be invariant to rotation.
Under the natural conditions that follow from the formulation
of the problem and from the formalism discussed in the main
text, we see that

8] ~ B|X|/|P]

as | X| =~ X (quasi-classical trajectories + ultrarelativism)
and

- |’P2 — m2| < 2%
T 20000 P12 Y oL, | P

as |P| =~ Py (suppression of too high virtualities + ultra-
relativism + approximate energy—momentum conservation).
From definition (26) and dimensional considerations, it fol-
lows that p,, = O(1). Taking all this into account, we can
conclude that

(A

8] <1, n<«l, and |A] k1

provided that the conditions

YIX| KPP/ E (A20a)
and
Y L (P (A20Db)

are both fulfilled. These conditions determine the range of
applicability of expansion (A19) and, consequently, of the
entire formalism under discussion. While condition (A20b)
is trivial and is fulfilled with a margin in the modern neutrino
experiments, the condition (A20a) means that the formalism
is only applicable at sufficiently short distances and/or high
neutrino energies. The area of applicability increases with
decreasing X. Several lower-order coefficients f,;. are:

fooo =1,

1 1
Sfoor = =01 — w1,

2 2

1, 1 1 3, 1
002 = <0i + =0 — —w2 + -0y — w16,
fi 89 +49 5@2+ g 1 0

foro =3 — 01—~ (26 + 1o
010 = S®Wi| 1 0 22 2 21

Loty + 202
——w -7,
2Ty

3 3 9 45
SJoin= — 592 + 9w, — 4—‘912 + Ewlel — Zm%

! 03 —3 +399 3 0
- = —3w3 + — - -
0 3 3 412 4 192

3 9 1, 3
—5910)2 + 50)10)2 + 591 — ga)lel
9 , 15 ,
Z0l0, — — ;
+8CU1 1 860)

105 , 3,
fo20 = — 30wy + @1 + 591 +36, — 150161
1 1 5
- — 366{)3 - 39192 - 493 — —91
Q 2
105 9
+9w 16> + Tw? — 90w wy + Ewlef

45 ,
—?wlel + 1861wy

1 (45 , 3 3 9 5,
— ? (Zwlwz — g(,()lel —_ Ea)]el
15 105 9
+§0):f91 — Ea)f — Ew% + 9a)4
9 9 9
—geg - gw%ez = 30163 + ;01016
+§91 6, — 3—291 + 191 wy — 5&)191(,02
1
—5w292 - 9601603) ,
fio0 = w1 — 61,
35 L,
fior= — 02+ 2w, — X + w16 — 591,

3 45
Ji10 =30, — 18w, + 5912 — w16, + Ew%
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+1 203 — 6 +399 > 6>
— — 6ws + — - -
0 3 3+ 50102 = w10

3 9,
—za)leg — 301wy + 9w + Za)lel

1, 15 5
_6a)3+291 — Z(J)]),

1 2 3 2
Sf200 =02 + 591 — 2wy + zwl — w10.

Here

1
Q= EPWP;LPV = puvvuvv = lel//,lm
p

O, =Tr p*, 05 =0 p°v,s =0,1,..., (A21)

V=00 = =l
Obviously, the approximate equality o =~ pH""[,l, is valid
only for ultrarelativistic neutrinos.

The presented results were derived using the computer
algebra systems Maple® and Maxima for a finite number
of terms of the asymptotic series (A19). More specifically,
the calculations were performed using the K -th order Taylor
polynomial of the operator exponent ¢”7. Up to the order
K = 8itisproved that f;,, = 0atb > K—aandc > K—b
fora < K. Hence

K—

SYY Yy

a>0b>0 c>0 0 ¢=0

Q

in Eq. (A19). The method for deriving the coefficients fp.
is reduced to the transformation of sums of products of ten-
sor and vector components resulting from differentiation of
exp (£27) to the identical combinations of the rotation invari-
ants 6, wy, and g. The calculations are simplified by dimen-
sional and symmetry considerations, but are still intricate.
Obviously, the required computer processing time grows
exponentially as K increases, so that the calculation of high-
order coefficients becomes rather time-consuming. But for
our purposes, it would be enough to make sure that the struc-
ture of series (A19) is correctly “guessed” even in the lowest
(second) subleading order in 4, yielding the ISL violation.

Itis convenient to rewrite Eq. (A19) in the equivalent expo-
nential form

R
Jo(X) = —8ir? IRl o ()
X exp Z Z Z Fape(i8) P A° (A22)
a>0b>0 c>0

This representation is a bit more suitable since it facili-
tates calculation of the modulus squared transition ampli-
tude. The corresponding coefficients F,p. can be obtained

@ Springer

by re-expanding the power series (A19):

Fooo =0,
1 1
Foo1 = 591 5o
11 1,
Foox = 192 — 3?2 + 7
Foto =301 — 6 — - (192 —on + 62
o\2 4
1 3,
—§w191 + Zwl) ;
Foi1 = — E92 + 9wy — 1912 + §(1)191 — gw%
2 4 2 4

1 1 1
——(6-3 —016) — —w1 0
Q<3 w3+212 2w12

1 2 3 3
—0wy + 4wy + 50)191 — §w1 ,

Fono = — 30w 4 48w? + 07 + 36, — 126

1 5 1 5
— — | 36w3 — 59192 — 465 — ZQI

0
B+ 22 g
5 w16 n W] w12
13 81
+—w16} — —wib) + 17010
4 4
1 /21 , 15 1,5,
— ? (70)10)2 — 50)191 — Za)IQI
3

+§w%91 — 3w} — 4w3 + 9wy — 63

3
—Zw%ez — 360163 + 201616,

5 1

+191292 - Ze;‘ + 20} w) — 4w161w2
—Ywiw3),

Fioo = w1 — 0,

Fior = — 6+ 2w, — a)%,
I, 39,
Fll() = 302 — 18(,()2 —+ 591 — 50)191 + 7(1)1
1
+ 0 (203 — 6wz + 016, — w16,

—201wy + 8wiwyr + w%@l — 3(1)?) s

Fooo =02 —2wo + w%.

It is also instructive to represent the triple power series in the
exponent in Eq. (A22) as

D (=1 (g +ig,8) 8% = 1.

a>0

(A23)

The explicit form of the real coefficient functions g, and
g, trivially follows from the expressions for the coefficients
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Fape. A simple analysis shows that Im 7 is negligibly small
under all experimental circumstances, but Re Z provide cor-
rections of the order of O(n) and O(A) to the decoherence
factors and, more importantly, potentially measurable ISL-
violating correction given by even powers of § (see main
text).

A.4 Positivity of Faqg

Let us prove that the coefficient function Fqq is positive (we
will need this fact in Sect. 7). The proof can be fulfilled by an
orthogonal diagonalization of the symmetric positive definite
3 x 3 matrix p:

p:OTr 0, r=diag(r,r,r3), v=O0u.

Here u = (u, uo, u3)’, ry are the positive eigenvalues of
p, O is an orthogonal matrix of rotation, and v is defined in
Eq. (A21). In this representation, using definitions (A21) we
find:

2
Fro0 = Zi’f (l - ui) + 22 n,l(”rlr,,ul u, >0,
k k

where ni" = 1 for a cyclic permutation of (1, 2, 3) and ni” =
0 otherwise. It is pertinent to note here that the coefficient
function fq9 in Eq. (A19) is also positive, since

200 = Foo0 + = (91 —wp)?.

A less formal way to prove the same is to rewrite F>qp in the
coordinate system whose z axis is directed along the vector
v. In this system

2
Fooo = [p33 (1 — V2>:| +2 (pé + ,O%]) <1 — V2>

02 +20% + p3 > 0, (A24)

where v = |v| = |v/|, v < 1. For massless neutrino F»gy =
031 +2p3,+p3,, i.€. Fago is determined only by the transverse
spatial components of the tensor p.

A.5 Integral J, (X)

Applying Fedosov’s lemma to Eq. (A14), we obtain:

Jo(X) = 4in® /7| R| exp ()

Dy [w_(‘[) - w+(r)]

xe z ,
p+T =0
. Xo ~
w(T) = w | i—== — 5y Noo I'x(7) | ,
y Moo
Rok Tk
Pe(@) = Pok Epir = =, De=8Ri.  (A25)

00

We mention in passing that the 3d stationary point P and
operator D, are exactly the same as above. From the known
asymptotic expansion of the complementary error function
of complex variable (see, e.g., Ref. [62, p. 164]) it follows
that

. 1 & (2n — D!
= =
w(iz) ﬁ;)( "
3
7z —> 00, |arg(z)| < i

Combining this and Fedosov’s expansions, the expression
(A25) can be represented by the formal series

Jo(X) = [Rlexp () ) _x*

P a>0

_ B«
x Z|: 2b+1 (‘Aub + K_ )
b>0

+
1 .A lBabK
Kib-H K+ '

in powers of the real variable

1
K=—>0
Noo

(A26)

and inverse powers of two complex variables

Xo

r —
T v Roo

The specific structure of this series was checked only to
the second order of the Taylor polynomials of w4 (t) and

ePr, which is enough for our purposes The lowest-order
real dimensionless coefficients A 5, and Bfltb are found to be

+1 5 Noo (Po£Ep)-

A =1,
A?:O =3a)1 —91,
1
A== (140 +e ia)l)

3 1
A = na (46, — 2 — 15w)) + = (91 —62) — —91

+ 6w+ <el—3w1)co—3<w1>2+wo
+3 (2w2 — 5010 + 0)191) :

Bjy =) £ <3w1 —61),

BE =3 (Swlwl 209 — a)lel) + % [35w% — 20w,

+6) (36, — 10w1) +2 (92 - 912)] ,

0

3 3
B(:)tl wl 61— %) + 3w2 — Ewl w1 wj
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3
:I:Z[Ql (1+¢0+w1) — w1 3+ 35 + Sw1)
+2w) + 2wr — 6(a>?)2] :
where

wg = P0k Pkn Vn,
Ia’;w — |§/§|—1/4§iuv’

0 0
wy = PokPOk, @7 = Pok Vi,

¢ = poo — gy »
and the functions w; > and 01 > are defined by Eq. (A21). The
coefficients Ai and Bi were derived by the same method as
described at the end of Sect. A.3.Obviously,k ~ /Py < 1,
but the series in powers 1/k+ can be considered asymptotic
expansions only at Re k+ >> 1, which, under the obvious pre-
sumption pgg = O(1), is equivalent to the condition (24). Let
us show that the relative contribution of J, (X) is completely
negligible under this condition.

A.6 Comparison of Jg(X) and J, (X)

The patterns of the asymptotic expansions (A19) and (A26)
allows us to estimate the relative contribution of J, (X) and
Jy(X) to the modulus square of the amplitude (11), using the
leading-order terms of these expansions (that is the condition
¥ X > 1) and neglecting the neutrino virtuality.'! Then
after simple calculations we get

J(X) |? 2fe=9/ oo . e 29510
A (I+@)Xo  (1+o)X3
where
(R’“pu V)7 = oML (S X0)? > 1,

mvp |
Iplp ,” _ o),

'RIG
—2 n|R|E2

and, according to conditions (A20),

X2 X0 \*
= e\ e, ) <F
27400 POOL p

Given the condition (24), the relative contribution of J,(X)
to the modulus squared amplitude'? is exponentially small,
being proportional to

2
exp [ 0" 1y (EX0)? | /(2 X0),
that is, to a good approximation,
J(X) = Jg(X) + Jo(X) = Jg(X),
1" Admissibility of the latter simplification is discussed in the main text
and, for this estimate, reduces to the approximate equalities Py ~ E ), ~

[P

12 Note that the main contribution is made by the interference term
2 [Re(Jg)Im(]v) + Re(JU)Im(Jg)] /|Jg|2.

@ Springer

where Jg(X) is given by Eq. (A22). In the main text, we
restrict ourselves to this approximation, since for realistic
values of the scale parameter X, the condition (24) is satis-
fied in all potentially interesting applications of the formal-
ism. It is, however, a straightforward though tedious task to
get rid of this approximation in exotic circumstances when
¥ Xo 2 1, provided that a small number of terms in expan-
sion (A26) is sufficient. In the context of the ISLV effect
discussed in Sect. 7, it is interesting to note that accounting
for the contribution of J,, as a NLO correction would lead to
an additional reduction in the expected number of neutrino-
induced events, i.e., J,, does not compete with the main ISLV
correction.

Appendix B: Enhanced expression for Ngy

Here we give an expression for the number of events obtained
without using the ultrarelativistic approximation, but still
neglecting the (LO) ISLV corrections o< [|§; + §; |2 x
Z4| y — x|2 / |q|2 and corrections to the oscillation phase
o |8 — 8] o |Ami2j|22|y — x|/|q|3, which follow from
the expansion (A23) and Eq. (23b). So, with the reservations
made, the number of events can be written in the form

Nﬂa_Z/dx/dy/m/dqsd

spins

diqllig)? o
: / m %: Vpj Vai Vgi Vaj

X exp [i(pij — A% — Bl-zj — C?j - @,-j]
5 X RV,
2
(Vi +vj)" ([ 2 (E?gj + E?gi)

2
X Z (= 1)+ Jerf [2@<v12—)i(—“v] (x,o - )’2)

1r=1 Y
+Xxijly — x|> - iBij],

where the following notations are used:

2

®ij = (Ei —Ej) |y — x|

Vi +V;
x{l — Rkl
Ruv (vl”v}’ + v?v;)
Vi +V;
[ ¢ o) (o)
Xij

Al = 4D X Tyly — x P,
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