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Abstract Within a covariant perturbative field-theoretical
approach, the wave-packet modified neutrino propagator
is expressed as an asymptotic expansion in powers of
dimensionless Lorentz- and rotation-invariant variables. The
expansion is valid at high energies and short but macroscopic
space-time distances between the vertices of the proper Feyn-
man macrodiagram. In terms of duality between the propa-
gator and the effective neutrino wave packet, at short times
and distances, neutrinos are deeply virtual and move quasi-
classically. In the lowest-order approximation, this leads
to the classical inverse-square dependence of the modulus
squared flavor transition amplitude and related neutrino-
induced event rate from distance L between the source and
detector, and the above-mentioned asymptotics results in the
corrections to the classical behavior represented by pow-
ers of L2. This is very different from the long-baseline
regime, where similar corrections are given by an asymp-
totic expansion in inverse powers of L2. However, in both
short- and long-baseline regimes, the main corrections lead
to a decrease in number of neutrino events.

1 Introduction

A considerable amount of work has been devoted to the
quantum-field theoretical (QFT) analysis of spatial evolu-
tion of mixed massive neutrinos [1–40]. These studies were,
in large part, initiated by a harsh critique of the quantum-
mechanical (QM) theory of plane-wave neutrino oscilla-
tions, burdened with numerous inconsistencies and para-
doxes. A comprehensive discussion of this and related issues,
as well as further references, can be found in books [41,42].
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The QFT-based computations consistently reproduce, as an
approximation, the standard QM formula for the neutrino
flavor transition probability, and usually predict deviations
from it (often different for different authors and nonequiva-
lent approaches), thereby providing proper interpretation of
the QM result, determining the scope of its applicability, and
indicating possible directions of the experimental search for
new related phenomena, such as decoherence and dispersion
effects [43–49] and inverse-square law violation [50–53].

The above-cited works are mainly concerned with study-
ing the neutrino oscillations at long baselines, where the tran-
sition probability is large enough to be detected experimen-
tally. The short baseline oscillation regime was discussed
in Ref. [9] within a solvable QFT model, and later in Ref.
[19] in a more general approach. In this work, we study in
detail just this case, i.e., the neutrino propagation at short dis-
tances in the QFT framework. Here, there is an immediate
need for clarification: By short and long baselines (SBL and
LBL) we will mean the distances L between the neutrino
production and detection points that satisfy the conditions
L � Eν/�2

SBL and L � Eν/�2
LBL respectively, where Eν

is the mean neutrino energy, and�SBL and�LBL are the rep-
resentative scales of the neutrino energy uncertainty related
to the SBL and LBL regions. Later in the paper we explain
where these conditions come from and what might be inter-
esting about the SBL region (depending on the values of L ,
Eν , and �SBL) which may or may not be related to SBL
experiments with accelerator or reactor (anti)neutrinos, or
neutrinos from artificial radioactive sources.

Throughout the paper, we use the natural units (h̄ =
c = 1) and the Feynman metric. The Greek letters μ, ν, . . .
are used for Lorentzian indices, while the Latin indices
k, l, n, . . . enumerate the spatial components of vectors and
tensors. The letters α and β are reserved for lepton flavors.
The formalism under consideration does not depend on the
number of flavors or number of the neutrino mass eigen-
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Fig. 1 A generic macrodiagram with virtual neutrino exchange. Is and
Id denote the sets of initial wave-packet states in the source and detector
vertices Xs and Xd , respectively, Fs and Fd denote the sets of the final
states. The vertices Xs and Xd , which may include arbitrary inner lines
and loops, are assumed to be macroscopically separated in space and
time. The inner line connecting Xs and Xd denotes the causal Green’s
function for the neutrino νi with definite mass mi

fields, but, unless otherwise noted, one may have in mind
three generations of the Standard Model.

2 Essentials of formalism

The subsequent discussion is based on the covariant (“dia-
grammatic”) QFT formalism developed in Refs. [27,28]. In
this section, we shortly discuss the features of the formalism
most essential for the aims of the present study, for more
details, see Ref. [37]. The basic idea of the diagrammatic
approach is that the flavor transition of neutrinos is the result
of interference of “macroscopic” Feynman diagrams, such
as the one shown in Fig. 1, perturbatively describing a lepton
number violating process in which the massive neutrinos are
internal lines connecting the vertices of their production and
absorption. In other words, the neutrino mass eigenfields, νi
(i = 1, 2, 3, . . .), are treated as virtual intermediate states.
The neutrinos with definite flavors, να (α = e, μ, τ ), do not
participate in the formalism at all, although can be used to
compare the predictions with those from other approaches,
in particular, with the standard QM approach based on the
concept of flavor mixing.

The external lines of the macrodiagrams correspond to
asymptotically free incoming (“in”) and outgoing (“out”)
wave packets | pa, sa, xa〉 (a∈Is,d ) and | pb, sb, xb〉 (b∈Fs,d )
of the following generic form:

| p, s, x〉 =
∫

dk ei(k−p)x

(2π)32Ek
φ(k, p)|k, s〉 (1)

representing the superposition of the one-particle Fock’s
states |k, s〉 = √

2Eka
†
ks |0〉 with 3-momenta k and energy

Ek =
√
k2 + m2, which may also depend on discrete vari-

ables s, such as the spin projection; here a†
ks is the creation

operator, m is the mass of the particle, dk ≡ d3k. Wave-
packet state (1) is characterized by the most probable 3-
momentum p and the space-time coordinate x = (x0, x)
of its barycenter or, simply, center of symmetry, which is
always implicitly assumed. The function φ(k, p) is a model-
dependent Lorentz scalar (“form factor”), which determines
the shape of the packet and generally depends on a set of
parameters σ that characterize the uncertainty of the momen-
tum p; k = (k0, k) and p = (p0, p) are the on-shell 4-
momenta, i.e., k2 = p2 = m2. In the plane-wave limit (PWL)
equivalent to the definite momenta approximation, the form
factor becomes proportional to the 3d delta function,

φ (k, p)
PWL�−→ (2π)32E pδ (k − p) ,

and, as a result, the coordinate dependence in Eq. (1) disap-
pears and the wave packet turns into the state with definite
momentum:

| p, s, x〉 PWL�−→ | p, s〉.
From this point we will consider only very narrow in the
momentum space external wave packets, for which the form-
factor functionφ(k, p) is strongly peaked at the point k = p.
Such packets are very close to their plane-wave limit and in
the configuration space are described by simple scalar func-
tion

ψ( p, x) =
∫

dkeikx

(2π)32Ek
φ(k, p). (2)

The blocks (vertices) Xs and Xd (hereinafter referred to
as “source” and “detector”) symbolically depict the micro-
scopic regions of the in and out particle interactions. The
spatial interval between Xs and Xd can be arbitrarily large.
Without risk of confusion, we will denote by the same sym-
bols Xs and Xd the 4-vectors that determine the effective
space-time coordinates of the interaction regions; the pre-
cise definition of these coordinates (called “impact points”)
depends on the form factor model and will be done later.
Macroscopic separation between the source and detector ver-
tices means that the values of |X0

d − X0
s | and |Xd − Xs | are

large compared to the microscopic space-time scales of the
interaction regions (determined by the dynamics) and to the
micro- or even mesoscopic effective dimensions of the in
and out wave packets; this clarifies the meaning of the term
“macroscopic diagram”.

It is further assumed that the particle interactions are
described by the Standard Model (SM) Lagrangian, phe-
nomenologically augmented by a Dirac or Majorana mass
term with the number of the neutrino mass eigenfields N ≥ 3
and by corresponding kinetic terms. So the set of initial or
final states (or both sets) at each vertex must contain a charged
lepton or (anti)neutrino. To avoid Irrelevant complications,
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we rule out the possibility that the external states include
gauge or Higgs bosons.

Wave packets as external lines of macrodiagrams lead to
a modification of Feynman’s rules. For the narrow in and out
packets, they are modified in a rather simple way [27,28]:
for each external line, the standard (plain-wave) factor must
be multiplied by

e−i pa(xa−x)ψa
(
pa, xa − x

)
for a ∈ Is⊕Id , (3a)

and

e+i pb(xb−x)ψ∗
b

(
pb, xb − x

)
for b ∈ Fs⊕Fd , (3b)

where each function ψ�
(
p�, x

)
defined by Eq. (2) is gener-

ally specified by its own form factor φ�(k, p�), most proba-
ble 3-momentum p� , space-time coordinate x� , and massm�
(� = a, b). The internal lines (including loops) and vertex
factors remain unchanged. The additional factors (3) provide
the following two common multipliers in the integrand of the
scattering amplitude [27,28]:

Vs,d(q) =
∫

d4xe±iqx
∏

a∈Is,d
e−i pa xaψa

(
pa, xa − x

)

×
∏

b∈Fs,d
e+i pbxbψ∗

b

(
pb, xb − x

)
. (4)

These functions are called overlap integrals, because they
characterize the space-time integrated degree of overlap
between the in and out wave-packet states in the source
and detector vertices. Obviously, in the plane-wave limit
ψ( p, x) �→ exp(i px) and integrals (4) turn into the ordi-
nary 4d delta-functions to within a multiplier:

Vs,d(q)
PWL�−→ (2π)4δ

(
q ∓ qs,d

)
,

where

qs =
∑
a∈Is

pa −
∑
b∈Fs

pb and qd =
∑
a∈Id

pa −
∑
b∈Fd

pb

are the 4-momentum transfers in the source and detector ver-
tices, respectively.

Our main interest in this paper is to study the space-time
dependence of the count rate of neutrino-induced events. The
expression for the count rate or number of events is obtained
after various averages of the modulus squared amplitude
of the process under study and is primarily determined by
behavior of the causal neutrino propagator
∫

d4q

(2π)4
δ̃s(q − qs )̃δd(q + qd)(q̂ + m)e−iq X

q2 − m2
i + iε

(5)

“dressed” (through the overlap integrals) by the external wave
packets. Here mi is the neutrino mass,

X = (X0, X) = Xd − Xs,

δ̃s,d
(
q ∓ qs,d

)
are the “smeared” δ-functions which provide

approximate energy–momentum conservation at the vertices
of the macrodiagram, and which in the plane-wave limit
become the delta-functions,

δ̃s,d
(
q ∓ qs,d

) PWL�−→ δ
(
q ∓ qs,d

) ; (6)

in this case, the energy and momentum are exactly conserved
at the microscopic level, while the uncertainty of coordinates
of in and out particles tends to infinity and the space-time
description of the process shown in Fig. 1 loses its physical
meaning. The smeared δ-functions are defined by the external
wave packets and therefore their explicit form depends on the
form factors φ(k, p), but the limit (6) is model independent.

2.1 Relativistic Gaussian packets

Below we will use the so-called relativistic Gaussian packets
(RGP) proposed in Ref. [27]. The RGP model corresponds to
a very simple form factor φ(k, p) ∝ exp

[−(kp)/2σ 2
]

and
the function (2) describing RGP in the coordinate represen-
tation is

ψ ( p, x) = K1(ζm2/2σ 2)

ζK1(m2/2σ 2)
≡ ψG ( p, x) . (7)

Here p and m are the most probable 3-momentum and mass,
respectively, x = (x0, x) is the space-time coordinate of the
packet’s center,1 σ is the momentum spread (just a constant
assumed small compared to m), K1(z) is the modified Bessel
function of the third kind (or Macdonald function) of order
1, and

ζ =
√

1 − 4σ 2

m2

[
σ 2x2 + i(px)

]
.

For our aims, it will suffice to restrict ourselves to the simplest
approximate form of Eq. (7)

ψ( p, x) = exp

{
i px − σ 2

m2

[
(px)2 − m2x2

]}
(8)

(called contracted RGP, or CRGP), which describes a non-
difluent mode characterized by the condition that in the intrin-
sic frame the function |ψ( p, x)| = |ψ(0, x�)| is independent
of time x0

� , namely, |ψ(0, x�)| = exp
(−σ 2x2

�

)
. An analy-

sis of the asymptotic expansion of ln [ψG(0, x�)] in powers
of the small parameter σ 2/(m2ζ ), taking into account the
inequalities |ζ | ≥ 1 and | arg ζ | < π/2, provides the neces-
sary and sufficient conditions of the non-difluent behavior:

σ 2(x0
� )

2 � m2

σ 2 , σ
2|x�|2 � m2

σ 2 . (9)

1 RGP is spherically symmetric in its own frame of reference (denoted
by �), which is defined by the condition p� = 0.
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As is seen, the area of applicability of the CRGP approxima-
tion expands with decreasing σ .

2.2 Process under study

Many physical assumptions, limitations, and simplifications
are the same for the SBL and LBL cases; these will be men-
tioned here only briefly. As in the LBL case [27,28,37], we
will limit ourselves with studying the following process:

Is⊕Id → F ′
s + �+α ⊕ F ′

d + �−β , (10)

where ⊕ sign indicates the macroscopic remoteness of the
corresponding subsets of particles. This process is interesting
because it includes virtually all terrestrial experiments with
short baselines. The macroscopic Feynman diagram corre-
sponding to process (10) is shown in Fig. 2; it is a particular
case of diagram Fig. 1. Initial and final states Is,d and F ′

s,d in

Fig. 2 consist of hadronic states, while �+α and �−β represent

the final-state leptons with the 4-momenta pα = (
p0
α, pα

)
and pβ =

(
p0
β, pβ

)
, respectively (α, β = e, μ, τ ). Recall:

it is assumed for definiteness that the subgraphs of the dia-
gram containing lepton and quark lines, W -propagators, the
elementary vertices proportional to the elements V ∗

α j and Vβ j
of the neutrino mixing matrix, as well as of the quark mixing
matrix (not indicated in Fig. 1), are described by the Stan-
dard Model, but this assumption is not at all a critical part
of the formalism under consideration. As above, Xs and Xd

symbolically denote the neutrino source and detector blocks
and, at the same time, the impact points macroscopically sep-
arated in space and time.

According to Ref. [27], the amplitude of the process (10)
can be written in the following form:

Aβα = g4

64N J ∗ν
d J μs

∑
j

Vβ j V
∗
α j

×u( pβ)O
ν′
G

j
νν′μ′μ

({ p�, x�}) Oμ′
v( pα). (11)

This result is based on a theorem on factorization of hadronic
blocks of the macrodiagram Fig. 2 proved in Ref. [37]. Let
us concisely describe the ingredient of Eq. (11), necessary
for a further presentation of the formalism. Here g is the
SU (2) electroweak gauge coupling, N is the normalization
factor,J νd andJ μs are the standard QFT (c-number) hadronic
currents (see Ref. [37] for more details), u( pβ) and v( pα) are
the usual Dirac bispinors, describing the final-state charged
leptons �β and �α , respectively, and Oν = γ ν(1 − γ5); p�
and x� are, respectively, the most probable 3-momentum of
the packet �∈S⊕D and space-time position of the packet’s
center.

Fig. 2 A diagram of process (10), see text for details

The tensor function G
j
νν′μ′μ accumulating the effects of

all external wave packets has the form

G
j
νν′μ′μ = ie−S−i�

16
√|�s ||�d |

∫
d4q e−iq XΦ(q)

× (q̂ + m j )

q2 − m2
j + iε

�νν′(q − pβ)�μμ′(q + pα).(12)

The so-called overlap tensors �s and �d are given by

�μνs =
∑
�∈S

Tμν� and �μνd =
∑
�∈D

Tμν� , (13)

respectively, where S = Is⊕Fs , D = Id⊕Fd ,

Tμν� = σ 2
�

(
uμ� u

ν
� − gμν

)
,

u� = p�/m� = ��(1, v�) is the 4-velocity and σ� is the
momentum spread of the packet �. The tensors �̃s and �̃d

are inverse to the overlap tensors, i.e.

�̃μλs (�s)λν = δμν and �̃μλd (�d)λν = δμν .
It is important that both �s,d and �̃s,d are symmetric and
positive definite. Therefore, the determinants |�s,d | and
|�̃s,d | = 1/|�s,d | are positive and the same is also true for
the principal minors of �s,d and �̃s,d .

The functions �νν′(q − pβ) and �μμ′(q + pα) are the
W -boson propagators, whose explicit form we will not need.
The functions Φ(q), S, and � are defined as

Φ(q) = exp

[
−1

4
F(q)

]
,

S = Ss + Sd , � = qd Xd + qs Xs, (14)
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where

F(q) = �̃μνs (q − qs)μ (q − qs)ν
+�̃μνd (q + qd)μ (q + qd)ν ,

Ss,d =
∑
�∈S,D

Tμν�
(
x� − Xs,d

)
μ

(
x� − Xs,d

)
ν
, (15)

and

Xμs,d = �̃μνs,d
∑
�∈S,D

T λ�νx�λ (16a)

= �̃μνs,d
∑
�∈S,D

σ 2
� [(u�x�)u�ν − x�ν] . (16b)

From Eqs. (13) and (16b) follow the identities
∑
�∈S,D

Tμν�
(
x� − Xs,d

)
ν

= 0,

from which we see that the impact points represent the
weighted-mean space-time coordinates of the external wave
packets. Considering that Ss,d ≥ 0, the functions exp(−Ss)

and exp(−Sd) are the geometric suppression factors con-
ditioned by the overlapping degree of the in and out wave
packets in space and time: they suppress the amplitude when
the packets do not intersect or intersect only partially near
the points Xs and Xd in the source and detector, respectively.
At the impact points Ss = Sd = 0; the closer are the world
lines of the packets’ centers to the impact points, the more
probable is the interaction between the packets. The con-
dition that the interaction regions in the source and detec-
tor vertices are macroscopically separated from each other
is therefore equivalent to the macroscopic separation of the
points Xs and Xd . The world line configurations have no
concern with the specific dynamics governed by the interac-
tion Lagrangian, being uniquely defined by the initial (final)
coordinates, group velocities and effective dimensions of the
asymptotically free in (out) wave packets.

3 Long baselines in short

An important tool for studying LBL asymptotics is the
Grimus–Stockinger theorem [4] used in most abovecited
analyses of neutrino oscillations based on QFT approaches
with wave packets. The theorem predicts that the spatial part
of the “dressed” neutrino propagator (5) behaves as 1/L
at L ≡ |X| → ∞, which leads to the classical inverse-
square law (ISL) for the detected number of neutrino events.
In Refs. [50,54] it was shown that the classical ISL is vio-
lated at finite L . This is a consequence of an extension of the
Grimus–Stockinger theorem, which allows one to compute
corrections to the long-distance asymptotics of the propaga-
tor (5). The theorem as formulated in Ref. [50] states that for

any Schwartz function Φ(q)2 the integral

J(X, κ) =
∫

dq
(2π)3

Φ(q)eiqX

q2 − κ2 − iε

may be represented by the asymptotic series

J(X, κ) = Φ(κl)e−iκL

4πL

[
1 +

∑
a≥1

Da(κ)

La

]
, (17)

where

Da(κ) = (−i)a

Φ(κl)

a∑
b=0

[
a−b

2

]
∑
c=0

(κ

4

)b
DabcΦ(q)

∣∣∣
q=κl

,

Dabc = cabc
(
l ×∇q

)2(b+c) (l∇q
)a−b−2c

,

l = X/|X|, and cabc are recursively defined positive numbers
(given in Ref. [50] for a ≤ 6). Equivalent but recursive-free
formulation of the theorem is given in Ref. [54]. The appli-
cability of the leading (Grimus–Stockinger) approximation
is defined by explicit form ofΦ(q), but in general case it can
be written as

�2
LBLL/q0 � 1,

where �LBL is an effective parameter dependent on the
momenta, masses, and momentum spreads (σ� in the CRGP
model) of the external (in and out) wave packets. It is also
shown in Ref. [50] that |J(X, κ)|2 is given by a series in pow-
ers of 1/L2 and the lowest (∝ 1/L4) ISL violating (ISLV)
correction is negative in the physical region κ2 ≥ 0. The
explicit formula for �LBL obtained within the CRGP model
in the third order saddle-point asymptotic expansion is given
in Ref. [53]. It is far beyond the scope of this article to analyze
the contribution of the non-physical domain.

Another important consequence of the theorem is that the
virtual neutrinos are on-mass-shell, and both energies and
momenta of different eigenfields νi do not coincide. This
strongly contradicts the standard assumption of the plane-
wave QM theory about the equality of the momenta of the
neutrino states with different masses, but, surprisingly, in the
ultrarelativistic limit leads to the same oscillation phases.

Omitting the rather lengthy calculations, let us write down
the final expression for the number of events in a detector
located at a large distance from the source, obtained within
the framework of the formalism described above:

Nβα = τd

VDVS

∫

VS

dx
∫

VD

d y
∫

dFν

×
∫

dσνDPαβ (Eν, | y − x|) . (18)

2 That is, the function Φ(q) ∈ C∞(R3) which goes to zero faster
than any inverse power of |q|, as do all its derivatives. The (positive)
function in the integrand of the neutrino propagator (5) belongs to this
class; κ2 = q2

0 − m2
i .
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The details of the calculations, conditions of applicability,
and interpretation of this somewhat abstract approximate for-
mula can be found in Refs. [28,37]. Here we will only briefly
explain its constituents.

The indices α and β indicate that the final states must
necessarily include the leptons �α and �β . Parameter τd rep-
resents the detector exposure time, VS and VD are the fidu-
cial volumes of, respectively, the source (S) and detector (D)
“devices”; the spacial integrations are performed over these
volumes. The differential form dσνD is defined such that the
expression

1

VD

∫
d y dσνD

represents the differential cross section of neutrino scatter-
ing at the detector D as a whole. In the practically important
case of neutrino scattering on single particles and under the
usual assumption that the momentum distributions of scatter-
ers are very narrow (such as the Maxwellian distribution), the
differential form dσνD becomes the elementary differential
cross section for the given reaction multiplied by the num-
ber of scatterers in the volume VD. The function Pαβ(Eν, L)
in Eq. (18) is the QFT analogue of the quantum-mechanical
(QM) flavor transition probability; it is a function of neu-
trino energy Eν and distance L = | y− x| between the points
x ∈ S and y ∈ D; for any pair (x, y), L is assumed to
be large compared to the dimensions of S and D. In the
conventional ultrarelativistic approximation, the “probabil-
ity” includes the standard QM oscillation phase factor and
corrections for decoherence effects of different kinds. These
corrections will be discussed in Sect. 6, when comparing the
expressions for the number of events in the LBL and SBL
modes.

Finally, the differential form dFν is the differential neu-
trino flux in D defined such that the quantity

dx
VS

∫
dFν
dEν

is the number of neutrinos appearing per unit time and unit
neutrino energy in the elementary 3d volume dx = d3x
around the point x, moving within a unit solid angle in the
direction from point x to point y, and crossing the unit area
placed around y and perpendicular to y − x. According to
the extended Grimus–Stockinger theorem (17),

dFν ∝ 1

| y − x|2
[

1 +
∑
n≥1

Cn

| y − x|2n
]
. (19)

As a consequence, ISL is broken. The coefficients of the
series (19) are discussed in Ref. [50]. Recall that C1 < 0,
so the lowest-order ISLV correction reduces the number of

neutrino events:

Nβα ∝∼
1

L2

(
1 − L2

0

L2

)
. (20)

Here L is the distance between the source and detector
(assumed large compared to their sizes) and L0 is an energy-
dependent parameter of dimension of length:

L0 ∼ Eν
�2

LBL

≈ 20

(
Eν

1 MeV

)(
�LBL

1 eV

)−2

cm.

Recent analysis [53] shows that current reactor antineutrino
data timidly hints that the ISLV effect is already manifesting
itself, although the accuracy of the data is still too low and
the uncertainty of the calculated reactor antineutrino energy
spectra is too large to draw confident conclusions.

4 Short baseline asymptotics

We are now ready to study the short-baseline (SBL) behavior
of the amplitude (11). It will be shown that the SBL formula
for the number of neutrino events leads, like Eq. (18), to an
ISL behavior, which is also violated by higher-order correc-
tions.

To simplify things a bit, we restrict ourselves to the con-
ditions
∣∣ (qs − pα)

2
∣∣ ∼ ∣∣ (qd − pβ

)2 ∣∣ � m2
W .

Then the W propagator �μν can be approximated by
−igμν/m2

W . Next, in a good approximation, we can replace

q̂ with P̂ , where the 4-vector P is the stationary point of
Φ(q). From Eqs. (14) and (15) it immediately follows that

Pμ = RμνY ν, Yμ = �̃μνs qsν − �̃μνd qdν, (21)

where R is the tensor inverse of �̃3:

Rμλ�̃λν = δνμ, �̃ ≡ �̃s + �̃d . (22)

In the exact energy–momentum conservation limitP = qs =
−qd and, due to the suppression factor (14) in the amplitude,
P � qs � −qd even otherwise. So, within the saddle-point
approximation, it is natural to interpretP as the 4-momentum
of the virtual neutrinos. It should be remarked that P is inde-
pendent of the neutrino masses and is determined only by
the momenta, masses and momentum spreads of the exter-
nal wave packets (from both vertices of the macrodiagram),
but it will be shown later that although neutrino virtuality,
P2 − m2

j , can be rather large compared to m2
j , zero vir-

tuality is the most probable for each ( j-th) contribution to

3 It may be expedient to recall that the tensors �̃s,d are inverse of �s,d ;
their explicit form can be found in Ref. [50]. Since these tensors are
symmetric and positive definite, the same is true for the tensor R.
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the full amplitude (11), which, of course, is a trivial conse-
quence of the pole q2 = m2

j in the neutrino propagator (5).
Another simple but nonetheless important observation: At no
configuration of external momenta can all the neutrinos ν j
( j = 1, 2, 3, . . .) together be on their mass shell. Thus, at
a substantial neutrino mass hierarchy (which, as the exper-
iments suggest, is the case in the real world), neutrinos at
short baselines are deeply virtual. This is basically differ-
ent from the propagation regime occurring at long baselines,
when all the neutrinos end up on their own mass shell and
have different energies, 3-momenta, and velocities.

Since the Grimus–Stockinger theorem and its extension
(17) are inapplicable at short distances, further analysis is
based on another method, based on an asymptotic expansion
of the full 4d neutrino propagator (A1). The expansion is
derived in Appendix A in terms of the dimensionless vari-
ables δ j , η j , and � j defined by4

δ j = �2
ρμν p

μ
j X

ν

ρμν p
μ
j p
ν
j

, |δ j | � �2|X|
|P| , (23a)

η j = �2

E2
j

� �2

|P|2 , (23b)

� j = P p j − m2
j

ρμν p
μ
j p
ν
j

, |� j | � 2�√
ρμνlμlν |P| , (23c)

which are all assumed to be small (see Appendix A.3), and
under the important additional constraint

�X0 � 1. (24)

Here we defined

p j = (E j ,P), E j =
√
P2 + m2

j .

The 4-vector p j is a convenient intermediate notation for
now, but, as will soon become clear, it can be given the mean-
ing of the most probable 4-momentum of ν j in the sense that
the j-th contribution to the amplitude (11) is maximal at
P0 = E j . The Lorentz invariant positive-definite function

� ≡ �SBL = |R|1/8 (25)

(where |R| ≡ det(R) = |�̃|−1), characterizes the scale of
the neutrino energy–momentum uncertainty and generally
depends on the momenta, masses, and momentum disper-
sions (spreads) of the external (in and out) wave packets.
The dimensionless tensor ρ is defined by

ρμν = |R|−1/4Rμν. (26)

4 In the Appendix, the index j is omitted to shorten the formulas. Notice
that δ j and η j weakly depend on m j if, as will be eventually assumed,
P2 ∼ P2

0 � m2
j ; in this approximation, the index j can be ignored,

and the approximations for |δ j |, η j , and |� j | in Eqs. (23) refer just to
this case.

It integrally describe the shapes and asymmetries of the
space-time regions of overlap of the external wave packets
in the vertices of the macrodiagram 2. The conditions of
smallness of Lorentz scalars (23b) and (23c) are briefly sum-
marized in Appendix A.3, and restriction (24) is discussed in
Appendix A.6. All this will be covered in more detail below.

In this article, we will mainly study the leading-order
approximation by putting δ j = η j = � j = 0 in Eq. (A22),
which gives

i
∫

d4q Φ(q)e−iq X

q2 − m2
j + iε

= 8π2

√
π |R|
G j

exp
(
� j
)
. (27)

The following notations are used here:

� j = �c − 1

4G j

(
P p j − m2

j − 2iRμν pμj Xν
)2
,

�c = −iPX + Rμν
(

1

4
YμYν − XμXν

)
− 1

4
F0,

F0 = �̃μνs qsμqsν + �̃μνd qdμqdν, G j = Rμν pμj pνj ,

The tensor function (12) now takes the form

G
j
νν′μ′μ

({ p�, x�}) = 1

2π2

√
π |R|
G j

|Vd(P)Vs(P)|

×�νν′(P − pβ)(P̂ + m j )�μ′μ(P + pα)

× exp
(−Ω j − i�

)
, (28)

whereVs,d are the overlap integrals defined by Eq. (4), which,
in the framework of the CRGP model, have exactly the same
form as in the LBL case:

Vs,d(q) = (2π)4δ̃s,d
(
q∓qs,d

)
× exp

[−Ss,d ± i
(
q ∓ qs,d

)
Xs,d

]
,

where

δ̃s,d(K ) =
∫

d4x

(2π)4
exp

(
i K x − R

μν
s,d xμxν

)

=
exp

(
−1

4
�̃μνs,d KμKν

)

(4π)2
√|�s,d |

.

The function Ω j (not to be confused with the function � j

used above) is given by

Ω j = iPX + 1

G j

[
1

2

(
P p j − m2

j

)
− iRμνXμ pνj

]2

+RμνXμXν . (29)

It is convenient to enter the intermediate notation

M = g4

64
J ∗ν
d �νν′u( pβ)O

ν′P̂Oμ
′
v( pα)�μ′μJ μs ,
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with which and considering that OμOν = 0 the amplitude
(11) can be rewritten as

Aβα = M√|R| |Vs(P)Vd(P)|
2π3/2N

×
∑
j

Vβ j V ∗
α j√G j

exp
(−Ω j − i�

)
.

Let us now investigate the real part of the function Ω j in
more detail. As is seen from Eq. (29), it splits into two parts
with very different physical content:

ReΩ j ≡ R1 j + R2 j ,

R1 j = 1

4G j

(
P p j − m2

j

)2
,

R2 j = Rμν
(
XμXν − 1

G j
Rμ′ν′ Xμ pνj X

μ′
pν

′
j

)
. (30)

4.1 Off-shell control

To clarify the physical meaning of R1 j , we rewrite this func-
tion as follows:

R1 j = 1

4G j
E2

j

(
E j − P0

)2

� 1

4�2ρ j

(
|P| − P0 + m2

j

2|P|

)2

, (31)

where

ρ j = ρ00 − 2ρ0mv jm + ρmnv jmv jn > 0,

v j = P/E j is the most probable velocity of the j-th neutrino
(see below), of course different from the “virtual velocity”
v = P/P0; the Lorentz scalar� and tensor ρ are defined by
Eqs. (25) and (26), respectively.

Let us digress for a while to clarify the meaning of the
function � by considering a toy model (hereinafter referred
to as π -μ model) in which neutrinos are produced in two-
particle decays (πμ2 for certainty) and, for one reason or
another, contribution to the tensor R from the detector vertex
can be ignored, so that R = �s = Tπ+Tμ. Then, neglecting
for further simplification the neutrino mass and assuming
energy–momentum conservation, we find:

�(π -μ) =
[

1

2
σπσμ

(
σ 2
π + σ 2

μ

)(mπ
mμ

− mμ
mπ

)]1/4

,

where mπ,μ (σπ,μ) are the masses (momentum spreads) of
the pion and muon wave packets, respectively. If, e.g., σμ =
σπ then �(π -μ) ≈ 0.87σπ . The extreme simplicity of this
example should not, however, be misleading, because for a
process involving three packets already, � (as well as G j ,
see below) is an invariant function of external momenta, not
a constant.

Now, returning to the general case, we will restrict our-
selves to the ultra-relativistic approximation:

P2
0 ∼ P2 � m2

j .

In fact, this condition is not quite trivial for deeply virtual
neutrinos, since the components of the 4-vector P are for-
mally mutually independent. However, it is a direct conse-
quence, provided by the natural conditions for the energy and
momentum transfers in the vertices of the macrodiagram 2,

(
q0
s

)2 ∼ q2
s � m2

j and
(
q0
d

)2 ∼ q2
d � m2

j (∀ j),

and by the presence of the multipliers δ̃s(q − qs) and
δ̃d(q + qd) (smeared δ-functions) in the amplitude.5 It is in
this sense that we will call virtual neutrinos ultrarelativistic.
In this approximation Eq. (31) can be rewritten as

R1 j � 1

ρ j

(P2 − m2
j

4�|P|

)2

.

From this relationship follows that 0 ≤ R1 j � 1 when

0 ≤ |P2 − m2
j | � 4|P|�√

ρ j ≈ 4
√G j . (32)

Thus, the factor exp
(−R1 j

)
controls the magnitude of the

neutrino virtuality: it allows a significant escape of the vir-
tual neutrinos from their mass shell, but suppresses the con-
tributions to the amplitude from external 4-momentum con-
figurations that give too much virtuality |P2 − m2

j |. For a
numerical illustration, consider again the π -μ model. In the
exact energy–momentum conservation limit, we find:

G(π -μ)
j = 1

8

{
1

m2
μ

[
m2
π − (mμ + m j )

2
]

×
[
m2
π − (mμ − m j )

2
]
σ 2
μ

+2
(
m2
π − m2

μ + m2
j

)
σ 2
π

}

� m2
π − m2

μ

8

[
2σ 2
π +

(
m2
π

m2
μ

− 1

)
σ 2
μ

]
.

It is apparent that the neutrino mass is completely negligible
here and G(π -μ)

j ≫ m4
j . The dependence of the maximum

virtuality on σπ and σμ is shown in Fig. 3.
It can be seen that although the on-shell neutrinos make

the maximum contribution to the amplitude, the neutrino vir-
tuality can be potentially very large if the dispersions of the
momenta of the external wave packets (σπ and σμ in this
example) are large enough. It is noteworthy that constraints
(32) (as well as (33) below) are actually independent of neu-
trino mass, provided that P2 ∼ P2

0 � m2
j .

5 They also ensure that |qs | ∼ |qd | and q0
s ∼ −q0

d .
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Fig. 3 Maximum permissible neutrino virtuality vs. σπ and σμ esti-
mated in the π -μ model. Calculation is made assuming energy–
momentum conservation and neglecting the neutrino mass

Although the virtual neutrinos can behave as a bradyonic,
luxonic, or tachyonic particle, the virtual velocity value |v| =
|P/P0| always remains close to the speed of light,

|1 − |v|| �
2�

√
ρ j

P0
� 2

√G j

P2
0

� 1, (33)

and the most probable velocity of ν j (determined by the con-
dition R1 j = 0) is, as expected,

|v j | = |P|
E j

=
(

1 + m2
j

|P|2
)−1/2

� 1 − m2
j

2|P|2 . (34)

Figure 4 shows the maximum value of |1 −|v|| calculated in
the π -μ model.

For comparison: the velocity of the real ν j fromπμ2 decay
at rest is equal to

1 − 2m2
πm

2
j

(m2
π − m2

μ)
2 ≈ 1 − 5.6 × 10−18

( m j

0.1 eV

)2
.

4.2 Quasi-classical motion

Consider now the second term in Eq. (30). The factor
exp

(−R2 j
)

suppresses the corresponding ( j-th) term in the
amplitude when neutrino deviates from its classical world
line. To prove this, let us rewrite R2 j as follows:

R2 j = 1

G j

(RμνRλρ − RμλRνρ
)
pλj p

ρ
j X

μXν (35a)

= 1

G j
RμνRλρXμ pρj

(
Xν pλj − Xλ pνj

)
. (35b)

Fig. 4 Maximum permissible deviation of the virtual neutrino veloc-
ity from the speed of light vs. σπ and σμ estimated in the π -μ model.
Calculation is made assuming energy–momentum conservation and
neglecting the neutrino mass. The virtual neutrino energy in Eqs. (33)
is taken equal to the real neutrino energy in the pion rest frame, that is,
P0 = (m2

π − m2
μ)/(2mπ ) ≈ 29.8 MeV

It is easy to prove that R2 j > 0. In the neutrino rest frame
(checkmarked) Eq. (35a) converts to

R2 j = 1

Ř00

(
Ř00Řμν − Ř0μŘ0ν

)
X̌μ X̌ν

= 1

Ř00

(
Ř00Řkn − Ř0kŘ0n

)
X̌k X̌n .

By rotating the coordinate system to align the z-axis along
X̌ , we find

R2 j = |X̌|2
Ř00

(
Ř00Ř33 − Ř2

03

)
.

This function is positive because the expression in paren-
theses and the denominator are the principal minors of the
symmetric positive-definite matrix ‖Rμν‖.

From Eq. (35b) follows that R2 j vanishes along the clas-
sical trajectory Xμ = uμj τ , where τ is the proper time,

u j = p j/m j = (
E j/m j ,P/m j

)
is the neutrino 4-velocity,

and it is assumed that m j > 0. Below we will need another
useful representation of the function R2 j , which also allows
us to extend the above conclusion to massless neutrinos. After
some manipulations, expression (35b) can be rewritten as

R2 j = Dj kn
(
Xk − v jk X0

) (
Xn − v jn X0

)
R00 − 2R0nv jn + Rknv jkv jn

, (36)

where

Dj kn = R00Rkn − R0kR0n
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+ (R0kRnm − 2R0mRkn + R0nRkm) v jm

+ (RlmRkn − RlnRkm) v jmv jl . (37)

Although the relativistic invariance and positivity of expres-
sion (36) are not seen explicitly, they certainly take place,
since it is an identical rewrite of Eq. (35b). Evidently R2 j = 0
on the classical trajectory X = v j X0, where v j = P/E j . It
is easy to verify that the function R2 j is invariant under the
group of uniform rectilinear motions (displacements along
the classical word lines)

g j = {
X0 �→ X0 + θ, X �→ X + v jθ; |θ | <∞}

.

This means that the virtual neutrino behaves like a quasi-
classical on-shell particle or, more precisely, like the asym-
metric (“true Gaussian”) wave packet studied in Ref. [55].
In other words, there is a duality between the description of
the virtual neutrino motion by the causal propagator and by
an effective wave packet (see also Ref. [50] and Sect. 5.4
below). One more important fact should be pointed out: as
proved in Ref. [55], the true Gaussian wave packet does not
coincide in any approximation with CRGP, which describes
the neutrino state in the LBL regime [28,37]. Thus, the neu-
trino propagation at short distances is profoundly different
from that at long distances.

5 Microscopic probability

The following important identity

|Vs,d(q)|2 = (2π)4δs,d(q∓qs,d)Vs,d , (38)

valid for any 4-vector q, was proved in Ref. [37]. Here

δs,d(K ) =
exp

(
−1

2
�̃μνs,d KμKν

)

(2π)2
√|�s,d |

, (39)

Vs,d =
∫

d4x
∏
�∈S,D

∣∣ψ� ( p�, x� − x
)∣∣2 , (40)

andψ�
(
p�, x�

)
is the coordinate-dependent part of the wave

function of the packet � in the coordinate representation (8)
with p = p� , x = x� and m = m� . The functions δs,d(K ),
of course, do not coincide with the functions δ̃s,d(K ) used
so far, but have the same plane-wave limit (6) as δ̃s,d(K ) and
similar properties. The physical meaning of the functions Vs

and Vd is obvious from the integral representation (40); it
implies that they should be treated as 4d (space-time) over-
lap volumes of incoming and outgoing wave packets in the
source and detector, respectively. It can be proved that they
take maximum values when the classical world lines of the
packets intersect at the impact points.

Using identity (38) and taking into account the explicit
form of the normalization factor N [28,37],

N 2 = 〈in|in〉〈out|out〉 =
∏

�∈S+D

2E�V�( p�),

where

V�
(
p�
) =

∫
d3x

∣∣ψ�( p�, x)∣∣2

is the effective spatial volume of the wave packet �, one
can derive the following formula for the modulus squared
transition amplitude (neutrino detection probability):

|Aβα|2 = 64π5|R|δs(P − qs)δd(P + qd)VsVd∏
�∈S

2E�V�
(
p�
) ∏
�∈D

2E�V�
(
p�
)

×
∣∣∣∣∣∣
∑
j

MVβ j V ∗
α j√G j

exp
(−Ω j

)
∣∣∣∣∣∣
2

. (41)

At first glance, this expression does not show the ISL-like
behavior (that is |Aβα|2 ∝ 1/|X|2). However, since the
exponential factor in the right-hand side of Eq. (41) sup-
presses the configurations of the impact points Xs,d that devi-
ate significantly from the classical trajectories Xd − Xs =
v j (X0

d − X0
s ), we can expect ISL to hold at least approxi-

mately. In order to see this explicitly, let us first recast Eq. (41)
to a form that is the Lorentz-invariant 4d analogue of the 1d
integral representation proposed by Cardall [14]. For this
purpose, consider the identity

(2π)4δs (q − qs) δd (q + qd) f (q) = 1√|�s ||�d |
× exp

[
−1

2

(
F0 − 2Yμqμ + �̃μνqμqν

)]
f (q),

in which f (q) is an arbitrary smooth function of q. By inte-
grating this identity with respect to q and using the saddle-
point approximation, we obtain

(2π)2
∫

d4qδs (q − qs) δd (q + qd) f (q)

= f (P)√
|�s ||�d ||�̃|

exp

[
−1

2
(F0 − RμνYμYν)

]
.

Then, substituting

F0 − RμνYμYν = �̃μνs (P − qs)μ(P − qs)ν

+ �̃μνd (P + qd)μ(P + qd)ν

and using definition (39) we arrive at the approximate relation

(2π)2
√|R| δs (P − qs) δd (P + qd) f (P)

=
∫

d4qδs (q − qs) δd (q + qd) f (q), (42)
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valid with the same accuracy with which the amplitude itself
was derived (that is, with the accuracy of the saddle point
approximation). Using this result, we can rewrite Eq. (41) in
the desired form:

|Aβα|2 =
∫

d4q
16π3√|R|δs(q − qs)δd(q + qd)∏
�∈S

2E�V�
(
p�
) ∏
�∈D

2E�V�
(
p�
)

×VsVd

∑
i j

Vαi Vβ jM
(
Vβi Vα jM

)∗
√G jG j

× exp
[
i
(
qi − q j

)
X + i

(
ωi − ω j

)]
× exp

[− (R1i + R1 j + R2i + R2 j
)]
, (43)

where

ω j =
(
E j − q0

) (R0k + Rknv
n
j

) (
Xk − vkj X0

)

Rμνvμj vνj
.

and v j = (1, q/E j ). Of course, it is implicitly assumed that
we replaced P0 �−→ q0 and P �−→ q in the functions R1i ,
R1 j , R2i , R2 j , ωi , and ω j . Representation (43) provides the
basis for further study. Its main difference from the corre-
sponding LBL asymptotics is in the last exponential multi-
plier, which takes into account the non-zero virtuality and
deviation from the classical trajectories. Below we will con-
vert it to a 1d integral in order to obtain an expression for
the event count rate as close as possible to the corresponding
LBL result obtained in Ref. [28] for the on-shell regime and,
in particular, to reproduce the inverse-square law.

5.1 Account for virtuality

To simplify expression (43), we take advantage of the fact
that the function exp

(−R1i − R1 j
)

has a sharp peak at its
saddle point. In the ultrarelativistic limit it has the obvious
meaning of the half-sum of the energies of νi and ν j and in
general case it is equal to

q0
i j = E3

i G j + E3
jGi

E2
i G j + E2

jGi

= Ei + E j

2

⎡
⎣1 +

(
Ei − E j

) (
E2
i G j − E2

jGi
)

(
Ei + E j

) (
E2
i G j + E2

jGi
)
⎤
⎦

� |q|
⎡
⎢⎣1 + m2

i + m2
j

4|q|2 − m2
i m

2
j

8|q|4 −
(
m2

i − m2
j

)2

16|q|4

×R00 − Rmnlmln
Rμνlμlν

⎤
⎥⎦ . (44)

Quite apparently, the latter approximation (not used further)
is valid only in the region |q|2 ∼ |qs |2 ∼ |qd |2 � m2

i, j ,
which, however, gives the main contribution to the integral
(43). It is notable that the difference with the usual on-shell
neutrino energy appears here only in the fourth order with
respect to mi, j/|q|. Given Eq. (44), we can replace q0 �−→
q0
i j everywhere except the exponent of − (R1i + R1 j

)
. Inte-

grating the latter in q0, we obtain

I0 =
∞∫

−∞
dq0 exp

[− (R1i + R1 j
)]

= 2

√
πGiG j

E2
i G j + E2

jGi
exp

⎡
⎣− E2

i E
2
j

(
E j − Ei

)2
4
(
E2
i G j + E2

jGi
)
⎤
⎦ . (45)

This is the exact formula. Formal expansion of the right-hand
side of Eq. (45) in powers of m2

i, j yields:

I0 � √
2πRμνlμlν

⎡
⎢⎣1 + R0klk − Rknlkln

Rμνlμlν

×m2
i + m2

j

4|q|2 +
(
m2

i − m2
j

)2

32Rμνlμlν |q|2

⎤
⎥⎦ . (46)

Of course, this expansion is also valid only in the region
|q|2 ∼ |qs |2 ∼ |qd |2 � m2

i, j . The last term in square brack-
ets can compete with the second one if

�2 · O(1) � 1

8

(
m2

i − m2
j

)2

m2
i + m2

j

� 10−4 eV2,

but both these terms are negligible under experimentally
interesting conditions. The common multiplier ∝ � in
Eq. (46) is however crucial: it shows that the non-zero neu-
trino virtuality, along with other factors to be discussed
below, is responsible for the flavor transition and survival
probabilities. This is an important distinguishing feature of
the neutrino propagation at short distances between a source
and a detector.

5.2 Account for quasi-classical motion

Next, we can integrate over the variables q1 and q2, given that
the virtual neutrinos move almost quasi-classically and so the
main contribution to the integral comes from the region where
|q1| � |q3| and |q2| � |q3| in the coordinate frame where
X1 = X2 = 0 (and hence l = (0, 0, 1)). Since all the fac-
tors in the integrand, except the exponent exp

(−R2 j − R2i
)
,

slowly evolve in the region |q1,2| � |q3|, we can safely put
q1 = q2 = 0 in these factors. The remaining integral can
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be evaluated by the formal expansion of R2i and R2i , repre-
sented according to Eq. (36), in powers of q1/q3 and q2/q3 to
the second order. As a result of simple but time-consuming
calculations, we obtain6:

I12 =
∞∫

−∞
dq1

∞∫

−∞
dq2 exp

(−R2i − R2 j
)

= πq2
3

2X2
0

√
Rμνlμlν

|R|�̃μνlμlν Z(X)

× exp

{
− Q (vi3 − v j3

)2
2Rμνlμlν X2

0

− 2

�̃μνlμlν

[
X3 − (vi3 + v j3)

2
X0

]2 }
, (47)

Q4 =
(
R00Rμν − R0μR0ν

)
lμlν

= (R00Rkn − R0kR0n) lkln, (48)

Z(X) = 1 +
∑
n≥1

Tn

(
X3 − X0

X0

)n

. (49)

In this calculation, we neglected the neutrino masses in the
pre-exponential multiplier (49), because taking them into
account would exceed the accuracy.7 The same is obviously
true for the term proportional to

(
vi3 − v j3

)2 in the exponent;
it could be significant only at very large times satisfying the
condition

[�X0

(
m2

i − m2
j

)

2q2
3

]2

� 1,

which, as will soon be shown, strongly contradicts the
restrictions determining the applicability of the formalism
under discussion. Therefore, this term should certainly be
neglected in further calculations. The leading term in the
exponent expectedly shows that the main contributions to
the modulus squared amplitude (41) give the classical trajec-
tories X3 = v j3X0 of the effective wave packets of virtual
neutrinos ν j . The deviations from the classical trajectories
is suppressed by the universal Lorentz-invariant multiplier
1/�̃μνlμlν = O

(
�2
)

– perfectly the same as in the LBL
mode [28].

6 Recall that all ingredients in Eq. (47) are written in the coordinate
system, where l = (0, 0, 1). For the convenience of further calculations,
all tensor convolutions, except those contained in the coefficients Tn ,
are written in a form invariant to rotations of the coordinate axes.
7 It is, however, of interest that series (49) contains all degrees of the
skew symmetric corrections (X3 − X0)/X0, since they are invariant
with respect to the PT transformation.

5.3 ISL violation at supershort baselines

The main result of this exercise is, of course, a mere repro-
duction in QFT of the classical ISL at short times, 1/�SBL �
T0 � |q|/�2

SBL, which is the SBL analogue to the Grimus–
Stockinger theorem, applicable to asymptotically long dis-
tances, L � |q|/�2

LBL, and also deviations from ISL at
T0 ≈ L � 1/�SBL, defined by the series (49). The dimen-
sionless coefficients Tn of this series can, in principle, be
calculated for any finite n, but they are too cumbersome to
reproduce here, and, furthermore, they do not seem to be of
practical interest since measurements at the supershort dis-
tances L � 1/� ≈ 0.2 μm (1 eV/�) are not feasible.

As a propaedeutic example, we write out only the coeffi-
cient for the leading correction8:

T1 = 1

α11α22 − α2
12

⎡
⎣− 1

2
α33 (α11 + α22)

+α11β22 + α22β11 − α12 (β12 + β21)

+2
∑
s=1,2

(α3s̄αss − α3sαss̄) (R0s̄ − R3s̄)

R00 − 2R03 + R33

⎤
⎦ ,

were

αkn = (R00 − 2R03 + R33)Rkn

− (R0k − R3k) (R0n − R3n) ,

βkn = (R0k − R3k)R3n + (R03 − R33)Rkn

−2 (R0n − R3n)R3k,

and s̄ = 3 − s. It follows from dimensional considerations
that all the functions Tn do not contain large or small dimen-
sional parameters, and the smallness of the ISLV corrections
at supershort baselines is determined by the common expo-
nential factor in Eq. (47). Thus, the corrections

∝
∣∣∣∣ X3 − X0

X0

∣∣∣∣
n

∼ 1

(�X0)
n

are small under condition (24). As explained in Appendix A.6,
under this condition we must all the more neglect the expo-
nentially small contribution Jv defined by Eq. (A26) in
Appendix A.5

5.4 Evolution of neutrino wave packet

Let us summarize at a qualitative level the behavior of the
effective neutrino wave packet (ENWP) over a wide range

8 Recall that the function T1 is not an explicit rotation invariant. Here
and in similar cases below, it is implicitly assumed that the tensors are
properly transformed at the transition to the rotated coordinate system,
but we do not rename or label them so as not to complicate already cum-
bersome formulas. We hope that this will not lead to misunderstandings,
because it is always clear from the context which coordinate system we
are talking about.

123



Eur. Phys. J. C           (2022) 82:736 Page 13 of 28   736 

of distances between the source and the detector. In the
vicinity of the impact point Xs , up to the “mesoscopic” dis-
tances L ∼ 1/� there is still no the duality “propagator
←→ wave packet” and the neutrino propagator has the form
Jg(X)+ Jv(X) (see Appendix A). At short but macroscopic
distances, 1/�SBL � L � L tr = |q|/�2

SBL, the contribu-
tion Jv(X) disappears and a “virtual” packet with off-mass-
shell 4-momentum is formed, which moves almost along the
classical world line with a velocity satisfying the condition
(33); the most probable 4-momentum at this stage is however
on shell and the most probable velocity is given by Eq. (34).
The packet evolves with time and distance and at long dis-
tances, L � L ′

tr = |q|/�2
LBL, turns into the on-shell ENWP.

The “transition lengths” L tr and L ′
tr have the same order of

magnitude, but may considerably differ from each other. In
any case, there is a certain transition region where the virtual
ENWP converts into the real (on-shell) one. Needless to say
this region is described by neither SBL nor LBL asymptotics.

5.5 Modulus squared amplitude

Combining Eqs. (45) and (47) together, we obtain the explic-
itly rotation invariant expression:

|Aβα|2 =
∑
i j

∫
d|q||q|2
16π3X2

0

√
Rμνlμlν
π�̃μνlμlν VsVd

× (2π)
4δs
(
qi j − qs

)
(2π)4δd

(
qi j + qd

)
∏
�∈S

2E�V�
(
p�
) ∏
�∈D

2E�V�
(
p�
)

×|M|2Vβ j Vαi V ∗
βi V

∗
α j√

E2
i G j + E2

jGi
exp

(−�i j
)
,

�i j = 2

�̃μνlμlν

∣∣∣∣X − vi + v j

2
X0

∣∣∣∣
2

+i
(
E j − Ei

)
X0 + Q4

2Rμνlμlν
(
v j − vi

)2
X2

0

+ E2
i E

2
j

(
E j − Ei

)
E2
i G j + E2

jGi

{
1

4

(
E j − Ei

)

+iRμn
[
v
μ
i

(
Xn − vni X0

)+ vμj
(
Xn − vnj X0

)]}
, (50)

l = (1, l), l = X/|X|, qi j = (q0
i j , |q|l), where q0

i j is defined
by Eq. (44). The integration limits in the integral over |q| are
not specified, since the main contribution is determined by a
narrow region where |q| ∼ |qs | � |qd | allowed by the factor

δs
(
qi j − qs

)
δd
(
qi j + qd

)
.

It is useful to identically rewrite this factor in the form

δs (q − qs) δd (q + qd) exp(−Θi j ), (51)

where q = (|q|, q) (q = |q|l) represents the 4-momentum
of the (fictitious) massless neutrino. This expedient allows
us to factor the functions δs,d out from the sums in i and j .
Using definition (39) we find

Θi j =
(
q0
i j − |q|

) [
�̃0μ
s (q − qs)μ + �̃0μ

d (q + qd)μ
]

+1

2

(
q0
i j − |q|

)2 (�̃00
s + �̃00

d

)
. (52)

In the ultrarelativistic approximation, we arrive at the follow-
ing result:

Θi j � |q|
4

[
�̃0μ
s (q − qs)μ + �̃0μ

d (q + qd)μ
]

×
[m2

i + m2
j

|q|2 −
(
m2

i + m2
j

)2

8|q|4 −
(
m2

i − m2
j

)2

8|q|4

×R0μlμ + 3 (R0nln − Rknlkln)

Rμνlμlν

]

+
(
m2

i − m2
j

)2

32|q|4
(
�̃00
s + �̃00

d

)
. (53)

Although the expression in the first square brackets in
Eq. (53) can formally be of arbitrary value, the factor
δs(q − qs)δd(q + qd) in Eq. (51) guarantees that in the main
approximation,

Θi j � m2
i + m2

j

4|q|
[
�̃0μ
s (q − qs)μ + �̃0μ

d (q + qd)μ
]
, (54)

|Θi j | = O
(
m2

i, j/�|q|
)

inside the integral over |q|. The

function Θi j does not have a constant sign and does not
disappear in the diagonal terms (with i = j) of the mod-
ulus squared amplitude, i.e., the factors exp

(−Θi j
)

could
potentially play a role in both transition and survival prob-
abilities, but only for heavy (beyond SM) neutrinos and
extremely small�. Otherwise, they can be ignored. It should
be recorded that the corresponding function in the LBL mode
has (in the same approximation) a very different form:

Θ
(LBL)
i j � m2

i + m2
j

4q0

[
�̃μks

(
q ′ − qs

)
μ

+ �̃μkd
(
q ′ + qd

)
μ

]
lk, (55)

where q ′ = (q0, q0l) = q0l. But of course, the functions
(54) and (55) are of the same order of magnitude.

It is easy to show [28] that |M| = |MsMd |, where

Ms = g2

8
u−(q)J μs �μμ′Oμ

′
u( pα),

� −i
GF√

2
u−(q)J μs Oμv( pα),

M∗
d = g2

8
v( pβ)O

μ′
�μ′μJ ∗μ

d u−(q),
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� −i
GF√

2
u( pβ)J ∗μ

d Oμu−(q),

GF is the Fermi coupling constant), and u−(q) is the Dirac
bispinor for the left-handed massless neutrino; no need to
justify the reasons for this trick. It should be readily apparent
that Ms and M∗

d represent the matrix elements for the neutrino
production and absorption in the reactions Is → F ′

s�
+
α ν and

ν Id → F ′
d�

−
β , respectively. As a consequence, we can rewrite

Eq. (50) in the form

|Aβα|2 =
∫

d|q||q|2
16π3X2

0

√
Rμνlμlν
π�̃μνlμlν VsVd

× (2π)
8δs(q − qs)|Ms |2δd(q + qd)|Md |2∏

�∈S
2E�V�

(
p�
) ∏
�∈D

2E�V�
(
p�
)

×
∑
i j

Vβ j Vαi V ∗
βi V

∗
α j√

E2
i G j + E2

jGi
exp

(−�i j −Θi j
)
. (56)

Here and in what follows, q = (|q|, q) is the 4-momentum
of the massless neutrino.

6 Count rate

In order to obtain observable quantities, the generic result
(56) must be averaged over the unmeasurable and/or unused
variables on which the in and out wave-packet states depend.
The averaging procedure can be implemented only by taking
into account the physical conditions of a real experimental
environment. This makes further analysis model-dependent.

Here we will use the same model as in Refs. [28,37]. The
model supposes that the statistical distributions of the incom-
ing wave packets a∈Is,d on the mean momenta, spin projec-
tions and space-time coordinates in the source and detector
devices can be described by single-particle distribution func-
tions fa( pa, sa, xa), xa = (x0

a , xa). Each function fa is nor-
malized to the total number, Na(x0

a ), of the packets a at time
x0
a :

∑
sa

∫
dxad pa
(2π)3

fa( pa, sa, xa) = Na(x
0
a ), a∈Is,d .

To proceed further, we redefine the terms “source” and
“detector”, which so far have been used to refer to the vertices
of the macrodiagram shown in Fig. 2. We will use these terms
and notationsS andD both for the corresponding devices and
for the supports of the product of the distribution functions
fa in space and time, namely,

S = supp
{xa}

∏
a∈Is

fa and D = supp
{xa}

∏
a∈Id

fa, (57)

which are assumed finite and mutually non-intersecting in
space. We also assume that the spatial dimensions of S and

D are very large compared with the effective dimensions
(∼ σ−1

� ) of the wave packets � moving inside S and D. But
we will not use the generally accepted assumption that the
dimensions S and D are small compared to the effective dis-
tance between them, because this assumption is not suitable
for such experiments as GALLEX [56], SAGE [57,58], and
BEST [59,60], where the source is surrounded by a detec-
tor environment. We neglect the background events caused
by outgoing particles produced in S and falling in D; this
issue would not deserve special mention in the case of long
baseline experiments. For certainty, we consider only such
experiments in which the momenta of all or some types of
particles arising in D are measured. To avoid non-principal
complications we suppose a detection efficiency of 100%.
Under all these assumptions, the macroscopically averaged
probability (56) (representing in this instance the number of
events registered in D) reads

〈〈|Aβα|2〉〉 =
∑
spins

∫ ∏
a∈Is

dxad pa fa( pa, sa, xa)
(2π)32EaVa

×
∫ ⎛
⎝ ∏

b∈Fs

dxbd pb
(2π)32EbVb

⎞
⎠Vs

×
∫ ∏

a∈Id

dxad pa fa( pa, sa, xa)
(2π)32EaVa

×
∫ ⎛
⎝ ∏

b∈Fd

dxb[d pb]
(2π)32EbVb

⎞
⎠Vd

×
∫

d|q||q|2
16π3X2

0

√
Rμνlμlν
π�̃μνlμlν

×(2π)4δs(q − qs)|Ms |2(2π)4δd(q + qd)|Md |2

×
∑
i j

Vβ j Vαi V ∗
βi V

∗
α j√

E2
i G j + E2

jGi
exp

(−�i j −Θi j
)
. (58)

The symbol
∑

spins denotes the averaging over the spin pro-
jections sa of the packets a∈Is,d and summation over the
spin projections sb of the packets b∈Fs,d , supposing that the
projections sb are not measured. The symbol [d pb] indicates
no integration in pb (i.e.

∫ [d pb]≡d pb), and hence that these
momenta are measured. If, however, the momenta of particles
of certain types b′∈Fd are not measured, the brackets must be
removed for b = b′. Therefore, it should be clearly apparent
that the expression (58) means the number (Nβα) of detected
particles b with 3-momenta between pb and pb + d pb (or
any momenta) in D. As in the LBL case, the indices α and β
indicate that neutrino exchange generally leads to the lepton
number violation (when α �= β). The final state leptons �α
and �β provide the experimental signature of such a violation.
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6.1 Averaging over spatial variables

An approximate multidimensional integration over the spa-
tial variables x� in Eq. (58) can be performed explicitly using
the integral representation (40) for the 4d overlap volumes

Vs = Vs
({ p�, x�}) and Vd = Vd

({ p�, x�})

and naturally assuming that the distribution functions fa and
the factor exp

(−�i j
)

change significantly only on macro-
scopic scales (comparable with the dimensions of S and D);
most often, in real experiments, spatial variations of the dis-
tribution functions can be neglected altogether. On the other
hand, the integrand

Ps,d ≡
∏
�∈S,D

∣∣ψ� ( p�, x� − x
)∣∣2

in Eq. (40) varies on a very short scale; in fact it differs from
zero only when the classical world lines of all wave packets
� pass through a narrow (microscopic or at least mesoscopic)
neighborhood of the integration variable (let the latter be x
for Vs and y for Vd ). Hence, neglecting the possible (micro-
scopic) edge effects in S and D, it is safe to substitute x�
by x (y) for �∈S (�∈D) in the mentioned slowly-varying
factors. Then, as is seen from Eq. (16) defining the impact
points, Xs = x and Xd = y. The remaining integrals over
the variables x� yield the factor

∏
�∈S⊕D V� , which can-

cels the product of the corresponding (inverse) factor in the
integrand.

To formalize the procedure described above, let us prove
that for an arbitrary 4-vector x there is always a configuration
of spatially separated points {x�} for which Ps,d = 1. Let,
for certainty,�∈S. Because of the invariance of |ψ�( p�, x�−
x)| with respect to shifts along the world lines of the centers of
the wave packet �, we can replace the space-time coordinates
x� by x̃� , where

x̃0
� = X0

s and x̃� = x� +
(
X0
s − x0

�

)
v� .

It is apparent thatPs = 1 as x̃� = x , i.e., at the same moment
in time, but at non-matching spatial coordinates x� = x +(
x0
� − x0

)
v� , which are (by construction) remote from each

other. Of course, x = Xs at x̃� = x (recall that Xs does not
change when x� is substituted by x̃� ). It is implicitly assumed
here that no more than one packet is at rest, but it is clear
that the contribution to the integral from the configurations
in which two or more wave packets have zero velocities is
insignificant – such configurations form a set of measures
zero.

In consequence of this we can rewrite Eq. (58) as follows:

Nβα =
∑
spins

∫
dx
∫

d y
∫

dPs

∫
dPd

×
∫

d|q||q|2
16π3 | y − x|2

√
Rμνlμlν
π�̃μνlμlν

×
∑
i j

Vβ j Vαi V ∗
βi V

∗
α j√

E2
i G j + E2

jGi
exp

(−�i j −Θi j
)
. (59)

Here we made the substitution

1

X2
0

� 1

| y − x|2
[

1 + O

(
1

�| y − x|
)]
,

allowed by condition (24), and introduced the differential
forms

dPs =
∏
a∈Is

d pa fa( pa, sa, x)
(2π)32Ea

∏
b∈Fs

d pb
(2π)32Eb

×(2π)4δs(q − qs)|Ms |2,
dPd =

∏
a∈Id

d pa fa( pa, sa, y)
(2π)32Ea

∏
b∈Fd

[d pb]
(2π)32Eb

×(2π)4δd(q + qd)|Md |2. (60)

6.2 Averaging over time intervals

The next step is to average the number of events (59) over
the S and D running time intervals. This is not the most
general setting of the problem and, moreover, it very much
depends on the specific conditions of an experiment. But it
typical for the current SBL experiments and is useful to clar-
ify the physical meaning of the obtained results and compare
them with the results derived for on-shell regime (long base-
lines, or LBL) in the same terms. For these aims, we will
use the simple model for the particle distribution functions
(59) proposed in Refs. [27,28], in which they do not depend
on time (or very slowly evolve with time) during the source
operating period τs = x0

2 − x0
1 and detector exposure period

τd = y0
2 − y0

1 , that is

fa( pa, sa; x) = θ
(
x0 − x0

1

)
θ
(
x0

2 − x0
)

× f a( pa, sa; x) for a∈Is,
fa( pa, sa; y) = θ

(
y0 − y0

1

)
θ
(
y0

2 − y0
)

× f a( pa, sa; y) for a∈Id . (61)

In the case of a detector, the step functions in Eq. (61) can
be considered as “hardware” or “software” trigger condi-
tions. In the context of present study (short distances between
S and D), the steady-state operation periods for S and D
can be long, as in the SBL reactor antineutrino experiments
and experiments with artificial radioactive neutrino sources,
or very short, as in accelerator-based SBL neutrino-tagging
experiments (which, however, requires more specific anal-
ysis). In either case it is assumed that the time intervals
required to turn the devices S and D on and off are neg-
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ligible compared to τs and τd , respectively. In the general
case, we do not impose any synchronization conditions on
the operation periods of S and D.

As a result of this simplification, the integration over the
source and detector operation times reduces to calculation of
the following integral:

x0
2∫

x0
1

dx0

y0
2∫

y0
1

dy0 exp
(−�i j

)
.

Using the general formula for the double Gaussian integral

x0
2∫

x0
1

dx0

y0
2∫

y0
1

dy0 exp
[
−a2 (y0 − x0)

2 − b (y0 − x0)
]

=
√
π

2a2 exp

(
b2

4a2

) 2∑
l,l ′=1

(−1)l+l ′+1

× Ierf

[
a
(
x0
l − y0

l ′
)

− b

2a

]
,

where

Ierf(z) =
z∫

0

dz′erf(z′)+ 1√
π

= z erf(z)+ e−z2

√
π
,

the massless neutrino approximation in the pre-exponential
factors, and leading order on �m2

i j = m2
i −m2

j in the expo-
nent, we can rewrite Eq. (59) in the following relatively com-
pact form (see Appendix B for a more precise formula):

Nβα
τd

=
∑
spins

∫
dx
∫

d y
∫

dPs

∫
dPd

×
∫

d|q|Pαβ (|q|, | y − x|)
4(2π)3| y − x|2 , (62)

Pαβ (|q|, | y − x|) =
∑
i j

Vβ j Vαi V
∗
βi V

∗
α j

× exp
(
iϕi j − A2

i j − C2
i j −Θi j

)
Si j , (63)

Si j = exp(−B2
i j )

4Dτd

2∑
l,l ′=1

(−1)l+l ′+1

× Ierf
[
2D

(
x0
l − y0

l ′ + | y − x|
)

+iBi j

]
, (64)

and D = 1/
√

2�̃μνlμlν . The unit vector l is directed along
the vector y − x. But, given that all structures (tensor con-
volutions) in the above formula are rotation invariants, one
can orient l in any fixed direction, say, along the geometric
centers of S and D, provided they have appropriate symme-
tries. The differential forms Ps,d in Eq. (62) are defined by
Eq. (60), in which the distribution functions fa should be sub-
stituted by f a , see Eq. (61). Therefore, according to Eq. (57),

integration in x and y is carried out over the volumes of S
and D.

With the same arguments as in the LBL regime [28], the
function (64) can be treated as a QFT generalization of the
QM neutrino flavor transition probability. The ingredients
involved in Eq. (64) are gathered in Table 1, which also con-
tains the corresponding structures arising in the LBL asymp-
totics.

As is seen, the functions Ai j and Bi j , as well as the func-
tionΘi j we discussed above (cf. Eqs. (54) and (55)) relating
to the SBL and LBL modes have a certain similarities, but not
identical, and do not coincide with each other in any approx-
imation. The positivity of A2

i j in the SBL mode is obvious,

given that Q4 = R00R33 − (R03)
2 in the coordinate system,

where l = (0, 0, 1), and this expression is a principal minor
of the positive-definite matrix ‖Rμν‖ (see footnote 8). The

suppression factor exp
(
−A2

i j

)
is potentially important for

very long L , but this does not apply to the SBL mode. The
function C2

i j is absent in the LBL mode, but has the same

order of magnitude as B2
i j and is also negligibly small for the

SM neutrinos. Although the suppression factors in Eq. (64)
are probably not important from the experimental viewpoint,
they are of interest as a reflection of the process (obscured by
the averaging of various kinds) responsible for the creation
and evolution of ENWP, and shortly discussed in Sect. 5.4.

Remarkably the oscillation phase ϕi j is the same in both
modes and, moreover, the same as in the QM approach,
although it is clear that at short distances this phase is also
small for the standard 3ν oscillations. The higher-order cor-
rections to ϕi j are presented in Appendix B, but they are of
potential interest only if there is mixing of standard neutrinos
with hypothetical heavy sterile neutrinos.

6.3 Instrumental factor

Within the approximations made, the function Si j (here-
inafter referred to as decoherence function or instrumental
factor) is the same as in the LBL mode, except for the dif-
ference in the explicit form of the function Bi j (see Table 1),
on which Si j depends. The general properties and several
examples of the decoherence function have been studied in
detail in Ref. [37]. Here we briefly discuss an additional sim-
ple example most relevant to SBL-experiments. Namely, we
consider the case when the periods τs and τd are large com-
pared to max | y − x|. Then

x0
1 = −τs

2
, x0

2 = τs

2
, y0

1 = −τd
2
, y0

2 = τd

2
,

and, as shown in Ref. [37], the decoherence function is
expressed through the universal (independent of indices i, j)
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Table 1 Ingredients of Eq. (62) in leading order for off-shell (short dis-
tances) and on-shell (long distances) regimes; the latter are taken from
Ref. [28]. Here L = | y− x| and�m2

i j = m2
i −m2

j . Last column shows

the order of magnitude (OoM) of the corresponding quantity. Evidently,
Eν = |q| in the given approximation

Quantity Off-shell regime On-shell regime OoM

ϕi j
�m2

i j L

2|q|
�m2

i j L

2Eν

|�m2
i j |L

Eν

A2
i j

(
�m2

i j L

2|q|2
)2 Q4

2Rμν lμlν

(
�m2

i j L

2E2
ν

)2
1

2�̃μν lμlν

(
�m2

i j

E2
ν

�L

)2

Bi j
�m2

i j

4|q|

√
�̃μνlμlν

2

R0μlμ
Rμν lμlν

�m2
i j

4Eν

√
�̃μνlμlν

2

Yklk
Yμlμ

|�m2
i j |

�Eν

C2
i j

(
�m2

i j

2|q|

)2
1

8Rμν lμlν
0

(
�m2

i j

�Eν

)2

real-valued function

S(t, t ′, b) = exp
(−b2

)
2t ′

Re
[
Ierf

(
t + t ′ + ib

)

− Ierf
(
t − t ′ + ib

)]
(65)

of three independent dimensionless real variables. In these
terms,

Si j = S(Dτs,Dτd ,Bi j ). (66)

Here are the simplest properties of function (65):

• 0 < S ≤ 1 for all values of the arguments and decreases
with increasing b;

• at t ≥ t ′ � 1 the function S weakly depends on t and
t ′ and approaches its asymptotic value exp(−b2) with
increasing t , so that Si j ≈ 1 for i, j = 1, 2, 3 (SM neu-
trinos) and Sii = 1 for any i (since Bi i = 0);

• S decreases rapidly as the ratio t/t ′ increases.

For illustration, Fig. 5 displays three particular cases of the
function S(t, t ′, b) for t ′ = 0.97t , t ′ = t , and t ′ = 1.30t .
The interval of values of b used in the figure is, of course,
unrealistically wide and is chosen only for the convenience of
visualization. The figure shows that S depends very weakly
on b at |b| � 1 (which is the case in the real experimen-
tal circumstances), but the dependence on the parameters t
and t ′ is very significant and should be taken into account
when processing the data and deriving the count rate from
the measured number of events.

6.4 Flavor transition probability

The function (64) matches the QM flavor transition probabil-
ity only if Si j = 1 and Ai j = Bi j = Ci j = Θi j = 0, which is
not the case. So it really can be interpreted as a QFT refine-
ment of the standard QM result. However, as in the LBL
mode, the probabilistic interpretation of the function Pαβ

Fig. 5 Instrumental factor (65) at t ′ = 0.97t , t ′ = t and t ′ = 1.30t vs.
lg t and b shown by the lower, middle and upper surfaces, respectively.
The middle and upper surfaces merge at very large t

can be true only in attenuated form, since the instrumental
factor and the functionsAi j ,Bi j , Ci j , andΘi j involve the ten-
sor components �̃μν and Rμν that depend on the momenta,
masses, and momentum spreads of all external wave packets
and are in general different for the reactions (10) with differ-
ent leptonic pairs (�α, �β) in the final states. The distinctions
are determined by kinematics of the subprocesses in S and
D (in particular, by the reaction thresholds) and specific sets
of participating in and out particles. It is also appropriate to
recall that the function Θi i is not sign-definite and Θi i �= 0.
As a result, the unitarity relations

∑
α

Pαβ =
∑
β

Pαβ = 1
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are generally do not hold, or hold only approximately even
within the kinematic boundaries for the corresponding sub-
processes.

By applying the aforementioned asymptotics S = exp(−b2)

(presumably valid for a wide class of possible SBL experi-
ments), and using the same arguments as in Refs. [27,28,37],
we arrive at formally the same expression as in the LBL case,
represented by Eq. (18), where

Pαβ (|q|, | y − x|) =
∑
i j

Vβ j Vαi V
∗
βi V

∗
α j

× exp
(
iϕi j − A2

i j − B2
i j − C2

i j −Θi j

)
(67)

with the exponent very close to unit for the SM neutrinos. In
this extremely simple but quite realistic case, it follows from
Eq. (67) and unitarity of the mixing matrix that

Pαβ � δαβ. (68)

Thus, as was to be expected, the flavor transitions are strongly
forbidden at short distances and/or high energies. The same
conclusion follows from the simple QM formula for the flavor
transition probability. It would seem that this leaves no room
for experimental verification of the theory presented here.
However, there is a subtle point: the commonplace result
(68) is only valid when � is large enough, or better to say
not too small; in fact, we have explicitly used this assumption
in deriving the results discussed, as well as in some approx-
imations and simplifications.

On the other hand, in the plane-wave limit, � → 0 and
thus B2

i j → +∞ and C2
i j → +∞ at i �= j , which (together

with the ultrarelativistic approximation) leads to the follow-
ing result9

Pαβ PWL−→
∑
i

|Vαi |2|Vβi |2, (69)

which is completely different from Eq. (68). As is well
known, the oscillationless flavor transitions are ruled out by
a huge number of (terrestrial) neutrino experiments, which
within our formalism indicates that � > 0. At nonzero
(and not very small!) � we have to take into account the
power corrections for the neutrino propagator, derived in
Appendix A.3, which could lead to a potentially observable
consequence not predicted by the QM formalism and basi-
cally distinguishable from the ISLV effect [50] predicted for
the LBL regime. The absence of additional masking factors

9 The derivation of this limit is not entirely trivial because of the factor
exp

(−Θi j
)

in Eq. (67), but becomes more transparent if we rewrite
Eq. (69) in the more accurate form

δs(q − qs)δd (q + qd )Pαβ PWL−→ δ(q − qs)δ(q + qd )
∑
i

|Vαi |2|Vβi |2.

(decoherence, damping, and oscillations themselves) would
have helped to detect the presumably small effect.

7 ISL violation at short baselines

The previous discussion was based on using the leading
order of the asymptotic expansion of the neutrino propagator
in small parameters (23). Taking into account the next-to-
leading order terms in the expression for number of events
(18) would require getting rid of several approximations
made in deriving this formula. In particular, the degree of
approximation used in Eqs. (42) and (47) should be improved.
We will postpone this issue for the future, and here we will
confine our consideration to the potential effect from the first
sub-leading term ∝ δ2 in series (A23).

Within the approximations made so far, we must neglect
in the series (A23) the terms of order O(η), O(�) and higher,
as well as the neutrino mass. Moreover, we can safely put in
Eq. (A23) p � q � |q|l and X � X0l � |X|l. Then the
series (A23) in the leading order becomes extremely simple:

I � −g1δ
2.

Here

g1 � F200 = θ2 − 2ω2 + ω2
1, δ � �2 |X|

|q| ,

and the functions θ2, ω1, and ω2 are defined by Eq. (A21) in
which we must put v = l . As a result, the inverse-square law
for the differential neutrino flux dFν , which appears in the
SBL version of Eq. (18), is violated under appropriate con-
ditions (cf. the corresponding results of Refs. [9] and [19]):

dFν ∝∼
1

| y − x|2 exp

(
−�

4
eff| y − x|2

|q|2
)

(70a)

≈ 1

| y − x|2
(

1 − �4
eff| y − x|2

|q|2
)
, (70b)

where

�4
eff ≡ 2F200�

4 = 2F200
√|R|

= 2

[
Tr R2 − 2lTR2l +

(
lTRl

)2
]
.

In Appendix A.4 it is proved (without neglecting the neutrino
mass) that F200 > 0. Therefore�4

eff > 0. This means that the
number of neutrino events should decrease compared to what
would be expected in the absence of the ISL violation. This
effect is ultimately associated with incomplete overlap in
space and time of the noncollinearly interacting incoming and
outgoing wave packets involved in the processes of neutrino
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production and absorption, which must lead to a decrease of
the probability of their interactions. Therefore, the positivity
of �4

eff is natural.
A more intuitive, though more speculative, interpreta-

tion of the ISLV effect relates to the aforementioned duality
“propagator ←→ wave packet”. The effective neutrino wave
packet moves quasi-classically, i.e., its center only approx-
imately follows a straight line connecting the neutrino pro-
duction and absorption points. According to Eq. (A24)

�4
eff = 2

(
R2

11 + 2R2
12 + R2

22

)

in the coordinate system, where l = (0, 0, 1), i.e. (within our
approximations) �eff is determined only by the spatial com-
ponents of the tensor R, transverse to the vector l . Thus, the
motion of the neutrino wave packet can be roughly thought
as classical motion along l superimposed on the quantum jit-
ter perpendicular to l . The resulting path length, L̄ , is longer
than the length of the classical rectilinear trajectory. There-
fore the number of events (∝ 1/L̄2) must be smaller than for
the classical motion. The formalism automatically accounts
for this effect and gives the expected reduction of the number
of events.

The neutrino virtuality also plays some part in the ISLV
effect, and series (A22) accounts for it with the terms ∝ �c.
But we neglected these terms (as well as the terms ∝ ηb)
because taking them into account would definitely exceed
the accuracy of our estimate.

Regardless of the interpretation, the function �eff in
Eqs. (70) depicts a cumulative effect from overlap of the
external wave-packet states � in the source and detector,
depending (through the tensor R) on their momenta p� ,
masses m� , and momentum spreads σ� . With suitable values
of these quantities, the ISLV correction can be measurable at
macroscopic distances satisfying the conditions of applica-
bility of the approximations used in the formalism. The basic
constraints can be formulated as the inequalities

2 × 10−5
(

1 eV

�

)
cm � | y − x|

� 20

(
1 eV

�

)2 ( |q|
1 MeV

)
cm, (71)

satisfied at sufficiently high neutrino energies and at short
distances, exceeding the “mesoscopic scale” ∼ 1/�. They
are virtually independent of the neutrino masses, provided
that the latter are negligible compared to the neutrino energy.
The constraints (71) are illustrated in Fig. 6 for representative
intervals of neutrino energy and values of the scale parameter
�. The energies of the neutrinos from πμ2 and Kμ2 decays
in the meson rest frame are also shown (by vertical planes) to
epitomize acceptable baselines in possible dedicated exper-
iments.

Fig. 6 The upper and lower limits of applicability of the formalism vs.
neutrino energy and scale parameter � (inclined planes). The vertical
planes show the energies of neutrinos originated from two-particle pion
and kaon decay at rest

Last but not least, the QFT approach predicts the exact
opposite dependence of the ISLV effect on the distance
L = | y − x| for the SBL and LBL asymptotics: the cor-
responding corrections are given by the series in powers of
δ2
i

∝∼ L2 and 1/L2, respectively, and the lowest order cor-
rections are inversely proportional to each other to within a
dimensionless positive factor. This feature makes it possi-
ble, at least in principle, to distinguish experimentally these
two asymptotics from each other, as well as from the pre-
dictions of other approaches, in particular from the result of
Ref. [19], which predicts the absence of even an approximate
fulfillment of ISL in the entire region L � |q|/�2

SBL. Even-
tually, it is hoped that the transition region, which has not yet
been explored within the formalism under discussion, will
also become the subject of experimental study. A promising
source of (anti)neutrinos could be, e.g., stopped-kaon decays,
which provide a relatively wide range of applicability of the
formalism (see Fig. 6).

8 Summary

In the framework of the covariant perturbative QFT approach
with wave packets as asymptotically free initial and final
states, the wave-packet modified neutrino propagator is
expressed as an initial segment of the triple Taylor series
in powers of dimensionless rotation-invariant variables (23).
This asymptotic expansion is applicable at high energies and
short but macroscopic space-time distances between the ver-
tices of the corresponding Feynman macrodiagram of a fairly
general form (see Fig. 2). It is also worth noting that the
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obtained asymptotic expansion applies not exclusively to the
neutrino propagator.

Using this result, it is shown that in the short-baseline
regime, high-energy neutrinos are deeply virtual and behave
like quasi-classical particles, that is, propagate approxi-
mately along classical trajectories connecting the points of
their production and absorption. In the leading-order approx-
imation, this results in the classical inverse-square depen-
dence of the modulus squared amplitude. But there are two
kinds of corrections to the classical behavior: at supershort
distances and times, |X| ∼ X0, which, however, exceed the
characteristic scale ∼ 1/�, relative corrections are described
by a series in powers of (|X| − X0) /X0 ∼ 1/(�X0), while
at 1/� � |X| ∼ X0 � |q|/�2 – by an expansion in pow-
ers of |X|2, which follows from the above expansion of the
neutrino propagator. As in the LBL regime, the main ISL
violating correction is negative, i.e., it leads to a decrease
in the neutrino event rate. But the functional dependence of
the ISLV correction is radically different from that in the
LBL mode, where the correction is given by an expansion
in inverse powers of |X|2. This makes it potentially possible
to distinguish between the SBL and LBL asymptotics and
thereby test the theory in dedicated experiments with vari-
able baseline or with several identical detectors at different
baselines.

An expression for the time-averaged number of neutrino-
induced events is derived and compared with the correspond-
ing result for the long-baseline mode. It is, in particular,
shown that although the corresponding formulas have the
same structure, the decoherence factors are different and do
not reduce to each other even in the lowest-order approxima-
tion. This results from the fact that the space-time behavior
of the neutrino propagator and, hence, the effective neutrino
wave packet in the two modes is strongly different, and there
is a transition region, |X| ∼ (0.1 − 10)|q|/�2, in which the
neutrino wave packet transformed from deeply virtual (with
the 4-momentum independent of the neutrino mass) into the
more habitual on-mass-shell packet. Negligible decoherence
and flavor transition probabilities in the SBL regime should
simplify the experimental study of the ISLV effect, and the
specific dependence of the predicted count rate on distance
and energy could potentially help distinguish its reduction
due to ISLV from that caused by possible mixing of active
and sterile neutrinos.
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Appendix A: SBL asymptotics of neutrino propagator

The aim of this Appendix is to represent the integral10

J (X) =
∫

d4q Φ(q)e−iq X

q2 − m2 + iε
, (A1)

where Φ(q) is defined by Eq. (14), through certain asymp-
totic expansions over several Lorentz-invariant and rotation-
invariant dimensionless quantities, guaranteed to be small in
absolute value. As will be shown, the resulting representa-
tion is applicable at relatively short macroscopic distances
|X| and times X0, sufficiently high (not necessary ultrarela-
tivistic) neutrino energies P0, and not too high neutrino vir-
tualities P2 −m2, where P = (P0,P) is the saddle point of
Φ(q). The exact meaning of these restrictions will become
clear from what follows. The results obtained below are quite
general, in the sense that they do not apply only to neutrinos.

A.1 Transformation of integral J (X)

Performing the 4d Fourier transform

Φ(q) =
∫

d4x ϕ(x)eiqx (A2)

and substituting Eq. (A2) to integral (A1) we get

J (X) =
∫

d4x ϕ(x)
∫

d3q e−iq(x−X)

×
∫

dq0 eiq0(x0−X0)

q2
0 − q2 − m2 + iε

. (A3)

Considering the two possibilities x0 ≷ X0 and using the
residue theorem, we obtain
∫

dq0 eiq0(x0−X0)

q2
0 − q2 − m2 + iε

= − iπ

Eq
e−i Eq |x0−X0|,

where Eq = √
q2 + m2. By substituting this result into

Eq. (A3) and changing the order of integration, we can rewrite
integral (A3) as

J (X) = −iπ
∫

dx0

∫
d3q

Eq
ei(qX−Eq |x0−X0|)

10 For simplicity, hereafter we omit the neutrino mass eigenfield index.
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×
∫

d3x ϕ(x)e−iqx . (A4)

Using Eq. (A2) it can be shown that
∫

d3x ϕ(x)e−iqx = 1

2π

∫
dq0Φ(q)e

−iq0x0 .

Applying this identity and shifting the integration variable
from x0 to X0 − x0, we rewrite Eq. (A4) as

J (X) = −i
∫

d4q

2Eq
e−i(q0X0−qX)Φ(q)

×
∞∫

−∞
dx0 e

i(q0x0−Eq |x0|).

It is convenient to split this integral into two parts,

J (X) = J+(X)+ J−(X), (A5)

where

J±(X) = −i
∫

d4q

2Eq
e−i(q0X0−qX)Φ(q)I±(q),

I−(q) =
0∫

−∞
dx0 e

i(q0+Eq)x0 ,

I+(q) =
∞∫

0

dx0 e
i(q0−Eq)x0 .

Now, representing Φ(q) as a 1d Fourier integral

Φ(q) =
∞∫

−∞
dy0 ϕ(q, y0)e

−iq0 y0 , (A6)

we have

J+(X) = −i
∫

d3q

2Eq
eiqX

∞∫

−∞
dy0ϕ(q, y0)

×
∞∫

0

dx0e
−i Eq x0

∞∫

−∞
dq0 e

iq0(x0−y0−X0).

It is readily seen that

∞∫

0

dx0 e
−i Eq x0

∞∫

−∞
dq0 e

iq0(x0−y0−X0)

= 2πe−i Eq (y0+X0)θ (y0 + X0) ,

where θ is the Heaviside step function. Therefore

J+(X) = −2iπ
∫

d3q

2Eq
eiqX

×
∞∫

−X0

dy0ϕ(q, y0)e
−i Eq (y0+X0). (A7)

In exactly the same way, we get

J−(X) = −2iπ
∫

d3q

2Eq
eiqX+i Eq X0

×
−X0∫

−∞
dy0ϕ(q, y0)e

i Eq y0 . (A8)

To move on, we must use the explicit form ofΦ(q) given by
Eqs. (14) and (15). Let us rewrite expression (15) as follows:

F(q) = F0 − 2Yμq
μ + �̃μνqμqν . (A9)

Now, applying Eqs. (A6) and (A9), we obtain an explicit
expression for the function ϕ(q, y0):

ϕ(q, y0) = 1

2π

∞∫

−∞
dq0Φ(q, q0)e

iq0 y0

= 1√
π�̃00

exp

[
− 1

4

(�̃knqkqn + 2Ykqk + F0
)

+ 1

4�̃00

(
Y0 + �̃0kqk + 2iy0

)2 ]
. (A10)

Combining Eq. (A10) with Eqs. (A8) and (A8) we arrive at

J±(X) = −iπ
∫

d3q

2Eq
ei(qX∓Eq X0)Φ(q,±Eq)

×
⎡
⎣1 ± erf

⎛
⎝ X0√

�̃00

+ i

2
ϒ±(q)

√
�̃00

⎞
⎠
⎤
⎦ , (A11)

where

ϒ±(q) = Y0 + �̃0kqk
�̃00

∓Eq .

Given Eqs. (14), (A5), and (A11), we obtain:

J (X) = Jg(X)+ Jv(X), (A12)

where

Jg(X) = −iπ
∫

d3q

Eq
ei(qX−Eq X0)Φ(q, Eq) (A13)

and

Jv(X) = iπ exp

[
−1

4
F0 − 1

�̃00

(
X0 + i

2
Y0

)2
]

×
∫

d3q

2Eq
exp

[
−
( �̃kn

4
− �̃k0�̃n0

4�̃00

)
qkqn

−
(
Yk
2

+ i�̃0k(2X0 − Y0)

2�̃00
− i Xk

)
qk

]
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× [w (#+)− w (#−)
]
. (A14)

Here the following notation is used:

w(x) = e−x2
erfc(−i x),

#± = i
X0√
�̃00

− 1

2
ϒ±
√

�̃00. (A15)

Although the functions Jg(X) and Jv(X) individually are not
exact relativistic invariants, the partitioning (A12) is conve-
nient because, as will be shown in Sect. 1, under some simple
condition valid in the given (laboratory) frame of reference,
the second term in Eq. (A12) can be neglected. This is suffi-
cient for our purposes.

A.2 Fedosov’s lemma

Below we will make extensive use of the important lemma
proved by Fedosov [61, p. 79], which states:

Let ϕ(x) = x Ax + ax + a0 be a quadratic function on
R
n , where A is a complex symmetric matrix with a positive

definite real part,a anda0 are a complex vector and a complex
constant, respectively. Then for any (smooth) function f (x)
the integral

I =
∫

dnx f (x) exp[−ϕ(x)]

may be represented in the form

I =
√
πn

|A| exp[−ϕ(z0)] eDτ TN (τ0, τ )
∣∣∣
τ=0

+ IN ,

|IN | ≤
∫

dτ | f (τ + τ0)− TN (τ0, τ )|
× exp[−Reϕ(τ + τ0)],

Dτ = 1

4
∂τ A

−1∂τ ≡ 1

4

n∑
r,s=1

∂

∂τr
(A−1)rs

∂

∂τs
,

where TN (τ0, τ ) is the N -th order Taylor polynomial of f (x)
at x = τ0 = Re z0, and z0 ∈ C

n is a stationary point of ϕ(z).
Note that the stationary point z0 (solution of the linear

system ∂ϕ/∂xr = 0) is given by z0 = − 1
2 A

−1a and thus
ϕ(z0) = − 1

4aA
−1a+a0. If f (x) is analytic at z0 then f (τ+

τ0)− TN (τ0, τ )→ 0 as N → ∞ and

I =
√
πn

|A| exp[−ϕ(z0)] eDτ f (τ0 + τ)
∣∣∣
τ=0

. (A16)

We will also need a corollary of this lemma: Let

ϕ(x; t) = x Ax + (a + ibt)x + a0 + ic0t,

f (x; t) = f0(x) exp[−ig(x)t],

where A, a, and a0 have the same meaning as above, b ∈ R
n ,

and t ∈ R
1. It has been proven [55] that

∞∫

−∞
dt
∫

dnx f (x; t) exp [−ϕ(x; t)]

= 2

√
πn+1

|A|bA−1b
exp

(
1

4
aA−1a − a0

)

× exp

[
− 1

bA−1b

(
aA−1b

2
− c0

)2
]

×eDτ f0(τ0 + τ) exp

{
g(τ0 + τ)
bA−1b

×
[
aA−1b − 2c0 − g(τ0 + τ)

] }∣∣∣∣
τ=0

. (A17)

The extension of Fedosov’s lemma and its corollaries to
Minkowski signature is trivial: as long as the integration vari-
ables are independent, it is only necessary to take care of the
correct position of the Lorentz indices in the tensor and vector
convolutions.

A.3 Integral Jg(X)

The integral (A13) can be identically represented as

Jg(X) = −i

∞∫

−∞
dy0

∫
d4q

2Eq
Φ(q, q0)

× exp
[−iq X + iy0

(
q0 − Eq

)]

= −i

∞∫

−∞
dy0

∫
d4q

2E p
f (q; y0) exp

[
−1

4
F(q)

+i

(
y0
qp − m2

E p
− qX

)]
,

where

f (q; y0) = E p

Eq
exp

[
− iy0(EqE p − m2 − qp)

E p

]
,

p = (E p, p) =
(√

P2 + m2,P
)
, Pμ = RμνYν .

The 4-vector P is the stationary point and R is the tensor
such that Rμλ�̃λν = δνμ. Here it is also appropriate to recall
that p0 ≡ E p �= P0 ≡ R0μYμ and q0 �= Eq .

The seeming complication (representing Jg as a 5D inte-
gral) allows us to straightforwardly apply Eq. (A17), which,
after some transformations, gives

Jg(X) = −8iπ2

√
π |R|
G e�eDτ e�τ

∣∣∣∣∣
τ=0

. (A18)
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Here

� = �c − 1

4G
(
P p − m2 − 2iRμν pμXν

)2
,

�τ = Wτ

4G
[
−4iRμνXμ pν − Wτ + 2

(
P p − m2

)]
,

Wτ = E p
(
E p+τ − E p

)− pτ , Dτ = ∂τR∂τ ,
R = ‖Rkn‖, G = Rμν pμ pν,

and other notations are explained in the main text. Note that
the differential operator Dτ is a 3 × 3 matrix, since the func-
tion f (q; y0) does not depend on q0. A direct application of
the operator eDτ = ∑

n D
n
τ /n! in Eq. (A18) shows that the

function Jg(X) can be represented by the initial segment of
the triple asymptotic series

Jg(X) = −8iπ2

√
π |R|
G exp(�)

×
∑
a≥0

∑
b≥0

∑
c≥0

fabc(iδ)
aηb�c (A19)

in powers of three dimensionless real variables

δ = �2 ρμν p
μXν

ρμν pμ pν
, η = �2

E2
p
, and � = P p − m2

ρμν pμ pν
.

Here � is the energy-dimension scalar defined by Eq. (25)
and assumed small compared to the masses of in and out
wave packets at the source and detector vertices and ρ is the
tensor with dimensionless space-time components defined
by Eq. (26). We emphasize that δ and� are Lorentz scalars,
while η is a rotation invariant. Therefore, the dimensionless
coefficient functions fabc must also be invariant to rotation.
Under the natural conditions that follow from the formulation
of the problem and from the formalism discussed in the main
text, we see that

|δ| � �2|X|/|P|
as |X| � X0 (quasi-classical trajectories + ultrarelativism)
and

|�| � |P2 − m2|
2ρμνlμlν |P|2 � 2�√

ρμνlμlν |P|
as |P| � P0 (suppression of too high virtualities + ultra-
relativism + approximate energy–momentum conservation).
From definition (26) and dimensional considerations, it fol-
lows that ρμν = O(1). Taking all this into account, we can
conclude that

|δ| � 1, η � 1, and |�| � 1

provided that the conditions

�|X| � |P|/� (A20a)

and

� � |P| (A20b)

are both fulfilled. These conditions determine the range of
applicability of expansion (A19) and, consequently, of the
entire formalism under discussion. While condition (A20b)
is trivial and is fulfilled with a margin in the modern neutrino
experiments, the condition (A20a) means that the formalism
is only applicable at sufficiently short distances and/or high
neutrino energies. The area of applicability increases with
decreasing �. Several lower-order coefficients fabc are:

f000 = 1,

f001 = 1

2
θ1 − 1

2
ω1,

f002 = 1

8
θ2

1 + 1

4
θ2 − 1

2
ω2 + 3

8
ω2

1 − 1

4
ω1θ1,

f010 = 3ω1 − θ1 − 1

%

(
1

2
θ2 − ω2 + 1

4
θ2

1

−1

2
ω1θ1 + 3

4
ω2

1

)
,

f011 = − 3

2
θ2 + 9ω2 − 3

4
θ2

1 + 9

2
ω1θ1 − 45

4
ω2

1

− 1

%

(
θ3 − 3ω3 + 3

4
θ1θ2 − 3

4
ω1θ2

−3

2
θ1ω2 + 9

2
ω1ω2 + 1

8
θ3

1 − 3

8
ω1θ

2
1

+9

8
ω2

1θ1 − 15

8
ω3

1

)
,

f020 = − 30ω2 + 105

2
ω2

1 + 3

2
θ2

1 + 3θ2 − 15ω1θ1

− 1

%

(
36ω3 − 3θ1θ2 − 4θ3 − 1

2
θ3

1

+9ω1θ2 + 105

2
ω3

1 − 90ω1ω2 + 9

2
ω1θ

2
1

−45

2
ω2

1θ1 + 18θ1ω2

)

− 1

%2

(
45

4
ω2

1ω2 − 3

8
ω1θ

3
1 − 9

16
ω2

1θ
2
1

+15

8
ω3

1θ1 − 105

32
ω4

1 − 9

2
ω2

2 + 9ω4

−9

8
θ2

2 − 9

8
ω2

1θ2 − 3θ1θ3 + 9

4
ω1θ1θ2

+9

8
θ2

1 θ2 − 9

32
θ4

1 + 9

4
θ2

1ω2 − 9

2
ω1θ1ω2

−1

2
ω2θ2 − 9ω1ω3

)
,

f100 = ω1 − θ1,

f101 = − θ2 + 2ω2 − 3

2
ω2

1 + ω1θ1 − 1

2
θ2

1 ,

f110 = 3θ2 − 18ω2 + 3

2
θ2

1 − 9ω1θ1 + 45

2
ω2

1
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+ 1

%

(
2θ3 − 6ω3 + 3

2
θ1θ2 − 3

4
ω1θ

2
1

−3

2
ω1θ2 − 3θ1ω2 + 9ω1ω2 + 9

4
ω2

1θ1

−6ω3 + 1

4
θ3

1 − 15

4
ω3

1

)
,

f200 = θ2 + 1

2
θ2

1 − 2ω2 + 3

2
ω2

1 − ω1θ1.

Here

% = 1

E2
p
ρμν pμ pν = ρμνvμvν � ρμνlμlν,

θs = Tr ρs, ωs = vT ρsv, s = 0, 1, . . . , (A21)

v = (1, v), v = p
E p
, ρ = ‖ρkn‖.

Obviously, the approximate equality % � ρμνlμlν is valid
only for ultrarelativistic neutrinos.

The presented results were derived using the computer
algebra systems Maple® and Maxima for a finite number
of terms of the asymptotic series (A19). More specifically,
the calculations were performed using the K -th order Taylor
polynomial of the operator exponent eDτ . Up to the order
K = 8 it is proved that fabc = 0 at b > K −a and c > K −b
for a ≤ K . Hence

∑
a≥0

∑
b≥0

∑
c≥0

�−→
K∑

a=0

K−a∑
b=0

K−b∑
c=0

in Eq. (A19). The method for deriving the coefficients fabc
is reduced to the transformation of sums of products of ten-
sor and vector components resulting from differentiation of
exp (�τ ) to the identical combinations of the rotation invari-
ants θs , ωs , and %. The calculations are simplified by dimen-
sional and symmetry considerations, but are still intricate.
Obviously, the required computer processing time grows
exponentially as K increases, so that the calculation of high-
order coefficients becomes rather time-consuming. But for
our purposes, it would be enough to make sure that the struc-
ture of series (A19) is correctly “guessed” even in the lowest
(second) subleading order in δ, yielding the ISL violation.

It is convenient to rewrite Eq. (A19) in the equivalent expo-
nential form

Jg(X) = −8iπ2

√
π |R|
G exp (�)

× exp

⎡
⎣∑
a≥0

∑
b≥0

∑
c≥0

Fabc(iδ)
aηb�c

⎤
⎦ . (A22)

This representation is a bit more suitable since it facili-
tates calculation of the modulus squared transition ampli-
tude. The corresponding coefficients Fabc can be obtained

by re-expanding the power series (A19):

F000 = 0,

F001 = 1

2
θ1 − 1

2
ω1,

F002 = 1

4
θ2 − 1

2
ω2 + 1

4
ω2

1,

F010 = 3ω1 − θ1 − 1

%

(
1

2
θ2 − ω2 + 1

4
θ2

1

−1

2
ω1θ1 + 3

4
ω2

1

)
,

F011 = − 3

2
θ2 + 9ω2 − 1

4
θ2

1 + 5

2
ω1θ1 − 39

4
ω2

1

− 1

%

(
θ3 − 3ω3 + 1

2
θ1θ2 − 1

2
ω1θ2

−θ1ω2 + 4ω1ω2 + 1

2
ω2

1θ1 − 3

2
ω3

1

)
,

F020 = − 30ω2 + 48ω2
1 + θ2

1 + 3θ2 − 12ω1θ1

− 1

%

(
36ω3 − 5

2
θ1θ2 − 4θ3 − 1

4
θ3

1

+15

2
ω1θ2 + 201

4
ω3

1 − 87ω1ω2

+13

4
ω1θ

2
1 − 81

4
ω2

1θ1 + 17θ1ω2

)

− 1

%2

(
21

2
ω2

1ω2 − 1

2
ω1θ

3
1 − 1

4
ω2

1θ
2
1

+3

2
ω3

1θ1 − 3ω4
1 − 4ω2

2 + 9ω4 − θ2
2

−3

4
ω2

1θ2 − 3θ1θ3 + 2ω1θ1θ2

+5

4
θ2

1 θ2 − 1

4
θ4

1 + 2θ2
1ω2 − 4ω1θ1ω2

−9ω1ω3) ,

F100 = ω1 − θ1,

F101 = − θ2 + 2ω2 − ω2
1,

F110 = 3θ2 − 18ω2 + 1

2
θ2

1 − 5ω1θ1 + 39

2
ω2

1

+ 1

%
(2θ3 − 6ω3 + θ1θ2 − ω1θ2

−2θ1ω2 + 8ω1ω2 + ω2
1θ1 − 3ω3

1

)
,

F200 = θ2 − 2ω2 + ω2
1.

It is also instructive to represent the triple power series in the
exponent in Eq. (A22) as∑
a≥0

(−1)a
(
ga + ig′

aδ
)
δ2a ≡ I. (A23)

The explicit form of the real coefficient functions ga and
g′
a trivially follows from the expressions for the coefficients
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Fabc. A simple analysis shows that Im I is negligibly small
under all experimental circumstances, but Re I provide cor-
rections of the order of O(η) and O(�) to the decoherence
factors and, more importantly, potentially measurable ISL-
violating correction given by even powers of δ (see main
text).

A.4 Positivity of F200

Let us prove that the coefficient function F200 is positive (we
will need this fact in Sect. 7). The proof can be fulfilled by an
orthogonal diagonalization of the symmetric positive definite
3 × 3 matrix ρ:

ρ = OT r O, r = diag (r1, r2, r3) , v = Ou.

Here u = (u1, u2, u3)
T , rk are the positive eigenvalues of

ρ, O is an orthogonal matrix of rotation, and v is defined in
Eq. (A21). In this representation, using definitions (A21) we
find:

F200 =
∑
k

r2
k

(
1 − u2

k

)2 + 2
∑
k

ηlnk rlrnu
2
l u

2
n > 0,

where ηlnk = 1 for a cyclic permutation of (1, 2, 3) and ηlnk =
0 otherwise. It is pertinent to note here that the coefficient
function f200 in Eq. (A19) is also positive, since

f200 = F200 + 1

2
(θ1 − ω1)

2 .

A less formal way to prove the same is to rewrite F200 in the
coordinate system whose z axis is directed along the vector
v. In this system

F200 =
[
ρ33

(
1 − v2

)]2 + 2
(
ρ2

23 + ρ2
31

) (
1 − v2

)

+ρ2
11 + 2ρ2

12 + ρ2
22 > 0, (A24)

where v ≡ |v| = |v′|, v ≤ 1. For massless neutrino F200 =
ρ2

11+2ρ2
12+ρ2

22, i.e. F200 is determined only by the transverse
spatial components of the tensor ρ.

A.5 Integral Jv(X)

Applying Fedosov’s lemma to Eq. (A14), we obtain:

Jv(X) = 4iπ2
√
π |R| exp (�c)

×eDτ

[
w−(τ )− w+(τ )

]
E p+τ

∣∣∣∣∣
τ=0

,

w±(τ ) = w

⎛
⎝i X0√

�̃00

− 1

2

√
�̃00 �±(τ )

⎞
⎠ ,

�±(τ ) = P0 ± E p+τ − �̃0kτk

�̃00
, Dτ = ∂τR∂τ . (A25)

We mention in passing that the 3d stationary point P and
operator Dτ are exactly the same as above. From the known
asymptotic expansion of the complementary error function
of complex variable (see, e.g., Ref. [62, p. 164]) it follows
that

w(i z) = 1

z
√
π

∞∑
n=0

(−1)n
(2n − 1)!!(

2z2
)n ,

z → ∞, |arg(z)| < 3π

4
.

Combining this and Fedosov’s expansions, the expression
(A25) can be represented by the formal series

Jv(X) = 4iπ2

E p

√|R| exp (�c)
∑
a≥0

κ2a

×
∑
b≥0

[
1

κ2b+1−

(
A−

ab + iB−
abκ

κ−

)

− 1

κ2b+1+

(
A+

ab + iB+
abκ

κ+

)]
, (A26)

in powers of the real variable

κ = 1

E p

√
�̃00

> 0

and inverse powers of two complex variables

κ± = X0√
�̃00

+ i

2

√
�̃00

(P0±E p
)
.

The specific structure of this series was checked only to
the second order of the Taylor polynomials of w±(τ ) and
eDτ , which is enough for our purposes. The lowest-order
real dimensionless coefficients A±

ab and B±
ab are found to be

A±
00 = 1,

A±
10 = 3ω1 − θ1,

A±
01 = − 1

2

(
1 + ζ0 + ω1 ± ω0

1

)
,

A±
11 = 3

4
ω1 (4θ1 − 2 − 15ω1)+ 1

2
(θ1 − θ2)− 1

4
θ2

1

+ 6ω2 + 1

2
(θ1 − 3ω1) ζ0 − 3(ω0

1)
2 + ω0

0

± 3
(

2ω0
2 − 5ω1ω

0
1 + ω0

1θ1

)
,

B±
00 =ω0

1 ± 1

2
(3ω1 − θ1) ,

B±
10 = 3

(
5ω1ω

0
1 − 2ω0

2 − ω0
1θ1

)
± 3

4

[
35ω2

1 − 20ω2

+θ1 (3θ1 − 10ω1)+ 2
(
θ2 − θ2

1

)]
,

B±
01 = 3

2
ω0

1 (θ1 − ζ0)+ 3ω0
2 − 3

2
ω0

1 − 9ω1ω
0
1
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± 3

4
[θ1 (1 + ζ0 + ω1)− ω1 (3 + 3ζ0 + 5ω1)

+2ω0
0 + 2ω2 − 6(ω0

1)
2
]
,

where

ω0
0 = ρ0kρ0k, ω0

1 = ρ0kVk, ω0
2 = ρ0kρknVn,

ζ0 = ρ00 − ρ̃ −1
00 , ρ̃ μν = |�̃|−1/4�̃μν,

and the functionsω1,2 and θ1,2 are defined by Eq. (A21). The
coefficientsA±

ab andB±
ab were derived by the same method as

described at the end of Sect. A.3. Obviously, κ ∼ �/P0 � 1,
but the series in powers 1/κ± can be considered asymptotic
expansions only at Re κ± � 1, which, under the obvious pre-
sumption ρ̃00 = O(1), is equivalent to the condition (24). Let
us show that the relative contribution of Jv(X) is completely
negligible under this condition.

A.6 Comparison of Jg(X) and Jv(X)

The patterns of the asymptotic expansions (A19) and (A26)
allows us to estimate the relative contribution of Jg(X) and
Jv(X) to the modulus square of the amplitude (11), using the
leading-order terms of these expansions (that is the condition
�X0 � 1) and neglecting the neutrino virtuality.11 Then
after simple calculations we get

∣∣∣∣ J (X)Jg(X)

∣∣∣∣
2

� 1 − 2fe−�
√

�̃00

(1 +&)X0
+ f2e−2��̃00

(1 +&)X2
0

,

where

� = 1

G
(Rμν pμXν)2 � ρμνlμlν(�X0)

2 � 1,

f = 1

2

√
|R|G
π |R|E2

p
� 1

2

√
|ρ|ρμνlμlν
π |ρ| = O(1),

and, according to conditions (A20),

& = X2
0

E2
p�̃2

00

=
(
�X0

ρ̃00E p

)2

� 1.

Given the condition (24), the relative contribution of Jv(X)
to the modulus squared amplitude12 is exponentially small,
being proportional to

exp
[
−ρμνlμlν(�X0)

2
]
/(�X0),

that is, to a good approximation,

J (X) = Jg(X)+ Jv(X) � Jg(X),

11 Admissibility of the latter simplification is discussed in the main text
and, for this estimate, reduces to the approximate equalitiesP0 � Ep �
|P|.
12 Note that the main contribution is made by the interference term
2
[
Re(Jg)Im(Jv)+ Re(Jv)Im(Jg)

]
/|Jg |2.

where Jg(X) is given by Eq. (A22). In the main text, we
restrict ourselves to this approximation, since for realistic
values of the scale parameter �, the condition (24) is satis-
fied in all potentially interesting applications of the formal-
ism. It is, however, a straightforward though tedious task to
get rid of this approximation in exotic circumstances when
�X0 � 1, provided that a small number of terms in expan-
sion (A26) is sufficient. In the context of the ISLV effect
discussed in Sect. 7, it is interesting to note that accounting
for the contribution of Jv , as a NLO correction would lead to
an additional reduction in the expected number of neutrino-
induced events, i.e., Jv does not compete with the main ISLV
correction.

Appendix B: Enhanced expression for Nβα

Here we give an expression for the number of events obtained
without using the ultrarelativistic approximation, but still
neglecting the (LO) ISLV corrections ∝ |δi + δ j |2 ∝
�4| y − x|2/|q|2 and corrections to the oscillation phase
∝ |δi − δ j | ∝ |�m2

i j |�2| y − x|/|q|3, which follow from
the expansion (A23) and Eq. (23b). So, with the reservations
made, the number of events can be written in the form

Nβα =
∑
spins

∫
dx
∫

d y
∫

dPs

∫
dPd

×
∫

d|q||q|2
2(2π)3D| y − x|2

∑
i j

Vβ j Vαi V
∗
βi V

∗
α j

× exp
[
iϕi j − A2

i j − B2
i j − C2

i j −�i j

]

× χ2
i j(

vi + v j
)2
√√√√ Rμνlμlν

2
(
E2
i G j + E2

jGi
)

×
2∑

l,l ′=1

(−1)l+l ′+1 Ierf

[
2D

(
vi + v j

2χi j

(
x0
l − y0

l ′
)

+χi j | y − x|
)

− iBi j

]
,

where the following notations are used:

ϕi j = 2χ2
i j

vi + v j

(
Ei − E j

) | y − x|

×
{

1 − Rμklk
Rμν

(
v
μ
i v
ν
i + vμj vνj

)

×
[

vi + v j

2χ2
i j

(
v
μ
i + vμj

)
−
(
v
μ
i v j + vμj vi

) ]}
,

A2
i j = 4D2χ2

i j Ti j | y − x|2,
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Bi j =
(
Ei − E j

)
2
(
vi + v j

) χi jR0μ

(
v
μ
i + vμj

)

DRμν
(
v
μ
i v
ν
i + vμj vνj

) ,

C2
i j = (Ei − E j )

2

4Rμν
(
v
μ
i v
ν
i + vμj vνj

) ,

Ti j =
(

vi − v j

vi + v j

)2 (R00Rμν − R0μR0ν
)
lμlν

2D2Rμνlμlν ,

D2 = 1

2�̃μνlμlν , vi, j = |vi, j |, χ2
i j = 1

1 + Ti j
,

l = (1, l), vi, j = (1, vi, j l), l = y − x
| y − x| .

All notations not listed here are explained in the main text.
This is a formal generalization of Eqs. (62) and (63) (see also
Table 1), which can be of utility, for example, when analyzing
possible experimental implications of models with “heavy”
neutrinos. In practical terms, this result allows us to quantify
the accuracy of the ultrarelativistic approximation.

We deliberately do not distinguish here the factors that
could be treated as “flavor transition probability” and “instru-
mental function”. Recall again that since all structures in the
formula are rotation invariants, the unit vector l can be ori-
ented in any fixed direction independent of the vector y− x,
for example, along the z axis of a given coordinate system;
then all tensors and vectors must be written in this very coor-
dinate system.
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