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ABSTRACT Quantum computers have made significant progress in the last two decades showing great
potential in tackling some of the most challenging problems in computing. This ongoing progress creates
an opportunity to implement and evaluate quantum-inspired metaheuristics on real quantum devices, with
the aim of uncovering potential computational advantages. Additionally, the practical constraints associated
with current quantum computers have highlighted a critical need for classical heuristic methods to optimize
the tunable parameters of quantum circuits. Nature-inspired metaheuristics have emerged as promising
candidates for fulfilling this optimization role. In this paper, we discuss both of these potential directions
at the intersection of evolutionary computing and quantum computing while surveying some of the most
promising advancements in these directions. We start with the review of quantum-inspired metaheuristics
and then explore implementations of some of these quantum-inspired algorithms on physical quantum
devices, capitalizing on the progress in quantum computing technology. Furthermore, we investigate the
role of nature-inspired metaheuristics in enhancing the performance of noisy intermediate-scale quantum
computers by fine-tuning their parameters. Finally, we discuss some of the recent progress at the intersection
of both computing frameworks to highlight the current status and potential of the currently available quantum
computing hardware. Synergies between these two computing frameworks demonstrate the potential of a
strongly symbiotic relation that can contribute to the simultaneous advancements in both of these computing
paradigms.

INDEX TERMS Evolutionary algorithms, genetic algorithm, quantum-inspired algorithms, quantum
computing.

I. INTRODUCTION
The idea of a computing device based on quantum mechanics
began to emerge in early 1980s [1], [2], [3]. Early proposals of
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quantum computers were mainly motivated by the difficulty
of simulating nature at quantum mechanical level. It was
theorized that a quantum mechanical device would have
advantage in these simulations due to its inherent quantum
mechanical nature. Soon it was found that quantum comput-
ing devices have a strong potential even beyond simulating
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quantum-mechanics to general computing problems. For
example, it was found that quantum computers can have
a large computational advantage over classical counterparts
in determining some global properties of functions [4], [5].
Another celebrated work is the Shor’s factoring algorithm [6]
that has the potential to break the modern cryptography [7].
In addition to these celebrated works, there is a plethora of
other quantum computing algorithms that offer a speedup
over classical counterparts for certain tasks [8]. Currently,
these theoretical developments cannot translate to a practical
quantum computational advantage due to limited size of
available quantum hardware. Indeed, fault-tolerant imple-
mentations of these algorithms would require quantum
computers consisting of a hundred thousands to millions of
physical qubits [7], [9]. On the other hand, the quality and
the number of qubits in the available quantum computing
hardware are rather limited. Due to these limitations,
currently available quantum computing devices are called
noisy intermediate-scale quantum (NISQ) devices [10]. The
computational capabilities of currently available NISQ-era
devices seem to lie near the boundary of capabilities of
classical computers as demonstrated on some benchmark
computational tasks, yet these devices are not big enough to
implement traditional quantum computing algorithms such
as Shor’s factoring algorithm [11], [12], [13], [14], [15],
[16]. To harness the potential of these devices, special-
purpose NISQ-era algorithms are actively being developed
that incorporate active measures to mitigate the limitations
caused by the imperfect NISQ hardware [10], [17].

The formal study of heuristics and metaheuristics began
in 1940s and 1980s, respectively [18]. Due to their simplicity
and intuitive nature for humans, it is difficult to trace back the
exact moments in time at which heuristics started being used.
Metaheuristics refers to a problem-independent framework
that provides a set of guidelines to develop a heuristic
algorithm. The same term is also used for a problem-specific
implementation of a heuristic algorithm according the guide-
lines of such a framework [19]. A particularly active area of
research within the field of metaheuristics is the development
of nature-inspired methods. These methods draw inspiration
from natural phenomena or physical systems to design the
guidelines for developing heuristic algorithms. [20]

Nature-inspired heuristic algorithms appear in three dif-
ferent contexts in the discussion about quantum computing.
Firstly, there exists a class of quantum-inspired evolutionary
algorithms. This class consists of classical algorithms that
take inspiration from quantum mechanical phenomenon such
as superposition and inherent randomness of measurement
in quantum phenomena. We emphasize that these algorithms
are classical, i.e., they are designed for and implemented
on classical digital computers. Accordingly, these algorithms
are not quantum computing algorithms. Secondly, some
nature-inspired heuristic algorithms are designed for and
implemented on quantum computing devices. These are truly
quantum computing algorithms that run on physical quantum
computers. Some of the algorithms discussed in the first
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TABLE 1. A comparison of existing literature dealing with the topics of
quantum computing and evolutionary computation.!
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context can also be implemented on quantum devices where it
is possible to obtain some runtime advantage. Finally, a trade-
mark of NISQ-era quantum computing algorithms is the
classical-hybrid nature, i.e., these algorithms utilize classical
and quantum computers in tandem to solve some complex
optimization/computation problems. Nature-inspired heuris-
tic algorithms may be utilized to carry out the classical com-
putation in these NISQ-era algorithms. The classical compu-
tation part in these algorithms involves finding the optimal
parameters of a tunable quantum circuit, which is a highly
nonconvex optimization problem. In some cases, a meta-
heuristic algorithm can act as a suitable classical optimizer.
The distinction between the first two contexts can be some-
what confusing and there is no well-defined terminology to
distinguish these two types. This lack of distinction becomes
even more confusing since some of the quantum-inspired
evolutionary algorithms (classical) can be implemented on
quantum devices with little to no modification. To avoid this
confusion, we adopt the following terminology. Quantum-
inspired evolutionary algorithm (QiEA) refers to the classical
algorithms that take inspiration from quantum mechanical
phenomena. Whereas, quantum evolutionary algorithm
(QEA) refers to the evolutionary algorithms that are designed
for and implemented on physical quantum computers. A clas-
sification of purely classical, purely quantum, and interplay
of classical and quantum algorithms is shown in Fig. 1. The
main objective of this paper is to emphasize the intersection
of quantum computing and evolutionary algorithms and how
they can mutually benefit from one another. This paper
serves as a valuable resource for researchers in both fields of
quantum computing and evolutionary algorithms, enabling

A checkmark v denotes that the header of the corresponding column
appears as one of the central themes in this reference. C-Q hybrid computing
column points to specific implementations of classical-quantum hybrid
algorithms where evolutionary algorithms take a central role in the classical
or the quantum part.
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FIGURE 1. Evolutionary and quantum algorithms appear in different contexts based on the motivation and the hardware
implementation. The algorithms within the top dashed box are purely classical algorithms with non-quantum motivations
and developed for classical hardware. The algorithms in the bottom dashed box are purely quantum algorithms developed
to obtain computational advantage on a quantum hardware without any nature-inspired motivations. The main discussion
in this manuscript revolves around the algorithms in the middle box where a mix of quantum-related motivations and
classical/quantum hardware are involved. *Quantum-inspired recommendation system [21] is inspired by an existing
quantum algorithm for recommendation system, and not by quantum mechanics in general. Hence, it is quantum-inspired

in a different sense and not a topic of present work.

them to grasp the most recent research advancements
in quantum computing, and potentially inspiring further
research endeavors. To this end, we discuss quantum-
inspired metaheuristics that give rise to classical algorithms,
quantum evolutionary algorithms that can be implemented
on quantum computing devices, and the role of traditional
metaheuristics in the era of NISQ computing. Throughout
this paper, we present existing algorithms, e.g., quantum-
inspired evolutionary algorithm (QiEA) of [28], quantum-
inspired tabu-search (QiTS) of [29], and quantum genetic
optimization algorithm (QGOA) of [30], as well as provide
numerical examples that provide a benchmark for comparing
these different classes of algorithms in practical scenarios.
A comparison of this work with some of the existing
literature is given in Table 1. Although we provide some
preliminary information in the subsequent section, we assume
a certain level of familiarity with quantum information
sciences from the reader. For more information about this
field from different perspectives, we refer the readers to
some introductory papers [31], [32], [33] and/or standard
textbooks [34], [35], [36], [37] for in-depth technical details.

The remainder of this paper is organized as follows.
In Section II, we outline some preliminaries of metaheuristics
and quantum computing. We discuss quantum-inspired meta-
heuristics in Section III, quantum evolutionary algorithms in
Section IV and the role of evolutionary algorithms in NISQ
computing in Section V. Finally, we briefly discus some
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recent experimental progress in Section VI and conclude our
discussion in Section VII.

II. PRELIMINARIES

In this section we provide some preliminaries on evolutionary
computation and quantum computing and set some notation.
A list of acronyms in this manuscript is provided in Table 2.

A. EVOLUTIONARY COMPUTATION AND METAHEURISTICS
The origins of evolutionary computation can be traced back to
1950’s, [38], [39], [40], [41]. The popularity of evolutionary
computation algorithms stems from their generally problem-
independent structure, low complexity, and tendency to
find solutions that are sub-optimal but have a satisfactory
performance [42], [43]. These properties make this field
suitable for quickly finding good enough solutions of
optimization problems of high complexity where structured
algorithms cannot operate reasonably [44]. The evolutionary
computation algorithms have applications in a number of
fields including commercial applications in drug design,
supply-chain management, portfolio optimization, as well as
scientific applications in newly developing fields [45], [46].
Specific algorithms that fall under the framework include
well-known algorithms like genetic algorithms and swarm
intelligence algorithms [47], [48]. One recent highlight of
successful implementation of evolutionary computation is
the development of AlphaStar by DeepMind that beat a
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TABLE 2. List of acronyms defined in the manusript.

Acronym Definition

CTS classical tabu search

DBGA decomposition-based genetic algorithm
EA evolutionary algorithm

GA genetic algorithm

NISQ noisy intermediate-scale quantum

PB population-based

PQC parameterized quantum circuit

QAOA quantum approximate optimization algorithm
QCC quantum circuit compilation

QEA quantum evolutionary algorithm

QGOA quantum genetic optimization algorithm
QIiEA quantum-inspired evolutionary algorithm
QIMA quantum-inspired metaheuristic algorithm
QiTS quantum-inspired tabu-search

SSB single-solution-based

VQA variational quantum algorithm

VQE variational quantum eigensolver

professional player at the game of StarCraft II [49]. In recent
times, the field of evolutionary computation is extended to
evolutionary deep learning to offer promising results in the
field of deep learning [26].

Metaheuristics, on the other hand, is an algorithmic frame-
work that provides a set of guidelines to develop heuristic
optimization algorithms [19]. Nature-inspired metaheuristics
aim to mimic natural processes to develop a set of instructions
that heuristically attempts to solve complex optimization
problems.”> The evolutionary computation algorithms and
metaheuristics should not be considered as off-the-shelf
methods but a general recipe to design an algorithm that can
be tailored to the requirements of the problem at hand [41].

The QiEA falls under the broad category of nature-inspired
evolutionary computation where the evolution of candidate
solutions is inspired from the evolution of quantum state
during a quantum computation, i.e., state preparation, evo-
lution, and measurement [28]. Due to its inspiration, both
the terminology and the notation of QIiEA are similar to the
standard notation of quantum computing, with some minor
but key differences. In the next subsection, we provide the
standard terminology and notation of quantum computing.

B. QUANTUM COMPUTING
1) QUANTUM STATES
In classical information sciences, the smallest unit of
information is a bit that takes a binary value of either 0 or
1. In this article, we represent the state of a bit by b € {0, 1}.
A string of n bits is represented as b= bu_1---b1by, where
each bit b; € {Q, 1} takes a binary Value; Then, the size of the
state space of b is 2", i.e., the bitstring b is in any one of the
2" possible states.

On the other hand, the smallest unit of quantum informa-
tion is a quantum bit (qubit), which is characterized by a

2In addition to noting the power and wide applicability of resulting
heuristic algorithms, we must also note that the scientific rigor of some of
directions in this field is criticized [50], [51].
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vector in the Hilbert space H.> We utilize the Dirac’s bra-ket
notation to represent the state of a qubit. That is, the general
state of a (pure, i.e., a noiseless) qubit is

[¥) = a0 |0) +ar [1), ey

where |0), |1) € B are the elements of some orthonormal
basis B of the 2-dimensional Hilbert space H; and g, o € C
satisfy the normalization lao)? + lai|?> = 1. Generally, the
orthonormal basis {|0), |1)} is fixed to be the standard (also
called computational) basis B¢. Then, we can write the state
of qubit |y) of (1) explicitly as

W) =« H 8 m - m @)

Another qubit basis that appear frequently is the Hadamard
basis By = {|+), |—)}. The elements of the Hadamard basis
are defined as

0 1 0) — |1
|+>:|>+|>7 |_>=I) I).

V2 V2
It is simple to verify that Hadamard basis is also an
orthonormal basis.
An n-qubit state is a vector in 2"-dimensional Hilbert
space. The general form of such quantum state can be written
as

3

2"—1

) =D aili), “
i=0

where {|i)} is some orthonormal basis of the 2"-dimensional
Hilbert space, and «; satisfy the normalization 212:0 |ocl-|2 =
1. Similar to qubits, it is possible to use any orthonormal
basis, but a typical choice is the n-qubit (or 2"-dimensional)
computational basis, whose elements are obtained by the
tensor (Kronecker’s) product of elements of computational
bases of individual qubits. As an example, the general state
of a (pure) two-qubit system can be written as

1Y) 1,2 = a0010); ® [0); + a1 [0); ® [1)2

+ ap|l); ®10), +air [1); ® (1), )
= a0 [00) 2 +ao1 [01)1 2+a10 110} 2 tarr [11) 2,
(6)

where the subscript is used for indexing the two qubits and ®
represent the tensor product.

A two-qubit state that can be factored into two constituent
qubits is called separable. If the state is not separable, it is
called an entangled state. For example, we can write

[¥)12=0al00); 2+ B101); @)
=a0); ®10)2 +B10); ® 1), (8)
=10); ® («|0), + B11)2) &)
=1[¢)1 ®In)2. (10)

3In finite-dimensional complex vector spaces, the Hilbert space is exactly
the same as the complex inner product space and all calculations can be
carried out identically, e.g., in [36]. However, we follow the convention of
defining quantum states and operations with respect to Hilbert space (see
[37, Paragraph after (2.15)]).
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TABLE 3. Some important quantum operators.

Classification Gate Short Description Matrix Representation Circuit
Identity No change in the state I = B (I]J
. P . . 0 1
Pauli X Bit-flip in computational basis =11 o
2
35 Bit- and phase-flip i tational 0
235 Pauli Y it- and phase-flip in computationa y = [ —L:| l
b basis ¢ 0
]
Pauli Z Phase-flip i tational basi Z—1 0
auli ase-flip in computational basis =10 —1
S Basis change between the _ 1 |11
Hadamard computational and Hadamard basis H= V2 {1 -1
Pauli X . . | cos(0/2) —usin(6/2)
Rotation Rotation around X axis Ry (6) = {—L sin(6/2) cos(0/2) Rx (9)
s
= z Pauli Y (6/2) in(6/2)
58 auli . . ~ |cos —sin
g o Rotation Rotation around Y axis Ry (0) = [sin(@/?) cos(6/2) } Ry (0)
s 2
S iz (—0/2) 0
Pauli . . _ |exp(—u
Rotation Rotation around Y axis Rz (0) = { 0 exp(LG/Q):| Rz (0)
CNOT Controlled NOT operation from control (a5s) ——
- to target qubit
g5 —
=B
2o
=g SWAP Swap the states of two qubits CX(2,1)CX (1,2)CX (2,1)
=

Hence, |) , is a separable state for any «, 8, where we have
defined |¢); = |0); and |n); = « |0), + B |1),. On the other
hand

[P} 2 =al00); 2+ BI11);2 (1)
#19)1 @ [n)2 (12)
for any |¢), and |n), except for the trivial case || = 0 or

le| = 1. Therefore, |®); , is an entangled state for || # 0, 1.

Alternatively, given the descriptions of two individual
qubits [¢); and |v/),, their joint state |1/); , can be written
as the tensor product of the individual descriptions, i.e.,
[¥) 12 = |¥) ®|¥),. Itis trivial that such a state is separable
for any |v); and |),. However, it is possible to transform
a separable state into an entangled one by joint quantum
operations on both of the qubits.

2) QUANTUM OPERATIONS

The noiseless (ideal) evolution of a quantum system is
characterized by unitary operators, i.e., the operators U
that satisfy UU T = UtUu = I, where I is the identity
operator on the Hilbert space. Based on the context, different
classifications of quantum operators can be defined. For
example, depending on the number of qubits on which an
operator is applied we can have single qubit, two-qubit or
multi-qubit quantum operators. An important classification
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in the context of tunable quantum circuits and NISQ-era
quantum computing is the fixed and parameterized quantum
operators. Fixed quantum operators do not depend on any
circuit parameter and provide a fixed transformation of a
quantum state. Parameterized quantum operators, on the
other hand, are parameterized with some variable(s) that
can be varied according to application requirements. These
parameterized quantum operators serve as the fundamental
elements of tunable quantum circuits commonly used in
NISQ-era quantum algorithms.

From single qubit operators, it is possible to compose sim-
ple multiqubit operators with tensor product. For example,
an operator that represents Pauli X gate on the first qubit and
Hadamard gate on the second qubit can be written as

A =X ®H>. (13)
Despite being a two-qubit operator, A is incapable of
generating entanglement between the operand qubits since
both X and H operate independently on each qubit. A more
interesting two-qubit operator that represents interaction
between the operand qubits is the controlled-NOT (CNOT or
CX (i, j) for i as the control and j as the target qubit) operator.
The CNOT operator applies Pauli X on the target qubit if the
controlled qubit is in the state |1). Otherwise, it leaves the
target qubit unchanged. The effect of CNOT on the two-qubit
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computational basis can be summarized as follows:

)1, ),
cx(1,2): 10 N2 (14)
) )
) )
where the first qubit is the control qubit and the second qubit

is the target qubit. The CNOT gate has the following matrix
representation

1000
0100
0001
0010

CX (1,2) = (15)

A more general way of writing the expression for an arbitrary
unitary U applied in controlled fashion is

CU1,2)=10) 0|1+ 1){1I®U. (16)

The CNOT gate is a fundamental building block in quantum
circuits and is essential for various quantum algorithms and
operations. Specifically, the CNOT operator not only itself
is an important element in quantum information processing
but also serves as a fundamental operator to synthesize
several important quantum operators, e.g., SWAP operator,
which can be written as three consecutive CNOT gates
as shown in Table 3. Please note that since the unitary
U in the above expression is arbitrary, it can even be a
parameterized U, e.g., Rx (6), Ry (f), and Rz (0). This
results in parameterized two-qubit operations that represent
interaction between two qubits that is tunable by changing
the parameter values. Similar to single-qubit parameterized
gates, multi-qubit parameterized gates also serve as important
primitive in designing tunable quantum circuits that is an
essential element of NISQ-era algorithms.

3) MEASUREMENT

Quantum gates take a quantum state as the input and
output another quantum state. In order to extract/infer any
information from this state, it is necessary to measure it.
Quantum measurement is a nonlinear process that takes
a quantum state as the input and gives some classical
information (bits) as output. In its simplest form, quantum
measurement is characterized with the projection operators
based on some observable (a Hermitian operator). For
example, recall that elements of B¢ are the eigenstates of
Pauli Z operator. Then, measuring Pauli Z component of
a qubit is equivalent to asking the question whether the
unknown given state [v) is in state |0) or |1). This amounts

to using the projectors
o =10) (O, Iy = [1) (1]. (17)

The answer to this question is the binary digit 0 or 1 according
to Born’s rule, i.e., with the corresponding probabilities

po = tr(Ilp [¥) (¥[), and py = (Il [y) (¥]).  (18)
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TABLE 4. A comparison of Qubit, Q-bit, and Q-bit individual.

Term Description

Qubit A short form of quantum bit. State of a two-level quan-
tum system. Smallest unit of quantum information.

Q-bit A term used in quantum-inspired metaheuristics liter-

ature. Similar to a qubit, a Q-bit is represented by a
two-element complex vector. In contrast to a qubit, a Q-
bit is an entirely classical variable designed to mimic
the probabilistic nature of a qubit in classical heuristic
algorithms.

Q-bit An array of Q-bits. Each Q-bit individual represents a

individual possible solution to the optimization problem, where the
number of Q-bits in the Q-bit individual is equal to the
number of variables to be optimized.

Furthermore, the quantum state collapses during the mea-
surement process to the corresponding eigenstate of the
observable being measured. Operationally, this means that
we cannot extract more than one bit of information since any
subsequent measurement of the same operator will return the
same classical bit with unit probability as observed for the
first time.

Ill. QUANTUM-INSPIRED METAHEURISTIC ALGORITHMS
Metaheuristic algorithms are low-complexity, though sub-
optimal, iterative optimization methods that are widely
adopted in practice for solving highly complex and nonlinear
optimization problems [52], [53], [54]. One way to classify
Metaheuristic algorithms is by categorizing them into two
main categories: population-based (PB) and single-solution-
based (SSB) algorithms [55]. The PB algorithms perform
their operations on a population of candidate solutions,
and the final solution is the one that achieves the highest
cost-function gain in the population. If the population
of a Metaheuristic algorithm applies principles of natural
biological evolution to produce new candidate solutions, then
the corresponding algorithm is also called an evolutionary
algorithm (EA) [53]. In contrast, the SSB algorithms perform
their operations to improve the cost-function gain of a single
candidate solution.

For quantum-inspired metaheuristic algorithms (QiMA),
a generic candidate (or potential) solution is often referred to
in the literature as a Q-bit individual, which is a string of M
Q-bits with M being the number of variables to be optimized
by the algorithm [28]. Inspired by the concept of the qubit
in Quantum computing, a single Q-bit in the Q-bit individual
represents the smallest unit of information in a QiMA, and it
is defined by a pair of real numbers (c, 8), where || and
|B|? are the probabilities that the corresponding Q-bit will
be found in the “0” or “1” states, respectively. Thus, the
parameters of a single Q-bit should satisfy |«|> + |B]*> = 1.
A generic Q-bit individual can be represented as:

_ o1 (0974
q= |:/31 } (19)

Bu
The representation of a Q-bit individual in (19) can be
interpreted as a superposition of states. For example, consider

o2

B2
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a Q-bit individual g with 2 Q-bits in the following form
1|1

2
V22 (20)
liRVE]
V2172
the superposition of corresponding system states, denoted by
|Cl>q>, can be expressed as follows:

V3 1 V3
X201y — —— |10y — X
2&' ) 2ﬁ| ) 22

S]]
Il

|00) + [11),

%d= 15
q| — 2\/§
@D

where the coefficients of component |ij) are obtained by
multiplying the coefficients of i for the first Q-bit and j for
the second Q-bit as given in (20). The above superposition
reflects the probabilities of different system states, with
states |00) and |10) having equal probabilities of l, while
states |01) and |11) are each associated with a probability
of %. Such a powerful representation of Q-bit individuals
with a probabilistic sense means higher diversity with better
characteristics in QiMAs compared to the conventional
Metaheuristic schemes that adopt a binary representation of
candidate solutions. In this context, it is important to highlight
that QiMAs are in fact not quantum algorithms, but rather
a special class of classical Metaheuristic optimization that
takes inspiration from the principles and concepts of quantum
computing.* Table 4 describes the key differences between
quantum bits (qubits), Q-bits of classical algorithms, and Q-
bit individuals.

In the following, we will explain the operational concept
of PB and SSB QiMA, and highlight the main algorithms in
each category.

A. POPULATION-BASED QIMAS

Since the start of the new millennium, a large number
of novel PB QiMAs have emerged. Among the earliest
and also most well-known methods in the field are the
quantum-inspired evolutionary algorithm (QiEA) [28], and
the Quantum-inspired Genetic Algorithm [58]. In particular,
the QiEA was originally proposed to tackle the class of
combinatorial optimization problems [28].

In the following, we will briefly explain the operational
concept of the QIiEA in [28] to help the reader to have a
better understanding on how the PB QiMA operate to tackle
different optimization problems.

1) THE QUANTUM-INSPIRED EVOLUTIONARY ALGORITHM
The algorithm was originally designed to tackle combinato-
rial optimization problems, and the term “evolutionary’ was
used to reflect the fact that only the fittest solution(s) in the
population will survive. A flowchart of essential elements of
QiEA is shown in Fig. 2.

4We refer the interested reader on QiMAs to the surveys in [22], [56],
and [57] and the references therein.
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FIGURE 2. A workflow of QiEAs. The g-bit individuals are measured to
obtain bit values that represent candidate solutions. Based on the fitness
values, these candidate solutions are evolved. In some of the iterations,
local or global migrations might be triggered (not depicted in the
flowchart). The best individual and corresponding score are returned if
the termination criterion is satisfied.

Like all other metaheuristic algorithms, the QiEA is
an iterative optimization method, where the population of
candidate solutions evolves by applying certain operations at
each iteration. After the final iteration, the solution with the
highest fitness (or quality) accross all different iterations will
be declared as the final solution. Below, we summarize the
steps of the QiEA.

a: INITIALIZE THE QUANTUM-INSPIRED POPULATION
The QiEA starts by initializing a population of N Q-bit
individuals denoted by Q"|,—o. Each Q-bit individual in
0" has a string of M Q-bits. The population and the nth
Q-bit individual (n € {1,2,---,N}) can be expressed,
respectively, as follows:

Q(l) — {q(lt)’ q(2[)’ , q;\l])} (22)
®| (@) (l)

a' = [a'(’zl) a(zz)‘ () ] (23)
IBnl ﬁn2 IBnM
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Att = 0, all values of & and B (n € {1,2,---N}, m €
{1,2,---, M})are set to 1/+/2, which means that each Q-bit
individual is a superposition of all possible states with equal
probabilities.

b: INCREASE ITERATION INDEX
Assignt <t +1

c: CREATE A BINARY-BASED POPULATION

In this step, a population of binary solutions P®) is created
by observing the state of the Quantum-inspired population
Q=D More specifically, P*) can be expressed as

PO = [0, 5] (24)

where x,(f) (n € {1,---,N}) is an M —dimensional binary
vector created by observing qif_ Y In particular, each element
in x,(f) is set to either 0 or 1 based on the probability of the
corresponding Q-bit in q(,f*]) being found in either the O or
the 1 state, respectively.

d: FITNESS EVALUATION

In this step, the fitness (or the quality) of each binary solution
in PO is evaluated.

e: APPLY THE Q-GATES

In this step, the Quantum-inspired population matrix from
the previous iteration 9~ will be updated using Q-gates to
produce a new population Q). Examples of Q-gates include
rotation gates, Hadamard gates and NOT gates.

f: UPDATE THE POPULATION OF BEST SOLUTIONS

Let BY = {b(t), b(2t), sy bx)} be the population of best
solutions at the rth iteration, and b denote the best solution
across all previous iterations. For iteration r = 1, set the initial
solutions as the best solutions, i.e. BY = P(D_and store the
best solution among them as b. For all iterations of t > 2,
store the solution with highest quality between B/~ and P
into B®, and if the best solution in B is fitter than b, replace
b by the best solution in B®,

g: LOCAL AND GLOBAL MIGRATION

If a migration-condition is met, then perform local or global
migration on BY). While the migration-condition is a design
parameter, the global migration means replace all solutions in
B® by b, and the local migration means replace some of the
solutions in B®) by the best one among them.

h: ITERATE

repeat steps (b) to (g) until reaching a maximum number of
iterations.

2) OTHER QIMAS

In addition to the PB QiMAs mentioned above, there
are many other approaches that apply quantum-inspired
properties to various PB metahueristic methods to obtain
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improved performance and/or faster convergence. Some
examples include the quantum-inspired particle swarm opti-
mization algorithm [59], quantum-inspirled social evolution
algorithm [60], quantum inspired acromyrmex evolutionary
algorithm [61], among many others.

B. SINGLE SOLUTION-BASED QIMA

SSB metaheuristic algorithms perform local optimization on
a single candidate solution. Such methods start from an initial
point in the multi-dimensional search space and then move
toward a better solution by exploring the surrounding area
(or neighbourhood) at each given iteration. Due to their local
search process, the SSB metaheuristic algorithms are unlikely
to reach the global optimal solution, and their performance
can also be highly affected by the initial point they start from.
However, the main advantage of these methods is the low
computational complexity which can be cruicial for real-time
applications.

The quantum-inspired SSB algorithms have received much
less attention than the PB methods. Nonetheless, there have
been few works that incorporated the properties of quantum
computing into classical local search methods, including the
QIiTS algorithm [29] and the quantum-inspired simulated
annealing algorithm [62]. Similar to QIiEA, QiTS was orig-
inally proposed for solving the combinatorial optimization
problems.

In the following, we will focus on the QiTS by briefly
explaining the idea behind it and its concept, and we will also
highlight how the QiTS is different from the classical tabu
search (CTS) approach.

1) THE QITS ALGORITHM

As an SSB algorithm, the QiTS adopts a single Q-bit
individual for its operation, and it applies the rotation gate
R(0) to update its state from one iteration to another. The
value of the rotation angle 6 is a design parameter that
depends on the considered problem.

The QIiTS is different from the CTS in one key perspective.
The CTS algorithm utilizes memory structure to avoid going
back into local areas (or solutions) that have been recently
visited and ensure an efficient exploration of the search space.
The CTS stores the recently explored solutions in a special
list known as “‘tabu list”’, and hence the name tabu search.
In contrast, the QiTS does not rely on the memory, and it
has a different view on what should be labeled as “‘tabued”.
The main steps of the QiTS algorithm can be summarized as
follows:

a: Q-BIT INDIVIDUAL GENERATION

At iteration ¢+ = 0, the algorithm generates a single Q-bit
individual (¢©) with M Q-bits. Each Q-bit is initialized with
equal probabilities of o, and 8,, (m € {1,2,--- , M}).

b: INCREASE ITERATION INDEX
Assignt <t + 1
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Algorithm 1 Quantum-Inspired Tabu Search Algorithm [29]

1: procedure QiTS
2: Initialization:
3: t<0 > Initialize iteration counter.
4: M <« Number of Q-bits
5: N < Number of measurements per iteration
6: 0 < Rotation angle parameter
7: Generate initial Q-bit individual:
8. ¢© « new QbitIndividual(M)
9: form = 1to M do
10: dOIml.a < 1/42
11: q(o)[m].ﬁ <« l/ﬁ
12: b < null
13: Loop through iterations:
14: while ¢ < max_iterations do
15: t<—t+1
16: Perform measurements:
17: solutions < ¢
18: fori=1to N do
19: s < measure(g? D)
20: f < evaluate_fitness(s)
21: solutions.append((s, f))
22: Find best and worst solutions:
23: sp < solutions.get_best()
24: sy < solutions.get_worst()
25: Update global best if necessary:
26: if b = null or fitness(sp) > fitness(b) then
27: b <« sp
28: Create tabu list:
29: tabu < ¢
30: form = 1to M do
31: if sp[m] = s,,[m] then
32: tabu.append(m)
33: Update non-tabued Q-bits:
34: g« ¢t=b
35: form = 1to M do
36: if m ¢ tabu then
37: sign < determine_rotation_si gn(q(’ [m], sp[m))
38: ¢V [m] < apply_rotation(g"[m], sign - 6)

return b

¢: MEASUREMENT AND FITNESS EVALUATION
The next step is performing N measurements on ¢U~! to
generate N binary solutions and evaluate their fitness values.

d: BEST AND WORST SOLUTION

In this step, the best and worst solutions from the latest
measurement will be stored and denoted by s and 5",
respectively, both of which are M-dimensional binary
vectors. In addition, denote b as the binary vector with the
highest fitness in all previous iterations, if the fitness value of
s in the current iteration is higher than that of b, then replace
b by s.

e: CREATE THE TABU LIST

In this step, a tabu list will be created. In particular, for all
m=1{1,2,---, M}, if the value of the mth bit in s? and 5" is
the same (i.e. either both ones or both zeros), then the mth Q-
bitin ¢~ will be marked as ““tabu” and remains unchanged
for the current iteration.

VOLUME 13, 2025

f: UPDATE Q

For all Q-bits which are not “tabued”, apply the rotation gate
on each Q-bit with either a positive or a negative value of
the rotation angle 6. Specifically, the sign of 6 is determined
for each of the non-tabued Q-bits to maximize the probability
of that Q-bit to be found in a state that is similar to the
corresponding bit in s” upon measurement in subsequent
iterations.

g: ITERATE
repeat steps (b) to (f) until reaching a maximum number of
iterations.

As explained in step (e) above, the QiTS differs from the
CTS in the sense that its tabu list does not rely on memory,
but rather on observation of measurements of the current
iteration. As a result, the dimension of the tabu list in the
QiTS algorithm varies from one iteration to another, which is
not the case for the CTS approach. The pseudocode for QiTS
is given as Algorithm 1.

IV. QUANTUM EVOLUTIONARY ALGORITHMS

A quantum evolutionary algorithm (QEA) is a special-
ized optimization technique that employs principles from
quantum mechanics to tackle complex problems. When
implemented on quantum computers, QEAs leverage the
quantum properties of these machines to explore and exploit
solution spaces more efficiently. On the other hand, QiEA
are classical algorithms that incorporate quantum-inspired
techniques to enhance their performance, even when executed
on classical computers [63]. While QEAs offer the potential
for quantum speedups on quantum hardware, QiEAs utilize
quantum-inspired strategies on classical platforms to improve
exploration and exploitation capabilities. The choice between
QEA and QiEA depends on factors such as the availability
of quantum hardware and the specific requirements of the
problem at hand. This allows researchers to select the most
suitable approach for their optimization tasks. In this section,
we will discuss the QGOA of [30], one of the earliest
known quantum evolutionary algorithms proposed in 2008.
Subsequently, we will apply this algorithm to a quantum
computer to address the Max-Cut problem.

A. QUANTUM GENETIC OPTIMIZATION ALGORITHM

The basic structure of the QGOA [30] is based on the classical
structure of steady-state genetic algorithm. In the classical
genetic algorithm, given a representation of the population
and the fitness function, the first step is to evaluate the
fitness of every element of the population. After that,
a subpopulation containing a fraction p of the best elements
of the population can be selected, then two element can
be chosen randomly from this subpopulation. A crossover
and mutation can be performed by exchanging two random
substrings and mutate each allele, which is a bit of the strings,
with probability Pjs. Finally, two random elements from
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FIGURE 3. Schematic representation of the QGOA implementation on a superconducting quantum
computer. (a) Quantum initialization circuit generating four quantum chromosomes (q. 91, 92. q3)
for the Max-Cut problem, each representing a classical genetic population with 16 binary strings.
(b) Entangled crossover circuit for the initial evolutionary step, incorporating Ry mutation for the
Max-Cut problem. Measurement gates are excluded for simplicity.

the population can be chosen to be replaced with the new
offspring. These steps can be repeated for M times.

In QGOA, given a qubit representation of the population
and a quantum evaluation unit, the first step is to use the
quantum selection procedure to choose one element, and
then the procedure can be run again to choose another
element. The quantum selection procedure performs the
creation of a superposition of all elements of the population
and the application of the quantum fitness evaluation unit.
The similarity of this algorithm with the classical one is the
steps that involve crossover, mutation, and substitution. As
detailed in [30], the QGOA can have a significant advantage
over its classical counterpart when the fitness function is
varying. In this scenario, QGOA will have a polynomial
speedup in terms of oracle calls in the selection procedure.

QUANTUM FITNESS EVALUATION UNIT
The quantum fitness evaluation unit is an operator Ufp
which can be constructed from a classical reversible circuit
that compute a fitness function F(j) = Fj, where j €
{0,..., N — 1} are the elements of the population in binary
representation. The classical circuit then can be converted
into a quantum circuit that represents the operator Ur. The
physical realization of Ur depends on the problem, so there
is no general procedure to construct it.

The superposition of all elements of the population can be
represented by using the quantum binary encoding as follows:

1 .
V)= ——x -

(25)
VN5
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While the classical procedure requires N fitness evaluations,
the operator Ur can be use to compute all the fitness values
{Fjli=0,...,N — 1} of the population at once as follows:

n—1
Ur ) 10) = = 3 10 |F). 6)

J=0
However, the superposition would be destroyed by the
measurement, leaving only one fitness value, possibly
resulting the destruction of the useful information on the best
elements of the population. An oracle circuit of the quantum
selection procedure marks the elements of the population that
fulfill the condition F; > F), where y is a threshold index.

The oracle circuit has the properties as follows: It stays the

same at every genetic step, its input is a superposition of all
the N elements of the population at every genetic step, and
therefore its capacity is N. However, external factors, such as
environmental noise or statistical fluctuations can cause the
variation of the fitness function between steps.

QUANTUM SELECTION PROCEDURE

The quantum selection procedure is based on the Diir-Hgyer
algorithm [64] to find the minimum of a list of N elements.
In quantum selection procedure part of QGOA, the Diir-
Hgyer algorithm can be used to find the elements with a
relatively high value of fitness. This procedure works as
follows:

1) Anindexy € {0, 1,..., N — 1}, that corresponds to the
threshold Fy is randomly chosen. The threshold value
can be computed classically, Fy = F (y).
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TABLE 5. QGOA evolutions for the max-cut problem.

Iteration Quantum Clasical Fitness value  Average fitness value
chromosome chromosome

qo 0011 -2

0 q1 1001 -2 -2
q2 1101 -2
qo 1000 -2

1 q1 0000 0 -1.333
q2 1001 -2
q0 1011 2

2 q1 1001 -2 -1.333
qz2 1111 0
qo 1010 -4

3 q1 1010 -4 -4
q2 1010 -4
q0 1010 -4

4 q1 1010 -4 -3.333
q2 0010 2
q0 1010 -4

5 q1 1110 -2 -2.667
q2 1001 -2

2) These steps are to be performed 7y, times:

a) Memory initialization to |0) |y).

b) Transform |0) |y) into JLN Zj l7) |v). The ampli-
tude of the elements that satisfy F; > Fy are
inverted by the oracle.

¢) The first ket is measured to obtain a new index y'.
The new F can be computed classically, Fyy =
F(y). The index y is set to y if Fyy > F.

3) Return the index y.

After ny, iterations, the probability for choosing the best
element of the population is R/N where R is a fraction of
the entire population. Meanwhile, a probabilistic algorithm
would obtain log(R/N) probability for choosing the best
element of the population [30].

B. MAX-CUT PROBLEM
The Max-Cut problem is a well-known combinatorial opti-
mization problem that entails partitioning the nodes of a
graph into two distinct sets to maximize the number of edges
that cross between these sets. The problem is well-known
as being NP-hard, and it has been found to have numerous
applications across multiple domains. This task aims to deter-
mine a partition with the highest number of edges intersecting
between the two sets. Numerous algorithms and heuristics
have been implemented to address this issue, encompassing
exact separation algorithms [65], greedy heuristics [66],
and branch-and-bound algorithms [67]. Specific method-
ologies employ relaxation techniques, such as semidefinite
relaxation, to approximate optimal solutions [67]. The
Max-Cut problem has undergone substantial investigation,
with researchers persistently exploring novel algorithms and
strategies to improve the quality and efficiency of solutions.
In this section, we will apply the QGOA to tackle the Max-
Cut problem. Consider an undirected graph comprising e
edges and v vertices. Our objective is to determine a partition
s of these vertices into two sets, denoted as X and Y, in a
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manner that minimize the expression:

C(s) == Cis). (27)
i=1

Here, C represents the count of cut edges to find the
configuration that maximizes this count. For each of the
e edges, Ci(s) = 1 if the vertices from the i edge are
distributed between sets X and Y in configuration s, and
Ci(s) = 0 otherwise. We represent the partition of vertices
into sets A or B using a bitstring, where s; = 0 if the i’ vertex
isinset A, and s; = 1 if it is in set B. Equation (27) will serve
as our fitness function for QGOA.

C. IMPLEMENTATION QGOA ON QUANTUM COMPUTER
When implementing the QGOA on a NISQ device, it is
of utmost importance to consider the hardware’s archi-
tecture and limitations. Quantum computing encompasses
numerous hardware platforms, such as trapped ion qubits,
superconducting qubits, silicon qubits, photonic qubits, and
topological qubits. Of these, superconducting qubits have
become a popular and readily available option for researchers
and the general public [68], [69]. They utilize the quantum
circuit representation to encode and execute quantum algo-
rithms, with qubits, quantum gates, and measurements as the
fundamental components [70].

The first step in developing a quantum circuit for the
QGOA is qubit encoding, which establishes the ground-
work for quantum chromosome development. Afterward,
individuals are measured to establish the initial population.
Quantum measurement transforms the cluster of quantum
chromosomes into a set of classical binary strings. The
fitness function of these binary strings is then evaluated using
conventional computing, allowing for determining the most
optimal solution.

The circuit depth is the primary limitation of implementing
the QGOA in the NISQ device. If every generation applies
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Ry (6), the minimum depth for each individual would be g+1,
where g represents the number of generations. The mutation
gate is applied randomly and is rare compared to the entire
circuit, meaning that the average depth of the circuit will not
change because of it. One method of reducing the depth is
storing the cumulative rotation angle in a matrix and applying
the R, (0) with this cumulative angle [71].

In the subsequent sections, we will elaborate on the
quantum implementation of an evolutionary algorithm based
on [63] and [71]. The pseudocode for QGOA is provided as
Algorithm 2.

1) THE QUANTUM CHROMOSOME

The quantum chromosome plays a crucial role in the
algorithm by efficiently embedding a large classical genetic
population onto a single quantum register. Traditional evo-
lutionary algorithms use a population of candidate solutions,
represented by chromosomes comprising bit strings encoding
each solution. With the Hadamard gate applied to each
qubit in the quantum register, a quantum chromosome can
simultaneously represent all possible bit configurations.

To begin, the quantum genetic population is typically
prepared in a superposition state where every individual qubit
is set to |0) and a Hadamard gate is applied to each qubit at
time r = 0. Qubits can be represented by their geometrical
form in quantum circuits as

— cos? i g; (9)
|w)—cos(2)|0)+e sin 5 1), (28)

where 0, ¢ are real numbers, 0 < 6 <7 and0 < ¢ < 27.
The state as above is represented by a sphere called Bloch
sphere. Using this representation, quantum individuals can
be encoded as quantum registers with M qubits. To update
the population, a rotation gate Ry () is applied to change the

probability |oz(’)|2 and | |2 as the following

o' | [cos(@) —sin(d) ||«

|:ﬁ’:| - |:sin(9) cos(0) B’ (29)
where 6 is designed according to the problem. Next, the
entangled crossover gates are applied to the quantum circuit
to modify the probability amplitudes of the qubits and
generate new quantum individuals. For our Max-Cut problem

with e edges, we must generate chromosomes containing e
qubits each.

2) THE ENTANGLED CROSSOVER

Quantum evolutionary algorithms are designed to evolve
quantum chromosomes on quantum computers. The entan-
gled crossover method is a specialized technique employed
within this algorithm, which combines distinct elements from
different solutions without duplicating individual compo-
nents. This approach establishes a robust and distinctive
interdependence among qubits by entangling specific qubits,
which has been observed to positively impact solution
generation. By facilitating combining key elements from the
ideal solution, the entangled crossover method leads to an
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Algorithm 2 Quantum Genetic Optimization Algorithm [30]
1: procedure QGOA

2: Input:
3: b <« problem dimension (4)
4: k < population size parameter (3)
5: max_gen <— maximum generations (5)
6: 8 <« rotation angle (7 /8)
7: [ < mutation probability (0.3)
8: p < reinforcement angle (77 /16)
9: elitism_type < type of elitism
10: Initialize:
11: Initialize quantum simulator backend
12: Create MaxCut problem with dimension b
13: Setup quantum circuit with population size and
dimensions
14: Loop:
15: for generation = 1 to max_gen do
16: Measure quantum states to generate population
17: Evaluate fitness of each solution
18: if elitism_type = quantum then
19: Update quantum angles based on best
solutions
20: else if elitism_type = deterministic then
21: Preserve best solutions directly
22: else if elitism_type = reinforcement then
23: Apply reinforcement learning update
24: Apply mutation with probability
25: Update best solution (gBest)
26: Store generation statistic

return gBest, evolution_history, fitness_history.

improvement in the overall quality of solutions. In addition,
this technique introduces a stochastic linkage between the
qubits of the optimal solution and those of alternative
solutions, which effectively mitigates the risk of the algorithm
becoming trapped in local minima. The unique crossover
technique described in this study is a significant advancement
in quantum evolutionary algorithms and has the potential to
improve the efficiency of quantum computing.

Consider a scenario in which a quantum genetic population
is composed of k n-qubit quantum chromosomes, denoted
as QOp = f{c1,...,ck}. Each chromosome is represented
as |q5...q.,_ ), where 0 < i < n — 1. In this scenario,
we assume that ¢* = ¢ is the current optimal solution, where
1 <I<k.

The entangled crossover operation is a crucial aspect of this
scenario. It partitions the optimal chromosome ¢* into (k — 1)
quantum states, with each state consisting of | ”5] qubits.
Specifically, the entangled crossover operation is defined by
the following (k — 1)-tuple:

G={(c],C5 ... Cch_1) (30)
where

* 1
1

[
] = qO""hﬁJ—l)
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1 = ’q(k72)|_ﬁj "'q(n—l)>

During this phase, the genetic information residing in
chromosome ¢* is transmitted to other chromosomes within
the population Q, — {c*}. This transfer is achieved by
entangling the qubits in every quantum state present in G
with certain qubits belonging to the remaining quantum
chromosomes.

3) THE MUTATION

Mutation is an essential technique in evolutionary algorithms
to ensure that the population does not converge prematurely
to suboptimal solutions. It involves utilizing the Pauli gate to
rotate a single qubit not used in the entangled crossover at
a specific 6 around an axis. The mutation probability (0 <
u < 1) determines the likelihood of applying the mutation
operator to each qubit. It is usually set at a conservative value,
such as 0.01, to avoid excessive disturbances to the quantum
population. When implemented, the mutation operator flips
the probability amplitude of a qubit, causing a switch from
|0) to |1) or vice versa. This small perturbation generates new
quantum entities that allow the QEA to explore new regions
within the search space and avoid becoming trapped in local
minima.

4) MEASUREMENT AND FITNESS EVALUATION

In order to compute the fitness function, it is necessary
to transform quantum chromosomes into classical binary
strings through a process known as quantum measurement.
This is an important step, as quantum states alone cannot
facilitate the computation of the fitness function, which
requires classical inputs. Once the quantum chromosomes
have collapsed, a classical computer conducts fitness function
evaluations on the resulting set of binary strings. The
fitness function assesses the effectiveness of each solution
within the population by assigning a fitness score to every
binary string. This score quantifies how well the solution
satisfies the constraints and objectives of the optimization
problem. A direct relationship exists between the fitness
score and solution quality, with a higher fitness score
indicating a superior solution. The fitness function’s design
is problem-specific and typically provided by the user. After
computing the fitness scores, the algorithm proceeds to
identify the most optimal option within the population.

5) THE QUANTUM ELITISM

The concept of elitist selection was originally introduced in
classical genetic algorithms to enhance the formation of new
genetic populations. This is accomplished by transferring
the best individuals from the current generation to the
next, guaranteeing that the algorithm generates high-quality
solutions in subsequent iterations. The mentioned concept is
also integrated into the QEA. Nevertheless, the probabilistic
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FIGURE 4. Solving Max-Cut problem with QGOA. For each generation j,
we plot Y; = % Z;'il f (x{’est), where M(= 103) is the number of

iterations for averaging and f (x{) est) is the fitness value of the objective
function for the fittest chromosome in the jth generation.

nature of quantum chromosomes calls for a transition in the
elitism concept, aligning it with the principles of quantum
computing. In this context, there are three primary approaches
for transferring the best quantum chromosome from the
current population to the next: pure quantum elitism, quan-
tum elitism with reinforcement, and deterministic quantum
elitism [63]. As the name suggests, pure quantum elitism
generates the exact quantum state with best objective function
value from the current iteration to the next iteration. Quantum
elitism with reinforcement, on the other hand, modifies
the current best quantum state to another state in the next
generation such that the probability of the new state to
collapse to the same bit string is increased. Finally, the
deterministic quantum elitism generates the computational
basis state with the best bit string from the previous iteration.
That is, this new state has the unit probability of collapsing
into the previously known best bitstring [63].

D. SIMULATION RESULT OF QGOA FOR MAX-CUT
PROBLEM

We have simulated a simplified Max-Cut problem using the
QGOA. In this simulation, we define a graph with only
4 vertices and 4 edges. The graph is encoded in a binary string,
where the two adjoining bits in the bitstring represent two
adjoining vertices in the graph. The vertex that is represented
by the last bit adjoins the vertex that is represented by the
first bit. The cutting of the graph divided the graph into two
regions. Vertices in the first (second) region can be assigned
to O (1) and vice versa. We use the QGOA to find the best
configuration of 1 and O in the quantum chromosome bit
strings. The QGOA evolution for the max-cut problem is
provided in Table 5. We can see from the fitness function
defined above, the best configuration will result in fitness

16661



IEEE Access

J. U. Rehman et al.: Evolutionary Algorithms and Quantum Computing

value equals to —4. We have run the algorithm in the IBM
Quantum simulator and present the result in Figure 4.

The result that is presented in the Figure 4 was obtained
as follows: We set the generation step to 10. Including the
initial generation, each generation was iterated 103 times.
To plot a point in the figure, we took an average of the best
fitness values among all chromosomes from all 10 iterations.
These steps were repeated for each number of chromosomes,
k € {3,4,5}. As we can see, the higher the chromosomes
number, the closer the initial generation average fitness value
to the target fitness value. This is also the case for the
final generation, more chromosomes produce better average
fitness value at the final generation. This is because more
chromosomes give more diversity in the gene pool so there
are more choices of solutions to be explored. However,
high number of chromosomes requires high computational
resources. In the context of real quantum computers, each
gene is encoded with one qubit. That means, if a chromosome
contains 4 genes, that chromosome is encoded with 4 qubits.
Therefore, as in the example that we have implemented,
5 chromosomes with 4 genes each were encoded with
20 qubits. This could become a trade-off when this algorithm
is implemented in the NISQ quantum computers, as a higher
number of chromosomes will produce a better fitness value
but will require a higher number of qubits.

V. EVOLUTIONARY ALGORITHMS IN NISQ COMPUTING
In this section we outline the potential use cases of evolu-
tionary computing for NISQ-era computing. Due to specific
characteristics of NISQ devices, evolutionary computing
algorithms have a great potential to contribute to NISQ-era
quantum computing. We outline these specific characteristics
and opportunities below.

A. NISQ COMPUTER

The common approach to perform computational task in
quantum computer is using gate-based model where the
computational operation is done via sequence of quantum
gates similar with classical computer. As classical computing
has sets of universal gates that can construct any classical
circuit with the combination of the element of the sets,
quantum computing also has such set of universal gate which
can construct any quantum circuit. Such set of universal gates
consist of single qubit and two-qubit gates. An example of
such set consist of Hadamard, CNOT, v/Z, and ~/Z. Here,
universal refer to the ability to approximate with arbitrary
precision any n-qubit gate using finite number of gates taken
from the set of universal gates [72].

Harnessing the potential advantage from quantum com-
puting for many practical applications is hindered by limited
scale quantum devices that are prone to external disturbance
and errors due to the complexities of fabricating, controlling
and maintaining quantum system as well as the susceptibility
of quantum system to various types of noise, such as, thermal
noise and electromagnetic interference. The sensitivity of
quantum system to noises and errors leads to inaccuracies
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in the computed results, which impedes its implementation
in various practical problems. The current era of quantum
computing is marked by development of quantum devices
with moderate number of qubits which have short coherence
times called the NISQ era. In this NISQ era, the gate-based
quantum computer meets some challenges such as, qubits
decoherence, gate fidelity, and scalability [10].

Quantum state preparation is a fundamental problem
in quantum computing since it is important in quantum
algorithms and experiment. Some quantum algorithms need
to prepare the initial state into a specific quantum state
(typically quantum state that has entanglement or superpo-
sition) to provide quantum advantage, e.g., quantum phase
estimation algorithm, Grover’s algorith, and Deutsch-Jozsa
algorithm require equal superposition initial states [5], [73],
[74]. Another interesting family of entangled quantum states
includes the W-state

1
N
Preparing W-state using set of universal quantum gate is not
trivial. Considering 6-qubit system and {Ry, Ry, Rz, CNOT}
set of gates using Qiskit’s initialize function that utilize
Shende, Bullock, and Markov (SBM) method results in
125 gates with a depth of 120 [75]. Since the more gates and
depth used in quantum circuit the more noise is accumulated,
finding an optimal way of preparing a quantum state using a
fewer number of gates and smaller circuit depth becomes an
important problem in NISQ era.

Limitation on NISQ hardware produce algorithms that are
suited for the noisy and limited scale quantum devices. The
common algorithms are the variational quantum algorithms
(VQAs) which use parameterized quantum circuits (PQCs) to
perform a computational task and leverage classical computer
to optimize the parameters of the PQC making it a hybrid
quantum classical algorithm. VQA is a suitable algorithm for
NISQ devices as it optimize the parameters of the quantum
circuit instead of relying on a fixed noise-free quantum
circuit. VQAs aim to pave the way towards achieving
quantum advantage in the current NISQ era. VQAs have
been applied to various problems, such as quantum chemistry,
machine learning, and optimization, using currently limited
number of qubits [76].

After designing quantum circuit, the circuit is compiled to
match the physical hardware of the quantum system. One
of the important part of the compilation is to match the
circuit with the physical qubits connectivity. Physically, two-
qubit gates can only be applied to qubits that are physically
connected with each other. For unconnected qubits, the
SWAP gates need to be applied to bring the state from
unconnected qubits into the connected ones. Then, the
two-qubit gates can be applied into the quantum state [77].

[Y) = (110...0) +01...0) 4+ ---+]00...1)). (32)

B. QUANTUM STATE PREPARATION
The problem of preparing arbitrary state of quantum system is
an important problem in quantum algorithms. The limitation
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of NISQ era quantum hardware requires the optimal design
of quantum circuit to prepare such arbitrary quantum state.
Algorithm that can prepare arbitrary quantum state with high
fidelity with few number of quantum gates and depth become
important due to the exponential grow of error rate as the
circuit depth increases.

Using a smaller number of two-qubit gates is better,
as physical hardware rarely provides full connectivity for
all the qubits. The fewer two-qubit gates used, the fewer
SWAP operators are needed to bring the quantum states onto
the physically connected qubits. The single-qubit gates have
an order of magnitude smaller error rate compared to the
CNOT gate, which emphasizes the importance of the number
of CNOT gates used in the state preparation circuit. Many
attempts has been done to bound the number of CNOT gates
used to prepare arbitrary quantum state, for example SBM
method can prepare arbitrary quantum state of n-qubit system
with number of CNOT gates bounded above by 2"+ — 25
[75].

We follow the formal definition of the state preparation
problem and its evolutionary algorithm solution in [75]
and [78]. Given a set of universal quantum gates S, the
quantum state preparation problem is defined as to find
a sequence of quantum gates {sm}gzl taken from set of
universal quantum gates, s, € S, to prepare the specific initial
state of a quantum hardware (usually |0) state) to a state [i)
given in equation (4) with arbitrary {¢;} values such that,

2" —1
susm—1 51100 = D aili) (33)
i=0

while the performance of {s;,,} is measured by how close
the resulted state spsspr—1 - - - s110) to the target state using
fidelity given by,

1 2

F({sm}) = Z of (il smsm—1---5110)| . (34)
i=0
The genome in the genetic algorithm can be represented
by the quantum circuit that consist of a list of genes that are
constructed by information about the quantum gate such as
the gate, the control qubit, the target qubit, and the angle of
the parameterized gate. An example of a gene is,

& = (si, ti, ¢i, 07), (35)

where s; € S, t; is the target qubit, ¢; is the control qubit, and 6;
is the angle of the parameterized gate. For a single qubit gate,
c; is not used and for the fixed gate like CNOT or Hadamard 6;
is not used. The unused variable can be defined as a specific
value like —999 or None. Having the genes, the genome is
then defined as,

Gk:(g1’821"'1gn) (36)

The mutation can be performed in multiple ways such as
randomly changing the target or control qubit, adjusting the
angle on the parameterized gate can also be done to perform
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the mutation, changing the position of the genes, inserting
a new gene in random position, deleting a specific gene,
replacing a gene, swapping a pair of genes and scrambling
the genes by a permutation.

The crossover operation can be implemented by picking
a random number genes in random position in the genome
from one parent and pick the remaining genes from another
parent to produce an offspring. The unselected genes from
both parents are combined as well to produce the second
offspring.

The fitness function used for evaluating the genomes can
have multiple objective such as the accuracy of preparing
the target state and the complexity of the circuit which will
have trade-off within each other. The accuracy measure can
be quantified using the fidelity function while the circuit
complexity can be quantified by the number of gates used
in the circuit. The number of single qubit and two-qubit gates
can have different weight in the circuit complexity metrics
where the two-qubit gate can have more weight since they
have more error as compared to the single qubit gates.

The genetic algorithm starts by specifying the size of the
population, the number of qubits, the set of universal gates,
and the target state. Each generation is evaluated by the fitness
function and the high quality genomes are used to build the
next generation by means of the aforementioned evolutionary
operations. The evolutionary operations are performed in
probabilistic fashion. This process is performed for the spec-
ified number of generation or a termination condition is met.

C. VARIATIONAL QUANTUM ALGORITHM

Finding a suitable algorithm for currently available NISQ
devices is challenging. VQA answers this challenge by
introducing PQCs that can be optimize to absorb the effect of
noise in the quantum gates. Being a hybrid quantum classical
algorithm, VQA uses PQC to perform computational task
while guided by classical optimizer to improve the quality
of the computation via a specified cost function. Thus, there
are at least three main components of VQA: the PQC, the cost
function, and the classical optimizer [76]. A typical workflow
of a VQA is shown in Fig. 5.

In this subsection, we will focus on the evolutionary
algorithm for parameter optimization in VQA, as this
particular problem presents significant challenges. These
challenges include issues such as local optima and barren
plateaus, which become increasingly problematic, especially
when dealing with a large number of qubits [79].

The first introduction of VQA is the proposal of finding the
lowest energy eigenstate of a Hamiltonian termed variational
quantum eigensolver (VQE). VQE uses PQC to create a trial
quantum state that will be measured by the Hamiltonian of
the system. The parameters in the PQC will be optimized
based on the expected value of the measurement. VQE aims to
minimize this expected value and the trial state that minimize
the expected value is seen as the approximation of the lowest
energy eigenstate [80].
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FIGURE 5. Variational quantum algorithms is a representative class of
hybrid classical-quantum algorithms. A parameteric quantum state is
prepared and measured on the NISQ processor. A classical processor,
based on the measured objective function value, attempts to optimize the
state parameters. This iterative process is continued until a convergence
is achieved or a termination criterion is satisfied.

In the optimization frontier, the QAOA is highly rec-
ognized to heuristically solve combinatorial optimization
problems [81], [82]. QAOA is inspired by adiabatic quantum
computing where it can find the lowest energy eigenstate
of a given Hamiltonian (in QAOA is called the cost Hamil-
tonian) by evolving a lowest energy eigenstate of a known
Hamiltonian (in QAOA is called the mixer Hamiltonian)
adiabatically. Differ with general VQA, QAOA has partic-
ular circuit structure where it has alternating Hamiltonian
structure between the mixer and cost Hamiltonians. Instead
of adiabatically evolving the lowest energy eigenstate of the
mixer Hamiltonian, QAOA takes the parameterized approach
putting it as a VQA. Based on this parameter optimization,
QAOA tries to find the lowest energy eigenstate of a cost
Hamiltonian that corresponds to the potential solution of the
combinatorial optimization problem [83].

Quantum reinforcement learning algorithm mainly
depends on gradient based optimization algorithm. The
main different structure of quantum reinforcement learning
or quantum machine learning in general as compared
to other variational quantum algorithm is the encoding
process of classical data into quantum system. Typically, this
encoding structure does not include trainable parameters.
However, there are encoding structures that introduce
trainable parameters in the encoding process, as seen in
the data reuploading approach [84]. In this case, this
additional trainable parameters can also be optimized with
the parameters of PQC.

Optimizing the parameters of VQA using evolutionary
algorithm starts by initializing a population of parameters
randomly. Next, each individual within the population is
evaluated via a fitness function. The fitness function can be
vary depends on a specific VQA. For VQE and QAOA, the
fitness function is the expected value of the Hamiltonian for
which the lowest energy eigenstate to be found. Meanwhile
for quantum reinforcement learning or quantum machine
learning, the fitness function can be the cost function,
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typically an expected value of an observable such as, Pauli
Z, or the probability of finding a specific state [85]. From the
evaluation, high quality individuals will be picked to create
a new generation. The new generation is created from the
selected high quality solution with mutation operation. The
mutation operation can be performed by adding a random
value with a specified scaling factor or can be a linear
combination of the high quality individuals. This process is
repeated for a number of specified iteration or a termination
criteria is met [86], [87], [88].

D. QUANTUM CIRCUIT COMPILATION

The goal of quantum circuit compilation (QCC) is to modify
the initial quantum circuit so it can be run on quantum
hardware while minimizing the additional quantum gates
required for the compilation and the overall circuit depth.
This process includes incorporating swap gates into the
optimal circuit, determining the sequence of gate operations,
and relocating quantum states to enable the execution of
quantum gates in the subsequent layer. The QCC can be
expressed as a tuple

C = (Cin, Tin, Ghw), Where Ci, denotes the initial quantum
circuit, which symbolizes the quantum algorithm designed
to address the specific problem, mj, represents the initial
allocation of quantum states to qubits, and Gy, characterizes
the quantum hardware as a multigraph [77].

Various approaches exist for addressing the QCC problem,
including the Rollout Heuristic (RH) [89], genetic algorithm
(GA) [90], and decomposition-based genetic algorithm
(DBGA) [77]. The RH employs a heuristic single-pass
strategy, which implies that it tackles the problem in a
single iteration without revisiting any portion of the solution.
This contrasts with the DBGA, which utilizes a single-pass
strategy at the decoding stage but leverages a genetic-based
optimization strategy to more effectively navigate the search
space and identify higher quality solutions. The GA is an
optimization technique influenced by the principles of natural
selection and genetics, used to identify approximate solutions
to optimization and search challenges. Unlike the DBGA,
which employs a decomposition approach, the GA aims to
address the entire problem in one iteration.

The DBGA is a step-by-step process designed to address
the QCC problem [77]. It constructs solutions progressively
over several rounds. In each round, a genetic algorithm is
applied to the sub-problem presented by the current round,
beginning with solutions from preceding rounds. This method
is distinct from other GA variants for the same issue in
multiple ways, including chromosome encoding, decoding
algorithm, heuristic population initialization, diversification
operator, and decomposition strategy. Based on [77], key
aspects of DBGA include:

1) Coding/Decoding Schema: During each round r,
a chromosome consists of the quantum gates sequence
in round r, along with a partial solution to the
sub-problem of rounds 1, . .., r — 1. Each gate interacts
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FIGURE 6. A single layer of quantum approximate optimization algorithm (QAOA) circuit. Addition of each layer introduces
two new tunable parameters. Hence, a p-layered QAOA circuit requires tuning 2p parameters.

with a pair of quantum states, and the chromosome
specifies the adjacent qubits pair where it must be
executed. The decoding algorithm incorporates the
fewest swap gates necessary to relocate the quantum
states to the appropriate qubits.

2) Decomposition Approach: The DBGA employs a
decomposition based method and aims to optimize the
p-s gates scheduling in round r, given several solutions
to the sub-problem defined by rounds 1, ..., r—1. This
strategy contrasts with others that address the entire
problem simultaneously and may result in sub-optimal
solutions.

3) Genetic Algorithm: In each round, the DBGA utilizes
solutions from the preceding round and ‘“‘expands”
them by incorporating the new round’s corresponding
gates. This is achieved through a genetic algorithm,
which entails generating an initial solutions population,
evolving them using selection, recombination, replace-
ment, and diversification operators until a termination
criterion is satisfied.

E. SIMULATION RESULTS

We consider Max-Cut problem with 4 nodes, V =
{0, 1,2, 3}, and 4 edges, E = {(0, 1), (1,2), (2,3), (3,0)}
with all the weights are set to 1. The problem is encoded in
the cost Hamiltonian as,

He = Z Z:Z:,

i,jeE

(37)

where the subscript denotes in which qubit the operator acts.
While the mixer Hamiltonian is

Hy = in.

ieV

(38)

Depending on the number of layer p, the output state is given
as,

%) =exp (—HuBy) exp (—tHeyy) - -

exp (—tHy B1) exp (—tHey) )%, (39)

where §, y are the parameters that will be optimized using
the genetic algorithm. The genetic algorithm can outperform
other optimization algorithms (such as COBYLA, Powell,
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Algorithm 3 QAOA With Evolutionary Algorithm [88]
1: procedure QAOA-EA

Input:

3 p < QAOA layers {1, 2, 3, 4}

4 Npop < population sizes {10, 20, 30}

5 Npun < number of runs (10)

6: Ngen < number of generations (100)

7

8

9

shoots < 10, 000
k < tournament size (5)
: Npar < number of parents (3)
10 r_cross <— crossover probability (0.5)
11: r_mut < mutation probability (0.3)
12: mut_strength <— mutation strength (0.001)
13: Loop:
14: forp € {1,2,3,4} do

15: for Npop € {10, 20, 30} do

16: for run = 1 to Ny, do

17: Initialize random population Py of size
Npop

18: for gen = 1 t0 Ngey do

19: Evaluate Fitness:

20: Compute fitness of each individual
using 10, 000 shots

21: Elitist Selection:

22: Retain the best individual

23: Tournament Selection:

24: Select Npar parents with size k

25: Generate Next Population:

26: Retain best and parents

27 for remaining individuals do

28: Apply crossover and mutation

29: Save results for p and Npop to CSV

return Average and plot cost values, highlight best

results

Nelder-Mead, and SPSA) in optimizing the QAOA param-
eters in solving the max-cut problem as shown in [88].
The genetic algorithm performs better as the problem size
becomes larger and the number of QAOA layers increases
which shows the advantage of using genetic algorithm in
complex optimization problems.
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FIGURE 7. Solving Max-Cut with QAOA. We plot the average of 10 runs for
each pair of parameters (p, Npop)- A clear improvement in the
approximation ratio can be seen by increasing the number of QAOA
layers (p).

The evolutionary algorithm starts by randomly generating
Npop individual where each individual is in [0, 2J'r)2’7 . For
each generation, the individual is evaluated by the fitness
function which is the average of H¢ with respect to the output
state |) using 10000 shots. To generate the next population,
the elitist approach is used where the best individual is
kept for the next generation. Furthermore, the tournament
selection is performed to obtained the parents for the next
generation. We fix the tournament size to 5 and the number
of parents to Npyr = 3. This Np,r parents are included for
the next generation. The rest of the individuals for the next
generation are obtained by the uniform crossover where each
gene of the child will be inherited from the first or second
parent with probability of 0.5 and Gaussian mutation where a
random number from Gaussian distribution will be added to
each gene with scalar factor of 0.001 with probability of 0.3.

The pseudo-code for our QAOA simulation with genetic
algorithm is provided as Algorithm 3. The simulation is
run for QAOA layers p € {1, 2, 3,4} and population size
Npop € {10, 20, 30}. For each p, Npop the simulation is
run 10 times and for each run the genetic algorithm is
run for 100 iteration. The cost function values are then
averaged. The result shows that as p and Npgp increase
the cost function value tends to decrease as depicted in
Figure 7. When the population set is 30 and the number of
layers is 4, the average cost function value approaches the
best solution with ~ (.97 approximation ratio. With this
approximation ratio, starting from the equal probability of
all possible quantum states (solutions for max-cut problem),
the QAOA will produce the state |[0101) or [1010), the states
that correspond to the best solutions of this particular max-cut
problem, after measurement with nearly 0.5 probability for
each state. Hence the best solution will be found with nearly
unit probability.

16666

Before concluding this section, we make several remarks
on the current state of NISQ computing that highlights the
challenges and opportunities for this era of quantum comput-
ing. Although VQA serves as one of the primary avenues in
NISQ computing, it faces a critical challenge: the trainability
of the PQC. The main cause of this issue is the potential
presence of barren plateaus (can be circuit-, measurement-,
and noise-induced) where the gradient of the cost function
exponentially vanished as the system size grows [91], [92],
[93], [94]. Common approaches to remove the existence of
barren plateaus lead to the use of classically simulable sub-
spaces instead of using the whole Hilbert space which renders
the nonclassicality of the VQA questionable [95]. This leaves
us with the need to design sophisticated optimizer that can
overcome this issue to realize the success of VQA. In such
gradient-related problems, gradient-based optimizers can
face tremendous hurdle in training the PQC. Hence, gradient-
free optimizers present opportunities in such scenario without
relying on the gradient to update the PQC parameter
and strategically maneuvering the cost function landscape.
Specifically, evolutionary computing algorithms offer poten-
tial solutions to heuristically navigate at the barren plateau
region by applying series of genetic operators to successfully
train the PQC as demonstrated by the recent work [96].

VI. EXPERIMENTAL PROGRESS

This section is devoted to present the recent experimen-
tal studies and implementations of quantum evolutionary
algorithms, emphasizing the feasibility of these algorithms
and their real-world performance. In particular, the study
referenced in [63] has introduced a novel evolutionary algo-
rithm leveraging the capabilities of a real quantum processor,
a computing device exploiting quantum mechanics for accel-
erated computation. The approach utilizes quantum princi-
ples like superposition and entanglement to implement quan-
tum genetic concepts, achieving efficient genetic evolution
on quantum devices. The algorithm was implemented using a
hybrid hardware architecture, combining classical processors
with the family of quantum processors provided by the IBM
Q Experience initiative. The experimental results of [63] have
shown that this quantum genetic algorithm offers a promising
and innovative bio-inspired optimization strategy.

Further, variational quantum circuits were designed and
implemented in [97]. These circuits involve adjusting the
parameters until their empirical outcomes closely match the
desired results. Numerical first-order methods are used to
optimize the parameters while keeping the circuit’s gate com-
position fixed. Specifically, an evolutionary strategy is con-
sidered to balance both finding suitable circuit architectures
and tuning parameters simultaneously. The study assessed
this approach through simulations and actual quantum
hardware, tackling benchmark problems like the transverse
field Ising Hamiltonian and the Sherrington-Kirkpatrick
spin model. Despite the limitations of NISQ hardware,
the slowdown on real quantum machines compared to
simulations is found to be minimal. Additionally, the research
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investigates the mutation operations that play a significant
role in the optimization process. The findings of [97] offer
insights into how randomized search heuristics perform
on quantum hardware and suggest directions for further
refinement of evolutionary quantum gate circuits.

A genetic algorithm for state preparation (GASP) has
been implemented and evaluated in [75] to generate rela-
tively low-depth quantum circuits for initializing a quantum
computer in a specific quantum state. GASP has efficiently
generated low-depth quantum circuits to initialize quantum
computers in specific states. Through employing a basis
set of gates and a genetic algorithm, GASP has produced
circuits with fewer gates and lower depth compared to
other methods, enhancing overall accuracy by avoiding error
accumulation in high-depth circuits. In comparisons with
the state initialization technique based on exact synthesis in
IBM Qiskit, tested under both noisy simulations and physical
IBM Quantum devices, GASP has outperformed Qiskit’s
exact general circuit synthesis method. The significant
reduction in the overall gate count achieved by GASP can be
valuable when considering its application for quantum state
initialization within the constraints of feasible circuit lengths
on NISQ-era hardware.

The work in [79] has developed an evolutionary variational
quantum eigensolver (EVQE), a new algorithm that dynam-
ically generates and optimizes ansatzes using evolution-
ary programming techniques. Unlike traditional variational
quantum algorithms like VQE, EVQE is versatile and
applicable across various domains, delivering precise energy
evaluations with efficient ansatzes. Specifically, EVQE can
adapt to the noise and connectivity constraints of specific
quantum computers, reducing error in noisy simulations by
at least three times compared to VQE with any tested ansatz
configuration. The experiments in this study were conducted
using the Qiskit Aer QASM Simulator, it was configured
to mimic the noise profile and qubit connectivity of two
IBMQ devices: the 20-qubit Tokyo and the 5-qubit Vigo.
Experimental results, both in simulation and on real quantum
hardware, affirm EVQE’s effectiveness for general-purpose
optimization in today’s and near-future quantum computers.

A major challenge in quantum computing is to efficiently
design control pulses for quantum state and gate preparation.
While gradient-based methods are commonly used, they
struggle when gradient information is hard to obtain due to
system uncertainties. Gradient-free evolutionary algorithms
are an alternative but often less efficient. As an alternative,
the paper [98] has introduced an efficient mutation rule that
considers both current and previous individuals, resulting in
an enhanced differential evolution algorithm. This algorithm
aims to solve the quantum state and gate preparation problems
instead of the frequently-used gradient based optimal control
methods. It has been demonstrated its effectiveness through
numerical benchmarks in pulse optimization for quantum
systems; namely, in a two-qubit nuclear magnetic resonance
(NMR) system. Comparisons with traditional differential
evolution algorithms highlight the proposed algorithms
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can achieve superior convergence speed and robustness,
particularly in handling uncertainties like pulse imperfections
and measurement errors.

VIi. SUMMARY AND CONCLUSION

In this work we explored two distinct but related topics at
the intersection of quantum computation and evolutionary
computation.

First, the field of quantum-inspired metaheuristics began
before the availability of programmable quantum computers.
With the development and availability of modern quantum
computers, it is possible to prototype these metaheuristics
on actual quantum devices. A comparison of quantum
hardware implementations with their classical counterparts is
interesting due to the following reasons. 1) Classical imple-
mentations have the liberty of direct access to a quantum
state, even after the measurement—since it is a simulation of
quantum phenomenon. This makes the evolutionary process
easier since we can maintain a record of the description of
simulated states. Quantum computing implementations do
not have this privilege as quantum state is not an observable,
making the track of evolutionary process challenging. 2)
Simulating quantum computations on a classical computer
is expensive. In fact, this was the first motivation for
the proposal of quantum computing device. In terms of
time-complexity, QEAs outperform QiEAs exponentially,
which serves as a motivation for porting quantum-inspired
metaheuristics to quantum-hardware implementations.

Second, quantum computers hold the potential to solving
some of the most challenging problems in computing.
The current generation of quantum processors have limited
number of qubits and fidelity of quantum operations,
requiring frequent measurements and iterations with classical
processors to optimize the quantum circuits. This scenario of
requiring heuristic optimization of quantum circuits provides
an excellent opportunity for researchers in the field of
evolutionary computation to explore the possible role in
NISQ-era quantum computing.

There exists a clear potential for the cooperation between
the two computing frameworks to create impact in diverse
fields requiring optimization of nonconvex problems.
In future, it will be interesting to see a stronger bond between
the two fields to possibly offer a practical advantage in the
general field of computation.

REFERENCES

[1]1 R.P. Feynman, “Simulating physics with computers,” Int. J. Theor. Phys.,
vol. 21, nos. 6-7, pp. 467-488, Jun. 1982.

[2] P. Benioff, “The computer as a physical system: A microscopic quantum
mechanical Hamiltonian model of computers as represented by Turing
machines,” J. Stat. Phys., vol. 22, no. 5, pp. 563-591, May 1980.

[3] Y. Manin, “Computable and uncomputable,” Sovetskoye Radio, vol. 128,
p- 28, Apr. 1980.

[4] D. Deutsch, “Quantum theory, the church-turing principle and the
universal quantum compute,” Proc. R. Soc. Lond. A, vol. 400, no. 18,
pp. 97-117, Dec. 1985.

[5] D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum
computation,” Proc. Roy. Soc. London A, Math. Phys. Sci., vol. 439,
no. 1907, pp. 553-558, Dec. 1992.

16667



IEEE Access

J. U. Rehman et al.: Evolutionary Algorithms and Quantum Computing

[6]

[8

[9]

[10

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

16668

P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proc. 35th Annu. Symp. Found. Comput. Sci., 1994,
pp. 124-134.

C. Gidney and M. Ekera, “How to factor 2048 bit RSA integers in 8 hours
using 20 million noisy qubits,” Quantum, vol. 5, p. 433, Apr. 2021.
Quantum Algorithm Zoo. Accessed: Nov. 20, 2024. [Online]. Available:
https://quantumalgorithmzoo.org/

M. Webber, V. Elfving, S. Weidt, and W. K. Hensinger, “The impact
of hardware specifications on reaching quantum advantage in the
fault tolerant regime,” AVS Quantum Sci., vol. 4, no. 1, Mar. 2022,
Art. no. 013801.

J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum,
vol. 2, p. 79, Aug. 2018.

F. Arute, “Quantum supremacy using a programmable superconducting
processor,” Nature, vol. 574, no. 7779, pp. 505-510, Oct. 2019.

L. S. Madsen, F. Laudenbach, M. F. Askarani, F. Rortais, T. Vincent,
J.E. F. Bulmer, F. M. Miatto, L. Neuhaus, L. G. Helt, M. J. Collins,
A. E. Lita, T. Gerrits, S. W. Nam, V. D. Vaidya, M. Menotti, I. Dhand,
Z.Vernon, N. Quesada, and J. Lavoie, “Quantum computational
advantage with a programmable photonic processor,” Nature, vol. 606,
no. 7912, pp. 75-81, Jun. 2022.

H.-S. Zhong, “Quantum computational advantage using photons,”
Science, vol. 370, no. 6523, pp. 1460-1463, Dec. 2020.

E. Pednault, J. A. Gunnels, G. Nannicini, L. Horesh, and R. Wisnieff,
“Leveraging secondary storage to simulate deep 54-qubit sycamore
circuits,” 2019, arXiv:1910.09534.

B. Villalonga, M. Yuezhen Niu, L. Li, H. Neven, J. C. Platt,
V. N. Smelyanskiy, and S. Boixo, “Efficient approximation of experi-
mental Gaussian boson sampling,” 2021, arXiv:2109.11525.

C. Oh, M. Liu, Y. Alexeev, B. Fefferman, and L. Jiang, “Classical
algorithm for simulating experimental Gaussian boson sampling,” 2023,
arXiv:2306.03709.

K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea,
A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T. Menke,
W. Mok, S. Sim, L. C. Kwek, and A. Aspuru-Guzik, ‘“Noisy intermediate-
scale quantum algorithms,” Rev. Mod. Phys., vol. 94, no. 1, Feb. 2022,
Art. no. 015004.

K. Sérensen, M. Sevaux, and F. Glover, “A history of metaheuris-
tics,” in Handbook of Heuristics. Cham, Switzerland: Springer, 2018,
pp- 791-808.

E. Talbi, ““Metaheuristics,” Scholarpedia, vol. 10, p. 6532, Jun. 2009.
X.-S. Yang, Nature-Inspired Metaheuristic Algorithms. Bristol, UK.:
Luniver Press, 2010.

E. Tang, “A quantum-inspired classical algorithm for recommendation
systems,” in Proc. 51st Annu. ACM SIGACT Symp. Theory Comput.,
Jun. 2019, pp. 217-228.

O. H. M. Ross, “A review of quantum-inspired metaheuristics: Going
from classical computers to real quantum computers,” [EEE Access,
vol. 8, pp. 814-838, 2020.

L. Huynh, J. Hong, A. Mian, H. Suzuki, Y. Wu, and S. Camtepe,
“Quantum-inspired  machine  learning: A survey,” 2023,
arXiv:2308.11269.

F. S. Gharehchopogh, “Quantum-inspired Metaheuristic algorithms:
Comprehensive survey and classification,” Artif. Intell. Rev., vol. 56,
no. 6, pp. 5479-5543, Jun. 2023.

L. Miguel Antonio and C. A. Coello Coello, “Coevolutionary multiobjec-
tive evolutionary algorithms: Survey of the state-of-the-art,” IEEE Trans.
Evol. Comput., vol. 22, no. 6, pp. 851-865, Dec. 2018.

Z.-H. Zhan, J.-Y. Li, and J. Zhang, “Evolutionary deep learning: A
survey,” Neurocomputing, vol. 483, pp. 42-58, Apr. 2022.

S. Hakemi, M. Houshmand, E. Kheirkhah, and S. A. Hosseini, “A review
of recent advances in quantum-inspired metaheuristics,” Evol. Intell.,
vol. 17, no. 2, pp. 627-642, Apr. 2024.

K.-H. Han and J.-H. Kim, “Quantum-inspired evolutionary algorithm for
aclass of combinatorial optimization,” IEEE Trans. Evol. Comput., vol. 6,
no. 6, pp. 580-593, Dec. 2002.

H.-P. Chiang, Y.-H. Chou, C.-H. Chiu, S.-Y. Kuo, and Y.-M. Huang,
“A quantum-inspired Tabu search algorithm for solving combinatorial
optimization problems,” Soft Comput., vol. 18, no. 9, pp. 1771-1781,
Sep. 2014.

A. Malossini, E. Blanzieri, and T. Calarco, ‘“Quantum genetic optimiza-
tion,” IEEE Trans. Evol. Comput., vol. 12, no. 2, pp. 231-241, Apr. 2008.
J. C. Bardin, D. Sank, O. Naaman, and E. Jeffrey, ““Quantum computing:
An introduction for microwave engineers,” IEEE Microw. Mag., vol. 21,
no. 8, pp. 24-44, Aug. 2020.

[32]

[33]

[34]
[35]
[36]

[37]

[38]
[39]
[40]

[41]

[42]

[43]

[44]
[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]
[56]

[57]

[58]

[59]

[60]

J. Ng and D. Abbott, “Introduction to solid-state quantum computation
for engineers,” Microelectron. J., vol. 33, nos. 1-2, pp. 1-177, Jan. 2002.
M. Bonilla-Licea, D. Bonilla-Licea, M. Bonilla-Estrada, A. Soria-Lépez,
and J. Carlos Martinez-Garcfa, “A primer on quantum mechanics for
electrical engineers,” IEEE Access, vol. 12, pp. 114658-114669, 2024.
D. Ferry, Quantum Mechanics: An Introduction for Device Physicists and
Electrical Engineers. Boca Raton, FL, USA: CRC Press, Jan. 2001.

D. A. B. Miller, Quantum Mechanics for Scientists and Engineers.
Cambridge, U.K.: Cambridge Univ. Press, Apr. 2008.

J. Watrous, The Theory of Quantum Information, 1st ed., Cambridge,
U.K.: Cambridge Univ. Press, Apr. 2018.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information, 10th ed., Cambridge, U.K.: Cambridge Univ. Press,
Jan. 2011.

G. E. P. Box, “Evolutionary operation: A method for increasing industrial
productivity,” Appl. Statist., vol. 6, no. 2, p. 81, Jun. 1957.

R. M. Friedberg, “A learning machine: Part 1" IBM J. Res. Develop.,
vol. 2, no. 1, pp. 2-13, Jan. 1958.

R. M. Friedberg, B. Dunham, and J. H. North, “A learning machine: Part
II,” IBM J. Res. Develop., vol. 3, no. 3, pp. 282-287, Jul. 1959.

T. Back, U. Hammel, and H.-P. Schwefel, “Evolutionary computation:
Comments on the history and current state,” IEEE Trans. Evol. Comput.,
vol. 1, no. 1, pp. 3-17, Apr. 1997.

P. A. Vikhar, “Evolutionary algorithms: A critical review and its future
prospects,” in Proc. Int. Conf. Global Trends Signal Process., Inf.
Comput. Commun. (ICGTSPICC), Dec. 2016, pp. 261-265.

J.-Y. Li, Z.-H. Zhan, and J. Zhang, “Evolutionary computation for
expensive optimization: A survey,” Mach. Intell. Res., vol. 19, no. 1,
pp. 3-23, Feb. 2022.

K. D. Jong, “Evolutionary computation,” Nat. Rev. Genet., vol. 2,
pp. 428-436, Jul. 2007.

T. Bidck and H. Schwefel, “Evolutionary computation: An overview,”
Annu. Rev. Ecol. Evol. Syst., vol. 30, pp. 20-29, Dec. 2002.

Z.-G. Chen, Z.-H. Zhan, S. Kwong, and J. Zhang, “Evolutionary
computation for intelligent transportation in smart cities: A survey,” I[EEE
Comput. Intell. Mag., vol. 17, no. 2, pp. 83-102, May 2022.

X.-S. Yang, Recent Advances in Swarm Intelligence Evolutionary
Computation. Cham, Switzerland: Springer, Jan. 2015.

E. H. Houssein, A. G. Gad, K. Hussain, and P. N. Suganthan,
“Major advances in particle swarm optimization: Theory, analysis, and
application,” Swarm Evol. Comput., vol. 63, Jun. 2021, Art. no. 100868.
K. Arulkumaran, A. Cully, and J. Togelius, “‘AlphaStar: An evolutionary
computation perspective,” in Proc. Genetic Evol. Comput. Conf. Com-
panion, Jul. 2019, pp. 314-315.

K. Sérensen, “Metaheuristics—The metaphor exposed,” Int. Trans. Oper:
Res., vol. 22, no. 1, pp. 3—-18, Jan. 2015.

J. Del Ser, E. Osaba, D. Molina, X.-S. Yang, S. Salcedo-Sanz,
D. Camacho, S. Das, P. N. Suganthan, C. A. Coello Coello, and F. Herrera,
“Bio-inspired computation: Where we stand and what’s next,” Swarm
Evol. Comput., vol. 48, pp. 220-250, Aug. 2019.

C. Blum and A. Roli, “Metaheuristics in combinatorial optimization:
Overview and conceptual comparison,” ACM Comput. Surv., vol. 35,
no. 3, pp. 268-308, Sep. 2003.

M. Gendreau and J.-Y. Potvin, Handbook of Metaheuristics. New York,
NY, USA: Springer, 2018.

V. Tomar, M. Bansal, and P. Singh, ‘“Metaheuristic algorithms for
optimization: A brief review,” Eng. Proc., vol. 59, no. 1, p.238,
Mar. 2024.

C.-W. Tsai and M.-C. Chiang, Handbook of Metaheuristic Algorithms.
Amsterdam, The Netherlands: Elsevier, May 2023.

G. Zhang, “Quantum-inspired evolutionary algorithms: A survey and
empirical study,” J. Heuristics, vol. 17, no. 3, pp. 303-351, Jun. 2011.
S. Karmakar, A. Dey, and 1. Saha, “Use of quantum-inspired metaheuris-
tics during last two decades,” in Proc. 7th Int. Conf. Commun. Syst. Netw.
Technol. (CSNT), Nov. 2017, pp. 272-278.

K.-H. Han and J.-H. Kim, “Genetic quantum algorithm and its
application to combinatorial optimization problem,” in Proc. Congr.
Evol. Computation. CECO00, vol. 2, 2000, pp. 1354-1360.

Y. Wang, X.-Y. Feng, Y.-X. Huang, D.-B. Pu, W.-G. Zhou, Y.-C. Liang,
and C.-G. Zhou, “A novel quantum swarm evolutionary algorithm
and its applications,” Neurocomputing, vol. 70, nos. 4-6, pp. 633-640,
Jan. 2007.

R. S. Pavithr and Gursaran, “Quantum inspired social evolution (QSE)
algorithm for 0-1 knapsack problem,” Swarm Evol. Comput., vol. 29,
pp. 33-46, Aug. 2016.

VOLUME 13, 2025



J. U. Rehman et al.: Evolutionary Algorithms and Quantum Computing

IEEE Access

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

O. Montiel, Y. Rubio, C. Olvera, and A. Rivera, “Quantum-inspired
acromyrmex evolutionary algorithm,” Sci. Rep., vol. 9, no. 1, p. 12181,
Aug. 2019.

Z. Chen and P. Luo, “QISA: Incorporating quantum computation into
simulated annealing for optimization problems,” in Proc. IEEE Congr.
Evol. Comput. (CEC), Jun. 2011, pp. 2480-2487.

G. Acampora and A. Vitiello, “Implementing evolutionary optimization
on actual quantum processors,” Inf Sci., vol. 575, pp.542-562,
Oct. 2021.

C. Durr and P. Hoyer, “A quantum algorithm for finding the minimum,”
1996, arXiv:9607014v2.

K. Kaparis, A. N. Letchford, and I. Mourtos, ““Generalised 2-circulant
inequalities for the max-cut problem,” Oper. Res. Lett., vol. 50, no. 2,
pp. 122-128, Mar. 2022.

R. Hassin and N. Leshenko, “Greedy differencing edge-contraction
heuristic for the max-cut problem,” Oper. Res. Lett., vol. 49, no. 3,
pp. 320-325, May 2021.

C. Lu and Z. Deng, ““A branch-and-bound algorithm for solving max-k-
cut problem,” J. Global Optim., vol. 81, no. 2, pp. 367-389, Feb. 2021.
S. S. Gill, A. Kumar, H. Singh, M. Singh, K. Kaur, M. Usman, and
R. Buyya, “Quantum computing: A taxonomy, systematic review and
future directions,” Software, Pract. Exper., vol. 52, no. 1, pp. 66-114,
Oct. 2021.

H. Al-Hraishawi, J. U. Rehman, M. Razavi, and S. Chatzinotas, ‘“Char-
acterizing and utilizing the interplay between quantum technologies
and non-terrestrial networks,” IEEE Open J. Commun. Soc., vol. 5,
pp- 1937-1957, 2024.

J. Kelly, “State preservation by repetitive error detection in a super-
conducting quantum circuit,” Nature, vol. 519, no. 7541, pp. 66-69,
Mar. 2015.

Y. Rubio, C. Olvera, and O. Montiel, “Quantum-inspired evolutionary
algorithms on IBM quantum experience,” Eng. Lett., vol. 29, no. 4,
pp. 1573-1584, Nov. 2021.

E. T. Campbell, B. M. Terhal, and C. Vuillot, “Roads towards fault-
tolerant universal quantum computation,” Nature, vol. 549, no. 7671,
pp. 172-179, Sep. 2017.

A. Yu. Kitaev, “Quantum measurements and the Abelian stabilizer
problem,” 1995, arXiv: quant-ph/9511026.

L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proc. 28th Annu. ACM Symp. Theory Comput., 1996,
pp. 212-219.

F. M. Creevey, C. D. Hill, and L. C. L. Hollenberg, “GASP: A genetic
algorithm for state preparation on quantum computers,” Sci. Rep., vol. 13,
no. 1, p. 11956, Jul. 2023.

M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii,
J.R. McClean, K. Mitarai, X. Yuan, and P. J. Coles, ‘“Variational quantum
algorithms,” Nat. Rev. Phys., vol. 3, no. 9, pp. 625-644, Aug. 2021.

L. Arufe, M. A. Gonzilez, A. Oddi, R. Rasconi, and R. Varela, “Quantum
circuit compilation by genetic algorithm for quantum approximate
optimization algorithm applied to MaxCut problem,” Swarm Evol.
Comput., vol. 69, Mar. 2022, Art. no. 101030.

T. Rindell, B. Yenilen, N. Halonen, A. Ponni, I. Tittonen, and
M. Raasakka, “Exploring the optimality of approximate state preparation
quantum circuits with a genetic algorithm,” Phys. Lett. A, vol. 475,
Jul. 2023, Art. no. 128860.

A. G. Rattew, S. Hu, M. Pistoia, R. Chen, and S. Wood, “A domain-
agnostic, noise-resistant, hardware-efficient evolutionary variational
quantum eigensolver,” 2019, arXiv:1910.09694.

A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love,
A. Aspuru-Guzik, and J. L. O’Brien, “A variational eigenvalue solver on
a photonic quantum processor,” Nature Commun., vol. 5, no. 1, p. 4213,
Jul. 2014.

J. ur Rehman, H. Al-Hraishawi, and S. Chatzinotas, “Quantum approxi-
mate optimization algorithm for knapsack resource allocation problems in
communication systems,” in Proc. IEEE Int. Conf. Commun., May 2023,
pp. 2674-2679.

H. Al-Hraishawi, J. U. Rehman, and S. Chatzinotas, ‘Quantum
optimization algorithm for LEO satellite communications based on cell-
free massive MIMO,” in Proc. IEEE Int. Conf. Commun. Workshops,
May 2023, pp. 1759-1764.

E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” 2014, arXiv:1411.4028.

A. Pérez-Salinas, A. Cervera-Lierta, E. Gil-Fuster, and J. I. Latorre, “Data
re-uploading for a universal quantum classifier,” Quantum, vol. 4, p. 226,
Feb. 2020.

VOLUME 13, 2025

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd,
“Quantum machine learning,” Nature, vol. 549, no. 7671, pp. 195-202,
Sep. 2017.

S. Y.-C. Chen, C.-M. Huang, C.-W. Hsing, H.-S. Goan, and Y.-J. Kao,
“Variational quantum reinforcement learning via evolutionary opti-
mization,” Mach. Learn., Sci. Technol., vol. 3, no. 1, Feb. 2022,
Art. no. 015025.

D. Failde, J. D. Viqueira, M. M. Juane, and A. Gémez, ““Using differential
evolution to avoid local minima in variational quantum algorithms,” Sci.
Rep., vol. 13, no. 1, p. 16230, Sep. 2023.

G. Acampora, A. Chiatto, and A. Vitiello, “Genetic algorithms as
classical optimizer for the quantum approximate optimization algorithm,”
Appl. Soft Comput., vol. 142, Jul. 2023, Art. no. 110296.

S. Chand, H. K. Singh, T. Ray, and M. Ryan, “Rollout based heuristics
for the quantum circuit compilation problem,” in Proc. IEEE Congr. Evol.
Comput. (CEC), Jun. 2019, pp. 974-981.

A. Oddi and R. Rasconi, “Greedy randomized search for scalable compi-
lation of quantum circuits,” in Integration of Constraint Programming,
Artificial Intelligence, and Operations Research. Cham, Switzerland:
Springer, 2018, pp. 446-461.

S. Wang, E. Fontana, M. Cerezo, K. Sharma, A. Sone, L. Cincio,
and P. J. Coles, “Noise-induced barren Plateaus in variational quantum
algorithms,” Nature Commun., vol. 12, no. 1, p. 6961, Nov. 2021.

M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles, “Cost function
dependent barren Plateaus in shallow parametrized quantum circuits,”
Nature Commun., vol. 12, no. 1, p. 1791, Mar. 2021.

E. R. Anschuetz and B. T. Kiani, “Quantum variational algorithms
are swamped with traps,” Nature Commun., vol. 13, no. 1, p. 7760,
Dec. 2022.

M. Ragone, B. N. Bakalov, F. Sauvage, A. F. Kemper, C. O. Marrero,
M. Larocca, and M. Cerezo, “A lie algebraic theory of barren Plateaus
for deep parameterized quantum circuits,” 2023, arXiv:2309.09342.

M. Cerezo, M. Larocca, and D. Garcia-Martin, ““Does provable absence of
barren Plateaus imply classical simulability? Or, why we need to rethink
variational quantum computing,” arXiv:2312.09121, Dec. 2023.

J. Nédori, G. Morse, Z. Majnay-Takdcs, Z. Zimbords, and P. Rakyta,
“Line search strategy for navigating through barren Plateaus in quantum
circuit training,” 2024, arXiv:2402.05227.

L. Franken, B. Georgiev, S. Mucke, M. Wolter, R. Heese, C. Bauckhage,
and N. Piatkowski, “Quantum circuit evolution on NISQ devices,” in
Proc. IEEE Congr. Evol. Comput. (CEC), Jul. 2022, pp. 1-8.

X. Yang, J. Li, and X. Peng, “An improved differential evolution
algorithm for learning high-fidelity quantum controls,” Sci. Bull., vol. 64,
no. 19, pp. 1402-1408, Oct. 2019.

JUNAID UR REHMAN received the B.S. degree
in electrical engineering from the National
University of Sciences and Technology (NUST),
Islamabad, Pakistan, in 2013, and the Ph.D.
degree in electronic engineering from Kyung
3 Hee University (KHU), Yongin-si, South Korea,
in 2019.

- fb He was a Researcher (Postdoctoral Fel-
4 E low/Research Associate/Research Scientist) with
I various research groups, including groups with

KHU, Korea Institute of Science and Technology, and the Signal Processing
and Communications (SIGCOM) Group, University of Luxembourg.
Currently, he is an Assistant Professor with the Department of Electrical
Engineering, King Fahd University of Petroleum and Minerals, Saudi Arabia.
His research interests include quantum information sciences that include
quantum communications, quantum computing, and quantum sensing.

Dr. Rehman has served as a technical program committee member for
multiple IEEE conferences, including the IEEE International Conference on
Communications (ICC) and the IEEE Global Communications Conference
(Globecom). He has reviewed for numerous IEEE conferences and journals.
He was an Exemplary Reviewer of IEEE WIRELESs COMMUNICATIONS LETTERS,
in 2022.

16669



IEEE Access

J. U. Rehman et al.: Evolutionary Algorithms and Quantum Computing

MUHAMMAD SHOHIBUL ULUM received the
B.S. degree in electrical engineering from Ban-
dung Institute of Technology, Bandung, Indonesia,
in 2020. He is currently pursuing the Ph.D. degree
with the Department of Electronics and Infor-
mation Convergence Engineering, Kyung Hee
University, South Korea. His research interests
include quantum information science, quantum
computing, and quantum metrology.

ABDURRAHMAN WACHID SHAFFAR received
the B.S. degree from the Department of Physics,
Universitas Gadjah Mada (UGM), Yogyakarta,
Indonesia, in 2019. He is currently pursuing the
Ph.D. degree with the Department of Electronics
and Information Convergence Engineering, Kyung
Hee University, South Korea. His research inter-
ests include quantum information science, quan-
tum computing, and quantum communication.

AMIRUL ADLIL HAKIM received the B.S. degree from the Department
of Physics, Universitas Gadjah Mada (UGM), Yogyakarta, Indonesia,
in 2022. He is currently pursuing the Ph.D. degree with the Department
of Electronics and Information Convergence Engineering, Kyung Hee
University, South Korea. His research interests include quantum information
science, quantum simulation, and quantum machine learning.

MUIJIRIN received the B.S. degree in physics from
Universitas Gadjah Mada, Indonesia, in 2015,
and the M.Sc. degree in physics from Universitas
Indonesia, Indonesia, in 2019. He is currently
pursuing the Ph.D. degree in quantum informa-
tion science with the Department of Electron-
ics and Information Convergence Engineering,
Kyung Hee University (KHU), South Korea. His
research interests include quantum information
science, quantum communication, and artificial
intelligence.

ZAID ABDULLAH (Member, IEEE) received
the Ph.D. degree in communications and signal
processing from Newcastle University, Newcastle
upon Tyne, UK., in 2019. From 2019 to 2021,
he was a Postdoctoral Researcher with the School
of Engineering, University of Leicester, U.K.
He is currently a Research Scientist with SnT,
University of Luxembourg, Luxembourg. His
research interests include beyond 5G networks,
communications signal processing, metaheuristic
optimization, algorithm design, and artificial intelligence.

16670

HAYDER AL-HRAISHAWI (Senior Member,
IEEE) received the Ph.D. degree from the Depart-
ment of Electrical and Computer Engineering,
Southern Illinois University Carbondale, USA,
in 2017. Currently, he is an Assistant Professor
with the Department of Electrical Engineering,
University of South Florida, USA. Previously,

he was a Research Scientist with the Interdisci-
‘ * plinary Centre for Security, Reliability and Trust

(SnT), University of Luxembourg. With over
five years of industry experience in engineering and leadership roles,
he has held positions at leading telecom companies, including Motorola
Solutions, Huawei Technologies, and Nokia Networks. His research interests
include terrestrial and non-terrestrial communication networks and signal
processing, with a focus on spectrum-sharing, resource allocation for
massive MIMO systems, reconfigurable intelligent surfaces, and satellite
communications. He has also contributed as a Technical Program Committee
Member for various IEEE conferences, including ICC, GLOBECOM, and
WCNC. Since 2019, he has been an Associate Editor on the editorial board
of IEEE Acckss and was recognized as an Exemplary Reviewer for IEEE
TRANSACTIONS ON COMMUNICATIONS, in 2022.

SYMEON CHATZINOTAS (Fellow, IEEE)
received the M.Eng. degree in telecommunications
from the Aristotle University of Thessaloniki,
Greece, in 2003, and the M.Sc. and Ph.D. degrees
in electronic engineering from the University of
Surrey, U.K., in 2006 and 2009, respectively.

He is currently a Full Professor/Chief Scientist
I and the Head of the Research Group SIGCOM,
Interdisciplinary Centre for Security, Reliability
and Trust, University of Luxembourg. In parallel,
he is an Adjunct Professor with the Department of Electronic Systems,
Norwegian University of Science and Technology, and a Collaborating
Scholar with the Institute of Informatics and Telecommunications, National
Center for Scientific Research “Demokritos.” In the past, he has lectured as
a Visiting Professor with the University of Parma, Italy, and contributed in
numerous research and development projects for the Institute of Telematics
and Informatics, Center of Research and Technology Hellas, and the Mobile
Communications Research Group, Center of Communication Systems
Research, University of Surrey. He has authored more than 800 technical
papers in refereed international journals, conferences, and scientific books.

Dr. Chatzinotas received numerous awards and recognitions, including the
IEEE Fellowship and the IEEE Distinguished Contributions Award. He is on
the editorial board of IEEE TransacTiONS oN CoMMUNICATIONS, IEEE OpEN
JoURNAL OF VEHICULAR TECHNOLOGY, and International Journal of Satellite
Communications and Networking.

HYUNDONG SHIN (Fellow, IEEE) received the
B.S. degree in electronics engineering from Kyung
Hee University (KHU), Yongin-si, South Korea,
in 1999, and the M.S. and Ph.D. degrees in
electrical engineering from Seoul National Uni-
versity, Seoul, South Korea, in 2001 and 2004,
respectively. During his postdoctoral research with
Massachusetts Institute of Technology (MIT),
from 2004 to 2006, he was with the Laboratory for
Information Decision Systems (LIDS). In 2006,
he joined KHU, where he is currently a Professor with the Department of
Electronic Engineering. His research interests include quantum information
science, wireless communication, and machine intelligence. He received the
IEEE Communications Society’s Guglielmo Marconi Prize Paper Award
and the William R. Bennett Prize Paper Award. He served as the Publicity
Co-Chair for IEEE PIMRC and the Technical Program Co-Chair for IEEE
WCNC and IEEE GLOBECOM. He was an Editor of IEEE Transactions on
Wireless Communications and IEEE Communications Letters.

N -

VOLUME 13, 2025



