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Abstract

The search for a theory of the S-Matrix has revealed unprecedented structures under-

lying amplitudes. In this text, we present a new framework for understanding a class

of amplitudes that includes Yang-Mills, Non-linear Sigma Model, the bi-adjoint cubic

scalar, planar N = 4 super Yang-Mills, and more. We introduce positive geometries,

which are generalizations of convex polytopes to geometries with higher order (i.e.

non-linear) boundaries. Our construction provides a unique differential form called

the canonical form of the positive geometry, whose pole structure is completely con-

trolled by the geometric boundaries. The central claim of this text is that positive

geometries play a fundamental role in our class of scattering amplitudes, whereby the

corresponding canonical form determines a physical quantity. Our primary examples

are (1) the bi-adjoint cubic scalar for which the positive geometry is the famous as-

sociahedron polytope whose canonical form gives the color-ordered tree amplitude,

and (2) planar N = 4 super Yang-Mills for which the positive geometry is the ampli-

tuhedron whose canonical form gives the scattering integrand. One recurrent theme

in our text is that physical properties of amplitudes like local poles and factorization

are direct consequences of the boundary structure. We are therefore led to the point

of view that locality and unitarity are emergent properties of the positive geometry.

Furthermore, we discuss unexpected connections between positive geometry and on-

shell diagrams, BCFW recursion, scattering equations, color-kinematics duality and

the open string.
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Chapter 1

Introduction

In recent years, we have witnessed tremendous progress in the theory of scattering

amplitudes, including Witten’s twistor string [5], on-shell recursion relations [6, 7],

hidden symmetries such as dual conformal symmetry [8], unprecedented simplifica-

tions (e.g. see [9] for a loop level example), scattering equations of Cachazo, He and

Yuan [10, 11, 12, 13], BCJ duality [14, 15], Grassmannian geometry [16] and the

amplituhedron [17].

In this text, we present a new point of view for studying a class of scattering

amplitudes that includes Yang-Mills, Non-linear Sigma Model, a colored cubic scalar

theory called the bi-adjoint scalar [13], planar N = 4 super Yang-Mills, and more. We

begin by introducing the concept of a positive geometry [2], which is a generalization

of convex polytopes to geometries with higher order (i.e. non-linear) boundaries. Our

construction requires the existence and uniqueness of a top form called the canonical

form of the geometry, whose singularities are controlled by the boundary structure of

the underlying geometry. Specifically, the form has logarithmic singularities on the

boundaries of the geometry in a precise sense as described in Section 2.1. The crucial

observation is that positive geometries appear in physics. For physically relevant

positive geometries, the canonical form is a physical quantity, which we summarize
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schematically as follows.

positive geometry → canonical form → physical quantity

Positive geometries have two important properties. Firstly, they can be triangulated;

that is, provided a subdivision of a positive geometry into many non-overlapping

pieces, the canonical form of the geometry is the sum of the canonical form of every

piece. An extension to the case of over-lapping pieces also exists, provided the the

orientation of the pieces is taken into account. In practice this simplifies the computa-

tion of canonical forms, since a complicated geometry can be subdivided into simpler

ones whose canonical forms are already known. Secondly, canonical forms are related

via diffeomorphisms. That is, given a diffeomorphic map from one positive geometry

to another, pushing the canonical form of the former gives the canonical form of the

latter. This is a rather subtle observation which very non-trivial consequences. We

also discuss an interesting connection between positivity of the form and convexity of

the geometry, which may be related to positivity of amplitudes as described in [18].

The simplest non-trivial example is the associahedron, a famous polytope discov-

ered by mathematicians in the 1960’s [19, 20, 21] from a combinatorial point of view,

which we find to be intimately related to the scattering of color-ordered particles—a

connection that is most clearly illuminated from the point of view of positive geome-

tries. More specifically, for each cyclic ordering of n external particles, there exists

an infinite family of (n−3)-dimensional associahedra foliating the interior of on-shell

kinematic space—the space spanned by all Mandelstam invariants. The boundaries

of every associahedron correspond in a one-to-one fashion to all the physical poles of

the relevant ordering; that is, going to a boundary of an associahedron corresponds to

taking a virtual particle on shell. We find a striking fact: the canonical form of every

associahedron is the tree level scattering amplitude for the bi-adjoint cubic scalar
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theory.

kinematic associahedron → canonical form → tree amplitude of bi-adjoint scalar

Furthermore, we find that universal properties of amplitudes like locality and uni-

tarity (and hence factorization of the amplitude) follow directly from the geometric

construction. In brief, this is due to the observation that every boundary of the asso-

ciahedron is a direct product of two lower-dimensional associahedron, in completely

parallel to the fact that the amplitude factors into a product of two lower point ampli-

tudes on each cut. We take the point of view that the positive geometry is the most

basic element of our construction. From this point of view, locality and unitarity

are emergent properties of the positive geometry—a theme to which we return many

times throughout this text. In particular, we find that positivity plays a crucial role,

since the boundary structure of the geometry is controlled by positivity conditions.

Another novel aspect of our story is the construction of scattering amplitudes as dif-

ferential forms of kinematic space, in a sense described in Section 6.2. While these

forms appear naturally as canonical forms of the underlying positive geometry, they

also have many other purposes in life—they encode information about color/flavor

(see Section 6) and in some cases even helicities (see Section 10 of [22]). Finally, we

compute these scattering amplitudes in multiple ways by exploiting different ways

of triangulating the assocahedron. In particular, we find the striking fact that the

Feynman diagram expansion is just one of many triangulations of the associahedron.

Moreover, by following our geometric intuition, we identify triangulations that give

even simpler expressions for the amplitude.

Our second example of positive geometry is the moduli space of the open string

worldsheet. It is well-known that the Deligne-Mumford-Knutson compactification of

the moduli space [23, 24] is an associahedron. We find that the worldsheet associa-
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hedron can be naturally understood as a positive geometry whose canonical form is

precisely the famous Parke-Taylor form, whose Koba-Nielsen-regulated integral gives

the open string tree amplitude. Furthermore, we discover that the scattering equa-

tions can also be interpreted from the geometric point of view—in fact, they provide

a diffeomorphic map from the worldsheet associahedron to the kinematic associahe-

dron. It follows therefore that the scattering equations must “push” the Parke-Taylor

form to the canonical form of the kinematic associahedron, thus leading to the CHY

formula for the bi-adjoint scalar tree amplitude.

worldsheet associahedron → canonical form → Parke-Taylor form

In our attempt to generalize the associahedron to a broader class of theories, we

find a unexpected connection between color/flavor and kinematics, which involves

a number of observations. First we find a direct connection between color-ordered

amplitudes and differential forms on kinematic space called scattering forms, which

serve as generalizations of the canonical form for the associahedron. This relies on

a peculiar observation: the differential forms satisfy “Jacobi relations” analogous to

the Jacobi relations satisfied by the structure constants. Furthermore, we find that

many aspects off the well-known BCJ duality such as kinematic Jacobi relations and

BCJ relations are consequences of a simple property of the scattering form—local

GL(1) invariance, i.e. projectivity. This suggests a close connection between positive

geometries and color-kinematics duality. Finally, we establish the scattering forms

for Yang-Mills and Non-linear Sigma Model and discuss their properties, such as

uniqueness (see [25] for an independent discussion on uniqueness of the amplitudes)

and relation to the worldsheet.

Our third example of positive geometry is the amplituhedron, first proposed in [17]

as an independent, geometric formulation of planarN = 4 super Yang-Mills. A follow-
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up was given in [26] which provided detailed computations, and a more intrinsic

“winding number” description was givne later in [22]. We make this construction

more precise from the viewpoint of positive geometries. We argue that the n-particle

NkMHV planar L-loop integrand (for L = 0 the “integrand” is the amplitude) is

determined by the canonical form of the amplituhedron A(k, n;L) which is indexed

by the same quantum numbers. While the canonical form is a purely “bosonic”

quantity, the required super-amplitude is obtained by a straightforward prescription

that involves integrating out auxiliary Grassmann variables as described in [17] and

Section 8.2.

amplituhedron → canonical form → planar integrand of N = 4 sYM

In parallel with our discussion for the associahedron, locality and unitarity emerge as

properties of the underlying geometry, with positivity playing the central role. We find

that every codimension-1 boundary corresponds to a physical pole of the amplitude,

and is given by a product of two lower dimensional amplituhedra, thus providing a

geometric origin for the factorization property of the planar integrand. Furthermore,

we computations of the canonical form by triangulations of the amplituhedron; and

we present the striking fact that the famous BCFW expansion [6, 27, 28] provides

just one class of infinitely many possible triangulations for the amplituhedron. The

geometric point of view is very satisfying, because it provides a geometric under-

standing for the highly non-trivial algebraic identities that equate all possible BCFW

representations of the same integrand; that is every BCFW representation provides

a different triangulation of the same underlying positive geometry.

Moving ahead, we present a novel recursive diagrammatic procedure for computing

any BCFW term, called momentum twistor diagrams. We find that for each BCFW

term, there is a “cell” of the amplituhedron called a “BCFW cell”. We discover the
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satisfying fact that the canonical form of the BCFW cell determines the corresponding

BCFW term. Furthermore, given a BCFW expansion for a particular integrand, we

find that the corresponding BCFW cells form a triangulation of the amplituhedron.

It follows therefore that the sum of the BCFW terms gives the canonical form of the

amplituhedron, exactly as anticipated. This geometric understanding explains the

cancellation of spurious poles, which correspond to spurious boundaries appearing in

the triangulation. Since the canonical form for the amplituhedron is independent of

triangulation, these spurious poles must cancel. The cancellation of spurious poles

was an important insight first described in [29].

BCFW cell → canonical form → BCFW term

These diagrams make manifest a connection between BCFW recursion and the pos-

itive Grassmannian [30], as discussed in [16] and explored further in [4]. Finally, we

demonstrate techniques for computing these diagrams, and provide detailed examples

up to two loops. We also devote an entire section to a detailed exploration of the

one-loop amplituhedron and its associated diagrams.

We provide a precise definition of positive geometries and canonical forms in Sec-

tion 2.1. Subsequently, we discuss triangulations and maps between positive geome-

tries. Furthermore, we separate positive geometries into two classes: generalized

simplices and generalized polytopes, for which we provide many examples. In Sec-

tion 3 we discuss systematic methods for computing canonical forms, including direct

construction from poles and zeros, triangulations, pushforwards and integrals over

dual or related geometries. The associahedron is introduced in Section 4, which in-

cludes a detailed construction of the polytope in kinematic space, and its canonical

form as a scattering amplitude. We emphasize the emergence of locality and unitarity

in Section 4.3. The worldsheet and its relation to the kinematic associahedron and

6



scattering equations are discussed in Section 5, and the geometric properties of color

and kinematics are discussed in Section 6. Finally, the amplituhedron is constructed

in Section 7, and the connection to planar N = 4 super Yang-Mills is delineated in

Section 8. Momentum twistor diagrams are described in Section 9. We also provide

a detailed analysis of the one-loop amplituhedron in Section 10.
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Chapter 2

Positive geometries

We introduce positive geometries, which form the mathematical foundations on which

the remainder of our discussion is built. Naively, a positive geometry is simply a geom-

etry with boundaries of all codimensions. Positive geometries with linear boundaries

are polytopes, while more generally higher order boundaries are also permitted. For

every positive geometry, there exists a unique meromorphic top form called its canon-

ical form, whose residues reflect the boundary structure. In particular, it is uniquely

constrained by the property of having logarithmic singularities on the boundaries of

the geometry and unit leading singularities, and a few other assumptions. The canon-

ical form provides the connection between positive geometries and physics. We find

that for physically relevant positive geometries such as the amplituhedron (Section 7),

the associahedron (Section 4) and many others discussed throughout this text, the

canonical form determines scattering amplitudes and other related physical quanti-

ties. In particular, the canonical form of the amplituhedron determines scattering

amplitudes in planar N = 4 super Yang-Mills to all loops, while the canonical form

of the associahedron determines scattering amplitudes in a cubic scalar theory called

the bi-adjoint φ3 theory at tree level.
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We begin in Section 2.1 by discussing general properties of positive geometries

and define their canonical forms. In Section 2.2, we discuss triangulation of positive

geometries, which can be thought of as a generalization of polytopal subdivision to

more general geometries. We then discuss, in Section 2.3, how canonical forms of

different geometries are related through diffeomorphisms by a powerful tool called

the pushforward. Finally, in Sections 2.4 and Section 2.5, we provide an extensive list

of examples.

2.1 Positive geometries and their canonical forms

We begin with a precise definition of positive geometries and their canonical forms.

Let PN denote the N -dimensional complex projective space with the standard pro-

jection CN+1 \ {0} → PN . We also let PN(R) denote the image of the real part. We

define a D-dimensional positive geometry to be a pair (X,X≥0) with the following

properties.

1. The space X ⊂ PN has complex dimension D, and is cut out by finitely many

homogeneous polynomials with real coefficients. We denote by X(R) the real

part of X, which is the solution set in PN(R) of the same set of equations.

2. The space X≥0 is nonempty with real dimension D, and is a union of closed

subsets of X(R), each of which is cut out by finitely many real polynomial

inequalities. To make sense of inequalities in projective space, we first find

solutions in RN+1 \ {0}, and then take its image in PN(R).

We assume that the complex dimension of X matches the real dimension of X(R),

which we henceforth refer to as the dimension of the positive geometry. Additional

technical assumptions are explained in Appendix A of [2], where the important notion

of boundary components is explained. Furthermore, we assume that for every pos-
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itive geometry (X,X≥0), there exists a unique nonzero rational D-form Ω(X,X≥0)

satisfying the following properties.

• For D = 0: X is a single point and we must have X≥0 = X. We define the

0-form Ω(X,X≥0) on X to be ±1 depending on the orientation of X≥0.

• For D > 0: we have

(P1) Every boundary component (C,C≥0) of (X,X≥0) is a positive geometry of

dimension D−1.

(P2) The form satisfies ResCΩ(X,X≥0) = Ω(C,C≥0) along every boundary com-

ponent C, with no singularities elsewhere.

In particular, all leading residues of Ω(X,X≥0) must be unity ±1. We refer to

X as the embedding space. The form Ω(X,X≥0) is called the canonical form of

the positive geometry. For convenience, we usually write X≥0 to denote a positive

geometry (X,X≥0), and write Ω(X≥0) for the associated canonical form. We point

out however that the space X usually contains infinitely many positive geometries,

hence the notation X≥0 can be misleading. Nevertheless, the correct interpretation

should always be clear based on context. In some instances, we wish to focus on the

interior X>0 of X≥0, in which case X≥0 is called the nonnegative part and X>0 the

positive part. We also refer to the codimension d boundary components of a positive

geometry (X,X≥0), which are obtained by taking successive boundary components d

times. We stress that the existence of the canonical form is very non-trivial, and the

most general conditions under which they exist are still unclear. Nonetheless, in the

sections that follow, we give many non-trivial examples of positive geometries and

develop methods for computing their canonical forms.

For technical purposes, we often also work with a generalization of positive geome-

tries. We define a D-dimensional pseudo-positive geometry to be a pair (X,X≥0) of
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the same kind as a positive geometry, but the non-negative part X≥0 may be empty.

Furthermore, we modify the axioms as follows:

• For D = 0: X is a point. If X≥0 = X, then we define the 0-form Ω(X,X≥0) on

X to be ±1 depending on the orientation of X≥0. However, if X≥0 = ∅, then

we set Ω(X,X≥0) = 0.

• For D > 0: if X≥0 is empty, we set Ω(X,X≥0) = 0. Otherwise, we require:

(P1*) Every boundary component (C,C≥0) of (X,X≥0) is a pseudo-positive ge-

ometry of dimension D−1.

(P2*) There exists a unique rational D-form Ω(X,X≥0) on X satisfying the

residue relation ResCΩ(X,X≥0) = Ω(C,C≥0) along every boundary com-

ponent C with no singularities elsewhere.

While we use the same notation for X,X≥0,Ω as in the case of positive geometries,

the important differences are that we allow the geometry X≥0 to be empty, and we

allow the form to vanish identically. Note, however, that there are pseudo-positive

geometries with Ω(X,X≥0) 6= 0 that are not positive geometries; for instance, the

disjoint union of a positive geometry and a pseudo-positive geometry. It is also

possible for a non-empty geometry to have an identically vanishing form, such as a

disk.

We describe some simple ways to obtain new positive geometries from old ones.

Our discussion in this section applies equally well to pseudo-positive geometries. First,

if (X,X≥0) is a positive geometry, then so is (X,X−≥0), where X−≥0 denotes the same

space X≥0 with reversed orientation. Moreover, its boundary components C−i also

acquire the reversed orientation, and the canonical form acquires a sign Ω(X,X≥0) =

−Ω(X,X−≥0). Second, suppose (X,X1
≥0) and (X,X2

≥0) are positive geometries, and

suppose that they are disjoint: X1
≥0 ∩ X2

≥0 = ∅. Then the disjoint union (X,X1
≥0 ∪

X2
≥0) is itself a positive geometry, and the canonical form is obtained by addition
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Ω(X1
≥0∪X2

≥0) = Ω(X1
≥0)+Ω(X2

≥0). Third, suppose (X,X≥0) and (Y, Y≥0) are positive

geometries. Then the direct product (Z,Z≥0) := (X×Y,X≥0×Y≥0) is again a positive

geometry. The boundary components of (Z,Z≥0) are of the form (C × Y,C≥0 × Y≥0)

or (X × D,X≥0 × D≥0), where (C,C≥0) and (D,D≥0) are boundary components of

(X,X≥0) and (Y, Y≥0), respectively. The canonical form for the direct product is

given by the wedge product of the canonical forms.

Ω(Z,Z≥0) = Ω(X,X≥0) ∧ Ω(Y, Y≥0) (2.1)

The simplest non-trivial examples of pseudo-positive geometries (X,X≥0) are of

dimension 1, for which the embedding space X is isomorphic to the Riemann sphere

P1 while the real part X≥0 is a closed subset of P1(R). In the special cases where

X≥0 = P1(R) or X = ∅, we have Ω(X≥0) = 0 and so X≥0 is only a pseudo-positive

geometry. Otherwise, X≥0 is a union of disjoint closed intervals, which is a positive

geometry. See Section 2.4 [2] for a more rigorous discussion. A generic closed interval

is given by the following:

Example 2.1.1. The closed interval [a, b] ⊂ P1(R) is the set of points {(1, x) | a ≤ x ≤

b} ⊂ P1(R), where a < b. The canonical form is given by

Ω([a, b]) =
dx

x− a
− dx

x− b
=

(b− a)

(b− x)(x− a)
dx. (2.2)

where (1, x) ∈ P1. We assumed that the segment is oriented in the positive direction;

otherwise, the sign of the form would be reversed. Furthermore, the canonical form

of a disjoint union of line segments is the sum of the canonical forms of those line

segments.
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Figure 2.1: A triangle X≥0 triangulated by three smaller triangles Xi,≥0 for i = 1, 2, 3.
Three of the vertices are labeled P,Q and R.

2.2 Triangulations

Triangulations play an important role in the theory of positive geometries. The main

result of this section is the fact that canonical forms are triangulation independent.

This means that the canonical form of any positive geometry can be obtained by

triangulating the geometry and summing over the canonical form for each piece. In

practice, this vastly simplifies the computation of canonical forms.

2.2.1 Triangulations of pseudo-positive geometries

Let X≥0 denote a pseudo-positive geometry, and let Xi,≥0 for i = 1, . . . , t denote a

finite collection of pseudo-positive geometries. We assume they all live in the same

embedding space X. We say that the collection {Xi,≥0} triangulates X≥0 if the

following properties are satisfied:

• Each Xi,>0 is contained in X>0 and the orientations agree.

• The interiors Xi,>0 of Xi,≥0 are mutually disjoint.

• The union of all Xi,≥0 gives X≥0.
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A triangulation of X≥0 can be thought of as a collection of pseudo-positive geometries

that tiles X≥0. In Section 3.2 of [2] we also establish the notion of signed triangulations

whereby overlapping pieces (possibly with opposite orientations) are permitted.

Triangulations are very closely connected to the properties of the canonical form

in the following way.

If {Xi,≥0} triangulates X≥0 then Ω(X≥0) =
∑t

i=1 Ω(Xi,≥0). (2.3)

We provide a sketch of the argument here, and we encourage the reader to read

Section 3.1 of [2] for a more rigorous discussion. It is sufficient to show that the right

hand side satisfies the defining properties of the canonical form of X≥0, in which case

the desired result follows from uniqueness. Most importantly, we need to show that

it has the required poles and residues. We argue by induction on dimension, starting

with the zero-dimensional case, which is trivial. For dimension D ≥ 1, consider for

instance a boundary component (C,C≥0) of (X,X≥0). We let (C,Ci,≥0) denote the

boundary components along C of the triangulating pieces (X,Xi,≥0). For simplicity

we assume that all the triangulating pieces Xi,≥0 lie on the same side of C≥0. Then

clearly {Ci,≥0} forms a triangulation of C≥0. It follows that

ResCΩ(X,X≥0) = Ω(C,C≥0) =
∑
i

Ω(C,Ci,≥0) =
∑
i

ResCΩ(X,Xi,≥0) (2.4)

where the induction hypothesis is applied on the second equality, since C is one

dimension lower. This shows that the right hand side of (2.3) has the required residue

along C. However, we are not done, since there are other types of boundaries that

need to be checked. For instance, the triangulation may introduce boundaries that

do not appear in X≥0. Consequently, poles would appear in the individual terms

on the right hand side of (2.3) that cancel in the sum. For instance, consider a

collection of boundary components (B,Bi,≥0) of (X,Xi,≥0), respectively, all along the
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same hypersurface B. For simplicity, assume that X≥0 has no boundary component

along B. Moreover, we divide the boundary components Bi,≥0 into two subcollections

{B+
a,≥0} and {B−b,≥0} depending on which side of B(R) they live on. The union of each

collection is the same, which we denote as (B,B≥0). It follows that

∑
i

ResBΩ(X,Xi,≥0) =
∑
a

Ω(B,B+
a,≥0)−

∑
b

Ω(B,B−b,≥0) (2.5)

= Ω(B,B≥0)− Ω(B,B≥0) = 0 (2.6)

where again we applied the induction hypothesis on the second equality. This com-

pletes the argument, since Ω(X,X≥0) has no pole along B. While we lost some

generality in our simplifying assumptions, a complete proof is given in Appendix B

of[2].

We caution that even if all the {Xi,≥0} are positive geometries, the X≥0 may only

be a pseudo-positive geometry. A straightforward example is a unit disk thought

of as the union of two half disks. Moreover, if all the positive geometries involved

are polytopes, our notion of triangulation reduces to the usual notion of polytopal

subdivision. If furthermore {Xi,≥0} are all simplices, then we recover the usual notion

of a triangulation of a polytope. Finally, note that the word “triangulation” does not

necessarily imply that the geometries Xi,≥0 are “triangular” or “simplicial”.

2.2.2 Physical vs. spurious boundaries

We now make an important distinction between physical and spurious boundaries,

which correspond to physical and spurious poles, respectively. This is an important

distinction which has important physical consequences for BCFW recursion and the

amplituhedron, as discussed in Section 8.3.

Consider a triangulation {Xi,≥0} of a positive geometry X≥0. The boundary com-

ponents of Xi,≥0 that are also a subset of boundary components of X≥0 are called
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physical boundaries; otherwise they are called spurious boundaries. Furthermore,

poles of Ω(Xi,≥0) at physical boundaries are called physical poles, while poles at

spurious boundaries are called spurious poles. We find that the triangulation inde-

pendence of the canonical form (2.3) can be interpreted as cancellation of spurious

poles, since spurious poles do not appear in the sum.

We now give an example which illustrates a subtle point regarding spurious pole

cancellation. While it may be tempting to think that spurious poles cancel in pairs

along spurious boundaries, this does not occur in general. In fact multiple pieces

may be needed to cancel the same pole. For instance, consider a triangle X≥0 trian-

gulated by three smaller pieces Xi,≥0 as shown in Figure 2.1, but instead of adding

all three terms in (2.3), we only add the i = 1, 2 terms. Since the triangles 1 and

2 have adjacent boundaries along the line PQ, it may be tempting to think that

Ω(X,X1,≥0) + Ω(X,X2,≥0) has no pole there. But this is false since the boundary

components of 1 and 2 along line PR forms a (signed) triangulation of the line seg-

ment QR, whose canonical form is non-vanishing. Pairwise pole cancellation therefore

does not occur in this case. Nonetheless, the pole would cancel as a triplet had all

three terms been included.

2.3 Maps between positive geometries

We argue that the canonical forms of different positive geometries can be related

by considering maps between the geometries. Let (X,X≥0) and (Y, Y≥0) be posi-

tive geometries of the same dimension D. Furthermore, consider a mermorphic map

Φ : X → Y with the property that the restriction Φ|X>0 : X>0 → Y>0 is a diffeo-

morphism that preserves orientation. We refer to such maps as morphisms between

positive geometries, which we denote as Φ : (X,X≥0) → (Y, Y≥0). In particular, if
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Φ : (X,X≥0) → (Y, Y≥0) and Ψ : (Y, Y≥0) → (Z,Z≥0) are morphisms, then so is

Π = Ψ ◦ Φ.

Morphisms are closely related to pushforwards, which we now explain. Given a

map Φ : X → Y (not necessarily a morphism) and a differential form ω on X, we

obtain a differential form η on Y in the following way. Consider a point y ∈ Y , and

all the roots x ∈ X for which Φ(x) = y. We assume that there are only finitely many

such roots. Then for each root x, we locally invert Φ near x and apply the pullback

(Φ−1)∗(ω(x)). Finally, we sum the result over all roots:

η(y) =
∑

x : Φ(x)=y

(Φ−1)∗(ω(x)) (2.7)

This is called the pushforward, which we denote as Φ∗(ω) := η.

We now present an important heuristic.

Heuristic 2.3.1. Given a morphism Φ : (X,X≥0)→ (Y, Y≥0) of positive geometries,

the pushforward of the canonical form of (X,X≥0) is the canonical form of (Y, Y≥0).

Φ∗(Ω(X,X≥0)) = Ω(Y, Y≥0) (2.8)

We therefore say that the pushforward preserves the canonical form. The intuition

behind the heuristic is the fact that “pushforward commutes with taking residues”,

formulated precisely in Proposition H1 of [2]. Also in [2], the authors prove the

heuristic for a number of non-trivial examples, and more specfically in Section 4

discuss a strategy for proving the most general case.

2.4 Generalized simplices

We now move on to discuss more substantial examples. In each dimension, the sim-

plex is the simplest non-trivial example of a positive geometry. In this section, we
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establish a simple generalization of the simplex which encompasses a substantial class

of positive geometries. We say that the positive geometry (X,X≥0) is a generalized

simplex or that it is simplex-like if its canonical form does not vanish anywhere. In

particular, the boundary components of a generalized simplex is again a general-

ized simplex, since the residues of a meromorphic top form with no zeros is again

a meromorphic top form with no zeroes. While simplex-like positive geometries do

not include all possible positive geometries, they already provide a broad class of

interesting examples. We begin by studying the standard simplex before moving on

to more examples in later sections.

2.4.1 The standard simplex

The prototypical example of a generalized simplex is the positive geometry (Pm,∆m),

where we denote ∆m := Pm≥0 as the set of points in Pm(R) representable by nonnegative

coordinates, which can be thought of as a projective simplex (see Section 2.4.2) whose

vertices are the standard basis vectors. We refer to ∆m as the standard simplex. The

canonical form is given by

Ω(∆m) =
m∏
i=1

dαi
αi

=
m∏
i=1

d logαi (2.9)

for points (α0, α1, . . . , αm) ∈ Pm where we “gauge-fixed” the zeroth coordinate α0 = 1.

Here we can identify the interior of ∆m with Rm
>0. Note that the pole corresponding to

the facet at α0 → 0 does not appear explicitly in the expression, but this is simply due

to the “gauge choice” (i.e. choice of chart) α0 = 1. As we will see in many examples,

boundary components do not necessarily appear manifestly as poles in every chart,

and different choices of chart can make manifest different collections of boundary
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components. A gauge-invariant way of writing the same form is the following,

Ω(∆m) =
1

m!

〈α dmα〉
α0 · · ·αm

(2.10)

where the brackets denote the determinant (see Appendix C of [2]). This makes

manifest the (m+1) boundary components corresponding to the poles αi → 0 for

i = 0, . . . ,m.

We say that a positive geometry (X,X≥0) of dimension m is ∆-like if there exists

a degree one morphism Φ : (Pm,∆m)→ (X,X≥0). The projective coordinates on ∆m

are called ∆−like coordinates of X≥0. We point out that ∆-like positive geometries

are not necessarily simplex-like. Important examples include BCFW cells discussed

in Section 8.3. For now, we content ourselves by giving an example of how new zeros

can develop under pushforwards.

Example 2.4.1. Consider the rational top-form on P2, given by

ω =
1

(x+ 1)(y + 1)
dxdy (2.11)

in the chart {(1, x, y)} ⊂ P2. The form ω has three poles (one of which is the line at

infinity), and no zeros. Consider the rational map Φ : P2 → P2 given by (1, x, y) 7→

(1, u, v) := (1, x, y/x). The map Φ has degree one, and using dy = udv + vdu we

compute that

Φ∗(ω) =
u

(u+ 1)(uv + 1)
dudv (2.12)

So a new zero along u = 0 has appeared.
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2.4.2 Projective simplices

A projective m-simplex (Pm,∆) is a positive geometry in Pm cut out by exactly

m+1 linear inequalities. We use Y ∈ Pm to denote a point in projective space with

homogeneous components Y I indexed by I = 0, 1, . . . ,m. A linear inequality is of

the form Y ·W := Y IWI ≥ 0 for some dual vector W ∈ Rm+1 with components WI ,

and the repeated index I is implicitly summed as usual. A projective simplex can be

described as follows:

∆ = {Y ∈ Pm(R) | Y ·Wi ≥ 0 for i = 1, . . . ,m+1} (2.13)

where the inequality is evaluated for Y in Euclidean space before mapping to projec-

tive space. Here the Wi’s are dual vectors corresponding to the facets of the simplex.

Every boundary of a projective simplex is again a projective simplex, so it is easy to

see that projective simplices satisfy the requirements of a positive geometry. For no-

tational purposes, we may sometimes write Y I = (1, x, y, . . .) or Y I = (x0, x1, . . . , xm)

or something similar.

We now give formulae for the canonical form Ω(∆) in terms of both the vertices

and the facets of ∆. Let Zi ∈ Rm+1 denote the vertices for i = 1, . . . ,m+1, which

carry upper indices like ZI
i . We allow the indices i to be represented mod m+1. We

have

Ω(∆) =
sm〈Z1Z2 · · ·Zm+1〉m 〈Y dmY 〉

m! 〈Y Z1 · · ·Zm〉 〈Y Z2 · · ·Zm+1〉 · · · 〈Y Zm+1 · · ·Zm−1〉
(2.14)

where the angle brackets 〈· · ·〉 denote the determinant of vectors · · · , which is

SL(m+1)-invariant, and sm = −1 for m = 1, 5, 9, . . ., and sm = +1 otherwise. We

also define the following quantity which we call the canonical rational function.

Ω(A) := Ω(A)/ 〈Y dmY 〉 (2.15)
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Now suppose the vertices are indexed so that the facet Wi is adjacent to

Zi+1, . . . , Zi+m, then Wi · Zj = 0 for j = i+1, . . . , i+m. It follows that

WiI = (−1)(i−1)(m−i)εII1···ImZ
I1
i+1 · · ·Z

Im
i+m (2.16)

where the sign is chosen so that Y ·Wi > 0 for Y ∈ Int(A). We can therefore rewrite

the canonical form in W space as follows.

Ω(∆) =
〈W1W2 · · ·Wm+1〉 〈Y dmY 〉

m!(Y ·W1)(Y ·W2) · · · (Y ·Wm+1)
(2.17)

Now we provide a few comments on notation. We often write i for Zi inside

an angle bracket, so for example we may write 〈i0i1 · · · im〉 := 〈Zi0Zi1 · · ·Zim〉 and

〈Y i1 · · · im〉 := 〈Y Zi1 · · ·Zim〉. Furthermore, the square bracket [1, 2, . . . ,m+1] is

defined to be the coefficient of 〈Y dmY 〉 in (2.14). Thus,

[1, 2, . . . ,m+1] = Ω(∆) (2.18)

Note that the square bracket is antisymmetric in exchange of any pair of indices.

These conventions are used only in Z space.

Finally, the simplest simplices are the one-dimensional line segments. In com-

parison with Example 2.1.1, we can think of a line segment [a, b] as a simplex with

vertices

ZI
1 = (1, a), ZI

2 = (1, b) (2.19)

where a < b. Applying the Z-space formula (2.14) gives us the canonical form

Ω([a, b]) = −〈Z1Z2〉 〈Y dY 〉
〈Y Z1〉 〈Y Z2〉

=
(b− a)dx

(x− a)(b− x)
(2.20)
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Figure 2.2: A segment of the disk

in agreement with Example 2.1.1.

In Section 2.5.1, we provide an extensive discussion on convex projective polytopes

as positive geometries, which can be triangulated by projective simplices.

2.4.3 Generalized simplices on the projective plane

We now give a brief overview of simplex-like positive geometries on the projective

plane, and provide some interesting examples. A general argument given in Section

5.3 of [2] shows that every boundary component is either linear or quadratic, under

certain technical assumptions such as “normality”. This provides a useful constraint

on the kinds of examples that are permitted.

Example 2.4.2. Consider a region S(a) ⊂ P2(R) bounded by one linear function q(x, y)

and one quadratic function f(x, y), where q = y − a ≥ 0 for some constant in the

range −1 < a < 1, and f = 1− x2 − y2 ≥ 0. This is a “segment” of the unit disk. A

picture for a = 1/10 is given in Figure 2.2. We claim that S(a) is a positive geometry

with the following canonical form

Ω(S(a)) =
2
√

1− a2dxdy

(1− x2 − y2)(y − a)
(2.21)

22



Note that for the special case of a = 0, we get the canonical form for the “northern

half disk”.

Ω(S(0)) =
2dxdy

(1− x2 − y2)y
(2.22)

We prove our result by showing that the form for general a has the correct residues

on both boundaries. On the flat boundary we have

Resy=aΩ(S(a)) =
2
√

1− a2dx

1− a2 − x2
=

2
√

1− a2dx

(
√

1− a2 − x)(x+
√

1− a2)
(2.23)

Recall that this is simply the canonical form on the line segment |x| ≤
√

1− a2,

with positive orientation since the boundary component inherits the counter-clockwise

orientation from the interior. The residue on the arc is more subtle. We first rewrite

our form as

Ω(S(a)) =

(√
1− a2dy

x(y − a)

)
df

f
(2.24)

which is shown by applying df = −2(xdx+ydy). The residue along the arc is therefore

Resf=0Ω(S(a)) =

√
1− a2dy

x(y − a)
(2.25)

Substituting x =
√

1− y2 for the right-half of the arc gives residue +1 at the bound-

ary y = a, and substituting x = −
√

1− y2 for the left-half of the arc gives residue

−1.

We can also compute these residues in a different way. Let us parametrize (x, y)

by a parameter t as follows.

(x, y) =

(
(t+ t−1)

2
,
(t− t−1)

2i

)
(2.26)
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which of course satisfies the arc constraint f(x, y) = 0 for all t. Rewriting the form

on the arc in terms of t gives us

Resf=0Ω(S(a)) =
2
√

1− a2dt

t2 − 2iat− 1
=

(t+ − t−)dt

(t− t+)(t− t−)
(2.27)

where t± = ia±
√

1− a2 are the two roots of the quadratic expression in the denom-

inator satisfying

t+ + t− = 2ia, t+t− = −1 (2.28)

The corresponding roots (x±, y±) are

(x±, y±) = (±
√

1− a2, a) (2.29)

which of course correspond to the boundary points of the arc. The residues at t± and

hence (x±, y±) are ±1, as expected.

By substituting a = −1 in the preceding Example 2.4.2 we discover that the unit

disk D2 := S(−1) has vanishing canonical form, and is therefore a null geometry.

Alternatively, one can derive this by triangulating (see Section 2.2) the unit disk into

the northern half disk and the southern half disk, whose canonical forms must add up

to Ω(D2). Indeed, a quick computation shows that the canonical forms of the two half

disks are negatives of each other. A third argument goes as follows. The only pole of

Ω(D2), if any, appears along the unit circle, which has a vanishing canonical form since

it has no boundary components. So in fact Ω(D2) has no poles, and must therefore

vanish by uniqueness of the form. More generally, a pseudo-positive geometry is a

null geometry if and only if all its boundary components are null geometries.

One may be tempted to think that all conic sections are null, but this is not true.

Hyperbolas are notable exceptions. From our point of view, the distinction between
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hyperbolas and circles is that the former intersects a line at infinity. So a hyperbola

has two boundary components, while a circle only has one. We demonstrate this as

a special case of the next example.

Example 2.4.3. Let us consider a generic region in P2(R) bounded by one quadratic

and one linear polynomial. Let us denote the linear polynomial by q = Y ·W ≥ 0 with

Y I = (1, x, y) ∈ P2(R) and the quadratic polynomial by f = Y Y · Q := Y IY JQIJ

for some real symmetric bilinear form QIJ . We denote our region as U(Q,W ). The

canonical form is given by

Ω(U(Q,W )) =

√
QQWW 〈Y dY dY 〉
(Y Y ·Q)(Y ·W )

(2.30)

where QQWW := −1
2
εIJKεI

′J ′K′QII′QJJ ′WKWK′ and εIJK is the Levi-Civita symbol

with ε012 = 1, and 〈· · ·〉 denotes the determinant. The appearance of
√
QQWW

ensures that the result is invariant under rescaling QIJ and WI independently, which

is necessary. It also ensures the correct overall normalization as we show in examples.

It will prove useful to look at this example by putting the line W at infinity

WI = (1, 0, 0) and setting Y I = (1, x, y), with Y Y ·Q = y2− (x− a)(x− b) for a 6= b,

which describes a hyperbola. The canonical form becomes

Ω(U(Q,W )) =
2dxdy

y2 − (x− a)(x− b)
(2.31)

Note that taking the residue on the quadric pole gives us the 1-form on the quadric.

ResQΩ(U(Q,W )) = dx/y = 2dy/((x− a) + (x− b)) (2.32)

Since a 6= b, this form is smooth as y → 0 where x→ a or x→ b, which is evident in

the second expression above. The only singularities of this 1-form are on the line W ,

which can be seen by reparametrizing the projective space as (z, w, 1) ∼ (1, x, y) so
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that z = 1/y, w = x/y, which gives the 1-form on 1− (w − az)(w − bz) = 0:

ResQΩ(U(Q,W )) = dw − dz

z

=
[(w − az)(−1 + bz) + (w − bz)(−1 + az)]dz

z((w − az) + (w − bz))
(2.33)

Evidently, there are only two poles (z, w) = (0,±1), which of course are the intersec-

tion points of the quadric Q with the line W . The other “pole” in (2.33) is not a real

singularity since the residue vanishes.

Note however that as the two roots collide a→ b, the quadric degenerates to the

product of two lines (y + x − a)(y − x + a) and we get a third singularity at the

intersection of the two lines (x, y) = (a, 0).

Note also another degenerate limit here, where the line W is taken to be tangent

to the quadric Q. We can take the form in this case to be (dxdy)/(y2 − x). Taking

the residue on the parabola gives us the 1-form dy, that has a double-pole at infinity,

which violates our assumptions. This corresponds to the two intersection points of

the line W with Q colliding to make W tangent to Q. In fact, we can get rid of the

line W all together and find that the parabolic boundary is completely smooth and

hence only a null geometry.

Moreover, we can consider the form (dxdy)/(x2 + y2 − 1) associated with the

interior of a circle. But for the same reason as for the parabola, the circle is actually

a null geometry. Despite this, it is of course possible by analytic continuation of the

coefficients of a general quadric to go from a circle to a hyperbola which is a positive

geometry.
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Now let us return to the simpler example of the segment U(Q,W ) := S(a), where

QIJ =


1 0 0

0 −1 0

0 0 −1

 , WI = (−a, 0, 1) (2.34)

Substituting these into the canonical form we find

QQWW = (1− a2) > 0, Y Y ·Q = 1− x2 − y2, Y ·W = a− y, (2.35)

and therefore

Ω(U(Q,W )) = Ω(S(a)) (2.36)

as expected.

2.4.4 An example of a geometry with self-intersections

In this text, we generally exclude geometries with self-intersections for the sake of

technical convenience, but there are many such examples that deserve to be studied

under a more general context. We now give an example on the projective plane. In

Section 5.3.1 of [2], this is referred to as a “non-normal” positive geometry.

Consider the geometry U(C) ⊂ P2(R) defined by a cubic polynomial Y Y Y ·C ≥ 0,

where Y Y Y ·C := CIJKY
IY JY K for some real symmetric tensor CIJK . The canonical

form must have the following form,

Ω(U(C)) =
C0〈Y dY dY 〉
Y Y Y · C

(2.37)
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Figure 2.3: (a) A non-degenerate vs. (b) a degenerate elliptic curve. The former
does not provide a valid embedding space for a positive geometry, while the shaded
“tear-drop” is a valid (non-normal) positive geometry.

where C0 is a constant needed to ensure that all leading residues are ±1. Of course,

C0 must scale linearly as CIJK and must depend on the Aronhold invariants. For our

purposes we will work out C0 only in specific examples.

Let us consider a completely generic cubic, which by an appropriate change of

variables can always be written as Y Y Y ·C = y2− (x− a)(x− b)(x− c) for constants

a, b, c. If the three constants are distinct, then there is no positive geometry associated

with this case because the 1-form obtained by taking a residue on the cubic is dx/y

which is the standard holomorphic one-form associated with a non-degenerate elliptic

curve; we can see directly that dx/y has no singularities as x→ a, b, c; and as we go

to infinity, we can set y → 1/t3, x → 1/t2 with t → 0 giving dx/y → −2dt which

is smooth. The existence of such a form makes the canonical form non-unique, and

hence ill-defined. By extension, no positive geometry can have the non-degenerate

cubic as a boundary component either.

However, if the cubic degenerates by having two of the roots of the cubic poly-

nomial in x collide, then we do get a beautiful (non-normal) positive geometry, one

which has only one zero-dimensional boundary. Without loss of generality let us put

the double-root at the origin and consider the cubic y2−x2(x+a2). Taking the residue

on the cubic, we can parametrize y2 − x2(x+ a2) = 0 as y = t(t2 − a2), x = (t2 − a2),
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then dx/y = dt/(t2 − a2) has logarithmic singularities at t = ±a. Note that these

two points correspond to the same point y = x = 0 on the cubic! But the boundary

is oriented, so we encounter the same logarithmic singularity point from one side and

then the other as we go around. We can cover the whole interior of the “teardrop”

shape for this singular cubic by taking

x = u(t2 − a2), y = ut(t2 − a2) (2.38)

which, for u ∈ (0, 1) and t ∈ (−a, a) maps 1-1 to the teardrop interior, dutifully

reflected in the form

dxdy

y2 − x2(x+ a2)
=

dt

(a− t)(t+ a)

du

u(1− u)
(2.39)

Note that if we further take a → 0, we lose the positive geometry as we get a form

with a double-pole, much as our example with the parabola in Example 2.4.3.

2.4.5 Generalized simplices in higher-dimensional projective

spaces

Let us now consider generalized simplices (Pm,A) for higher-dimensional projective

spaces. Let (C,C≥0) be a boundary component of A, which is an irreducible normal

hypersurface in Pm. For (C,C≥0) to be a positive geometry, C must have no nonzero

holomorphic forms. Equivalently, the geometric genus of C must be 0. This is the

case if and only if C has degree less than or equal to m. Thus in P3, the boundaries

of a positive geometry are linear, quadratic, or cubic hypersurfaces.

It is easy to generalize Example 2.4.2 to simplex-like positive geometries in Pm(R).

Take a positive geometry bounded by (m−1) hyperplanes Wi and a quadric Q, which
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Figure 2.4: The Cayley cubic curve. The plane separating the translucent and solid
parts of the surface is given by x0 = 0.

has canonical form

Ω(A) =
C0〈Y dmY 〉

(Y ·W1) · · · (Y ·Wm−1)(Y Y ·Q)
. (2.40)

for some constant C0. Note that the (m−1) planes intersect generically on a line, that

in turn intersects the quadric at two points, so as in our two-dimensional example

this positive geometry has two zero-dimensional boundaries.

Let us consider another generalized simplex, this time in P3(R). We take a three-

dimensional region A ⊂ P3(R) bounded by a cubic surface and a plane. If we take

a generic cubic surface C and generic plane W whose intersection is a cubic in W ,

then it cannot contain a positive geometry, as discussed in Section 2.4.3. On the

other hand, we can make a special choice of cubic surface C that does give a positive

geometry. A pretty example is provided by the “Cayley cubic” (see Figure 2.4). If

Y I = (x0, x1, x2, x3) are coordinates on P3, let the cubic C be defined by

C · Y Y Y := x0x1x2 + x1x2x3 + x2x3x0 + x3x0x1 = 0 (2.41)
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which has four singular points at X0 = (1, 0, 0, 0), . . . , X3 = (0, 0, 0, 1). Note that

C gives a singular surface, but it still satisfies the normality criterion of a positive

geometry. Let us choose three of the singular points, say X1, X2, X3, and let W be

the hyperplane passing through these three points; we consider the form

Ω(A) = C0
〈Y d3Y 〉

(Y Y Y · C)〈Y X1X2X3〉
(2.42)

where C0 is a constant. A natural choice of variables turns this into a “dlog” form.

Consider

xi = syi, for i = 1, 2, 3; x0 = − y1y2y3

y1y2 + y2y3 + y3y1

(2.43)

Then if we group the three y’s as coordinates of P2 = {y = (y1, y2, y3)}, we have

Ω(A) =
〈yd2y〉
2y1y2y3

ds

(s− 1)
(2.44)

This is the canonical form of the positive geometry given by the bounded component

of the region cut out by Y Y Y · C ≥ 0 and 〈X1X2X3Y 〉 ≥ 0.

We can generalize this construction to Pm(R), with Y = (x0, · · · , xm) and a degree

m hypersurface

Qm · Y m =
m∑
i=0

x0 · · · x̂i · · ·xm,

whereQm·Y m := QmI1...ImY
I1 · · ·Y Im and the singular points areX0 = (1, 0, · · · , 0), . . . ,

Xm = (0, · · · , 0, 1). Then if we choose m of these points and a linear factor corre-

sponding to the hyperplane going through them,

Ω(A) = C0
〈Y dmY 〉

(Y m ·Qm)〈Y X1 · · ·Xm〉
(2.45)

is the canonical form associated with the bounded component of the positive geometry

cut out by Y m ·Qm ≥ 0, 〈X1 · · ·XmY 〉 ≥ 0, for some constant C0.
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2.4.6 Grassmannians and positivity

We begin by reviewing the positroid stratifiction of the positive Grassmannian. Much

like how a polytope is made up of boundaries of all codimensions, the positive Grass-

mannian is made up of boundaries called positroid cells. In this section, we show that

every positroid cell is a simplex-like positive geometry whose complex embedding

space is a positroid variety.

Let G(k, n) denote the Grassmannian of k-dimensional linear subspaces of Cn.

We can represent every point in G(k, n) as a k × n complex matrix

C = (C1, C2, . . . , Cn) (2.46)

of maximal rank, where Ci ∈ Ck denote column vectors; moreover the corresponding

subspace is obtained by taking the span of the rows, hence two such matrices are

equivalent if and only if they are related by a GL(k) action from the left. Given

C ∈ G(k, n) we define a function f by the condition that

Ci ∈ span
{
Ci+1, Ci+2, . . . , Cf(i)

}
(2.47)

and f(i) is the minimal index satisfying this property. In particular, if Ci = 0, then

f(i) = i. Here, the indices are taken mod n. The function f is called an affine

permutation, or decorated permutation, or sometimes just permutation [30, 31, 16].

Classifying points of G(k, n) according to the affine permutation f gives the positroid

stratification

G(k, n) =
⊔
f

Π̊f . (2.48)

where, for every affine permutation f , the set Π̊f consists of those C matrices sat-

isfying (2.47) for every integer i. We let the positroid variety Πf ⊂ G(k, n) be the
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closure of Π̊f . If k = 1 then G(k, n) ∼= Pn−1 and the stratification (2.48) decomposes

Pn−1 into coordinate hyperspaces.

Now let G(k, n)(R) denote the real Grassmannian. The (totally) nonnegative

Grassmannian G≥0(k, n) (resp. (totally) positive Grassmannian G>0(k, n)) consists

of those points C ∈ G(k, n)(R) all of whose k× k minors, called Plücker coordinates,

are nonnegative (resp. positive) [30]. The intersections

Πf,>0 := G≥0 ∩ Π̊f , Πf,≥0 := G≥0 ∩ Πf (2.49)

are loosely called (open and closed) positroid cells.

For any permutation f , we have

(Πf ,Πf,≥0) is a positive geometry. (2.50)

The boundary components of (Πf ,Πf,≥0) are certain other positroid cells (Πg,Πg,≥0)

of one lower dimension. The canonical form Ω(f) := Ω(Πf ,Πf,≥0) was studied in

[31, 16]. We remark that Ω(f) has no zeros, so (Πf ,Πf,≥0) is simplex-like.

The canonical form Ω(G≥0(k, n)) of the positive Grassmannian was worked out

and discussed in [16],

Ω(G≥0(k, n)) :=

∏k
s=1

〈
C ′dn−kC ′s

〉
((n−k)!)k

∏n
i=1(i, i+1, . . . , i+k−1)

(2.51)

where C := (C ′1, . . . , C
′
k)
T is a k × n matrix representing a point in G(k, n), and

the bracket (i1, i2, . . . , ik) denotes the k × k minor of C corresponding to columns

i1, i2, . . . , ik in that order. Note that the C ′s denote row vectors of C. The canonical

forms Ω(f) on Πf are obtained by iteratively taking residues of Ω(G≥0(k, n)).

The Grassmannian G(k, n) has the structure of a cluster variety [32]. The cluster

coordinates of G(k, n) can be constructed using plabic graphs or on-shell diagrams.
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Given a sequence of cluster coordinates (c0, c1, . . . , ck(n−k)) ∈ Pk(n−k) for the Grass-

mannian G(k, n), the positive Grassmannian is precisely the subset of points repre-

sentable by positive coordinates. It follows that G≥(k, n) is ∆-like with the degree-one

cluster coordinate morphism Φ : (Pk(n−k),∆k(n−k)) → (G(k, n), G≥0(k, n)). Note of

course that a different degree-one morphism exists for each choice of cluster.

According to Heuristic 2.3.1, we expect that the canonical form on the positive

Grassmannian is simply the pushforward of Ω(∆k(n−k)). That is,

Ω(G≥0(k, n)) = ±Φ∗

( 〈
c dk(n−k)c

〉
(k(n−k))!

∏k(n−k)
I=0 cI

)
(2.52)

where the overall sign depends on the ordering of the cluster coordinates. Equation

(2.52) is worked out in [33]. It follows in particular that the right hand side of (2.52)

is independent of the choice of cluster.

2.5 Generalized polytopes

In this section we investigate the much richer class of generalized polytopes, or polytope-

like geometries, which are positive geometries whose canonical form may have zeros.

2.5.1 Projective polytopes

The fundamental example is a convex polytope embedded in projective space. Most of

our notation was already established back in Section 2.4.2. Let Z1, Z2, . . . , Zn ∈ Rm+1,

and denote by Z the n × (m + 1) matrix whose rows are given by the Zi. Define

A := A(Z) := A(Z1, Z2, . . . , Zn) ⊂ Pm(R) to be the convex hull

A = Conv(Z) = Conv(Z1, . . . , Zn) :=

{
n∑
i=1

CiZi ∈ Pm(R) | Ci ≥ 0, i = 1, . . . , n

}
.(2.53)
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We make the assumption that Z1, . . . , Zn are all vertices of A. In (2.53), the vector∑n
i=1CiZi ∈ Rm+1 is thought of as a point in the projective space Pm(R). The

polytope A is well-defined if and only if
∑n

i=1 CiZi is never equal to 0 unless Ci = 0 for

all i. A basic result, known as “Gordan’s theorem” [34], states that this is equivalent

to the following condition.

There exists a (dual) vector X ∈ Rm+1 such that Zi ·X > 0 for i = 1, 2, . . . , n.(2.54)

The polytope A is called a convex projective polytope.

Every projective polytope (Pm,A) is a positive geometry. This follows from the

fact that every polytope A can be triangulated (see Section 2.2) by projective sim-

plices. By Section 2.4.2, we know that every simplex is a positive geometry, so by

the arguments in Section 2.2 we conclude that (Pm,A) is a positive geometry. The

canonical form Ω(A) of a projective polytope will be discussed in further detail from

multiple points of view in Section 3.

It is clear that the polytope A is unchanged if each Zi is replaced by a positive

multiple of itself. This gives an action of the little group Rn
>0 on Z that fixes A. To

visualize a polytope, it is often convenient to work with Euclidean polytopes instead

of projective polytopes. To do so, we use the little group to “gauge fix” the first

component of Z to be equal to 1 (if possible), so that Z = (1, Z ′) where Z ′ ∈ Rm.

The polytope A ⊂ Pm can then be identified with the set

{
n∑
i=1

CiZ
′
i ⊂ Rm | Ci ≥ 0, i = 1, . . . , n and C1 + C2 + · · ·+ Cn = 1

}
(2.55)

inside Euclidean space Rm. The Ci variables in this instance can be thought of as

center-of-mass weights. Points in projective space for which the first component is

zero lie on the (m−1)-plane at infinity.
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The points Z1, . . . , Zn can be collected into a n× (m+ 1) matrix Z, which can be

thought of as a linear map Z : Rn → Rm+1 or a rational map Z : Pn−1 → Pm. The

polytope A is then the image Z(∆n−1) of the standard (n − 1)-dimensional simplex

in Pn−1(R).

2.5.2 Cyclic polytopes

We call the point configuration Z1, Z2, . . . , Zn positive if n ≥ m + 1, and all the

(m + 1) × (m + 1) ordered minors of the matrix Z are strictly positive. Positive Z

always satisfy condition (2.54). In this case, the polytope A is known as a cyclic

polytope. For notational convenience, we identify Zi+n := Zi, so the vertex index is

represented mod n.

For even m, the facets of the cyclic polytope are

Conv(Zi1−1, Zi1 , . . . , Zim/2−1, Zim/2) (2.56)

for 1 ≤ i1−1 < i1 < i2−1 < i2 < · · · < im/2−1 < im/2 ≤ n+1. For odd m, the facets

are

Conv(Z1, Zi1−1, Zi1 , . . . , Zi(m−1)/2−1, Zi(m−1)/2
) (2.57)

for 2 ≤ i1−1 < i1 < i2−1 < i2 < · · · < i(m−1)/2−1 < i(m−1)/2 ≤ n and

Conv(Zi1−1, Zi1 , . . . , Zi(m−1)/2−1, Zi(m−1)/2
, Zn) (2.58)

for 1 ≤ i1−1 < i1 < i2−1 < i2 < · · · < i(m−1)/2−1 < i(m−1)/2 ≤ n−1. This description

of the facets is commonly known as Gale’s evenness criterion [34].
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An important example for the physics of scattering amplitudes in planar N = 4

super Yang-Mills theory is the m = 4 cyclic polytope which has boundaries:

Conv(Zi−1, Zi, Zj−1, Zj) (2.59)

for 1 ≤ i−1 < i < j−1 < j ≤ n+1. The physical applications are explained in

Section 7.1.

2.5.3 Dual polytopes

Let (Pm,A) be a convex polytope and let Y ∈ Pm(R) be a point away from any

boundary component. We now define the dual of A at Y , denoted A∗Y , which is a

convex polytope in the linear dual of Pm (also denoted Pm). For the moment let us

“de-projectivize” Y so that Y ∈ Rm+1.

Recall that each facet of A is given by the zero-set (along ∂A) of some dual vector

W ∈ Rm+1. Before going to projective space, we pick the overall sign of W so that

W · Y > 0 for our Y . We say that the facets are oriented relative to Y . Now assume

that the facets of A are given by W1, . . . ,Wr. Then we define the dual.

A∗Y := Conv(W1, . . . ,Wr) :=

{
r∑
j=1

CjWj ∈ Pm | Cj ≥ 0, j = 1, . . . , r

}
(2.60)

Not that the (relative) signs of the Wj’s are crucial, hence so is the position of Y

relative to the facets. It should be obvious that (Pm,A∗Y ) is a positive geometry for

each Y .

In the special case where Y ∈ Int(A), we let A∗ := A∗Y and refer to this simply

as the dual of A. An equivalent definition of the dual of A is:

A∗ = {W ∈ Pm | W · Y ≥ 0 for all Y ∈ A}. (2.61)
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A priori, the inequality W ·Y ≥ 0 may not make sense when W and Y are projective.

As in (2.60), we give it precise meaning by working first in Rm+1, and then taking

the images in Pm (see also Appendix C of [2] on cones). For generic Y , we also wish

to assign an orientation to A∗Y as follows. Suppose we orient the facets W1, . . . ,Wr

relative to the interior of A. Let s denote the number of terms Wj · Y that are

negative. Then we orient A∗Y based on the parity of s. In particular, the dual for

Y ∈ Int(A) is positively oriented.

An important observation about the dual polytope A∗Y is that it has “opposite”

combinatorics to A. In other words, vertices of A correspond to the facets of A∗Y and

vice versa. Since we assumed that A has n vertices Z1, Z2, . . . , Zn, the dual polytope

A∗Y has n facets corresponding to {W | W · Zi = 0} for i = 1, 2, . . . , n. Suppose

a facet of A is adjacent to vertices Zi1 , . . . , Zim , then the dual vertex W satisfies

W · Zi1 = . . . = W · Zim = 0 so that

WI = εII1...ImZ
I1
i1
. . . ZIm

im
(2.62)

where we have ordered the vertices so that Y · W > 0. This is a straightforward

generalization of (2.16). Sometimes we also write

W = (i1 . . . im) (2.63)

to denote the same quantity. Applying this to Section 2.5.2 gives us all the vertices

of the polytope dual to a cyclic polytope.

Finally we make a comment on triangulations. Given a signed triangulation A =∑
iAi of a convex polytope A by other convex polytopes Ai (see Sections 2.2), and

a point Y not along any boundary component, we have

A =
∑
i

Ai ⇒ A∗Y =
∑
i

A∗iY (2.64)
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In words, we say that

Dualization of polytopes “commutes” with triangulation. (2.65)

This is a crucial geometric phenomenon to which we will return. While we do not

provide a direct geometric proof, we will argue its equivalence to the triangulation

independence of the canonical form and the existence of a volume interpretion for the

form in Section 3.4.1.

2.5.4 Generalized polytopes on the projective plane

Let us now discuss a class of positive geometries in P2 which includes Examples 2.4.2

and 2.4.3. Let C ⊂ R2 be a closed curve that is piecewise linear or quadratic. Thus

C is the union of curves C1, C2, . . . , Cr where each Ci is either a line segment, or a

closed piece of a conic. We assume that C has no self-intersections, and let U ⊂ R2

be the closed region enclosed by C. We will further assume that U is a convex set.

Define the degree d(U) of U to be the sum of the degrees of the Ci.

We now argue that if d ≥ 3,

(P2,U) is a positive geometry. (2.66)

We will proceed by induction on d = d(U). For the base case d = 3, there are two

possibilities: (a) U is a triangle, or (b) U is a convex region enclosed by a line and

a conic. For case (a), Ω(U) was discussed in Section 2.4.2. For case (b), Ω(U) was

studied in Example 2.4.3. In both cases, (P2,U) is a positive geometry. Now suppose

that d(U) = d ≥ 4 and that one of the Ci is a conic. Let L be the line segment joining

the endpoints of Ci. By convexity, L lies completely within U , and thus decomposes

U into the union U = U1 ∪ U2 of two regions where U1 has Ci and L as its “sides”,

while U2 satisfies the same conditions as U , but has more linear sides. In other words,
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Figure 2.5: A pizza slice

U is triangulated by U1,2, and by the discussion in Section 2.2, U is a pseudo-positive

geometry with Ω(U) = Ω(U1)+Ω(U2). In addition, we argue that U must be a positive

geometry, since all its boundary components (line segments on the projective line)

are positive geometries. If none of the Ci is a conic, then U is a convex polygon in

R2. We can slice off a triangle and repeat the same argument.

Let us explicitly work out a simple example defined by two linear boundaries and

one quadratic: a “pizza” slice.

Example 2.5.1. Consider a “pizza” shaped geometry; that is, a sector T (θ1, θ2) of the

unit circle between polar angles θ1, θ2, which is bounded by two linear equations q1 =

−x sin θ1 +y cos θ1 ≥ 0 and q2 = x sin θ2−y cos θ2 ≥ 0, and an arc f = 1−x2−y2 ≥ 0.

Let us assume for simplicity of visualization that 0 ≤ θ1 < θ2 ≤ π. See Figure 2.5 for

a picture for the case (θ1, θ2) = (π/6, 5π/6).

The canonical form is given by

Ω(T (θ1, θ2)) =
[sin(θ2 − θ1) + (−x sin θ1 + y cos θ1) + (x sin θ2 − y cos θ2)]

(1− x2 − y2)(−x sin θ1 + y cos θ1)(x sin θ2 − y cos θ2)
dxdy(2.67)

Let us take the residue along the linear boundary q1 = 0 via the limit x → y cot θ1,

and confirm that the result is the canonical form on the corresponding boundary

component. We get

Resq1=0Ω(T (θ1, θ2)) =
(sin θ1)

(sin θ1 − y)y
dy (2.68)
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which is the canonical form on the line segment y ∈ [0, sin θ1] with positive orientation.

The upper bound y < sin θ1 is simply the vertical height of the boundary q1 = 0.

Similarly, the residue at q2 = 0 is given by

Resq2=0Ω(T (θ1, θ2)) = − (sin θ2)

(sin θ2 − y)y
dy (2.69)

which is the canonical form on the line segment y ∈ [0, sin θ2], again with negative

orientation. The residue along the arc can be computed in a similar manner as for the

segment of the disk in Example 2.4.2, so we leave this as an exercise for the reader.

For θ1 = 0, θ2 = π, we are reduced to the northern half disk from Example 2.4.2,

so T (0, π) = S(0). A quick substitution shows that the canonical forms match as

well.

2.5.5 Loop Grassmannians

We now define the L-loop Grassmannian G(k, n; k), where k := (k1, . . . , kL) is a

sequence of positive integers. A point V in the L-loop Grassmannian G(k, n; k) is a

collection of linear subspaces VS ⊂ Cn indexed by S, where S := {s1, . . . , sl} is any

subset of {1, 2, . . . , L} for which kS := ks1+ . . .+ksL ≤ n−k. Moreover, we require

that dimVS = k + kS, and VS ⊂ VS′ whenever S ⊂ S ′. For simplicity we sometimes

write Vi = V{i}, Vij = V{i,j}, and so on and so forth. In particular, V∅ ⊂ Vs for any

one-element set S = {s}.

We say that a point V ∈ G(k, n; k) is “generic” if Vi ∩ Vj = V∅ for any i 6= j.

For such points, we have VS = span(Vs1 , Vs2 , . . . , Vs`) for any S = {s1, s2, . . . , s`}, so

that V is determined completely by V1, V2, . . . , VL. The space G(k, n; k) is naturally a

subvariety of a product of Grassmannians, and in particular it is a projective variety.

If L = 0, then the 0-loop Grassmannian reduces to the usual Grassmannian

G(k, n). If L = 1, the 1-loop Grassmannian reduces to the partial flag variety
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Fl(n; k, k + k1) (see Section 5.8 of [2]). We may refer to the 0-loop Grassmannian

as the tree Grassmannian. The distinction between “trees” and “loops” comes from

the terminology of scattering amplitudes. We caution that “loop Grassmannian”

commonly refers to another infinite dimensional space in the mathematical literature,

which is also called the affine Grassmannian.

We now define the positive part G>0(k, n; k) of G(k, n; k). Consider the set of

(k+K) × n matrices M(k + K,n), where K := k1 + . . . + kL. We will denote each

matrix as follows:

P :=



C

D1

. . .

DL


(2.70)

where C has k rows, and Di has ki rows for i = 1, . . . , L. We say that P is positive if for

each S = {s1, s2, . . . , s`} the matrix formed by taking the rows of C,Ds1 , Ds2 , . . . , Ds`

is positive, that is, has positive (k + kS) × (k + kS) minors. Each positive matrix P

gives a point V ∈ G(k, n; k), where VS is the span of the rows of C,Ds1 , Ds2 , . . . , Ds` .

Two points P1,2 are equivalent if they map to the same point V . Each equivalence

class defines a point on the (strictly) positive part G>0(k, n; k). The nonnegative part

G≥0(k, n; k) is the closure of G>0(k, n; k) in G(k, n; k)(R).

There exists a subgroup G(k; k) of GL(k + K) acting on the left whose orbits

in M(k + K,n) are equivalence classes of matrices P defining the same point V .

Elements of G(k; k) allow row operations within each of C, or the Di, and also allows

adding rows of C to each Di.

We caution that not every point V ∈ G(k, n; k) is representable by a matrix P .

For example, for G(0, 3; 1, 1), the P matrix is a 2× 3 matrix. Consider a point on the

boundary where the two rows of P are scalar multiples of each other, then V1 = V2
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and additional information is required to specify the 2-plane V1,2. So there are even

points in the boundary of G≥0(k, n; k) that cannot be represented by P .

Let us focus our attention on the L-loop Grassmannian G(k, n; `L) where lL :=

(l, . . . , l) with l appearing L times. The case l = 2 is the case of primary physical

interest. The L-loop Grassmannian G(k, n; lL) has an action of the symmetric group

SL on the set {1, 2, . . . , L} with L elements. For a permutation σ ∈ SL, we have

σ(V )S = Vσ(S). In addition, when l is even, the action of SL on G(k, n; lL) preserves

the positive part: permuting the blocks Di of the matrix P preserves the positivity

conditions.

The L-loop Grassmannian G(k, n; k) is still very poorly understood in full gen-

erality. For instance, a complete stratification extending the positroid stratification

of the positive Grassmannian is still unknown. The existence of the canonical form

is also unknown. Nonetheless, we have identified the canonical form for some L = 1

cases, which we discuss in Section 10.1, and some L = 2 cases.

The proven existence of some L = 1 canonical forms is highly non-trivial. We

therefore speculate that

(G(k, n; k), G≥0(k, n; k)) is a positive geometry. (2.71)

Note that for even `, the speculative positive geometry G(k, n; `L) should have an

action of SL: the symmetric group acts on the boundary components, and furthermore

the canonical form will be invariant under SL.

We may also denote a generic point in the loop Grassmannian as

Y = (Y, Y1, . . . , YL) (2.72)
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where VS = span{Y, Ys1 , . . . , Ysl} for any S. Or, for k = 2L we may use various kinds

of notation like (Y, (AB)1, . . . , (AB)L) or (Y,AB,CD,EF, . . .), which are common in

the physics literature.

Example 2.5.2. Consider the space G(0, 4; 22) which is isomorphic to the “double

Grassmannian” (G(2, 4) × G(2, 4)), and has an action of the symmetric group S2.

Let (C1, C2) ∈ G(2, 4)2 denote a point in the space, with both C1 and C2 thought of

as 2 × 4 matrices modded out by GL(2) from the left. The interior of the positive

geometry is given by the following points in matrix form.

(G(2, 4)2)>0 := {(C1, C2) : C1, C2 ∈ G>0(2, 4) and det

C1

C2

 > 0} (2.73)

In other words, both C1, C2 are in the positive Grassmannian, and their combined

4×4 matrix (i.e. the two rows of C1 stacked on top of the two rows of C2) has positive

determinant.

We can parametrize the interior with eight variables as follows:

C1

C2

 =



1 x1 0 −w1

0 y1 1 z1

1 x2 0 −w2

0 y2 1 z2


(2.74)

The conditions C1, C2 ∈ G>0(2, 4) impose that all eight variables be positive, while

the final condition requires

det

C1

C2

 = −(x1 − x2)(z1 − z2)− (y1 − y2)(w1 − w2) > 0 (2.75)
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The canonical form can be computed by a triangulation argument given in [26].

Ω((G(2, 4)2)≥0) =
dx1dy1dz1dw1dx2dy2dz2dw2(x1z2+x2z1+y1w2+y2w1)

x1x2y1y2z1z2w1w2[(x1−x2)(z1−z2)+(y1−y2)(w1−w2)]
(2.76)

The 9 poles appearing in the denominator account for the boundaries defined by the

9 inequalities. Note that the form is symmetric under exchanging 1↔ 2, as expected

from the action of S2.

Let us illustrate the simple method by which this result is obtained by looking at

a smaller example: a 4-dimensional boundary where y1,2 = w1,2 = 0. The geometry

is then simply given by

x1,2 > 0, z1,2 > 0, (x1 − x2)(z1 − z2) < 0 (2.77)

But this can clearly be triangulated (see Section 2.2) in two pieces. We either have

z1 > z2 > 0 and x1 < x2, or vice-versa. For instance we can trivially parametrize the

region z1 > z2 > 0 by writing z2 = a, z1 = a + b with a > 0, b > 0 and so the form is

da db/ab = dz2dz1/z2(z1 − z2). Thus the full form is

dx1dx2dz2dz2 ×
(

1

z2(z1 − z2)

1

x1(x2 − x1)
+

1

z1(z2 − z1)

1

x2(x1 − x2)

)
(2.78)

=
dx1dx2dz1dz2(x2z1 + x1z2)

x1x2z1z2(x2 − x1)(z1 − z2)
. (2.79)

which of course can be obtained from (2.76) by taking residues at the corresponding

boundaries.
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Chapter 3

Canonical forms

The main purpose of this section is to establish a list of methods and strategies

for computing the canonical form of positive geometries. A summary of the main

methods is given below.

• Direct construction from poles and zeros: We propose an ansatz for the

canonical form as a rational function and impose appropriate constraints from

poles and zeros.

• Triangulations: We triangulate a generalized polytope by generalized sim-

plices and sum the canonical form of each piece.

• Pushforwards: We find morphisms from simpler positive geometries to more

complicated ones, and apply the pushforward via Heuristic 2.3.1.

• Integral representations: We find expressions for the canonical form as a

volume integral over a “dual” geometry, or as a contour integral over a related

geometry.
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Figure 3.1: A quadrilateral

3.1 Direct construction from poles and zeros

Suppose A is defined by homogeneous polynomial inequalities qi(Y ) ≥ 0 indexed by

i for Y ∈ Pm. Then an ansatz for the canonical form is the following:

Ω(A) =
q(Y ) 〈Y dmY 〉∏

i qi(Y )
(3.1)

for some homogeneous polynomial q(Y ) in the numerator which must satisfy:

deg q =
∑
i

deg qi −m− 1 (3.2)

so that the form is invariant under local GL(1) action Y → α(Y )Y . The method of

undetermined numerator is the idea that the numerator can be solved by imposing

residue constraints. Note that this method operates under the assumption that a

solution to the numerator exists, which in most cases is a non-trivial fact. We illustrate

the idea with a few simple examples below.

Example 3.1.1. Consider the quadrilateral A := A(Z1, Z2, Z3, Z4) in P2(R) with facets

given by the four inequalities q1 = x ≥ 0, q2 = 2y − x ≥ 0, q3 = 3− x− y ≥ 0, q4 =
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2− y ≥ 0. The picture is given in Figure 3.1, and the vertices are

ZI
1 = (1, 0, 0), ZI

2 = (1, 2, 1), ZI
3 = (1, 1, 2), ZI

4 = (1, 0, 2) (3.3)

with (1, x, y) ∈ P2(R) as usual.

We will derive the canonical form with the following ansatz.

Ω(A) =
(A+Bx+ Cy)dxdy

x(2y − x)(3− x− y)(2− y)
(3.4)

for undetermined coefficients A,B,C. Note that the numerator must be linear

by (3.2).

There are six (4 choose 2) double residues. Those corresponding to vertices of the

quadrilateral must have residue ±1 (the sign is chosen based on orientation), while

those corresponding to two opposite edges must have residue zero. We list these

requirements as follows, where we denote Resji := Resqj=0Resqi=0Ω(A).

Res12 =
A

12
= +1 (3.5)

Res23 =
A+ 2B + C

6
= +1 (3.6)

Res34 =
A+B + 2C

3
= +1 (3.7)

Res41 =
A+ 2C

4
= +1 (3.8)

Res13 =
A+ 3C

6
= 0 (3.9)

Res24 = −A+ 4B + 2C

12
= 0 (3.10)

By inspection, the only solution is (A,B,C) = (12,−1,−4). It follows that

Ω(A) =
(12− x− 4y)dxdy

x(2y − x)(3− x− y)(2− y)
(3.11)
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We observe that since there are many more equations than undetermined coefficients,

the existence of a solution is non-obvious.

This method becomes complicated and intractable pretty fast. However, in the

case of cyclic polytopes, a general solution was identified in [18] which we review

below.

3.1.1 Cyclic polytopes

We now apply the numerator method to the cyclic polytope geometry, de-

scribed in [18]. Let us illustrate how it works for the case of a quadrilat-

eral A := A(Z1, Z2, Z3, Z4). We know that the form must have poles when

〈Y 12〉, 〈Y 23〉, 〈Y 34〉, 〈Y 41〉 → 0; together with weights this tells us that

Ω(A) =
LIY

I

2!〈Y 12〉〈Y 23〉〈Y 34〉〈Y 41〉
(3.12)

for some LI . We must also require that the codimension 2 singularities of this form

only occur at the corners of the quadrilateral. But for generic L, this will not be

the case; writing (ij) for the line 〈Y ij〉 = 0, we will also have singularities at the

intersection of the lines (12) and (34), and also at the intersection of (23), (14). The

numerator must put a zero on these configurations, and thus we have that L must be

the line that passes through (12) ∩ (34) as well as (23) ∩ (41):

LI = εIJK((12) ∩ (34))J((23) ∩ (14))K (3.13)

If we expand out (ab) ∩ (cd) := Za〈bcd〉 − Zb〈acd〉 = −Zc〈abd〉 + Zd〈abc〉, we can

reproduce the expressions for this area in terms of triangulations.

Note that we can interpret the form as the area of the dual quadrilateral bounded

by the edges Z1, Z2, Z3, Z4 and hence the vertices W1 = (12),W2 = (23),W3 =
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(34),W4 = (41). See (2.63) for the notation. By going to the affine space with

Y at infinity as Y = (1, 0, 0), Wi = (1,W ′
i ), we find the familiar expression for the

area of a quadrilateral with the vertices W ′
1,W

′
2,W

′
3,W

′
4,

(W ′
3 −W ′

1)× (W ′
4 −W ′

2) (3.14)

where the × denotes the Euclidean cross product.

We can continue in this way to determine the form for any polygon. For instance

for a pentagon A, we have the general form

Ω(A) =
LIJY

IY J

2!〈Y 12〉〈Y 23〉〈Y 34〉〈Y 45〉〈Y 51〉
(3.15)

but now the numerator must put a zero on all the 5 bad singularities where (12), (34)

intersect, (23), (45) intersect and so on. Thus LIJ must be the unique conic that

passes through all these five points. If we let BI
i = [(i, i+1)∩ (i+2, i+3)]I be the bad

points, then

LIJ = ε(I1J1)···(I5J5)(IJ)(B1B1)(I1J1) · · · (B5B5)(I5J5) (3.16)

where ε(I1J1)(I2J2)···(I6J6) is the unique tensor that is symmetric in each of the (IJ)’s

but antisymmetric when swapping (IiJi)↔ (IjJj).

This construction for the numerator generalizes for all n-gons. Just from the poles

Ω(A) takes the form

Ω(A) =
LI1···In−3Y

I1 · · ·Y In−3

〈Y 12〉 · · · 〈Y n1〉
(3.17)

Now there are N = n(n − 1)/2 − n = (n2 − 3n)/2 “bad” intersections Ba,b of non-

adjacent lines, BI
a,b = [(a, a + 1) ∩ (b, b + 1)]I . But there is a unique (up to scale)

numerator that puts a zero on these bad intersections:

LI1···In−3 = ε
(I

(1)
1 ···I

(1)
n−3)(I

(2)
1 ···I

(2)
n−3)···(I(N)

1 ···I(N)
n−3)(I1···In−3)

N∏
S=1

B
I
(S)
1
S · · ·BI

(S)
n−3

S (3.18)
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where we have re-labeled the intersections as BS for S = 1, . . . , N . Note that in

order for the ε tensor to exist, it is crucial that N+1 is the dimension of rank n−3

symmetrc tensors on R3. It is interesting that the polygon lies entirely inside the

zero-set defined by the numerator: the “bad” singularities are “outside” the good

ones.

For higher-dimensional polytopes the story is much more interesting as described

in [18]. Here we content ourselves with presenting one of the examples which illus-

trates the novelties that arise. Consider the m = 3 cyclic polytope for n = 5, with

vertices Z1, . . . , Z5. The boundaries of the cyclic polytope in m = 3 dimensional

projective space are of the form (1, i, i + 1) and (n, j, j + 1), which here are simply

(123), (134), (145), (125), (235), (345).

LIJY
IY J

〈Y 123〉〈Y 134〉〈Y 145〉〈Y 125〉〈Y 235〉〈Y 345〉
(3.19)

The numerator corresponds to a quadric in P3 which has 4 × 5/2 = 10 degrees of

freedom, and so can be specified in principle by vanishing on 9 points.

Naively, however, much more is required of the numerator than vanishing on

points. The only edges of this polytope correspond to the lines (i, j), but there are six

pairs of the above faces that do not intersect on lines (i, j); we find spurious residues

at L1 = (123)∩ (145), L2 = (123)∩ (345), L3 = (134)∩ (125), L4 = (134)∩ (235), L5 =

(145) ∩ (235), L6 = (125) ∩ (345). So the numerator must vanish on these lines;

the quadric must contain the six lines Li. Also the zero-dimensional boundaries

must simply correspond to the Zi, while there are six possible intersections of the

denominator planes that are not of this form, so the numerator must clearly vanish

on these six points X1,...,6 as well. Of course these 6 “bad points” all lie on the “bad

lines”, so if the numerator kills the bad lines the bad points are also killed.

But there is a further constraint that was absent for the case of the polygon. In the

polygon story, the form Ω was guaranteed to have sensible logarithmic singularities
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and we only had to kill the ones in the wrong spots, but even this is not guaranteed for

cyclic polytopes. Upon taking two residues, for generic numerators we can encounter

double (and higher) poles. Suppose we approach the point Y → Z1, by first moving

Y to the line (13) which is the intersection of the planes (123), (134). If we put

Y = Z1 +yZ3, then two of the remaining poles are 〈Y 145〉 = −y〈1345〉 and 〈Y 125〉 =

y〈1235〉, and so we get a double-pole y2. In order to avoid this and have sensible

logarithmic singularities, the numerator must vanish linearly as Y → Z1; the same

is needed as Y → Z3 and Y → Z5. Thus in addition to vanishing on the six lines

Li, the numerator must also vanish at Y → Z1, Z3, Z5. It is not a-priori obvious that

this can be done; however quite beautifully the geometry is such that the 6 lines Li

break up into two sets, which mutually intersect on the 9 points Xi and Z1,3,5, with

three intersection points lying on each line. The numerator can thus be specified by

vanishing on these points, which guarantees that it vanishes as needed on the lines.

More intricate versions of the same phenomenon happens for more general cyclic

polytopes: unlike for polygons, apart from simply killing “bad points” the zero-set of

the numerator must “kiss” the positive geometry at codimension 2 and lower surfaces,

to guarantee getting logarithmic singularities. The form for m = 4 cyclic polytopes

were constructed in this way. We have thus seen what this most brute-force, direct

approach to determining the canonical form by understanding zeros and poles entails.

The method can be powerful in cases where the geometry is completely understood,

though as we have seen this can be somewhat involved even for polytopes.

3.1.2 Generalized polytopes on the projective plane

Let us return to the study of positive geometries A in P2, in view of the current

discussion of canonical forms. In Sections 2.4.3 and 2.5.4 we explained that under

the assumptions of Appendix A of [2], the boundary components are smooth curves

and are thus either linear or quadratic.
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Let us suppose that we allow the boundary components to be singular curves

p(Y ) = 0, as in Section 2.4.4, and furthermore we now allow p(Y ) to be of arbitrary

degree d, and have r double-points. For a degree d curve with r double-points,

the genus is given by (d − 1)(d − 2)/2 − r. Now recall that curves of non-zero

genus admit non-trivial holomorphic top forms, which leads to non-unique canonical

forms, thus violating our assumptions. We therefore require the curve to have (d −

1)(d − 2)/2 double-points and hence genus zero. This means that p(Y ) = 0 can be

rationally parametrized as Y I = Y I(t), or equivalently, that the normalization of the

curve P (Y ) = 0 is isomorphic to P1. In practice, it is easy to reverse-engineer the

polynomial defining the curve of interest from a rational parametrization. Working

with co-ordinate Y = (1, x, y), a rational parametrization is of the form x(t) =

Px(t)/Q(t), y(t) = Py(t)/Q(t). Then, the resultant p(x, y) = R(Px(t)−xQ(t);Py(t)−

yQ(t)) gives us the polynomial defining the parametrized curve. For instance taking

x(t) = (t(t2 + 1))/(1 + t4), y(t) = (t(t2 − 1))/(1 + t4) yields the quartic “lemniscate”

curve p(x, y) = 4((x2 + y2)2 − (x2 − y2)), which has three double-points; one at

x = y = 0 and two at infinity.

As for the canonical form, the numerator (see Section 3.1) must be chosen to

kill all the undesired residues. Recall that for a d-gon, the numerator has to put

zeros on d(d − 1)/2 − d = (d2 − 3d)/2 points, and that there is a unique degree

(d−3) polynomial that passes through those points, which determines the numerator

uniquely up to overall scale. It is interesting to consider an example which is the

opposite extreme of a polygon. Consider an irreducible degree d polynomial, with

(d − 1)(d − 2)/2 = (d2 − 3d)/2 + 1 singular points. To get a positive geometry, we

can kill the residues on all but one of these singular points, leaving just a single zero-

dimensional boundary just as in our teardrop cubic example of Section 2.4.4. These

are the same number (d2− 3d)/2 of points we want to kill as in the polygon example,

and once again there is a unique degree (d−3) curve that passes through those points.
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Figure 3.2: An “ampersand” curve with boundary given by a quartic polynomial.
The shaded “teardrop” is a positive geometry.

An example is provided by the “ampersand” geometry (see Figure 3.2) associated

with the quartic curve P (x, y) = (y2 − x2)(x− 1)(2x− 3)− 4(x2 + y2 − 2x)2, which

has three singular points at (0, 0), (1, 1), (1,−1). If we choose the numerator to be

the line that kills e.g. the points (0, 0) and (1,−1), then we get a positive geometry

corresponding to the “teardrop” in the upper quadrant.

Two more examples: consider a region bounded by two quadrics Q1 and Q2. The

numerator of the form is Y ·L for some line L. Now two generic quadrics intersect at

four points P1, P2, P3, P4. Mirroring the determination of the form for the case of the

quadrilateral, we can choose the line L appearing in the numerator to kill two of Pi’s,

and this will give us the canonical form associated with the geometry (Q1,2 ·Y Y ) ≥ 0.

Similarly, consider a positive geometry defined by a singular cubic C and a line W .

Again we have a numerator of the form Y ·L. The line W intersects the cubic in three

points P1, P2, P3. If we pick the the line L to pass through one of the Pi as well as the

singular point of the cubic, we get the canonical form associated with the geometry.

These constructions can be extended to higher dimensions, where (as with the cyclic

54



polytope example) we will generically encounter numerators whose zeros touch the

positive geometry on co-dimension two (and lower dimensional) boundaries.

3.2 Triangulations

Recall from Section 2.2 that if a positive geometry is triangulated by a collection

of other positive geometries, its canonical form is given by the sum of the canonical

forms of the collection. We now apply this method to compute the canonical form of

various generalized polytopes.

3.2.1 Projective polytopes

Let A := A(Z1, . . . , Zn) be a convex projective polytope. The canonical form Ω(A)

can be obtained from a triangulation of A (see Section 2.2). Let ∆1,∆2, . . . ,∆r be

a triangulation of A into simplices. For simplicity let us assume that the simplex

interiors are mutually non-overlapping. The canonical form Ω(A) is given by

Ω(A) =
∑
i

Ω(∆i) (3.20)

The fact that the simplicial canonical forms add is dependent on the assumption

that the orientation of the interior of ∆i agrees with that of A for each i. More

generally, for any polytopal subdivision of A into polytopes Ai (i.e. a “triangulation”

by polytopes), we have

Ω(A) =
∑
i

Ω(Ai). (3.21)

We begin with the simplest case: line segments in P1(R).
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Example 3.2.1. Consider a triangulation of the segment [a, b] from Example 2.2 by a

sequence of successively connected segments:

[a, b] =
r⋃
i=1

[ci−1, ci] (3.22)

where a = c0 < c1 < . . . < cr = b. It is straightforward to check that

Ω([a, b]) =
(b− a)dx

(b− x)(x− a)
=

r∑
i=1

(ci − ci−1)dx

(ci − x)(x− ci−1)
=

r∑
i=1

Ω([ci−1, ci]) (3.23)

More generally, for the positive geometry A =
⋃
i[ai, bi] ⊂ P1 which is triangulated

by finitely many line segments with mutually disjoint interiors, the canonical form is:

Ω

(⋃
i

[ai, bi]

)
=
∑
i

Ω([ai, bi]) (3.24)

Example 3.2.2. Suppose A is a convex projective polytope, and Z∗ is a point in its

interior, then A is triangulated by

A =
⋃

facets

Conv(Z∗, Zi1 , Zi2 , . . . , Zim) (3.25)

where we take the union over all choice of indices i1, . . . , im for which Conv(Zi1 , Zi2 . . . , Zim)

is a facet of the polytope, and we avoid repeated permutations of the same set of

indices. For each facet, we order the indices so that Z∗, Zi1 , . . . , Zim is positively

oriented. It follows that

Ω(A) =
∑
facets

[∗, i1, . . . , im] (3.26)

Recalling the facets of cyclic polytopes from Section 2.5.2, we have the following

corollaries.
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Example 3.2.3. The canonical rational function of a cyclic polytope A for even m can

be obtained as follows.

Ω(A) =
∑

1≤i1−1<i1<···<im/2−1<im/2≤n+1

[∗, i1−1, i1, . . . , im/2−1, im/2] (3.27)

For arbitrary Z∗, this is called a CSW triangulation. For Z∗ = Zi for some i, this is

called a BCFW triangulation.

Example 3.2.4. The canonical rational function of a cyclic polytope A for odd m can

be obtained as follows.

Ω(A) =
∑

2≤i1−1<i1<···<i(m−1)/2−1<i(m−1)/2≤n

−[∗, 1, i1−1, i1, . . . , i(m−1)/2−1, i(m−1)/2](3.28)

+
∑

1≤i1−1<i1<···<i(m−1)/2−1<i(m−1)/2≤n−1

[∗, i1−1, i1, . . . , i(m−1)/2−1, i(m−1)/2, n](3.29)

for any Z∗. If we set Z∗ = Z1 or Zn, then we get

Ω(A) =
∑

2≤i1−1<i1<···<i(m−1)/2−1<i(m−1)/2≤n−1

[1, i1−1, i1, . . . , i(m−1)/2−1, i(m−1)/2, n](3.30)

3.2.2 Generalized polytopes on the projective plane

In this section we verify that the canonical form for the “pizza slice” geometry from

Example 2.5.1 can be obtained by triangulation.

Example 3.2.5. Recall the “pizza slice” geometry T (θ1, θ2) from Example 2.5.1. For

simplicity, we will assume reflection symmetry about the y-axis and let T (θ) :=

T (θ, π−θ) for some 0 ≤ θ < π/2. Denote the vertices of the geometry by ZI
i ∈ P1(R)

for i = 1, 2, 3, where

ZI
1 = (1, 0, 0), ZI

2 = (1, cos θ, sin θ), ZI
3 = (1,− cos θ, sin θ) (3.31)
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The geometry is clearly the union of a segment of the disk (see Example 2.4.2) and a

triangle (see Section 2.4.2).

T (θ) = S(sin θ) ∪ A(Z1, Z2, Z3) (3.32)

It follows that

Ω(T (θ)) = Ω(S(sin θ)) + Ω(A(Z1, Z2, Z3))

=
(2 cos θ)dxdy

(1−x2−y2)(y− sin θ)
+

(2 sin2 θ cos θ)dxdy

(sin θ−y)(−x sin θ+y cos θ)(x sin θ+y cos θ)

=
2 cos θ(y + sin θ)dxdy

(1− x2 − y2)(−x sin θ+y cos θ)(x sin θ+y cos θ)
(3.33)

which is equivalent to (2.67) for θ1 = θ and θ2 = π−θ, with y−sin θ = 0 as a spurious

pole.

3.3 Pushforwards

Recall from Heuristic 2.3.1 that for any morphism Φ : (X,X≥0)→ (Y, Y≥0), we expect

the pushforward to preserve the canonical form:

Φ∗(Ω(X,X≥0)) = Ω(Y, Y≥0) (3.34)

This procedure is useful for computing the canonical form of the image when the

canonical form of the domain is already known. However, very often morphisms of

degree > 1 are required, which are challenging to construct. We demonstrate a few

non-trivial examples in this section.
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3.3.1 Projective simplices

We consider morphisms Φ : (Pm,∆)→ (X,X≥0) from projective simplices to positive

geometries X≥0. In most cases we will assume that ∆ = ∆m is the standard simplex.

We begin with morphisms Φ : (Pm,∆m)→ (X,X≥0) of degree one, in which case

X≥0 is ∆−like (as defined in Section 2.4.1), and its canonical form is given by,

Ω(X,X≥0) = Φ∗

(
m∏
i=1

dαi
αi

)
(3.35)

where (1, α1, . . . , αm) ∈ Pm. The simplest ∆-like positive geometry is a projective

simplex.

Example 3.3.1. A projective simplex ∆ ⊂ Pm(R) is isomorphic to the standard sim-

plex ∆m by the following map Φ : (Pm,∆m)→ (Pm,∆),

Φ(α) =
m∑
i=0

αiZi+1 (3.36)

where Zi ∈ Pm(R) are the vertices of ∆ for i = 1, . . . ,m+1. As a matter of convention,

the projective variables and the vertices are indexed slightly differently. Note that

the positive part ∆m (i.e. αi > 0 for each i) is mapped diffeomorphically onto the

interior of ∆.

The canonical form on ∆ is therefore

Ω(∆) = Φ∗

(
m∏
i=1

dαi
αi

)
(3.37)

where we have made the “gauge choice” α0 = 1 as usual. Alternatively, pulling back

the form (2.14) onto ∆m gives the form on α-space.

The image of the hyperplane {αi = 0} ⊂ Pm intersects ∆ along the facet opposite

the vertex Zi+1. Taking the residue of Ω(∆m) along αi = 0 before pushing forward
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gives the canonical form of that facet. We note that the pole for localizing on the

facet opposite Z1 is hidden, as explained in Section 2.4.1.

We now consider higher degree morphisms Φ : (Pm,∆m) → (X,X≥0). Let us

assume for the moment that X = Pm. We now provide a general analytic argument for

why the pushforward should have no poles on X>0. The behavior of the pushforward

near the boundary of X≥0 is more subtle and will be discussed subsequently on a

case-by-case basis.

Suppose the map is given by α 7→ Φ(α) and let β0 be a point in X>0. Furthermore,

assume if possible that the pushforward has a singularity at β0. It follows that the

Jacobian J(α) of Φ(α) must vanish at some point α0 for which Φ(α0) = β0. Let

β = Φ(α) which we expand near the critical point,

β = Φ(α0) + λ
∑
i

εi
∂Φ(α0)

∂αi
+

1

2
λ2
∑
i,j

εiεj
∂2Φ(α0)

∂αi∂αj
+O(λ3) (3.38)

where we have set α = α0+λε with λ a small parameter and ε a constant vector. Since

the Jacobian vanishes at α0, a generic point β in a small neighborhood of β0 cannot be

approximated by the linear term. However, unless the quadratic term degenerates, β

can be approximated quadratically by choosing ε so that the first variation vanishes.

Namely,

∑
a

εi
∂Φ(α0)

∂αi
= 0 (3.39)

It follows that the variation is even in λ, so there are two roots λ± (corresponding to

points α±, respectively) that approximate β, with λ+ = −λ−. Since the Jacobian is

clearly linear in λ for small variations near α0, therefore J(α+) = −J(α−) + O(λ2
−).

Since the pushforward is a sum of 1/J(α) ∼ 1/λ over all the roots, the roots corre-

sponding to α± therefore cancel in the limit β → β0, and there is no pole.
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We now show a few examples of higher degree pushforwards, beginning with self-

morphisms of the standard simplex.

Example 3.3.2. Let Φ : (Pm,∆m)→ (Pm,∆m) be a morphism of the standard simplex

with itself, defined by

Φ(1, α1, . . . , αm) = (1, β1, ..., βm) (3.40)

βj =
m∏
i=1

α
aij
i (3.41)

where aij is an invertible integer matrix. We assume the determinant is positive so

that the map is orientation preserving. While this map is a self-diffeomorphism of

Int(∆m), it is not necessarily one-to-one on Pm. The pushforward gives

Φ∗

(
m∏
i=1

dαi
αi

)
=
∑
roots

dmβ
∂(β1...βm)
∂(α1...αm)

∏m
i=1 αi

=
deg(Φ)

det(aij)

m∏
j=1

dβj
βj

(3.42)

where deg(Φ) is the number of roots, and we have substituted the Jacobian:

∂(β1 . . . βm)

∂(α1 . . . αm)
= det(aij)

∏m
j=1 βj∏m
i=1 αi

(3.43)

It is easy to see that the degree of Φ must be | det(aij)|: after an integral change of

basis, the matrix (aij) can be put into Smith normal form, that is, made diagonal.

For a diagonal matrix (aij) it is clear that the degree of Φ is simply the product of

diagonal entries. Thus (3.42) verifies Heuristic 2.3.1 in this case. By contrast, we

note that the pull-back along Φ gives Φ∗(Ω(∆m)) = det(aij)Ω(∆m), which does not

preserve leading residues.

The next few examples explore the pushforward in one dimension. They are all

applications of Cauchy’s theorem in disguise.

Example 3.3.3. A simple non-trivial example is a quadratic pushforward Φ : ∆1 →

∆1 given by Φ(1, α) = (1, aα2 + 2bα) for some real constants a > 0; b ≥ 0. The
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assumptions suffice to make Φ a self-morphism of ∆1. Setting (1, β) = Φ(1, α) we get

two roots α± from solving a quadratic equation. The pushforward is therefore

Φ∗(d logα) =
∑
±

d log (α±) =
∑
±

d log

(
−b±

√
b2 + aβ

a

)
(3.44)

Since we are summing over roots, a standard Galois theory argument implies that the

result should be rational. Indeed, the square-root disappears, and direct computation

gives Φ∗(d logα) = d log β.

We can also do the sum without directly solving the quadratic equation. The

result should only depend on the sum and product of the roots x±, since the result

must be a rational function.

Φ∗(d logα) =
∑
±

dβ

α±
(
dβ
dα

)
±

=
∑
±

1

2α±(aα± + b)
(3.45)

Substituting α±(aα±+ b) = β− bα±, which comes from the original equation, we get

f∗(d logα) =
∑
±

1

2(β − bα±)
=

2β − b(α+ + α−)

2(β2 − bβ(α+ + α−) + b2α+α−)
(3.46)

We now use the identities α+ + α− = −2b/a and α+α− = −β/a, which give the

desired result Φ∗(d logα) = d log β.

Example 3.3.4. We now go ahead and tackle the same example for a polynomial

of arbitrary degree. Suppose Φ is a self-morphism of ∆1 given by β = f(α) =

αn + an−1α
n−1 + . . .+ a1α. We first define the holomorphic function

g(α) =
1

α(f(α)− β)
(3.47)
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which has no pole at infinity since f(α) is at least of degree one. The sum over all

the residues of the function is therefore zero by Cauchy’s theorem. It follows that

− 1

β
+
∑
i

1

αif ′(αi)
= 0 (3.48)

where we sum over all the roots αi of f(α) = β. Therefore,

Φ∗(d logα) =
∑
i

dβ

αif ′(αi)
= d log β (3.49)

Finally, we consider a simple but instructive pushforward of infinite degree.

Example 3.3.5. Consider the map Φ : (P1, [−π/2, π/2]) → (P1, [−1, 1]) between two

closed line segments given by:

Φ(1, θ) = (1, sin θ) (3.50)

While this map is not rational, we can nevertheless verify Heuristic 2.3.1 for Φ by

explicit computation. For any point (1, sin θ) in the image, there are infinitely many

roots of (3.50) given by θn := θ+ 2πn and θ′n := −θ+ π(2n+ 1) for n ∈ Z. It is easy

to show that both sets of roots contribute the same amount to the pushforward, so

we will just sum over θn twice,

Φ∗

(
πdθ

(π/2− θ)(θ + π/2)

)
= 2

∑
n∈Z

πdx

(π/2− θn)(θn + π/2) cos θn
= 2

dx

cos2 θ

=
2dx

(1− x)(x+ 1)
(3.51)

which of course is the canonical form of [−1, 1]. The infinite sum can be computed

by an application of Cauchy’s theorem.

We note here that our definition of the pushforward only allows finite degree

maps while Φ is of infinite degree. Nonetheless, it appears that Heuristic 2.3.1 still
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holds when the pushforward is an absolutely convergent series like (3.51). We stress

that some pushforwards give conditionally convergent series, such as the morphism

(P1,∆1) → (P1, [0, 1]) given by (1, x) → (1, e−x), in which case the pushforward is

ill-defined since there is no canonical order in which to sum the roots.

3.3.2 Projective polytopes from Newton polytopes

In this section we discuss morphisms from (Pm,∆m) to convex polytopes (Pm,A)

and their pushforwards. Our main results here overlap with a discussion on toric

varieties in Section 5.6 of [2]. However, our intention here is to provide a self-contained

discussion. Our focus here is also more geometric in nature, emphasizing the fact that

any such morphism restricts to a diffeomorphism Int(∆m)→ Int(A).

Now let A ⊂ Pm be a convex polytope in projective space with vertices Zi for

i = 1, . . . , n. Let z1, z2, . . . , zn ∈ Zm+1 be an integer matrix with the same oriented

matroid as Z1, . . . , Zn. That is,

〈Zi0 · · ·Zim〉 and 〈zi0 · · · zim〉 have the same sign (3.52)

for all 1 ≤ i0 < · · · < im ≤ n. Here two real quantities have the same sign if

they are both positive, both negative, or both zero. For simplicity we now assume

that zi = (1, z′i) = (1, z′1i, z
′
2i, . . . , z

′
mi). Furthermore, let us define a rational map

Φ : (Pm,∆m)→ (Pm,A) given by

Φ(X) =
∑
i

Ci(X)Zi (3.53)

Ci(X) := Xzi := X
z′1i
1 X

z′2i
2 · · ·X

z′m,i
m (3.54)

where (1, X) ∈ Pm. This is called the Newton polytope map and the polytope with

integer vertices zi is called the Newton polytope.
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Figure 3.3: A Newton pentagon (left) with vertices z′ =
((0, 0), (1, 0), (2, 1), (1, 2), (0, 1)) and the image of the corresponding diffeomor-
phism Φ(X) (right). The dark lines in the interior of the pentagon (right) denote
lines of constant X1 or X2. While the two pentagons are not identical as sets, they
do have the same oriented matroid.

We make two claims in this section, beginning with:

Claim 1: The map Φ is a morphism provided that (3.52) holds. (3.55)

That is, it restricts to a diffeomorphism on Int(∆m) → Int(A). This is a non-

trivial fact for which two proofs are provided in Appendix E of [2]. At the heart

of Claim (3.55) is that the Jacobian of Φ is uniformly positive on Int(∆m):

J(Φ) =
∑

1≤i0<···<im≤n

Ci0 · · ·Cim 〈zi0 · · · zim〉 〈Zi0 · · ·Zim〉 (3.56)

where J(Φ) denotes the Jacobian of Φ with respect to ui := log(Xi), which is clearly

positive provided that zi and Zi have the same oriented matroid (see (3.52)). While

this is only a necessary condition for Claim (3.55), it is nevertheless the key to prov-

ing it. We provide a graphical example of the diffeomorphism for the pentagon in

Figure 3.3.
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This establishes the way to our second claim, which is an instance of Heuris-

tic 2.3.1.

Claim 2: The canonical form of the polytope is given by the pushforward:

Ω(A) = Φ∗

(
dmX∏m
a=1Xa

)
(3.57)

For computational purposes, a more convenient way to express the (canonical rational

function of the) pushforward is the following integral formula:

Ω(A)(Y ) =

∫
dmX∏m
a=1Xa

δm(Y ; Φ(X)) (3.58)

where for any two points Y, Y ′ in projective space Pm, the integral

δm(Y, Y ′) =
1

m!

∫
dρ

ρ
δm+1(Y − ρY ′) (3.59)

is the delta function with weights (−m−1, 0). Here the sum over pre-images appearing

in the pushforward is equivalent to the sum over solutions to the constraints imposed

by the delta functions. The relevant Jacobian factors are taken care of by the delta

functions as well. We treat the delta functions formally as an “analytic” object

without taking absolute values in the Jacobian factor, and we sum over all complex

roots. In most cases numerical methods are needed to compute the pushforward,

which we have done extensively as verification of Claim (3.57). However, here we

show a simple case where the pushforward can be done by hand.
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Example 3.3.6. Let us consider a quadrilateral A on the projective plane. By a

convenient gauge-fixing, we will take the external data and Y to be of the form

Z =



1 0 0

0 1 0

0 0 1

a −1 b


, Y = (y, 1, x) (3.60)

We can trivially compute the canonical rational function by e.g. triangulation as

[123] + [134], and finding

Ω(A) =
(ab+ ax+ by)

xy(a+ y)(b+ x)
dxdy (3.61)

and we will now reproduce this result from the Newton polytope map (3.53), with the

Newton polytope being the square with vertices (1, 0), (1, 1), (0, 1), (0, 0), respectively.

Thus our map is

Y = Φ(X) = X1Z1 +X1X2Z2 +X2Z3 + Z4 =

(
X1 + a

X1X2 − 1
, 1,

X2 + b

X1X2 − 1

)
(3.62)

which are projective equalities. We must solve the equations

(X1X2 − 1)y = X1 + a, (X1X2 − 1)x = X2 + b (3.63)

We then have

d2X

X1X2

= dxdy × (X1X2 − 1)2

X1X2(xX1 + yX2 − 1)
(3.64)

It therefore suffices to show that

∑
roots

(X1X2 − 1)2

X1X2(xX1 + yX2 − 1)
=

(ab+ ax+ by)

xy(a+ y)(b+ x)
(3.65)
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If we define ρ = (X1X2 − 1), then we have X1 = ρy − a,X2 = ρx − b and so

(ρ+ 1) = (ρy − a)(ρx− b). So ρ satisfies the quadratic equation

ρ2 − (1 + ax+ by)

xy
ρ+

ab− 1

xy
= 0 (3.66)

which has two roots ρ±. Note that

xX1 + yX2 − 1 = x(ρy − a) + y(ρx− b)− 1 = 2xy

(
ρ− 1

2

(1 + ax+ by)

xy

)
(3.67)

Comparing with the quadratic equation for ρ, we can identify the term corresponding

to the sum of the roots (ρ+ + ρ−), giving:

(xX1 + yX2 − 1)± = ±xy(ρ+ − ρ−) (3.68)

Thus, the sum over roots becomes

1

xy(ρ+ − ρ−)
×
(

ρ2
+

(ρ+y − a)(ρ+x− b)
−

ρ2
−

(ρ−y − a)(ρ−x− b)

)
=

1

xy

ab(ρ+ + ρ−)− ρ+ρ−(by + ax)

(ρ+ρ−y2 − a(ρ+ + ρ−)y + a2)(ρ+ρ−x2 − b(ρ+ + ρ−)x+ b2)
(3.69)

And reading off

ρ+ρ− =
ab− 1

xy
, ρ+ + ρ− =

1 + ax+ by

xy
(3.70)

from the quadratic equation we finally find that (3.69) equals

ab+ ax+ by

xy(a+ y)(b+ x)
(3.71)

as expected.
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3.3.3 Recursive properties of the Newton polytope map

We now derive the pushforward identity (3.57) for the Newton polytope by explicitly

manipulating the pushforward computation and applying induction on dimension. In

fact, we will derive a more general version for lower dimensional polytopes in Pm(R).

The statement is the following.

Consider the variety H ⊂ Pm defined by linear equations Y ·H1, . . . , Y ·Hs = 0 for

some dual vectors H1, . . . , Hs ∈ Pm(R) with Y ∈ Pm. Let A denote a convex polytope

in H(R) of dimension D = m−s with vertices Z1, . . . , Zn. Let Φ : (PD,∆D)→ (H,A)

be a morphism defined by a Newton polytope with vertices zi = (1, z′i) ∈ RD+1.

Furthermore, we assume that A and the Newton polytope have the same oriented

matroid. Namely, there exist constant vectors K1, . . . , Ks ∈ Pm(R) such that

〈K1 · · ·KsZi0 · · ·ZiD〉 and 〈zi0 · · · ziD〉 have the same sign (3.72)

for any set of indices 1 ≤ i0, . . . , iD ≤ n.

The D = 0 case is trivial. Now assume D > 0. Let B denote a facet of A with

vertices Zj1 , . . . , Zjp , and letB denote the corresponding facet of the Newton polytope.

We now argue that there exists a change of variables (X1, . . . , XD) → (U1, . . . , UD)

given by Xb =
∏D

a=1 Ua
αab for some invertible integer matrix αab that has the following

properties: (Note that we define Φ′(U) := Φ(ψ(U)) with X := ψ(U))

• The map U → X is a self-morphism of ∆D which may be of degree > 1. In

particular, it is a self-diffeomorphism of Int(∆D).

• The restriction of Φ′ to UD = 0 is a Newton polytope map ∆D−1 → B whose

Newton polytope has the same shape as B.

We construct the change of variables as follows. Let us begin by considering

the matrix formed by column vectors (zj1 , . . . , zjD , zj) where the first D columns are
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vertices of B, while zj is any vertex of the Newton polytope away from the facet.

Let α := (αab) be the inverse of the matrix, which has only rational components.

Finally, let us rescale the rows of αab (indexed by a) by positive integers so that all

its components are integral. This provides the change of variables X → U .

Let us redefine zi for every i to be the vertex of the Newton polytope with respect

to U , which again has the same oriented matroid as A. In particular, the matrix

of column vectors (zj1 , . . . , zjD , zj) is identity. Since every vertex of B is a linear

combination of zj1 , . . . , zjD , it must therefore have zero as its last component. Fur-

thermore, since every other vertex of the Newton polytope is a linear combination

of zj1 , . . . , zjD , zj with positive coefficient in zj, its last component must be positive.

Geometrically, this means that the UD = 0 limit is mapped to the facet B by Φ′.

Now, let Ψ : ∆D−1 → B denote the map Φ′ restricted to UD = 0, and let

wj1 , . . . , wjp ∈ RD denote the vertices of the Newton polytope of Ψ, which are equiv-

alently the vectors zj1 , . . . , zjp , respectively, with the last component removed. It

is straightforward to check that the Newton polytope of Ψ has the same oriented

matroid as B, so our induction hypothesis can be applied to Ψ.

We now argue that the pushforward by Φ′ has a pole at the boundary B with the

expected residue Ω(B). Let Y = Φ′(U). The main strategy is to observe that the

roots (U1, . . . , UD−1) are independent of UD near B.

Indeed, at Y ∈ B (i.e. UD = 0), the map becomes

Y = Cj1Zj1 + · · ·+ CjpZjp (3.73)

which gives us a collection of roots (U1, . . . , UD−1) independent of UD. It follows

therefore from the induction hypothesis that

∑
roots (U1,...,UD−1)

dD−1U

U1 · · ·UD−1

= Ψ∗

(
dD−1U

U1 · · ·UD−1

)
= Ω(B) (3.74)
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Moreover, the roots UD are given by the equation

〈K1 . . . KsY j1 . . . jD〉 ∼ U q
DF (U1, . . . , UD−1) (3.75)

for some function F independent of UD and some exponent q. Hence,

∑
roots UD

dUD
UD

= d log 〈K1 . . . KsY j1 . . . jD〉+ · · · (3.76)

where the · · · denotes term proportional to dU1, . . . , dUD−1.

It follows that in the limit Y → B, we have

∑
roots

dDU

U1 · · ·UD
=

 ∑
roots (U1,...,UD−1)

dD−1U

U1 · · ·UD−1

( ∑
roots UD

dUD
UD

)
+ · · · (3.77)

= Ψ∗

(
dD−1U

U1 · · ·UD−1

)
d log 〈K1 . . . KsY j1 . . . jD〉+ · · · (3.78)

= Ω(B) d log 〈K1 . . . KsY j1 . . . jD〉+ · · · (3.79)

where · · · denotes terms smooth in the limit, and we have applied (3.76) and (3.74).

This of course is the expected pole and residue.

Furthermore, by the discussion in Section 3.3.1, we find that there are no poles

on the interior of A.

Finally, we can re-express our result as a pushforward from X-space by the fol-

lowing:

Φ∗

(
dDX

X1 · · ·XD

)
= Φ′∗

(
dDU

U1 · · ·UD

)
(3.80)

since Φ′∗ = Φ∗ ◦ ψ∗, and ψ∗ pushes the standard simplex form on U to the same form

on X (see (3.3.2)).
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3.3.4 Newton polytopes from constraints

We now provide an alternative way of thinking about equation (3.58) as constraints

on C space. Most of the notation in this section is borrowed from Section 3.4.3.

The map X → Ci(X) parametrizes a subset of the projective space C ∈ Pn−1.

This subset can be equivalently “cut out” using constraints on the Ci variables.

n∏
i=1

C
wpi
i = 1 (3.81)

with one constraint for each value of p = 1, ..., n−m−1, where wpi is a constant integer

matrix to be determined. For the constraint to be well-defined projectively, we must

have
∑

iwpi = 0 for each p.

Substituting the parametrization Ci(X) =
∏m

a=0 X
zai
a , we find that

n∑
i=1

zaiwpi = 0 (3.82)

for each a, p.

We can now replace the pushforward formula (3.58) by an integral over all Ci with

imposed constraints.

Ω(A) =
1

m!

∫
dnC∏n
j=1Cj

[
n−m−1∏
p=1

δ

(
1−

n∏
i=1

C
wpi
i

)]
δm+1

(
Y −

n∑
i=1

CiZi

)
(3.83)

Note that each delta function in the square brackets imposes one constraint, and in

the absence of constraints we arrive at the familiar cyclic measure on C space.

It is evident that explicitly summing over the roots of these polynomial equations

will become prohibitively more difficult for large n. But of course there is a standard

approach to summing rational functions of roots of polynomial equations, making

use of the global residue theorem [35]. This method has been applied ubiquitously

in the literature on scattering amplitudes, from the earliest understanding of the
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relations between leading singularities and the connection between the twistor-string

and Grassmannian formalisms [36, 37, 38], to the recent application to scattering

equations [10, 11, 12, 13]. Appropriately taking care of some minor subtleties, the

global residue theorem also works for our problem, naturally connecting the Newton

polytope formula to triangulations of the polytope.

We now provide explicit computations for the quadrilateral and the pentagon with

constraints.

Example 3.3.7. For m = 2, n = 4, there is only one constraint given by

wp := w1p = (Q1,−Q2, Q3,−Q4) (3.84)

for some integers Qi > 0, i = 1, 2, 3, 4. The positivity of the Qi variables is imposed

by the positivity of the Newton polytope.

Now recall that delta functions can be identified with residues in the following

manner:

∫
dz δ(z)f(z) = Resz→0

(
1

z
f(z)

)
= f(0) (3.85)

We will therefore think of the delta function constraints appearing in the square

brackets (3.83) as residues, and apply the global residue theorem [35].

We have

Ω(A) =
1

2

∫
d4C

C1C2C3C4

[
CQ2

2 CQ4

4

CQ2

2 CQ4

4 − C
Q1

1 CQ3

3

]
δ3

(
Y −

4∑
i=1

CiZi

)
(3.86)

Here we have underlined the pole corresponding to the constraint. The reader should

imagine that the three remaining constraints (i.e. Y = C ·Z) also appear as poles, but

for notational convenience we will simply write them as delta functions. For higher

n, we will have additional constraints, and hence additional underlined polynomials.
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Now (3.86) instructs us to sum over all global residues where the four constraints

vanish, which in general is very hard to compute by explicit summation. However, the

global residue theorem vastly simplifies the problem. Note that there are eight poles

in our integral (i.e. four constraints plus the four cyclic factors Ci). In order to apply

the theorem, we will need to group the poles into four groups. Let us group the cyclic

factors with the underlined constraint, and each of the delta function constraints

forms its own group. It follows therefore that

Ω(A) = −1

2

4∑
i=1

∫
d4C

C1 . . . Ci . . . C4

[
CQ2

2 CQ4

4

CQ2

2 CQ4

4 − C
Q1

1 CQ3

3

]
δ3

(
Y −

4∑
i=1

CiZi

)
(3.87)

This gives us four residues corresponding to Ci → 0 for each i. Now the positivitiy of

Qi > 0 comes into play. Clearly, the C2, C4 → 0 residues vanish due to the appearance

of CQ2

2 CQ4

4 in the numerator. However, for the C1, C3 → 0 residues, the square bracket

becomes unity, and the result is equivalent to Res(1), Res(3), respectively, as defined

in 3.154. It follows that

Ω(A) = Res(1) + Res(3) = [234] + [124] (3.88)

Alternatively, we could have assumed Qi < 0 for each i. This would have given us

another triangulation:

Ω(A) = Res(2) + Res(4) = [134] + [123] (3.89)

We note that our technique can be applied to convex cyclic Newton polytopes for

any m, provided that n = m+2. The constraint matrix is given by a sequence with

alternating signs.

wp = (Q1,−Q2, Q3,−Q4, ..., (−1)m+1Qm+2) (3.90)
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where the constants Qi are either all positive or all negative. If Qi > 0, then the

canonical rational function becomes

Ω(A) =
∑
i odd

Res(i) (3.91)

And for Qi < 0, we get

Ω(A) =
∑
i even

Res(i) (3.92)

Example 3.3.8. Let us move on to the n = 5,m = 2 pentagon A with the Newton

polytope having vertices (0, 0), (1, 0), (2, 1), (1, 2), (0, 1). Then the Newton polytope

formula becomes

Ω(A) =

∫
dC1dC2dC3dC4dC5

1

C1C2C5

C2
1

C2
1C3 − C2

2C5

C2
1

C2
1C4 − C2C2

5

δ3(Y − C · Z)

(3.93)

Now on the support of the delta function we have a two-dimensional integral, and

the underline tells us to sum over all the roots of the two polynomials with C1 6= 0.

In order to use the global residue theorem for our pentagon problem, we group

the denominator factors into five groups, given by the three delta function constraints

and f1, f2:

f1 = C2C5(C2
1C3 − C2

2C5), f2 = (C2
1C4 − C2C

2
5), g = C3

1 (3.94)

where g is the numerator.

The roots of f1 = 0, f2 = 0 certainly include the “complicated” solutions of the

Newton polytope problem, where C1 6= 0, and at these the residues are well-defined.

The only subtlety is that we have other roots, where (C2, C1) = (0, 0), and where
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(C5, C1) = (0, 0). These zeros are quite degenerate; the Jacobian factor vanishes and

the residue is not directly well-defined.

We can deal with this by slightly deforming the functions; we will take instead

f1 = C2C5((C2
1 − ε23)C3 − C2

2C5), f2 = ((C2
1 − ε24)C4 − C2C

2
5), g = C3

1 (3.95)

where we will imagine that both ε3, ε4 are eventually sent to zero. The singular zeros

we previously found, with (C2, C1) = (0, 0) and with (C5, C1) = (0, 0) will now be

split into a number of non-degenerate solutions, and we will be able to use the global

residue theorem.

Let us see where these deformed zeros are located. For f1 = 0, we can set either

C2 = 0, C5 = 0 or (C2
1 − ε23)C3 − C2

2C5 = 0. The first two cases are of course trivial;

the roots and corresponding residues, as we take ε3, ε4 → 0, are

C2 = 0, C4 = 0, Res = [135] (3.96)

C5 = 0, C4 = 0, Res = [123] (3.97)

C2 = 0, C1 = ±ε4,
∑
±

Res =
ε24

ε24 − ε23
[345] (3.98)

C5 = 0, C1 = ±ε4,
∑
±

Res =
ε24

ε24 − ε23
[234] (3.99)

Note interestingly that the residues for the last two cases depend on the ratio ε3/ε4

even as ε3,4 → 0. We next have to look at the solutions to

(C2
1 − ε23)C3 − C2

2C5 = 0, (C2
1 − ε24)C4 − C2C

2
5 = 0 (3.100)

We are interested in the solutions where C1 is close to zero; which here means that

either C1 is close to ε3 or C1 is close to ε4. More formally, we can set ε3,4 = εE3,4

and ask what the solutions look like as ε → 0 with E3,4 fixed. It is then easy to see
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that if C2
1 → ε23, we must have that C5 is non-zero and C2 → (ε23 − ε24)C4/C

2
5 , while if

C2
1 → ε24, we must have that C2 is non-zero and C5 → (ε24 − ε23)C3/C

2
2 . It is trivial to

compute the residues in these cases, and we find

C1 → ±ε3, C2 → (ε23 − ε24)C4/C
2
5 ,
∑
±

Res =
ε23

ε24 − ε23
[345] (3.101)

C1 → ±ε4, C5 → (ε24 − ε23)C3/C
2
2 ,
∑
±

Res =
ε24

ε23 − ε24
[234] (3.102)

By the global residue theorem, the sum over all these residues gives us Ω(A), so we

find

Ω(A) = [123] + [135] + [345]

(
ε24

ε24 − ε23
− ε23
ε24 − ε23

)
+ [234]

(
ε24

ε24 − ε23
− ε24
ε24 − ε23

)
= [123] + [135] + [345] (3.103)

which is a standard triangulation of the pentagon.

It would be interesting to carry out the analog of this analysis for the general

Newton polytope expression associated with the canonical form of any polytope.

The same resolution of the the singular roots will clearly be needed, and it will

be interesting to see how and which natural class of triangulations of the polytope

emerges in this way.

3.3.5 Generalized polytopes on the projective plane

We now consider pushforwards onto generalized polytopes on the projective plane,

particularly the pizza slice.

Example 3.3.9. We construct the canonical form of the pizza slice T (θ1, θ2) from

Example 2.5.1 via pushforward. Let z1 = tan(θ1/2) and z2 = tan(θ2/2). Consider the

77



morphism Φ : (P1 × P1, [z1, z2]× [0,∞])→ T (θ1, θ2) given by:

(1, x, y) = Φ(z, t) :=

(
1,

1− z2

(1 + z2)
,

2z

(1 + z2)

)
+ tZ∗ (3.104)

=

(
1,

1− z2

(1 + z2)(1 + t)
,

2z

(1 + z2)(1 + t)

)
(3.105)

where z, t are coordinates on the two P1’s, and ZI
∗ := (1, 0, 0) is the “tip” of the pizza.

Note that the equations are projective. As z varies in [z1, z2], the point ( 1−z2
(1+z2)

, 2z
(1+z2)

)

sweeps out the circular arc (cos(θ), sin(θ)) where θ varies from θ1 to θ2. The variable

t acts like a radial coordinate that goes from 0 (the unit arc) to ∞ (the tip).

For a generic point (x, y) there are two roots in Φ−1(1, x, y), say (z, t) and

(−1/z,−t− 2). We compute

Φ∗

(
(z2 − z1)

(z2 − z)(z − z1)
dz

1

t
dt

)
(3.106)

=
(1 + t)3

2

(
(1 + z2)(z2 − z1)

(z2 − z)(z − z1)

1

t
− (1 + z2)(z2 − z1)

(zz2 + 1)(1 + zz1)

1

(t+ 2)

)
dxdy (3.107)

We have the two identities

1

2

(1 + z2)(z2 − z1)

(z2 − z)(z − z1)
=

sin(θ2 − θ1) + sin(θ − θ1) + sin(θ2 − θ)
2 sin(θ − θ1) sin(θ2 − θ)

(3.108)

−1

2

(1 + z2)(z2 − z1)

(zz2 + 1)(1 + zz1)
=

sin(θ2 − θ1)− sin(θ − θ1)− sin(θ2 − θ)
2 sin(θ − θ1) sin(θ2 − θ)

(3.109)

which are related by a shift θ → θ+π. Substituting into (3.107) and using 1−x2−y2 =

t(2 + t)/(1 + t)2 gives

[sin(θ2 − θ1) + (−x sin θ1 + y cos θ1) + (x sin θ2 − y cos θ2)]

(1− x2 − y2)(−x sin θ1 + y cos θ1)(x sin θ2 − y cos θ2)
dxdy (3.110)

which of course is the canonical form Ω(T (θ1, θ2)). Note that sine summation formulas

were used to get the denominator factors.
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The pushforward calculation can also be done with more intuitive angular coor-

dinates, using an infinite degree map similar to Example 3.3.5. We take the map

Ψ : (P1 × P1, [θ1, θ2]× [0,∞])→ T (θ1, θ2) given by:

(1, x, y) = Ψ(1, θ, t) := (1, cos θ, sin θ) + tZ∗ =

(
1,

cos θ

1 + t
,

sin θ

1 + t

)
(3.111)

The variable θ acts as an angular coordinate between θ1 and θ2. For any point on the

plane (x, y) = (cos θ, sin θ)/(1+t), there are two sets of roots given by:

(θn, tn) = (θ + 2πn, t) (3.112)

(θ′n, t
′
n) = (θ + π(2n+ 1),−t−2) (3.113)

where n ∈ Z. Summing over all roots in the pushforward gives

Ψ∗

(
(θ2 − θ1)dθ

(θ2 − θ)(θ − θ1)

dt

t

)
=

(1 + t)3

t

∑
n∈Z

(θ2 − θ1)

(θ2 − θn)(θn − θ1)
dxdy (3.114)

+
(1 + t)3

t+ 2

∑
n∈Z

(θ2 − θ1)

(θ2 − θ′n)(θ′n − θ1)
dxdy (3.115)

Ignoring the rational t factors, the summations give:

∑
n∈Z

(θ2 − θ1)

(θ2 − θn)(θn − θ1)
=

sin(θ2 − θ1) + sin(θ − θ1) + sin(θ2 − θ)
2 sin(θ − θ1) sin(θ2 − θ)

(3.116)

∑
n∈Z

(θ2 − θ1)

(θ2 − θ′n)(θ′n − θ1)
=

sin(θ2 − θ1)− sin(θ − θ1)− sin(θ2 − θ)
2 sin(θ − θ1) sin(θ2 − θ)

(3.117)

which are exactly (3.108) and (3.109). Thus we again obtain (3.110) as the canonical

form of the pizza slice. The summation identities (3.116) and (3.117) can also be

interpreted as the pushforward summation for the infinite degree map φ : θ 7→ z =

tan(θ/2), and we have Ψ = Φ ◦ (φ× id), where id : t 7→ t is the identity map on the t

coordinate.
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3.4 Integral representations

We now present integral representations (e.g. volume integrals, contour integrals) of

various canonical forms.

3.4.1 Dual polytopes

Consider a convex polytope (Pm,A) and a point Y not along any boundary com-

ponent. We argue that the canonical rational function Ω(A) at Y is given by the

volume of the dual polytope A∗Y (defined in Section 2.5.3) under a Y -dependent mea-

sure. More precisely,

Ω(A)(Y ) = Vol (A∗Y ) :=
1

m!

∫
W∈A∗Y

〈WdmW 〉
(Y ·W )m+1

(3.118)

In order for this integral to be well-defined on projective space, the integrand must

be invariant under local GL(1) transformations W → W ′ = α(W )W , which is proven

in (C5) of [2]. Moreover, observe that by construction of A∗Y , we have Y ·W > 0 for

every point W ∈ Int(A∗Y ), which is important for the integral to converge. However,

the overall sign of the integral is dependent on the orientation of the dual. We say

therefore that the volume is signed.

Now let us prove this claim for simplices by explicit computation:

Example 3.4.1. Let Y ∈ Int(∆) for some simplex. The volume of the dual simplex

∆∗Y with vertices W1, . . . ,Wm+1 (so that Y · Wi > 0 for each i) can be computed

using a Feynman parameter technique. Since the form is locally GL(1) invariant, we

can gauge fix the integration to W = W1 +α1W2 + · · ·+αmWm+1 and integrate over
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αi > 0. This gives

Vol (∆∗Y ) =

∫
dmα 〈W1 · · ·Wm+1〉

((Y ·W1) + α1(Y ·W2) + · · ·+ αm(Y ·Wm+1))m+1
(3.119)

=
〈W1 · · ·Wm+1〉

m!(Y ·W1) · · · (Y ·Wm+1)
(3.120)

agreeing with (2.17).

Note that the result is independent of the sign of the vertices Wi. If, for instance,

we move Y outside ∆ so that Y ·W1 < 0 but Y ·Wi > 0 for every i 6= 1, then we

would have needed to use −W1 in the integration, but the result would still have the

same form.

We now argue that the formula holds for an arbitrary convex polytope based on

three observations:

• “Dualization of polytopes commutes with triangulation” (2.65). This means

that

A =
∑
i

Ai ⇒ A∗Y =
∑
i

A∗iY (3.121)

For triangulation by simplices, this formula is known as Filliman duality [39].

• The signed nature of the volume is crucial, because it implies triangulation

independence. This means that

A∗Y =
∑
i

A∗iY ⇒ Vol (A∗Y ) =
∑
i

Vol (A∗iY ) (3.122)

• The canonical rational function is triangulation independent (Section 2.2):

A =
∑
i

Ai ⇒ Ω(A) =
∑
i

Ω(Ai) (3.123)
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Combining these three statements for a signed triangulation by simplices Ai = ∆i, it

follows that

Vol (A∗Y ) =
∑
i

Vol (∆∗iY ) =
∑
i

Ω(∆i) = Ω(A) (3.124)

which is the desired claim.

We have not given a proof of the first observation (3.121). In Section 3.4.2 we will

give an independent proof of the volume formula (3.118). Then by the second and

third assumptions, we find that Vol (A∗Y ) =
∑

i Vol (A∗iY ) for every Y , which implies

that A∗Y =
∑

iA∗i , thus deriving (3.121). Alternatively, we can also say that the the

volume formula combined with the first two assumptions implies the triangulation

independence of the canonical rational function.

The dual volume formula is particularly useful for computing the canonical form

of simple polytopes. Recall that a polytope of dimension m is called simple if every

vertex is adjacent to exactly m facets.

Example 3.4.2. Consider a convex simple polytope A of dimension m. Recall that the

dual polytope of a simple polytope is simplicial, meaning that each facet is a simplex.

The dual polytope can therefore be triangulated very easily. The idea is to take a

reference point W0 on the interior of the dual, then for every facet Z form a simplex

by the convex hull of that facet and the reference point. These simplices then give

the desired triangulation.

Vol(A∗) =
∑
Z

sign(Z)
〈W0W1 . . .Wm〉

m!(Y ·W0)
∏m

a=1(Y ·Wa)
(3.125)

where for every facet Z the dual vectors Wa correspond to the m adjacent facets.

Furthermore, the sign(Z) ∈ {±1} denotes the orientation of the ordered facets

W1, . . . ,Wn−3, which of course is antisymmetric. Note that the sum can be thought

of either as a sum over the facets of A∗ or as a sum over the vertices of A.
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If we choose the reference point so that (Y ·W0) = 1, then the canonical form can

also be expressed in the following way

Ω(A) =
∑
Z

sign(Z)
m∧
a=1

d log (Y ·Wa) (3.126)

This formula can also be proven independently of the dual construction, by showing

that it satisfies the recursive pole and residue properties required of the canonical

form. See Appendix A.5 of [1] for more details.

We now wish to comment on the distinction between “physical” poles and “spu-

rious” poles (see Section 2.2.2) in the context of the volume formula, first pointed

out by Andrew Hodges as an interpretation of spurious poles appearing in BCFW

recursion of NMHV tree amplitudes [29].

Given a triangulation of A by polytopes Ai with mutually non-overlapping inte-

riors, spurious poles appear along boundary components of the triangulating pieces

that do not belong to the boundary components of A. From the dual point of view,

the duals A∗iY form an overlapping triangulation of A∗Y , and a spurious pole corre-

sponds to a subset of volume terms Vol (A∗iY ) going to infinity individually, but whose

sum remains finite. Geometrically, the signed volumes overlap and cancel. However,

suppose instead that Y ∈ Int(A) and the duals A∗iY have non-overlapping interiors,

then Vol (A∗iY ) ≤ Vol (A∗Y ). It follows that all the volume terms are finite on Int(A),

and there are no spurious poles. Of course, the sum is independent of X since the

integral is surface-independent. This is called a local triangulation. An example of a

local triangulation of cyclic polytopes in P4(R) is given in [40].

On a final note, we argue that these simplicial volumes are identical to Feyn-

man parameters [41] appearing in the computation of loop scattering amplitudes. A
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general Feynman parameter formula takes the following form,

1∏m
i=0 Ai

= m!

∫
x∈Im+1

dm+1x
δ(1−

∑m
i=0 xi)

(
∑m

i=0 xiAi)
m+1 (3.127)

where Im+1 is the unit cube given by 0 < xi < 1 for all i. Integrating over 0 < x0 < 1

yields

1∏m
i=0Ai

= m!

∫
x∈Im

0<
∑m
i=1 xi<1

dmx
1

(A0 +
∑m

i=1 xi(Ai − A0))
m+1 (3.128)

Now change variables xi → αi so that

xi =
αi

1 +
∑m

j=1 αi
(3.129)

and αi > 0 for all i is the equivalent region of integration. The Jacobian for the

change of measure is

dmx =
dmα

(1 +
∑m

i=1 αi)
m+1

(3.130)

Putting everything together, we get

1

m!

1∏m
i=0Ai

=

∫
αi>0

dmα
1

(A0 +
∑m

i=1 αiAi)
m+1

(3.131)

We see that the right hand side is very reminiscent of the volume formula (3.118)

for a (dual) simplex. The lesson here is that loop integrals can be reinterpreted as

polytope volumes, and Feynman parameters are coordinates on the interior of the

polytope over which we integrate.
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3.4.2 Laplace transforms

For a convex projective polytope A ⊂ Pm(R), we let Ā ⊂ Rm+1 be the cone over

A, so that Ā := {Y ∈ Rm+1 | Y ∈ A}. Similarly, one has the cone of the dual

Ā∗Y ⊂ Rm+1 in the dual vector space. For simplicity, we will only consider the dual

for which Y ∈ Int(A), in which case A∗ := A∗Y .

We argue that the canonical rational function at any point Y ∈ Int(A) is given

by a Laplace transform over the cone of the dual:

Ω(Ā)(Y ) =
1

m!

(∫
W∈Ā∗Y

e−W ·Y dm+1W

)
. (3.132)

Such integral formulae have been considered in [42]. Extensions to the Grassmannian

are discussed in [43].

We now show the equivalence of (3.132) with the dual volume (3.118). We begin

with the Laplace transform, and change variables by writing W = ρŴ so that Ŵ is

a unit vector and ρ > 0 is the Euclidean norm of W . It follows that

dm+1W =
1

m!
ρmdρ

〈
ŴdmŴ

〉
(3.133)

The Laplace transform rational function becomes

Ω(A) =
1

m!

∫
ρ>0,Ŵ∈A∗

e−ρŴ ·Y
ρmdρ

m!

〈
ŴdmŴ

〉
=

1

m!

∫
Ŵ∈A∗

〈
ŴdmŴ

〉
(Ŵ · Y )m+1

. (3.134)

This result is identical to (3.118) but “gauge-fixed” so that W = Ŵ has unit norm.

Removing the gauge choice and rewriting Ŵ as W recovers (3.118).

Let us confirm our result for a simplex.
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Example 3.4.3. Suppose ∆ is a simplex, so ∆∗ is also a simplex, generated by facets

W1, . . . ,Wm+1 ∈ Rm+1. Then setting W = α0W1 + · · ·αmWm+1, we compute

Ω(∆̄)(Y ) =
1

m!

(∫
W∈Ā∗

e−W ·Y dm+1W

)
(3.135)

=
1

m!
〈W1W2 · · ·Wm+1〉

(∫
Rm+1
>0

e−(α0(W1·Y )+α1(W2·Y )+···+αm(Wm+1·Y ))dm+1α

)
(3.136)

=
〈W1W2 · · ·Wm+1〉

m!(Y ·W1)(Y ·W2) · · · (Y ·Wm+1)
, (3.137)

in agreement with (2.17).

We recognize the result simply as the volume Vol (∆∗) (note the implicit de-

pendence on Y ). For a general convex polytope A, we may triangulate its dual

A∗ =
∑

i ∆
∗
i by (dual) simplices. Then the cone of the dual is also triangulated by

the cones ∆i
∗

of the dual simplices. For simplicity let us assume that these dual

cones are non-overlapping except possibly at mutual boundaries. We can therefore

triangulate the Laplace transform integration and obtain:

Ω(A)(Y ) =
∑
i

Vol (∆∗i ) (3.138)

which of course is equivalent to Vol (A∗) as expected.

Let us now try a sample computation for a quadrilateral.

Example 3.4.4. Let A ⊂ P2 be the polytope with vertices:

{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1,−1)}

Then the dual cone is

Ā∗ = {W = (W0,W1,W2) ∈ R3
≥0 | W0 +W1 ≥ W2}. (3.139)
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We compute

Ω(A) =
1

2!

∫
W∈Ā∗

e−W ·Y dm+1W (3.140)

=
1

2!

∫ ∞
0

e−W0Y 0

∫ ∞
0

e−W1Y 1

∫ W0+W1

0

e−W2Y 2

dW2dW1dW0 (3.141)

=
1

2!

Y 0 + Y 1 + Y 2

(Y 0 + Y 2)(Y 1 + Y 2)Y 0Y 1
. (3.142)

To verify our calculation, we observe that

1

2!

Y 0 + Y 1 + Y 2

(Y 0 + Y 2)(Y 1 + Y 2)Y 0Y 1
=

1

2!

(
1

Y 0Y 1Y 2
− 1

(Y 0 + Y 2)(Y 1 + Y 2)Y 2

)
(3.143)

corresponding to the triangulation A = ∆1∪∆2 where ∆1 has three vertices which are

given by {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and ∆2 has vertices {(1, 0, 0), (1, 1,−1), (0, 1, 0)}.

Let us now argue that the Laplace transform makes manifest all the poles and

residues of the canonical form, and thus satisfies the recursive properties of the form.

Suppose {Y ∈ ∂A | W0 ·Y = 0} defines one of the facets of the polytope A, which we

denote by B, and hence W0 is one of the vertices of A∗. We now show that (3.132) has

a first order pole along the hyperplane W0 · Y = 0 and identify its residue. Consider

the expansion

W = αW0 + W̄ (3.144)

where α is a scalar and W̄ ∈ γ(W0), where γ(W0) denotes the union of all the facets

of the cone Ā∗ not adjacent to W0. It is straightforward to prove that every point

W in the interior of the integration region Ā∗ has a unique expression in the form

(3.144) with (α, W̄ ) ∈ R>0 × γ(W0). Furthermore, some simple algebra shows that
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dm+1W = dα
〈
W0d

mW̄
〉
/m!. It follows that

Ω(A) =
1

m!

∫ ∞
0

dα e−α(W0·Y )

∫
W̄∈γ(W0)

e−W̄ ·Y
〈
W0d

mW̄
〉

m!
(3.145)

The α > 0 integral can be trivially computed to reveal the first order pole.

Ω(A) =
1

m!

1

(W0 · Y )

∫
W̄∈γ(W0)

e−W̄ ·Y
〈
W0d

mW̄
〉

m!
(3.146)

If we now take a residue at (W0 · Y ) → 0, we see that the remaining integral

is invariant under local shifts W̄ → W̄ + β(W̄ )W0 along the direction of W0, where

β(W̄ ) is a scalar dependent on W̄ . So the integral is performed within the quotient

space Pm/W0, which of course is just the dual of the co-dimension one variety {Y |

Y ·W0 = 0} containing B. We say that the integral has been projected through W0.

We can change the region of integration to B̄∗ which we define to be the cone over

the union of all the facets of A∗ adjacent to W0. The change is possible because the

surface γ(W0)∪B̄∗ is closed under the projection. The choice of notation B̄∗ suggests

that the region can be interpreted as the cone of the dual of B. Indeed, the facets of

A∗ adjacent to W0 correspond to the vertices of B.

It follows that

lim
(W0·Y )→0

Ω(A)(W0 · Y ) =
1

m!

(∫
W̄∈B∗

eW̄ ·Y dmW̄

)
(3.147)

where dmW̄ is defined to be the measure
〈
W0d

mW̄
〉
/m! on Pm/W0. We can interpret

the residue as a Laplace transform for B, as expected from the recursive nature of

the residue.
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3.4.3 Projective space contours

We now turn to a new topic. We show that the canonical rational function of convex

projective polytopes (and possibly more general positive geometries) can be repre-

sented as a contour integral over a related projective space.

Recall for convex projective polytopes A that the n × (m + 1)-matrix Z can

be considered a linear map Pn−1 → Pm, sending the standard simplex ∆n−1 to the

polytope A. Letting (Cj)
n
j=1 denote the coordinates on Pn−1, we have the equation

Y = Z(C) =
∑n

j=1 CjZj describing the image Y ∈ Pm of a point C ∈ Pn−1 under the

map.

We begin with the simplex canonical form on (Cj)
n
j=1 ∈ Cn constrained on the

support of the expression Y =
∑n

j=1CjZj:

∫
dnC∏n
j=1Cj

δm+1

(
Y −

n∑
j=1

CjZj

)
. (3.148)

Typically, the delta function on projective space δm(Y, Z(C)) is reduced from rank

m+1 to m by integrating over a GL(1) factor like ρ in (3.59). Instead, we have

absorbed the dρ/ρ measure into the canonical form on C-space, thus giving a rank-n

measure on Cn.

We now describe a contour in the C-space such that the above integral gives the

canonical rational function Ω(A). A naive integral over all C ∈ Rn is obviously ill-

defined due to the 1/Cj singularities. However, with some inspiration from Feynman,

we can integrate slightly away from the real line Cj → cj = Cj + iεj for some small

constants εj > 0, with cj ∈ R being the contour. We will assume that
∑n

j=1 εjZj = εY

for some ε > 0, and let Ȳ := (1 + iε)Y . After completing the contour integral, we can

take the limit ε→ 0 to recover Ȳ → Y . This is reminiscent of the epsilons appearing

in the loop integration of amplitudes. Finally, we assume that the Zj vertices form a
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real convex polytope and Ȳ is a positive linear combination of the Zj’s. Note that Ȳ

is real and Y is now slightly imaginary due to the iε shift.

We claim, in the εj → 0 limit,

Ω(A)(Y ) =
1

(2πi)n−m−1m!

∫
dnc∏n

j=1(cj − iεj)
δm+1

(
Ȳ −

n∑
j=1

cjZj

)
(3.149)

with integration over cj ∈ R for each j. The overall constants have been inserted to

achieve the correct normalization.

Before proving this identity in full generality, we give a few examples.

Example 3.4.5. The simplest example occurs for n = m+1 where A is just a simplex

in m dimensions. In that case, there is no contour, and we can immediately set εj → 0

for each j and thus ε→ 0. We get

Ω(A)(Y ) =
1

m!

∫
dm+1c∏m+1
j=1 cj

δm+1

(
Y −

m+1∑
j=1

cjZj

)
(3.150)

We can uniquely solve for each cj on the support of the delta function, which gives

cj = (−1)j−1

〈
Y 12 · · · ĵ · · · (m+1)

〉
〈12 · · · (m+1)〉

(3.151)

where the “hat” denotes omission, and the Jacobian of the delta function is

〈12 · · · (m+1)〉. It follows that (see (2.18))

Ω(A)(Y ) = [1, 2, . . . ,m+1] (3.152)

which is the familiar canonical rational function for a simplex.

More generally, suppose we integrate over a contour in the original C space that

picks up a set of poles at Cj → 0 for all j except j = j0, . . . , jm, which we assume to
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be arranged in ascending order. Then the residue is given by

1

m!

∫ (∏
j∈J

ResCj=0

)
dnC∏n
j=1Cj

δ

(
Y −

n∑
j=1

CjZj

)
= [j0, j1, j2, . . . , jm] (3.153)

where J = {1, 2, . . . , n} − {j0, j1, j2, . . . , jm}. Suppose the indices contained in J

are k1, . . . , kn−m−1 in increasing order, then we will denote the residue collectively as

Res(J) or Res(k1, k2, . . . , kn−m−1). So

Res(J) := Res(k1, . . . , kn−m−1) := [j1, j2, . . . , jm] (3.154)

We note that the result may come with a negative sign if the contour is negatively

oriented. The Res operator, however, assumes a positive orientation. This formula

will be very convenient for the subsequent examples.

We now move on to higher n examples for the polygon (i.e. m = 2).

Example 3.4.6. We now perform the contour integral explicitly at n = 4 points for

the m = 2 quadrilateral. There are four integrals over ci constrained by three delta

functions. We will integrate out c1,2,3 to get rid of the delta functions with a Jacobian

factor 〈123〉3, which gives us

1

2!(2πi)

∫
c4∈R

dc4/ 〈123〉3

(c1 − iε1)(c2 − iε2)(c3 − iε3)(c4 − iε4)
(3.155)

where c1, c2, and c3 depend on c4 through the three equations Ȳ = Z(c).

In the large c4 limit, all three dependent variables scale like O(c4), so the integrand

scales like O(c−4
4 ) which has no pole at infinity. We can now integrate over c4 by

applying Cauchy’s theorem. The key is to first work out the location of the four poles

relative to the real line.
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Figure 3.4: The locations of the four poles for the quadrilateral iε contour, with c1, c2

and c3 dependent on c4 through Ȳ = c ·Z. A pole is colored red if a counterclockwise
contour picks up the residue with a plus sign (e.g. +Res(2),+Res(4)), while a pole
is colored blue if a counterclockwise contour picks up the residue with a minus sign
(e.g. −Res(1),−Res(3)). Of course, the signs are reversed if the contour is clockwise.

We begin with the constraints

Ȳ = c1Z1 + c2Z2 + c3Z3 + c4Z4 (3.156)

which can be re-expressed in terms of three scalar equations by contracting with Z2Z3,

Z3Z1, and Z1Z2, respectively.

c4 〈234〉 =
〈
Ȳ 23

〉
− c1 〈123〉 (3.157)

c4 〈134〉 = −
〈
Ȳ 31

〉
+ c2 〈123〉 (3.158)

c4 〈124〉 =
〈
Ȳ 12

〉
− c3 〈123〉 (3.159)

We have written the equation so that each bracket is positive, provided that Zi is

cyclically convex and Y is inside the polygon. Both positivity conditions are crucial,

because they prescribe the location of the poles.
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Now, for any index i = 1, 2, 3, 4, we let the “pole at i” refer to the pole at ci → iεi.

From the constraints, we find that poles 1 and 3 both provide a negative imaginary

part to c4, so they are below the real line, while poles at 2 and 4 are above the real

line (see Figure 3.4). Since there is no pole at infinity, the integral can be performed

by closing the contour below to pick up poles 1, 3, or closing the contour above to

pick up poles 2, 4. The former gives us

Ω(A) = Res(1) + Res(3) = [2, 3, 4] + [1, 2, 4] (3.160)

while the latter gives

Ω(A) = Res(2) + Res(4) = [1, 3, 4] + [1, 2, 3] (3.161)

Of course, these are two equivalent triangulations of the quadrilateral. We see there-

fore that the iε contour beautifully explains the triangulation independence of the

canonical rational function as a consequence of Cauchy’s theorem.

Example 3.4.7. We now compute the contour for a pentagon, where new subtleties

emerge. We begin as before by integrating over c1, c2 and c3 to get rid of the delta

functions. We then re-express the delta function constraints as three scalar equations.

c4 〈234〉+ c5 〈235〉 =
〈
Ȳ 23

〉
− c1 〈123〉 (3.162)

c4 〈134〉+ c5 〈135〉 = −
〈
Ȳ 31

〉
+ c2 〈123〉 (3.163)

c4 〈124〉+ c5 〈125〉 =
〈
Ȳ 12

〉
− c3 〈123〉 (3.164)

We now integrate over c4 ∈ R. The locations of the poles are the same as before (see

Figure 3.4), and we are free to choose how we close the contour. For sake of example,

let us close the contour above so we pick up poles 2 and 4. We now analyze both

poles individually.
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The pole at 4 induces c4 → iε4. Our constraints therefore become:

c5 〈235〉 =
〈
Ȳ 23

〉
− c1 〈123〉 − iε4 〈234〉 (3.165)

c5 〈135〉 = −
〈
Ȳ 31

〉
+ c2 〈123〉 − iε4 〈134〉 (3.166)

c5 〈125〉 =
〈
Ȳ 12

〉
− c3 〈123〉 − iε4 〈124〉 (3.167)

There are now four poles left for c5, corresponding to 1,2,3 and 5. The poles at 1

and 3 are clearly below the real line, as evident in the equations above, while the the

pole at 5 is obviously above (see Figure 3.5). The pole at 2, however, is more subtle

and deserves closer attention. In the limit c2 → iε2, we find from the second equation

above that

c5 〈135〉 = −
〈
Ȳ 31

〉
+ iq (3.168)

where q = ε2 〈123〉 − ε4 〈134〉. If q > 0, then the pole at 2 is above the real line, and

if q < 0, then the pole is below. So the relative size of the εj parameters makes a

difference to the computation. However, as we now show, the final result is unaffected

by the sign of q. Suppose q > 0, then we can close the c5 contour above and pick up

the following poles

Res(45) + Res(24) = [123] + [135] (3.169)

Alternatively, we can close below and pick up

Res(34) + Res(14) = [125] + [235] (3.170)

The two results, of course, are identical since there is no pole at infinity. So the pole

at 4 produces the following result regardless of how the c5 contour is closed, provided
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Figure 3.5: The pole locations of c5 under c4 → iε4 (left) and c2 → iε2 (right).
Note that in both graphs the position of the 24 pole relative to the real line differs
depending on the sign of q. See the caption under Figure 3.4 for explanations of the
pole coloring.

that q > 0.

c4 → iε4 ; q > 0 ∼ Ω(Z1, Z2, Z3, Z5) (3.171)

If q < 0, then Res(24) migrates below the real line, in which case closing the contour

above would give

Res(45) = [123] (3.172)

and closing below would give

Res(34) + Res(14)− Res(24) = [125] + [235]− [135] (3.173)

which of course are equivalent. The minus sign in front of Res(24) appears due to the

orientation of the contour. In summary,

c4 → iε4 ; q < 0 ∼ Ω(Z1, Z2, Z3) (3.174)

Now let us move on to the pole of c4 at 2 which induces c2 → iε2. Again, there

are four poles left for c5, this time corresponding to 1,3,4,5. After re-arranging the
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constraints using Schouten identities, we find

c5 〈123〉 〈345〉 =
〈
Ȳ 34

〉
〈123〉 − 〈123〉 (c1 〈134〉+ iε 〈234〉) (3.175)

c4 〈145〉 〈123〉 = −
〈
Ȳ 41

〉
〈123〉+ 〈123〉 (iε2 〈124〉+ c3 〈134〉) (3.176)

c5 〈135〉 =
〈
Ȳ 13

〉
+ iε2 〈123〉 − c4 〈134〉 (3.177)

Evidently, the poles at 3 and 5 are above the real line, while the pole at 1 is below

(see Figure 3.5). The pole at 4, however, is above if q > 0 and below if q < 0.

For q > 0, closing the c5 contour above gives

Res(23)− Res(24) + Res(25) = [145]− [135] + [134] (3.178)

while closing below gives

Res(12) = [345] (3.179)

which are equivalent, so

c2 → iε2 ; q > 0 ∼ Ω(Z3, Z4, Z5) (3.180)

For q < 0, closing the contour above gives

Res(23) + Res(25) = [145] + [134] (3.181)

while closing below gives

Res(12) + Res(24) = [345] + [135] (3.182)
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which are again equivalent, so

c2 → iε2 ; q > 0 ∼ Ω(Z1, Z3, Z4, Z5) (3.183)

We now sum over the c4 → iε4 and c2 → iε2 contributions. For q > 0, we get

Ω(A) = Ω(Z1, Z2, Z3, Z5) + Ω(Z3, Z4, Z5) (3.184)

and for q < 0, we get

Ω(A) = Ω(Z1, Z2, Z3) + Ω(Z1, Z3, Z4, Z5) (3.185)

Both results are of course correct. Again, we see triangulation independence as a

result of Cauchy’s theorem, but with additional subtleties involving the sign of q.

Furthermore, we could have closed the c4 contour below instead and achieved a dif-

ferent set of triangulations.

We now argue for all m > 0 and all n ≥ m+1 that the iε contour integral (3.149)

is equivalent to the dual volume formula (3.118). Let S denote the right hand side

of (3.149). We begin by writing the delta function in terms of its Fourier transform

with dual variable W ∈ Rm+1.

δm+1

(
Ȳ −

n∑
j=1

cjZj

)
=

1

(2π)m+1

∫
dm+1W ei(−W ·Ȳ+

∑n
j=1 cjW ·Zj) (3.186)

Then we integrate over each cj using the following identity:

∫
R

dcj
cj − iεj

eicjW ·Zj = (2πi) θ(W · Zj) (3.187)
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where θ(x) is the Heaviside step function. It follows that

S =
im+1

m!

∫
dm+1We−iW ·Ȳ

n∏
j=1

θ(W · Zj) (3.188)

We also change variables to radial coordinates ρ := |W | and Ŵ := W/|W | with

|W | denoting the Euclidean norm of W . We have W = ρŴ so that the measure

now becomes dm+1W = ρmdρ
〈
ŴdmŴ

〉
/m!, where

〈
ŴdmŴ

〉
is the pull back of

〈WdmW 〉 to the sphere Ŵ ∈ Sm.

Now recall the Fourier transform identity:

1

m!

∫
R
dx xmθ(x)e−ixy =

(−i)m+1

(y − iε′)m+1
(3.189)

for some small ε′ > 0 which we take to zero in the end. The integral over ρ > 0

therefore becomes:

1

m!

∫ ∞
0

dρ ρme−iρŴ ·Ȳ =
(−i)m+1

(Ŵ · Ȳ − iε′)m+1
=

(−i)m+1

(Ŵ · Y )m+1
(3.190)

where we set ε′ → 0 on the right.

It follows that

S =
1

m!

∫
Ŵ∈Sm

〈
ŴdmŴ

〉 1

(Ŵ · Ȳ )m+1

n∏
j=1

θ(Ŵ · Zj) (3.191)

=
1

m!

∫
A∗
〈WdmW 〉 1

(W · Ȳ )m+1
(3.192)

which is the volume formula (3.118) for Ω(A) in the limit Ȳ → Y . In the last step,

we used that fact that the inequalities W · Zj > 0 imposed by the step functions

carve out the interior of the dual polytope A∗ ⊂ Pm. Furthermore, on the last line we

removed the “gauge” choice Ŵ ∈ Sm, since the resulting integral is gauge invariant

under GL(1) action.

98



We stress that it is absolutely crucial for Ȳ to be on the polytope’s interior.

Otherwise, the denominator factor W · Ȳ can vanish and cause divergent behavior.

From the contour point of view, as shown in examples above, the position of Ȳ affects

the location of poles relative to the contour.

3.4.4 Projective space contours part II

We now consider an alternative contour integral that is in essence identical to the

previous, but represented in a very different way. The result is the following

Ω(A)(Y ) =
1

(2π)n−m−1m!

∫
dnB∏n

j=1(C0
j − iBj)

δm+1

(
n∑
j=1

BjZj

)
(3.193)

=
1

(2π)n−m−1m!

∫
B∈K

dn−m−1B∏n
j=1(C0

j − iBj)
(3.194)

for any point C0 = (C0
1 , C

0
2 , . . . , C

0
n) ∈ Rn such that Y =

∑n
j=1C

0
jZj and C0

j > 0. In

the second equation, K ⊂ Rn denotes the (n−m−1) dimensional kernel of the map

Z : Rn → Rm+1. The measure on K is defined as

dn−m−1B :=

∫
dnB δm+1

(
n∑
j=1

BjZj

)
=
dBk1 · · · dBkn−m−1

〈j0 · · · jm〉
(3.195)

for any partition {j0, . . . , jm} ∪ {k1, . . . , kn−m−1} of the index set {1, . . . , n}. On the

right, it is understood that B · Z = 0.

We now argue that (3.193) is equivalent to (3.149). An immediate consequence is

that this contour integral is independent of the choice of C0.

We begin with the iε contour (3.149), fix a choice c0 satisfying Ȳ = c0 · Z, and

change integration variables cj → bj = c0
j − cj.

Ω(A)(Y ) =
1

(2πi)n−m−1m!

∫
dnb∏n

j=1(c0
j − bj − iεj)

δm+1

(
n∑
j=1

bjZj

)
(3.196)
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For each bj, there is a pole at bj = c0
j − iεj which lives in the fourth quadrant

on the complex plane of bj. Since we are currently integrating over the real line, it

is possible to do a clockwise Wick rotation bj → Bj = −ibj to integrate over the

imaginary line (i.e. Bj ∈ R) without picking up any of the poles. It follows that

Ω(A)(Y ) =
1

(2π)n−m−1m!

∫
dnB∏n

j=1(c0
j − iBj − iεj)

δm+1

(
n∑
j=1

BjZj

)
(3.197)

We can now set εj → 0 as it no longer affects the contour of integration. In this

limit, we recover c0
i → C0

i and Ȳ → Y , giving Y = C0 · Z and hence the desired

result. The formula (3.193) was first established as Theorem 5.5 in [44].

Let us work out one example.

Example 3.4.8. Let A ⊂ P2 have vertices {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1,−1)}, as

in Example 3.4.4. The kernel is K = {(x, x,−x,−x) : x ∈ R} ⊂ R4. For Y =

(Y 0, Y 1, Y 2) we pick C0 = (Y 0 − a, Y 1 − a, Y 2 + a, a) for some a ∈ R, with the

assumption that all entries are positive. Thus

Ω(A)(Y ) =
1

(2π)2!

∫ ∞
−∞

dx

(Y 0 − a− ix)(Y 1 − a− ix)(Y 2 + a+ ix)(a+ ix)
(3.198)

=
1

2!

(
1

Y 0Y 1Y 2
− 1

(Y 0 + Y 2)(Y 1 + Y 2)Y 2

)
(3.199)

where we have chosen to close the contour by picking the poles x = ia and x =

i(Y 2 + a) with positive imaginary part. This is independent of a, as expected, and

agrees with (3.143).

It is interesting to contrast these contour representations with the Newton poly-

tope pushforward formula discussed in Section 3.3.2. For the former, the combina-

torial structure of the convex polytope is automatically “discovered” by the contour

integration without prior knowledge. For the latter, the combinatorial structure must

100



be reflected in the choice of the Newton polytope, which may not be possible for poly-

topes whose combinatorial structure cannot be realized with integral coordinates (e.g.

non-rational polytopes [45]).
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Chapter 4

The associahedron

We introduce the associahedron, an important polytope discovered by mathemati-

cians in the 1960’s [19, 20, 21], from the point of view of positive geometries. We

show that an infinite family of associahedra appears naturally in the kinematic space

of tree level particle scattering with color ordered particles. Furthermore, we present

the striking fact that the canonical form of any of this family of associahedra is the

tree level color ordered amplitude of cubic φ3 theory, also known as bi-adjoint scalar

theory [13]. Furthermore, we “rediscover” the Feynman diagram expansion as one

of many triangulations of the polytope. In this sense, we say that the kinematic

associahedron is the amplituhedron of the bi-adjoint theory. While for simplicity we

focus our attention on this particular scalar theory in the present section, many of

our results generalize to gluons and pions as discussed in Section 6.

We begin by introducing planar scattering forms in Section 4.1, which are differen-

tial forms on kinematic space that encode all information about tree level amplitudes.

In Section 4.2, we present a precise construction of the associahedron in kinematic

space. In Section 4.3, we argue that well-known properties of the amplitudes like

factorization and various “soft” limits can be understood as geometric properties.

In Section 4.4, we discuss methods for computing the canonical form, and provide
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a geometric interpretation of the Feynman diagram expansion. Finally, Section 4.5

provides a discussion on the vertex coordinates of the polytope.

4.1 The planar scattering form on kinematic space

We introduce the planar scattering form, which is a differential form on the space of

kinematic variables that encodes all information about on-shell tree-level scattering

amplitudes of the bi-adjoint scalar. We emphasize the importance of constructing

amplitudes as forms, as this is the first step to understanding amplitudes from the

positive geometry point of view.

4.1.1 Kinematic space

We begin by defining the kinematic space Kn for n massless momenta pi for i =

1, . . . , n as the space spanned by linearly independent Mandelstam variables in space-

time dimension D ≥ n−1:

sij := (pi + pj)
2 = 2pi · pj (4.1)

For D < n−1 there are further constraints on Mandelstam variables—Gram deter-

minant conditions—so the number of independent variables is lower. Due to the

massless on-shell conditions and momentum conservation, we have n linearly inde-

pendent constraints

n∑
j=1; j 6=i

sij = 0 for i = 1, 2, . . . , n (4.2)

The dimensionality of kinematic space is therefore

dimKn =

(
n

2

)
− n =

n(n−3)

2
(4.3)
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Figure 4.1: Correspondence between a 3-diagonal partial triangulation and a triple
cut. Note that the vertices are numbered on the left while the edges/particles are
numbered on the right.

More generally, for any set of particle labels I ⊂ {1, . . . , n}, we define the Mandelstam

variable

sI :=

(∑
i∈I

pi

)2

=
∑

i,j∈I; i<j

sij (4.4)

It follows from momentum conservation that sI = sĪ , where Ī is the complement of

I. For mutually disjoint index sets I1, . . . , Id, we define sI1···Id := sI1∪···∪Id . We also

define, for any pair of index sets I, J :

sI|J := 2

(∑
i∈I

pi

)
·

(∑
j∈J

pj

)
=
∑

i∈I,j∈J

sij (4.5)

4.1.2 Planar kinematic variables

We now focus on kinematic variables that are particularly useful for cyclically ordered

particles. For the standard ordering (1, 2, . . . , n), we define planar variables with

manifest cyclic symmetry:

Xi,j := si,i+1,...,j−1 (4.6)
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for any pair of indices 1 ≤ i < j ≤ n. Note that Xi,i+1 and X1,n vanish. Given a

convex n-gon with cyclically ordered vertices, the variable Xi,j can be visualized as

the diagonal between vertices i and j, as in Figure 4.1 (left).

The Mandelstam variables in particular can be expanded in terms of these vari-

ables, by the easily verified identity:

sij = Xi,j+1 +Xi+1,j −Xi,j −Xi+1,j+1 (4.7)

It follows that the non-vanishing planar variables form a spanning set of kinematic

space. However, they also form a basis, since there are exactly dimKn = n(n−3)/2

of them. It is rather curious that the number of planar variables is precisely the

dimension of kinematic space. Examples of the basis include {s := X1,3, t := X2,4}

for n=4 particles and {s12 = X1,3, s23 = X2,4, s34 = X3,5, s123 = X1,4, s234 = X2,5} for

n=5.

More generally, for an ordering α := (α(1), . . . , α(n)) of the external particles, we

define α-planar variables

Xα(i),α(j) := sα(i),α(i+1),...,α(j−1) (4.8)

for any pair i < j modulo n. As before, Xα(i),α(i+1) and Xα(1),α(n) vanish, and the

non-vanishing variables form a basis of kinematic space. Also, each variable can be

visualized as a diagonal of a convex n-gon whose vertices are cyclically ordered by α.

4.1.3 The planar scattering form

We now move on to our main task of defining the planar scattering form. Let g denote

a (tree) cubic graph with propagators Xia,ja for a = 1, . . . , n−3. For each ordering of

these propagators, we assign a value sign(g) ∈ {±1} to the graph with the property

that swapping two propagators flips the sign. Then, we assign to the graph a d log
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Xi,j = X1,4
Xi′,j′

= X2,6

Figure 4.2: Two planar graphs related by a mutation given by an exchange of channel
Xi,j → Xi′,j′ in a four point subgraph

form:

sign(g)
n−3∧
a=1

d logXia,ja (4.9)

where the sign(g) is evaluated on the ordering in which the propagators appear in

the wedge product. There are of course two sign choices for each graph. Finally, we

introduce the planar scattering form of rank (n−3):

Ω(n−3)
n :=

∑
planar g

sign(g)
n−3∧
a=1

d logXia,ja (4.10)

where we sum over a d log form for every planar cubic graph g. Note that a particle

ordering is implicitly assumed by the construction, so we also denote the form as

Ω(n−3)[1, . . . , n] when we wish to emphasize the ordering. For n=3, we define Ω
(0)
n=3 :=

±1.

Since there are two sign choices for each graph, this amounts to many different

scattering forms. However, there is a natural choice (unique up to overall sign)

obtained by making the following requirement:

The planar scattering form is projective.
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In other words, we require the form to be invariant under local GL(1) transformations

Xi,j → Λ(X)Xi,j for any index pair (i, j), or equivalently sI → Λ(s)sI for any index

set I. This fixes the scattering form up to an overall sign which we ignore.

Projectivity is equivalent to the natural statement that the form only depends on

ratios of Mandelstam variables, as we can explicitly see in some simple examples for

n=4, 5:

Ω(1)(1, 2, 3, 4) = d log s− d log t =
ds

s
− dt

t
= d log

(s
t

)
= d log

(
X1,3

X2,4

)
(4.11)

Ω(2)(1, 2, 3, 4, 5) = d logX1,4 ∧ d logX1,3 + d logX1,3 ∧ d logX3,5 + d logX3,5 ∧ d logX2,5

+ d logX2,5 ∧ d logX2,4 + d logX2,4 ∧ d logX1,4

= d log
X1,3

X2,4

∧ d log
X1,3

X1,4

+ d log
X1,3

X2,5

∧ d log
X3,5

X2,4

(4.12)

where we have written on the last expression for each example the form in terms of

ratios of X’s only. For n=6, the form is given by summing over 14 planar graphs

which can be expressed as ratios in the following way:

Ω
(3)
n=6 = d log

X2,4

X1,3

∧ d log
X1,4

X4,6

∧ d log
X1,5

X4,6

+ d log
X2,6

X1,3

∧ d log
X3,6

X1,3

∧ d log
X4,6

X3,5

− d log
X2,6

X1,5

∧ d log
X2,5

X3,5

∧ d log
X2,4

X3,5

− d log
X2,4

X1,3

∧ d log
X4,6

X3,5

∧ d log
X2,6

X1,5

.

We emphasize that projectivity is a rather remarkable property of the scattering

form which is not true for each Feynman diagram separately. Indeed, no proper

subset of Feynman diagrams provides a projective form—only the sum over all the

diagrams (satisfying the sign flip rule) is projective. This foreshadows something

we will see much more explicitly later on in connection to the positive geometry

of the associahedron: the Feynman diagram expansion provides just one type of
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triangulation of the geometry, which introduces a spurious “pole at infinity” that

cancels only in the sum over all terms. But other triangulations that are manifestly

projective term-by-term are also possible, and often lead to even shorter expressions.

Projectivity can also be described equivalently by a simple sign-flip rule. We

say that two planar graphs g, g′ are related by a mutation if one can be obtained

from the other by an exchange of channel in a four-point sub-graph (See Figure 4.2).

Let Xi,j, Xi′,j′ denote the mutated propagators, respectively, and let Xib,jb for b =

1, . . . , n−4 denote the shared propagators. Under a local GL(1) transformation, the

Λ-dependence of the scattering form becomes:

(sign(g) + sign(g′)) d log Λ ∧

(
n−4∧
b=1

d logXib,jb

)
+ · · · (4.13)

where we have only written the terms involving the d log of all shared propagators of

g and g′. Here sign(g′) is evaluated on the same propagator ordering as sign(g) but

with Xi,j replaced by Xi′,j′ . The form is projective if the Λ-dependence disappears,

i.e. when we have

sign(g) = −sign(g′) (4.14)

for each mutation.

The sign flip rule has several immediate consequences. For instance, it ensures

that the form is cyclically invariant up to a sign:

i→ i+1 ⇒ Ω(n−3)
n → (−1)n−3 Ω(n−3)

n (4.15)

since it takes (n−3) mutations (mod 2) to achieve the cyclic shift. The sign flip

rule also ensures that the form factorizes correctly. Indeed, it suffices to consider the
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channel X1,m → 0 for any m = 3, . . . , n−1 for which

Ω(n−3)(1, 2, . . . , n)
X1,m→0−−−−−→ Ω(m−3)(1, 2, . . . ,m−1, I)∧dX1,m

X1,m

∧Ω(n−m−1)(I−,m, . . . , n) ,

(4.16)

where pI = −
∑m−1

i=1 pi is the on-shell internal particle. General channels can be

obtained via cyclic shift.

Finally, for a general ordering α of the external particles, we define the scattering

form Ω(n−3)[α] by making index replacements i→ α(i) on Ω
(n−3)
n , which is equivalent

to replacing (4.10) with a sum over α-planar graphs. Recall that a cubic graph is

called α-planar if it is planar when external legs are ordered by α; alternatively, we

say that the graph is compatible with the ordering. Projectivity holds regardless of

the ordering.

4.2 The kinematic associahedron

We introduce the associahedron polytope [21, 19, 20] and discuss its connection to the

bi-adjoint scalar theory. We begin by reviewing the combinatorial structure of the

associahedron before providing a novel construction of the associahedron in kinematic

space. We then argue that the tree level amplitude is the canonical form of the

associahedron, thus establishing the associahedron as the “amplituhedron” of the

(tree) bi-adjoint theory.

4.2.1 The associahedron from planar cubic diagrams

There are many beautiful, combinatorial ways of constructing associahedra; an excel-

lent survey of the subject, together with comprehensive references to the literature,

is given by [34]. In this section, we discuss one of the most fundamental descriptions
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Figure 4.3: Combinatorial structure of the n=5 associahedron (left) and the n=6
associahedron (right). For simplicity, only vertices are labeled for the latter.

of the associahedron which is also most closely related to scattering amplitudes. We

begin by clarifying some terminology regarding polytopes.

A boundary of a polytope refers to a boundary of any codimension. A k-boundary

is a boundary of dimension k. A facet is a codimension 1 boundary. Given a convex

n-gon, a diagonal is a straight line between any two non-adjacent vertices. A partial

triangulation is a collection of mutually non-crossing diagonals. A full triangulation

or simply a triangulation is a partial triangulation with maximal number of diagonals,

namely (n−3).

For any n≥3, consider a convex polytope of dimension (n−3) with the following

properties:

1. For every d = 0, 1, . . . , n−3, there exists a one-to-one correspondence between

the codimension d boundaries and the d-diagonal partial triangulations of a

convex n-gon.

2. A codimension d boundary F1 and a codimension d+k boundary F2 are adjacent

if and only if the partial triangulation of F2 can be obtained by addition of k

diagonals to the partial triangulation of F1.
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In particular, the triangulation with no diagonals corresponds to the polytope’s inte-

rior, and:

The vertices correspond to the full triangulations. (4.17)

A classic result in combinatorics says that the number of full triangulations, and hence

the number of vertices of our polytope, is the Catalan number Cn−2 [46]. Any polytope

An satisfying these properties is an associahedron. See Figure 4.3 for examples.

We make a few observations that will guide us to finding the connection to am-

plitudes. Let us order the edges of the n-gon cyclically with 1, . . . , n, and recall

that:

d-diagonal partial triangulations of the n-gon are in one-to-one correspondence

with d-cuts on n-particle planar cubic diagrams. (See Figure 4.1) (4.18)

The edges of the n-gon correspond to external particles, while the diagonals corre-

spond to cuts.

Furthermore, the associahedron factorizes combinatorially. That is, consider a

facet F corresponding to some diagonal that subdivides the n-gon into a m-gon and

a (n−m+2)-gon (See Figure 4.11). The two lower polygons provide the combinatorial

properties for two lower associahedra Am and An−m+2, respectively, and the facet is

combinatorially identical to their direct product:

F ∼= Am ×An−m+2 (4.19)

We show in Section 4.3.1 that this implies the factorization properties of amplitudes.

Finally, we observe that the associahedron is a simple polytope, meaning that

each vertex is adjacent to precisely dimAn = (n−3) facets. Indeed, given any asso-
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ciahedron vertex and its corresponding triangulation, the adjacent facets correspond

to the (n−3) diagonals.

4.2.2 The kinematic associahedron

We now show that there is an associahedron naturally living in the kinematic space

for n particles. The construction depends on an ordering for the particles which we

take to be the standard ordering for simplicity.

We first define a region ∆n in kinematic space by imposing the inequalities

Xi,j ≥ 0 for all 1 ≤ i < j ≤ n (4.20)

Recall that Xi,i+1 and X1n are trivially zero and therefore do not provide conditions.

Since the number of non-vanishing planar variables is exactly the dimension of kine-

matic space, it follows that ∆n is a simplex with a facet at infinity. This leads to

an obvious problem. The associahedron An should have dimension (n−3), which for

n > 3 is lower than the kinematic space dimension. We resolve this by restricting to

a (n−3)-subspace Hn ⊂ Kn defined by a set of constants:

Let cij := Xi,j +Xi+1,j+1 −Xi,j+1 −Xi+1,j be a positive constant

for every pair of non-adjacent indices 1 ≤ i < j ≤ n−1 (4.21)

Note that we have deliberately omitted n from the index range. Also, (4.7) implies

the following simple identity:

cij = −sij (4.22)

The condition (4.21) is therefore equivalent to requiring sij to be a negative constant

for the same index range. Counting the number of constraints, we find the desired
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Figure 4.4: Kinematic associahedra for n=4 (top left), n=5 (top right) and n=6
(bottom).

dimension:

dimHn = dimKn −
(n− 2)(n− 3)

2
= n− 3 (4.23)

Finally, we let An := Hn ∩∆n be a polytope. We claim that An is an associahedron

of dimension (n−3). See Figure 4.4 for examples. Recall from Section 4.2.1 that the

associahedron factorizes combinatorially, meaning that each facet is combinatorially

the direct product of two lower associahedra as in (4.19). In Section 4.3.1, we show

that the same property holds for the kinematic polytope An, thereby implying our

claim.
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Here we highlight the key observation needed for showing factorization and hence

the associahedron structure. Note that the boundaries are enforced by the positivity

conditions Xi,j ≥ 0, so that we can reach any codimension 1 boundary by setting some

particular Xi,j → 0. But then, to reach a lower dimensional boundary, we cannot

set Xk,l → 0 for any diagonal (k, l) that crosses (i, j) (See Figure 4.5). Indeed, if we

begin with the basic identity (4.21) with (i, j) replaced by (a, b) and sum a, b over

the range i ≤ a < j and k ≤ b < l, the sums telescope and we find

Xj,k +Xi,l = Xi,k +Xj,l −
∑
i≤a<j
k≤b<l

cab (4.24)

for any 1 ≤ i < j < k < l ≤ n. Now consider a situation like Figure 4.6 (top) where

the diagonals Xi,k = 0 and Xj,l = 0 cross, then

Xj,k +Xi,l = −
∑
i≤a<j
k≤b<l

cab (4.25)

which is a contradiction since the left side is nonnegative while the right side is

strictly negative. Geometrically, this means that every boundary of An is labeled

by a set of non-crossing diagonals (i.e. a partial triangulation), as expected for the

associahedron.

Let us do some quick examples. For n=4, the kinematic space with variables

(s, t, u) satisfies the constraint s + t + u = 0 and is 2-dimensional. However, the

kinematic associahedron is given by the line segment 0 < s < −u where u < 0

is a constant, as shown in Figure 4.4 (top left). For n=5, the kinematic space is

5-dimensional, but the subspace Hn=5 is 2-dimensional defined by three constants

c13, c14, c24. If we parameterize the subspace in the basis (X1,3, X1,4), then the associ-
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Not allowed!

Figure 4.5: Planar variables Xi,j corresponding to crossing diagonals cannot be si-
multaneously set to zero.

ahedron An=5 is a pentagon with edges given by:

X1,3 ≥ 0 (4.26)

X3,5 = −X1,4 + c14 + c24 ≥ 0 (4.27)

X2,5 = −X1,3 + c13 + c14 ≥ 0 (4.28)

X2,4 = X1,4 −X1,3 + c13 ≥ 0 (4.29)

X1,4 ≥ 0 (4.30)

where the edges are given in clockwise order (See Figure 4.4 (top right)). The n=6

example is given in Figure 4.4 (bottom).

The associahedron An in kinematic space is only one step away from scattering

amplitudes, as we now show.

4.2.3 Bi-adjoint cubic scalar amplitudes

We now show the connection between the kinematic associahedron An and scattering

amplitudes in bi-adjoint scalar theory. The discussion here applies to tree amplitudes

with a pair of standard ordering, which we denote by mn. We generalize to arbitrary

ordering pairs m[α|β] in Section 4.2.4.

We make two claims in this section:
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1. The pullback of the cyclic scattering form Ω
(n−3)
n to the subspace Hn is the

canonical form of the associahedron An.

2. The canonical form of the associahedron An determines the tree amplitude of

the bi-adjoint theory with identical ordering.

Recall that the associahedron is a simple polytope, and the canonical form of a

simple polytope (See (3.126)) is a sum over its vertices. For each vertex Z, let Xia,ja =

0 denote its adjacent facets for a = 1, . . . , n−3. Furthermore, for each ordering of the

facets, let sign(Z) ∈ {±1} denote its orientation relative to the inherited orientation.

The canonical form is therefore

Ω(An) =
∑

vertex Z

sign(Z)
n−3∧
a=1

d logXia,ja (4.31)

where sign(Z) is evaluated on the ordering of the facets in the wedge product. Since

the form is defined on the subspace Hn, it may be helpful to express the Xi,j variables

in terms of a basis of (n−3) variables like (4.68).

We argue that (4.31) is equivalently the pullback of the scattering form (4.10)

to the subspace Hn. Since there is a one-to-one correspondence between vertices Z

and planar cubic graphs g, it suffices to show that the pullback of the g term is the

Z term. This is true by inspection since g and its corresponding Z have the same

propagators Xia,ja . The only subtlety is that the sign(Z) appearing in (4.31) is

defined geometrically, while the sign(g) appearing in (4.10) is defined by local GL(1)

invariance. We now argue equivalence of the two by showing that sign(Z) satisfies

the sign flip rule.

Suppose Z,Z ′ are vertices whose triangulations are related by a mutation. While

mutations are defined as relations between planar cubic graphs (See Figure 4.2), they

can equivalently be interpreted from the triangulation point of view. Indeed, two

triangulations are related by a mutation if one can be obtained from the other by ex-
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Figure 4.6: Two triangulations related by a mutation Xi,k → Xj,l (top) or equivalently
sIJ → sJK (bottom).

changing exactly one diagonal. For example, the two triangulations of a quadrilateral

are related by mutation. For a generic triangulation of the n-gon, every mutation

can be obtained by identifying a quadrilateral in the triangulation and exchanging its

diagonal. In Figure 4.6 (top), we show an example where a mutation is applied to the

quadrilateral (i, j, k, l) with the diagonal (i, k) in Z exchanged for the diagonal (j, l)

in Z ′. Note that we have implicitly assumed 1 ≤ i < j < k < l ≤ n. Furthermore,

taking the exterior derivative of the kinematic identity (4.24) gives us

dXj,k + dXi,l = dXi,k + dXj,l . (4.32)

Note that the two propagators on the left appear in both diagrams, while the two

propagators on the right are related by mutation. It follows that

n−3∧
a=1

dXia,ja = −
n−3∧
a=1

dXi′a,j
′
a

(4.33)
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The crucial part is the minus sign, which implies the sign flip rule:

sign(Z) = −sign(Z ′) (4.34)

We can therefore identify sign(Z) = sign(g). Furthermore, an important consequence

of (4.33) is that the following quantity is independent of g on the pullback:

dn−3X := sign(g)
n−3∧
a=1

dXia,ja (4.35)

Substituting into (4.31) gives

Ω(An) =

( ∑
planar g

1∏n−3
a=1 Xia,ja

)
dn−3X = mnd

n−3X (4.36)

which gives the expected amplitude mn, thus completing the argument for our second

claim. For convenience we sometimes denote the item in parentheses as Ω(An), called

the canonical rational function. Thus,

Ω(An) = mn (4.37)

Let us do a quick and informative example for n=4. We use the usual Mandelstam

variables (s, t, u) := (X1,3, X2,4,−X1,3 −X2,4 = −c13). Here u is a negative constant,

and the associahedron is simply the line segment 0 ≤ s ≤ −u in Figure 4.4 (top left),

whose canonical form is

Ω(An=4) =

(
1

s
− 1

s+ u

)
ds =

(
1

s
+

1

t

)
ds (4.38)

which of course is also the desired amplitude up to the ds factor. Now consider

pulling back the planar scattering form (4.11). Since u is a constant on Hn=4 and
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s+ t+ u = 0, hence ds = −dt on the pullback. It follows that

Ω
(1)
n=4|Hn=4 =

(
1

s
+

1

t

)
ds (4.39)

which is equal to (4.38). We also demonstrate an example for n = 5 where the associ-

ahedron is a pentagon as shown in Figure 4.4 (top right). We argue that the pullback

of (4.12) determines the 5-point amplitude by showing that the numerators have

the expected sign on the pullback, namely dX1,4dX1,3 = dX1,3dX3,5 = dX3,5dX2,5 =

dX2,5dX2,4 = dX2,4dX1,4. For instance, the identity X3,5 = −X1,4 + c14 + c24 implies

∂(X1,4, X1,3)/∂(X1,3, X3,5) = 1, leading to the first equality. We leave the rest as an

exercise for the reader. It follows that the pullback determines the corresponding

amplitude.

Ω
(2)
n=5|Hn=5 =

(
1

X1,3X1,4

+
1

X3,5X1,3

+
1

X1,4X2,4

+
1

X2,5X3,5

+
1

X2,4X2,5

)
d2X (4.40)

Of course, this is also the canonical form of the pentagon.

4.2.4 All ordering pairs of bi-adjoint cubic amplitudes

We now generalize our results to every ordering pair of the bi-adjoint theory. Given an

ordering pair α, β, the amplitude is given by the sum of all cubic diagrams compatible

with both orderings, with an overall sign from the trace decomposition [13] that we

postpone to Section 6.4 and more specifically (6.48). Here we ignore the overall sign

and simply define m[α|β] to be the sum over the cubic graphs.

We first review a simple diagrammatic procedure [13] for obtaining all the graphs

appearing in m[α|β] as illustrated in Figure 4.7:
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Figure 4.7: Step-by-step procedure for obtaining the mutual cuts (3rd picture) and
the mutual partial triangulation (4th) for (α, β) = (12345678|81267354). The first
three pictures are found in [13].

1. Draw n points on the boundary of a disk ordered cyclically by α.

2. Draw a closed path of line segments connecting the points in order β. These

line segments enclose a set of polygons, forming a polygon decomposition.

3. The internal vertices of the decomposition correspond to cuts on cubic graphs

called mutual cuts.

4. The cuts correspond to diagonals of the α-ordered n-gon, forming a mutual

partial triangulation.

The cubic graphs compatible with both orderings are precisely those that admit

all the mutual cuts. Equivalently, they correspond to all triangulations of the α-

ordered n-gon containing the mutual partial triangulation. Conversely, given a graph

of mutual cuts or equivalently a mutual partial triangulation, we can reverse engineer

the ordering β up to dihedral transformation as follows:

1. Color each vertex of the graph white or black like Figure 4.8 so that no two

adjacent vertices have the same color.

2. Draw a closed path that winds around white vertices clockwise and black vertices

counterclockwise.

3. The path gives the ordering β up to cyclic shift. Changing the coloring corre-

sponds to a reflection.
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5
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Figure 4.8: This mutual cut diagram gives rise to (α, β) = (12345678, 81267354) by
the described rules.

The path gives the β up to cyclic shift. Swapping the colors reverses the particle

ordering. It follows that β can be obtained up to dihedral transformations.

We are now ready to construct the kinematic polytope for an arbitrary ordering

pair. We break the symmetry between the two orderings by using planar variables

Xα(i),α(j) discussed at the end of Section 4.1.2. In analogy with (4.20), we define a

simplex ∆[α] in kinematic space by requiring that:

Xα(i),α(j) ≥ 0 for all 1 ≤ i < j ≤ n. (4.41)

Similar to before, Xα(i),α(i+1) and Xα(1),α(n) vanish and therefore do not provide condi-

tions. We can visualize the variable Xα(i),α(j) as the diagonal (α(i), α(j)) of a regular

n-gon whose vertices are labeled by α. Furthermore, we construct a (n−3)-subspace

H[α|β] of kinematic space by making the following requirements:

1. For each diagonal (α(i), α(j)) that crosses at least one diagonal in the mutual

partial triangulation, we require bα(i),α(j) := Xα(i),α(j) > 0 to be a positive

constant.

2. The mutual triangulation (assuming d diagonals) subdivides the n-gon into

(d+1) sub-polygons, and we impose the non-adjacent constant conditions (4.21)

to each sub-polygon.

121



(a) (1234)
u < 0 const
d log(s/t)

(b) (1324)
s > 0 const

d log t

(c) (2134)
t > 0 const

d log s

Figure 4.9: Three orderings for the n=4 kinematic polytopes. We assume the same
α = (1234) but different β (displayed above). Furthermore, we present the constant
and canonical form for each geometry.

For the last step, it is necessary to omit an edge from each sub-polygon when im-

posing the non-adjacent constants. By convention, we omit edges corresponding

to the diagonals of the mutual triangulation as well as edge n of the n-gon so

that no two sub-polygons omit the same element. A moment’s thought reveals

that there is only one way to do this. Finally, we define the kinematic polytope

A[α|β] := H[α|β]∩∆[α]. In particular, for the standard ordering α = β = (1, . . . , n),

we recover (∆[α], H[α|β],A[α|β]) = (∆n, Hn,An).

Let us get some intuition for the shape of the kinematic polytope. Clearly A[α|α]

is just the associahedron with boundaries relabeled by α. For general α, β, we can

think of the mutual partial triangulation (with d diagonals) as a partial triangulation

corresponding to some codimension d boundary of the associahedron A[α|α]. Now

imagine “zooming in” on the boundary by pushing all non-adjacent boundaries to

infinity. The non-adjacent boundaries precisely correspond to partial triangulations

of the α-ordered n-gon that cross at least one diagonal of the mutual partial triangu-

lation. This provides the correct intuition for the “shape” of the kinematic polytope

A[α|β]. Said in another way, the polytope A[α|β] is again an associahedron but with

incompatible boundaries pushed to infinity.
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For n=4, the three distinct kinematic polytopes are shown in Figure 4.9. For n=5,

consider the case (α, β) = (12345, 13245). The mutual partial triangulation consists

of the regular pentagon with the single diagonal (2, 4) (See Figure 4.10 (left)) with two

compatible cubic graphs corresponding to the channels (X2,4, X2,5) and (X2,4, X1,4).

The constants are given by

b1,3 := X1,3 > 0 (4.42)

b3,5 := X3,5 > 0 (4.43)

c14 := X1,4 +X2,5 −X2,4 > 0 (4.44)

and the inequalities are given by

X2,4 ≥ 0 (4.45)

X2,5 ≥ 0 (4.46)

X1,4 ≥ 0 (4.47)

Finally we plot this region in the basis (X2,4, X2,5) as shown in Figure 4.10 where the

first two inequalities simply give the positive quadrant while the last inequality gives

the diagonal boundary X1,4 = c14 −X2,5 +X2,4 ≥ 0.

Having constructed the kinematic polytope A[α|β], we now discuss its connection

to bi-adjoint tree amplitude m[α|β] (omitting the overall sign). We make the following

two claims in analogy to the two claims made near the beginning of Section 4.2.3:

1. The pullback of the cyclic scattering form Ω(n−3)[α] to the subspace H[α|β] is

the canonical form of the kinematic polytope A[α|β]. That is,

Ω(n−3)[α]|H[α|β] = Ω(A[α|β]) (4.48)
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1

2

3

4

5

X2,4

X2,4

X1,4

X2,5

Figure 4.10: The mutual partial triangulation for (α, β) = (12345, 13245) (left) and its
kinematic polytope (right). The faded area corresponds to the boundary at infinity.
The two vertices correspond to the two cubic graphs compatible with both orderings.

2. The canonical form of the kinematic polytope A[α|β] determines the amplitude

m[α|β]. That is,

Ω(A[α|β]) = m[α|β] (4.49)

The derivation is not substantially different than what we have seen before, so we

simply highlight a few subtleties. For the first claim, recall that the scattering form

is a sum over all α-planar graphs:

Ω(n−3)[α] =
∑

α-planar g

sign(g)
n−3∧
a=1

d logXα(ia),α(ja) (4.50)

We claim that on the pullback to the subspace H[α|β], the numerator is identical and

non-zero for every (α, β)-planar graph g and zero otherwise:

sign(g)
n−3∧
a=1

dXα(ia),α(ja) =


dn−3X if g is β-planar

0 otherwise

(4.51)
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The pullback therefore sums all the β-planar diagrams and destroys all other dia-

grams, thus giving the desired amplitude m[α|β]:

Ω(n−3)[α]|H[α|β] =

 ∑
(α,β)-planar g

1∏n−3
a=1 Xα(ia),α(ja)

 dn−3X = m[α|β]dn−3X (4.52)

As before, it can be shown that this is also the canonical form of the kinematic

polytope A[α|β]. The canonical forms for the n=4 examples are given in Figure 4.9.

The canonical form for the n=5 example in Figure 4.10 is

Ω(A[12345|13245]) = d logX2,5d logX2,4 + d logX2,4d logX1,4

=

(
1

X2,5X2,4

+
1

X2,4X1,4

)
d2X (4.53)

where we used the fact that dX2,5dX2,4 = dX2,4dX1,4 on the pullback, which follows

from the identity X1,4 = c14 −X2,5 +X2,4.

4.2.5 The associahedron as the amplituhedron for bi-adjoint

cubic theory

Let us summarize the story so far for the bi-adjoint φ3 theory. We have an obvious

kinematic space Kn parametrized by the Xi,j which is n(n − 3)/2-dimensional. We

also have a scattering form Ω
(n−3)
n of rank (n−3) defined on this space, which for

n > 3 is of lower than top rank. This scattering form is fully determined by its

association with a positive geometry living in the kinematic space defined in the

following way. First, there is a top-dimensional “positive region” in the kinematic

space given by Xi,j ≥ 0 whose boundaries are associated with all the poles of the

planar graphs. Next, there is a family of (n−3)-dimensional linear subspaces defined

by Xi,j + Xi+1,j+1 − Xi,j+1 − Xi+1,j = cij. With appropriate positivity constraints

on the constants cij > 0, this subspace intersects the “positive region” in a positive
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geometry—the kinematic associahedron An. Furthermore, the scattering form Ω
(n−3)
n

on the full kinematic space is fully determined by the property of pulling back to the

canonical form of the associahedron on this family of subspaces. Hence, the physics of

on-shell tree-level bi-adjoint φ3 amplitudes are completely determined by the positive

geometry not in any auxiliary space but directly in kinematic space.

Furthermore, there is a striking similarity between this description of bi-adjoint φ3

scattering amplitudes and the description of planar N = 4 super Yang-Mills (SYM)

with the amplituhedron as the positive geometry [22]. Indeed the general structure

is identical. There is once again a kinematic space, which for planar N = 4 SYM is

given by the momentum twistor variables Zi ∈ P3(R) for i = 1, . . . , n, and a differen-

tial form Ω
(4k)
n of rank 4×k (for NkMHV) on kinematic space that is fully determined

by its association with a positive geometry. We again begin with a “positive region”

in the kinematic space which enforces positivity of all the poles of planar graphs via

〈ZiZi+1ZjZj+1〉 ≥ 0; however, also required is a set of topological “winding number”

conditions enforced by a particular “binary code” of sign-flip patterns for the mo-

mentum twistor data. This is a top-dimensional subspace of the full kinematic space.

There is also a canonical 4 × k dimensional subspace of the kinematic space, corre-

sponding to an affine translation of a given set of external data Z∗ in the direction of a

fixed k-plane ∆ in n dimensions; this subspace is thus specified by a (4+k)×n matrix

Z := (Z∗,∆)T . Provided the condition that all ordered (4+k) × (4+k) minors of Z

are positive, this subspace intersects the “positive region” in a positive geometry—

the (tree) amplituhedron. The form Ω
(4k)
n on the full space is fully determined by

the property of pulling back to the canonical form of the amplituhedron found on

this family of subspaces. Once again this connection between scattering forms and

positive geometry is seen directly in ordinary momentum twistor space, without any

reference to the auxiliary Grassmannian spaces where amplituhedra were originally

defined to live.
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The nature of the relationship between “kinematic space”, “positive region”, “pos-

itive family of subspaces” and “scattering form” is literally identical in the two stories.

We say therefore that “the associahedron is the amplituhedron for bi-adjoint φ3 the-

ory”.

Of course there are some clear differences as well. Most notably, the scattering

form Ω
(4k)
n is directly the super-amplitude with the differentials dZI

i interpreted as

Grassmann variables ηIi , whereas for the bi-adjoint φ3 theory we have forms on the

space of Mandelstam variables with no supersymmetric interpretation. While the

planar N = 4 scattering forms are unifying different helicities into a single natural

object, what are the forms in Mandelstam space doing? As we have already seen

in the bi-adjoint example, and with more to come in later sections, these forms are

instead geometrizing color factors, as established in Section 6.

4.3 Factorization and“soft” limit

We now derive two important properties of amplitudes by exploiting geometric prop-

erties of the associahedron:

1. The amplitude factorizes on physical poles.

2. The amplitude vanishes in a “soft” limit.

We emphasize that both properties follow from geometric arguments. While ampli-

tude factorization is familiar, here it emerges from the “geometric factorization” of

the associahedron; and the vanishing in the “soft” limit is a property of the amplitude

that is made more manifest by the geometry than Feynman diagrams.
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4.3.1 Factorization

Recall from Section 4.2.1 that the associahedron factorizes combinatorially, i.e. each

facet is combinatorially identical to a product of two lower associahedra (See (4.19)).

We now demonstrate this explicitly for the kinematic polytope An, thus giving a

simple derivation of the fact that An is indeed an associahedron. While (4.19)

is a purely combinatorial statement, we go further in this section and find explicit

geometric constructions for the two lower associahedra. We therefore say that An

factorizes geometrically. Furthermore, we argue that geometric factorization of An

directly implies amplitude factorization, so that locality and unitarity of the amplitude

are emergent properties of the geometry.

We rewrite the kinematic associahedron An as A(1, 2, . . . , n̄) to emphasize the

particle labels and their ordering; we put a bar over index n to emphasize that the

subspace Hn is defined with non-adjacent indices omitting n (See (4.21)). We make

the following observations:

1. Geometric factorization: The facet Xi,j = 0 is equivalent to a product polytope

An|Xi,j=0
∼= AL ×AR (4.54)

where

AL := A(i, i+1, . . . , j−1, Ī)

AR := A(1, . . . , i−1, I, j, j+1, . . . , n̄) (4.55)

and I denotes the intermediate particle. The cut can be visualized as the

diagonal (i, j) on the convex n-gon (See Figure 4.11).
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2. Amplitude factorization: The residue of the canonical form along the facet

Xi,j = 0 factors:

ResXi,j=0Ω(An) = Ω(AL) ∧ Ω(AR) (4.56)

This implies factorization of the amplitude.

We first construct the “left associahedron” AL and the “right associahedron” AR

by (4.55) as independent associahedra living in independent kinematic spaces. The

indices appearing in the construction are nothing more than well-chosen labels at this

point. To emphasize this, we use independent planar variables for AL and AR:

AL : La,b for i ≤ a < b < j (4.57)

AR : Ra,b for 1 ≤ a < b < n except i ≤ a < b < j (4.58)

The index ranges can be visualized as Figure 4.11 where the “left” planar variables

La,b correspond to diagonals of the “left” subpolygon, and likewise for the “right”.

Furthermore, the two associahedra come with positive non-adjacent constants lab,

rab, respectively. For lab the indices consist of all non-adjacent pairs a, b in the range

i ≤ a < b < j. For rab they consist of all non-adjacent pairs a, b in the range

(1, . . . , i−1, I, j, j+1, . . . , n−1).

We now argue that there exists a one-to-one correspondence:

AL ×AR ∼= An|Xi,j=0 (4.59)

We begin by picking a kinematic basis forAL consisting of La,b variables corresponding

to some triangulation of the left subpolygon in Figure 4.11, and similarly for the Ra,b

variables. The two triangulations combine to form a partial triangulation of the n-

gon with the diagonal (i, j) omitted. Each diagonal corresponds to a planar variable,
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thus providing a basis for the subspace Hn|Xi,j=0. Furthermore, we assume that the

non-adjacent constants match so that cab = lab for all lab. As for rab, we assume that

cab = rab for all rab where a, b 6= I. Furthermore, raI =
∑

k∈I cak for all raI .

We then write down the most obvious map AL ×AR → Hn|Xi,j=0 given by:

Xa,b = La,b for all left basis variables La,b (4.60)

Xa,b = Ra,b for all right basis variables Ra,b (4.61)

Since the Xa,b variables in the image form a basis for An|Xi,j=0, this completely defines

the map. We observe that Xa,b = La,b holds not just for left basis variables, but for

all left variables La,b. The idea is to rewrite La,b in terms of basis variables and non-

adjacent constants. Since the same formula holds for Xa,b, and the constants match

by assumption, therefore the desired result must follow. Similarly, Xa,b = Ra,b holds

for all right variables Ra,b.

Now we argue that the image of the embedding lies in the facet An|Xi,j=0, which

requires showing that all planar propagators Xa,b are positive under the embedding

except for Xi,j = 0. This is trivially true for propagators whose diagonals do not

cross (i, j), since either Xa,b = La,b or Xa,b = Ra,b. Now consider a crossing diagonal

(k, l) satisfying 1 ≤ i < k < j < l ≤ n. Applying (4.24) with indices j, k swapped

and setting Xi,j = 0 gives

Xk,l = Xk,j +Xi,l +
∑
i≤a<k
j≤b<l

cab (4.62)

Since Xk,j is a diagonal of the left subpolygon and Xi,l is a diagonal of the right, they

are both positive. It follows that the right hand side is term-by-term positive, hence

our crossing term Xk,l must also be positive, as claimed. We emphasize that Xk,l is

actually strictly positive, implying that it cannot be cut. This is important because
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X4,7

Figure 4.11: The diagonal (4, 7) subdivides the 8-gon into a 4-gon (on the “left”) and
a 6-gon (on the “right”), suggesting that the facet X4,7 = 0 of the associahedron An=8

is combinatorially identical to An=4 ×An=6.

cutting crossing propagators simultaneously would violate the planar graph structure

of the associahedron. Finally, it is easy to see that this is a one-to-one map, thus

completing our argument for the first assertion (4.54).

As an example, consider the n=6 kinematic associahedron shown in Figure 4.4

(bottom). Let us consider the facet X2,5 = 0 which by geometric factorization is a

product of 4-point associahedra (i.e. a product of line segments) and must therefore

be a quadrilateral. This agrees with Figure 4.4 (bottom) by inspection. The same is

true for the facets X1,4 = 0 and X3,6 = 0. In contrast, the facet X3,5 = 0 is given by

the product of a point with a pentagon, and is therefore also a pentagon. The same

holds for the remaining 5 facets.

The second assertion (4.56) follows immediately from the first:

ResXi,j=0Ω(An) = Ω(An|Xi,j=0) = Ω(AL ×AR) = Ω(AL) ∧ Ω(AR) (4.63)

where the first equality follows from the residue property ((P2) of Section 2.1), the

second from the first assertion (4.54) and the third from the product property (2.1).

This provides a geometric explanation for the factorization of the amplitude first

discussed in (4.16).
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4.3.2 “Soft” limit

The associahedron geometry suggests a natural “soft limit” where the polytope is

“squashed” to a lower dimensional one, whereby the amplitude obviously vanishes.

Consider the associahedron An which lives in the subspace Hn defined by non-

adjacent constants cij. Let us consider the “soft” limit where the non-adjacent con-

stants c1i → 0 go to zero for i = 3, . . . , n−1. It follows from kinematic constraints

that

X1,3 +X2,n = s12 + s1n = −
n−1∑
i=3

s1i =
n−1∑
i=3

c1i → 0 (4.64)

But since both terms on the left are nonnegative X1,3, X2,n ≥ 0 inside the associahe-

dron, the limit “squashes” the geometry to a lower dimension where X1,3 = X2,n = 0.

The canonical form must therefore vanish everywhere on Hn, implying that the am-

plitude is identically zero. Note that if we restrict kinematic variables to the interior

of the associahedron, then p1 · pi → 0 for every i, yielding the true soft limit p1 → 0.

A similar argument can be given to show that the canonical form vanishes in the

“soft” limit where ci,n−1 → 0 for every i = 1, . . . , n−3. And by cyclic symmetry, the

amplitude must vanish under every “soft” limit given by sij → 0 for some fixed index

i and every index j 6= i−1, i+1.

Furthermore, given any triangulation of the associahedronAn of the kind discussed

in Section 4.4.4, every piece of the triangulation is squashed by the “soft” limit. It

follows that the canonical form of each piece must vanish individually.

The fact that the amplitude mn vanishes in this limit is rather non-trivial from a

physical point of view. While the geometric argument we provided is straightforward,

there does not appear to be any obvious physical reason for it. It is another feature

of the amplitude made obvious by the associahedron geometry.
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As an example, the n=5 amplitude (4.40) vanishes in the limit c13, c14 → 0,

which can be seen by substituting the equivalent limits X1,3 → X1,4 − X2,4 and

X2,5 → X2,4 −X1,4 directly into the amplitude (4.40).

4.4 Triangulations and recursion relations

Since the scattering forms pull back to the canonical form on our associahedra, it is

natural to expect that concrete expressions for the scattering amplitudes correspond

to natural triangulations of the associahedron. This connection between triangula-

tions of a positive geometry and various physical representations of amplitudes has

been vigorously explored in the context of the positive Grassmannian/amplituhedron,

with various triangulations of spaces and their duals corresponding to BCFW and “lo-

cal” forms for scattering amplitudes. In the present case of study for bi-adjoint φ3

theories, we encounter a lovely surprise: one of the canonical triangulations of the

associahedron literally reproduced the Feynman diagram expansion! Ironically this

representation also introduces spurious poles (at infinity) that only cancel in the full

sum over all diagrams; also, other properties of the amplitude, such as the vanishing

in the “soft” limit discussed in Section 4.3.2, are also not manifest term-by-term in

this triangulation. We also explore a number of other natural triangulations of the

geometry that make manifest the features hidden by the Feynman diagram triangula-

tion. Quite surprisingly, some triangulations lead to even more compact expressions

for these familiar and already very simple amplitudes! Finally, we introduce a novel

recursion relation for amplitudes based on the factorization properties discussed in

Section 4.3.1.
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4.4.1 The dual associahedron and its volume as the bi-adjoint

amplitude

Recall that every convex polytope A has a dual polytope A∗ whose volume determines

the canonical rational function of A.

Ω(A) = Vol(A∗) (4.65)

Applying (4.65) to our discussion implies that the canonical form of the associahe-

hdron An is determined by the volume of the dual associahedron A∗n:

Ω(An) = Vol(A∗n) (4.66)

But in the same way, the canonical rational function is determined by the amplitude

mn via (4.37), thus suggesting that the amplitude is the volume of the dual:

mn = Vol(A∗n) (4.67)

This leads to yet another geometric interpretation of the bi-adjoint amplitude. For

the remainder of this section, we describe the construction of the dual associahedron

in more detail, and provide the example for n=5.

We embed the subspace Hn in projective space Pn−3(R), and we choose a basis of

Mandelstam variables Xi′1,j
′
1
, . . . , Xi′n−3,j

′
n−3

to denote coordinates on the subspace:

Y = (1, Xi′1,j
′
1
, . . . , Xi′n−3,j

′
n−3

) ∈ Pn−3(R) (4.68)

Here we have introduced a zeroth component “1” since the coordinates are embed-

ded projectively. Any other basis can be obtained via a GL(n−2) transformation.

Furthermore, we denote the facets of the associahedron in projective coordinates.
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Recall that every facet of An is of the form Xi,j = 0. We rewrite this in the form

Wi,j · Y = 0 for some dual vector Wi,j. For example, consider n = 5 in the basis

Y = (1, X1,3, X1,4). Then

Y ·W2,5 = X2,5 = c13 + c14 −X1,3 = (c13 + c14,−1, 0) · Y (4.69)

which implies that W2,5 = (c13 + c14,−1, 0). More generally, the components of any

Wi,j can be read off from the expansion of Xi,j in terms of basis variables Xi′a,j
′
a

and

non-adjacent constants. Here we present all the dual vectors for the n = 5 pentagon

in Figure 4.4 (top right):

W1,3 = (0, 1, 0)

W3,5 = (c14 + c24, 0,−1)

W2,5 = (c13 + c14,−1, 0)

W2,4 = (c13,−1, 1)

W1,4 = (0, 0, 1) (4.70)

Once the coordinates for the dual vectors Wi,j are computed, they can be thought of

as vertices of the dual associahedron A∗n in the dual projective space. For n=5, the

dual associahedron is a pentagon whose vertices are (4.70) (See Figure 4.12).

4.4.2 Feynman diagrams as a triangulation of the dual asso-

ciahedron volume

We now compute the volume of A∗ by triangulation in the manner described in Ex-

ample 3.4.2. Let Z denote a facet of the dual A∗n. Then Z is adjacent to some vertices

Wi1,j1 , . . . , Win−3,jn−3 corresponding to propagators Xi1,j1 , . . . , Xin−3,jn−3 , respectively.

By taking the convex hull of the facet Z with W∗, and taking the union over all facets,
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W∗

W1,3

W3,5

W2,5

W2,4

W1,4

W1,3

W3,5

W2,5

W2,4

W1,4

Figure 4.12: Two triangulations of the dual associahedron A∗n=5

we get a triangulation of the dual associahedron whose volume is the sum over the

volume of each simplex. Recalling the formula for the volume of a simplex (3.125),

we find

Vol(A∗n) =
∑

vertex Z

Vol(W∗,Wi1,j1 , . . . ,Win−3,jn−3)

=
∑

vertex Z

sign(Z)
〈
W∗Wi1,j1 · · ·Win−3,jn−3

〉
(Y ·W∗)

∏n−3
a=1(Y ·Wia,ja)

(4.71)

where sign(Z) is the orientation of the adjacent vertices Wi1,j1 , . . . ,Win−3,jn−3 (in that

order) relative to the inherited orientation. Note that the antisymmetry of sign(Z) is

compensated by the antisymmetry of the determinant 〈· · · 〉 in the numerator, and the

sum is independent of the choice of reference point W∗. Furthermore, the sign(Z) here

is equivalent to the sign(Z) appearing in (4.31) where Z denotes the corresponding

vertex of An.

We now argue that for an appropriate choice of reference point W∗, the Feynman

diagram expansion (4.36) is term-by-term equivalent to the expression (4.71), where

each Z is associated with its corresponding planar cubic graph g. With the benefit

of hindsight, we set the reference point to W∗ = (1, 0 . . . , 0), which is particularly

convenient because the numerators in (4.71) are now equivalent for all Z. Indeed,
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since Xia,ja = Y ·Wia,ja , we have

〈
W∗Wi1,i1 · · ·Win−3,jn−3

〉
=
∂(Xi1,j1 , . . . , Xin−3,jn−3)

∂(Xi′1,j
′
1
, . . . , Xi′n−3,j

′
n−3

)
= sign(Z)/sign(Z ′) (4.72)

where the primed variables form the basis we chose back in (4.68), and the second

equality follows from (4.33). This shows that all the numerators in (4.71) are

equivalent to sign(Z ′), which we set to one. Finally, substituting (Y ·W∗) = 1 and

(Y ·Wia,ja) = Xia,ja into (4.71) and replacing Z by g gives

Vol(A∗n) =
∑

planar g

1∏n−3
a=1 Xia,ja

(4.73)

which is precisely the Feynman diagram expansion (4.36) for the amplitude. It

follows that the amplitude is the volume of the dual associahedron

Vol(A∗n) = Ω(An) = mn (4.74)

of which the Feynman diagram expansion is a particular triangulation.

We point out that the Feynman diagram expansion introduces a spurious vertex

W∗, which term-by-term gives rise to a pole at infinity that cancels in the sum. From

the point of view of the original associahedron, this corresponds to a “signed” trian-

gulation of An with overlapping simplices, whereby every simplex consists of all the

facets that meet at a vertex together with the boundary at infinity. The presence of

bad poles at infinity in individual Feynman diagrams that only cancel in the sum over

all diagrams bears striking resemblance to the behavior of Feynman diagrams under

BCFW shifts in gauge theories and gravity. There too, individual Feynman diagrams

have poles at infinity, even though the final amplitude does not, and this surprising

vanishing at infinity is critically related to the magical properties of amplitudes in

these theories. Indeed, the absence of poles at infinity in Yang-Mills theory finds a
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deeper explanation in terms of the symmetry of dual conformal invariance. It is thus

particularly amusing to see an analog of this hidden symmetry even for something

as innocent-seeming as bi-adjoint φ3 theory! Furthermore, the scattering form in

the full kinematic space is projectively invariant, a symmetry invisible in individual

diagrams. And the pullback of the forms to the associahedron subspaces are also

projectively invariant, with no pole at infinity. In Yang-Mills theories, we have dis-

covered representations (such as those based on BCFW recursion relations) that make

the dual conformal symmetry manifest term-by-term, and these were much later seen

to be associated with triangulations of the amplituhedron. Similarly, we now turn to

other natural triangulations of the associahedron which do not introduce new vertices

and thus have no spurious poles at infinity, thus making manifest term-by-term the

analogous feature of bi-adjoint φ3 amplitudes that is hidden in Feynman diagrams.

4.4.3 More triangulations of the dual associahedron

Returning to (4.71), a different choice of W∗ would have led to alternative trian-

gulations, and hence novel formulas for the amplitude. For instance, for n=5, we

can take the limit W∗ → W13. This kills two volume terms and gives a three-term

triangulation as shown in Figure 4.12 (right):

mn=5 =
X1,3 +X2,5

X1,3X3,5X2,5

+
X1,3 +X2,5

X1,3X2,5X2,4

+
X1,3 −X1,4 +X2,4

X1,3X2,4X1,4

(4.75)

Note that we have re-written the non-adjacent constants cij in terms of planar vari-

ables via (4.21). The sum of these three volumes gives the volume of the dual

associahedron, and hence the amplitude. Furthermore, since no spurious vertices are

introduced, the result makes manifest term-by-term the absence of poles at infinity.

This contrasts the Feynman diagram expansion where spurious poles appear term-
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by-term. Finally, this method of setting W∗ to one of the vertices can be repeated for

arbitrary n, and in general produces fewer terms than with Feynman diagrams.

4.4.4 Direct triangulations of the kinematic associahedron

Recall that canonical forms are triangulation independent. We now exploit this prop-

erty to compute the canonical form of the associahedron, thus establishing another

method for computing amplitudes.

We wish to compute the n=5 amplitude for which the associahedron is a pentagon.

We choose the basis Y = (1, X13, X14), and triangulate the associahedron as the union

of three triangles ABC, ACD and ADE (See Figure 4.13). It follows that

Ω(An=5) = Ω(ABC) + Ω(ACD) + Ω(ADE) (4.76)

Note that the triangles must be oriented in the same way as the associahedron (clock-

wise in this case). Getting the wrong orientation would cause a sign error. The

boundaries of the triangles are given by W · Y = 0 for:

WAB = (0, 1, 0) WBC = (c14 + c24, 0,−1)

WCD = (c13 + c14,−1, 0) WDE = (c13,−1, 1) WAE = (0, 0, 1)

WAC = (0,−c14 − c24, c13 + c14) WAD = (0,−c14, c13 + c14) (4.77)

139



X1,4

X1,3

X3,5

X2,5

X2,4

A

B C

D

E
�
�

�
�

�
�
�

�
�
�

�
�
�
�

��
���

���
���

���

Figure 4.13: A triangulation of the associahedron An=5

Recalling the canonical form for a simplex (2.17), we get

Ω(ABC) =
(X1,3 +X2,5)(X1,4 +X3,5)d2X

X1,3X3,5(X1,4X2,5 −X1,3X3,5)

Ω(ACD) =
(X1,3 +X2,5)2(X2,4 −X2,5 +X3,5)d2X

X2,5(−X1,4X2,5 −X1,3X2,4 +X1,3X2,5)(X1,4X2,5 −X1,3X3,5)

Ω(ADE) =
(X1,3 −X1,4 +X2,4)(−X2,4 +X1,4 +X2,5)d2X

X1,4X2,4(−X1,4X2,5 −X1,3X2,4 +X1,3X2,5)

Ω(An=5) = Ω(ABC) + Ω(ACD) + Ω(ADE)

where again we have rewritten the non-adjacent constants cij in terms of planar

variables via (4.21). The sum of these three quantities determines the amplitude.

This expansion is fundamentally different in character from the Feynman diagram

expansion due to the appearance of (non-linear) spurious poles that occur in the

presence of spurious boundaries AC and AD.

This approach can be extended to all n provided that a triangulation is known.

Two important properties of the bi-adjoint amplitude, which are obscured by indi-

vidual Feynman diagrams, become manifest in this triangulation. First, unlike that

for each Feynman diagram, the form for each piece of the triangulation is projective,
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which means it only depends on the ratio of X variables. Moreover, geometrically it

is obvious that the vanishing “soft” limit also works term-by-term, which is certainly

not the case for each Feynman diagram.

4.5 Vertex coordinates of the kinematic associahe-

dron

We now provide a recursive algorithm for deriving the vertices of the associahedron

An. Consider a vertex Z0 corresponding to a triangulation of the n-gon. Our goal is

to work out all planar components Xi,j of Z0 in terms of the non-adjacent constants

ckl. Our strategy is to compute the components one planar basis (i.e. a basis of

planar variables given by the diagonals of any triangulation) at a time by starting

with the basis where all components vanish, and applying a sequence of mutations.

Since every planar basis can be reached by such a sequence, this establishes a recursive

procedure for computing all planar components. It suffices then to discuss how the

components are related by mutation. Consider a mutation Z → Z ′ like the one shown

in Figure 4.6 (top) where Xi,k mutates to Xj,l. From (4.24) we find

Xj,l = Xj,k +Xi,l −Xi,k +
∑
i≤a<j
k≤b<l

cab (4.78)

which computes Xj,l from the basis of Z, thus completing the algorithm.
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Here we present the vertex coordinates for the kinematic associahedron An=5 from

Figure 4.4 (top right) in the basis Y = (1, X13, X14):

ZA = (1, 0, 0) (4.79)

ZB = (1, 0, c14 + c24) (4.80)

ZC = (1, c13 + c14, c14 + c24) (4.81)

ZD = (1, c13 + c14, c14) (4.82)

ZE = (1, c13, 0) (4.83)

(4.84)
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Chapter 5

The worldsheet

We have seen that scattering amplitudes can be thought of as differential forms on the

space of kinematic variables that pullback to the canonical forms of associahedra in

kinematic space. This is a deeply satisfying connection. After all, the associahedron

is perhaps the most fundamental and primitive object whose boundary structure

embodies “factorization” as a combinatorial and geometric property.

Furthermore, string theorists have long known of the fundamental role of the

associahedron for the open string. After all, the boundary structure of the open string

moduli space—the moduli space of n ordered points on the boundary of a disk—also

famously “factorizes” in the same way. In fact, it is well-known that the Deligne-

Mumford compactification [23, 24] of this space has precisely the same boundary

structure as the associahedron. The implications of this “worldsheet associahedron”

for aspects of stringy physics have also been explored in e.g. [47, 48].

Moreover, from general considerations of positive geometries we know that there

should also be a “worldsheet canonical form” associated with this worldsheet associ-

ahedron, which turns out to be the famous “worldsheet Parke-Taylor form” [49] (for

related discussions see e.g. [48, 50]), an object whose importance has been highlighted
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in Nair’s observation [51] and Witten’s twistor string [5], and especially in the story of

scattering equations and the CHY formulas for scattering amplitudes [11, 12, 10, 13].

But how is the worldsheet associahedron related to the kinematic associahedron?

This simple question has a striking answer: The scattering equations act as a diffeo-

morphism from the worldsheet associahedron to the kinematic associahedron! From

general grounds, it follows that the kinematic scattering form is the pushforward of

the worldsheet Parke-Taylor form under the scattering equation map. This gives a

beautiful meaning to the scattering equations, and a quick geometric derivation of

the bi-adjoint CHY formulas. We now explain these ideas in more detail.

5.1 Associahedron from the open string moduli

space

Recall that the moduli space of genus zero M0,n is the space of configurations of

n distinct punctures on the Riemann sphere CP1 modulo SL(2,C). The real part

M0,n(R) is the open-string moduli space consisting of all distinct points σi (i =

1, . . . , n) on the real line (and infinity) modulo SL(2,R). While there are n! ways

of ordering the σi variables, any pair of orderings related by dihedral transformation

are SL(2,R) equivalent. It follows that the real part is tiled by (n−1)!/2 distinct

regions given by inequivalent orderings of the σi variables [24]. The region given by

the standard ordering is called the positive part of the open string moduli space or

more simply the positive moduli space

M+
0,n := {σ1 < σ2 < · · · < σn}/SL(2,R) (5.1)

where the SL(2,R) redundancy can be “gauge fixed” in the standard way by setting

fixing three variables (σ1, σn−1, σn) = (0, 1,∞) in which caseM+
0,n = {0 < σ2 < · · · <
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σn−2 < 1}. Sometimes we also denote the space by M+
0,n(1, 2, . . . , n) to emphasize

the ordering. Furthermore, recall that M+
0,n can also be constructed as the (strictly)

positive Grassmannian G>0(2, n) modded out by the torus action Rn
>0. More precisely,

we consider the set of all 2×n matrices (C1, . . . , Cn) with positive Plücker coordinates

(ab) := det(Ca, Cb) > 0 for 1 ≤ a < b ≤ n, modded out by GL(2) action and column

rescaling.

In analogy to what we did for the kinematic polytope, we make two claims for the

positive moduli space:

1. The (compactified) positive moduli space is an associahedron which we call the

worldsheet associahedron.

2. The canonical form of the worldsheet associahedron is the Parke-Taylor form,

ωWS
n :=

1

vol [SL(2)]

n∏
a=1

dσa
σa − σa+1

=
1

vol [SL(2)×GL(1)n]

n∏
a=1

d2Ca
(a a+1)

(5.2)

where in the last expression we rewrote the form in Plücker coordinates.

More precisely, the process of compactification provides the positive moduli space

M+
0,n with boundaries of all codimensions, and here we present a natural compact-

ification called the u-space compactification that produces the boundary structure

of the associahedron. Of course, the associahedron structure of the positive moduli

space is well-known [23, 24], but the discussion we present here is instructive for later

sections.

The compactification is very subtle in σi variables because our naive gauge choice

fails to make all boundaries manifest. Nonetheless, all the boundaries can be visu-

alized via a “blowup” procedure. Consider the case n=5 where only three of the

five boundaries are manifest in the standard gauge as shown in Figure 5.1. The

two “hidden” boundaries can be recovered by introducing a blowup at the vertices

(σ2, σ3) = (0, 0) and (1, 1) as shown in Figure 5.1. A similar procedure applies for all
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Figure 5.1: A blowup of the n=5 worldsheet associahedron showing all boundaries.

n. We will come back to this picture when we discuss the canonical form, but now

we provide an explicit compactification that makes manifest all the boundaries.

We introduce the variables ui,j for 1 ≤ i < j−1 < n which are constrained to

the region 0 ≤ ui,j ≤ 1. The ui,j is analogous to the planar kinematic variable

Xi,j introduced in (4.6), and can therefore be visualized as the diagonal (i, j) of a

convex n-gon with cyclically ordered labels like Figure 4.1 (left). There are of course

n(n−3)/2 of these variables. Furthermore, we impose the non-crossing identity

ui,j = 1−
∏

(k,l)∈(i,j)c

uk,l (5.3)

for each diagonal (i, j), where (i, j)c denotes the set of all diagonals that cross (i, j).

Only (n−2)(n−3)/2 of these n(n−3)/2 constraints are independent, so the space is

of dimension (n−3). See [52] for a generalization of these identities.

Let us consider some examples. For n=4 we have two variables with one constraint

u1,3 = 1− u2,4 (5.4)

For n=5 we have five variables satisfying the constraint

u1,3 = 1− u2,4 u2,5 , (5.5)
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and four others related by cyclic shift; but only three constraints are independent,

thus giving a 2-dimensional surface shown in Figure 5.2. For n=6, there are two

types of constraints corresponding to two types of diagonals of the hexagon. Here we

present the constraints for the diagonals (1, 3) and (1, 4), and the rest are related via

cyclic shift.

u1,3 = 1− u2,4 u2,5 u2,6 u1,4 = 1− u2,5 u2,6 u3,5 u3,6 , (5.6)

This gives 6 + 3 = 9 constraints, but only six are independent.

The u-space provides an explicit compactification of the positive moduli space.

To see this, we begin by constructing a map from the positive moduli space M+
0,n to

the interior of u-space via the following cross ratio formula:

ui,j =
(σi − σj−1)(σi−1 − σj)
(σi − σj)(σi−1 − σj−1)

=
(i j−1)(i−1 j)

(i j)(i−1 j−1)
(5.7)

which has already been studied extensively in the original dual resonance model

(c.f. [53] and more recently in [54]). The map provides a diffeomorphism between the

positive moduli space and the u-space interior. Taking the closure in u-space thereby

provides the required compactification. Henceforth we denote u-space by M+

0,n.

We now argue that the compactification M+

0,n is an associahedron. We begin by

showing that there are exactly n(n−3)/2 codimension 1 boundaries given individually

by ui,j = 0 for every diagonal (i, j). We then show that every codimension 1 boundary

“factors” like (4.19), from which the desired conclusion follows.

Clearly the boundaries of the space are given by ui,j = 0 or 1. However, if

ui,j = 1 then by the non-crossing identity (5.3) we must have uk,l = 0 for at least one

diagonal (k, l) ∈ (i, j)c. It therefore suffices to only consider ui,j = 0. We claim that

every boundary ui,j = 0 “factors” geometrically into a product of lower-dimensional
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worldsheets:

∂(i,j)M
+

0,n
∼=M+

0,nL
×M+

0,nR
(5.8)

where

M+

0,nL
:= M+

0,nL
(i, . . . , j−1, I) (5.9)

M+

0,nR
:= M+

0,nR
(1, . . . , i−1, I, j, . . . , n) (5.10)

with I denoting an auxiliary label and (nL, nR) = (j−i+1, n+i−j+1). Similar to

the geometric factorization of the kinematic polytope discussed in Section 4.3.1, we

visualize the geometric factorization of the compactification as the diagonal (i, j) that

subdivides the convex n-gon into a “left” subpolygon and a “right” subpolygon as

shown in Figure 4.11. Furthermore, note that (5.8) immediately implies that the

boundary is of dimension (n− 4) and hence codimension 1. From the σ-space point

of view, the limit ui,j = 0 corresponds to the usual degeneration where the σa for

all a = i, . . . , j−1 pinch together on the left subpolygon, and similarly the σa for all

a = j, . . . , n, 1, . . . , i−1 pinch together on the right subpolygon.

To derive (5.8), let L,R denote the set of diagonals of the left and right subpoly-

gons, respectively. Then in the limit ui,j = 0, we get uk,l = 1 for every diagonal (k, l)

that crosses (i, j). It follows that the constraints (5.3) split into two independent

sets of constraints, one for each subpolygon:

Left:

uk,l = 1−
∏

(p,q)∈(k,l)c∩L

up,q

∣∣∣∣∣∣ (k, l) ∈ L

 (5.11)

Right:

uk,l = 1−
∏

(p,q)∈(k,l)c∩R

up,q

∣∣∣∣∣∣ (k, l) ∈ R

 (5.12)
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u1,3

u3,5

u2,5

u1,3 u2,5

u3,5

u1,4 u2,4

Figure 5.2: The worldsheet associahedron for n=5 presented in a coordinate chart
where all boundaries are manifest. We caution the reader that some coordinate charts
do not make manifest all the boundaries.

These provide precisely the constraints for the left and right factorsM+

0,nL
andM+

0,nR
,

thereby implying (5.8). We conclude therefore that the compactified space M+

0,n is

an associahedron. As an example, the n=5 worldsheet associahedron is shown in

Figure 5.2.

We now compute the canonical form. Since the worldsheet associahedron has the

same boundary structure as the kinematic associahedron, therefore its canonical form

should take on a similar form as (4.31). Indeed, let us work in the standard gauge

(σ1, σn−1, σn) = (0, 1,∞) where the moduli space interior is the simplex 0 < σ2 <

σ3 < · · · < σn−2 < 1. We now blow up the boundaries of the simplex to form an

associahedron polytope, in the manner discussed earlier. We assume that our blowup

is small of order ε, with boundaries given by Bi,j(ε;σ) ≥ 0 corresponding to the

diagonals (i, j) of the n-gon. The exact expression for Bi,j is not unique; however,

since the boundary (i, j) corresponds to the limit where σi, σi+1, . . . , σj−1 pinch, it

is thereby necessary that limε→0Bi,j(ε, σ) = σi,j−1. Now, we compute the canonical

form by substituting Xi,j → Bi,j into (4.31), then removing the blowup by taking
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the limit ε→ 0:

Ω
(
M+

0,n

)
= lim

ε→0

∑
planar g

sign(g)
n−3∧
a=1

d logBia,ja(ε;σ) (5.13)

=
∑

planar g

sign(g)
n−3∧
a=1

d log σia,ja−1 (5.14)

where we sum over all planar cubic graphs g, and for every g the (ia, ja) for a =

1, . . . , n−3 are the diagonals of the corresponding triangulation. The sign(g) is defined

by the sign flip rule (4.14) as before. We caution the reader that the naive substitution

Xi,j → ui,j is incorrect; since the ui,j variables are constrained by non-linear equations

(i.e. the non-crossing identities (5.3)), hence there is no known dual polytope with

boundaries ui,j ≥ 0 whose volume takes the form (4.31).

Furthermore, since the ε→ 0 limit reduces to a simplex, the canonical form must

also reduce to the form for that simplex, which we recognize as the Parke-Taylor

form (5.2) given below. The particular way in which the simplex is blown up does

not matter, since they all reduce to the same geometry in this limit.

Ω
(
M+

0,n

)
= − dn−3σ

σ2(σ2−σ3) · · · (σn−2 − 1)
(5.15)

While (5.13) and (5.15) look very different, their equivalence is guaranteed by the

geometric argument provided. In fact, the former can be thought of as a triangulation

(with overlapping pieces that “cancel”) of the latter.

Finally, we present (5.13) in a SL(2) invariant way:

Ω
(
M+

0,n

)
=

∑
planar g

sign(g)
n−3∧
a=1

d log

(
σia,ja−1 σ1,n σn−1,n

σ1,n−1 σia,n σja−1,n

)
(5.16)
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5.2 Scattering equations as a diffeomorphism be-

tween associahedra

We have now seen two associahedra: the kinematic associahedron An in kinematic

space Kn and the worldsheet associahedronM+

0,n in moduli spaceM0,n. Furthermore,

recall that the scattering equations [11] relate points in moduli space to points in

kinematic space. It is therefore natural to expect that the same equations should

relate the two associahedra. We begin by reinterpreting the scattering equations as

a map from moduli space to kinematic space, giving the scattering equation map.

We then make the striking observation that the scattering equation map acts as a

diffeomorphim between the two associahedra.

M0,n
scattering equations−−−−−−−−−−−→

as a map
Kn (5.17)

M+

0,n

scattering equations−−−−−−−−−−−→
as a diffeomorphism

An (5.18)

This has immediate consequences for amplitudes, including a novel derivation of the

CHY formula for bi-adjoint scalars and much more. But before jumping ahead, let

us establish the map.

Recall that the scattering equations [11] read

Ei :=
n∑

j=1;j 6=i

sij
σi,j

= 0 for i = 1, . . . , n (5.19)

where σi,j := σi − σj, and only (n−3) equations are independent due to SL(2) re-

dundancy. It is convenient to first send σn → ∞ so that by adding all E1, E2, ..., Ec

together we find

sc,c+1 = −
∑

1≤i≤c
c+1≤j≤n−1
(i,j)6=(c,c+1)

σc,c+1
sij
σi,j

. (5.20)
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for the range 1 ≤ c ≤ n−2. Combining variables sc,c+1 that have adjacent indices

and variables sij that have non-adjacent indices (i.e. j−i > 1) gives us a formula for

every planar variable Xa,b:

Xa,b = −
∑

1≤i<a
a<j<b

σa,j
sij
σi,j
−
∑
a≤i<b
b≤j<n

σi,b−1
sij
σi,j
−
∑

1≤i<a
b≤j<n

σa,b−1
sij
σi,j

, (5.21)

whereby every index pair i, j on the right hand side is non-adjacent with i, j 6=

n. This provides a remarkable rewriting of the scattering equations because every

Mandelstam variable on the right is a constant sij = −cij. Substituting the constants

and recovering the SL(2) invariance by rewriting the σ variables as cross-ratios of

Plücker coordinates gives

Xa,b =
∑

1≤i<a
a<j<b

(a j)(i n)

(i j)(a n)
cij +

∑
a≤i<b−1
b≤j<n

(j n)(i b−1)

(i j)(b−1n)
cij +

∑
1≤i<a
b≤j<n

(i n)(j n)(a b−1)

(i j)(a n)(b−1n)
cij .(5.22)

Since the right hand side consists only of constants and σ variables, this provides a

map σ → X from moduli space to kinematic space (more specifically to the subspace

Hn when the σi variables are real), thus providing the scattering equation map that

we are after.

Let us look at the map more closely. First and foremost, every point Xa,b on the

image is manifestly positive when the σi variables are ordered since the constants

cij > 0 are positive. It follows that (5.22) maps the worldsheet associahedron M+

0,n

into the kinematic associahedron An.

Moreover, every boundary of the worldsheet associahedron (of any codimension)

is mapped to the corresponding boundary of the kinematic associahedron. Indeed,

consider a codimension 1 boundary ua,b → 0. In this limit, the variables σa, . . . , σb−1

all pinch to a point so that σi,j → 0 for all a ≤ i < j < b. By direct inspection of

(5.22) we find that Xa,b → 0 in this limit. It follows therefore that every boundary
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0 < σ2 < σ3 < 1

=⇒

X1,4

X1,3

X3,5

X2,5

X2,4

Figure 5.3: Graphical evidence demonstrating that for n=5, the interior of the world-
sheet associahedron is mapped diffeomorphically to the interior of the kinematic as-
sociahedron by the scattering equation map. Each contour line denotes a locus where
one of σ2, σ3 is constant.

ua,b = 0 of the worldsheet associahedron is mapped to the corresponding boundary

Xa,b = 0 of the kinematic associahedron. An extended statement holds for boundaries

of all codimensions. We say therefore that the scattering equation map preserves the

associahedron boundary structure. Furthermore, this suggests that every point on

the kinematic associahedron is reached by the map.

Finally, we make a numerical observation. For every point on the interior of the

kinematic polytope, exactly one of the (n−3)! solutions of the scattering equations

lies on the interior of the worldsheet associahedron. In other words, provided that

planar propagators sa···b−1 > 0 are positive and the non-adjacent constants sij < 0

are negative, then there exists exactly one real ordered solution σ1 < · · · < σn. We

have checked this thoroughly up to n=10 for a substantial amount of data. Note

that our kinematic inequalities are different from the ones introduced in [55] where

all solutions are real.

We conjecture therefore that the scattering equation map is a diffeomorphism from

the worldsheet associahedron to the kinematic associahedron. For n=5, the scattering
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equation map is given by

X1,3 =
σ2

σ3

(c13 + σ3c14) (5.23)

X1,4 =
1

1− σ2

((σ3 − σ2)c24 + σ3(1− σ2)c14) (5.24)

In Figure 5.3, we present graphical evidence showing that these equations provide a

diffeomorphism.

Diffeomorphisms play an important role in the theory of positive geometries and

canonical forms. Recall from Heuristic 2.3.1 that provided a diffeomorphism φ : A →

B between two positive geometries, the map pushes the canonical form of one to the

other:

A diffeomorphism φ−−−−−−−−−→ B (5.25)

Ω(A)
pushforward by φ−−−−−−−−−−→ Ω(B) (5.26)

Applying this to our scenario, we find that the scattering equation map pushes the

canonical form of the worldsheet associahedron to that of the kinematic associahedron.

M+

0,n

scattering equations−−−−−−−−−−−→
as diffeomorphism

An (5.27)

Ω
(
M+

0,n

)
pushforward by−−−−−−−−−−−→

scattering equations
Ω(An) (5.28)

But (5.15) and (4.36) imply

ωWS
n

pushforward by−−−−−−−−−−−→
scattering equations

mnd
n−3X (5.29)

It follows that the amplitude mn can be obtained by pushing forward the Parke-

Taylor form via the scattering equations. Recalling the definition of the pushforward

as a sum over roots, we obtain the amplitude form by taking the Parke-Taylor form,
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substituting all roots of the scattering equations and summing over all roots.

∑
sol. σ

ωWS
n = mnd

n−3X (5.30)

For a general ordering pair α, β, this generalizes to the following statement

∑
sol. σ

ωWS
n [α] = m[α|β]dn−3X (5.31)

where ωWS
n [α] denotes the Parke-Taylor form for the ordering α, and the scattering

equations are reinterpreted as a map M0,n → Kn that restricts to a diffeomorphism

M+

0,n[α] → A[α|β], where M+

0,n[α] denotes the (compactified) α-ordered part of the

open string moduli space.

We caution the reader that the pullback of the right hand side in (5.30) does not

produce the left hand side. Indeed, pulling back a canonical form does not necessarily

produce another canonical form. For instance, pulling back d log y via y = x2 gives

2d log x, which does not even have unit residue.

We observe that (5.31) is reminiscent of the CHY formula for the bi-adjoint scalar.

Indeed they are equivalent, as we now show. We begin by rewriting our pushforward

in delta function form:

mn =

∫
ωWS
n [σ]

[
n−3∏
a=1

δ(Xia,ja − φa(σ))

]
(5.32)

where the variables Xia,ja form a planar basis (corresponding to the diagonals of

a triangulation), and Xia,ja = φa(σ) is the scattering equation map (5.22). It is

necessary that the basis variables appear with unit Jacobian in the delta functions,

because mn is obtained from Ω(An) by stripping away
∏n−3

a=1 dsIa . In other words, the

delta functions must be normalized in the basis in which mn is obtained from Ω(An).
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Now we claim that (5.32) is equivalent to the corresponding CHY formula:

mn,CHY :=

∫
ωWS
n [σ]

[
1∏n

a=1(σa − σa+1)

∏
a

′
δ

(∑
b 6=a

sab
σa − σb

)]
(5.33)

Here we have deliberately isolated the Parke-Taylor form and grouped the other

Parke-Taylor factor with the delta function. With a little bit of work, it can be

shown that the square bracket expressions in (5.33) and (5.32) are equivalent. Thus,

the second Parke-Taylor factor acts as a Jacobian factor for pushing forward onto

the subspace Hn. More generally, a delta function dressed with an α-ordered Parke-

Taylor factor provides the pushforward onto the subspace H[α] defined in (6.44) or

equivalently H[α|α] defined in Section 4.2.4. It follows that

mn = mn,CHY (5.34)

We have thus provided a novel derivation of the CHY formula for the bi-adjoint

scalar. This derivation is purely geometric, and does not rely on the usual arguments

involving factorization.

Finally, we make a brief comment about all ordering pairs. In Section 4.2.4, we

obtained the partial amplitude m[α|β] from the pullback of the planar scattering form

Ω(n−3)[α] to the subspace H[α|β]. However, around (6.48) we argue that the same

amplitude can also be obtained by pulling back the same form to a different subspace

H[β]. Hence, the amplitude can be expressed as the integral of the α-ordered Parke-

Taylor form over the delta function dressed with β-ordered Parke-Taylor factor, which

is precisely the CHY formula. It follows that

m[α|β] = mCHY[α|β] (5.35)

for every ordering pair.
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Chapter 6

Color and kinematics

We explain a new manifestation of the color-kinematics duality. We begin by con-

sidering generalized scattering forms that apply to all colored/flavored amplitudes,

including gluons and pions. We find that projectivity of the form leads to many fur-

ther consequences in this generalized context. In particular, we find that they lead

to the well-known kinematic Jacobi relations, as well as the BCJ relations. In addi-

tion, we find a general duality between colored/flavored amplitudes and differential

forms on kinematic space, which relies on the curious observation that differential

forms satisfy a set of “Jacobi relations” analogous to the Jacobi relations satisfied by

structure constants.

6.1 The big kinematic space

We begin by constructing the big kinematic space K∗n, which is an extended version

of the usual kinematic space. The importance of the big kinematic space will become

clear when we introduce generalized scattering forms. Consider a set of abstract

variables SI indexed by all subsets I ⊂ {1, 2, . . . , n} subject to two conditions,

• SI = SĪ where Ī is the complement of I
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I1 I2

I3I4

I1 I4

I2I3

I1 I3

I4I2

SI1I2 SI2I3 SI1I3

gs gt gu

Figure 6.1: A four set partition I1 t I2 t I3 t I4 of the external labels and the three
corresponding channels. The three graphs gs, gt, gu are identical except for a 4-point
subgraph.

• SI = 0 for |I| = 0, 1, n−1, n

For example, K∗n=4 is a 3-dimensional space spanned by the variables

{S12 = S34, S13 = S24, S14 = S23} (6.1)

while K∗n=5 is a 10-dimensional space spanned by Sij’s, and K∗n=6 is a 25-dimensional

space spanned by 15 Sij’s and 10 Sijk’s. The dimension for general n is given by

dimK∗n = 2n−1−n−1 (6.2)

which for n > 3 is higher than the dimension n(n−3)/2 of the small kinematic space

Kn. Nonetheless, the latter can be recovered by imposing a 7-term identity which we

now describe.

For every partition of n particles into four subsets

I1 t I2 t I3 t I4 = {1, 2, · · · , n} (6.3)
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we impose the following identity consisting of 7 terms (See Figure 6.1):

SI1I2 + SI2I3 + SI1I3 = SI1 + SI2 + SI3 + SI4 (6.4)

where SIJ := SI∪J . We can visualize this identity as a triplet of cubic graphs which

are identical except for a four point subgraph, with the propagators on the left cor-

responding to the three channels of the subgraph, and the propagators on the right

corresponding to the four legs of the subgraph. See Figure 6.1 for an illustration.

Moreover, recall that while (6.4) is usually presented as a derived property of 4-point

kinematics, here we take a different point of view whereby the small kinematic space

Kn is constructed by requiring (6.4) as an “axiomatic identity” from which the usual

kinematic identities follow:

SI =
∑

i<j; i,j∈I

Sij for all I;
n∑

j=1;j 6=i

Sij = 0 for all i (6.5)

We derive the first identity by induction on m = |I|, which is trivial for m ≤ 2.

Now assume that the assertion has been proven for m < k, and |I| = k for some

index set I. We first isolate two elements a, b ∈ I and define K := I\{a, b}. Applying

(6.4) to the partition Ī tK t {a} t {b} gives

Sab + SaK + SbK = SK + SĪ (6.6)

where we used Sa = Sb = 0. It follows that

SI = SĪ = Sab + SaK + SbK − SK =
∑

i<j; i,j∈I

Sij (6.7)

where for the last equality we applied the induction hypothesis to each of the four

terms on the left hand side. This completes the derivation.
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For the second identity in (6.5), we apply the first identity to Ī for I := {i} which

gives

∑
a<b; a,b 6=i

Sab = SĪ = SI = 0 (6.8)

Applying the first identity again to the full index set gives

∑
a<b

Sab = 0 (6.9)

Subtracting (6.8) from (6.9) gives the desired result.

It follows therefore that the 7-term identity reduces the big kinematic space K∗n to

the small kinematic space Kn, in which case the abstract variables can be identified

with Mandelstam variables:

SI = sI for each I (6.10)

For some purposes, we find it useful to study geometries and differential forms directly

in the big kinematic space prior to imposing the 7-term identity.

6.2 Scattering forms and projectivity

We introduce scattering forms as a generalization of the planar scattering forms from

Section 4.1.3 to all cubic graphs. We then explore the implications of projectivity in

this general framework and discover Jacobi identities for kinematic numerators as a

direct consequence.

Before defining the scattering forms, we establish the properties of cubic graphs

from the point of view of the big space. Recall that a cubic graph g consists of (n−3)

Mandelstam variables sIa corresponding to the propagators of the graph. Then the
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corresponding big SIa variables form a mutually compatible set, whereby any pair

of variables SI and SJ are said to be compatible if the index sets are either disjoint

I ∩ J = ∅ or one is contained in the other. Furthermore, we define an ordered cubic

graph as a pair (g|α) consisting of a cubic graph g and an ordering α for the external

legs, assuming that g is compatible with α.

For every ordered cubic graph (g|α) with propagators SIa , we define a d log form

Ω(n−3)(g|α) := sign(g|α)
n−3∧
a=1

d logSIa (6.11)

where sign(g|αg) ∈ {±1} depends not only on the ordered graph but also on the

ordering of the propagators so that swapping two propagators changes the sign. The

antisymmetry of the sign is of course compensated by the antisymmetry of the wedge

product. Furthermore, we impose relations between the sign of different ordered cubic

graphs via a sign flip rule. Recall that two graphs g, g′ with the same ordering α are

related by a mutation if one can be obtained from the other by an exchange of channel

in a 4-point subgraph like Figure 4.2. We assume that planarity in the ordering α

is preserved by the mutation, so that only one mutation is possible in every 4-point

subgraph of any cubic graph. Furthermore, we say that two orderings α, α′ for the

same graph g are related by a vertex flip if (g|α′) can be obtained from (g|α) by

exchanging two legs of a vertex (See Figure 6.2). Finally, we define the sign flip rule

by requiring a sign change for every mutation and every vertex flip.

Mutation: sign(g|α) = −sign(g′|α) (6.12)

Vertex flip: sign(g|α) = −sign(g|α′) (6.13)
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Figure 6.2: A vertex flip at the red vertex

For a generic pair of ordered graphs (g|α), (g|β) related by a sequence of sign flips,

let flip(α, β) denote the number of flips involved (modulo 2) so that

sign(g|α) = (−1)flip(α,β)sign(g|β) (6.14)

If we restrict α to the standard ordering, then the vertex flip is irrelevant and we

reduce to the sign flip rule for the planar scattering form (4.14). More generally,

we require the sign rule under vertex flip for any quantity Q(g|α) labeled by ordered

cubic graphs. It follows that a product like Q(g|α)Q′(g|α) of two such quantities

is independent of the ordering and can therefore be written in a condensed form

Q(g)Q′(g).

We now define the scattering form for n particles as a rank (n−3) form on K∗n of

the following form

Ω(n−3)[N ] =
∑

cubic g

N(g|αg)Ω(n−3)(g|αg) (6.15)

where we sum over all cubic graphs g, and to every cubic graph we assign an ordering

αg and a kinematic numerator N(g|αg) which we assume to be independent of big

S variables. However, since every term is independent of the ordering αg, we can

162



condense our notation as follows:

Ω(n−3)[N ] =
∑

cubic g

N(g)Ω(n−3)(g) (6.16)

Furthermore, we consider projective scattering forms, which are scattering forms

that are invariant under local GL(1) transformations SI → Λ(S)SI . This imposes

constraints on the kinematic numerators which we now explain. Consider a triplet of

cubic graphs gs, gt, gu like Figure 6.1. Under the transformation, the Λ-dependence

of the scattering form becomes

(N(gs|I1I2I3I4)+N(gt|I1I4I2I3)+N(gu|I1I3I4I2)) d log Λ ∧

(
n−4∧
b=1

d logSJb

)
+ · · ·(6.17)

where the SJb denote the (n−4) propagators shared by the triplet, and the · · · denotes

similar expressions for all other triplets. Now, since the non-vanishing propagators are

independent in the big kinematic space, therefore the Λ-dependence vanishes precisely

if the coefficient of every triplet vanishes. This gives us (2n−5)!!(n−3)/3 identities

(not all independent), one for each triplet, of the following form:

N(gs|I1I2I3I4)+N(gt|I1I4I2I3)+N(gu|I1I3I4I2) = 0 (6.18)

Note that we have explicitly written out the ordering for each graph which is impor-

tant for making sure that the three terms add. We refer to (6.18) as a Jacobi identity

due to its similarity to the Jacobi identity for structure constants of Lie groups. It

follows that the scattering form is projective if and only if its numerators satisfy

Jacobi identities.

We make a few comments before providing examples. Note that (6.18) is derived

without imposing the 7-term identity (6.4). This is crucial, as imposing the identity

would reduce us to the small kinematic space Kn where the set of all propagators no
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longer forms a basis (although the set of all planar propagators does), in which case

we cannot require the coefficient of every triplet in (6.17) to vanish. Furthermore,

the GL(1) transformation does not act on the kinematic numerators, which may

depend on usual kinematic quantities like (pi · pj), (εi · pj) and (εi · εj) that we assume

to be independent of big S variables. Nonetheless, we can define a similar local

GL(1) transformation acting directly on the small space via pi →
√

Λ(p) pi. It is

straightforward then to show that GL(1) invariance in the big space directly implies

GL(1) covariance in the small space, meaning Ω[N ](n−3)(s)→ ΛD/2Ω(n−3)[N ](s) where

D is the mass dimension of the numerators.

Let us consider some examples of projective scattering forms. The simplest case

is the α-planar scattering form

Ω
(n−3)

φ3 [α] =
∑

α-planar g

sign(g|α)
n−3∧
a=1

d logSIa (6.19)

where we sum over all cubic graphs g compatible with the ordering α. For the

standard ordering this reduces to (4.10) in the small kinematic space. In this case,

the kinematic numerator N(g|α) vanishes for any graph incompatible with α, and is

±1 otherwise. More specifically, for every triplet, either none of the three graphs is

compatible, or exactly two are. For instance, if the first two of the triplet gs, gt, gu

are compatible, then

N(gs|I1I2I3I4) = ±1 N(gt|I1I4I2I3) = ∓1 N(gu|I1I3I4I2) = 0 (6.20)

One way to generalize the planar scattering form without introducing any ad-

ditional structures such as spin or color is to drop the planarity requirement and

consider all projective scattering forms whose numerators are 0,±1. This provides a

large class of scattering forms called d log scattering forms of which the planar case is

only one. Furthermore, as the planar form is closely tied to the geometry of the asso-
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ciahedron, many of these other forms are also closely tied to polytopes of their own

such as the permutohedron. We provide more details on this topic in the Outlook.

Furthermore, we point out that while planar forms have cyclic symmetry, it is also

possible to construct projective forms with permutation symmetry. As will be dis-

cussed in the next section, such scattering forms can be obtained from color-dressed

amplitudes that are permutation invariant, via an important connection between dif-

ferential forms and color. These include scattering forms for theories like Yang-Mills

and Non-linear Sigma Model, which we discuss in more detail in Section 6.6.

Last but not least, we state an important property for any projective scatter-

ing form. Since planar scattering forms are projective, it follows that every linear

combination of them is also projective:

Ω(n−3)[C] =
∑

α∈Sn/Zn

C(α)Ω
(n−3)

φ3 [α] (6.21)

where the C(α) coefficients are independent of big S variables. Remarkably, the

converse is also true, i.e. every projective scattering form is a linear combination of

planar scattering forms. A detailed derivation is given in Appendix C of [1], and the

upshot is that any projective scattering form can be expanded in terms of a basis of

(n−2)! planar forms,

Ω(n−3)[C ′] =
∑

π∈Sn−2

C ′(π) Ω
(n−3)

φ3 [1, π(2), . . . , π(n−1), n] . (6.22)

6.3 Duality between color and form

We establish the duality between color factors and differential forms on kinematic

space Kn by showing that the latter satisfy Jacobi relations similar to the usual

Jacobi relations for structure constants. This leads naturally to a duality between

color-dressed amplitudes and scattering forms.
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We begin by reviewing the algebra of color. Given an ordered graph we define a

color factor C(g|α) by first drawing g as a planar graph whose external legs are ordered

clockwise by α (See Figure 6.3 (left)). Then, for each internal and external line we

assign an index, and for each vertex v we assign a structure constant favbvcv , where the

indices av, bv, cv correspond to the three adjacent lines in clockwise order. Finally,

we obtain the color factor by multiplying the structure constants and contracting

repeated indices (which occur along internal lines). Hence,

C(g|α) =
∏
v

favbvcv (6.23)

where index contraction is implicitly assumed. The antisymmetry of the structure

constants implies the vertex flip sign rule (6.24) while the usual Jacobi identities for

the structure constants imply Jacobi identities for the color factors (6.25) for any

triple like Figure 6.1:

C(g|α) = (−1)flip(α,β)C(g|β) (6.24)

C(gs|I1I2I3I4)+C(gt|I1I4I2I3)+C(gu|I1I3I4I2) = 0 (6.25)

We now argue that a similar set of identities hold for differential forms on the

kinematic space Kn. For every ordered graph (g|α) with propagators sIa for a =

1, . . . , n−3, we define the (n−3)-form

W (g|α) = sign(g|α)
n−3∧
a=1

dsIa (6.26)
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We claim that the form satisfies the vertex flip sign rule (6.27) and the Jacobi identity

(6.28) in perfect analogy with color factors.

W (g|α) = (−1)flip(α|β)W (g|β) (6.27)

W (gs|I1I2I3I4)+W (gt|I1I4I2I3)+W (gu|I1I3I4I2) = 0 (6.28)

The former follows from the sign(g|α) factor in (6.26). The latter follows from

applying the 7-term identity (6.4) to the triplet gs, gt, gu from Figure 6.1:

dsI1I2 + dsI2I3 + dsI1I3 = dsI1 + dsI2 + dsI3 + dsI4 (6.29)

Note that on the left the propagators correspond to the three channels of the triplet,

while on the right the propagators correspond to the legs of the 4-point subgraph.

Moreover, let sJb for b = 1, . . . , n−4 denote the propagators shared by the triplet. It

follows that

(dsI1I2 + dsI2I3 + dsI1I3) ∧
n−4∧
b=1

dsJb = 0 (6.30)

where every term on the right hand side has vanished. In particular, external legs

vanish by on-shell condition while internal legs vanish since they already appear in

the product ∧n−4
b=1 dsJb . The result is precisely the sought after Jacobi relation.

This implies a duality between color factors and differential forms on kinematic

space Kn:

C(g|α) ↔ W (g|α) (6.31)
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Figure 6.3: An example of the duality between color factors and differential forms

Hence “Color is Kinematics”. We emphasize that the 7-term identity is absolutely

crucial for this property to hold, thus providing one of the motivations for constructing

kinematic space Kn by the 7-term identity directly.

We provide some examples for low n. For n=4, there are three color factors dual

to 1-forms:

Cs = fa1a2bf ba3a4 ↔ ds

Ct = fa1a4bf ba2a3 ↔ dt

Cu = fa1a3bf ba4a2 ↔ du

For n=5, color factors are dual to 2-forms. Here we provide one example as illustrated

in Figure 6.3.

Furthermore, the duality (6.31) leads naturally to a duality between color-dressed

amplitudes and scattering forms. Consider a colored-dressed amplitude Mn[N ] with

kinematic numerators N :

Mn[N ] =
∑

cubic g

N(g|αg)C(g|αg)
∏
I∈g

1

sI
(6.32)

where we sum over all cubic graphs g, and sI for I ∈ g denote the propagators in the

graph. We now map this amplitude to a form on kinematic space by applying (6.31)

to each color factor individually, giving

Ω(n−3)[N ] =
∑

cubic g

N(g|αg)W (g|αg)
∏
I∈g

1

sI
(6.33)
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which we recognize as a scattering form (6.15) with SI → sI . Likewise, we can return

to the amplitude (6.32) by applying (6.31) backwards. Thus, the duality (6.31)

implies the duality (6.34)

Mn[N ] ↔ Ω(n−3)[N ] (6.34)

We henceforth refer to both dualities as color-form duality. Note that for any

permutation-invariant color-dressed amplitude, (6.34) gives a scattering form that is

nicely permutation invariant. Furthermore, we comment on the role of projectivity.

Recall that the numerators N(g) satisfy Jacobi relations provided that the scattering

form Ω(n−3)[N ](s) is derived from a projective form in the big kinematic space. The

dual amplitude Mn[N ] therefore admits an expansion with N(g) as BCJ numerators,

first proposed by Bern, Carrasco and Johansson in [14].

For the special case of bi-adjoint scalar with double color group SU(N)× SU(N).

The scattering form is obtained by simply choosing N(g) = C(g) for every graph g:

Ω
(n−3)

φ3 =
∑

cubic g

C(g|αg) sign(g|αg)
n−3∧
a=1

d log sIa (6.35)

which is both permutation invariant and projective. The corresponding double color-

dressed amplitude is given by

Mφ3,n =
∑

cubic g

C(g)C̃(g)∏
I∈g sI

(6.36)

6.4 Trace decomposition from scattering form

We explore color-form duality further by examining partial amplitudes and their inter-

pretation from the differential form point of view. We find that trace decomposition
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of color-dressed amplitudes are dual to pullbacks of the scattering form to appropriate

subspaces of dimension (n−3).

Recall that for the color groups U(N) and SU(N), the color factors can be de-

composed as traces from which partial amplitudes are obtained. More precisely, we

have

C(g|α) =
∑

β∈O(g)/Zn

(−1)flip(α,β)Tr(β(1), . . . , β(n)) (6.37)

where O(g)/Zn denotes all 2n−2 orderings compatible with the graph g modulo cyclic

transformations. In other words, out of all (n−1)! distinct trace terms, the color factor

C(g|α) is expanded precisely in terms of those traces whose ordering is compatible

with the graph.

Substituting (6.37) into (6.32) for every graph g gives us the trace decomposition

for the amplitude:

Mn[N ] =
∑

β∈Sn/Zn

Tr(β(1), . . . , β(n))Mn[N ; β] (6.38)

where the partial amplitude Mn[N ; β] is given by a sum over β-planar graphs:

Mn[N ; β] =
∑

β−planar g

N(g|β)
∏
I∈g

1

sI
(6.39)

As an example, for n=4, the color factors decompose as

Cs=Tr(1234)− Tr(2134)− Tr(1243) + Tr(2143) (6.40)

Ct=Tr(1423)− Tr(4123)− Tr(1432) + Tr(4132) (6.41)

Cu=Tr(1342)− Tr(3142)− Tr(1324) + Tr(3124) (6.42)
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where both the s and t channels contribute to the ordering β = (1234), thus giving

M4[N ; 1234] =
N(s|1234)

s
+
N(t|1234)

t
(6.43)

We now argue that the partial amplitude (6.39) can be obtained by pulling back

the scattering form (6.33) to an (n−3)-dimensional subspace H[β] which we define

by imposing (n−2)(n−3)/2 independent conditions:

H[β] :=
{
sβ(i)β(j) is constant | 1 ≤ i < j−1 ≤ n−2

}
(6.44)

This coincides with the subspace Hn define in (4.21) if β is the standard ordering

and the constants sβ(i)β(j) are negative. Now for any graph g compatible with β, we

define the pullback

dV [β] := W (g|β)|H[β] (6.45)

which is independent of the graph as shown around (4.35) for the standard ordering.

More generally, for a pair of orderings α, β, we have

W (g|α)|H[β] =


(−1)flips(α,β)dV [β] if g is compatible with β

0 otherwise

(6.46)

where the first line follows immediately from the definition (6.45), while the second

line requires a proof for which we provide a sketch. Our strategy is to argue by

induction on the number of particles, beginning with n=4 which can be verified

directly. For higher n, suppose g is a cubic graph that is compatible with α but not

with β, and for simplicity let us assume that β is the standard ordering. We observe

that the graph must consist of at least one propagator of the form sij where i < j

and i, j 6= n. If i, j are non-adjacent, then dsij = 0 on the pullback, and we are done.
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1 n

π(2) π(3) π(n− 1)

Figure 6.4: Multi-peripheral graph with respect to 1 and n for the ordering π ∈ Sn−2

Otherwise, the propagator must be si,i+1, giving W (g) = dsi,i+1∧W ′(g) for some form

W ′(g). Since factors of dsi,i+1 within W ′(g) do not contribute, we can therefore think

of W ′(g) as the form for a reduced graph g′ obtained from g by collapsing particles

i and i+1 into a single particle. But W ′(g) vanishes by induction, thus completing

the argument. One subtlety of the last step is that the particle (i, i+ 1) is generically

off-shell with mass-squared given by si,i+1, which appears to violate the induction

hypothesis. But since factors of dsi,i+1 are effectively zero, the induction still holds.

It follows that the pullback of the scattering form Ω(n−3)[N ] to the subspace H[β]

gives the partial amplitude Mn[N ; β]:

Ω(n−3)[N ]|H[β] =

( ∑
β-planar g

N(g|β)
∏
I∈g

1

sI

)
dV [β] = Mn[N ; β]dV [β] (6.47)

Applying this to the planar scattering form Ω
(n−3)

φ3 [α] for the bi-adjoint scalar gives

us the double partial amplitude m[α|β]:

Ωφ3 [α]|H[β] = (−1)flip(α,β)m[α|β]dV [β] (6.48)

This is very different from (4.48) where the same amplitude was obtained by pulling

back to a different subspace H[α|β]. The advantage of the latter is that it provides a

geometric interpretation for the amplitude (form) as the canonical form of a positive

geometry as in (4.49). The former, however, can be applied to trace decompose any

colored tree amplitude.

Finally, we discuss the role of some well-known amplitude relations. Recall the

decomposition a la Del Duca, Dixon and Maltoni (DDM) [56] given in (6.49), where gπ
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denotes the multi-peripheral graph with respect to 1 and n for the ordering π ∈ Sn−2

as shown in Figure 6.4.

Mn[N ] =
∑

π∈Sn−2

C(gπ|π) Mn[N ; 1, π(2), . . . , π(n−1), n] (6.49)

It follows that the color-dressed amplitude can be expanded in terms of only (n−2)!

partial amplitudes of the form given in (6.49), which is more efficient than the

(n−1)!-term expansion of the standard trace decomposition. This also follows from

the Kleiss-Kuijf (KK) [57] relations. Furthermore, applying the color-form duality to

(6.49) gives an analogous identity for the scattering form

Ω(n−3)[N ] =
∑

π∈Sn−2

W (gπ|π) Mn[N ; 1, π(2), . . . , π(n−1), n] (6.50)

Note that the expansion is unique both for the color-dressed amplitude and for the

form, since the multi-peripheral graphs gπ form a basis. Furthermore, we find that

Bern-Carrasco-Johansson (BCJ) relations [14] follow from requiring the scattering

form to be projective, as discussed in Section 6.5.

Last but not least, as we have discussed around (6.22), every projective form can

be expanded in a basis of (n−1)! planar scattering forms labeled by the orderings

π ∈ Sn−2, and now we can spell out the coefficients. As shown in Appendix C of [1],

the coefficient for the π term is nothing but the kinematic numerator N(gπ|π):

Ω(n−3)[N ] =
∑

π∈Sn−2

N(gπ|π) Ω
(n−3)

φ3 (1, π(2), · · · , π(n−1), n) . (6.51)

Note that (6.50) and (6.51) are complementary to each other. By the color-form

duality, the latter is equivalent to the well-known dual-basis expansion [58] of the
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color-dressed amplitude:

Mn[N ] =
∑

π∈Sn−2

N(gπ|π)Mφ3

n [1, π(2), . . . , π(n−1), n] (6.52)

6.5 BCJ relations

We now argue that projectivity of the form implies that the partial amplitudes satisfy

kinematic Jacobi relations. A full derivation is given in Appendix C of [1]. Here we

simply present an example at n = 4, which suffices to demonstrate the structure of

the general argument.

We begin by writing down the n = 4 scattering form.

Ω(1)[N ] = Ns
ds

s
+Nt

dt

t
+Nu

du

u
(6.53)

= −
(
−Nt

t
+
Ns

s

)
dt+

(
Nu

u
− Ns

s

)
du (6.54)

= −M4[N ; 1234]dt+M4[N ; 1243]du (6.55)

where Ns = N(s|1234), Nt = N(t|1423) and Nu = N(u|1342). In the last expression,

we simply rewrote the form in terms of partial amplitudes. Under a local GL(1)

transformation, the form becomes

Ω(1)[N ]→ ΛD/2Ω(1)[N ] + ΛD/2−1 (−tM4[N ; 1234] + uM4[N ; 1243]) dΛ (6.56)

whereD is the mass dimension of the numerator factors. The coefficient of dΛ vanishes

by the requirement of projectivity, from which the BCJ relations follow.

tM4[N ; 1234] = uM4[N ; 1243] (6.57)
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6.6 Scattering forms for gluons and pions

There are two prime examples of permutation invariant forms on kinematic space: the

scattering forms associated with the scattering of gluons in Yang-Mills theory, and of

pions in the Non-linear Sigma Model. Let us stress again the central novelty of this

claim: there is a differential form on the kinematic space, with coefficients that depend

on either momenta and polarization vectors (for Yang-Mills) or Mandelstam variables

(for the NLSM), which are fully permutation invariant with no fabc factors anywhere

in sight. Nonetheless, the geometrization of color discussed in the previous sections

tells us that these forms contain all the information about color-dressed amplitudes.

In fact more is true: the scattering forms for gluons and pions are remarkably rigid

objects. For gluons, we find that there is a unique differential form with the usual

minimal power-counting in momenta that is both gauge invariant and projectively

invariant. In particular, the permutation invariance need not be stipulated but is

derived. Similarly, the form for pions is the unique form where the requirement

of gauge invariance for each leg is replaced with that of the Adler zero in the soft

limit. Such “uniqueness theorems” have recently been established in [25], for partial

amplitudes from which the uniqueness of the full scattering form follows, provided

the crucial extra requirement of projectivity. We also show that these forms have a

natural pushforward origin from the worldsheet.

6.6.1 Gauge invariance, Adler zero, and uniqueness of scat-

tering forms for gluons and pions

We establish general conditions under which scattering forms for gluons and (two-

derivative-couple, massless) pions are unique. Consider general scattering forms

Ω
(n−3)
gluon and Ω

(n−3)
pion for pure gluons and pure pions, respectively. For the gluons, we

require the kinematic numerators to consist of contractions in momenta pµi and po-
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larizations εµi with each polarization appearing exactly once; moreover we require the

expected power counting, which suggests in particular that there can be no more than

(n−2) contractions like (εi · pj) in any term; finally, we require gauge invariance (i.e.

invariance under the shift εµi → εµi + αpµi ). For the pions, we require the numerators

to be polynomials of Mandelstam variables with the right power counting (i.e. with

degree (n−2) in Mandelstams), and the Adler zero condition (i.e. vanishing under

every soft limit pµi → 0). Finally, we assume that the forms are projective. We claim

that in both cases, the scattering form is unique up to an overall constant.

To derive these two claims, we decompose the scattering forms a la DDM (6.50),

and denote the partial amplitudes for the ordering π ∈ Sn−2 as Mgluon
n (π) and

Mpion
n (π), respectively, which are given by (6.39) with appropriate numerators. Given

the linear-independence of the W (gπ|π) factors, it is clear that each gluon partial am-

plitude inherits gauge invariance from Ω
(n−3)
gluon while each pion partial amplitude inher-

its Adler zero from Ω
(n−3)
pion . However, the main result of [25] states that any expression

satisfying the assumptions of Mgluon
n (π) must be the Yang-Mills partial amplitude

MYM
n (π) up to a constant, and similarly any expression satisfying the assumptions of

Mpion
n (π) must be the Non-linear Sigma Model partial amplitude MNLSM

n (π). Hence,

there exist constants απ, α
′
π for every π so that

Mgluon
n (π) = απM

YM
n (π) Mpion

n (π) = α′πM
NLSM
n (π) (6.58)

Finally, recall that the partial amplitudes satisfy BCJ relations due to projectivity of

the form. It follows that the constants α := απ are identical for all π and likewise for

α′ := α′π so that the scattering forms are unique up to a constant:

Ω
(n−3)
gluon = α Ω

(n−3)
YM Ω

(n−3)
pion = α′ Ω

(n−3)
NLSM (6.59)
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Note that projectivity plays a crucial role without which we could have put arbi-

trary constants on the right hand side of (6.50), thus leading to a (n−2)!-parameter

family of solutions. Furthermore, permutation symmetry, unitarity and factorization

all emerge as natural consequences of gauge invariance/Adler’s zero and projectivity

(and some technical constraints on the numerators), even though none was assumed.

For all n, these forms can be obtained from the color-dressed amplitude by directly

applying the relation (6.31), thus establishing their existence. Here we give explicit

examples for n=4. The NLSM form reads:

Ω
(1)
NLSM = s t d log

(s
t

)
= t d s− s d t (6.60)

which also equals (u dt − t du) = (s du − u ds) and is thus permutation invariant up

to a sign. We can express the YM form as a combination of two φ3 forms:

Ω
(1)
YM = Ns d log

(s
t

)
+Nu d log

(u
t

)
(6.61)

where Ns, Nu are BCJ numerators for the s and u channels (see e.g. [59]).

6.6.2 Scattering forms from the worldsheet

We now discuss the worldsheet origin of projective scattering forms with YM and

NLSM as the primary examples. First we show that every projective scattering form

Ω(n−3)[N ] on Kn can be obtained as the pushforward of an equivalence class of forms

ωn[N ] on the moduli space M0,n. In particular, the planar scattering form Ω
(n−3)

φ3 [α]

is obtained by pushing forward the Parke-Taylor form ωWS
n [α].
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Recall that given any form ωn(σ) on moduli space, its pushforward is given by

substituting and summing over all solutions of the scattering equations

ω(σ) →
∑
sol. σ

ωn(σ) (6.62)

Note that two forms ωn and ω′n are pushed to the same forward if and only if they

are equivalent on the support of the scattering equations. We therefore “equate”

moduli space forms ωn(σ), ω′n(σ) that are equivalent on the support of the scattering

equations for which

ωn(σ) ' ω′n(σ) =⇒
∑
sol. σ

ωn(σ) =
∑
sol. σ

ω′n(σ) (6.63)

We now wish to classify all forms on moduli space that pushforward to projec-

tive scattering forms. As discussed in Appendix C of [1], every projective form can

be expanded in a basis of (n−2)! planar scattering forms with coefficients given by

kinematic numerators for multi-peripheral graphs:

Ω(n−3[N ] =
∑

π∈Sn−2

N(gπ|π)Ω
(n−3)

φ3 [1, π(2), . . . , π(n−1), n] (6.64)

which can obviously be obtained by pushing forward the following form on moduli

space:

ωn[N ] =
∑

π∈Sn−2

N(gπ|π)ωWS
φ3 (π) (6.65)

In this way, we can construct a worldsheet form that gives any projective form as a

linear combination of Parke-Taylor forms with different orderings.
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Two important worldsheet forms are the YM and NLSM forms, which are deter-

mined by the corresponding CHY half-integrand. More precisely, we claim that

Ω
(n−3)
YM =

∑
sol. σ

dµn Pf ′Ψn Ω
(n−3)
NLSM =

∑
sol. σ

dµn det′An (6.66)

where dµn := dnσ/vol [SL(2)] and Pf ′Ψn and det′An are the reduced Pfaffian and

determinant (both permutation invariant), respectively, as defined in [12].

Pf ′Ψn := (−1)i+j
Pf|Ψn|i,ji,j
σi,j

det′An :=
det |An|i,ji,j

σ2
i,j

for any 1 ≤ i < j ≤ n (6.67)

Here Ψn(σ, ε, p) is the 2n× 2n matrix built from polarizations and momenta

Ψn :=

 A −CT

C B

 (6.68)

where Aa,b, Ba,b, Ca,b are n× n block matrices given by:

Aa,b :=


pa·pb
σa,b

a 6= b

0 a = b

Ba,b :=


εa·εb
σa,b

a 6= b

0 a = b

Ca,b :=


εa·pb
σa,b

a 6= b

−
∑

c 6=aCa,c a = b

(6.69)

An important property of these worldsheet forms is that, on the support of scattering

equations, Pf ′Ψn is manifestly gauge invariant [12] and det′An has the Adler zero [60]:

Pf ′Ψn(εµi → εµi + αpµi ) = Pf ′Ψn(εµi ) lim
pµi→0

det ′An = 0 (6.70)

The uniqueness of the YM and NLSM forms under the conditions discussed above

implies that there is a unique equivalence class of worldsheet forms for each theory,
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which by (6.70) must be given by Pf ′Ψn and det′An, respectively. Finally, it is well

known that both Pf ′Ψn and det′An can be expanded in terms of Parke-Taylor forms

with coefficients given by BCJ numerators [13], which reaffirms the result already

found in (6.65). For example, the n=4 forms are

det ′A4dµ4 =
s2dµ4

σ2
12σ

2
34

→ s t
(
ωWS
φ3 (1234) + ωWS

φ3 (1324)
)

= s t ωWS
φ3 (1423)

Pf ′Ψ4dµ4 → Ns ω
WS
φ3 (1234)−Nu ω

WS
φ3 (1324)
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Chapter 7

The amplituhedron

The amplithedron was first introduced in [17] as an independent, geometric formu-

lation of planar on-shell scattering amplitudes of N = 4 super Yang-Mills. In Sec-

tion 7.1, we construct the amplituhedron as a positive geometry purely from a math-

ematical point of view, and postpone discussion of its relation to physics to Section 8.

In Section 7.2, we give examples of the amplituhedron in the simplest cases. Through-

out subsequent sections, we develop various methods for computing canonical forms

of the amplituhedron, including contour integration on Grassmannians, Wilson loop

integrals, pushforwards, and volume integrals over dual geometries.

7.1 Properties of the amplituhedron

The amplituhedron is a special case of a more general construction called the Grass-

mann polytope [33]. Here we give an independent discussion.

Consider a n×(k+m) matrix Z. We assume that all ordered maximal minors of Z

are positive. In other words, we assume that the ordered rows of Z form the vertices

of a cyclic polytope. Moreover, we think of Z as a linear map Z : Rn → Rk+m, which

further induces a map that takes every linear subspace in Rn to a linear subspace

of the same dimension in Rk+m. We define the tree amplituhedron A(k, n,m) as the
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image of the Grassmannian G≥0(k, n) under Z,

A(k, n,m) := Z(G≥0(k, n)) (7.1)

In particular, the tree amplituhedron for k = 1 is a cyclic polytope in Pm(R). Fur-

thermore, we define the L-loop amplituhedron as the image of the loop Grassmannian

G(k, n; lL) under Z,

A(k, n,m; lL) := Z(G≥0(k, n; lL)) (7.2)

We also refer to this space more simply as the amplituhedron whenever the loop level

L is understood. In particular, the 0-loop amplituhedron is the tree amplituhedron.

We conjecture that the amplituhedron is a positive geometry. Proving this is a

subtle and outstanding problem; in particular, the existence of the canonical form has

not been established rigorously. Nonetheless, existence is well motivated by physics,

since the form directly determines scattering amplitudes as discussed in Section 8. A

more detailed description of the subtleties involved is provided in Section 6.6 of [2].

7.2 The tree amplituhedron for m = 1, 2

By now there is a very solid understanding of the tree amplituhedron with m = 1, 2

for any k and n, which we now discuss. Here we simply describe without proof some

simple triangulations of these amplituhedra, and give their associated canonical forms.

We let A := A(k, n,m) whenever k, n,m are understood. The results presented here

are also provided in [22]. For m = 1, see also [61].

In the m = 1 amplituhedron, Y I
s is a k-plane in (k+1) dimensions with s = 1, . . . , k

indexing a basis for the plane and I = 0, . . . , k indexing the vector components in

(k+1) dimensions. We will triangulate by images of k−dimensional cells of G>0(k, n);
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in other words for each cell we will look at the image Y I
s =

∑n
i=1 Csi(α1, . . . , αk)Z

I
i ,

where α1, . . . , αk are positive ∆−like co-ordinates for that cell. For every collection

of k integers {i1, . . . , ik} with 1 ≤ i1 < i2 < · · · < ik ≤ n− 1, there is a cell where

C{i1,...,ik}sa =


1 a = is

αs a = is + 1

0 otherwise

 (7.3)

with the positive variables αs ≥ 0. In other words in this cell we have Y I
s = ZI

is +

αsZ
I
is+1.

Geometrically, in this cell the k-plane Y intersects the cyclic polytope of external

data in the k 1-dimensional edges (Zi1 , Zi1+1), . . . , (ZikZik+1). The claim that these

cells triangulate the m = 1 amplituhedron is then equivalent to the statement that

this amplituhedron is the set of all k-planes which intersect the cyclic polytope in pre-

cisely k of its 1-dimensional consecutive edges (i.e. an edge between two consecutive

vertices).

The motivation for this triangulation is given (together with associated new char-

acterizations of the amplituhedron itself) in [22]. For now we can at least show that

these cells are non-overlapping in Y space, by noting that in this cell, the following

sequence of minors

{〈Y 1〉, 〈Y 2〉, · · · , 〈Y n〉} (7.4)

have precisely k sign flips, with the flips occurring at the locations (is, is + 1) for

s = 1, . . . , k. Since the sign patterns are different in different cells, we can see that

the cells are non-overlapping; the fact that they triangulate the amplituhedron is

more interesting and will be explained at greater length in [22].
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The k-form associated with this cell is

Ω{i1,...,ik} = Z∗

(
k∏
s=1

d logαs

)
=

k∏
s=1

dlog

(
〈Y, is+1〉
〈Y is〉

)
(7.5)

and the full form is

Ω(A) =
∑

1≤i1<···<ik≤n−1

Ω{i1,...,ik} (7.6)

It is easy to further simplify this expression since the sums collapse telescopically.

For instance for k = 1 we have

∑
1≤i1≤n−1

dlog

(
〈Y, i1+1〉
〈Y i1〉

)
= dlog

(
〈Y n〉
〈Y 1〉

)
(7.7)

Note the cancellation of spurious poles in the sum leading nicely to the final result.

The same telescopic cancellation occurs for general k, and for even k we are left with

the final form

Ω(A) =
dk×(k+1)Y

Vol GL(k)

∑
2≤j1−1<j1<···
<jk/2−1<jk/2≤n

[1, j1−1, j1, . . . , jk/2−1, jk/2] (7.8)

while for odd k we are left with

Ω(A) =
dk×(k+1)Y

Vol GL(k)

∑
2≤j1−1<j1<···

<j(k−1)/2−1<j(k−1)/2≤n−1

[1, j1−1, j1, . . . , j(k−1)/2−1, j(k−1)/2, n] (7.9)

where the brackets denote

[j0, j1, . . . , jk] :=
〈j0 . . . jk〉

〈Y j0〉 · · · 〈Y jk〉
(7.10)
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for any indices j0, . . . , jk. The brackets satisfy

k∏
s=1

d log

(
〈Y js〉
〈Y js−1〉

)
=

dk×(k+1)Y

Vol GL(k)
[j0, j1, . . . , jk] (7.11)

Note that each bracket can be interpreted as a simplex volume in Pk(R) whose

vertices are the Zj0 , . . . , Zjk , with Y the hyperplane at infinity. Note also that the

combinatorial structure of the triangulation is identical to triangulation of cyclic

polytopes discussed in Section 3.2.1. Indeed, when 〈Y i〉 > 0 for each i, the canonical

rational function can be interpreted as the volume of the convex cyclic polytope

with vertices Z. However, these conditions do not hold for Y on the interior of the

amplituhedron, since Y must pass through the interior of the cyclic polytope as it

intersects k 1-dimensional consecutive edges.

Starting with k = 2, this is not a positively convex geometry (see Section 9 of [2]):

the form has zeros (and poles) on the interior of the amplituhedron. We can see this

easily for e.g. k = 2, n = 4. We have a single term with a pole at 〈Y 2〉 → 0, so it is

indeed a boundary component, but it is trivial to see that 〈Y 2〉 can take either sign

in the amplituhedron, so the form has poles and zeros on the interior.

We now consider the case m = 2, and triangulate the amplituhedron with the

image of a collection of 2× k dimensional cells of G>0(k, n). That is, for each cell we

look at the image Y I
s =

∑n
i=1Csi(α1, β1, . . . , αk, βk)Z

I
i . Similar to m = 1, the cells

are indexed by {i1, . . . , ik} with 2 ≤ i1 < i2 < · · · < ik ≤ (n−1). Now the C matrices

are given by

C
{i1,...,ik}
si =



(−1)s−1 i = 1

αs i = is

βs i = is + 1

0 otherwise


(7.12)
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In other words, in this cell we have Y I
s = (−1)s−1ZI

1 +αsZ
I
is+βsZ

I
is+1. As for m = 1, it

is easy to see that images of these cells are non-overlapping in Y space for essentially

the identical reason; in this cell it is easy to check that the sequence of minors

{〈Y 12〉, 〈Y 13〉, . . . , 〈Y 1n〉} (7.13)

again has precisely k sign flips, that occur at the locations (is, is + 1) for s = 1, . . . , k.

The 2k-form associated with this cell is

Ω{i1,··· ,ik} = Z∗

(
k∏
s=1

d logαs d log βs

)

=
k∏
s=1

dlog

(
〈Y 1is〉

〈Y is, is + 1〉

)
dlog

(
〈Y 1, is + 1〉
〈Y is, is + 1〉

)
=

dk(k+2)Y

Vol GL(k)
[1, i1, i1+1; . . . ; 1, ik, ik+1] (7.14)

where

[p1, q1, r1; . . . ; pk, qk, rk] :=

[〈
(Y k−1)s1p1q1r1

〉
· · ·
〈
(Y k−1)skpkqkrk

〉
εs1···sk

]k
2k 〈Y p1q1〉 〈Y q1r1〉 〈Y p1r1〉 · · · 〈Y pkqk〉 〈Y qkrk〉 〈Y pkrk〉

for any indices ps, qs, rs with s = 1, . . . , k and

(Y k−1)s := Ys1 ∧ · · · ∧ Ysk−1
εss1···sk−1 (7.15)

As usual the full form arises from summing over the form for each piece of the trian-

gulation

Ω(A) =
∑

2≤i1<···ik≤n−1

Ω{i1,··· ,ik} (7.16)
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In particular, for k = 2, we have

Ω(A(2, 2, n)) =
〈
Y d2Y1

〉 〈
Y d2Y2

〉
× (7.17)

∑
2≤i<j≤n−1

det

〈Y1, i−1, i, i+1〉 〈Y1, j−1, j, j+1〉

〈Y2, i−1, i, i+1〉 〈Y2, j−1, j, j+1〉


2

22 〈Y 1i〉 〈Y 1, i+1〉 〈Y i, i+1〉 〈Y 1j〉 〈Y 1, j+1〉 〈Y j, j+1〉

This is called the Kermit representation, and the summands [1, i, i+1; 1, j, j+1] are

called Kermit terms. These are important for 1-loop MHV scattering amplitudes

whose physical amplituhedron A(0, n;L=1) is isomorphic to the amplituhedron

A(2, n, 2).

Returning to general k, of course the form also has spurious poles that cancel

between the terms, though unlike the case of m = 1 it cannot be trivially summed

into a simple expression with only physical poles. However there is an entirely dif-

ferent representation of the form, not obviously related to the triangulation of the

amplituhedron, which is (almost) free of all spurious poles. This takes the form

Ω(A) =
dk(k+2)Y

Vol GL(k)
× (7.18)

∑
1≤i1<···<ik≤n

〈
(
Y k−1

)s1 i1−1, i1, i1+1〉· · ·〈
(
Y k−1

)sk ik−1, ik, ik+1〉εs1···sk〈Xi1· · ·ik〉
〈Y X〉

∏k
s=1〈Y is, is+1〉

Note the presence of a reference XIJ in this expression, playing an analogous role to

a “triangulation point” in a triangulation of a polygon into triangles [X, i, i+1]. The

final expression is however X-independent. Note also that apart from the 〈Y X〉 pole,

all the poles in this expression are physical.

This second “local” representation of the form Ω(A) allows us to exhibit some-

thing that looks miraculous from the trianguation expression: Ω(A) is positive when

Y is inside the amplituhedron, and so the m = 2 amplituhedron is indeed a positively
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convex geometry (see Section 9 of [2])! Indeed, if we choose X judiciously to be e.g.

XIJ = (ZlZl+1)IJ for some l, then trivially all the factors in the denominator are

positive. Also, 〈XZi1 · · ·Zik〉 > 0 trivially due to the positivity of the Z data. The

positivity of the first factor in the numerator is not obvious; however, it follows imme-

diately from somewhat magical positivity properties of the following “determinants

of minors”. For instance for k = 2 the claim is that as long as the Z data is positive,

det

 〈a, i− 1, i, i+ 1〉 〈a, j − 1, j, j + 1〉

〈b, i− 1, i, i+ 1〉 〈b, j − 1, j, j + 1〉

 > 0 (7.19)

for any a < b and i < j. Similarly for k = 3,

det


〈a, b, i− 1, i, i+ 1〉 〈a, b, j − 1, j, j + 1〉 〈a, b, k − 1, k, k + 1〉

〈a, c, i− 1, i, i+ 1〉 〈a, c, j − 1, j, j + 1〉 〈a, c, k − 1, k, k + 1〉

〈b, c, i− 1, i, i+ 1〉 〈b, c, j − 1, j, j + 1〉 〈b, c, k − 1, k, k + 1〉

 > 0 (7.20)

for any a < b < c; i < j < k, with the obvious generalization holding for higher k.

These identities hold quite non-trivially as a consequence of the positivity of the Z

data.

The existence of this second representation of the canonical form, and especially

the way it makes the positivity of the form manifest, is quite striking. The same phe-

nomenon occurs for k = 1 and any m—the canonical forms are always positive inside

the polytope, even though the determination of the form obtained by triangulating

the polytope does not make this manifest. For polytopes, this property is made man-

ifest by the much more satisfying representation of the form as the volume integral

over the dual polytope. The fact that the same properties hold for the amplituhedron

(at least for even m) suggests that we should think of the “local” expression (7.18)

for the form we have seen for m = 2 as associated with the “triangulation” of a “dual
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amplituhedron”. We will have more to say about dual amplituhedra in upcoming

work.

7.3 Grassmannian contours

We now discuss a novel method for computing canonical forms at tree level. The idea

is to take the iε contour prescription from Section 3.4.3 for computing the k = 1 case,

and generalize to k > 1. So far this approach has only been partially successful, and

here we describe both its successes and its difficulties, and we make a conjecture for

what a working prescription may look like.

We conjecture that the canonical rational function of the tree amplituhedron is

given by a contour integral of the following form,

Ω(A) =
1

(2πi)k(n−m−k)(m!)k

∫
Γ

dk×nC∏n
i=1Ci,i+1,...,i+k−1

δk×(k+m) (Y − C · Z) (7.21)

where the delta functions impose the usual Y = C·Z constraint while the measure over

C is the usual cyclic Grassmannian measure on G≥0(k, n). The integral is performed

over some contour Γ which we have yet to define. The ultimate goal of this program

is to identify a working contour.

For n = m+k, there is no contour and we trivially get the expected result. For

n = m+k+1, we have naively guessed a contour that appears to work for even m

according to numerical computations. The idea is to simply change variables C → c

so that for every Plücker coordinate we have ci1,...,ik = Ci1,...,ik + iεi1,...ik for a small

constant εi1,...,ik > 0. We will assume that
∑

1≤i1<···<ik≤n εi1...ikZi1 ∧ . . .∧Zik = εY for

some ε > 0 and define Ȳ := (1 + iε)Y (We are re-scaling Plücker coordinates here,

not components of the matrix representation.) so we can re-express Y = C · Z as

Ȳ = c · Z as we did for the polytope. Again, we assume that Ȳ is real and Y is
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slightly complex. We then integrate over the real part of c.

Ω(A)(Y ) =
1

(2πi)k(m!)k

∫
Γ

dk×(m+k+1)c∏m+k+1
i=1 [ci,i+1,...,i+k−1−iεi,i+1,...,i+k−1]

×

δk×(k+m)
(
Ȳ − c · Z

)
(7.22)

After integrating over the delta function constraints, there are effectively only k in-

tegrals left to do. Conveniently, the poles appearing in the cyclic measure are linear

in each integration variable, and can therefore be integrated by applying Cauchy’s

theorem.

One obvious attempt for generalizing beyond n > m+k+1 is to impose the exact

same iε deformation. However, after having integrated over the delta functions, the

cyclic minors are at least of quadratic order in the integration variables, thus mak-

ing the integral very challenging to perform (and possibly ill-defined in the small ε

limit). It is therefore still a challenge to extend the contour integral picture to the

amplituhedron.

Despite the difficulty of extending the iε contour, our optimism stems from the

well-known observation that the canonical rational function of the physical amplituhe-

dron is given by a sum of global residues of the Grassmannian measure constrained

on Y = C · Z, which was observed in the study of scattering amplitudes. See for

instance [36] and references therein. It is therefore reasonable to speculate that a

choice of contour would pick up the correct collection of poles whose global residues

sum to the expected result, and that different collections of residues that sum to the

same result appear as different deformations of the same contour.

We expect these constructions to continue for the L-loop amplituhedron.

Namely, we expect that the canonical rational function of the L-loop amplituhedron

A(k, n,m; lL) to be given by a sum over global residues of the canonical form of the

L-loop Grassmannian G(k, k+m; lL) constrained by Y = Z(C) for C ∈ G(k, k+m; lL)
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and Y ∈ A(k, n,m; lL). A non-trivial example for the 1-loop physical amplituhe-

dron A(1, 6;L=1) is given in [3]. At higher loops, the canonical form of the loop

Grassmannian is only known partially.

7.4 Wilson loops and surfaces

Let us now consider yet another approach for computing the canonical form for k =

0,m = 2 and L = 0. The idea is to extend the dual volume integral for polytopes as

described in Section 2.5.3 to a surface integral whose boundary is a Wilson loop.

But let us begin by describing why the problem is challenging, returning to the

k = 1 polygon example for m = 2. Here we have a polygon whose vertices are ZI
i , and

the amplituhedron (a polygon) is just the convex hull of these vertices. Now for any k,

the co-dimension one boundaries of the m = 2 amplituhedron are W IJ
i := (ZiZi+1)IJ ,

which are 2-planes in (2+k) dimensions. Here the product ZiZi+1 is a wedge product,

so W IJ
i is alternating, and projectively can be thought of as points in ∧2R4 ∼= R6 or

P5 when projectivized. Loosely speaking, we would like the dual amplituhedron to be

the “convex hull of the W IJ
i ”. But there is a basic difficulty: while we can add vectors

(i.e. 1-planes) together to get other vectors, we cannot in general add k−planes to

get other k−planes. In the special case where k = 1, the W IJ
i = εIJKWiK are dual

to points WiK , and so can be added. Note of course that the WiK are just vertices of

the dual polytope. But for general k, if a natural notion of the “dual” amplituhedron

is to exist along these lines we must learn how to deal with adding k-planes together.

We begin by noting that while we cannot add arbitrary 2-planes W IJ
a to get other

2-planes, adding two consecutive W ’s does yield a 2-plane; to wit:

αW IJ
i−1 + βW IJ

i = [Zi(−αZi−1 + βZi+1)]IJ (7.23)
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(a) The standard measure on the Grassmannian G(k, k+m) is formed by
connecting the arrows on the left with those on the right in the most
natural way. Namely, for each blue node, the k outgoing arrows should
be connected with each of the k orange nodes.

(b) The measure for (dW̃WdW̃ )I1···I2k−2
. The index contractions are de-

fined graphically. In particular, we note that W IJ should have 2 upstairs
indices and hence 2 outgoing arrows, while dW̃I1...Ik should have k incom-
ing arrows.

(c) Index contraction for the numerator of ωk(W1, . . . ,Wk;Y ). For each
orange node, the k outgoing arrows should be connected with each of the
k purple nodes.

Figure 7.1: Diagrams representing tensor contractions. Each node denotes a tensor,
with each outgoing arrow denoting an upstairs index of the tensor, and each incoming
arrow denoting a downstairs index.
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For α, β > 0, this gives us a line from Wi−1 to Wi within the Grassmannian. Thus

there is a natural“polygon” P in G(2, 2+k) with the vertices W IJ
i joined consecutively

by line segments as above. Here we have not specified an interior for the polygon,

only its edges. In fact, since the embedding space G(2, 2+k) has dimension greater

than 2 for k > 1, the polygon does not necessarily have a unique interior. We return

to this important point shortly.

Since our canonical form has rank 2×k, it is natural to expect the “dual integral”

representation to be an integral over a 2× k dimensional space. Given this canonical

one-dimensional boundary in G(2, 2+k), a simple possibility presents itself. Consider

any 2-dimensional surface whose boundary is the one-dimensional polygon P . Now

consider any k of these surfaces Σs for s = 1, · · · , k, which may be distinct. Then we

would like to consider a k-fold integral over the space Σ := Σ1 × · · · ×Σk. This gives

us a 2× k dimensional integral as desired but appears to depend on the choice of Σs

for each s; our only hope is that the forms are closed (in each of the k components

independently) and thus the integral depends only on the (canonical) polygon P and

not on the particular surface spanning it. As we will see, the structure of this form is

essentially fixed by demanding that it is consistently defined on the Grassmannian,

and it will indeed turn out to be closed in each component independently.

Let us first recall what fixes the structure of forms on the Grassmannian

(see also the discussion in Appendix C of [2]). Consider first the Grassmannian

G(k, k+m) associated with a matrix Y I
s with s = 1, . . . , k and I = 1, · · · , k+m.

We can think of Y in a more GL(k) invariant way as a k−fold antisymmetric

tensor Y I1···Ik = εs1···skY I1
s1
· · ·Y Ik

sk
. It is also natural to consider the m-plane

ỸJ1···Jm = εI1···IkJ1···JmY
I1···Ik . The Plücker relations satisfied by Y are then contained

in the simple statement Y K
s YKJ2···Jm = 0.

It will be convenient to introduce a graphical notation for the GL(k+m) indices

here. Each node represents a tensor; and for each tensor, an upstairs index is denoted
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by an arrow outgoing from the node and a downstairs index by an incoming one.

Then Y I1···Ik is a node with k outgoing arrows and ỸI1...Im is a node with m incoming

ones, as shown by the orange nodes in Figure 7.1.

Now as discussed in Appendix C of [2], in order for a differential form to be well-

defined on the Grassmannian, it must be invariant under local GL(k) transformations,

Y I
s → Lts(Y )Y I

t . We repeat the argument here from a graphical point of view. Since

dY → L((L−1dL)Y +dY ) under this transformation, we must have that the measure

is unchanged if we replace any single factor of dY I
s with any Y I

t . This fixes the

standard measure factor 〈Y dmY 〉 in projective space up to scale. Generalizing to the

Grassmannian, we are looking for a k ×m form. It is natural to consider the GL(k)

invariant k-form (dkY )I1···Ik , defined as minors of the matrix of dY ’s, or (dkY )I1···Ik :=

εs1···skdY I1
s1
· · · dY Ik

sk
. For local GL(k) invariance, every leg of (dkY ) must be contracted

with some Ỹ , so that the replacement dY I
s → Y I

t vanishes by Plücker. Thus there

is a natural k × m form on the Grassmannian, whose diagram is a complete graph

connecting m factors of (dkY ) on one side, and k factors of Ỹ on the other side, as

in Figure 7.1a. It is easy to see that in the standard gauge-fixing by GL(k) where a

k×k block of the matrix representation of G(k, k+m) is set to the identity, this form

is simply the wedge product of the remaining variables. Any top-form on G(k, k+m)

is expressible as this universal factor multiplied by a GL(k) co-variant function of the

Y ’s with weight −(k+m).

We now use the same ideas to determine the structure of the 2k-form on Σ. Let

us start with the case k = 2. We are looking for a 4-form that is the product of two

2-forms, on the space of W IJ
1 and W IJ

2 . Here the subscripts 1, 2 index the integration

variables, not the vertices Wi; the distinction should be clear form context. By the

same logic as above, we will build the form out of the building blocks (dW̃WdW̃ )IJ

(see Figure 7.1b), which are invariant under local GL(2). We then find a form with
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appropriate weights under both the Ws and Y rescaling, given by

ωk=2(W1,W2;Y ) =

(
dW̃1W1dW̃1

)
IJ

(
dW̃2W2dW̃2

)
KL

Y IKY JL

(W̃1 · Y )3(W̃2 · Y )3
(7.24)

We then claim that the canonical rational function for them = 2, k = 2 amplituhedron

can be expressed as

Ω(A(2, 2, n))(Y ) =

∫
Σ1×Σ2

ωk=2(W1,W2;Y ) (7.25)

For general k we will have k factors of (W · Y )3 in the denominator, thus to

have the correct weight −(2 + k) in minors of Y , we have to have 2k − 2 factors

of Y upstairs. Now the objects (dW̃sWsdW̃i)I1···I2k−2
each have 2k − 2 incoming ar-

rows (as in Figure 7.1b), while every Y I1···Ik has k outgoing arrows. We can thus

express ωk(W1, · · · ,Wk;Y ) graphically as the complete graph linking the k factors of

(dW̃WdW̃ ) on one side and the (2k − 2) Y ’s on the other, as shown in Figure 7.1c.

We then claim that

Ω(A(k, 2, n))(Y ) =

∫
Σ

ω(W1, . . . ,Wk;Y ) (7.26)

These expressions indeed reproduce the correct canonical rational function for the

m = 2 amplituhedron for all k. Let us illustrate how this works for the case of

k = 2. A straightforward computation shows that the form ωk=2(W1,W2;Y ) is closed

in W1,W2 independently; indeed it is closed even if the W IJ are not constrained by

the Plücker relations, and can be thought of as being general points in P5. Thus

the result of the integral is independent of the surface Σ, provided that ∂Σs = P for

each s. We will thus construct each surface Σs by triangulating it like the interior

of a polygon. We begin by picking an arbitrary reference point XIJ , and taking the

triangle in P5 with vertices X,Wi−1,Wi, which we denote by [X,Wi−1,Wi]. It follows
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that the union ∪ni=1[X,Wi−1,Wi] forms a surface with boundary P , so we will take it

to be our definition of Σs for each s.

Suppose we integrate over the triangle pair (W1,W2) ∈ [X,Wi−1,Wi] ×

[X,Wj−1,Wj]. We can parametrize the triangle pair by

W1 = X + α1Zi−1Zi + β1ZiZi+1 (7.27)

W2 = X + α2Zj−1Zj + β2ZjZj+1 (7.28)

where α1,2 > 0; β1,2 > 0.

The only non-trivial part of the computation is working out the numerator index

contraction in (7.24). After a series of index gymnastics, we get for each i, j:

ωk=2 =
1

2

(N1(i, j) +N2(i, j))d2αd2β

(〈Y X〉+ α1 〈Y i−1, i〉+ β1 〈Y i, i+1〉)3 (〈Y X〉+ α1 〈Y j−j, j〉+ β1 〈Y j, j+1〉)3

(7.29)

where

N1(i, j) := 〈Y X〉 〈Xij〉 〈Y (i−1, i, i+1) ∩ (j−1, j, j+1)〉 (7.30)

N2(i, j) := −〈Y (i−1, i, i+1) ∩ (Xj)〉 〈Y (j−1, j, j+1) ∩ (Xi)〉 (7.31)

where 〈Y (abc) ∩ (def)〉 := 〈Y1abc〉 〈Y2def〉 − (Y1 ↔ Y2) for any vectors a, b, c, d, e, f .

Integrating over α1,2 > 0; β1,2 > 0 and summing over all i, j gives us

∫
Σ

ωk=2 =
1

8

n∑
i,j=1

N1(i, j) +N2(i, j)

〈Y X〉2 〈Y i−1, i〉 〈Y i, i+1〉 〈Y j−1, j〉 〈Y j, j+1〉
(7.32)

This is one of several local expressions for the canonical rational function Ω(A(2, 2, n)).

That is, there are no spurious singularities, except at 〈Y X〉 → 0. Interestingly, if we

keep only one of the numerator terms N1,N2, then the result would still sum to (half)

196



the correct answer. Perhaps some clever manipulation of the integration measure

would make this manifest. If we only keep the first numerator, then we recover the

local form given in (7.18).

It is possible, through a clever choice of the surface Σ, to recover the Kermit rep-

resentation (7.17) of the canonical rational function. While the equivalence between

the Kermit representation and the local form appears non-trivial as an algebraic

statement, it follows easily from the surface-independence of the integral.

This computation can be extended easily to higher k. Furthermore, since the

surfaces Σ1, . . . ,Σk are independent, it is possible to have picked a different X for

each surface, giving a local form with arbitrary reference points X1, . . . , Xk.

7.5 Pushforwards

We present a pushforward prescription for computing canonical forms of amplituhe-

dra similar to the kind described in Section 3.3 for computing canonical forms of

polytopes. In particular, We conjecture that the canonical form can be formulated

as a pushforward from the standard simplex.

Conjecture 7.5.1. Given a morphism Φ : ∆D → A(k, n,m; lL) from positive coor-

dinates to the amplituhedron, the amplituhedron form is given by the pushforward

Ω(A(k, n,m; lL)) = Φ∗

(
D∏
a=1

dXa

Xa

)
(7.33)

where D is the dimension of the amplituhedron.

While this is nothing more than a direct application of our favorite Heuristic 2.3.1,

we emphasize that it is in general very challenging to construct diffeomorphisms

between the simplex and amplituhedra. In this section, we let A := A(k, n,m; lL).

Before providing explicit examples, we reformulate our conjecture in terms of the
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canonical rational function Ω(A)(Y) of the amplituhedron, as defined in Appendix C

of [2].

Conjecture 7.5.2. Given a morphism Φ : ∆D → A(k, n,m; lL) from positive coor-

dinates to the amplituhedron, the amplitude is given by:

Ω(A)(Y) =

∫
dDX∏D
a=1Xa

δD(Y ; Φ(X)) (7.34)

for any point Y ∈ A. For computational purposes, Y and Φ(X) are represented as

matrices modded out by a left group action, as discussed below (2.70).

The delta function δD(Y ,Y ′) is the unique (up to an overall normalization) delta

function on G(k, k+m; lL) that is invariant under the group action G(k; k) (defined

below 2.70) on Y ′, and scales inversely as the measure (C10) of [2] under the same

group action on Y . The inverted scaling ensures that the canonical form is locally

invariant under the action.

Example 7.5.3. For k = 1 and m = 4, the physical tree amplituhedron A is a convex

cyclic polytope with vertices Zi ∈ P4(R). Morphisms Φ : (P4,∆4)→ (P4,A) are given

by convex cyclic Newton polytopes from (3.53), and the amplitude is given by:

Ω(A)(Y ) =

∫
d4X

X1X2X3X4

δ4(Y ; Φ(X)) (7.35)

where Y ∈ P4 and the delta function is given in (3.59) with m = 4.

We now provide some examples for k = 2,m = 2, l = 2, L = 0. While we do

not have a complete construction of such morphisms for all n, we did find a few

non-trivial examples for small n. We stress that the existence of such morphisms is

an absolutely remarkable fact. We also speculate that a complete understanding of

morphisms to the tree amplituhedron may provide insight on extending toric varieties

198



to the Grassmannian, as morphisms to the polytope were given by projective toric

varieties.

Let us begin by clarifying the pushforward computation, which for the present

case is given by:

Ω(A) =

∫
d4X

X1X2X3X4

δ4(Y ; Φ(X)) (7.36)

where

δ4(Y ;Y ′) =
1

4

∫
d2×2ρ

(det ρ)2
δ2×4(Y − ρ · Y ′) (7.37)

is the delta function that imposes the constraint Y = Y ′ for any pair of 2×4 matrices

Y, Y ′, where the tilde indicates that the two sides are only equivalent up to an overall

GL(2) transformation. The ρ is a 2 × 2 matrix that acts as a GL(2) transformation

on Y ′ from the left, and the d2×2ρ/(det ρ)2 measure is GL(2) invariant in ρ both from

the left and the right. We see therefore that the delta function has GL(2) weights

(−4, 0) in (Y, Y ′), as expected.

Example 7.5.4. Consider the amplituhedron for (k,m, n, l, L) = (2, 2, 4, 2, 0), which is

simply

A = {C · Z ∈ G(2, 4) | C ∈ G≥0(2, 4)} (7.38)

where Z is a 4×4 matrix with positive determinant. Since Z is non-singular, A is iso-

morphic to G≥0(2, 4). A (degree-one) morphism from (P4,∆4) to the amplituhedron

is therefore:

C(X) =

1 X1 0 −X4

0 X2 1 X3

 (7.39)

Φ(X) = C(X) · Z (7.40)
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sending the interior Int(∆4) (where Xi > 0 for i = 1, 2, 3, 4) to the interior of the

amplituhedron. Substituting into (7.36) gives:

Ω(A) =
1

4

〈1234〉2

〈Y 12〉 〈Y 23〉 〈Y 34〉 〈Y 14〉
(7.41)

Example 7.5.5. We now move on to the first non-trivial example beyond the polytope.

Consider the same case as Example 7.5.4 but now with n = 5. The amplituhedron is

A = {C · Z ∈ G(2, 4) | C ∈ G≥0(2, 5)} (7.42)

with all the maximal ordered minors of Z positive. The interior of this amplituhedron

has no obvious diffeomorphisms with the interior Int(∆4) of the 4-simplex. But we

have managed to stumble across a few lucky guesses, such as the following:

C(X) =

1 X1 X1X2 X2 0

0 X1X3 X1X2(X3+X3X4) X2(X3+X3X4+X4) 1

 (7.43)

Φ(X) = C(X) · Z (7.44)

for X1, X2, X3, X4 > 0. We have verified numerically that the pushforward given

by (7.43) gives the correct 5-point 1-loop integrand. A careful analytic argument can

be provided to prove that the restriction Int(∆4)
∼−→ Int(A) is indeed a diffeomor-

phism.

Example 7.5.6. We also provide an example for n = 6. The setup is the same as

Example 7.5.5, with the C(X) matrix given by

C(X) =

 X3
1X

2
2 X3+X2

1X
2
2X3 X5

1X
2
2X3X

2
4 X3

1X3X
2
4 X1 0

−X4
1X

2
2 −X1X3 0 X2

1X3X
2
4 1+X2

1X
2
4 X5

1X
2
2X

2
4


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The pushforward was verified numerically. We challenge the reader to prove that this

map restricts to a diffeomorphism Int(∆4)
∼−→ Int(A).

7.6 Dual amplituhedra

Recall from Section 2.5.3 that the canonical rational function of a polytope is precisely

the volume of the dual polytope. This leads us to conjecture, for every amplituhedron,

the existence of a dual geometry whose volume precisely gives the canonical rational

function. The existence of this dual geometry has already been established at tree

level for n = k+m and any k,m, and even for some loop level cases, and will be

described in future work.

We motivate the existence of the dual by thinking about triangulations. As ar-

gued in Section 2.2, a signed triangulation of a positive geometry A =
∑

iAi implies

Ω(A) =
∑

i Ω(Ai). This was argued based on the observation that spurious poles

cancel among the triangulating terms, thus leaving only the physical poles. In our

discussion of the dual polytope in Section 3.4.1, we argued that the volume formu-

lation of the canonical rational function (under certain assumptions) provides an

alternative understanding of triangulation independence. We therefore wish to ex-

tend these assumptions to the amplituhedron and conjecture a volume interpretation

of the canonical rational function. We restrict our conjecture to even m, since the

volume formula implies positive convexity (see Section 9 of [2]), which in most cases

does not hold for odd m.

Let A denote an amplituhedron, and let X denote the irreducible variety in which

it is embedded. We conjecture the following:

Conjecture 7.6.1. 1. For each Y ∈ X not on a boundary component of A, there

exists an irreducible variety X∗Y , called the dual variety at Y, with a bijection
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(X,B)
∼−→ (X∗Y ,B∗Y) that maps positive geometries in X to positive geometries

in X∗Y . In particular, there exists a dual amplituhedron A∗Y for each Y.

2. Let B1,2 be positive geometries in X. Then B1 ⊂ B2 if and only if B∗2Y ⊂ B∗1Y .

3. Given a triangulation of B in X, we have

B =
∑
i

Bi ⇒ B∗Y =
∑
i

B∗iY . (7.45)

4. There exists a Y-dependent measure dVol on X∗Y(R) so that:

Ω(B)(Y) = Vol (B∗Y) :=

∫
B∗Y
dVol (7.46)

Following the reasoning outlined around (3.124), we arrive at the desired conclu-

sion:

A =
∑
i

Ai ⇒ A∗Y =
∑
i

A∗iY ⇒ (7.47)

Vol (A∗Y) =
∑
i

Vol (A∗iY) ⇒ Ω(A) =
∑
i

Ω(Ai) (7.48)

In words, we say that the triangulation independence of the dual volume explains

the triangulation independence of the form. This provides an alternative argument

to cancellation of spurious poles.
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Chapter 8

Planar N = 4 super Yang-Mills

Following the construction of the amplituhedron in Section 7, we now discuss its pre-

cise connection to on-shell scattering amplitudes of planar N = 4 super Yang-Mills.

We begin in Section 8.1 by introducing supersymmetric momentum twistors, which

are kinematic variables that make manifest the hidden dual super conformal symme-

try [8]. In Section 8.2, we show how amplitudes are determined by canonical forms

of amplituhedra. Finally, in Section 8.3, we discuss BCFW recursion in momentum

twistor space and its geometric interpretation.

8.1 Supersymmetric momentum twistors

Momentum twistors were first introduced in [29], which we now review. Denote the

n-point NkMHV L-loop amplitude as A(L)
n,k and let A

(L)
n,k denote the same amplitude

with the MHV tree factor stripped off,

A(L)
n,k =

δ2×(2|4)(
∑n

i=1 λ
α
i (λ̃α̇i |ηAi ))

〈12〉 . . . 〈n−1n〉〈n1〉
A

(L)
n,k , (8.1)

where α, α̇ = 1, 2 are SU(2) indices of spinors λi and their conjugates λ̃i encoding

the null momenta of n particles, and A = 1, ..., 4 is the SU(4) index of Grassmann
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variables ηi describing their helicity states. The Wilson loop dual to the n-point

amplitude is formulated along a n-sided null polygon in a chiral superspace with

coordinates (x, θ); for i = 1, . . . , n, we have

xαα̇i − xαα̇i−1 = λαi λ̃
α̇
i , θαAi − θαAi−1 = λαi η

A
i , (8.2)

The super momentum twistors are in the fundamental representation of the super-

conformal group of this dual space; explicitly

Zi = (Za
i |χAi ) = (λiα, µ

α̇
i |χAi ) ≡ (λiα, x

αα̇
i λiα|θαAi λiα) . (8.3)

The momentum twistors are unconstrained and they determine λ̃, η via,

(λ̃|η)i =
〈i−1 i〉(µ|χ)i+1 + 〈i+1 i−1〉(µ|χ)i + 〈i i+1〉(µ|χ)i−1

〈i−1 i〉〈i i+1〉
(8.4)

We further define the contraction of four bosonic twistors 〈ijkl〉 ≡ εabcdZ
a
i Z

b
jZ

c
kZ

d
l .

The factorization poles x2
i,j = 0 where xi,j ≡ xi− xj can be written in these variables

as 〈i−1 i j−1 j〉 = 0. In addition, we have the basic R-invariant of five super-twistors,

[i, j, k, l,m] ≡ δ0|4(〈〈i j k l m〉〉)
〈ijkl〉〈jklm〉〈klmi〉〈lmij〉〈mijk〉

, (8.5)

where the argument of Grassmann delta function is 〈〈i j k l m〉〉A ≡ χAi 〈jklm〉+cyclic.

The central object we will study in this paper is the integrand of amplitudes/Wil-

son loops in momentum twistor space. We will denote the integrand for A
(L)
n,k as Y

(L)
n,k ,

which is a form of degree 4L in the L loop variables denoted as `’s. Formally we have

A
(L)
n,k =

∫
reg

Y
(L)
n,k (Z1, . . . ,Zn; {`1, . . . , `L}) =

∫
reg

L∏
m=1

d4`m I
(L)
n,k (Z1, . . . ,Zn; {`1, . . . , `L})
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where “reg” means regularizations which are needed for the loop integrals, and by

writing the integral measure explicitly, the remaining part of Y
(L)
n,k , as a rational

function, is denoted as I
(L)
n,k . Note that both Y and I are cyclic in external twistors

which are denoted as 1, . . . , n; they are also completely symmetrized in loop variables.

The loop variables `’s correspond to points in dual space. For computing Wilson

loops, they are positions of Lagrangian insertions [62]. Accordingly, they are lines

in momentum twistor space, and we will always represent `’s by bi-twistors `m ≡

(AmBm) ≡ (AB)m for m = 1, . . . , L. The loop integral measure in momentum twistor

space is defined as

d4` ≡ 〈ABd2A〉〈ABd2B〉 =
d4ZAd

4ZB
vol GL(2)

(8.6)

where the factors of 〈AB〉 always drop out because the integrand is dual conformal

invariant, so we have neglected writing them in (8.6). The integral over the line (AB)

is given by that over a pair of points (twistors) ZA and ZB, divided by the GL(2)

redundancies labeling their positions on the line [28]. The integrand has, in addition

to factorization poles, poles from a propagator involving loop variables going on shell,

e.g. the so-called single cut corresponds to poles of the form 〈AmBm i−1 i〉 = 0 for

the loop variable `m.

8.2 Scattering amplitudes from the amplituhedron

As first conjectured in [17], the m = 4, l = 2 amplituhedron forms a completely inde-

pendent, geometric formulation of all the planar scattering amplitudes in N = 4

super Yang-Mills. More precisely, the n-point NkMHV L-loop amplitude is de-

termined by the canonical form of the amplituhderon A(k, n, 4; 2L), in a manner

we now describe. Note that we often denote the the physical amplituhedron as
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A(k, n;L) = A(k, n, 4; 2L) for simplicity, and the physical tree amplituhedron as

A(k, n) = A(k, n, 4; 20).

Recall that the amplituhedron is defined by a n× (k + 4) matrix Z, whose com-

ponents we write as ZI
i for i = 1, . . . , n and I = 1, . . . , k + 4. The index i labels the

n external particles. For every i, we identify the first four components of ZI
i with the

components of the bosonic momentum twistor Za
i . The last k components, however,

are more subtle. We first introduce auxiliary Grassmann variables φ1,A, . . . , φk,A for

A = 1, 2, 3, 4, and we let

ZI
i = (Za

i , φ1,Aχ
A
i , . . . , φk,Aχ

A
i ) (8.7)

where the index A is implicitly summed in each of the last k components. The

goal of this construction is to make the amplituhedron a purely bosonic object that

nevertheless contains all information about superamplitudes. This is a rather novel

way of encoding supersymmetry, first introduced in [40]. Next, we compute the

canonical form of A(k, n;L) without introducing any auxiliary Grassmann variables;

that is, we simply assume all the components of the Z matrix to be real. We then

localize the canonical form to a special point Y0 = (04×k|Ik×k) before substituting the

auxiliary variables (8.7). The localization ensures that the result is a polynomial in

the Grassmann variables. Finally, the auxiliary variables are integrated out, giving

the super-amplitude, which has Grassmann degree 4k.

Y
(L)
n,k (Z, l) =

∫
d4φ1 · · · d4φk

∫
Ω(A(k, n;L))δ4k(Y ;Y0) (8.8)

8.3 BCFW recursion and positive geometry

In [6], a recursion relation was described for on-shell tree amplitudes in Yang-Mills

theory. For planar maximally supersymmetric Yang-Mills, an all-loop extension was
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described in [28]. We do not prove the recursion relation here. Instead we give a

general description for the idea behind the proof, then present the recursion relation

in momentum twistor space. Most importantly for our discussion, we interpret the

recursion as a triangulation of the amplituhedron.

The construction and proof of the recursion goes as follows. We begin by intro-

ducing an extra parameter z and define the shift Zn → Zn + zZn−1, which gives

Ω(A)→ Ω(A(z)). The principle of locality suggests that the canonical form can only

develop simple poles in z (including possibly a simple pole at infinity). It follows that

Ω(A) =

∮
C

dz

z
Ω(A(z)) (8.9)

where the contour C is a small counter-clockwise loop around the origin. Applying

Cauchy’s theorem by expanding the loop to infinity gives

Ω(A) = −
∑
i

Resz→zi
Ω(A(z))

z
+ Ω(A(∞)) (8.10)

where zi denotes all the poles. The residue at infinity is simply the canonical form of

the amplituhedron with Zn removed. The residues at zi are described as follows.

• There exists a ∆-like positive geometry Ci in the loop Grassmannian G(k, n; 2L)

of dimension D = dim(A).

• There exists a subset Ai of A also of dimension D, called a BCFW cell.

• The map under Z : Ci → Ai is a degree-one morphism. Since Ci is ∆-like, hence

so is Ai.
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• Given ∆−like coordinates (1, αi1, . . . , αiD) ∈ PD(R) on Ci, the residue at zi is

given by the following pushforward.

−Resz→zi
Ω(A(z))

z
= Z∗

(
D∏
j=1

dαij
αij

)
= Ω(Ai) (8.11)

At L = 0, each set Ci is a positroid cell of the positive Grassmannian and Ai is the

image under Z. For L > 0 some generalization of this statement is expected to hold.

The precise construction of Ci is explained in Section 9 from the point of view of

momentum twistor diagrams. We point out that while BCFW cells are ∆-like, they

are not necessarily simplex-like, since their canonical forms may have zeros.

From (8.11) and the discussion in Section 2.2, it follows that the BCFW cells form

a boundary triangulation of the amplituhedron:

Ω(A) =
∑
i

Ω(Ai) (8.12)

Furthermore, it appears based on extensive numerical checks that the BCFW cells

have mutually disjoint interiors. We point out that if our assumptions on BCFW

cells hold, then the amplituhedron must be a positive geometry.

Finally, we present the formula for the recursion, which describes the integrand

as a sum over three different contributions,

Y
(L)
n,k (1, . . . , n) = B + FAC + FL (8.13)

where for simplicity we have used indices 1, 2, ..., n to denote super-twistors

Z1,Z2, ...,Zn, and we have suppressed loop variables.
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Here B represents the boundary contribution from w → ∞, given by removing

Zn.

B = Y
(L)
n−1,k(1, . . . , n− 1) . (8.14)

The FAC term represents contributions from factorization poles,

FAC =
1

L!

n−2∑
i=3

∑
k′,L′

∑
σ(`)

[i−1, i, n−1, n, 1]Y
(L′)
i,k′ (1, . . . , i−1, î)Y

(L−L′)
n+2−i,k−1−k′ (̂i, i, . . . , n−1, n̂i)

where we sum over all the poles of the form 〈i−1 i n̂ 1〉 = 0, and at each pole the

internal leg and the shifted leg are given by î ≡ (i−1, i)∩(1, n−1, n), n̂i = (n−1, n)∩

(1, i− 1, i), with (a, b) ∩ (c, d, e) ≡ Za〈b c d e〉 − Zb〈a c d e〉 defined as the intersection

of the line (a, b) with the plane (c, d, e). In addition, we sum over k′ = 0, . . . , k−1,

L′ = 0, . . . , L, and over distributions of `1, . . . , `L into the two subsets, with L′ and

(L−L′) variables, which explains the overall symmetrization factor 1/L!.

The FL term represents the forward-limit contributions which come from single

cuts,

FL =
1

L

L∑
m=1

∫
d3|4ZAd3|4ZB

vol GL(2)

∫
GL(2)

[Am, Bm, n−1, n, 1]Y
(L−1)
n+2,k+1(1, ..., n−1, n̂`m , Am, Bm)

where we sum over L loop variables `m = (AB)m (with a symmetrization factor 1/L),

and each term comes from the pole 〈AmBmn̂1〉 = 0, with n̂` = (n− 1, n) ∩ (A,B, 1).

The
∫
GL(2)

integral is defined as follows. We first set ZA → ZA + αZB ≡ Z ′A and

ZB → ZB + βZA ≡ Z ′B for parameters α, β, which is equivalent to moving the two

points ZA, ZB without changing the line they span. Then, we take a double residue

in α, β such that 〈A′, 1, n−1, n〉 , 〈B′, 1, n−1, n〉 → 0, which is equivalent to taking
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A′, B′ to lie on the plane (1, n−1, n). Formally, we have

∫
GL(2)

≡
∫
〈A′,1,n−1,n〉→0

dα

∫
〈B′,1,n−1,n〉→0

dβ (1− αβ)2 (8.15)

This residue is equivalent to setting Z ′A, Z
′
B → (A,B)∩ (1, n−1, n). The (1− αβ)2 is

a determinant factor that makes the poles in α, β simple.
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Chapter 9

Momentum twistor diagrams

As argued in Section 8.3, every BCFW term appearing in planar N = 4 super Yang-

Mills theory corresponds to a cell of the loop Grassmannian whose image under Z

gives a cell of the amplituhedron, called a BCFW cell. In this section, we show that

every BCFW cell can be described by an equivalence class of plabic diagrams. In

particular, every such diagram encodes a set of Grassmannian coordinates for the

cell, which can be read off from the diagram by a simple prescription. As discussed

in (8.11), the pushforward of the product of d-log of these coordinates gives the

corresponding BCFW term. Furthermore, we show that BCFW recursion can be

applied diagrammatically, thus providing a recursive algorithm for constructing the

equivalence class of diagrams for any BCFW term. The connection between Grass-

mannians and plabic graphs goes back to the pioneering work of Postnikov [30], which

was subsequently applied to planar N = 4 super Yang-Mills in on-shell momentum

space [16], and later in momentum twistor space [4].

9.1 On-shell diagrams in momentum twistor space

We start by presenting fundamental ingredients for on-shell diagrams in momentum

twistor space. A generic on-shell diagram consists of trivalent white and black vertices
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connected by external and internal edges, all drawn on a disk. Note that we do not

assume that the diagrams are planar. In fact, as we will discuss later, non-planarity

is a surprising feature that only appears in forward limit terms at loop level, despite

the fact that they compute planar loop amplitudes.

• Every diagram consists of n external legs connected to the boundary of a disk.

They represent the n color-ordered external states, and are associated with

momentum twistors Z1,Z2, . . . ,Zn.

• Each internal edge of the diagram is associated with a momentum twistor Z

which is then integrated over with the measure

d3|4Z =
d4|4Z

vol GL(1)
(9.1)

• Each white vertex with three (internal or external) twistors Za,Zb,Zc is repre-

sented by an integral over C ∈ G(1, 3) (a 1×3 matrix with GL(1) redundancies),

W (a, b, c) = (9.2)

=

∫
1

vol GL(1)

d1×3C

(a)(b)(c)
δ4|4(CaZa+CbZb+CcZc) (9.3)

where (i) = Ci for i = a, b, c. The white vertex thus enforces Za,Zb,Zc to be

on the same projective line.

• Each black vertex with three (internal or external) twistors Za,Zb,Zc is repre-

sented by an integral over C ∈ G(2, 3) (a 2×3 matrix up to GL(2) redundancies,
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with minors defined as (i j) ≡ C1,iC2,j − C2,iC1,j),

B(a, b, c) = (9.4)

=

∫
1

vol GL(2)

d2×3C

(ab)(bc)(ca)

2∏
α=1

δ4|4(Cα,aZa+Cα,bZb+Cα,cZc)(9.5)

The black vertex thus identifies Za,Zb,Zc projectively. There are degenerate

cases: a black vertex with two edges can be deleted from the diagram, with the

two edges identified to be one edge (the two twistors are identified); and a black

vertex connected to the boundary by one external edge can also be deleted,

making the diagram independent of the corresponding external twistor.

9.1.1 The Grassmannian representation of momentum

twistor diagrams

We now describe the Grassmannian representation of momentum twistor diagrams in

parallel with [16].

We begin by noting that the k-charge here (the Grassmann degree is defined as 4k)

is related to the k-charge in the original space (the MHV degree of the full amplitude)

by khere = koriginal−2. The k-charge of a diagram is easy to determine: each trivalent

white vertex has k = 1 and each trivalent black vertex has k = 2; for each internal

edge the k is reduced by one, thus the total k-charge is

k = nW+2nB−nI , (9.6)
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where nW , nB and nI are the number of trivalent white vertices, black vertices and

internal edges. Another useful relation is

n = 3(nW + nB)− 2nI . (9.7)

Note that for both formulas, we assumed that every vertex is attached to exactly

three edges, so lollipops and degenerate cases must be taken into account separately.

The diagram can be evaluated in its Grassmannian representation in the manner

described in Section 4 of [16] by a procedure called boundary measurement. To

summarize, we perform all integrals over internal twistors, which leaves us with a

collection of 4k bosonic and 4k fermionic delta functions, multiplied by the product

of d-log of edge variables,

∫ ∏
v

1

vol GL(1)

∏
e

dαe
αe

k∏
I=1

δ4|4( n∑
a=1

CI,a(α)Zi
)
, (9.8)

where v, e runs over all vertices and edges (internal and external), respectively. Here

C ∈ G(k, n) can be computed as follows. We first choose k external edges as “sinks”

(i.e. directed inward) labeled by A (or B), and let the remaining (n−k) external

edges be “sources” (i.e. directed outward) labeled by a. Furthermore, we impose a

direction on each edge so that every white vertex has one sink and two sources, and

every black vertex has two sinks and one source. We then set CA,B = δA,B to be the

identity matrix, and compute CA,a by summing over all directed paths Γ from A to

a, with each path evaluated as (minus) the product of edge variables along that path.

CA,a = −
∑

Γ∈{A→a}

∏
e∈Γ

αe . (9.9)
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Equivalently, one can define the boundary measurements in terms of face variables,

CA,a = −
∑

Γ∈{A→a}

∏
f∈Γ̂

(−f) (9.10)

where Γ̂ is the set of faces enclosed by the counterclockwise completion of Γ, and the

value of the graph is given by

∫
1

vol GL(1)

∏
f

df

f

k∏
I=1

δ4|4( n∑
a=1

CI,a(f)Zi
)
. (9.11)

We note that there is an overall GL(1) redundancy for the face variables since the

product of all face variables is unity.

9.1.2 Examples and operations on the diagrams

Given the general prescription, we first study a few simple examples, which are useful

for defining some basic operations acting on momentum twistor diagrams.

The so-called “lollipop diagrams” are those with all external edges connected to

monovalent black vertices. They evaluate to unity, and are interpreted as the MHV

tree amplitude in momentum twistor space. Here we draw a 6 point example.

(9.12)
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The simplest non-trivial diagram is given by two white vertices connected by an

external edge, with n = 4, k = 1,

∫
d3|4ZIW (a, b, I)W (I, c, d) (9.13)

=

∫
1

vol GL(1)

dα

α

dβ

β

dγ

γ

dδ

δ
δ4|4(αZa+βZb+γZc+δZd) (9.14)

≡ W (a, b, c, d) =

∫
d3|4ZIW (b, c, I)W (I, d, a) . (9.15)

where on the second line we have seen that the two collinear constraints together

enforce the four twistors Za,Zb,Zc,Zd to be on a projective plane. This is manifestly

cyclic, thus we can merge it as a single white vertex with four edges attached to it,

which we denote as W (a, b, c, d). We can also expand it along the other channel.

These equivalences can be summarized diagrammatically as follows.

(9.16)

This is nothing but the simplest factorization diagram (i.e. with propagator put on-

shell) one can access in momentum twistor space. Note that the two-particle channels

of the MHV amplitude is invisible since it is stripped off, thus the simplest factor-

ization would be that of a NMHV (k = 1) amplitude, divided by MHV amplitude.

Consider the factorization pole 〈i−1 i j−1 j〉 = 0, then we can perform the integrals

in (9.13) using a reference twistor Z∗ (the result is independent of ∗):

W (i−1, i, j−1, j) (9.17)

= δ(〈i−1 i j−1 j〉) δ0|4(〈〈∗, i−1, i, j−1, j〉〉)
〈∗ i−1 i j−1〉〈∗ i−1 i j〉〈∗ j−1 j i−1〉〈 ∗ j−1 j i〉

(9.18)
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which is indeed the residue at the factorization pole 〈i−1 i j−1 j〉 = 0 for any NMHV

R-invariant with this pole.

Given the factorization diagram that depends on four twistors, we can obtain the

full R-invariant, which depends on five twistors, by adding a BCFW bridge. The

operation involves attaching a bridge with a black vertex and a white vertex to two

adjacent external edges. Denoting the original diagram by Y (1, . . . , n), then adding

the bridge br(n, 1), with white and black vertex attached to n and 1 respectively,

amounts to

Y ′(1, . . . , n) = br(n, 1) · Y (1, . . . , n) ≡
∫
dc

c
Y (1, . . . , n̂) (9.19)

where Ẑn = Zn + cZ1 and c is the edge variable associated with the bridge. Dia-

grammatically, this gives

br(n, 1) · Y (1, . . . , n) = (9.20)

Now consider the four-point diagram W (a, b, c, d) with a black lollipop B(e). By

adding a BCFW bridge br(d, e), we obtain

br(d, e) · (W (a, b, c, d)⊗B(e)) =

∫
dc

c
W (a, b, c, d̂) = [a, b, c, d, e] (9.21)
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(9.22)

which is the on-shell diagram for an R-invariant that manifests the factorization

channel W (a, b, c, d). Furthermore, we can merge and re-expand the white vertices

and obtain various different representations of the same R-invariant:

(9.23)

In addition to BCFW bridges, we can have operations that add or remove particles

for on-shell diagrams. For a generic diagram with external particles 1, . . . , n−1, one

can add an additional particle n which produces a diagram with n external particles.

This corresponds to the “inverse soft limit”, which has two cases, the k-preserving

and k-increasing operations.

The k-preserving operation simply adds a lollipop. The external edge n is attached

to a monovalent black vertex, and the evaluation of the diagram is unaffected.

Y ′(1, . . . , n) = = Y (1, . . . , n−1)⊗B(n) = Y (1, . . . , n−1) .(9.24)

The k-increasing operation is more interesting. It produces an R-invariant fac-

tor (thus increase the k-charge by 1) which involves the additional leg n and four
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neighboring legs n−2, n−1, 1, 2, and it also involves shifting the two legs n−1, 1,

Y ′(1, . . . , n) = [n−2, n−1, n, 1, 2]Y (1̂, . . . , n̂−1) (9.25)

=

b

cc a
, (9.26)

where the shifted variables are n̂−1 = (n−2, n−1) ∩ (n, 1, 2) and 1̂ = (1, 2) ∩

(n−2, n−1, n). As justification for the evaluation of this diagram, we argue that the

twistor Z1̂ at the edge labeled 1̂ indeed evaluates to the twistor (1, 2)∩ (n−2, n−1, n)

as claimed. We first recognize that Z1̂,Za,Zb are projectively identical, since they

are connected to a black vertex. Furthermore, Za must lie on the line (1, 2) since

a, 1, 2 are connected to a white vertex, and Zb must lie on the plane (n−1, n−2, n)

since b is connected to n−1, n−2, n via a sequence of white vertices (the black ver-

tex appearing along this sequence does not affect our argument). The desired result

follows. Furthermore, we justify the appearance of the R-invariant. We first observe

that, compared to Y , the k-charge of the diagram is higher by 1. Indeed, the diagram

introduces 3 new white vertices, 2 new black vertices, and 6 new internal lines, so

that ∆k = ∆nW + 2∆nB − ∆nI = 3 + 2 × 2 − 6 = 1. Moreover, the only possible

R-invariant that could appear is [n−2, n−1, n, 1, 2]. If we look at the shifted variable

1̂ = (1, 2) ∩ (n−2, n−1, n) that appears in Y , we notice that there are two ways of

expanding the shift. Namely,

Ẑ1 = Z1 〈2, n−2, n−1, n〉 − Z2 〈1, n−2, n−1, n〉 (9.27)

Ẑ1 = Zn−2 〈2, 1, n−1, n〉+ Zn−1 〈2, n−2, 1, n〉+ Zn 〈2, n−2, n−1, 1〉 (9.28)
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These two expansions must be equivalent. For the bosonic components this is true

by the Schouten identity. However, for the fermionic components there is no such

identity. The only way for the two expansions to agree is if they are both evaluated

on the support of the fermionic delta function

δ0|4(η1 〈2, n−2, n−1, n〉+ cyclic) (9.29)

This is precisely the delta function provided by the R-invariant that appears in the

k-increasing operation, thus justifying our claim. Note that the R-invariant required

by the other shift n̂−1 is identical, so only one R-invariant is needed.

The opposite operations are those that remove a particle from the diagrams of

the form above. Correspondingly they are k-preserving and k-decreasing soft limits,

respectively.

Y ′(1, . . . , n−1) = Y (1, . . . ,Zn → Zn−1) ,

Y ′(1, . . . , n−1) =

∫
d3|4ZnY (1, . . . , n) . (9.30)

9.2 Boundary diagrams

We now discuss the diagrammatic representation of BCFW terms from Section 8.3.

We begin with the B term, which is the residue at w → ∞. This is nothing but

the k-preserving soft limit (9.24) given by a lower point diagram with a lollipop on

particle n.
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B = (9.31)

9.3 Factorization diagrams

Now we move to the factorization term corresponding to the pole 〈j−1 j n̂ 1〉 = 0.

Recall that we have worked out the simplest cases with k = 1 in (9.17), where both

left and right part are unity MHV amplitudes. In general, by connecting the left and

right amplitudes with W (j−1, j, n, 1) we obtain the factorization limit,

YL(ĵ, j, . . . , n)W [j−1, j, n, 1]YR(1, . . . , j−1, ĵ)

=
δ(〈j−1 j n 1〉) δ0|4(〈〈∗, i−1, i, j−1, j〉〉)

〈∗ i−1 i j−1〉〈∗ i−1 i j〉〈∗ j−1 j i−1〉〈 ∗ j−1 j i〉
YL(ĵ, j, . . . , n)YR(1, . . . , j−1, ĵ)

where ĵ = (j−1j) ∩ (∗n1) = (n1) ∩ (∗j−1j) is exactly the twistor corresponding to

the intersection of the lines (j−1j) and (n1), as shown in the diagram of (9.33).

The diagram is clearly independent of the reference ∗, and note that at this stage it

is symmetric under the exchange of left and right amplitude (including (j−1, j) ↔

(n, 1)). The corresponding contribution to the FAC term can be obtained by attaching
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the BCFW bridge br(n, n−1) to the factorization limit,

br(n, n−1) · (YL(ĵ, j, . . . , n)W [j−1, j, n, 1]YR(1, . . . , j−1, ĵ))

= [j−1, j, n−1, n, 1]YL(ĵ, j, . . . , n̂j)YR(1, . . . , j−1, ĵ) (9.32)

where we have ĵ = (j−1, j) ∩ (n−1, n, 1) and n̂j = (n−1, n) ∩ (1, j−1, j), which are

the two intersection points in the diagram. Summing over the relevant poles gives us

the full FAC term.

FAC =
n−2∑
j=3

(9.33)

Given that this is our first full-fledged example, we explain it carefully here.

Rather than directly computing the diagram, it is more insightful to see why the

result is correct, as we did for the k-increasing operation. For instance, we can check

that the line n̂j and the two lines ĵ have the correct shifts. Using the rules from be-

fore, we find that n̂j lies on the line (n−1, n) and the plane (1, j−1, j), which implies

that n̂j = (j−1, j) ∩ (1, n−1, n). Similarly for ĵ on (j−1, j) and (n, n−1, 1), thus

ĵ = (j−1, j)∩ (n−1, n, 1). Furthermore, it is easy to see that the k-charge of the full

diagram is given by k = kL + kR + 1 as required by the FAC term. We denote the

sub-diagram with vertices or edges in the diagram not already present in YL or YR as

∆, then its k-charge is ∆k = k−kL−kR = ∆nW + 2∆nB−∆nI = 3 + 2×7−16 = 1.

Here recall that the counting only applies to trivalent graphs. Since there is a quartic
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vertex at the center of the diagram, we should split that vertex into two cubic vertices,

which introduces one new black vertex and one new internal line as shown below.

, (9.34)

The fact that ∆k = 1 implies that the diagram evaluates to YL times YR with an

extra R-invariant. As before, we claim that the R-invariant that appears in FAC is

the only one it could be, because the fermionic components of n̂j and ĵ only make

sense on the support of its fermionic delta function. This concludes our justification

of the FAC diagram.

9.4 Forward limit diagrams

We now turn to the forward limit term. For the BCFW shift Ẑn = Zn + wZn−1,

the FL contribution comes from the residue at 〈AB1n̂〉 → 0 and is given by

Y
(L−1)
n+2,k+1(1, . . . , n̂, A,B; {`}/(AB)). The diagrammatic representation can be ex-

pressed as follows,

FL =

∫
GL(2)

. (9.35)

where the GL(2) integral sign is just there to remind us that there is a GL(2) residue
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we must take, which we discuss momentarily. From the diagram it is clear that n̂

lies on both the line (n−1, n) and the plane (1, A,B), hence n̂ = (n−1, n)∩ (1, A,B),

which gives the required shift. Furthermore, the k-charge of the diagram is given by

that of the sub-diagram Y plus ∆k = k−kY = ∆nW+2∆B−∆nI = 3+2×3−10 = −1.

The minus sign in the degree means that prior to integrating out the fermionic parts

of A,B, we should find one R-invariant multiplied by Y . This R-invariant must be

[A,B, 1, n−1, n] so that the fermionic parts of the shift n̂ are well-defined.

One main novelty of the diagrammatic method is that the GL(2) residue can

be performed diagrammatically. However, in order to do so, we must first apply

BCFW recursion on the sub-diagram Y L−1
n+2,k+1. In particular, we apply the shift

ZB → ZB +wZ1. This gives a boundary term which vanishes, a factorization channel

FL-FAC, and a forward limit FL-FL.

For FL-FAC, we have

FL-FAC =
n−1∑
j=3

∫
GL(2)

(9.36)

where we sum over all left and right sub-diagrams for which LL + LR = L − 1,

kL + kR = k, and nL + nR = n + 4. The boundary case Zj = Ẑn vanishes after

doing the fermionic loop integrals, and so is not included in the summation. Now

we can perform the GL(2) integral. Recall that the GL(2) residue takes ZA,ZB →

(A,B) ∩ (1, n− 1, n). The point (A,B) ∩ (1, n− 1, n) can be found on the diagram,

and is labeled by a cross. When taking the residue, the line A coming out of the

left sub-diagram must be cut and reconnected to the crossed line. Furthermore, a
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quick look at the diagram shows that ẐB = (1, B)∩ (j − 1, j, A), which also becomes

ẐB → (A,B) ∩ (1, n − 1, n) when taking the residue. So the B̂ line must also be

reconnected to the cross. This completes the GL(2) residue. The advantage of using

diagrams is that we did not have to do this residue analytically. The final form of the

FL-FAC term is thus given by

FL-FAC =
n−1∑
j=3

=
n−1∑
j=3

(9.37)

where the second diagram is obtained from the first by merge and expansion of white

vertices.

It is important to note that the diagram degenerates for the boundary case with

j = n−1. In our diagram above, it appears as if the point j appears twice since n−1

is identical to j, but this is obviously not the right interpretation. Indeed, we should

modify the diagram slightly to account for this case by identifying the external points

j and n−1. In other words, the line that connects YL to the external edge n−1 should

be merged with the line that connects YL to j. We also merge the corresponding two

black vertices, and the result is

(9.38)
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We notice that the process of doing the GL(2) integral introduces one degree

of non-planarity in the diagram. Although this may seem peculiar, we can still do

boundary measurements in the usual way. Furthermore, we see that the loop variables

ZA,ZB have been isolated in a bubble-like structure. This is convenient for writing

down the loop integrand, as we show in a moment. In future work, we show that the

non-planarity appearing in the forward limit can always be removed in a systematic

way without changing the value of the diagram.

We postpone discussion of Fl-FL to Section 9.7.

9.5 Tree diagrams

We now present computations of tree amplitudes by the diagrammatic recursion rela-

tions. Since we are working at tree level, only the boundary and factorization terms

are needed. Detailed examples for NMHV and N2MHV are provided.

9.5.1 NMHV tree

We wish to obtain diagrammatically the Yangian invariant Yn,k=1(Z1, ..,Zn) for

NMHV trees, where we have suppressed writing the L = 0 superscript. Recall that

NMHV trees factorize as the product of two MHV trees. By representing MHV

amplitudes as a series of lollipops, the factorization term becomes

FAC =
n−2∑
j=3

=
n−2∑
j=3

(9.39)
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In going from the first diagram to the second, we deleted any lollipops attached to

internal lines, and any vertex attached to only two lines. Recall from our earlier

discussion that this diagram is just the R-invariant [1, j−1, j, n−1, n]. The BCFW

recursion is therefore

Yn,k=1(1, ..., n) = Yn−1,k=1(1, ..., n− 1) +
n−2∑
j=3

[1, j−1, j, n−1, n] (9.40)

As is well known, the following closed form expression for Yn,k=1 satisfies the recursion

relation.

Yn,k=1(1, ..., n) =
∑
i<j

[1, i−1, i, j−1, j] . (9.41)

9.5.2 N2MHV trees

We now wish to obtain diagrams for N2MHV trees, which factorize as the product of

MHV and NMHV. Consider for example the 6 point case where the B term vanishes.

A moment’s thought reveals that there is only one FAC diagram that contributes,

which contains 5 point NMHV tree on the left and 3-point MHV tree on the right.

FAC = = (9.42)

We can then compute this diagram by performing boundary measurements. Since

the diagram contains nF = 9 faces, the number of integration variables must be

nF −1 = 8, so we can gauge fix some of the bridge variables until only 8 are left. The
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diagram above shows one particular choice of leftover bridge variables. The explicit

formula for this diagram is thus given by

FAC =

∫
dc1 ... dc8

c1 ... c8

δ4|4(Z1 − c5Z5 − c6Z6 − c7Z2 − c8Z3) (9.43)

× δ4|4(Z4 − c1c8Z3 − c2(c7Z2 + c8Z3)− c3(c5Z5 + c6Z6)− c4c5Z5)

(9.44)

On the support of the first delta function, it is easy to see that

c5Z5 + c6Z6 ∼ (56) ∩ (123) ≡ Z ′5

c7Z2 + c8Z3 ∼ (23) ∩ (156) ≡ Z ′2 (9.45)

Substituting these into the second delta function and rescaling the integration vari-

ables appropriately gives

FAC =

∫
dc1 ... dc8

c1 ... c8

δ4|4(Z1 − c5Z5 − c6Z6 − c7Z2 − c8Z3)

×δ4|4(Z4 − c1Z3 − c2Z ′2 − c3Z ′5 − c4Z5) . (9.46)

The integral is now trivial to perform. It just gives us two R-invariants.

Y6,k=2(Z1, ...,Z6) = [3, 4, 5, 2′, 5′][1, 2, 3, 5, 6]

= [3, 4, 5, (23) ∩ (156), (56) ∩ (123)][1, 2, 3, 5, 6] (9.47)

As mentioned above, in practice it is usually not productive to work out all the

boundary measurements step by step and identify all proper shifts like Z ′2 and Z ′5 on

the support of the delta functions; the shifts can be identified more quickly by looking

at the diagram and remembering the role of the black and white vertices. From our
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general rules and examples, it is straightforward to work out (reduced) momentum

twistor diagrams for all tree-level amplitudes/Wilson loops.

9.6 One loop diagrams

We now apply our diagrammatic method to compute one-loop integrands, where the

forward limit contribution is needed. One important advantage of our diagrams is

that it bypasses the technical difficulties of performing GL(2) integrals in the forward

limit, and the result can be read off from the diagram without ever having to the do

the integral by hand. We begin by studying MHV integrands. We then move on to

general k whereby the Kermit representation [63] is derived diagrammatically.

9.6.1 One loop diagrams for n-point MHV

Consider the one-loop n-point MHV integrand. In this case, only the B and FL-FAC

terms contribute, where the latter involves a factorization into two MHV trees. It

follows that

FL-FAC =
n−1∑
j=3

=
n−1∑
j=3

(9.48)

In the boundary case where j = n−1, we identify the external lines j and n−1 as
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follows.

(9.49)

Any one of these diagrams contains nF = 7 faces, and so must involve nF − 1 = 6

integration variables. As a general rule, we will always attach two extra GL(1) gauges

for every forward limit we take, so this reduces the diagram to a 4-form. But let us

keep all 6 variables for now. There are no delta functions since the k-charge of this

diagram is 0 (i.e. there are no arrows going into the diagram). So we have,

ds

d

dt

t

dcj−1

cj−1

dcj
cj

dcn−1

cn−1

dcn
cn

(9.50)

By following the arrows in the diagram and doing the usual boundary measurements,

we can rewrite c1, ..., c4 in terms of ZA,ZB.

ZA + tZB = Z1 + cj−1Zj−1 + cjZj

ZB + sZA = Z1 + cn−1Zn−1 + cnZn (9.51)

It follows that

FL-FAC =
1

Vol[GL(1)]2
ds

s

dt

t
d4`AB

n−1∑
j=3

KAB(1, n−1, n; 1, j−1, j) (9.52)
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where we have abbreviated d4`AB = 〈ABd2A〉 〈ABd2B〉, and we define the Kermit

KAB(1, n−1, n; 1, j−1, j) (9.53)

≡ 〈AB(1, n−1, n) ∩ (1, j−1, j)〉2

〈AB1 n−1〉 〈AB1 n〉 〈AB n−1 n〉 〈AB1 j−1〉 〈AB1 j〉 〈AB j−1 n〉
(9.54)

We can now gauge fix s, t→ 1 to obtain

FL-FAC = d4`AB

n−1∑
j=3

KAB(1, n−1, n; 1, j−1, j) (9.55)

This last step is universal, so we will often omit writing the d log s and d log t factors.

Thus the full BCFW recursion for one-loop MHV gives

Y L=1
n,k=0(Z1, ...,Zn) = B + FL-FAC

= Y L=1
n−1,k=0(1, ..., n−1) + d4`AB

n−1∑
j=3

KAB(1, n− 1, n; 1, j − 1, j)

(9.56)

Solving this relation in closed form gives the well-known Kermit form of one-loop

MHV,

Y L=1
n,k=0(Z1, ...,Zn) = d4`AB

∑
i<j

KAB(1, i−1, i; 1, j−1, j) (9.57)

It is well known that each Kermit diagram is given by d log ci−1 d log ci d log cj−1 d log cj

which corresponds to a cell of the one-loop MHV amplituhedron, and the Kermit

expansion provides a triangulation of the amplituhedron.
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9.6.2 One loop Kermit expansion

For one-loop, in addition to B and FAC terms, only the FL-FAC term contributes

with both sub-amplitudes as trees. This gives a generalized Kermit expansion,

FL-FAC = (9.58)

=
n−1∑
j=3

dcj−1dcjdcn−1dcn
cj−1cjcn−1cn

Y LL
nL,kL

(Ẑj,Zj, ...,Zn−1, Ẑn, ẐnAB)Y LR
nR,kR

(Z1, ...,Zj−1, Ẑj, ẐnAB)

(9.59)

where the loop variables are given by

ZA + tZB = Z1 + cj−1Zj−1 + cjZj

ZB + sZA = Z1 + cn−1Zn−1 + cnZn (9.60)

and Ẑj = (j − 1, j) ∩ (1, A,B), ẐnAB = (A,B) ∩ (1, n − 1, n) and Ẑn = (n − 1, n) ∩

(1, A,B). It follows that the d log c form just becomes a Kermit, so we get

FL-FAC = d4`AB

n−1∑
j=3

KAB(1, j − 1, j; 1, n− 1, n)

×Y LL
nL,kL

(Ẑj,Zj, ...,Zn−1, Ẑn, ẐnAB)Y LR
nR,kR

(Z1, ...,Zj−1, Ẑj, ẐnAB)
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9.6.3 One loop 5 point NMHV

Here we present a compute calculation of the one loop 5-point NMHV integrand

Y L=1
5,k=1, which requires FAC and FL-FAC contributions.

The FAC term involves only one diagram and is given by the factorization with

4-point 1-loop MHV on the left and 3-point MHV tree on the right.

FAC = = (9.61)

This graph has nF = 11 faces, so it should have nF − 1 = 10 integration variables.

But remember that we mod out the s, t using two GL(1) gauges so we really only

have 8 integrations. There is only one arrow going into the diagram, which means

that the diagram is NMHV, so there should be one delta function δ4|4(...). Indeed,

the diagram is given by

FAC =

∫
dc1 ... dc8

c1 ... c8

δ4|4(Z1 − c1Z2 − c2Z3 − c3Z4 − c4Z5) (9.62)

Doing the boundary measurements for the loop variables gives

ZA + tZB = Z3 + c5Z4 + c6(c1Z2 + c2Z3)

ZB + sZA = (c3Z4 + c4Z5) + c7(c1Z2 + c2Z3) + c8Z4 (9.63)
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On the support of the delta function, we see that

c1Z2 + c2Z3 ∼ (23) ∩ (145) ≡ Z ′2

c3Z4 + c4Z5 ∼ (45) ∩ (123) ≡ Z ′4 (9.64)

After rescaling some of the integration variables we get

ZA + tZB = Z3 + c5Z4 + c6Z ′2

ZB + sZA = Z ′4 + c7Z ′2 + c8Z4 (9.65)

This looks just like the Kermit, so the c5, ..., c8 part of the form would just give a

Kermit. The remaining variables c1, ..., c4 can be integrated trivially over the delta

function to yield the R-invariant [1, 2, 3, 4, 5]. The result is

FAC = d4`ABKAB(432′; 44′2′)[1, 2, 3, 4, 5] (9.66)

which simplifies to

FAC = d4`AB
δ0|4(η1 〈2345〉+ η2 〈3451〉+ η3 〈4512〉+ η4 〈5123〉+ η5 〈1234〉)
〈1245〉 〈1235〉 〈AB23〉 〈AB34〉 〈AB45〉 〈AB1(45) ∩ (123)〉

(9.67)

Now let us work on the FL-FAC term. There are two diagrams FL-FAC = FL-

FAC-1 + FL-FAC-2. The first diagram FL-FAC-1 is the forward limit of a factor-

ization channel with 5-point NMHV tree on the left and 4-point MHV tree on the
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right.

FL-FAC-1 = =

(9.68)

Again, this diagram has nF = 11 faces, so we should find 8 integration variables and

one delta function δ4|4(...). We find

FL-FAC-1 =

∫
dc1 ... dc8

c1 ... c8

δ4|4((Z1 − c7Z5 − c8Z4)− ξ) (9.69)

The loop variables are given by

ZA + sZB = c5Z2 + c6Z3 + (c7Z5 + c8Z4 + ξ)

ZB + tZA = ξ (9.70)

where

ξ = c1Z3 + c2(c5Z2 + c6Z3) + c3c8Z4 + c4(c7Z5 + c8Z4) (9.71)

On the support of the delta function, we can rewrite the loop variables as

ZA + sZB = Z1 + c5Z2 + c6Z3

ZB + tZA = Z1 − c7Z5 − c8Z4 (9.72)
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Using these new loop variable expressions, we find the following shifts

Z1 − c7Z5 − c8Z4 ∼ (AB) ∩ (145) ≡ Z ′′A

c7Z5 + c8Z4 ∼ (45) ∩ (1AB) ≡ Z ′′4

c5Z2 + c6Z3 ∼ (23) ∩ (1AB) ≡ Z ′′2 (9.73)

Substituting these into the delta function and rescaling the integration variables ap-

propriately gives us

FL-FAC-1 =

∫
dc1 ... dc8

c1 ... c8

δ4|4(Z ′′A + c1Z3 + c2Z ′′2 + c3Z4 + c4Z ′′4 ) (9.74)

Like before, the loop variables take on the Kermit form, so the c5, ..., c8 part of the

form just gives us a Kermit, and the remaining integrals can be integrated over the

delta function to give an R-invariant. The result is

FL-FAC-1 = d4`ABKAB(123; 145)[3, 4, A′′, 4′′, 2′′]

= d4`AB
δ0|4(η1 〈2345〉+ η2 〈3451〉+ η3 〈4512〉+ η4 〈5123〉+ η5 〈1234〉)
〈2345〉 〈AB12〉 〈AB23〉 〈1345〉 〈AB15〉 〈AB4(15) ∩ (234)〉

(9.75)

Finally, the last term FL-FAC-2 is given as the forward limit of the factorization with

4-point MHV tree on the left and 5-point NMHV tree on the right. We just give the
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result here

FL-FAC-2 = =

(9.76)

which is equal to

FL-FAC-2 = d4`ABKAB(134; 145)[1, 2, 3, (34) ∩ (1AB), (AB) ∩ (145)] (9.77)

= d4`AB
δ0|4(η1 〈2345〉+ η2 〈3451〉+ η3 〈4512〉+ η4 〈5123〉+ η5 〈1234〉) 〈AB14〉2

〈1234〉 〈AB12〉 〈AB34〉 〈AB45〉 〈AB15〉 〈AB1(45) ∩ (123)〉 〈AB4(51) ∩ (234)〉

The final result for the 5-point 1-loop NMHV integrand is the sum of all the

contributions

Y L=1
5,k=1(Z1, ...,Z5) = FAC + FL-FAC-1 + FL-FAC-2. (9.78)

These diagrams also give the three C,D-matrices for three cells of the amplituhedron.

It is already non-trivial to see how the three cells provide a triangulation of this one-

loop five-point NMHV case.

9.7 Two loop diagrams

At higher loops, the only new feature one would encounter is the iteration of forward

limits, and the general structure is very clear: there are L bubbles at L loops. Here
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we restrict ourselves to two loops. The B, FAC and FL-FAC contributions are of

the same form as before. The new contribution is the FL-FL term, which involves

yet another GL(2) residue. Let us call the second loop variable CD. We begin by

drawing the diagram corresponding to the two forward limits,

FL-FL (9.79)

=

∫ AB,CD

GL(2)

=

∫ CD

GL(2)

where the second diagram is obtained by doing the GL(2) integral for AB. The

procedure here is the same as before. Just reattach the two lines A and B̂ coming

out of the sub-diagram to the crossed line.

Going one step further, we perform yet another BCFW shift on the sub-diagram.

We use the shift ZC → ZC + wZA, which is convenient because the boundary term

vanishes in the forward limit of CD. Hence, the FL-FL-FAC term gives the final

contribution at two loops. Diagrammatically, we have the following.

FL-FL-FAC (9.80)

=
n∑
j=2

∫ CD

GL(2)

=
n∑
j=2
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In the second diagram we have done the GL(2) integral for CD by reattaching the

two lines Ĉ and D coming out of the two sub-diagrams to the crossed line. Recalling

that the forward limit takes C,D → (C,D) ∩ (1, A,B), we see that the crossed line

precisely represents this limit. We note that kL+kR = k+1 and LL+LR = L−2.

9.7.1 Two loop diagrams for 4 point MHV

We now present a full example: the 4-point 2 loop integrand. The computation is

already quite non-trivial and interesting, which shows all the essential features of

our diagrammatic formulation of multi-loop integrands. The result is given by the

forward limit of the one-loop six-point NMHV integrand, which includes 16 terms.

When applying the forward limit to it using (9.80), we find only 8 non-vanishing

terms. There are 2 terms for FL-FAC and 6 terms for FL-FL, the expressions for

which we list below. For each term we also include the momentum twistor diagram

and the corresponding matrix expression as follows.

D(2) ≡

 DAB

DCD

 (9.81)

To write the expressions in a more compact form, we introduce shifted twistors.

Â = (A,B) ∩ (1, 3, 4), Ĉ ′ = (C,D) ∩ (1, A,B),

3̂′ = (2, 3) ∩ (1, A,B), 4̂′ = (3, 4) ∩ (1, A,B),

2̂ = (1, 2) ∩ (Â, C,D), 3̂ = (2, 3) ∩ (Â, C,D), 4̂ = (3, 4) ∩ (Â, C,D),(9.82)
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

−1 −c1 −c2 0

1 0 −c3 −c4

c8 −c1 − c5 −c2 − c3c8 −c4c8

1 + c7 c6 −c3c7 −c4c7



(9.83)

FL-FAC-1 =
〈1234〉4〈AB13〉2

〈AB23〉〈AB34〉〈AB14〉〈CD12〉〈CD23〉〈CD3̂′Â〉〈CD1Â〉
(9.84)



1 c2 c4 0

−1 0 c3 c1

0 c2c6 c4 + c3c5 + c4c6 c1c5

−1 −c2c7 c3 − c4c7 + c3c8 c1 + c1c8



(9.85)

FL-FAC-2 =
〈1234〉4〈AB13〉2

〈AB12〉〈AB23〉〈AB14〉〈CD23〉〈CD34〉〈CD4̂′1〉〈CD3̂′A〉
(9.86)
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

−c2+c3−c4 −c4c8 −c1−c7−c3c7 −c6−c3c6

1 0 −c7 −c6

c3−c4 −c4c8 −c1−c7−c3c7 −c6−c3c6

1+c5 c8 −c5c7 −c5c6



(9.87)

FL-FL-1 =
〈AB(134) ∩ (1CD)〉2〈AĈ ′12〉2〈1234〉3〈AB34〉〈CDA1〉2

〈AB14〉〈ABCD〉〈CD12〉〈CDA2〉〈Ĉ ′134〉〈2̂4̂′Ĉ ′A〉〈2̂3AĈ ′〉〈Ĉ ′2̂34〉
(9.88)



1 0 −c7 −c6

1 + c2 − c3 c8 + c4c8 c1 + c3c7 c3c6

1 + c5 c8 −c5c7 −c5c6

1− c3 c8 + c4c8 c1 + c3c7 c3c6



(9.89)

FL-FL-2 =
〈AB(134) ∩ (1CD)〉2〈AĈ ′12〉〈1234〉3〈AB13〉2

〈AB14〉〈AB34〉〈ABCD〉〈CDA1〉〈CD12〉〈AĈ ′23〉〈AĈ ′32̂〉〈Ĉ ′123〉
(9.90)
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

1 0 −c7 −c6

c1+c5 c8 1+c3c4+c3c7−c5c7 c3c6−c5c6

c2 0 −c4−c7−c2c7 −c6−c2c6

c5 c8 1+c3c4+c3c7−c5c7 c3c6−c5c6



(9.91)

FL-FL-3 =
〈AB(134) ∩ (1CD)〉2〈AB34〉3〈Ĉ ′134〉〈1234〉3

〈AB14〉〈ABCD〉〈CD34〉〈CD4̂′A〉〈Ĉ ′234〉〈4̂Ĉ ′A2〉〈Ĉ ′A23〉
(9.92)



1 0 −c7 −c6

1 + c1 + c5 c8 c3c4 + c3c7 − c5c7 c3c6 − c5c6

c2 0 −c4 − c7 − c2c7 −c6 − c2c6

1 + c5 c8 c3c4 + c3c7 + c5c7 c3c6 − c5c6



(9.93)

FL-FL-4 =
〈AB(134) ∩ (1CD)〉2〈Ĉ ′134〉2〈A4̂12〉3

〈AB14〉〈ABCD〉〈CDA3〉〈CD34〉〈Ĉ ′4̂12〉〈Ĉ ′4̂A1〉〈Ĉ ′4̂A2〉〈Ĉ ′A12〉〈CD4̂′1〉
(9.94)
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

−c1+c2 −c5c8 −c3c4−c4c5−c7−c2c7 −c6−c2c6

1 0 −c7 −c6

c2 −c5c8 −c3c4−c4c5−c7−c2c7 −c6−c2c6

1 c8 c4−c7 −c6



(9.95)

FL-FL-5 =
〈AB(134) ∩ (1CD)〉2〈AB34〉〈Ĉ ′A23〉〈1234〉3

〈AB14〉〈ABCD〉〈CDA2〉〈CD23〉〈Ĉ ′134〉〈A3̂Ĉ ′4̂′〉〈Ĉ ′234〉
(9.96)



1 0 −c7 −c6

c1 + c2 + c4 c8 + c3c8 c3 − c2c7 −c2c6

c2 + c4 c8 + c3c8 c3 − c2c7 −c2c6

−c5 c8 1 + c5c7 c5c6



(9.97)

FL-FL-6 =
〈AB(134) ∩ (1CD)〉2〈Ĉ ′A23〉〈A123〉3

〈AB13〉〈AB14〉〈AB34〉〈ABCD〉〈CD23〉〈CD3A〉〈Ĉ ′123〉〈3̂Ĉ ′A1〉〈Ĉ ′A12〉
(9.98)
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The two-loop four-point integrand is the sum of the 8 terms, plus the other 8

terms obtained by (AB ↔ CD). As one can check numerically, given a set of positive

data and a random point inside the amplituhedron, it lies in one and only one of the

cells with the above D matrices, except for points on the boundary of cells. The fact

that the cells triangulate the amplituhedron is a highly non-trivial statement about

geometry, and is in fact very difficult to prove. Nonetheless, BCFW terms appear to

provide cells that triangulate the amplituhedron when summed.

We can compare our result to results obtained elsewhere via different methods,

such as the following expression from [26].

Y
(2)

4,0 =
1

2

[
〈1234〉3

〈AB12〉 〈AB23〉 〈AB34〉 〈ABCD〉 〈CD34〉 〈CD14〉 〈CD12〉

+
〈1234〉3

〈AB23〉 〈AB34〉 〈AB14〉 〈ABCD〉 〈CD14〉 〈CD12〉 〈CD23〉

]
+ (AB ↔ CD) (9.99)

We find agreement via numerical checks.

For a discussion on computation of general 2-loop integrands (for any k), which

involves a 2-loop extension of the Kermit, see Section 4.3.3 of [4].
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Chapter 10

One-loop amplitudes of planar

N = 4 super Yang-Mills

We now provide a detailed study of the positive loop Grassmannian G≥0(1, n; 1),

whose image under Z gives the NMHV one-loop amplituhedron A(1, n; 1). In partic-

ular, we provide a detailed classification of the Grassmannian cells of top dimension.

Contrary to tree level, more than one top dimensional cell appears. We describe

properties of these top cells in detail, and discuss how they can be obtained from

0-dimensional cells via the method of successive shifts. In Section 10.2, we study the

canonical form of top cells called top cell measures. In particular, we argue that every

planar one-loop NMHV BCFW integrand can be obtained by taking a sequence of

residues on a top cell measure before pushing it forward by Z. This is a generalization

of earlier work done at tree level in momentum space [36, 16]. Also, throughout these

sections, we generalize to k > 1 wherever possible. However, we emphasize that the

notion of top cell is still unclear for k > 1.
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10.1 The one-loop k = 1 Grassmannian

The general loop Grassmannian was introduced in Section 2.5.5. Here we specialize

to k = 1 and L = 1, whereby we think of a point P ∈ G≥0(1, n; 1) as a 3× n matrix

whose first two rows form the D matrix and the last row is the C matrix, modded

out by the parabolic group GL(1; 1) (See (2.1) of [3]). Note that in Section 2.5.5, the

D matrix is positioned below the C matrix. There is a torus T≥0 = GL≥0(1)n that

acts on G≥0(1, n; 1) by scaling the columns independently by positive scalars.

We describe X = G≥0(1, n; 1)/T≥0 explicitly in terms of spaces of n points in the

projective plane P2
≥0 ≡ (R2 × R≥0)/R+, which is the space of all vectors of the form

(d1, d2, c)
T with c ≥ 0 modded out by overall multiplication by positive scalars. Fix

a line at infinity L∞ ⊂ P2
≥0 which we can take to be the set of all non-zero vectors

with c = 0, and let A2 = P2
≥0 \ L∞ denote the affine plane. The space X consists of

collections P ≡ (P1, P2, . . . , Pn) of n points where each Pi is either

1. a point Pi ∈ A2, or

2. a point Pi ∈ L∞, or

3. “zero” (equivalently, a point not on P2
≥0).

Case (1) occurs if the third entry of the i-th column of C is non-zero. Then the i-th

column of P can be scaled to the column vector (d1, d2, 1)T , representing the point

(d1, d2)T ∼ (d1, d2, 1)T ∈ A2.

Case (2) occurs if the third entry of the i-th column of C is zero, but the i-th column

of P is non-zero. Then we have the column vector (d1, d2, 0)T , representing the point

(d1, d2)T ∼ (d1, d2, 0)T ∈ L∞.

Case (3) occurs if the i-th column of P is the zero vector.

The positivity of the collection P = (P1, P2, . . . , Pn) implies that the column

vectors form the ordered vertices of a convex polygon which we also refer to as P ,
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which may have points at infinity. Furthermore, two matrices P and P ′ represent the

same point in G≥0(1, n; 1) if they are related by one of the three operations.

1. The GL≥0(1)-action on the row C, which rescales the polygon relative to the

origin of the affine plane.

2. The GL≥0(2)-action on the two rows D, which linearly transforms the polygon

on the affine plane while preserving convexity.

3. The T action that adds a multiple of C to one of the rows of D, which translates

the polygon.

In other words, X is the space of n-points in P2
≥0 in convex position (with a dis-

tinguished line at infinity), modulo the action of affine transformations. A simple

example of a polygon P is given by the following, where θs = 2πs/6 for s = 0, ..., 5.

P =


cos θ0 cos θ1 cos θ2 cos θ3 cos θ4 cos θ5

sin θ0 sin θ1 sin θ2 sin θ3 sin θ4 sin θ5

1 1 1 1 1 1

(10.1)

10.1.1 0-dimensional cells

We now wish to discuss the 0-dimensional cells of G≥0(1, n; 1). These innocuous parts

of the geometry are actually crucial, because they are the seeds from which all other

diagrams can be constructed.

We first remind ourselves of the 0-dimensional cells appearing in the tree level

Grassmannian G≥0(k, n). We pick n external states a1, ..., ak and gauge fix the Grass-

mannian to be identity in the k × k block corresponding to columns a1, ..., ak, and
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set all other components to zero. For instance, for G≥0(2, 5) and (a1, a2) = (2, 3), the

0-dimensional cell is given by the following.

C =

0 1 0 0 0

0 0 1 0 0

 (10.2)

Here we have also included the corresponding momentum twistor diagram. In gen-

eral, a 0-dimensional cell consists of black and white “lollipops” attached to the ex-

ternal legs of the diagram. The white lollipops are positioned precisely at the indices

a1, ..., ak. The number of white lollipops is therefore the k charge of the diagram. In

particular, the MHV tree diagram is just a ring of black lollipops.

We now return to the one-loop k = 1 case. The 0-dimensional cells of G≥0(1, n; 1)

are exactly the torus-invariant points of G≥0(1, n; 1). They are determined by picking

a ∈ {1, 2, . . . , n} and another unordered pair (b, c) ∈ {1, 2, . . . , n} − {a}. The cell

Πa;b,c consists of a point Pa ∈ A2 and distinct points Pb, Pc ∈ L∞. By an affine

transformation, we can assume that Pa, Pb, Pc are precisely the standard unit vector

basis in P2
≥0. For example, if n = 5, we have that Π1;3,4 is represented by the following

matrix.

P =


0 0 1 0 0

0 0 0 1 0

1 0 0 0 0

 (10.3)
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Again we have included the corresponding diagram. As in the tree level case, we must

have one white lollipop at particle a corresponding to the k = 1 charge. The novelty

at one loop is that we have one “bubble” attached to two external legs. The bubble

represents the loop variable while the legs reflect the corresponding GL(2) symmetry.

For 0-dimensional cells, these two legs must be connected to the two external particles

labeled b, c. At one loop, this is the only type of 0-dimensional cell that can appear.

At higher loops, the classification of 0-dimensional cells is still unclear. For instance,

we can imagine connecting two bubbles together through their external legs. Whether

or not this type of diagram should be classified as a 0-dimensional cell, and what other

cells are possible, are still open questions.

10.1.2 Top cells

We now describe the top cells of G≥0(1, n; 1); more specifically we describe the corre-

sponding top cells of X = G≥0(1, n; 1)/T≥0.

Suppose that P = (P1, . . . , Pn) is a convex n-gon in A2 with points occuring in

cyclic counterclockwise order. Suppose that a, a+ 1, b, b+ 1 are in cyclic order, where

a + 1 can equal b, but a 6= b + 1. Let us say that the edges (a, a + 1) and (b, b + 1)

intersect positively if the intersection point (a, a+1) ∩ (b, b+1) ≡ Pb(a, a+1, b+1) −

Pb+1(a, a+1, b) of the two lines is on the opposite side of the line (a+ 1, b) to both a

and b + 1. If the intersection point X is on the other side of (a + 1, b), then we say

that (a, a + 1) and (b, b + 1) intersect negatively. Note that (a, a + 1) and (b, b + 1)

intersect positively if and only if (b, b+1) and (a, a+1) intersect negatively. For short

we say that [a, a + 1; b, b + 1] is positive. If a + 1 = b, then [a, a + 1; a + 1, a + 2] is

always positive. The condition that [a, a + 1; b, b + 1] is positive is equivalent to the

algebraic condition

[(a, a+1) ∩ (b, b+1)] = [b](a, a+1, b+1)− [b+1](a, a+1, b) > 0. (10.4)
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Here [a] denotes a minor of the row C, and (a, b, c) denotes a minor of the matrix P .

For example, suppose n = 4 and a = 1 and b = 3. By an affine transformation, a

convex quadrilateral in A2 can be made to have vertices (0, 0), (1, 0), (x, y), (0, 1), so

that the corresponding P matrix is

y<1 y>1

P =


0 1 x 0

0 0 y 1

1 1 1 1

 . (10.5)

The convexity of the quadrilateral is equivalent to the conditions (123) = y > 0 and

(134) = x > 0 and (234) = x+ y − 1 > 0. The condition that (12) and (34) intersect

positively is the condition y < 1, or equivalently, [(12)∩(34)] = [3](124)−[4](123) > 0.

A top cell can be described in the following way: it is the space of convex n-

gons in A2, considered up to affine transformations, satisfying additional constraints

specifying that certain pairs of edges (a, a+1) and (b, b+1) intersect positively. These

constraints are only specified for some pairs of edges. Other pairs of edges are allowed

to intersect either positively or negatively. There are
(
n
3

)
top cells in total. Given a

3-element subset S ⊂ {1, 2, . . . , n}, we now describe the corresponding top cell ΠS.

Let S = {a < b < c} ⊂ {1, 2, . . . , n}. Then the intersection constraints for ΠS are

that [a, a + 1; b, b + 1], [b, b + 1; c, c + 1], and [c, c + 1; a, a + 1] are positive. Note

that [a, a+ 1; b, b+ 1] being positive implies that [a′, a′ + 1; b, b+ 1] is positive for all

a < a′ < b. Thus ΠS is cut out of G≥0(1, n; 1) by three quadratic equations of the

form (10.4).
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Another way to describe Π{a,b,c} is as follows. Start with the intersection points

X1 = (a, a+1) ∩ (b, b+1), X2 = (b, b+1) ∩ (c, c+1), X3 = (c, c+1) ∩ (a, a+1). (10.6)

The convex hull of these three points is a big triangle ∆. Then Π{a,b,c} is the space

of n-gons that can be inscribed inside ∆ so that the edges (a, a + 1), (b, b + 1) and

(c, c+ 1) lie on the three edges of ∆, as shown in the following picture.

(10.7)

Another way to think about the inscribed n-gon is that it is obtained from ∆

by slicing it a number of times. If a + 1 = b, then the intersection point X1 =

(a, a+ 1) ∩ (a+ 1, a+ 2) is simply a+ 1, so sometimes ∆ shares some of its vertices

with the n-gon P .

10.1.3 Shifts

The top cells ΠS can be built up from 0-dimensional cells via shifts of columns of the

P matrix. The geometry of the intersection conditions on edges arises naturally in

this way.

We consider two kinds of shifts: The shift (i+ 1→ i) acts by adding aPi to Pi+1

while (i → i + 1) acts by adding aPi+1 to Pi, where a is positive and will later be

interpreted as a bridge variable. These shifts send points in G≥0(1, n; 1) to points in

G≥0(1, n; 1). In terms of point configurations, (i + 1 → i) moves Pi+1 to a point on

the interval connecting Pi and Pi+1, while (i → i + 1) moves Pi to a point on the
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(10.8)

Figure 10.1: The shift (i+ 1→ i) where Pi+1 → Pi+1+aPi

same interval. Note that if Pi+1 = 0 is not on P2, then (i+ 1→ i) just places Pi+1 at

the location of Pi.

As we are showing in Figure 10.1, the shifts have a simple interpretation as a

BCFW bridge. For instance, by doing the shift (i+ 1→ i) we are simply attaching a

new pair of black and white vertices at positions i and i+1. The two ways of coloring

the vertices reflects the two possible shifts (i + 1 → i) and (i → i + 1), of which we

have drawn the former. The variable a appears as a bridge variable on the diagram,

which is consistent with the fact that adding a bridge increases the number of faces,

and hence the dimension, of the diagram by 1.

Using shifts where a varies over R>0, we can build up higher-dimensional cells from

0-dimensional cells, at least at one loop. We can obtain all top cells of G≥0(1, n; 1)

in this way, though in general we need to allow non-adjacent shifts, and possibly

negative values for a, in which case we use −a so that a > 0. The same is probably

true to all loops, though it is not clear what all the 0-dimensional cells are in those

cases, as discussed earlier.

Any momentum twistor diagram can be decomposed into a sequence of bridges,

or shifts. In other words, there exists a sequence of shifts that takes a 0-dimensional

cell to the full diagram. In practice, this sequence is obtained by starting with the

full diagram and removing one bridge at a time. This is related to the fact that each
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permutation in the symmetric group Sn can be written as a composition of transposi-

tions, as explained in the original reference [16]. Of course, the decomposition is not

unique, and neither is the 0-dimensional cell.

10.1.4 5 point

We now apply our preceding formalism to the n = 5 one-loop NMHV integrand,

which is expressed as a sum of three BCFW terms B-1,B-2,B-3. The expressions

for these terms are given in Appendix A of [3] as the first 3 of 16 BCFW terms

for the n = 6 integrand. But since these 3 terms form the boundary contribution

to the n = 6 case, they can also be interpreted as a complete BCFW expansion

of the n = 5 integrand. In the discussion that follows, we focus on the term B-1,

which corresponds to a Grassmannian cell whose coordinates we construct via shifts

starting from a 0-dimensional cell. At each step, we present the coordinates for the

P matrix, the momentum twistor diagram, and a picture for the vertices Pi showing

their linear relations.

(0) Start with the 0-dimensional cell Π1;3,5. Thus we have a point P1 ∈ A2, and two

points P3, P5 ∈ L∞.

P =


0 0 1 0 0

0 0 0 0 1

1 0 0 0 0

 (10.9)

(1) Apply the shift (2→ 3). This places P2 at the same location as P3.
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P =


0 a1 1 0 0

0 0 0 0 1

1 0 0 0 0

 a1

(10.10)

(2) Apply the shift (4→ 5). This places P4 at the same location as P5.

P =


0 a1 1 0 0

0 0 0 a2 1

1 0 0 0 0

 a1
a2

(10.11)

(3) Apply the shift (2 → 5). This moves P2 towards P5. To keep the arrangement

convex, this is visualized with P2 being pushed away from P5. This is an example of

a non-adjacent shift with a negative bridge variable P2 → P2 − a2P5. So we have the

space of degenerate pentagons (P1, P2, P3, P4, P5) in P2, where P2, P3, and P4 = P5

lie at infinity and P1 lies in A2.

P =


0 a1 1 0 0

0 −a3 0 a2 1

1 0 0 0 0


a1

a2

a3 (10.12)

(4) Apply the shift (5 → 1). Thus P5 is moved off the line at infinity towards P1.

So we have the space of degenerate pentagons (P1, P2, P3, P4, P5) in P2, where P2, P3,

and P4 lie at infinity and P5 lies on the line joining P1 and P4.
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P =


0 a1 1 0 0

0 −a3 0 a2 1

1 0 0 0 a4


a1

a2

a3

a4

(10.13)

(5) Apply the shift (4→ 5). Thus P4 is moved towards P5. So we have the space of

degenerate pentagons (P1, P2, P3, P4, P5) in P2, where P2 and P3 lie at infinity and P5

lies on the line joining P1 and P4.

P =


0 a1 1 0 0

0 −a3 0 a2 + a5 1

1 0 0 a4a5 a4


a1

a2 a3

a4

a5
(10.14)

(6) Apply the shift (4→ 3). Thus P4 is moved towards P3. So we now have the space

of pentagons (P1, P2, P3, P4, P5) in P2, where P2 and P3 lie at infinity.

P =


0 a1 1 a6 0

0 −a3 0 a2 + a5 1

1 0 0 a4a5 a4


a1

a2 a3

a4

a5

a6

(10.15)

(7) Apply the shift (2 → 1). Thus P2 is moved towards P1. So we now have the

space of pentagons (P1, P2, P3, P4, P5) in P2, where P3 is on the line at infinity. In the

diagram below, you should imagine that P3 is placed infinitely away so that the two

dashed lines are parallel, and so that the interior angles at P4 and P2 are less than π.

In particular, given any point P∗ on the half-line (2, 3), the extended lines (2, 3) and
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(4, 5) intersect on the side of (4, ∗) containing P2 and P5. This observation is crucial

for the next step.

P =


0 a1 1 a6 0

0 −a3 0 a2 + a5 1

1 a7 0 a4a5 a4


a1

a2 a3

a4

a5

a6

a7

(10.16)

(8) Apply the shift (3 → 2). This moves P3 off the line at infinity towards P2

along (2, 3). As noted earlier, the lines (2, 3) and (4, 5) intersect on the side of (3, 4)

containing P2 and P5. In other words, [4, 5; 2, 3] is positive. So we now have the space

of pentagons (P1, P2, P3, P4, P5) in A2, where (4, 5) and (2, 3) intersect positively. We

have thus obtained the top cell ΠS where S = {2, 3, 4}. (The conditions that (2, 3)

intersects (3, 4) positively, and (3, 4) intersects (4, 5) positively are trivially satisfied.)

P =


0 a1 1 + a1a8 a6 0

0 −a3 −a3a8 a2 + a5 1

1 a7 a7a8 a4a5 a4


a1

a2 a3

a4

a5

a6

a7

a8

(10.17)

The diagram above is identical to the B-1 diagram in Appendix A of [3] with the

black lollipop at particle 6 stripped off, since we are only concerned with the 5 point

integrand. However, the matrix P is not the same as the B-1 matrix with the sixth

column removed. Nonetheless, they parametrize the same Grassmannian cell, which

can be seen by a change of gauge followed by a change of variables. First change the
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gauge by acting P on the left by

g =


1 0 0

0 a4 0

0 0 1

 ∈ GL(1; 1). (10.18)

then perform the monomial coordinate change a1 → c1c6, a2 → c8/c4, a3 →

c1c7/c4, a4 → c4, a5 → c3/c4, a6 → c5, a7 → c1, a8 → c2/c1. Note that this change of

variables is a diffeomorphism of R8
>0, which must be the case for any change of gauge

between positive variables.

10.1.5 6 point

We repeat the analysis of the previous section for the FL-2 term of the BCFW

expansion for the n = 6 one-loop NMHV integrand, as provided in Appendix A of [3].

We denote the corresponding top cell as ΠFL-2.

(0) Start with the 0-dimensional cell Π4;1,6. Thus we have a point P4 ∈ A2 and distinct

points P1, P6 ∈ L∞. There is a unique such configuration up to affine transformations.

The points P2, P3, P5 are not on the projective plane. A representative matrix is

P =


1 0 0 0 0 0

0 0 0 0 0 −1

0 0 0 1 0 0

 (10.19)

(1) Perform the shift (2→ 1). This places P2 on top of P1. Thus we have the space

of degenerate quadrilaterals (P1, P2, P4, P6) where P1 = P2 and P1, P2, P6 lie on L∞.
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A representative matrix for this one-dimensional cell is


1 a1 0 0 0 0

0 0 0 0 0 −1

0 0 0 1 0 0

 (10.20)

(2) Perform the shift (6 → 4). This moves P6 towards P4 along the line joining P4

and P6. Now we have a space of degenerate quadrilaterals (P1, P2, P4, P6), where two

vertices P4, P6 lie in A2, and P1 = P2 lies on L∞. A representative matrix for this

two-dimensional cell is


1 a1 0 0 0 0

0 0 0 0 0 −1

0 0 0 1 0 a2

 (10.21)

(3) Perform the shift (2 → 4). This moves P2 towards P4 along the line joining P2

and P4. So now we have the space of degenerate quadrilaterals (P1, P2, P4, P6), where

P2 lies on the line segment (1, 4), and P1 lies on L∞. A representative matrix for this

three-dimensional cell is


1 a1 0 0 0 0

0 0 0 0 0 −1

0 a3 0 1 0 a2

 (10.22)
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(4) Perform the shift (5 → 6). This places P5 at the same location as P6. Now we

have the space of degenerate pentagons (P1, P2, P4, P5, P6), where P2 lies on the line

segment (1, 4), and P1 lies on L∞, and P5 = P6. A representative matrix for this

four-dimensional cell is


1 a1 0 0 0 0

0 0 0 0 −a4 −1

0 a3 0 1 a4a2 a2

 (10.23)

(5) Perform the shift (1 → 6). This moves P1 towards P6 along the line joining P1

and P6. So now we have the space of degenerate pentagons (P1, P2, P4, P5, P6) where

all points lie in A2, and in addition the edge (1, 6) is parallel to the edge (2, 4), and

P5 = P6. A representative matrix for this five-dimensional cell is


1 a1 0 0 0 0

−a5 0 0 0 −a4 −1

a5a2 a3 0 1 a4a2 a2

 (10.24)

(6) Perform the shift (5 → 4). This moves P5 towards P4 along the line joining P5

and P4. So now we have the space of degenerate pentagons (P1, P2, P4, P5, P6) where

all points lie in A2, the edge (1, 6) is parallel to the edge (2, 4), and the point P5 lies
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on the edge P4P6. A representative matrix for this six-dimensional cell is


1 a1 0 0 0 0

−a5 0 0 0 −a4 −1

a5a2 a3 0 1 a4a2 + a6 a2

 (10.25)

(7) Perform the shift (3→ 4). This places P3 at the same location as P4. So now we

have the space of degenerate convex hexagons (P1, P2, P3, P4, P5, P6) where all points

lie in A2, the edge (1, 6) is parallel to the edge (2, 4), the point P5 lies on the edge

P4P6, and P3 = P4. A representative matrix for this seven-dimensional cell is


1 a1 0 0 0 0

−a5 0 0 0 −a4 −1

a5a2 a3 a7 1 a4a2 + a6 a2

 (10.26)

(8) Perform the shift (3→ 2). This moves P3 towards P2 along the line joining P2 and

P3. So now we have the space of degenerate convex hexagons (P1, P2, P3, P4, P5, P6)

where all points lie in A2, the edge (1, 6) is parallel to the edge (2, 4), the point P5 lies

on the edge (4, 6), and the point P3 lies on the edge (2, 4). A representative matrix

for this eight-dimensional cell is


1 a1 a1a8 0 0 0

−a5 0 0 0 −a4 −1

a5a2 a3 a7+a3a8 1 a4a2+a6 a2

 (10.27)
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Note that vanishing of the minors (234) and (456) is immediate from the geometric

description. The vanishing of [(16) ∩ (24)] is equivalent to the statement that the

edge (1, 6) is parallel to the edge (2, 4). Again, in the polygon diagram above, we

should imagine that the intersection (1, 6)∩ (2, 4) is placed infinitely away so that the

dashed lines are parallel.

The matrix P parametrizes the same Grassmannian cell as the FL-2 matrix in

Appendix A of [3], which can be seen by a change of gauge followed by a change of

variables. First act on P from the left by

g =


0 1

a5
− 1
a22a

2
5

−1 0 1
a22a5

0 0 1
a2a5

 ∈ GL(1; 1). (10.28)

Then perform the monomial coordinate change a1 → c5, a2 → c8/c3, a3 →

c1c5/c3, a4 → c7/c8, a5 → 1/c8, a6 → c4c7/c3, a7 → c2c6/c3, a8 → c6/c5. As

required, this is a diffeomorphism of R8
>0

We can describe the cell ΠFL-2 ⊂ G≥0(1, n; 1) as the space of degenerate convex

hexagons P = (P1, P2, P3, P4, P5, P6) where all points lie in A2, the edge (1, 6) is

parallel to the edge (2, 4), the point P5 lies on the edge (4, 6), and the point P3 lies

on the edge (2, 4). We claim that ΠFL-2 is a codimension-3 boundary of the eleven-

dimensional top cell Π{2,4,6}. This top cell is the space of convex hexagons that can

be inscribed into a big triangle, so that the edges (2, 3), (4, 5) and (6, 1) lie on the

edges of the big triangle, as illustrated below on the left.

(10.29)
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To obtain ΠFL-2 as a boundary of Π{2,4,6}, first move P4 away from P5 until it lies

on the line (2, 3), then move P6 away from P1 until it lies on (4, 5). Thus, P2, P3, P4

are now collinear and P4, P5, P6 are now collinear. Finally, move the point P1 away

from P2 until (1, 6) is parallel to (2, 3). The three steps are equivalent to taking

(234), (456), [(16) ∩ (24)] to zero. The resulting space of degenerate hexagons, as

shown on the upper right diagram where the directed lines are parallel, is the cell

ΠFL-2. We should note that Π{2,4,6} is not the only top cell from which ΠFL-2 can be

obtained. Another possibility is Π{3,4,6}.

10.2 The one-loop Grassmannian measure

Recall from Section 2.4.6 that the canonical form of the positive Grassmannian

G≥0(k, n) is the beautiful cyclic measure 2.51. Furthermore, the canonical form

for every Grassmannian cell can be obtained by taking a sequence of residues on this

measure. We now wish to generalize these ideas to one loop. However, new subtleties

arise, since for k = 1 there are multiple top cells each with its own canonical form.

Also, for k > 1, the notion of top cell is still undefined.

We begin with a general discussion of the properties that the measure must satisfy

before writing down specific formulas. We mostly focus on the k = 1 case where the

measure has a beautiful interpretation as the volume of polygon, and generalize to

k > 1 where possible.

10.2.1 The general setup

We construct a family of integration measures on the one-loop Grassmannian (i.e. the

space of P matrices) which we claim generate one-loop BCFW terms. We consider

Mk,n(P ) =
d(k+2)nP/vol GL(k; 1)∏n

i=1 (i i+1 i+2 · · · i+k+1)
M′

k,n(P ) (10.30)
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which is defined on G≥0(k, n; 1). The factor M′
k,n(P ) is called the geometric factor

andMk,n(P ) the measure. We propose that BCFW terms can be generated by taking

residues of the following integral

Yk,n =

∫
d(k+2)nP∏n

i=1 (i i+1 i+2 · · · i+k+1)
M′

k,n(P ) δ(k+2)(k+4)(Y−P.Z) (10.31)

where

(i1 i2 · · · ik+2) = εA1,...,Ak+2PA1i1 · · ·PAk+2ik+2
(10.32)

[i1 i2 · · · ik] = εa1,...,akCa1i1 · · ·Cakik (10.33)

The repeated indicesA1, . . . , Ak+2 = 1, . . . , k+2 and a1, a2, . . . , ak = 1, 2, . . . , k are im-

plicitly summed over their respective range. The indices i1, i2, . . . , ik+2 ∈ {1, 2, . . . , n}

label the columns of the C and P matrices. Thus (i1, . . . , ik+2) denotes the deter-

minant of the matrix formed by the columns i1, . . . , ik+2 of the P matrix, while

[i1, . . . , ik] denotes the determinant of the matrix formed by the columns i1, . . . , ik of

the C matrix. In subsequent parts, we will also make use of the following notation:

[i1 i2 · · · is]r1,...,rt = εr1,...,rt
a1,...,asCa1i1 · · ·Casis (10.34)

where s + t = k. This denotes, up to a sign, the determinant of the matrix formed

by columns i1, . . . , is of the C matrix with rows r1, . . . , rt removed. The indices are

raised and lowered with the all plus metric, so we can raise and lower them arbitrarily.

For t = 0, we get back the square bracket defined earlier.

In the definition of our measure, we have not yet used the square bracket. Nonethe-

less, both brackets are important because they are covariant under GL(k; 1) trans-

formations. The round brackets appearing in the denominator of the measure is the

familiar cyclic factor. However, the most important part of the measure is the ge-
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ometric factor M′
k,n(P ). We provide detailed examples of the geometric factor in

the subsequent section. For now we simply describe some constraints it must sat-

isfy. First of all, it must be covariant under GL(k; 1) transformations. Namely,M′
k,n

should scale as det(G)k det(J)k+2 (See (2.1) of [3]). The exponents are chosen so

that a GL(k; 1) transformation on Y makes the integrand scale as det(G)4 det(J)k+2,

which is the expected result. Furthermore, covariance implies thatM′
k,n should only

depend on round brackets and square brackets. The number of integrations we are

left with after integrating out the delta functions is (k + 2)(n− k − 4). We interpret

these integrals as contour integrals, or as a sum over multi-variable residues. We show

later that the residues of this integral are BCFW terms (or sums of them), provided

an appropriate choice of M′.

10.2.2 The measure

The main content of our proposed formula is the geometric factor M′
k,n(P ), which

we now describe.

For k = 0, the full measure is simply the cyclic measure, hence,

M′
0,n(P ) = 1 (10.35)

In the case n = 4, there is no contour, and the measure precisely gives the 4-point

MHV 1-loop integrand. For higher n, we have a (2n− 8)-dimensional form, and it is

a well known fact that residues of this form give BCFW terms, also known as Kermit

terms in [40].

Starting at k = 1, the geometric factorM′ is no longer trivial. To guess the form

of M′, we begin by analyzing the simplest case n = 5. Since there is no contour, we

expect the measure to give the exact integrand. Here we skip the details and just
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give the result, which is clean and simple.

M′
1,5 =

n∑
i=1

(X1 i i+1)

[X1][i][i+1]
(10.36)

Here X1 ∈ P2 is an arbitrary point. Readers familiar with polytopes in projective

space would immediately recognize M′ as the area of the pentagon whose vertices

are formed by the columns of the P matrix. We have checked analytically that this

measure precisely gives the 5-point 1-loop NMHV integrand.

We now make a curious and surprising observation. It is well known that this

integrand consists of three BCFW terms. Naively, we should expect there to exist

a measure whose residues give precisely those three terms. This intuition, however,

is incorrect. What we have learned from this measure is that the MHV case does

not require a contour. In fact, as we will see in a moment, this is true for higher k

as well, and is probably true to all loops. But this still does not explain where the

three BCFW terms come from. Let us go back to the observation of M′
1,5 as the

area of a pentagon, which can be written in multiple ways, depending on the choice

of triangulation. For instance, we can write

M′
1,5 = {3, 4, (23) ∩ (45)}+ {1, 2, (23) ∩ (15)}+ {5, (23) ∩ (15), (23) ∩ (45)}(10.37)

where {a1, a2, a3} denotes the signed area of the triangle whose vertices are the

columns a1, a2, a3 of the P matrix, and (a1a2)∩ (a3a4) the intersection of lines (a1a2)

and (a3a4). See Appendix A of [3] for precise definitions. (10.37) is simply a trian-

gulation of the measure, which we depict in the following picture.

(10.38)
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These three terms correspond to the three BCFW terms.

Even before moving on to more complicated cases, there is a great deal of physical

insight that can be learned from this measure. Let us write down the full integral

explicitly,

∫
d15P

(123)(234)(345)(451)(512)

5∑
i=1

(1 i i+1)

[1][i][i+1]
(10.39)

where we omitted writing the delta functions, and we have set X1 → 1. First, we

observe that all the poles of the integrand are manifest in the measure. For example,

the (123) factor corresponds to the pole 〈Y AB45〉, which is easy to see on the support

of the delta functions. In fact, it is generally the case that (a a+1 a+2) corresponds

to the pole 〈Y AB a+3 a+4〉, where the indices are mod 5 as usual. So all the poles

coming from propagators that lie inside the loop are manifest. Of course there are also

propagators that do not lie inside the loop. These are manifest in the square brackets.

Namely, the square bracket [a] corresponds to the pole 〈Y a+1 a+2 a+3 a+4〉. We

see that the pole structure of the amplitudes places very severe constraints on the

measure. In fact, one may have even guessed the measure purely from this insight.

Furthermore, in the limit where the external data Z is positive and the variables

Y AB live on the inside of Z, we see that the P matrix, which is uniquely constrained

by the delta functions, must be positive in the one-loop Grassmannian sense. Geomet-

rically, positivity of the P matrix means that the polygon is convex. This is a rather

neat observation, and is in fact connected to the pole structure of the integrand. For

instance, the pole (a a+1 a+2) → 0 simply corresponds to the vertices a, a+1, a+2

becoming collinear. Moreover, the pole [a]→ 0 corresponds to the vertex a going to

infinity. Hence, poles involving the loop correspond to a degenerating polygon while

poles not involving the loop correspond to a polygon whose area blows up to infinity.

266



We make one last observation. There are two classes of triangulations of the

pentagon discussed so far, which we will refer to as “spurious” and “non-spurious”

triangulations respectively. A spurious triangulation consists of triangles formed by

edges (possibly extended in either direction if needed) of the pentagon. These tri-

angles lie partially outside the pentagon. The BCFW representation shown above

is an example of a spurious triangulation. A non-spurious triangulation consists of

triangles formed by vertices of the pentagon. These triangles all lie inside the pen-

tagon and tile the pentagon perfectly. An example of a non-spurious triangulation is

(10.39). Non-spurious triangulations are also called “local” triangulations.

For higher n, the canonical form of the positive loop Grassmannian G≥0(1, n; 1) is

M′
1,n(P ) =

n∑
i=1

(X1 i i+1)

[X1][i][i+ 1]
(10.40)

For k = 2, the canonical form of G≥0(2, n; 1) is

M′
2,n(P ) =

n∑
i,j=1

∣∣∣∣∣∣∣
[i+1]1 [j+1]1

[i+1]2 [j+1]2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
(X1 i i+1 i+2) (X1 j j+1 j+2)

(X2 i i+1 i+2) (X2 j j+1 j+2)

∣∣∣∣∣∣∣
[X1 X2][i i+1][i+1 i+2][j j+1][j+1 j+2]

(10.41)

where X1, X2 are arbitrary 4-vectors, and the vertical bars denote taking the deter-

minant. We do not yet have a rigorous proof that this is the correct answer, but our

answer is supported by the fact that the measure gives the correct 1-loop integrand

for the n = 6 NNMHV case where there is no contour.

Finally, we present the canonical form of G≥0(k, n; 1).

M′
k,n(P ) =

n∑
i1,...,ik=1

detst[it+1, . . . , it+k−1]s detst(Xs it · · · it+k)

[X1, . . . , Xk]
∏k

p=1 [ip ip+1 · · · ip+k−1][ip+1 ip+2 · · · ip+k]
(10.42)
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where detst denotes the determinant of a matrix whose row and column indices are

s, t, respectively. The constants X1, . . . , Xk are arbitrary (k + 2)-vectors. We have

tested this measure numerically against the integrand in the MHV case up to k = 4.

10.2.3 Top cells and BCFW terms

We now address the problem of obtaining BCFW terms as residues of some measure.

Naively, one may be tempted to think that BCFW terms are simply residues of a

single measure, such as the canonical form of the positive one-loop Grassmannian.

However, this is obviously incorrect. Even for n = 5, the BCFW terms are given by

areas of triangles rather than the full area of the pentagon. In fact, we argue in this

section that these triangular pieces are nothing other than the canonical forms of top

cells, which we call top cell measures.

For each top cell Π ⊂ G≥0(1, n; 1), we let MΠ denote its canonical form. Recall

that there exists a triangle ∆ whose vertices X1, X2, X3 are given by (10.6), such that

the polygon is inscribed inside the triangle. Clearly, we can approach any boundary

of Π by going to the limit where one of the vertices of ∆ approaches infinity. Thus, it

is natural to expect that the measure MΠ should have simple poles at [Xi] → 0 for

i = 1, 2, 3. It follows that the geometric factor of the top cell measure is given by the

area of ∆:

M′
Π = {X1, X2, X3} (10.43)

We prove this in Section 10.2.5.

For n = 5, we find that the canonical form of the one-loop Grassmannian is the

sum of three top cell measures.

M1,5 =MΠ{2,3,4} +MΠ{1,2,5} +MΠ{2,4,5} (10.44)
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The three measures match term-by-term with the triangle areas in (10.37), and hence

also with the BCFW terms. In Section 10.2.4, we show that these three top cells form

a triangulation of the one-loop Grassmannian.

We therefore make the conjecture that each BCFW term for k = 1 and any n is

given as some multi-dimensional residue of a top cell measure. Both the top cell and

residue can be identified using a series of simple steps that we now illustrate.

Consider again the FL-2 term for the 6 point NMHV 1-loop integrand. Recall

from Section 10.1.5 that the top cell ΠFL-2 of this term is given by a codimension-

3 boundary of Π2,4,6 by taking (234), (456), [(16) ∩ (24)] → 0. It follows that the

canonical form MFL-2 of the FL-2 cell must be obtained from the top cell measure

MΠ{2,4,6} by taking three residues given by the three zero conditions. Hence, the FL-2

term is given by

FL-2Y space =

∫
Res

(234)→0
(456)→0

[(16)∩(24)]→0

d18P∏6
i=1(a, a+1, a+2)

M′
Π{2,4,6}

δ15(Y − P.Z) (10.45)

In practice, the residue can be computed by using the following change of variables.

P3 = α1P2 + α2P4 + z1P1 (10.46)

P5 = α3P4 + α4P6 + z2P1 (10.47)

[(16) ∩ (24)] = z3 (10.48)

Then take residues where z1, z2, z3 → 0, which gives the following.

FL-2Y space =

∫
d4αd3P1d

3P2d
3P4d

3P6

α1α2α3α4(124)(246)(612)[4][6]
δ

(
[1]− [6]

(124)

(246)

)
δ15(Y − P.Z)

(10.49)
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The remaining part of the integral is straightforward since there are precisely enough

delta functions to localize the integrals.

We should note that the top cell from which the FL-2 cell is obtained is not unique.

For each term in Appendix A of [3], we indicate only one possible top cell. In fact, for

some BCFW terms, it is possible to obtain the cell for the term as a codimension-3

boundary of the full one-loop positive Grassmannian. In such casees, it is canonical

to use the full polygon area as the geometric factor.

10.2.4 Triangulation of the one-loop Grassmannian with top

cells

We argue that G≥0(1, n; 1) can be triangulated as a union of the top cells ΠS. More

precisely, let Cn be a convex n-gon that is different from the n-gon (P1, P2, . . . , Pn).

Furthermore, suppose we are given a triangulation G = {S1, S2, . . . , Sn−2} of Cn,

where each Si is a triangle of Cn and thus a three-element subset of {1, 2, . . . , n}.

Then we claim that T = {ΠS1 , . . . ,ΠSn−2} is a collection of top cells of G≥0(1, n; 1)

that triangulate G≥0(1, n; 1).

A detailed proof for all n is given in Section 4.4 of [3]. Here we simply demon-

strate an example. In particular, for n = 5 and G = {125, 234, 245}, we claim

that the one loop Grassmannian G≥0(1, n; 1) is triangulated by the top cells T =

{Π{1,2,5},Π{2,3,4},Π{2,4,5}}. Recall that

• The cell Π{1,2,5} is given by the condition that [2, 3; 5, 1] is positive.

• The cell Π{2,3,4} is given by the condition that [4, 5; 2, 3] is positive.

• The cell Π{2,4,5} is given by the conditions that [2, 3; 4, 5] and [5, 1; 2, 3] are

positive.

Given a nondegenerate convex pentagon, [2, 3; 5, 1] is either positive or negative. Sim-

ilarly, [4, 5; 2, 3] is either positive or negative. It follows that every nondegenerate con-
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vex pentagon belongs to exactly one of Π{1,2,5},Π{2,3,4},Π{2,4,5}, so T is a triangulation

of G≥0(1, n; 1), as claimed.

10.2.5 Geometric factor

We prove (10.43) that

MΠ =
d3nP/vol GL(1; 1)∏n
i=1(i, i+ 1, i+ 2)

{X1, X2, X3} (10.50)

is the canonical form of the top cell Π. In the following, we do not worry about global

signs.

The proof is by induction on n, where the base case is n = 3. In this case, there

is only one top cell Π = Π{1,2,3}, and we can gauge fix P to be

P =


1 0 0

0 1 0

βα α 1

 (10.51)

where (α, β) are the positive coordinates. Thus the LHS of (10.50) is equal

to (1/αβ)dαdβ. The geometric factor {X1, X2, X3} is equal to 1/α2β and

d(k+2)nP/vol GL(1; 1) = dαd(βα) = αdαdβ. Since all the cyclic minors are equal to

1, (10.50) holds in this case.

Now suppose (10.50) holds for some value of n. After cyclically relabelling the

n+ 1 vertices, any top cell Π′ for G≥0(1, n+ 1; 1) can be obtained from some top cell

Π for G≥0(1, n; 1) in the following way:

1. Start with the space of n-gons (P1, P2, . . . , Pn) for Π.

2. Perform the shift (n→ n+ 1), placing Pn+1 on top of Pn.

3. Perform the shift (n+ 1→ 1), moving Pn+1 towards P1.
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4. Perform the shift (n→ n− 1) moving Pn towards Pn−1.

Note that each of the shifts (2),(3),(4) increases the dimension of the cell by one

(so dim Π′ = dim Π + 3), and introduces a new positive coordinate denoted α, β, γ

respectively. If P is the original matrix for Π with columns P1, P2, . . . , Pn, then the

new matrix is

P ′ = (P1, P2, . . . , Pn−1, Pn + γPn−1, αPn + βP1).

It is not difficult to check that

d3(n+1)P ′/vol GL(1; 1) = ±d3nPα(n− 1, n, 1)dαdβdγ/vol GL(1; 1)

where (n− 1, n, 1) denotes a minor of P . But we also have

(n− 2, n− 1, n)′ = (n− 2, n− 1, n)

(n− 1, n, n+ 1)′ = β(n− 1, n, 1)

(n, n+ 1, 1)′ = αγ(n− 1, n, 1)

(n+ 1, 1, 2)′ = α(n, 1, 2).

So

d3nP/vol GL(1; 1)∏n+1
i=1 (i, i+ 1, i+ 2)′

=
α

α2βγ

d3nP/vol GL(1; 1)∏n
i=1(i, i+ 1, i+ 2)

dαdβdγ =
1

{X1, X2, X3}
MΠ′

since MΠ′ = MΠ
dαdβdγ
αβγ

. Now as triangles in P2, the triangle ∆ for Π and ∆′ for

Π′ are identical. So {X1, X2, X3} = {X ′1, X ′2, X ′3}. Thus we have 1
{X1,X2,X3}MΠ′ =

1
{X′1,X′2,X′3}

MΠ′ , completing the proof of (10.50).
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Chapter 11

Conclusion

We have introduced positive geometries and canonical forms as a new mathematical

framework for studying scattering amplitudes. In Section 2.1, we described posi-

tive geometry as a pair (X,X≥0) consisting of a complex projective variety X and

a non-negative part X≥0 which generically has boundaries of all codimensions. As-

sociated with every positive geometry is a unique meromorphic top form called its

canonical form whose singularities are controlled by the boundaries of the geometry.

We then gave a series of examples, including generalized simplices and generalized

polytopes. Subsequently, in Section 3, we discussed various techniques for computing

canonical forms, including direct construction from poles and zeroes, triangulations,

pushforwards, and various integral representations.

In Section 4, we introduced the associahedron as a positive geometry in kinematic

space for color-ordered scattering amplitudes, thus providing our first physical exam-

ple. We showed that there exists an infinite family of associahedra whose canonical

form gives the color-ordered tree amplitudes of the bi-adjoint cubic scalar theory. Our

formalism provides an independent construction of these amplitudes without reference

to any of the traditional machinery of quantum field theory, canonical quantization,

or path integrals which rely heavily on the principles of locality and unitarity. On
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the contrary, we presented a novel point of view: locality and unitary are emergent

properties of the positive geometry (see for instance Section 4.3). This is a recurrent

theme throughout the remainder of this text. We then discussed the worldsheet as

a positive geometry, and showed that its canonical form is the famous Parke-Taylor

form. Most importantly, we argued that the worldsheet associahedron is directly re-

lated to the kinematic associahedron via a diffeomorphism—the scattering equations.

This observation, combined with the machinery of positive geometries, provides a

complete and independent explanation for the CHY formula for the bi-adjoint scalar.

Finally, in Section 6, we discussed the color-kinematics duality from the point of view

of positive geometries, and presented a general duality between colored amplitudes

and differential forms on kinematic space called scattering forms. Moreover, we found

that various properties of the amplitudes like kinematic Jacobi relations, trace de-

composition and BCJ relations can all be understood as geometric properties of the

form. In essence, this provides a generalization of our work on the associahedron to a

larger class of theories that includes Yang-Mills and Non-linear Sigma Model at tree

level.

Beginning in Section 7, we provided a construction of the amplituhedron as a

positive geometry, for which the Grassmannian is the fundamental building block.

As first discussed in [17], the canonical form of the amplituhdron determines the

scattering amplitudes of planar N = 4 super Yang-Mills to all loops, although the

language of “canonical forms” was not introduced until [2]. A precise prescription for

mapping the canonical form to the scattering amplitude is provided in Section 8.2,

which involves a novel procedure for “bosonizing” supersymmetry also discussed for

the first time in [17]. Moreover, we demonstrate the striking fact that BCFW re-

cursion is simply a triangulation of the amplituhedron. In Section 9, we provided a

diagrammatic procedure for computing any BCFW term, with many examples. In

Section 10, we focused on the geometry of the one-loop case.
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There are many obvious unanswered questions and open avenues of investigation

suggested by our results. For instance: Is there a complete geometrization of scat-

tering forms for YM and the NLSM that brings the polarization vectors into the

geometry? This question is of course also relevant to the search for geometries con-

nected to gravity amplitudes. While we do not have any natural scattering forms

due to the absence of color, the amplitudes can be obtained using the double-copy

construction a la BCJ [14, 15]. More precisely, for a double copy of the form L ⊗ R

between theories L and R, the amplitude for the product theory can be obtained

directly from either Ω
(n−3)
L for the L theory or Ω

(n−3)
R for the R theory by replacing

the wedge products W (g) with appropriate kinematic numerators:

ML⊗R
n =

∑
cubic g

NL(g) NR(g)∏
I∈g sI

= Ω
(n−3)
L |W (g)→NR(g) = Ω

(n−3)
R |W (g)→NL(g) , (11.1)

For example, we obtain gravity from the product YM ⊗ YM, Born-Infeld theory from

the product YM ⊗ NLSM and the so-called special Galileon theory from NLSM ⊗

NLSM [60]. Along this line, it is very tempting to connect our worldsheet picture

for the open string to the ambitwistor string [64, 65, 66, 67], and related world-

sheet methods using scattering equations [68, 69] which are exclusively for the closed

string. Furthermore, could we understand the double-copy construction, and pos-

sible geometries for gravity amplitudes in a way similar to the Kawai-Lewellen-Tye

relations connecting open- and closed-string amplitudes [70] (See [71, 72] for related

ideas)?

Let us end with a few suggestions for immediate avenues of progress which are

more continuously connected to the themes introduced in this paper.

General d log projective forms: permutohedra and beyond Recall that a

scattering form (11.2) is called d log scattering form if it is projective and every

kinematic numerator is either 0 or ±1. A classification of all such forms is then
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equivalent to solving the Jacobi relations (6.18) provided N(g|αg) ∈ {0,±1}.

Ω
(n−3)
d log (S) =

∑
cubic g

N(g) Ω(n−3)(g)(S) (11.2)

While we do not have a complete classification, we can discuss some general prop-

erties. To every d log scattering form, we assign a connected graph Υ consisting of a

vertex for every cubic graph g whose numerator N(g) is non-zero, with a line between

any two vertices related by mutation. Furthermore, projectivity is satisfied precisely

if every vertex is adjacent to exactly (n−3) lines (i.e. the graph is “simple”), and a

sign flip occurs between any two vertices related by mutation. In particular, walking

along any closed path in the graph Υ should return us back to the same sign. Note

that this does not imply that the path must be of even length, since the sign at

the initial vertex depends on its propagators which may have been reordered by the

sequence of mutations.

The simplest example of of d log scattering forms is of course the planar scattering

form Ω
(n−3)

φ3 [α] whose connected graph Υ is given by the skeleton of the α-ordered

associahedron, also known as the Tamari lattice [73]. In fact, for every n, the Tamari

lattice provides the smallest number of vertices possible. However, the Tamari lattice

is only the beginning of a large class of examples. For n=4, there is only one possible

topology for the graph (i.e. a line segment). For n=5, we have seen possible topologies

are pentagon, hexagon, octagon and nonagon.

For all n, a large class of possible connected graphs are given by the skeleton of

the “Cayley polytopes” discussed in [74] whose d log scattering forms were obtained

by pushing forward Cayley functions (expressed as a form on moduli space) via the

scattering equations. The Cayley polytopes are polytopes constructed directly in

kinematic space, of which the kinematic associahedron is one example. Furthermore,
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much of our associahedron discussion generalizes word-for-word to the Cayley poly-

topes, a summary of which is provided below.

• The Cayley polytope (whose skeleton is the connected graph Υ) is constructed

directly in kinematic space Kn by intersecting a (n−3)-dimensional subspace

with the positive region defined by setting sI ≥ 0 for every propagator appearing

in the cubic graphs.

• The pullback of the d log scattering form to the subspace gives the canonical

form of the Cayley polytope.

• The scattering form can be obtained as the pushforward of a form on moduli

space M0,n.

Here we present the construction for one example: permutohedron Pn [75], which

is the Cayley polytope with largest number of vertices for any n, where each of the

(n−2)! vertices corresponding to a multi-peripheral cubic graph with respect to 1 and

n as shown in Figure 6.4.

We begin by defining the top-dimensional “positive region” where all possible

poles of the multi-peripheral graphs are positive:

s1a1···am for m = 1, . . . , n−3 and 2 ≤ a1 < · · · < am ≤ n−1 (11.3)

where every cut corresponds one of the (2n−2−2) facets of the permutohedron. Fur-

thermore, the subspace is given by the following (n−2)(n−3)/2 conditions:

sij is a negative constant for 2 ≤ i < j ≤ n−1 , (11.4)

which are the analog of non-adjacent constants for the associahedron case. One can

prove that the intersection of the positive region with the subspace gives the permu-

tohedron by showing geometric factorization on all possible boundaries. Note that
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Figure 11.1: Permutohedra for n=5 (left) and n=6 (right)

Pn=4 is a line segment; and Pn=5 is a hexagon while Pn=6 is a truncated octahedron,

as shown in Figure (11.1).

Similar to that for associahedron, the (projective) scattering form for Pn is given

by

Ω
(n−3)
Pn =

∑
π∈Sn−2

sgn(π)
n−2∧
a=2

d log s1π(2)···π(a) (11.5)
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where sgn(π) is the signum of permutation π. Furthermore, the pullback of the

scattering form to the subspace (denoted Qn) gives the canonical form of the permu-

tohedron:

Ω
(n−3)
Pn |Qn =

 ∑
π∈Sn−2

1∏n−2
a=1 s1π(2)···π(a)

 dn−3s (11.6)

Finally, the scattering form can be obtained as a pushforward of the following form

on moduli space:

ωPn :=
∑

π∈Sn−2

sgn(π)ωWS
n (π) (11.7)

as suggested by (6.65).

The discussion provided above can be generalized to all Cayley polytpes studied

in [74]. which belong in the much larger class of generalized permutohedra studied

by Postnikov [76, 77]. In on-going discussions with Postnikov we have learned that

our construction for these polytopes are equivalent to his under a natural change of

variables. It is likely that a corresponding d log scattering form exists for generalized

permutohedra. Moreover, for recent studies of worldsheet forms that are relevant to

our construction, see [78, 79].

Massive scalar amplitudes, non-logarithmic forms While we have ostensibly

focused on amplitudes for massless particles, for the bi-adjoint φ3 theory in particular

it is clear that there is no obstruction to dealing with the scattering of massive par-

ticles. One interesting point about doing this is the following: we know that we can

generate e.g. φ4 couplings from a cubic theory once massive particles are integrated

out. Now, suppose we started with a φ4 theory; there are already small subtleties on

how to geometrize the scattering form in this case related to the fact that the form

simply does not have logarithmic singularities, and have singularities at infinity. The
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addiction to “forms with logarithmic singularities” is perhaps the central obstacle to

seeing connections to positive geometries. But if we generate the quartic coupling

by integrating out massive scalars in a cubic theory, the full theory does have loga-

rithmic singularities, and so we can “sneak up” on the hard problem of dealing with

non-logarithmic singularities by regulating them as logarithmic ones which are then

sent to infinity. Furthermore, the scattering forms for the NLSM have non-trivial

residues on all the poles as well as poles at infinity; it would again be fascinating to

find a purely geometrical characterization of these residues.

Loops Furthermore, we can immediately start to explore scattering forms and pos-

sible positive geometries associated with the loop integrand for e.g. the bi-adjoint

scalar theory. We can attempt to mimic the steps needed to “upgrade” the ampli-

tude to a differential form at loop level. An early and obvious source of annoyance is

what to do about bubble topologies, since naively including them would give double

and higher poles, thus ruining the logarithmic singularities of the form. It is perhaps

reasonable to then sum over all diagrams excluding these bubbles. At four points and

one loop, this leaves us with a sum over five d log forms. Can these forms be made

to be projective, and is there a positive geometry in the extended kinematic space of

loop and Mandelstam variables attached to the loop scattering forms?

Going beyond the bi-adjoint scalar case, one can consider scattering forms for loop

integrands in gauge theories and more general theories with color. In particular, it

should be straightforward to write down forms for one-loop maximally supersymmet-

ric Yang-Mills amplitudes in general dimensions, since there is no contribution from

bubbles. Similarly we expect these forms for loop integrands to have a worldsheet

origin that may be related to scattering equations and ambitwistor strings at loop

level [65, 80, 81, 82, 83, 84, 85, 86, 87, 88].
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Scattering forms, amplituhedron and twistor strings in four dimensions

We have now seen two notions of scattering forms. In the story of the amplituhe-

dron the forms play the role of combining different helicity amplitudes (as does the

super-amplitude) into a single object, while in this paper the differential forms are

tied to the geometrization of color. How are these pictures related to each other?

There must be a connection, not only for moral reasons, but for more pragmatic and

technical ones. We know that the scattering equations and the CHY formula for

gluon amplitudes transition smoothly in four-dimensional spacetime to the Roiban-

Spradlin-Volovich (RSV) equations and the twistor-string formulas for N = 4 SYM

scattering amplitudes [89]. The latter is deeply connected to the geometry of the pos-

itive Grassmannian and the amplituhedron, while we have exposed the connection

of the former to the worldsheet associahedron. Making progress on these particular

questions will undoubtedly need some conceptually new ideas.

On the other hand, first steps have been taken in identifying scattering forms

for (tree-level) super-amplitudes in N = 4 SYM and the “amplituhedron” in ordi-

nary, four-dimensional momentum space; these are (2n−4)-forms Ω
(2n−4)
n encoding

all helicity amplitudes in the space of {λa, λ̃a | a = 1, 2, · · · , n} subject to momen-

tum conservation, and the (2n−4)-dimensional “amplituhedron” lives in a “positive

region” in the space with correct “winding numbers” [90, 49]. In close analogy with

our associahedron story, there is strong evidence that the four-dimensional scattering

equations (RSV) provide a diffeomorphism from G>0(2, n) (the twistor-string world-

sheet) to the “amplituhedron” in momentum space; its canonical form, or the pullback

of Ω
(2n−4)
n to the subspace where it lives, is then given by the pushforward of the cyclic

form of G>0(2, n) [90, 49]. We leave the study of these exciting questions for future

investigations.
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Extended positive geometries for gluons and pions? It is clear that the gluon

and pion scattering forms are fundamental objects, with a canonical purpose in life

directly in kinematic space as well as on the worldsheet. What we are still missing

is the complete connection of these scattering forms with positive geometries. The

obstacle is the most obvious one: while the forms are dictated by god-given properties

of gauge-invariance/Adler zero and projective invariance, they are not canonical forms

which must have not only logarithmic singularities but also unit leading residues. This

may be taken as an invitation to e.g. further “geometrize” the polarization vectors—

something we have already seen as a critical part of the amplituhedron story in four

dimensions—or there may be other ways to more naturally tie the “prefactors” in both

YM and the NLSM to the underlying (associahedron) geometry universally associated

with the poles of (planar) cubic graphs.
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