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Abstract

The search for a theory of the S-Matrix has revealed unprecedented structures under-
lying amplitudes. In this text, we present a new framework for understanding a class
of amplitudes that includes Yang-Mills, Non-linear Sigma Model, the bi-adjoint cubic
scalar, planar N/ = 4 super Yang-Mills, and more. We introduce positive geometries,
which are generalizations of convex polytopes to geometries with higher order (i.e.
non-linear) boundaries. Our construction provides a unique differential form called
the canonical form of the positive geometry, whose pole structure is completely con-
trolled by the geometric boundaries. The central claim of this text is that positive
geometries play a fundamental role in our class of scattering amplitudes, whereby the
corresponding canonical form determines a physical quantity. Our primary examples
are (1) the bi-adjoint cubic scalar for which the positive geometry is the famous as-
sociahedron polytope whose canonical form gives the color-ordered tree amplitude,
and (2) planar A = 4 super Yang-Mills for which the positive geometry is the ampli-
tuhedron whose canonical form gives the scattering integrand. One recurrent theme
in our text is that physical properties of amplitudes like local poles and factorization
are direct consequences of the boundary structure. We are therefore led to the point
of view that locality and unitarity are emergent properties of the positive geometry.
Furthermore, we discuss unexpected connections between positive geometry and on-
shell diagrams, BCFW recursion, scattering equations, color-kinematics duality and

the open string.
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Chapter 1

Introduction

In recent years, we have witnessed tremendous progress in the theory of scattering
amplitudes, including Witten’s twistor string [5], on-shell recursion relations [0} [7],
hidden symmetries such as dual conformal symmetry [8], unprecedented simplifica-
tions (e.g. see [9] for a loop level example), scattering equations of Cachazo, He and
Yuan [10, 11, 12 3], BCJ duality [14, 15], Grassmannian geometry [16] and the
amplituhedron [17].

In this text, we present a new point of view for studying a class of scattering
amplitudes that includes Yang-Mills, Non-linear Sigma Model, a colored cubic scalar
theory called the bi-adjoint scalar [13], planar N' = 4 super Yang-Mills, and more. We
begin by introducing the concept of a positive geometry [2], which is a generalization
of convex polytopes to geometries with higher order (i.e. non-linear) boundaries. Our
construction requires the existence and uniqueness of a top form called the canonical
form of the geometry, whose singularities are controlled by the boundary structure of
the underlying geometry. Specifically, the form has logarithmic singularities on the
boundaries of the geometry in a precise sense as described in Section The crucial
observation is that positive geometries appear in physics. For physically relevant

positive geometries, the canonical form is a physical quantity, which we summarize



schematically as follows.

positive geometry —  canonical form —  physical quantity

Positive geometries have two important properties. Firstly, they can be triangulated;
that is, provided a subdivision of a positive geometry into many non-overlapping
pieces, the canonical form of the geometry is the sum of the canonical form of every
piece. An extension to the case of over-lapping pieces also exists, provided the the
orientation of the pieces is taken into account. In practice this simplifies the computa-
tion of canonical forms, since a complicated geometry can be subdivided into simpler
ones whose canonical forms are already known. Secondly, canonical forms are related
via diffeomorphisms. That is, given a diffeomorphic map from one positive geometry
to another, pushing the canonical form of the former gives the canonical form of the
latter. This is a rather subtle observation which very non-trivial consequences. We
also discuss an interesting connection between positivity of the form and convexity of
the geometry, which may be related to positivity of amplitudes as described in [I§].
The simplest non-trivial example is the associahedron, a famous polytope discov-
ered by mathematicians in the 1960’s [19, 20, 21] from a combinatorial point of view,
which we find to be intimately related to the scattering of color-ordered particles—a
connection that is most clearly illuminated from the point of view of positive geome-
tries. More specifically, for each cyclic ordering of n external particles, there exists
an infinite family of (n—3)-dimensional associahedra foliating the interior of on-shell
kinematic space—the space spanned by all Mandelstam invariants. The boundaries
of every associahedron correspond in a one-to-one fashion to all the physical poles of
the relevant ordering; that is, going to a boundary of an associahedron corresponds to
taking a virtual particle on shell. We find a striking fact: the canonical form of every

associahedron is the tree level scattering amplitude for the bi-adjoint cubic scalar



theory.

kinematic associahedron —  canonical form —  tree amplitude of bi-adjoint scalar

Furthermore, we find that universal properties of amplitudes like locality and uni-
tarity (and hence factorization of the amplitude) follow directly from the geometric
construction. In brief, this is due to the observation that every boundary of the asso-
ciahedron is a direct product of two lower-dimensional associahedron, in completely
parallel to the fact that the amplitude factors into a product of two lower point ampli-
tudes on each cut. We take the point of view that the positive geometry is the most
basic element of our construction. From this point of view, locality and unitarity
are emergent properties of the positive geometry—a theme to which we return many
times throughout this text. In particular, we find that positivity plays a crucial role,
since the boundary structure of the geometry is controlled by positivity conditions.
Another novel aspect of our story is the construction of scattering amplitudes as dif-
ferential forms of kinematic space, in a sense described in Section [6.2] While these
forms appear naturally as canonical forms of the underlying positive geometry, they
also have many other purposes in life—they encode information about color/flavor
(see Section [f]) and in some cases even helicities (see Section 10 of [22]). Finally, we
compute these scattering amplitudes in multiple ways by exploiting different ways
of triangulating the assocahedron. In particular, we find the striking fact that the
Feynman diagram expansion is just one of many triangulations of the associahedron.
Moreover, by following our geometric intuition, we identify triangulations that give
even simpler expressions for the amplitude.

Our second example of positive geometry is the moduli space of the open string
worldsheet. It is well-known that the Deligne-Mumford-Knutson compactification of

the moduli space [23] 24] is an associahedron. We find that the worldsheet associa-



hedron can be naturally understood as a positive geometry whose canonical form is
precisely the famous Parke-Taylor form, whose Koba-Nielsen-regulated integral gives
the open string tree amplitude. Furthermore, we discover that the scattering equa-
tions can also be interpreted from the geometric point of view—in fact, they provide
a diffeomorphic map from the worldsheet associahedron to the kinematic associahe-
dron. It follows therefore that the scattering equations must “push” the Parke-Taylor
form to the canonical form of the kinematic associahedron, thus leading to the CHY

formula for the bi-adjoint scalar tree amplitude.

worldsheet associahedron —  canonical form —  Parke-Taylor form

In our attempt to generalize the associahedron to a broader class of theories, we
find a unexpected connection between color/flavor and kinematics, which involves
a number of observations. First we find a direct connection between color-ordered
amplitudes and differential forms on kinematic space called scattering forms, which
serve as generalizations of the canonical form for the associahedron. This relies on
a peculiar observation: the differential forms satisfy “Jacobi relations” analogous to
the Jacobi relations satisfied by the structure constants. Furthermore, we find that
many aspects off the well-known BCJ duality such as kinematic Jacobi relations and
BCJ relations are consequences of a simple property of the scattering form—Ilocal
GL(1) invariance, i.e. projectivity. This suggests a close connection between positive
geometries and color-kinematics duality. Finally, we establish the scattering forms
for Yang-Mills and Non-linear Sigma Model and discuss their properties, such as
uniqueness (see [25] for an independent discussion on uniqueness of the amplitudes)
and relation to the worldsheet.

Our third example of positive geometry is the amplituhedron, first proposed in [17]

as an independent, geometric formulation of planar N/ = 4 super Yang-Mills. A follow-



up was given in [26] which provided detailed computations, and a more intrinsic
“winding number” description was givne later in [22]. We make this construction
more precise from the viewpoint of positive geometries. We argue that the n-particle
N*MHV planar L-loop integrand (for L = 0 the “integrand” is the amplitude) is
determined by the canonical form of the amplituhedron A(k,n; L) which is indexed
by the same quantum numbers. While the canonical form is a purely “bosonic”
quantity, the required super-amplitude is obtained by a straightforward prescription

that involves integrating out auxiliary Grassmann variables as described in [17] and

Section [R.2

amplituhedron —  canonical form —  planar integrand of N'= 4 sYM

In parallel with our discussion for the associahedron, locality and unitarity emerge as
properties of the underlying geometry, with positivity playing the central role. We find
that every codimension-1 boundary corresponds to a physical pole of the amplitude,
and is given by a product of two lower dimensional amplituhedra, thus providing a
geometric origin for the factorization property of the planar integrand. Furthermore,
we computations of the canonical form by triangulations of the amplituhedron; and
we present the striking fact that the famous BCFW expansion [0, 27, 28] provides
just one class of infinitely many possible triangulations for the amplituhedron. The
geometric point of view is very satisfying, because it provides a geometric under-
standing for the highly non-trivial algebraic identities that equate all possible BCFW
representations of the same integrand; that is every BCFW representation provides
a different triangulation of the same underlying positive geometry.

Moving ahead, we present a novel recursive diagrammatic procedure for computing
any BCFW term, called momentum twistor diagrams. We find that for each BCFW

term, there is a “cell” of the amplituhedron called a “BCFW cell”. We discover the



satisfying fact that the canonical form of the BCFW cell determines the corresponding
BCFW term. Furthermore, given a BCFW expansion for a particular integrand, we
find that the corresponding BCFW cells form a triangulation of the amplituhedron.
It follows therefore that the sum of the BCFW terms gives the canonical form of the
amplituhedron, exactly as anticipated. This geometric understanding explains the
cancellation of spurious poles, which correspond to spurious boundaries appearing in
the triangulation. Since the canonical form for the amplituhedron is independent of
triangulation, these spurious poles must cancel. The cancellation of spurious poles

was an important insight first described in [29].

BCFW cell — canonical form — BCFW term

These diagrams make manifest a connection between BCFW recursion and the pos-
itive Grassmannian [30], as discussed in [I6] and explored further in [4]. Finally, we
demonstrate techniques for computing these diagrams, and provide detailed examples
up to two loops. We also devote an entire section to a detailed exploration of the
one-loop amplituhedron and its associated diagrams.

We provide a precise definition of positive geometries and canonical forms in Sec-
tion [2.1] Subsequently, we discuss triangulations and maps between positive geome-
tries. Furthermore, we separate positive geometries into two classes: generalized
simplices and generalized polytopes, for which we provide many examples. In Sec-
tion |3| we discuss systematic methods for computing canonical forms, including direct
construction from poles and zeros, triangulations, pushforwards and integrals over
dual or related geometries. The associahedron is introduced in Section [4 which in-
cludes a detailed construction of the polytope in kinematic space, and its canonical
form as a scattering amplitude. We emphasize the emergence of locality and unitarity

in Section [4.3] The worldsheet and its relation to the kinematic associahedron and



scattering equations are discussed in Section [5, and the geometric properties of color
and kinematics are discussed in Section [6] Finally, the amplituhedron is constructed
in Section [7], and the connection to planar N' = 4 super Yang-Mills is delineated in
Section [8] Momentum twistor diagrams are described in Section [9] We also provide

a detailed analysis of the one-loop amplituhedron in Section {10}



Chapter 2

Positive geometries

We introduce positive geometries, which form the mathematical foundations on which
the remainder of our discussion is built. Naively, a positive geometry is simply a geom-
etry with boundaries of all codimensions. Positive geometries with linear boundaries
are polytopes, while more generally higher order boundaries are also permitted. For
every positive geometry, there exists a unique meromorphic top form called its canon-
ical form, whose residues reflect the boundary structure. In particular, it is uniquely
constrained by the property of having logarithmic singularities on the boundaries of
the geometry and unit leading singularities, and a few other assumptions. The canon-
ical form provides the connection between positive geometries and physics. We find
that for physically relevant positive geometries such as the amplituhedron (Section ,
the associahedron (Section {4)) and many others discussed throughout this text, the
canonical form determines scattering amplitudes and other related physical quanti-
ties. In particular, the canonical form of the amplituhedron determines scattering
amplitudes in planar N = 4 super Yang-Mills to all loops, while the canonical form
of the associahedron determines scattering amplitudes in a cubic scalar theory called

the bi-adjoint ¢* theory at tree level.



We begin in Section by discussing general properties of positive geometries
and define their canonical forms. In Section [2.2] we discuss triangulation of positive
geometries, which can be thought of as a generalization of polytopal subdivision to
more general geometries. We then discuss, in Section [2.3] how canonical forms of
different geometries are related through diffeomorphisms by a powerful tool called
the pushforward. Finally, in Sections and Section [2.5 we provide an extensive list

of examples.

2.1 Positive geometries and their canonical forms

We begin with a precise definition of positive geometries and their canonical forms.
Let PV denote the N-dimensional complex projective space with the standard pro-
jection CNT1\ {0} — PN, We also let PV (R) denote the image of the real part. We
define a D-dimensional positive geometry to be a pair (X, X>) with the following

properties.

1. The space X C PV has complex dimension D, and is cut out by finitely many
homogeneous polynomials with real coefficients. We denote by X (R) the real

part of X, which is the solution set in PY(R) of the same set of equations.

2. The space X5( is nonempty with real dimension D, and is a union of closed
subsets of X(R), each of which is cut out by finitely many real polynomial
inequalities. To make sense of inequalities in projective space, we first find

solutions in RY™1\ {0}, and then take its image in PV (R).

We assume that the complex dimension of X matches the real dimension of X (R),
which we henceforth refer to as the dimension of the positive geometry. Additional
technical assumptions are explained in Appendix A of [2], where the important notion

of boundary components is explained. Furthermore, we assume that for every pos-



itive geometry (X, X>o), there exists a unique nonzero rational D-form (X, X>¢)

satisfying the following properties.

e For D = 0: X is a single point and we must have X>o = X. We define the

0-form Q(X, X5¢) on X to be +1 depending on the orientation of X>.
e For D > 0: we have

(P1) Every boundary component (C, Csg) of (X, X>¢) is a positive geometry of

dimension D—1.

(P2) The form satisfies RescQ(X, X>¢) = Q(C, C5y) along every boundary com-

ponent C'; with no singularities elsewhere.

In particular, all leading residues of (X, X>o) must be unity £1. We refer to
X as the embedding space. The form Q(X, Xsg) is called the canonical form of
the positive geometry. For convenience, we usually write X5, to denote a positive
geometry (X, X>¢), and write (X>¢) for the associated canonical form. We point
out however that the space X usually contains infinitely many positive geometries,
hence the notation X can be misleading. Nevertheless, the correct interpretation
should always be clear based on context. In some instances, we wish to focus on the
interior X-o of X>, in which case X is called the nonnegative part and X, the
positive part. We also refer to the codimension d boundary components of a positive
geometry (X, X>¢), which are obtained by taking successive boundary components d
times. We stress that the existence of the canonical form is very non-trivial, and the
most general conditions under which they exist are still unclear. Nonetheless, in the
sections that follow, we give many non-trivial examples of positive geometries and
develop methods for computing their canonical forms.

For technical purposes, we often also work with a generalization of positive geome-

tries. We define a D-dimensional pseudo-positive geometry to be a pair (X, X>¢) of

10



the same kind as a positive geometry, but the non-negative part X, may be empty.

Furthermore, we modify the axioms as follows:

e For D =0: X is a point. If X5 = X, then we define the 0-form Q(X, X>¢) on
X to be £1 depending on the orientation of Xsq. However, if X5o = (), then
we set Q(X, X>o) = 0.

e For D > 0: if X5 is empty, we set (X, X5¢) = 0. Otherwise, we require:

(P1*) Every boundary component (C,Cs) of (X, X>g) is a pseudo-positive ge-

ometry of dimension D—1.

(P2*) There exists a unique rational D-form Q(X, X>o) on X satisfying the
residue relation RescQ(X, X>o) = Q(C, Csg) along every boundary com-

ponent C' with no singularities elsewhere.

While we use the same notation for X, X, {2 as in the case of positive geometries,
the important differences are that we allow the geometry X to be empty, and we
allow the form to vanish identically. Note, however, that there are pseudo-positive
geometries with (X, X>o) # 0 that are not positive geometries; for instance, the
disjoint union of a positive geometry and a pseudo-positive geometry. It is also
possible for a non-empty geometry to have an identically vanishing form, such as a
disk.

We describe some simple ways to obtain new positive geometries from old ones.
Our discussion in this section applies equally well to pseudo-positive geometries. First,
if (X, X>) is a positive geometry, then so is (X, XJ), where X3, denotes the same
space X>( with reversed orientation. Moreover, its boundary components C; also
acquire the reversed orientation, and the canonical form acquires a sign Q(X, X5¢) =
—Q(X, XZ,). Second, suppose (X, X)) and (X, X2,) are positive geometries, and
suppose that they are disjoint: X1, N X%, = 0. Then the disjoint union (X, X1, U

X%O) is itself a positive geometry, and the canonical form is obtained by addition
11



QXLUXE)) = QX)) +Q(X2,). Third, suppose (X, X>¢) and (Y, Y>) are positive
geometries. Then the direct product (Z, Z>g) := (X XY, X5¢ X Y>0) is again a positive
geometry. The boundary components of (Z, Z>() are of the form (C' x Y, C5q X Y>¢)
or (X x D, X>q X Dsg), where (C,Cs¢) and (D, D>() are boundary components of
(X, X>0) and (Y,Y>q), respectively. The canonical form for the direct product is

given by the wedge product of the canonical forms.

UZ, Z>0) = QX, X>0) A QY, Y>0) (2.1)

The simplest non-trivial examples of pseudo-positive geometries (X, X>,) are of
dimension 1, for which the embedding space X is isomorphic to the Riemann sphere
P! while the real part Xsq is a closed subset of P*(R). In the special cases where
Xso = PY(R) or X =), we have Q(X>() = 0 and so X5 is only a pseudo-positive
geometry. Otherwise, X~ is a union of disjoint closed intervals, which is a positive
geometry. See Section 2.4 [2] for a more rigorous discussion. A generic closed interval

is given by the following:

Example 2.1.1. The closed interval [a, b] C P!(R) is the set of points {(1,z) | a <z <

b} C PY(R), where a < b. The canonical form is given by

b)) = B A -4 (2.2)

r—a x—b (b—2x)(r—a)

where (1,z) € P!. We assumed that the segment is oriented in the positive direction;
otherwise, the sign of the form would be reversed. Furthermore, the canonical form
of a disjoint union of line segments is the sum of the canonical forms of those line

segments.
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R

Figure 2.1: A triangle X triangulated by three smaller triangles X; >, for ¢ = 1,2, 3.
Three of the vertices are labeled P, and R.

2.2 Triangulations

Triangulations play an important role in the theory of positive geometries. The main
result of this section is the fact that canonical forms are triangulation independent.
This means that the canonical form of any positive geometry can be obtained by
triangulating the geometry and summing over the canonical form for each piece. In

practice, this vastly simplifies the computation of canonical forms.

2.2.1 Triangulations of pseudo-positive geometries

Let X>o denote a pseudo-positive geometry, and let X;>o for i = 1,...,¢ denote a
finite collection of pseudo-positive geometries. We assume they all live in the same
embedding space X. We say that the collection {X; >0} triangulates Xs¢ if the

following properties are satisfied:
e Fach X, is contained in X., and the orientations agree.
e The interiors X~ of X, >¢ are mutually disjoint.

e The union of all X, > gives X>.
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A triangulation of X5, can be thought of as a collection of pseudo-positive geometries

that tiles X>¢. In Section 3.2 of [2] we also establish the notion of signed triangulations

whereby overlapping pieces (possibly with opposite orientations) are permitted.
Triangulations are very closely connected to the properties of the canonical form

in the following way.
If {X@zo} triangula‘ces Xzo then Q(Xzo) = Zl;:l Q(lezo) (23)

We provide a sketch of the argument here, and we encourage the reader to read
Section 3.1 of [2] for a more rigorous discussion. It is sufficient to show that the right
hand side satisfies the defining properties of the canonical form of X, in which case
the desired result follows from uniqueness. Most importantly, we need to show that
it has the required poles and residues. We argue by induction on dimension, starting
with the zero-dimensional case, which is trivial. For dimension D > 1, consider for
instance a boundary component (C,Csg) of (X, X5g). We let (C,C; >) denote the
boundary components along C' of the triangulating pieces (X, X; >¢). For simplicity
we assume that all the triangulating pieces X; > lie on the same side of C>(. Then

clearly {C; o} forms a triangulation of Csg. It follows that
RescQ(X, Xz0) = Q(C,C0) = Y _QC,Cizo) = Y RescQ(X, Xiz0)  (24)

where the induction hypothesis is applied on the second equality, since C' is one
dimension lower. This shows that the right hand side of has the required residue
along C'. However, we are not done, since there are other types of boundaries that
need to be checked. For instance, the triangulation may introduce boundaries that
do not appear in X>o. Consequently, poles would appear in the individual terms
on the right hand side of that cancel in the sum. For instance, consider a
collection of boundary components (B, B; o) of (X, X; >¢), respectively, all along the
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same hypersurface B. For simplicity, assume that X5, has no boundary component
along B. Moreover, we divide the boundary components B; >( into two subcollections
{B; .} and {B, .} depending on which side of B(R) they live on. The union of each

collection is the same, which we denote as (B, B>g). It follows that

> RespQ(X, Xiz0) = Y Q(B,Bf)—> QB,B.,) (2.5)
) a b

= Q<B7 BZO) - Q(Bv BZO) =0 (26)

where again we applied the induction hypothesis on the second equality. This com-
pletes the argument, since (X, X>() has no pole along B. While we lost some
generality in our simplifying assumptions, a complete proof is given in Appendix B
of[2].

We caution that even if all the {X; ¢} are positive geometries, the X>, may only
be a pseudo-positive geometry. A straightforward example is a unit disk thought
of as the union of two half disks. Moreover, if all the positive geometries involved
are polytopes, our notion of triangulation reduces to the usual notion of polytopal
subdivision. If furthermore {X; >0} are all simplices, then we recover the usual notion
of a triangulation of a polytope. Finally, note that the word “triangulation” does not

necessari mp a € geometries ;>0 are riangular  or —simpliclal.
ily imply that the geometries X, “triangular” or “simplicial”

2.2.2 Physical vs. spurious boundaries

We now make an important distinction between physical and spurious boundaries,
which correspond to physical and spurious poles, respectively. This is an important
distinction which has important physical consequences for BCFW recursion and the
amplituhedron, as discussed in Section [8.3]

Consider a triangulation {X; o} of a positive geometry Xs(. The boundary com-

ponents of X, 5o that are also a subset of boundary components of X5, are called
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physical boundaries; otherwise they are called spurious boundaries. Furthermore,
poles of (X;>0) at physical boundaries are called physical poles, while poles at
spurious boundaries are called spurious poles. We find that the triangulation inde-
pendence of the canonical form can be interpreted as cancellation of spurious
poles, since spurious poles do not appear in the sum.

We now give an example which illustrates a subtle point regarding spurious pole
cancellation. While it may be tempting to think that spurious poles cancel in pairs
along spurious boundaries, this does not occur in general. In fact multiple pieces
may be needed to cancel the same pole. For instance, consider a triangle X trian-
gulated by three smaller pieces X;>o as shown in Figure 2.1} but instead of adding
all three terms in (2.3]), we only add the i = 1,2 terms. Since the triangles 1 and
2 have adjacent boundaries along the line P(@), it may be tempting to think that
Q(X, X150) + X, Xa>0) has no pole there. But this is false since the boundary
components of 1 and 2 along line PR forms a (signed) triangulation of the line seg-
ment ) R, whose canonical form is non-vanishing. Pairwise pole cancellation therefore
does not occur in this case. Nonetheless, the pole would cancel as a triplet had all

three terms been included.

2.3 Maps between positive geometries

We argue that the canonical forms of different positive geometries can be related
by considering maps between the geometries. Let (X, X>() and (Y,Y>o) be posi-
tive geometries of the same dimension D. Furthermore, consider a mermorphic map
¢ : X — Y with the property that the restriction ®|x_, : X5 — Y50 is a diffeo-
morphism that preserves orientation. We refer to such maps as morphisms between

positive geometries, which we denote as ® : (X, X5¢) — (Y,Y>¢). In particular, if
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O (X, X50) — (YV,Y50) and U : (Y,Y>) — (Z,Z>0) are morphisms, then so is
I[I=Vod.

Morphisms are closely related to pushforwards, which we now explain. Given a
map ¢ : X — Y (not necessarily a morphism) and a differential form w on X, we
obtain a differential form 7 on Y in the following way. Consider a point y € Y, and
all the roots x € X for which ®(x) = y. We assume that there are only finitely many
such roots. Then for each root x, we locally invert ® near x and apply the pullback

(@ 1)*(w(z)). Finally, we sum the result over all roots:

z: ®(x)=y

This is called the pushforward, which we denote as ®,(w) := 7.

We now present an important heuristic.

Heuristic 2.3.1. Given a morphism ® : (X, X5¢) — (Y, Y>0) of positive geometries,

the pushforward of the canonical form of (X, X>o) is the canonical form of (Y,Y>o).
D, (X, X>0)) = QY Y>o) (2.8)

We therefore say that the pushforward preserves the canonical form. The intuition
behind the heuristic is the fact that “pushforward commutes with taking residues”,
formulated precisely in Proposition H1 of [2]. Also in [2], the authors prove the
heuristic for a number of non-trivial examples, and more specfically in Section 4

discuss a strategy for proving the most general case.

2.4 Generalized simplices

We now move on to discuss more substantial examples. In each dimension, the sim-

plex is the simplest non-trivial example of a positive geometry. In this section, we
17



establish a simple generalization of the simplex which encompasses a substantial class
of positive geometries. We say that the positive geometry (X, X>¢) is a generalized
simplex or that it is simplex-like if its canonical form does not vanish anywhere. In
particular, the boundary components of a generalized simplex is again a general-
ized simplex, since the residues of a meromorphic top form with no zeros is again
a meromorphic top form with no zeroes. While simplex-like positive geometries do
not include all possible positive geometries, they already provide a broad class of
interesting examples. We begin by studying the standard simplex before moving on

to more examples in later sections.

2.4.1 The standard simplex

The prototypical example of a generalized simplex is the positive geometry (P™, A™),
where we denote A™ := P as the set of points in P""(IR) representable by nonnegative
coordinates, which can be thought of as a projective simplex (see Section whose
vertices are the standard basis vectors. We refer to A™ as the standard simplex. The

canonical form is given by

o™ =] = dloga (2.9)
i=1 i=1
for points (ag, aq, - . ., @) € P™ where we “gauge-fixed” the zeroth coordinate g = 1.

Here we can identify the interior of A™ with RZ,. Note that the pole corresponding to
the facet at g — 0 does not appear explicitly in the expression, but this is simply due
to the “gauge choice” (i.e. choice of chart) cy = 1. As we will see in many examples,
boundary components do not necessarily appear manifestly as poles in every chart,

and different choices of chart can make manifest different collections of boundary
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components. A gauge-invariant way of writing the same form is the following,

oam) = L laedma) (2.10)

mlag -y

where the brackets denote the determinant (see Appendix C of [2]). This makes
manifest the (m+1) boundary components corresponding to the poles o; — 0 for
1=0,...,m.

We say that a positive geometry (X, X>o) of dimension m is A-like if there exists
a degree one morphism @ : (P A™) — (X, X>¢). The projective coordinates on A™
are called A—like coordinates of X>o. We point out that A-like positive geometries
are not necessarily simplex-like. Important examples include BCFW cells discussed
in Section [8.3. For now, we content ourselves by giving an example of how new zeros

can develop under pushforwards.

Ezample 2.4.1. Consider the rational top-form on P2, given by

1

in the chart {(1,z,y)} C P?. The form w has three poles (one of which is the line at
infinity), and no zeros. Consider the rational map @ : P? — P2 given by (1,z,y) —
(1,u,v) := (1,z,y/z). The map ® has degree one, and using dy = udv + vdu we

compute that

O, (w) = T D T 1)dudv (2.12)

So a new zero along u = 0 has appeared.
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2.4.2 Projective simplices

A projective m-simplez (P™, A) is a positive geometry in P™ cut out by exactly
m+1 linear inequalities. We use Y € P™ to denote a point in projective space with
homogeneous components Y7 indexed by I = 0,1,...,m. A linear inequality is of
the form Y - W := Y!W; > 0 for some dual vector W € R™*! with components W;,
and the repeated index [ is implicitly summed as usual. A projective simplex can be

described as follows:

A={Y eP*R)|Y -W;>0fori=1,... m+1} (2.13)

where the inequality is evaluated for Y in Euclidean space before mapping to projec-
tive space. Here the W;’s are dual vectors corresponding to the facets of the simplex.
Every boundary of a projective simplex is again a projective simplex, so it is easy to
see that projective simplices satisfy the requirements of a positive geometry. For no-
tational purposes, we may sometimes write Y/ = (1,2,y,...) or Y! = (2g, 21, ..., 7)
or something similar.

We now give formulae for the canonical form Q(A) in terms of both the vertices
and the facets of A. Let Z; € R™"! denote the vertices for i = 1,...,m+1, which

carry upper indices like Z!. We allow the indices i to be represented mod m+1. We

have
Sm<Z122 e Zm+1>m <Yde>
QA) = 2.14
(8) m! (YZy - Zp) (Y Zo o Zosr) - Y Zopr -+ Zi) (2.14)
where the angle brackets (---) denote the determinant of vectors ---, which is

SL(m+1)-invariant, and s,, = —1 for m = 1,5,9,..., and s, = +1 otherwise. We

also define the following quantity which we call the canonical rational function.

Q(A) = QA)/ (Yd™Y) (2.15)
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Now suppose the vertices are indexed so that the facet W; is adjacent to
Zis1y -y Zigm, then W; - Z; = 0 for j =i+1,...,i+m. It follows that

W = (_1)(i71)(m7i)enl”_lmZlil o glm

i i+m

(2.16)

where the sign is chosen so that Y - W; > 0 for Y € Int(A). We can therefore rewrite

the canonical form in W space as follows.

C WWae e W) (YATY)
) = Y I W) (W)

(2.17)

Now we provide a few comments on notation. We often write ¢ for Z; inside

an angle bracket, so for example we may write (igiy - -in) = (ZiyZi, - -+ Zi,,) and

(Yiy i) = (YZ;y -+ Z; ). Furthermore, the square bracket [1,2,...,m+1] is

defined to be the coefficient of (Yd™Y') in (2.14)). Thus,

[1,2,...,m+1] = Q(A) (2.18)

Note that the square bracket is antisymmetric in exchange of any pair of indices.
These conventions are used only in Z space.

Finally, the simplest simplices are the one-dimensional line segments. In com-
parison with Example 2.1.1, we can think of a line segment [a,b] as a simplex with

vertices

Zl=(1,a), ZI=(1,b) (2.19)

where a < b. Applying the Z-space formula (2.14]) gives us the canonical form

 (ZiZy){Ydy) = (b—a)dx
Wb = =2V ~ @-ab—2) (2.20)
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Figure 2.2: A segment of the disk

in agreement with Example [2.1.1}]
In Section [2.5.1] we provide an extensive discussion on convex projective polytopes

as positive geometries, which can be triangulated by projective simplices.

2.4.3 Generalized simplices on the projective plane

We now give a brief overview of simplex-like positive geometries on the projective
plane, and provide some interesting examples. A general argument given in Section
5.3 of [2] shows that every boundary component is either linear or quadratic, under
certain technical assumptions such as “normality”. This provides a useful constraint

on the kinds of examples that are permitted.

Ezample 2.4.2. Consider a region S(a) C P?(R) bounded by one linear function ¢(z, y)
and one quadratic function f(z,y), where ¢ = y — a > 0 for some constant in the
range —1 <a <1,and f =1— 22 —y* > 0. This is a “segment” of the unit disk. A
picture for a = 1/10 is given in Figure[2.2] We claim that S(a) is a positive geometry

with the following canonical form

2v1 — a?dxdy

(1—a?—y*)(y—a)

Q(S(a)) = (2.21)
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Note that for the special case of a = 0, we get the canonical form for the “northern

half disk”.

2dxdy

A==

(2.22)

We prove our result by showing that the form for general a has the correct residues

on both boundaries. On the flat boundary we have

21— a?dx B 2v/1 — a?dx (2.23)

Resy:aQ(S(&)) - 1 —q2 — 22 o (m — ZE)(fIf + m)

Recall that this is simply the canonical form on the line segment |z| < /1 — a2,
with positive orientation since the boundary component inherits the counter-clockwise
orientation from the interior. The residue on the arc is more subtle. We first rewrite

our form as

V1-— “2dy> df (2.24)

”““”:(x@—@ i

which is shown by applying df = —2(zdz+ydy). The residue along the arc is therefore

Res;_oQ(S(a)) = —W (2.25)

Substituting z = \/1—73/2 for the right-half of the arc gives residue +1 at the bound-
ary y = a, and substituting © = —\/1—7y2 for the left-half of the arc gives residue
—1.

We can also compute these residues in a different way. Let us parametrize (z,y)

by a parameter t as follows.

(z,y) = (<t ) (o ?_1)) (2.26)

2 ’ 21

23



which of course satisfies the arc constraint f(x,y) = 0 for all . Rewriting the form

on the arc in terms of ¢ gives us

2V —a%dt  (ty —t_)dt

Res;—oUS(a)) = 53— —— = (t—te)(t—to)

(2.27)

where t4 = ia = +/1 — a? are the two roots of the quadratic expression in the denom-

inator satisfying

t+ + t_ = 2ia, t+t, = —1 (228)

The corresponding roots (z4,y+) are

(x4,y+) = (V1 —a?,a) (2.29)

which of course correspond to the boundary points of the arc. The residues at ¢ and

hence (z4,y+) are £1, as expected.

By substituting a = —1 in the preceding Example [2.4.2] we discover that the unit
disk D? := S(—1) has vanishing canonical form, and is therefore a null geometry.
Alternatively, one can derive this by triangulating (see Section the unit disk into
the northern half disk and the southern half disk, whose canonical forms must add up
to Q(D?). Indeed, a quick computation shows that the canonical forms of the two half
disks are negatives of each other. A third argument goes as follows. The only pole of
Q(D?), if any, appears along the unit circle, which has a vanishing canonical form since
it has no boundary components. So in fact ©(D?) has no poles, and must therefore
vanish by uniqueness of the form. More generally, a pseudo-positive geometry is a
null geometry if and only if all its boundary components are null geometries.

One may be tempted to think that all conic sections are null, but this is not true.

Hyperbolas are notable exceptions. From our point of view, the distinction between
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hyperbolas and circles is that the former intersects a line at infinity. So a hyperbola
has two boundary components, while a circle only has one. We demonstrate this as

a special case of the next example.

Example 2.4.3. Let us consider a generic region in P?(R) bounded by one quadratic
and one linear polynomial. Let us denote the linear polynomial by ¢ =Y -W > 0 with
Y1 = (1,z,y) € P(R) and the quadratic polynomial by f = YY - Q := YIY’/Qy,
for some real symmetric bilinear form ¢);;. We denote our region as U(Q, W). The

canonical form is given by

JOOWIW (Y dYdY)
YY QY -W)

QUQ,W)) = (2.30)

where QQWW = _%EIJKEI/JIK/Q[]/QJJ/WKWK/ and /7% is the Levi-Civita symbol
with €2 = 1, and (---) denotes the determinant. The appearance of QQWW
ensures that the result is invariant under rescaling );; and W; independently, which
is necessary. It also ensures the correct overall normalization as we show in examples.

It will prove useful to look at this example by putting the line W at infinity
W = (1,0,0) and setting Y = (1,2,y), with YY - Q = y> — (v — a)(x — b) for a # b,

which describes a hyperbola. The canonical form becomes

2dxdy
y? — (z —a)(z —b)

QUQ,W)) = (2.31)

Note that taking the residue on the quadric pole gives us the 1-form on the quadric.

ResqQU(Q, W) = da/y = 2dy/((x — a) + (z — b)) (2.32)

Since a # b, this form is smooth as y — 0 where £ — a or  — b, which is evident in
the second expression above. The only singularities of this 1-form are on the line W,

which can be seen by reparametrizing the projective space as (z,w,1) ~ (1,z,y) so
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that z = 1/y, w = x/y, which gives the 1-form on 1 — (w — az)(w — bz) = 0:

ResgQU(Q,W)) = dw — %
 [(w—az)(=1+bz2) + (w —bz)(—1+ az)|dz
N 2((w —az) + (w — bz)) (2.33)

Evidently, there are only two poles (z,w) = (0, £1), which of course are the intersec-
tion points of the quadric () with the line W. The other “pole” in is not a real
singularity since the residue vanishes.

Note however that as the two roots collide a — b, the quadric degenerates to the
product of two lines (y + 2 — a)(y — = + a) and we get a third singularity at the
intersection of the two lines (z,y) = (a,0).

Note also another degenerate limit here, where the line I is taken to be tangent
to the quadric Q. We can take the form in this case to be (dzdy)/(y* — z). Taking
the residue on the parabola gives us the 1-form dy, that has a double-pole at infinity,
which violates our assumptions. This corresponds to the two intersection points of
the line W with @) colliding to make W tangent to ). In fact, we can get rid of the
line W all together and find that the parabolic boundary is completely smooth and
hence only a null geometry.

Moreover, we can consider the form (dzdy)/(z* + y* — 1) associated with the
interior of a circle. But for the same reason as for the parabola, the circle is actually
a null geometry. Despite this, it is of course possible by analytic continuation of the
coefficients of a general quadric to go from a circle to a hyperbola which s a positive

geometry.
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Now let us return to the simpler example of the segment U (Q, W) := S(a), where

1 0 0
Q=10 -1 0|, Wr=(-a0,1) (2.34)
0O 0 -1

Substituting these into the canonical form we find
QOWW =(1-a*>) >0, YY-Q=1—-2>—¢* Y -W=a—y, (2.35)
and therefore
QUQ,W)) = QAS(a)) (2.36)
as expected.

2.4.4 An example of a geometry with self-intersections

In this text, we generally exclude geometries with self-intersections for the sake of
technical convenience, but there are many such examples that deserve to be studied
under a more general context. We now give an example on the projective plane. In
Section 5.3.1 of [2], this is referred to as a “non-normal” positive geometry.
Consider the geometry U(C) C P?(R) defined by a cubic polynomial YYY -C' > 0,
where YYVY -C := Cr;r Y'Y 7Y E for some real symmetric tensor C;sx. The canonical

form must have the following form,

_ Cy(ydydy)

QUO) = vy (2.37)
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Figure 2.3: (a) A non-degenerate vs. (b) a degenerate elliptic curve. The former
does not provide a valid embedding space for a positive geometry, while the shaded
“tear-drop” is a valid (non-normal) positive geometry.

where () is a constant needed to ensure that all leading residues are +1. Of course,
Cy must scale linearly as Cj;x and must depend on the Aronhold invariants. For our
purposes we will work out Cj only in specific examples.

Let us consider a completely generic cubic, which by an appropriate change of
variables can always be written as YYY - C = y?> — (x — a)(z — b)(z — ¢) for constants
a, b, c. If the three constants are distinct, then there is no positive geometry associated
with this case because the 1-form obtained by taking a residue on the cubic is dz/y
which is the standard holomorphic one-form associated with a non-degenerate elliptic
curve; we can see directly that dz/y has no singularities as z — a, b, ¢; and as we go
to infinity, we can set y — 1/t3,x — 1/t?> with t — 0 giving dz/y — —2dt which
is smooth. The existence of such a form makes the canonical form non-unique, and
hence ill-defined. By extension, no positive geometry can have the non-degenerate
cubic as a boundary component either.

However, if the cubic degenerates by having two of the roots of the cubic poly-
nomial in z collide, then we do get a beautiful (non-normal) positive geometry, one
which has only one zero-dimensional boundary. Without loss of generality let us put
the double-root at the origin and consider the cubic y*—2%(z+a?). Taking the residue

on the cubic, we can parametrize y? — z?(z + a*) = 0 as y = t(t* — a?), 2 = (t* — a?),
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then dx/y = dt/(t* — a?) has logarithmic singularities at ¢ = +a. Note that these
two points correspond to the same point ¥y = x = 0 on the cubic! But the boundary
is oriented, so we encounter the same logarithmic singularity point from one side and
then the other as we go around. We can cover the whole interior of the “teardrop”

shape for this singular cubic by taking

r=u(t® —a?), y=ut(t®—a’ (2.38)

which, for v € (0,1) and ¢ € (—a,a) maps 1-1 to the teardrop interior, dutifully

reflected in the form

dxdy B dt du
y2—a(e+a?)  (a—t)(t+a)u(l—u)

(2.39)

Note that if we further take a — 0, we lose the positive geometry as we get a form

with a double-pole, much as our example with the parabola in Example

2.4.5 Generalized simplices in higher-dimensional projective

spaces

Let us now consider generalized simplices (P™, A) for higher-dimensional projective
spaces. Let (C,Csg) be a boundary component of A, which is an irreducible normal
hypersurface in P, For (C, Cs¢) to be a positive geometry, C' must have no nonzero
holomorphic forms. Equivalently, the geometric genus of C' must be 0. This is the
case if and only if C' has degree less than or equal to m. Thus in P?, the boundaries
of a positive geometry are linear, quadratic, or cubic hypersurfaces.

It is easy to generalize Example to simplex-like positive geometries in P™(R).

Take a positive geometry bounded by (m —1) hyperplanes W; and a quadric @), which
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Figure 2.4: The Cayley cubic curve. The plane separating the translucent and solid
parts of the surface is given by xy = 0.

has canonical form

Co(Yd™Y)
Y -W)- (V- W) (YY - Q)

Q(A) = (2.40)

for some constant Cyy. Note that the (m—1) planes intersect generically on a line, that
in turn intersects the quadric at two points, so as in our two-dimensional example
this positive geometry has two zero-dimensional boundaries.

Let us consider another generalized simplex, this time in P3(R). We take a three-
dimensional region A C P?(R) bounded by a cubic surface and a plane. If we take
a generic cubic surface C' and generic plane W whose intersection is a cubic in W,
then it cannot contain a positive geometry, as discussed in Section 2.4.3] On the
other hand, we can make a special choice of cubic surface C' that does give a positive
geometry. A pretty example is provided by the “Cayley cubic” (see Figure . It

Y1 = (29,21, 29, 13) are coordinates on P3, let the cubic C be defined by

C-YYY := zor129 + 112973 + 192370 + 230071 = 0 (2.41)
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which has four singular points at X, = (1,0,0,0),..., X5 = (0,0,0,1). Note that
C gives a singular surface, but it still satisfies the normality criterion of a positive
geometry. Let us choose three of the singular points, say Xi, Xo, X3, and let W be
the hyperplane passing through these three points; we consider the form

(Yd3Y)
YYY - O)Y X1 X2 X3)

Q(A) = Cy (2.42)

where Cj is a constant. A natural choice of variables turns this into a “dlog” form.

Consider

. Y1Y2Y3
Y1Y2 + Yoys + Ysin

x; = sy;, fori=1,2,3; To = (2.43)

Then if we group the three y’s as coordinates of P? = {y = (y1, y2, y3)}, we have

O(A) = (yd*y)  ds

= 2.44
2y1y2y3 (s — 1) ( )

This is the canonical form of the positive geometry given by the bounded component
of the region cut out by YYY - C' > 0 and (X; X5 X3Y) > 0.
We can generalize this construction to P™(R), with Y = (x¢, - -+ , z,,,) and a degree

m hypersurface

m
m z: A
me — xo...xi...xm7
=0

where Q- Y™ := Quur,..1., Y1 - - - YIm and the singular points are Xy = (1,0,---,0),...
Xm = (0,-+-,0,1). Then if we choose m of these points and a linear factor corre-
sponding to the hyperplane going through them,

(Yd™y)

UA) = Ol g, TV X, %)

(2.45)

is the canonical form associated with the bounded component of the positive geometry

cut out by Y- Q,, > 0,(X; -+ X,,,Y) > 0, for some constant Cy.
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2.4.6 Grassmannians and positivity

We begin by reviewing the positroid stratifiction of the positive Grassmannian. Much
like how a polytope is made up of boundaries of all codimensions, the positive Grass-
mannian is made up of boundaries called positroid cells. In this section, we show that
every positroid cell is a simplex-like positive geometry whose complex embedding
space is a positroid variety.

Let G(k,n) denote the Grassmannian of k-dimensional linear subspaces of C".

We can represent every point in G(k,n) as a k X n complex matrix
C: (Cl,CQ,...,Cn> (246)

of maximal rank, where C; € C*¥ denote column vectors; moreover the corresponding
subspace is obtained by taking the span of the rows, hence two such matrices are
equivalent if and only if they are related by a GL(k) action from the left. Given

C € G(k,n) we define a function f by the condition that
Ci € span {C/L'Jrl, Ci+27 c. 7Cf(z)} (247)

and f(7) is the minimal index satisfying this property. In particular, if C; = 0, then
f(i) = i. Here, the indices are taken mod n. The function f is called an affine
permutation, or decorated permutation, or sometimes just permutation [30} 3], [16].
Classifying points of G(k,n) according to the affine permutation f gives the positroid

stratification
G(k,n) =| |11;. (2.48)

where, for every affine permutation f, the set Il # consists of those C' matrices sat-

isfying (2.47)) for every integer i. We let the positroid variety I1; C G(k,n) be the
32



closure of ﬁf. If k=1 then G(k,n) = P"! and the stratification decomposes
P"~! into coordinate hyperspaces.

Now let G(k,n)(R) denote the real Grassmannian. The (totally) nonnegative
Grassmannian Gso(k,n) (resp. (totally) positive Grassmannian Gso(k,n)) consists
of those points C' € G/(k,n)(R) all of whose k x k minors, called Pliicker coordinates,

are nonnegative (resp. positive) [30]. The intersections
Hf7>0 = GZO N ﬁf, Hf,ZO = GZO N Hf (249)

are loosely called (open and closed) positroid cells.

For any permutation f, we have
(ITf, 115 >0) is a positive geometry. (2.50)

The boundary components of (I, I ~) are certain other positroid cells (II,, II; >¢)
of one lower dimension. The canonical form Q(f) := Q(Il;,II;>¢) was studied in
[31, 16]. We remark that Q(f) has no zeros, so (I, II; () is simplex-like.

The canonical form Q(Gso(k,n)) of the positive Grassmannian was worked out
and discussed in [16],

[T, (C'd*Cy)
(k)Y TIy (i i1, - ik k1)

Q(Gxo(k,n)) = (2.51)

where C' := (C},...,C})T is a k x n matrix representing a point in G(k,n), and
the bracket (i1,7s,...,17;) denotes the k x k minor of C' corresponding to columns
i1,12,...,1 in that order. Note that the C” denote row vectors of C. The canonical
forms Q(f) on II; are obtained by iteratively taking residues of Q(Gx¢(k, n)).

The Grassmannian G(k,n) has the structure of a cluster variety [32]. The cluster

coordinates of G(k,n) can be constructed using plabic graphs or on-shell diagrams.
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Given a sequence of cluster coordinates (co,c1, ..., Ch(n—k)) € Pk(*=k) for the Grass-
mannian G(k,n), the positive Grassmannian is precisely the subset of points repre-
sentable by positive coordinates. It follows that G (k,n) is A-like with the degree-one
cluster coordinate morphism ® : (P*"=%) Ak®=F)) 5 (G(k,n), G>¢(k,n)). Note of
course that a different degree-one morphism exists for each choice of cluster.
According to Heuristic 2.3.1] we expect that the canonical form on the positive

Grassmannian is simply the pushforward of Q(A*™=k) That is,

c dFn=F)¢
Q(Gso(k,n)) = £, <<k<n<_lj)! H'}T(?_k) CI) (2.52)

where the overall sign depends on the ordering of the cluster coordinates. Equation
(2.52) is worked out in [33]. Tt follows in particular that the right hand side of (2.52))

is independent of the choice of cluster.

2.5 Generalized polytopes
In this section we investigate the much richer class of generalized polytopes, or polytope-

like geometries, which are positive geometries whose canonical form may have zeros.

2.5.1 Projective polytopes

The fundamental example is a convex polytope embedded in projective space. Most of
our notation was already established back in Section[2.4.2] Let Z, Z,, ..., Z, € R™*L,
and denote by Z the n x (m + 1) matrix whose rows are given by the Z;. Define

A:=AZ):=AZ1,Zy,...,7Z,) CP™(R) to be the convex hull

A = Conv(Z) = Conv(Zy,...,2Z,) = {Z CiZ; e P"R) | C; >0,i=1,... ,n}2.53)
i=1

34



We make the assumption that 7, ..., 7, are all vertices of A. In , the vector
Sor CiZ; € R™! is thought of as a point in the projective space P™(R). The
polytope A is well-defined if and only if Y7 | C;Z; is never equal to 0 unless C; = 0 for
all 7. A basic result, known as “Gordan’s theorem” [34], states that this is equivalent

to the following condition.
There exists a (dual) vector X € R™"! such that Z; - X > 0 fori =1,2,...,n(2.54)

The polytope A is called a convex projective polytope.

Every projective polytope (P, A) is a positive geometry. This follows from the
fact that every polytope A can be triangulated (see Section by projective sim-
plices. By Section [2.4.2, we know that every simplex is a positive geometry, so by
the arguments in Section we conclude that (P™, A) is a positive geometry. The
canonical form (A) of a projective polytope will be discussed in further detail from
multiple points of view in Section [3|

It is clear that the polytope A is unchanged if each Z; is replaced by a positive
multiple of itself. This gives an action of the little group R, on Z that fixes A. To
visualize a polytope, it is often convenient to work with Euclidean polytopes instead
of projective polytopes. To do so, we use the little group to “gauge fix” the first
component of Z to be equal to 1 (if possible), so that Z = (1,Z’) where Z' € R™.

The polytope A C P™ can then be identified with the set
{Zoizg CR™[C;>0,i=1,....,nand C, + Co+ -+ C,, = 1} (2.55)
i=1

inside Euclidean space R™. The C; variables in this instance can be thought of as
center-of-mass weights. Points in projective space for which the first component is

zero lie on the (m—1)-plane at infinity.
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The points 7y, ..., Z, can be collected into a n x (m + 1) matrix Z, which can be
thought of as a linear map Z : R® — R™*! or a rational map Z : P*~! — P™. The
polytope A is then the image Z(A" 1) of the standard (n — 1)-dimensional simplex
in P 1(R).

2.5.2 Cyclic polytopes

We call the point configuration 7y, 2, ..., Z, positive if n > m + 1, and all the
(m+ 1) X (m + 1) ordered minors of the matrix Z are strictly positive. Positive Z
always satisfy condition (2.54)). In this case, the polytope A is known as a cyclic
polytope. For notational convenience, we identify Z;,, := Z;, so the vertex index is
represented mod n.

For even m, the facets of the cyclic polytope are

COHV(ZZ'I_l, Zip ceey Zz Zz (256)

m/2_17 m/2)

for 1 <o—1 <4y <idp—1 < <+ <lpyp—1 < iy < n+1. For odd m, the facets

are

COI’IV(Zl, Zi1—17 Zil) I Zi(m—l)/2—17 Zi(m—l)/z) (257)
for 2 <i—1<i1<io—1<ip < < i(m_l)/g—l < i(m—l)/? <n and
COI]V(Zil_l, Zin ceey Zi(m—l)/2—1’ Zi(m—l)/z’ Zn) (258)

for 1 <ip—1 <y <=1 <idpg <+ <ipm-1)2—1 <i@m-1)/2 < n—1. This description

of the facets is commonly known as Gale’s evenness criterion [34].
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An important example for the physics of scattering amplitudes in planar N = 4

super Yang-Mills theory is the m = 4 cyclic polytope which has boundaries:
CODV(Zl;l, Zi, ijl, Z]) (259)

for 1 <i—1 < i < j—1 < j < n+1. The physical applications are explained in

Section [7.1]

2.5.3 Dual polytopes

Let (P, A) be a convex polytope and let Y € P™(R) be a point away from any
boundary component. We now define the dual of A at Y, denoted Aj, which is a
convex polytope in the linear dual of P (also denoted P™). For the moment let us
“de-projectivize” Y so that Y € R™*!,

Recall that each facet of A is given by the zero-set (along 0.A4) of some dual vector
W € R™L. Before going to projective space, we pick the overall sign of W so that
WY > 0 for our Y. We say that the facets are oriented relative to Y. Now assume

that the facets of A are given by Wy, ..., W,. Then we define the dual.
A5 = Conv(Wy,..., W,) = {Z C;W,eP™|C; >0,j=1,... ,7’} (2.60)
j=1

Not that the (relative) signs of the W;’s are crucial, hence so is the position of Y
relative to the facets. It should be obvious that (P, A} ) is a positive geometry for
each Y.

In the special case where Y € Int(A), we let A* := A} and refer to this simply

as the dual of A. An equivalent definition of the dual of A is:
A" ={W eP™ |W-Y >0forallY € A}. (2.61)
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A priori, the inequality W -Y > 0 may not make sense when W and Y are projective.
As in , we give it precise meaning by working first in R™*! and then taking
the images in P™ (see also Appendix C of [2] on cones). For generic Y, we also wish
to assign an orientation to A3 as follows. Suppose we orient the facets Wi, ..., W,
relative to the interior of A. Let s denote the number of terms W; - Y that are
negative. Then we orient A} based on the parity of s. In particular, the dual for
Y € Int(A) is positively oriented.

An important observation about the dual polytope A3 is that it has “opposite”
combinatorics to A. In other words, vertices of A correspond to the facets of A} and
vice versa. Since we assumed that A has n vertices 21, Zs, ..., Z,, the dual polytope

A has n facets corresponding to {W | W - Z; = 0} for i = 1,2,...,n. Suppose

a facet of A is adjacent to vertices Z;,...,7;  , then the dual vertex W satisfies
W.-Z,=...=W-Z, =0so that
W[ - 6[[1_”[le-Ill e Zl{:z (262)

where we have ordered the vertices so that Y - W > 0. This is a straightforward

generalization of (2.16)). Sometimes we also write
W= (i1 ...im) (2.63)

to denote the same quantity. Applying this to Section [2.5.2] gives us all the vertices
of the polytope dual to a cyclic polytope.

Finally we make a comment on triangulations. Given a signed triangulation A =
> A; of a convex polytope A by other convex polytopes A; (see Sections , and

a point Y not along any boundary component, we have

A=A = A=) Ay (2.64)
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In words, we say that

Dualization of polytopes “commutes” with triangulation. (2.65)

This is a crucial geometric phenomenon to which we will return. While we do not
provide a direct geometric proof, we will argue its equivalence to the triangulation

independence of the canonical form and the existence of a volume interpretion for the

form in Section [3.4.1]

2.5.4 Generalized polytopes on the projective plane

Let us now discuss a class of positive geometries in P? which includes Examples m
and Let C' C R? be a closed curve that is piecewise linear or quadratic. Thus
C' is the union of curves C1, (s, ..., C, where each Cj is either a line segment, or a
closed piece of a conic. We assume that C' has no self-intersections, and let ¢ C R?
be the closed region enclosed by C'. We will further assume that U is a convex set.
Define the degree d(U) of U to be the sum of the degrees of the C;.

We now argue that if d > 3,

(P?,U) is a positive geometry. (2.66)

We will proceed by induction on d = d(U). For the base case d = 3, there are two
possibilities: (a) U is a triangle, or (b) U is a convex region enclosed by a line and
a conic. For case (a), Q(U) was discussed in Section 2.4.2] For case (b), Q(U) was
studied in Example . In both cases, (P?,U) is a positive geometry. Now suppose
that d(U) = d > 4 and that one of the C; is a conic. Let L be the line segment joining
the endpoints of C;. By convexity, L lies completely within ¢/, and thus decomposes
U into the union U = U; U Uy of two regions where U; has C; and L as its “sides”,

while U, satisfies the same conditions as U, but has more linear sides. In other words,
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Figure 2.5: A pizza slice

U is triangulated by U 2, and by the discussion in Section , U is a pseudo-positive
geometry with Q(U) = QU )+Q(Us). In addition, we argue that & must be a positive
geometry, since all its boundary components (line segments on the projective line)
are positive geometries. If none of the C; is a conic, then i is a convex polygon in
R2. We can slice off a triangle and repeat the same argument.

Let us explicitly work out a simple example defined by two linear boundaries and

one quadratic: a “pizza” slice.

Ezample 2.5.1. Consider a “pizza” shaped geometry; that is, a sector 7 (61, 62) of the
unit circle between polar angles 61, 65, which is bounded by two linear equations ¢; =
—xsinf; +ycosf, > 0and ¢ = xsinfy —ycosfy >0, and an arc f =1 —22—y> > 0.
Let us assume for simplicity of visualization that 0 < #; < 65 < w. See Figure for
a picture for the case (6, 6,) = (7/6,57/6).

The canonical form is given by

[sin(fy — 61) + (—zsinf; + ycosby) + (zsinhy — y cos bs)]
(1 — 22— y?)(—xsinby + ycosby)(xsinby — ycosbhy)

QT (61,62)) = dady2.67)

Let us take the residue along the linear boundary ¢; = 0 via the limit * — ycot 6,
and confirm that the result is the canonical form on the corresponding boundary

component. We get

(sinfy)

Resu—oUT (01, 02)) = 55— 0

dy (2.68)
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which is the canonical form on the line segment y € [0, sin 6] with positive orientation.
The upper bound y < sinf; is simply the vertical height of the boundary ¢; = 0.

Similarly, the residue at ¢go = 0 is given by

(sin 6y)

Resqmo AT (0, 02)) = =5 5= 0

dy (2.69)

which is the canonical form on the line segment y € [0,sinfy], again with negative
orientation. The residue along the arc can be computed in a similar manner as for the
segment of the disk in Example [2.4.2] so we leave this as an exercise for the reader.
For 6; = 0,6, = 7, we are reduced to the northern half disk from Example 2.4.2]
so 7(0,7) = S(0). A quick substitution shows that the canonical forms match as

well.

2.5.5 Loop Grassmannians

We now define the L-loop Grassmannian G(k,n;k), where k := (k1,..., k) is a
sequence of positive integers. A point V' in the L-loop Grassmannian G(k,n;k) is a
collection of linear subspaces Vs C C" indexed by S, where S := {s;,..., s/} is any
subset of {1,2,..., L} for which kg := ks, +...+ks, < n—k. Moreover, we require
that dim Vg = k + kg, and Vg C Vg whenever S C S’. For simplicity we sometimes
write V; = Vi, Vij = Viij, and so on and so forth. In particular, V3 C V; for any
one-element set S = {s}.

We say that a point V' € G(k,n;k) is “generic” if V; NV, =V} for any i # j.
For such points, we have Vg = span(Vy,, Vs,,..., Vs,) for any S = {s1,52,..., ¢}, so
that V' is determined completely by Vi, Vs, ..., Vi. The space G(k,n; k) is naturally a
subvariety of a product of Grassmannians, and in particular it is a projective variety.

If L = 0, then the 0-loop Grassmannian reduces to the usual Grassmannian

G(k,n). If L = 1, the 1-loop Grassmannian reduces to the partial flag variety
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Fl(n; k,k + k1) (see Section 5.8 of [2]). We may refer to the 0-loop Grassmannian
as the tree Grassmannian. The distinction between “trees” and “loops” comes from
the terminology of scattering amplitudes. We caution that “loop Grassmannian”
commonly refers to another infinite dimensional space in the mathematical literature,
which is also called the affine Grassmannian.

We now define the positive part G-o(k,n;k) of G(k,n;k). Consider the set of
(k+K) x n matrices M (k + K,n), where K := k; + ... + k. We will denote each

matrix as follows:

P = (2.70)

Dy

where C' has k rows, and D; has k; rows fori = 1, ..., L. We say that P is positive if for
each S = {s1, s2, ..., s/} the matrix formed by taking the rows of C, Dy, , Ds,, ..., D,
is positive, that is, has positive (k 4+ kg) X (k + kg) minors. Each positive matrix P
gives a point V' € G(k,n; k), where Vg is the span of the rows of C, Dy, , Ds,, ..., D,.
Two points P, o are equivalent if they map to the same point V. Each equivalence
class defines a point on the (strictly) positive part Go(k,n; k). The nonnegative part
G>o(k,n; k) is the closure of Gso(k, n; k) in G(k,n; k)(R).

There exists a subgroup G(k; k) of GL(k + K) acting on the left whose orbits
in M(k + K,n) are equivalence classes of matrices P defining the same point V.
Elements of G(k; k) allow row operations within each of C, or the D;, and also allows
adding rows of C' to each D;.

We caution that not every point V' € G(k,n;k) is representable by a matrix P.
For example, for G(0,3;1,1), the P matrix is a 2 x 3 matrix. Consider a point on the

boundary where the two rows of P are scalar multiples of each other, then V| = V;
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and additional information is required to specify the 2-plane V; 5. So there are even
points in the boundary of G>(k,n; k) that cannot be represented by P.

Let us focus our attention on the L-loop Grassmannian G(k,n;¢*) where IL :=
({,...,1) with [ appearing L times. The case [ = 2 is the case of primary physical
interest. The L-loop Grassmannian G(k, n;[*) has an action of the symmetric group
Sp on the set {1,2,..., L} with L elements. For a permutation ¢ € S, we have
o(V)s = V,(s). In addition, when [ is even, the action of S;, on G(k,n;I") preserves
the positive part: permuting the blocks D; of the matrix P preserves the positivity
conditions.

The L-loop Grassmannian G(k,n;k) is still very poorly understood in full gen-
erality. For instance, a complete stratification extending the positroid stratification
of the positive Grassmannian is still unknown. The existence of the canonical form
is also unknown. Nonetheless, we have identified the canonical form for some L =1
cases, which we discuss in Section and some L = 2 cases.

The proven existence of some L = 1 canonical forms is highly non-trivial. We

therefore speculate that

(G(k,n; k), G>o(k,n; k)) is a positive geometry. (2.71)

Note that for even ¢, the speculative positive geometry G(k,n;¢L) should have an
action of Sp: the symmetric group acts on the boundary components, and furthermore
the canonical form will be invariant under Sy,.

We may also denote a generic point in the loop Grassmannian as
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where Vg = span{Y,Y,,,...,Y,} for any S. Or, for k = 2F we may use various kinds
of notation like (Y, (AB)1,...,(AB)L) or (Y, AB,CD, EF,...), which are common in

the physics literature.

Example 2.5.2. Consider the space G(0,4;2?) which is isomorphic to the “double
Grassmannian” (G(2,4) x G(2,4)), and has an action of the symmetric group Ss.
Let (Cy,Cy) € G(2,4)? denote a point in the space, with both C; and Cy thought of
as 2 X 4 matrices modded out by GL(2) from the left. The interior of the positive

geometry is given by the following points in matrix form.

e
(G(2,4)))s0 = {(C1,Cy) : C1,Cy € Gop(2,4) and det | | >0} (2.73)
Cy

In other words, both C7,C5 are in the positive Grassmannian, and their combined
4 x 4 matrix (i.e. the two rows of C stacked on top of the two rows of Cy) has positive
determinant.

We can parametrize the interior with eight variables as follows:

1 I 0 —WwW1
C 0 1 =z
L Y 1 (2.74)
Oy 1 29 0 —wse
0 yo 1 2

The conditions C,Cy € G+¢(2,4) impose that all eight variables be positive, while

the final condition requires

4
det = —(21 — 22)(21 — 22) — (11 — y2) (w1 —w2) >0 (2.75)

Cy
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The canonical form can be computed by a triangulation argument given in [26].

o dmldyldzldwldxgdygdzgdwg (33'122+$221 —|—y1w2+ygw1)

U(G(2,4))20) T1Z2Y1Y221 W1 Wa (1 —22) (21— 22) + (Y1 —Yy2) (w1 —ws)]

(2.76)

The 9 poles appearing in the denominator account for the boundaries defined by the
9 inequalities. Note that the form is symmetric under exchanging 1 <> 2, as expected
from the action of Ss.

Let us illustrate the simple method by which this result is obtained by looking at
a smaller example: a 4-dimensional boundary where y; 2 = w; 2 = 0. The geometry

is then simply given by
T12 > 0,2’172 > O, (1131 — 272)(21 — 22) <0 (277)

But this can clearly be triangulated (see Section [2.2)) in two pieces. We either have
21 > 29 > 0 and z1 < x9, or vice-versa. For instance we can trivially parametrize the
region z; > z5 > 0 by writing z5 = a,2; = a + b with a > 0,b > 0 and so the form is

da db/ab = dzadz; [/ 29(21 — 22). Thus the full form is

1 1 1 1

+
21 —Zz)xl(xz —331) 21(2'2 —21)532(1’1 —332)
d$1d$2d21d22(l’221 + xlzg)

1’1332212'2($2 - 1’1)(21 - 22)'

dl’1d$2d2'2d22 X ( ) (278)
22(

(2.79)

which of course can be obtained from ([2.76) by taking residues at the corresponding

boundaries.
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Chapter 3

Canonical forms

The main purpose of this section is to establish a list of methods and strategies
for computing the canonical form of positive geometries. A summary of the main

methods is given below.

e Direct construction from poles and zeros: We propose an ansatz for the
canonical form as a rational function and impose appropriate constraints from

poles and zeros.

e Triangulations: We triangulate a generalized polytope by generalized sim-

plices and sum the canonical form of each piece.

e Pushforwards: We find morphisms from simpler positive geometries to more

complicated ones, and apply the pushforward via Heuristic [2.3.1]

e Integral representations: We find expressions for the canonical form as a
volume integral over a “dual” geometry, or as a contour integral over a related

geometry.
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Figure 3.1: A quadrilateral
3.1 Direct construction from poles and zeros

Suppose A is defined by homogeneous polynomial inequalities ¢;(Y") > 0 indexed by

1 for Y € P™. Then an ansatz for the canonical form is the following:

q(Y) (Yd™Y)

QA) = (3.1)
ILa(Y)
for some homogeneous polynomial ¢(Y') in the numerator which must satisfy:
degq:Zdegqi—m—l (3.2)

so that the form is invariant under local GL(1) action Y — «(Y)Y. The method of
undetermined numerator is the idea that the numerator can be solved by imposing
residue constraints. Note that this method operates under the assumption that a
solution to the numerator exists, which in most cases is a non-trivial fact. We illustrate

the idea with a few simple examples below.

Example 3.1.1. Consider the quadrilateral A := A(Zy, Zs, Z3, Z,) in P?(R) with facets

given by the four inequalities ¢ = >0, ¢ =2y —2x >0, g3=3—x—y >0, qu =
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2 —y > 0. The picture is given in Figure [3.1 and the vertices are
Z{=(1,0,0), Z3=(1,2,1), Z3=(1,1,2), Z;=(1,0,2) (3.3)

with (1,z,y) € P*(R) as usual.

We will derive the canonical form with the following ansatz.

(A+ Bz + Cy)dzdy

A= =B e

(3.4)

for undetermined coefficients A, B,C'. Note that the numerator must be linear
by .

There are six (4 choose 2) double residues. Those corresponding to vertices of the
quadrilateral must have residue +1 (the sign is chosen based on orientation), while
those corresponding to two opposite edges must have residue zero. We list these

requirements as follows, where we denote Res;; := ResquoResqi:()Q(A).

A

Res;p = 5= +1 (3.5)
Resos = % =+1 (3.6)
Resgy = A—FBTjLQC =+1 (3.7)
Resy; = 4 —220 = +1 (3.8)
Resi;z = A —230 =0 (3.9)
Resoy = —W =0 (3.10)

By inspection, the only solution is (A, B, C) = (12, —1, —4). It follows that

B (12 — x — 4y)dzdy
B TCTE [P 1
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We observe that since there are many more equations than undetermined coefficients,

the existence of a solution is non-obvious.

This method becomes complicated and intractable pretty fast. However, in the
case of cyclic polytopes, a general solution was identified in [I8] which we review

below.

3.1.1 Cyclic polytopes

We now apply the numerator method to the cyclic polytope geometry, de-
scribed in [I§]. TLet us illustrate how it works for the case of a quadrilat-
eral A = A(Zy,Z5,73,7Z4). We know that the form must have poles when

(Y'12),(Y23),(Y34), (Y41) — 0; together with weights this tells us that

L;Y!
21(Y 12)(Y 23)(Y 34) (Y 41)

Q(A) = (3.12)

for some L;. We must also require that the codimension 2 singularities of this form
only occur at the corners of the quadrilateral. But for generic L, this will not be
the case; writing (ij) for the line (Yij) = 0, we will also have singularities at the
intersection of the lines (12) and (34), and also at the intersection of (23),(14). The
numerator must put a zero on these configurations, and thus we have that L must be

the line that passes through (12) N (34) as well as (23) N (41):

Ly = ersx((12) N (34))7((23) N (14))" (3.13)

If we expand out (ab) N (cd) := Z,(bcd) — Zy{acd) = —Z.(abd) + Zy{abc), we can
reproduce the expressions for this area in terms of triangulations.

Note that we can interpret the form as the area of the dual quadrilateral bounded

by the edges 71, Zs, Z3, Zy and hence the vertices W, = (12), W, = (23),W; =
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(34), W, = (41). See (2.63)) for the notation. By going to the affine space with
Y at infinity as Y = (1,0,0), W; = (1,W/), we find the familiar expression for the

(2

area of a quadrilateral with the vertices Wy, W4, Wi W},

(W5 = W1) x (Wy — Wy) (3.14)

where the x denotes the Euclidean cross product.
We can continue in this way to determine the form for any polygon. For instance
for a pentagon A, we have the general form

Ly Y'y?
21(Y 12) (Y 23)(Y 34) (Y 45) (Y 51)

Q(A) = (3.15)

but now the numerator must put a zero on all the 5 bad singularities where (12), (34)
intersect, (23), (45) intersect and so on. Thus L;; must be the unique conic that
passes through all these five points. If we let B! = [(i,i+1) N (i+2,i+3)]’ be the bad
points, then

L1y = €(yn)(1505)(10) (B1 B) "V - (Bs By ) U57%) (3.16)

where €(1,,)(1oJ5)- (16 Js) 15 the unique tensor that is symmetric in each of the (1J)’s
but antisymmetric when swapping (1;J;) <> (1;J;).
This construction for the numerator generalizes for all n-gons. Just from the poles

Q(A) takes the form
_ L1'1~-~In,3Y11 e YI"—3
T (Y1) (Ynl)

Q(A) (3.17)

Now there are N = n(n —1)/2 — n = (n? — 3n)/2 “bad” intersections B,; of non-
adjacent lines, B!, = [(a,a + 1) N (b,b+ 1)]’. But there is a unique (up to scale)

numerator that puts a zero on these bad intersections:

N 1),

_ | | 1 n—
L[l"'[‘nfS - G(Iil)“‘IT(LI_)s)(Ifz)"‘[7(1223)‘“(I§N)'“Ifﬁ)s)(ll‘“ln—@ BS e BS (318>
S=1
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where we have re-labeled the intersections as Bg for S = 1,..., N. Note that in
order for the € tensor to exist, it is crucial that N+1 is the dimension of rank n—3
symmetrc tensors on R3. It is interesting that the polygon lies entirely inside the
zero-set defined by the numerator: the “bad” singularities are “outside” the good
ones.

For higher-dimensional polytopes the story is much more interesting as described
in [I8]. Here we content ourselves with presenting one of the examples which illus-
trates the novelties that arise. Consider the m = 3 cyclic polytope for n = 5, with
vertices Zi,...,Z5. The boundaries of the cyclic polytope in m = 3 dimensional
projective space are of the form (1,4,7 + 1) and (n,7,j + 1), which here are simply
(123), (134), (145), (125), (235), (345).

L YTy/
(Y'123) (Y 134) (Y 145) (Y 125) (Y 235) (Y 345)

(3.19)

The numerator corresponds to a quadric in P? which has 4 x 5/2 = 10 degrees of
freedom, and so can be specified in principle by vanishing on 9 points.

Naively, however, much more is required of the numerator than vanishing on
points. The only edges of this polytope correspond to the lines (4, j), but there are six
pairs of the above faces that do not intersect on lines (7, j); we find spurious residues
at Ly = (123)N(145), Ly = (123) N (345), Lz = (134) N (125), Ly = (134)N(235), Ls =
(145) N (235), Lg = (125) N (345). So the numerator must vanish on these lines;
the quadric must contain the six lines L;. Also the zero-dimensional boundaries
must simply correspond to the Z;, while there are six possible intersections of the
denominator planes that are not of this form, so the numerator must clearly vanish
on these six points X; ¢ as well. Of course these 6 “bad points” all lie on the “bad
lines”, so if the numerator kills the bad lines the bad points are also killed.

But there is a further constraint that was absent for the case of the polygon. In the

polygon story, the form 2 was guaranteed to have sensible logarithmic singularities
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and we only had to kill the ones in the wrong spots, but even this is not guaranteed for
cyclic polytopes. Upon taking two residues, for generic numerators we can encounter
double (and higher) poles. Suppose we approach the point Y — Z;, by first moving
Y to the line (13) which is the intersection of the planes (123),(134). If we put
Y = Z; +yZs, then two of the remaining poles are (Y'145) = —y(1345) and (Y'125) =
y(1235), and so we get a double-pole y%. In order to avoid this and have sensible
logarithmic singularities, the numerator must vanish linearly as Y — Z;; the same
is needed as Y — Z3 and Y — Z5. Thus in addition to vanishing on the six lines
L;, the numerator must also vanish at Y — Z3, Z3, Z5. It is not a-priori obvious that
this can be done; however quite beautifully the geometry is such that the 6 lines L;
break up into two sets, which mutually intersect on the 9 points X; and Z; 35, with
three intersection points lying on each line. The numerator can thus be specified by
vanishing on these points, which guarantees that it vanishes as needed on the lines.
More intricate versions of the same phenomenon happens for more general cyclic
polytopes: unlike for polygons, apart from simply killing “bad points” the zero-set of
the numerator must “kiss” the positive geometry at codimension 2 and lower surfaces,
to guarantee getting logarithmic singularities. The form for m = 4 cyclic polytopes
were constructed in this way. We have thus seen what this most brute-force, direct
approach to determining the canonical form by understanding zeros and poles entails.
The method can be powerful in cases where the geometry is completely understood,

though as we have seen this can be somewhat involved even for polytopes.

3.1.2 Generalized polytopes on the projective plane

Let us return to the study of positive geometries A in P2, in view of the current

discussion of canonical forms. In Sections [2.4.3] and [2.5.4] we explained that under

the assumptions of Appendix A of [2], the boundary components are smooth curves

and are thus either linear or quadratic.
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Let us suppose that we allow the boundary components to be singular curves
p(Y) =0, as in Section and furthermore we now allow p(Y') to be of arbitrary
degree d, and have r double-points. For a degree d curve with r double-points,
the genus is given by (d — 1)(d — 2)/2 — r. Now recall that curves of non-zero
genus admit non-trivial holomorphic top forms, which leads to non-unique canonical
forms, thus violating our assumptions. We therefore require the curve to have (d —
1)(d — 2)/2 double-points and hence genus zero. This means that p(Y) = 0 can be
rationally parametrized as Y1 = YZ(t), or equivalently, that the normalization of the
curve P(Y) = 0 is isomorphic to P!. In practice, it is easy to reverse-engineer the
polynomial defining the curve of interest from a rational parametrization. Working
with co-ordinate Y = (1,z,y), a rational parametrization is of the form z(t) =
P.(1)/Q(8), y(t) = P,(£)/Q(¢). Then, the resultant p(z, y) = R(P,(t) — 2Q(¢); P,(t) -
yQ(t)) gives us the polynomial defining the parametrized curve. For instance taking
o) = (t#2+ 1) /(1 +tY),y(t) = (t(t? —1))/(1 + t*) yields the quartic “lemniscate”
curve p(z,y) = 4((2? + y*)? — (2® — y?)), which has three double-points; one at
xr =1y =0 and two at infinity.

As for the canonical form, the numerator (see Section must be chosen to
kill all the undesired residues. Recall that for a d-gon, the numerator has to put
zeros on d(d — 1)/2 —d = (d* — 3d)/2 points, and that there is a unique degree
(d—3) polynomial that passes through those points, which determines the numerator
uniquely up to overall scale. It is interesting to consider an example which is the
opposite extreme of a polygon. Consider an irreducible degree d polynomial, with
(d—1)(d —2)/2 = (d*> — 3d)/2 + 1 singular points. To get a positive geometry, we
can kill the residues on all but one of these singular points, leaving just a single zero-
dimensional boundary just as in our teardrop cubic example of Section [2.4.4l These
are the same number (d? — 3d)/2 of points we want to kill as in the polygon example,

and once again there is a unique degree (d—3) curve that passes through those points.
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Figure 3.2: An “ampersand” curve with boundary given by a quartic polynomial.
The shaded “teardrop” is a positive geometry.

An example is provided by the “ampersand” geometry (see Figure associated
with the quartic curve P(z,y) = (y* — 2®)(x — 1)(2z — 3) — 4(2? + y* — 22)?, which
has three singular points at (0,0), (1,1),(1,—1). If we choose the numerator to be
the line that kills e.g. the points (0,0) and (1,—1), then we get a positive geometry
corresponding to the “teardrop” in the upper quadrant.

Two more examples: consider a region bounded by two quadrics (; and (). The
numerator of the form is Y - L for some line L. Now two generic quadrics intersect at
four points Py, Py, P3, P,. Mirroring the determination of the form for the case of the
quadrilateral, we can choose the line L appearing in the numerator to kill two of P;’s,
and this will give us the canonical form associated with the geometry (Q12-YY) > 0.
Similarly, consider a positive geometry defined by a singular cubic C and a line W.
Again we have a numerator of the form Y - L. The line W intersects the cubic in three
points Py, Py, P3. If we pick the the line L to pass through one of the P; as well as the
singular point of the cubic, we get the canonical form associated with the geometry.

These constructions can be extended to higher dimensions, where (as with the cyclic
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polytope example) we will generically encounter numerators whose zeros touch the

positive geometry on co-dimension two (and lower dimensional) boundaries.

3.2 Triangulations

Recall from Section that if a positive geometry is triangulated by a collection
of other positive geometries, its canonical form is given by the sum of the canonical
forms of the collection. We now apply this method to compute the canonical form of

various generalized polytopes.

3.2.1 Projective polytopes

Let A := A(Zy,...,Z,) be a convex projective polytope. The canonical form (.A)
can be obtained from a triangulation of A (see Section . Let A1, Ao, ..., A, be
a triangulation of A into simplices. For simplicity let us assume that the simplex

interiors are mutually non-overlapping. The canonical form Q(A) is given by

Q(A) =) (A (3.20)

The fact that the simplicial canonical forms add is dependent on the assumption
that the orientation of the interior of A; agrees with that of A for each i. More
generally, for any polytopal subdivision of A into polytopes A; (i.e. a “triangulation”

by polytopes), we have
QA) =) (A, (3.21)

We begin with the simplest case: line segments in P!(R).
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Ezample 3.2.1. Consider a triangulation of the segment [a, b] from Example by a

sequence of successively connected segments:
[a,b] = U[Cz?l’ ci (3.22)

=1

where a = ¢y < ¢; < ... < ¢, =b. It is straightforward to check that

Q[a, b)) = L= W :Z( (e = cim)du ZQ cnal)  (3.23)

(b—z)(x —a) — ¢ —x)(r—ciq)

More generally, for the positive geometry A = J;[ai, b;] C P! which is triangulated

by finitely many line segments with mutually disjoint interiors, the canonical form is:

Q (U a;, z) ZQ a;, by (3.24)

Ezample 3.2.2. Suppose A is a convex projective polytope, and Z, is a point in its

interior, then A is triangulated by

A= | Conv(Z.,Z;,, Ziy, ... Z:,) (3.25)

facets

where we take the union over all choice of indices iy, . . . , i, for which Conv(Z;,, Z;, ..., Z; )
is a facet of the polytope, and we avoid repeated permutations of the same set of

indices. For each facet, we order the indices so that Z,,Z;,,...,Z;, is positively

im

oriented. It follows that

QA) = [*in, i) (3.26)

facets

Recalling the facets of cyclic polytopes from Section [2.5.2] we have the following

corollaries.
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Ezample 3.2.3. The canonical rational function of a cyclic polytope A for even m can

be obtained as follows.

QA) = > [, i1—1, 00, o2 =1, iyol (3.27)

1< = 1<y <o <y 2 = 1<ty y2 <1

For arbitrary Z,, this is called a CSW triangulation. For Z, = Z; for some 1, this is

called a BCFW triangulation.

Ezample 3.2.4. The canonical rational function of a cyclic polytope A for odd m can

be obtained as follows.

Q(A) = Z _[*717i1_17i17"'7i(m—1)/2_]—7i(m—l)/Q](3'28)
2<i—1<i1 < <i(m—1) /2= 1<i(m—1)/2<n
+ Z [*7i1_17i1a"'7i(mfl)/Q_lai(mfl)/27n](3‘29)

1<i1 —1<i1 < <f(mm—1) /2~ 1<i(m—1)/2<n—1

for any Z,. If we set Z, = Z; or Z,, then we get

Q(A) = Z [1, il—l, il, oo ,i(m_l)/Q—l, i(m_l)/g, n](330)

2<i1— 1<y <"'<i(m71)/2_1<i(m71)/2§n_1

3.2.2 Generalized polytopes on the projective plane

In this section we verify that the canonical form for the “pizza slice” geometry from

Example can be obtained by triangulation.

Ezample 3.2.5. Recall the “pizza slice” geometry 7T (61,62) from Example [2.5.1] For
simplicity, we will assume reflection symmetry about the y-axis and let T(0) :=
T (0,7 —0) for some 0 < 0 < 7/2. Denote the vertices of the geometry by Z! € P}(R)

for 1 = 1,2, 3, where
Z1 =(1,0,0), ZI = (1,cos6,sinf), ZI = (1,—cosh,sinb) (3.31)
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The geometry is clearly the union of a segment of the disk (see Example [2.4.2) and a
triangle (see Section [2.4.2]).

7-(9) = S(sin 9) U A(Zl, ZQ, Z3) (332)

It follows that

QTO) = QS(sind)) + QUA(Zy, Za, Z3))

B (2 cosB)dxdy (2sin? 6 cos ) dxdy
(1—22—9y?)(y—sinf) = (sinO—y)(—z sin O+y cos 0)(x sin O+y cos )
2 cosO(y + sin 0)dzdy

- (1 — 2% — y?)(—xsin @4y cos ) (z sin f+y cos ) (3:33)

which is equivalent to (2.67)) for 6; = 6 and 0, = 7 —6, with y —sinf = 0 as a spurious

pole.

3.3 Pushforwards

Recall from Heuristic that for any morphism @ : (X, X5o) — (Y, Y>), we expect

the pushforward to preserve the canonical form:

(I)*<Q(X7 XZO)) = Q(Y> YZO) (334)

This procedure is useful for computing the canonical form of the image when the
canonical form of the domain is already known. However, very often morphisms of
degree > 1 are required, which are challenging to construct. We demonstrate a few

non-trivial examples in this section.
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3.3.1 Projective simplices

We consider morphisms @ : (P, A) — (X, X>0) from projective simplices to positive
geometries X>g. In most cases we will assume that A = A™ is the standard simplex.

We begin with morphisms @ : (P, A™) — (X, X>0) of degree one, in which case
X5 is A—like (as defined in Section [2.4.1)), and its canonical form is given by,

(X, Xs) = D, (ﬁ do"’) (3.35)

e 07}

=1
where (1,aq,...,a,) € P™. The simplest A-like positive geometry is a projective
simplex.

Ezample 3.3.1. A projective simplex A C P™(R) is isomorphic to the standard sim-
plex A™ by the following map & : (P™, A™) — (P™, A),

O(a) =Y aiZi (3.36)
i=0
where Z; € P™(R) are the vertices of A fori = 1,...,m+1. As a matter of convention,

the projective variables and the vertices are indexed slightly differently. Note that
the positive part A™ (i.e. a; > 0 for each 7) is mapped diffeomorphically onto the
interior of A.

The canonical form on A is therefore

O(A) = @, (ﬁ dai) (3.37)

where we have made the “gauge choice” ay = 1 as usual. Alternatively, pulling back
the form (2.14) onto A™ gives the form on a-space.
The image of the hyperplane {o; = 0} C P™ intersects A along the facet opposite

the vertex Z;,;. Taking the residue of Q(A™) along «; = 0 before pushing forward
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gives the canonical form of that facet. We note that the pole for localizing on the

facet opposite Z; is hidden, as explained in Section [2.4.1]

We now consider higher degree morphisms @ : (P, A™) — (X, X>o). Let us
assume for the moment that X = P™. We now provide a general analytic argument for
why the pushforward should have no poles on X.y. The behavior of the pushforward
near the boundary of X, is more subtle and will be discussed subsequently on a
case-by-case basis.

Suppose the map is given by o — ®(«) and let Sy be a point in X+ o. Furthermore,
assume if possible that the pushforward has a singularity at fy. It follows that the
Jacobian J(«) of ®(a) must vanish at some point g for which ®(ag) = fy. Let

B = ®(a) which we expand near the critical point,

8(13(010)
Q;

f=®(ag) + /\Zei 5 + %)\2 Z €€ 0"®(ay) + O\ (3.38)

©J 80@80@

0]
where we have set a = ap+ Ae with A a small parameter and € a constant vector. Since
the Jacobian vanishes at aq, a generic point 8 in a small neighborhood of 3y cannot be
approximated by the linear term. However, unless the quadratic term degenerates, (3

can be approximated quadratically by choosing € so that the first variation vanishes.

Namely,

e 82(50) =0 (3.39)

a

It follows that the variation is even in A, so there are two roots A+ (corresponding to
points a4, respectively) that approximate 3, with Ay = —A_. Since the Jacobian is
clearly linear in A for small variations near oy, therefore J(a ) = —J(a_) + O()\?).
Since the pushforward is a sum of 1/J(a) ~ 1/X over all the roots, the roots corre-

sponding to a4 therefore cancel in the limit 5 — [y, and there is no pole.
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We now show a few examples of higher degree pushforwards, beginning with self-

morphisms of the standard simplex.

Ezample 3.3.2. Let ® : (P™, A™) — (P™, A™) be a morphism of the standard simplex
with itself, defined by

q)(l,()él,...,Oém) = (1,61,...,ﬁm) (340)

B = o (3.41)
i=1

where a;; is an invertible integer matrix. We assume the determinant is positive so
that the map is orientation preserving. While this map is a self-diffeomorphism of

Int(A™), it is not necessarily one-to-one on P™. The pushforward gives

do; _ deg(® i ag;
®. <H > Z 9(B1--Bm) ﬂm) H "a;  det(ay) 1;[ B (3.42)

=1 roots d(aj.. am)

where deg(®) is the number of roots, and we have substituted the Jacobian:

INay...apm) det(ai;) | e

(3.43)

It is easy to see that the degree of ® must be |det(a;;)|: after an integral change of
basis, the matrix (a;;) can be put into Smith normal form, that is, made diagonal.
For a diagonal matrix (a;;) it is clear that the degree of ® is simply the product of
diagonal entries. Thus verifies Heuristic in this case. By contrast, we
note that the pull-back along ® gives ®*(Q(A™)) = det(a;;)2(A™), which does not

preserve leading residues.
The next few examples explore the pushforward in one dimension. They are all
applications of Cauchy’s theorem in disguise.

Ezample 3.3.3. A simple non-trivial example is a quadratic pushforward ® : Al —

A given by ®(1,a) = (1,aa® + 2ba) for some real constants a > 0;0 > 0. The
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assumptions suffice to make ® a self-morphism of A'. Setting (1, ) = ®(1, ) we get

two roots a4 from solving a quadratic equation. The pushforward is therefore

—b+\/b?
. (dloga) = Zdlog aL) Zdlog ( i aﬁ) (3.44)
+

a

Since we are summing over roots, a standard Galois theory argument implies that the
result should be rational. Indeed, the square-root disappears, and direct computation
gives ®,(dloga) = dlog S.

We can also do the sum without directly solving the quadratic equation. The
result should only depend on the sum and product of the roots z., since the result

must be a rational function.

«(d1 4
0g ) Z Z 2as (aoy + b) (3.45)

+ +

Substituting o (aag +b) = [ — ba, which comes from the original equation, we get

1 . 26 — b(Oé+ + Oé_)

«(dl = = 3.46
Jdloga) ; 206 —bas) 203 —bBlag +a )+ bPara) (3:46)
We now use the identities ay + a- = —2b/a and aya_ = —f/a, which give the

desired result ®,(dlog o) = dlog f.

Example 3.3.4. We now go ahead and tackle the same example for a polynomial
of arbitrary degree. Suppose @ is a self-morphism of Al given by 8 = f(a) =

a® + ap_10™ 4+ ... 4 aja. We first define the holomorphic function

gla) = ————— (3.47)
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which has no pole at infinity since f(«) is at least of degree one. The sum over all

the residues of the function is therefore zero by Cauchy’s theorem. It follows that

1 1
RARSEY .

where we sum over all the roots a; of f(«) = 8. Therefore,

®, (dlog o) = Z Qiﬁf&i) = dlog 3 (3.49)

Finally, we consider a simple but instructive pushforward of infinite degree.

Ezample 3.3.5. Consider the map ® : (P!, [-7/2,7/2]) — (P!,[—1,1]) between two

closed line segments given by:
®(1,0) = (1,sin0) (3.50)

While this map is not rational, we can nevertheless verify Heuristic for ® by
explicit computation. For any point (1,sinf) in the image, there are infinitely many
roots of given by 6, := 6+ 27n and 0, := -0+ 7(2n+ 1) for n € Z. It is easy
to show that both sets of roots contribute the same amount to the pushforward, so

we will just sum over 6,, twice,

wdf wdx dx
b <<7T/2—9)(9+7T/2)> N % (/2 —6,)(0, +7/2)cosb, 2COS20
2dx
S 0o+ D) (3.51)

which of course is the canonical form of [—1,1]. The infinite sum can be computed
by an application of Cauchy’s theorem.
We note here that our definition of the pushforward only allows finite degree

maps while @ is of infinite degree. Nonetheless, it appears that Heuristic [2.3.1] still
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holds when the pushforward is an absolutely convergent series like (3.51). We stress
that some pushforwards give conditionally convergent series, such as the morphism
(P, AY) — (P',[0,1]) given by (1,2) — (1,e™), in which case the pushforward is

ill-defined since there is no canonical order in which to sum the roots.

3.3.2 Projective polytopes from Newton polytopes

In this section we discuss morphisms from (P™, A™) to convex polytopes (P™,.A)
and their pushforwards. Our main results here overlap with a discussion on toric
varieties in Section 5.6 of [2]. However, our intention here is to provide a self-contained
discussion. Our focus here is also more geometric in nature, emphasizing the fact that
any such morphism restricts to a diffeomorphism Int(A™) — Int(A).

Now let A C P™ be a convex polytope in projective space with vertices Z; for
i=1,...,n. Let z1,2,...,2, € Z™ be an integer matrix with the same oriented
matroid as Z1,..., Z,. That is,

-7

(Ziy -

20

) and (z;, ---2;,) have the same sign (3.52)

forall 1 < ig < --+ < 4, < n. Here two real quantities have the same sign if
they are both positive, both negative, or both zero. For simplicity we now assume

that z; = (1,2)) = (1,2, 25;,...,2.). Furthermore, let us define a rational map

) “ma

o : (P, A™) — (P™, A) given by

(X)) = Y Gi(X)Z (3.53)

Ci(X) = X% = X{HXgH ... X (3.54)
where (1, X) € P™. This is called the Newton polytope map and the polytope with
integer vertices z; is called the Newton polytope.
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1.0

2
0.5r

Q1 0.0
—-0D.5F

0
-1.0 : :

o 1 5 1o —05 00 05 10
Z; Yl
Figure 3.3 A Newton pentagon (left) with  vertices 2’ =

((0,0),(1,0),(2,1),(1,2),(0,1)) and the image of the corresponding diffeomor-
phism ®(X) (right). The dark lines in the interior of the pentagon (right) denote
lines of constant X; or X5. While the two pentagons are not identical as sets, they
do have the same oriented matroid.

We make two claims in this section, beginning with:
Claim 1: The map ® is a morphism provided that (3.52)) holds. (3.55)

That is, it restricts to a diffeomorphism on Int(A™) — Int(.A). This is a non-
trivial fact for which two proofs are provided in Appendix E of [2]. At the heart

of Claim (3.55)) is that the Jacobian of ® is uniformly positive on Int(A™):

J(CI)) = Z Cio T Cim <Zio cee Zim> <Zz cee sz> (356)

1<ip< - <tm<n

where J(®) denotes the Jacobian of ® with respect to u; := log(X;), which is clearly
positive provided that z; and Z; have the same oriented matroid (see (3.52))). While
this is only a necessary condition for Claim (3.55)), it is nevertheless the key to prov-

ing it. We provide a graphical example of the diffeomorphism for the pentagon in

Figure [3.3
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This establishes the way to our second claim, which is an instance of Heuris-

tic 2311

Claim 2: The canonical form of the polytope is given by the pushforward:

O(A) = o, (Hfl:%) (3.57)

For computational purposes, a more convenient way to express the (canonical rational

function of the) pushforward is the following integral formula:

dm X

QUAY) = T x.

MY 9(X)) (3.58)
where for any two points Y, Y’ in projective space P™, the integral
1 dp
(YY) = — [ S5mTHY — pY! 3.59
) = o [ Ly = ) (3.59)

is the delta function with weights (—m—1,0). Here the sum over pre-images appearing
in the pushforward is equivalent to the sum over solutions to the constraints imposed
by the delta functions. The relevant Jacobian factors are taken care of by the delta
functions as well. We treat the delta functions formally as an “analytic” object
without taking absolute values in the Jacobian factor, and we sum over all complex
roots. In most cases numerical methods are needed to compute the pushforward,
which we have done extensively as verification of Claim . However, here we

show a simple case where the pushforward can be done by hand.
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Example 3.3.6. Let us consider a quadrilateral A on the projective plane. By a

convenient gauge-fixing, we will take the external data and Y to be of the form

1 0 0
0O 1 0
7 = , Y =(y,1,2) (3.60)
0 0 1
a —1 b

We can trivially compute the canonical rational function by e.g. triangulation as

[123] + [134], and finding

_ (ab+ax + by)
UA) = vy(a+y)(b+ )

dxdy (3.61)

and we will now reproduce this result from the Newton polytope map (3.53)), with the
Newton polytope being the square with vertices (1,0), (1,1), (0,1), (0,0), respectively.
Thus our map is

Xi+a Xo+b
3.62
XX, — 1 ’X1X2—1> (362)

Y = (I)(X) = X1Z1 -+ XlXQZQ —+ X2Z3 -+ Z4 = <

which are projective equalities. We must solve the equations

<X1X2 — 1)y = X1 + a, (XlXQ - 1).13 = X2 + b (363)
We then have
X (XX, — 1)?
= dxdy X 3.64
XlXQ ray X1X2<Z’X1 + yXQ — 1) ( )

It therefore suffices to show that

Z (X1 Xy —1)2 _ (ab+ax + by)
XiXo(z X1 +yXo—1)  zy(a+y)(b+2)

(3.65)

roots
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If we define p = (X; Xy — 1), then we have X; = py — a,Xyo = pr — b and so

(p+1) = (py —a)(px —b). So p satisfies the quadratic equation

1 b b—1
poUfartly  ab-l_, (3.66)
xry xry
which has two roots p+. Note that

1(1+ax+0b
xX1+yX2—lzx(py—a)—l—y(px—b)—l:2xy(p—§%

) (3.67)

Comparing with the quadratic equation for p, we can identify the term corresponding

to the sum of the roots (py + p_), giving:
(@ X1 +yXy — 1)x = Fay(ps — p-) (3.68)

Thus, the sum over roots becomes

1 P2 B P2
wy(pr —p) (my —a)(prz—b)  (p-y—a)(p_z — b>>
_ 1 ab(py + p-) — prp-(by + ax) (3.69)
zy (p+p-y? — alpy + p-)y + a?)(p+p-a? — b(py + p- )z + %) '

And reading off

ab—1 1+ax+ by

pip- = , Pt E———— (3.70)
ry ry

from the quadratic equation we finally find that (3.69) equals

ab + ax + by

vy(a+y)(b+x) (3.71)

as expected.
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3.3.3 Recursive properties of the Newton polytope map

We now derive the pushforward identity for the Newton polytope by explicitly
manipulating the pushforward computation and applying induction on dimension. In
fact, we will derive a more general version for lower dimensional polytopes in P™(R).
The statement is the following.

Consider the variety H C P™ defined by linear equations Y - Hy,...,Y - H, = 0 for
some dual vectors Hy, ..., H, € P™(R) with Y € P™. Let A denote a convex polytope
in H(R) of dimension D = m—s with vertices Z1, ..., Z,. Let ® : (PP, AP) — (H, A)
be a morphism defined by a Newton polytope with vertices z; = (1,2]) € RP*TL
Furthermore, we assume that A and the Newton polytope have the same oriented
matroid. Namely, there exist constant vectors K7, ..., K; € P"(R) such that

(Ky---K.Z,--Z

iD

) and (z;, - - - z;,,) have the same sign (3.72)

for any set of indices 1 < igp,...,ip < n.
The D = 0 case is trivial. Now assume D > 0. Let B denote a facet of A with

vertices Z;

1>+ -+ Zj,, and let B denote the corresponding facet of the Newton polytope.

We now argue that there exists a change of variables (X,...,Xp) — (Uy,...,Up)
given by X, = HQDZI U,% for some invertible integer matrix ay; that has the following

properties: (Note that we define ®'(U) := ®(¢»(U)) with X :=¢(U))

e The map U — X is a self-morphism of AP which may be of degree > 1. In

particular, it is a self-diffeomorphism of Int(AP).

e The restriction of ® to Up = 0 is a Newton polytope map A”~! — B whose

Newton polytope has the same shape as B.

We construct the change of variables as follows. Let us begin by considering

the matrix formed by column vectors (zj,, ..., zj,, 2;) where the first D columns are
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vertices of B, while z; is any vertex of the Newton polytope away from the facet.
Let a := (ayp) be the inverse of the matrix, which has only rational components.
Finally, let us rescale the rows of «, (indexed by a) by positive integers so that all
its components are integral. This provides the change of variables X — U.

Let us redefine z; for every ¢ to be the vertex of the Newton polytope with respect
to U, which again has the same oriented matroid as A. In particular, the matrix
of column vectors (z;,,...,%2;,,%;) is identity. Since every vertex of B is a linear
combination of zj,...,2;,, it must therefore have zero as its last component. Fur-
thermore, since every other vertex of the Newton polytope is a linear combination
of zj,,...,%j,, % with positive coefficient in z;, its last component must be positive.
Geometrically, this means that the Up = 0 limit is mapped to the facet B by @’.

Now, let ¥ : APl — B denote the map @ restricted to Up = 0, and let
Wy, ..., Wy, € R denote the vertices of the Newton polytope of ¥, which are equiv-
alently the vectors zj,,...,z;,, respectively, with the last component removed. It
is straightforward to check that the Newton polytope of ¥ has the same oriented
matroid as B, so our induction hypothesis can be applied to .

We now argue that the pushforward by ®" has a pole at the boundary B with the
expected residue Q(B). Let Y = ®'(U). The main strategy is to observe that the
roots (Ui, ...,Up_4) are independent of Up near 5.

Indeed, at Y € B (i.e. Up = 0), the map becomes
Y=0C;Z,+---+C;Z (3.73)

which gives us a collection of roots (Uy,...,Up_;) independent of Up. It follows

therefore from the induction hypothesis that

dD—lU dD—lU
—_— =Y, [ — ) =Q(B 3.74
Y ar v (g ) o) (3.74)

roots (U1,....Up—1)
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Moreover, the roots Up are given by the equation

(Ky...K,Yji ... jp) ~USF(U,... . Up_y) (3.75)

for some function F' independent of Up and some exponent ¢q. Hence,

dU . .
Y =2 =dlog(Ki...K.Yji...jp)+- (3.76)
Up
roots Up
where the - -- denotes term proportional to dUy,...,dUp_;.

It follows that in the limit Y — B, we have

dPU dP~1U dUp
ZU...UD - Z U, - Up_, <Z U_D>+“. (3.77)

1

roots roots (U1,...,Up—1) roots Up
dP—1U
— (—> dlog (K1 ... K.Y jr...jp) +-- (3.78)
Ul e UD—l
— QB) dlog (Ky ... K.Y 1. jp) +--- (3.79)

where - - - denotes terms smooth in the limit, and we have applied and .
This of course is the expected pole and residue.

Furthermore, by the discussion in Section [3.3.1, we find that there are no poles
on the interior of A.

Finally, we can re-express our result as a pushforward from X-space by the fol-

lowing;:

dP X dPU
o | ——— | =0 | ————— .
%) " (6) (330

since ¢/, = ®, 0 1), and 1), pushes the standard simplex form on U to the same form

on X (see (3.3.2))).
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3.3.4 Newton polytopes from constraints

We now provide an alternative way of thinking about equation (3.58)) as constraints
on C' space. Most of the notation in this section is borrowed from Section |3.4.3]
The map X — C;(X) parametrizes a subset of the projective space C' € P71

This subset can be equivalently “cut out” using constraints on the C; variables.

ﬁ cm=1 (3.81)
i=1

with one constraint for each value of p = 1, ..., n—m—1, where w,, is a constant integer
matrix to be determined. For the constraint to be well-defined projectively, we must
have ), w,; = 0 for each p.

Substituting the parametrization C;(X) = [[_, Xz, we find that

> zagwy =0 (3.82)
=1

for each a, p.
We can now replace the pushforward formula (3.58) by an integral over all C; with

imposed constraints.

n—

1 d”C m—1 n . . n
QA) = — | m— | I s(t-TIc" || ot Y =D Gz | (3:83)
m: HJ=1 G p=1 i=1 i=1

Note that each delta function in the square brackets imposes one constraint, and in
the absence of constraints we arrive at the familiar cyclic measure on C' space.

It is evident that explicitly summing over the roots of these polynomial equations
will become prohibitively more difficult for large n. But of course there is a standard
approach to summing rational functions of roots of polynomial equations, making
use of the global residue theorem [35]. This method has been applied ubiquitously
in the literature on scattering amplitudes, from the earliest understanding of the
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relations between leading singularities and the connection between the twistor-string
and Grassmannian formalisms [36, B7, B8], to the recent application to scattering
equations [10], 1], 12] [13]. Appropriately taking care of some minor subtleties, the
global residue theorem also works for our problem, naturally connecting the Newton
polytope formula to triangulations of the polytope.

We now provide explicit computations for the quadrilateral and the pentagon with

constraints.

Example 3.3.7. For m = 2, n = 4, there is only one constraint given by

wy = wip = (Q1, —Q2, @3, —Q4) (3.84)

for some integers (); > 0, 1 = 1,2, 3,4. The positivity of the ); variables is imposed
by the positivity of the Newton polytope.
Now recall that delta functions can be identified with residues in the following

manner:

[ @2 6:152) = Reseoa (112 = 50 (3.85)

We will therefore think of the delta function constraints appearing in the square
brackets (3.83)) as residues, and apply the global residue theorem [35].
We have

co e
csrop — o oge

1 d*C
QA) = 2 / C,CyC5CY

5 (Y — i CZ-Zl) (3.86)

Here we have underlined the pole corresponding to the constraint. The reader should
imagine that the three remaining constraints (i.e. Y = C-Z) also appear as poles, but
for notational convenience we will simply write them as delta functions. For higher

n, we will have additional constraints, and hence additional underlined polynomials.
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Now instructs us to sum over all global residues where the four constraints
vanish, which in general is very hard to compute by explicit summation. However, the
global residue theorem vastly simplifies the problem. Note that there are eight poles
in our integral (i.e. four constraints plus the four cyclic factors C;). In order to apply
the theorem, we will need to group the poles into four groups. Let us group the cyclic
factors with the underlined constraint, and each of the delta function constraints

forms its own group. It follows therefore that

_"Z/c1 NeRNe?

This gives us four residues corresponding to C; — 0 for each 2. Now the positivitiy of

ceC
ceropt — oo

(Y ZCZ) (3.87)

(Q; > 0 comes into play. Clearly, the Cs, Cy — 0 residues vanish due to the appearance
of 02Q 2 C’f * in the numerator. However, for the C;, C3 — 0 residues, the square bracket

becomes unity, and the result is equivalent to Res(1), Res(3), respectively, as defined

in B.154l It follows that
Q(A) = Res(1) + Res(3) = [234] + [124] (3.88)

Alternatively, we could have assumed @; < 0 for each ¢. This would have given us

another triangulation:
Q(A) = Res(2) + Res(4) = [134] + [123] (3.89)

We note that our technique can be applied to convex cyclic Newton polytopes for
any m, provided that n = m+2. The constraint matrix is given by a sequence with

alternating signs.

wy = (Q1, —Qa, Q3, —Qu, ooy (1) Qriy0) (3.90)
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where the constants (); are either all positive or all negative. If @); > 0, then the

canonical rational function becomes

Q(A) =) Res(i) (3.91)

And for @); < 0, we get

QA) = Z Res(i) (3.92)

FExample 3.3.8. Let us move on to the n = 5,m = 2 pentagon A with the Newton
polytope having vertices (0,0),(1,0),(2,1),(1,2),(0,1). Then the Newton polytope
formula becomes

1 2 2

By —C-Z
C1CyC5 C2C5 — C3C5 C2Cy — CyC2 ( )

Q(A) = / dC1dC,dCdCydCs

(3.93)

Now on the support of the delta function we have a two-dimensional integral, and
the underline tells us to sum over all the roots of the two polynomials with C; # 0.

In order to use the global residue theorem for our pentagon problem, we group

the denominator factors into five groups, given by the three delta function constraints

and f17f2:

fi = CyC5(C2Cs — C2C5), fo = (C2Cy — CuC2), g=C? (3.94)

where ¢ is the numerator.
The roots of f; = 0, fo = 0 certainly include the “complicated” solutions of the
Newton polytope problem, where C # 0, and at these the residues are well-defined.

The only subtlety is that we have other roots, where (Cy,Cy) = (0,0), and where
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(C5,C1) = (0,0). These zeros are quite degenerate; the Jacobian factor vanishes and
the residue is not directly well-defined.

We can deal with this by slightly deforming the functions; we will take instead

f1=CsC5((CF — €3)C5 — C5C5), fa=((C} — €])Ca— CoC2), g=C}  (3.95)

where we will imagine that both €3, ¢4 are eventually sent to zero. The singular zeros
we previously found, with (Cy, Cy) = (0,0) and with (Cs,Cy) = (0,0) will now be
split into a number of non-degenerate solutions, and we will be able to use the global
residue theorem.

Let us see where these deformed zeros are located. For f; = 0, we can set either
Cy=0,C5=0or (C? — e2)C3 — C2C5 = 0. The first two cases are of course trivial;

the roots and corresponding residues, as we take €3, €4, — 0, are

Cy=0, C;=0, Res=][135] (3.96)
Cs=0, Cy=0, Res= [123] (3.97)
Cy =0, = +e,, Z Res = [345] (3.98)
Cs =0, Cp=ey, Z Res = [234] (3.99)

Note interestingly that the residues for the last two cases depend on the ratio €3/e4

even as €34 — 0. We next have to look at the solutions to

(C} —€3)C5 — C3C5 = 0, (CF — €1)Cy — G503 = 0 (3.100)

We are interested in the solutions where C' is close to zero; which here means that
either Cy is close to €3 or (' is close to €4. More formally, we can set €34 = €Es34

and ask what the solutions look like as ¢ — 0 with Fs 4 fixed. It is then easy to see

76



that if C? — €2, we must have that Cj is non-zero and Cy — (€3 — €3)Cy/CZ, while if
C? — €2, we must have that Cy is non-zero and Cs — (€2 — €2)C3/C2. Tt is trivial to

compute the residues in these cases, and we find

Cy — He5, Cp— (3 —€3)Cy/CE, D Res = —>—[345] (3.101)
€y — €
+ 4 3
2
Cr = e, Cs— (&~ )03/C3, Y Res = 626—462[234] (3.102)
+ 37 “4

By the global residue theorem, the sum over all these residues gives us Q(A), SO we

find

Q(A) = [123] + [135] + [345] ( 263‘ - s 2) +[234] <62€‘2l s — 263 2)

= [123] 4 [135] + [345] (3.103)

which is a standard triangulation of the pentagon.

It would be interesting to carry out the analog of this analysis for the general
Newton polytope expression associated with the canonical form of any polytope.
The same resolution of the the singular roots will clearly be needed, and it will
be interesting to see how and which natural class of triangulations of the polytope

emerges in this way.

3.3.5 Generalized polytopes on the projective plane

We now consider pushforwards onto generalized polytopes on the projective plane,

particularly the pizza slice.

Example 3.3.9. We construct the canonical form of the pizza slice T(0y,62) from

Example via pushforward. Let z; = tan(f;/2) and 2o = tan(6/2). Consider the
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morphism @ : (P! x P!, [21, 25] x [0, 00]) — T (61,6) given by:

1 — 22 2z
1+ 22)" (1 + 22

(1L,z,y) = ®(2,t) = (1,( )) + 17, (3.104)

_ (1, l-= 22 ) (3.105)
A+ 20 +0) T+ 201 +0)

where z,t are coordinates on the two P!’s, and Z! := (1,0, 0) is the “tip” of the pizza.
Note that the equations are projective. As z varies in [z1, 23], the point ((Hzg) (1322))
sweeps out the circular arc (cos(6),sin(f)) where 6 varies from 6; to 6y. The variable
t acts like a radial coordinate that goes from 0 (the unit arc) to oo (the tip).

For a generic point (z,y) there are two roots in ®~'(1,z,y), say (z,t) and

(—=1/z,—t — 2). We compute

o, <<22 (_ZQZ) T ) (3.106)

_ <1+t)3 (14 2%) (20 — 21 1_ 1"‘22)(22—2:1) 1 )
-2 (<22—Z)(Z—21) t (zz2+ 1)(1+22) (t+2)> dxdy (3.107)

We have the two identities

1(1+2%) (=)  sin(6y—61) +sin(0 — 6) +sin(6, — 0)
2(n—2)(z—2n) 2sin(f — 61) sin(6, — 6) (3.108)

1 (1+22)(2 — 21) B sin(fy — 0;) — sin(f — 6;) — sin(6y — 6)
D) (222 + 1)(1 + 221) N QSin(Q - 01) Sin(02 _ 0) (3.109)

which are related by a shift § — 0+x. Substituting into (3.107) and using 1—2%—y?* =

tH(241t)/(1 +t)? gives

[sin(fy — 61) + (—xsinf; + ycosby) + (zsinhy — y cos bs)]

dzd 11
(1 — 2% —y?)(—xsinb; + ycosby)(rsinby — y cosby) i (3:.110)

which of course is the canonical form Q(7 (61, 62)). Note that sine summation formulas

were used to get the denominator factors.
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The pushforward calculation can also be done with more intuitive angular coor-
dinates, using an infinite degree map similar to Example We take the map
U (P! x P[0y, 0] x [0,00]) — T (61, 65) given by:

(3.111)

(Lz,y) =V(1,0,t) :== (1,cos0,sinb) + tZ, = (1 cos ¢ sm9>

14+t 14t

The variable 6 acts as an angular coordinate between 6; and 5. For any point on the

plane (z,y) = (cosf,sind)/(1+t), there are two sets of roots given by:

(On,tn) = (0+2mn,t) (3.112)
@,t) = @+r2n+1),—t-2) (3.113)

where n € Z. Summing over all roots in the pushforward gives

(02 —01)dd dt\ (1+ t)3 (6, — 6y)
v ((‘92 —0)(0 —01) 7) N t Z (05 — 0,) (0, — el)dfcdy (3.114)

ne”L

(1+1)° (6 — 61)
* t+2 Z (6 — 6/)(0 — Ql)dﬂidy (3.115)

nez

Ignoring the rational ¢ factors, the summations give:

(6 —61) _ sin(fy — 0y1) +sin(0 — 01) 4 sin(f, — 0)
(6 — 61) sin(fy — 6;) — sin(6 — 0;) — sin(fy — 0)

which are exactly (3.108]) and (3.109). Thus we again obtain (3.110]) as the canonical
form of the pizza slice. The summation identities (3.116)) and (3.117) can also be

interpreted as the pushforward summation for the infinite degree map ¢ : 0 — z =
tan(0/2), and we have ¥ = ® o (¢ x id), where id : t — ¢t is the identity map on the ¢

coordinate.
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3.4 Integral representations

We now present integral representations (e.g. volume integrals, contour integrals) of

various canonical forms.

3.4.1 Dual polytopes

Consider a convex polytope (P, A) and a point Y not along any boundary com-
ponent. We argue that the canonical rational function (. A) at Y is given by the
volume of the dual polytope A} (defined in Section [2.5.3]) under a Y-dependent mea-

sure. More precisely,

QA)Y) = Vol (43) = — | » m—m;ﬁl (3.118)

In order for this integral to be well-defined on projective space, the integrand must
be invariant under local GL(1) transformations W — W' = (W)W, which is proven
in (C5) of [2]. Moreover, observe that by construction of A3}, we have Y - W > 0 for
every point W € Int(Aj3 ), which is important for the integral to converge. However,
the overall sign of the integral is dependent on the orientation of the dual. We say
therefore that the volume is signed.

Now let us prove this claim for simplices by explicit computation:

Ezample 3.4.1. Let Y € Int(A) for some simplex. The volume of the dual simplex
A} with vertices Wy, ..., Wy,41 (so that Y - W; > 0 for each i) can be computed
using a Feynman parameter technique. Since the form is locally GL(1) invariant, we

can gauge fix the integration to W = Wy +a;Ws + - - - + a,, W,,41 and integrate over
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a; > 0. This gives

L Ao (Wi - W)
Vol (Ay) = /((Y-Wl)—l—al(Y-Wg)+---+am(Y-Wm+1))m+1 (3.119)
— Wy W) (3.120)

(Y V) (V - W)

agreeing with .

Note that the result is independent of the sign of the vertices W;. If, for instance,
we move Y outside A so that Y - Wy < 0 but Y - W; > 0 for every ¢ # 1, then we
would have needed to use —W; in the integration, but the result would still have the

same form.

We now argue that the formula holds for an arbitrary convex polytope based on

three observations:

e “Dualization of polytopes commutes with triangulation” (2.65)). This means

that
A=A = A=) Ay (3.121)

For triangulation by simplices, this formula is known as Filliman duality [39].

e The signed nature of the volume is crucial, because it implies triangulation

independence. This means that
' = ZA;‘Y = Vol (AL) = Z\/ol (A%) (3.122)
e The canonical rational function is triangulation independent (Section :
A= ZAl- = QA = ZQ(Ai) (3.123)
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Combining these three statements for a signed triangulation by simplices A; = 4;, it

follows that

Vol (A%) Zv(ﬂ ZQ (A) (3.124)

which is the desired claim.

We have not given a proof of the first observation . In Section we will
give an independent proof of the volume formula (3.118)). Then by the second and
third assumptions, we find that Vol (A3) = >, Vol (Ajy) for every Y, which implies
that A = >, A7, thus deriving (3.121]). Alternatively, we can also say that the the
volume formula combined with the first two assumptions implies the triangulation
independence of the canonical rational function.

The dual volume formula is particularly useful for computing the canonical form
of simple polytopes. Recall that a polytope of dimension m is called simple if every

vertex is adjacent to exactly m facets.

Example 3.4.2. Consider a convex simple polytope A of dimension m. Recall that the
dual polytope of a simple polytope is simplicial, meaning that each facet is a simplex.
The dual polytope can therefore be triangulated very easily. The idea is to take a
reference point Wy on the interior of the dual, then for every facet Z form a simplex
by the convex hull of that facet and the reference point. These simplices then give

the desired triangulation.

(WoWi ... W)
Y WO) H;nzl(y ) Wa)

Vol(A¥) Z sign(Z (3.125)

where for every facet Z the dual vectors W, correspond to the m adjacent facets.
Furthermore, the sign(Z) € {%1} denotes the orientation of the ordered facets
Wi, ..., W,_3, which of course is antisymmetric. Note that the sum can be thought

of either as a sum over the facets of A* or as a sum over the vertices of A.
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If we choose the reference point so that (Y - Wy) = 1, then the canonical form can

also be expressed in the following way

Q(A) = sign(Z) /\ dlog (Y - W,) (3.126)

a=1

This formula can also be proven independently of the dual construction, by showing
that it satisfies the recursive pole and residue properties required of the canonical

form. See Appendix A.5 of [I] for more details.

We now wish to comment on the distinction between “physical” poles and “spu-
rious” poles (see Section in the context of the volume formula, first pointed
out by Andrew Hodges as an interpretation of spurious poles appearing in BCFW
recursion of NMHYV tree amplitudes [29].

Given a triangulation of A by polytopes A; with mutually non-overlapping inte-
riors, spurious poles appear along boundary components of the triangulating pieces
that do not belong to the boundary components of A. From the dual point of view,
the duals A}, form an overlapping triangulation of A3, and a spurious pole corre-
sponds to a subset of volume terms Vol (A}) going to infinity individually, but whose
sum remains finite. Geometrically, the signed volumes overlap and cancel. However,
suppose instead that Y € Int(.4) and the duals A}, have non-overlapping interiors,
then Vol (Af,) < Vol (A}). It follows that all the volume terms are finite on Int(.A),
and there are no spurious poles. Of course, the sum is independent of X since the
integral is surface-independent. This is called a local triangulation. An example of a
local triangulation of cyclic polytopes in P4(R) is given in [40].

On a final note, we argue that these simplicial volumes are identical to Feyn-

man parameters [41] appearing in the computation of loop scattering amplitudes. A
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general Feynman parameter formula takes the following form,

1 S(1=>" 0
= m!/ A ( - Zz:0$+)1 (3.127)
[Timo Ai zelmtt (Dm0 TiAs)

where ™% is the unit cube given by 0 < z; < 1 for all 4. Integrating over 0 < xy < 1

yields

Now change variables z; — «; so that

Q;

S 3.129
1 =+ Zj:l Q; ( )

X

and a; > 0 for all ¢ is the equivalent region of integration. The Jacobian for the
change of measure is
- d™o

d"x = 057, (3.130)

Putting everything together, we get

1 —1 / am 1 (3.131)
_ = o .
m! H?io A; ;>0 (Ao + 221 a; Ag)m

We see that the right hand side is very reminiscent of the volume formula (3.118)
for a (dual) simplex. The lesson here is that loop integrals can be reinterpreted as
polytope volumes, and Feynman parameters are coordinates on the interior of the

polytope over which we integrate.
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3.4.2 Laplace transforms

For a convex projective polytope A C P™(R), we let A C R™*! be the cone over
A, so that A := {Y € R™"! | Y € A}. Similarly, one has the cone of the dual
A; € R™! in the dual vector space. For simplicity, we will only consider the dual
for which Y € Int(A), in which case A* := Aj}.

We argue that the canonical rational function at any point Y € Int(A) is given

by a Laplace transform over the cone of the dual:

~oml

QA)Y) = ! ( /W . e—W'Ydm+1W). (3.132)

Such integral formulae have been considered in [42]. Extensions to the Grassmannian
are discussed in [43].

We now show the equivalence of with the dual volume . We begin
with the Laplace transform, and change variables by writing W = p/W so that W is

a unit vector and p > 0 is the Euclidean norm of W. It follows that
1 —_~ —_~
W = —pmdp <dew> (3.133)
m!
The Laplace transform rational function becomes

o -1 o 0 iy - L TET) s

m! J o0 Wwear m! m! Jweas (W - Y)m+

This result is identical to (3.118)) but “gauge-fixed” so that W = W has unit norm.
Removing the gauge choice and rewriting W as W recovers (13.118)).

Let us confirm our result for a simplex.
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Example 3.4.3. Suppose A is a simplex, so A* is also a simplex, generated by facets

Wi, ...,Wps1 € R™ Then setting W = agW; + - - - 0y Winp1, we compute

QA)Y) = % ( /W . eW'Ydm+1W) (3.135)
_ %<W1W2 W) ( /R - e—(ao(m-Y>+a1<W2-Y>+-~+am<wm+1-Y))dm+1a>
3
(3.136)
_ Wiy W) (3.137)

Tl (Y W)Y Wa) - (Y W)

in agreement with (2.17)).

We recognize the result simply as the volume Vol (A*) (note the implicit de-
pendence on Y). For a general convex polytope A, we may triangulate its dual
A* = %" A7 by (dual) simplices. Then the cone of the dual is also triangulated by
the cones A; of the dual simplices. For simplicity let us assume that these dual
cones are non-overlapping except possibly at mutual boundaries. We can therefore

triangulate the Laplace transform integration and obtain:
QA)(Y) =) Vol (A}) (3.138)

which of course is equivalent to Vol (A*) as expected.

Let us now try a sample computation for a quadrilateral.

Example 3.4.4. Let A C P? be the polytope with vertices:
{(1,0,0),(0,1,0),(0,0,1),(1,1,-1)}
Then the dual cone is

A ={W = (Wo, Wy, Wa) € R | Wy + Wy > Wal. (3.139)
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We compute

1
Q(A) = o / e WY amtiw (3.140)
*JWeAx
1 > 0 & 1 Wo+Wi 2
=5 e oY / ey / eV qW,dW dW (3.141)
+JO 0 0
1 YO+ Yl +Y?
== rr T (3.142)

20(YO+Y2) (YT 4+ Y2)yoyt
To verify our calculation, we observe that

1 YO+ Yl 4Y? 1 ( 1 1

2 — - 3.143
A(YO+ Y2 (YT Y)Yyl — 20 \YOYIyZ (YO 4+ y?)(Y! +Y2)Y2> (8.143)

corresponding to the triangulation 4 = A;UA, where A; has three vertices which are

given by {(1,0,0), (0,1,0),(0,0,1)} and A, has vertices {(1,0,0), (1,1,—1),(0,1,0)}.

Let us now argue that the Laplace transform makes manifest all the poles and
residues of the canonical form, and thus satisfies the recursive properties of the form.
Suppose {Y € 0A | WY = 0} defines one of the facets of the polytope A, which we
denote by B, and hence W, is one of the vertices of A*. We now show that has
a first order pole along the hyperplane Wy - Y = 0 and identify its residue. Consider

the expansion
W=aW,+W (3.144)

where « is a scalar and W € (W), where v(W;) denotes the union of all the facets
of the cone A* not adjacent to Wy. It is straightforward to prove that every point
W in the interior of the integration region A* has a unique expression in the form

(3.144) with (o, W) € Ry x v(W,). Furthermore, some simple algebra shows that
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"W = da (Wod™W ) /m!. Tt follows that

I vy (Wod™W
QA) = —'/ do e_"‘(WO'Y)/ e_W'Yw (3.145)
m:Jo Wey(Wo) m:
The o > 0 integral can be trivially computed to reveal the first order pole.
11 vy (Wod™W
QA) = 77—~ / e—W'Yy (3.146)
m: (W(] : Y) Wer(Wo) m:

If we now take a residue at (W, -Y) — 0, we see that the remaining integral
is invariant under local shifts W — W + B(W)W, along the direction of Wy, where
B(W) is a scalar dependent on W. So the integral is performed within the quotient
space P™ /W, which of course is just the dual of the co-dimension one variety {Y |
Y - Wy = 0} containing B. We say that the integral has been projected through Wj.

We can change the region of integration to B* which we define to be the cone over
the union of all the facets of A* adjacent to Wy. The change is possible because the
surface v(Wp) U B* is closed under the projection. The choice of notation B* suggests
that the region can be interpreted as the cone of the dual of B. Indeed, the facets of
A* adjacent to Wy correspond to the vertices of B.

It follows that

lim QA (Wy-Y) = ! ( / eW'Yde) (3.147)

(Wo'Y)—0 m! \ Jywen

where d™W is defined to be the measure <W0de> /m!on P /W,. We can interpret
the residue as a Laplace transform for B, as expected from the recursive nature of

the residue.
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3.4.3 Projective space contours

We now turn to a new topic. We show that the canonical rational function of convex
projective polytopes (and possibly more general positive geometries) can be repre-
sented as a contour integral over a related projective space.

Recall for convex projective polytopes A that the n x (m + 1)-matrix Z can
be considered a linear map P*! — P™, sending the standard simplex A"~! to the
polytope A. Letting (C;)7_; denote the coordinates on P! we have the equation
Y =Z(C) = >, C;Z; describing the image Y € P™ of a point C' € P"~! under the
map.

n

We begin with the simplex canonical form on (Cj)}_;, € C" constrained on the

support of the expression Y = 2?21 C,Z;:

ac =
W5 o (Y - CjZJ) : (3.148)
J:

j=1

Typically, the delta function on projective space §™ (Y, Z(C)) is reduced from rank
m~+1 to m by integrating over a GL(1) factor like p in (3.59). Instead, we have
absorbed the dp/p measure into the canonical form on C-space, thus giving a rank-n
measure on C".

We now describe a contour in the C-space such that the above integral gives the
canonical rational function £2(.4). A naive integral over all C' € R" is obviously ill-
defined due to the 1/C; singularities. However, with some inspiration from Feynman,
we can integrate slightly away from the real line C; — ¢; = C; + t¢; for some small
constants €; > 0, with ¢; € R being the contour. We will assume that Z?Zl €j; = €Y
for some € > 0, and let Y := (1+i€)Y. After completing the contour integral, we can
take the limit € — 0 to recover Y — Y. This is reminiscent of the epsilons appearing

in the loop integration of amplitudes. Finally, we assume that the Z; vertices form a
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real convex polytope and Y is a positive linear combination of the Z;’s. Note that Y’
is real and Y is now slightly imaginary due to the ie shift.

We claim, in the ¢; — 0 limit,

1 d*c m+1 vV - c. 7.
AAY) = (QWi)"_m_lm!/H;.Ll(cj —iej)é i (Y Z JZJ) (3.149)

J=1

with integration over ¢; € R for each j. The overall constants have been inserted to
achieve the correct normalization.

Before proving this identity in full generality, we give a few examples.

Example 3.4.5. The simplest example occurs for n = m+1 where A is just a simplex
in m dimensions. In that case, there is no contour, and we can immediately set ¢; — 0

for each 7 and thus e — 0. We get

1 d™ e L w
QAY) = — WCSM Y — 2 ;7 (3.150)
Jj= Jj=

We can uniquely solve for each ¢; on the support of the delta function, which gives

<Y12---§' e (m+1)>

‘ (12--- (m+1))

;= (-1 (3.151)

where the “hat” denotes omission, and the Jacobian of the delta function is

(12--- (m+1)). It follows that (see (2.18]))

QANY) = [1,2,...,m+1] (3.152)

which is the familiar canonical rational function for a simplex.
More generally, suppose we integrate over a contour in the original C' space that

picks up a set of poles at C; — 0 for all j except j = jo, ..., jm, Which we assume to
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be arranged in ascending order. Then the residue is given by

@/ (H ReSCa‘()) T 0'6 (Y - ZCij> = [jo, J1, 725, Jm]  (3.153)
' jeJ J=1>7 j=1

where J = {1,2,...,n} — {Jo,J1,J2,---,Jm}- Suppose the indices contained in .J
are ki, ..., k,_m,m_1 in increasing order, then we will denote the residue collectively as

Res(J) or Res(ky, ko, ..., kn—m—1). So
Res(J) := Res(k1, ..., kn—m-1) == [1,J2, - - -, Jim] (3.154)

We note that the result may come with a negative sign if the contour is negatively
oriented. The Res operator, however, assumes a positive orientation. This formula

will be very convenient for the subsequent examples.
We now move on to higher n examples for the polygon (i.e. m = 2).

Ezxample 3.4.6. We now perform the contour integral explicitly at n = 4 points for
the m = 2 quadrilateral. There are four integrals over ¢; constrained by three delta
functions. We will integrate out ¢; 23 to get rid of the delta functions with a Jacobian

factor (123)°, which gives us

b dey/ (123)°
2!(27Ti) /C46R (Cl — iEl)(CQ — i52)(c3 _ iEg)(C4 _ 2.64) (3155)

where ¢, ¢, and c3 depend on ¢4 through the three equations Y = Z(c).

In the large ¢4 limit, all three dependent variables scale like O(cy), so the integrand
scales like O(c;?*) which has no pole at infinity. We can now integrate over c; by
applying Cauchy’s theorem. The key is to first work out the location of the four poles

relative to the real line.
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Figure 3.4: The locations of the four poles for the quadrilateral ze contour, with ¢y, ¢y
and c3 dependent on ¢4 through Y = ¢- Z. A pole is colored red if a counterclockwise
contour picks up the residue with a plus sign (e.g. +Res(2),+Res(4)), while a pole
is colored blue if a counterclockwise contour picks up the residue with a minus sign
(e.g. —Res(1), —Res(3)). Of course, the signs are reversed if the contour is clockwise.

We begin with the constraints

Y = 0121 + CQZQ + Cng + C4Z4 (3156)

which can be re-expressed in terms of three scalar equations by contracting with Z 73,

Z3Z, and ZZ,, respectively.

c1(234) = (Y23) — ¢ (123) (3.157)
ci(134) = —(V31) + ¢y (123) (3.158)
ci(124) = (Y12) —¢5(123) (3.159)

We have written the equation so that each bracket is positive, provided that Z; is
cyclically convex and Y is inside the polygon. Both positivity conditions are crucial,

because they prescribe the location of the poles.
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Now, for any index ¢ = 1,2, 3,4, we let the “pole at i refer to the pole at ¢; — ie;.
From the constraints, we find that poles 1 and 3 both provide a negative imaginary
part to ¢4, so they are below the real line, while poles at 2 and 4 are above the real
line (see Figure . Since there is no pole at infinity, the integral can be performed
by closing the contour below to pick up poles 1,3, or closing the contour above to

pick up poles 2,4. The former gives us

Q(A) = Res(1) + Res(3) = [2,3,4] + [1, 2, 4] (3.160)

while the latter gives

Q(A) = Res(2) + Res(4) = [1,3,4] + [1, 2, 3] (3.161)

Of course, these are two equivalent triangulations of the quadrilateral. We see there-
fore that the ie contour beautifully explains the triangulation independence of the

canonical rational function as a consequence of Cauchy’s theorem.

FExample 3.4.7. We now compute the contour for a pentagon, where new subtleties
emerge. We begin as before by integrating over ¢, cs and c3 to get rid of the delta

functions. We then re-express the delta function constraints as three scalar equations.

c1(234) +¢5 (235) = (YV23) — ¢; (123) (3.162)
ca (134) +¢5(135) = —(V31) + 5 (123) (3.163)
ca (124) +¢5(125) = (Y12) — c5(123) (3.164)

We now integrate over ¢4 € R. The locations of the poles are the same as before (see
Figure|3.4), and we are free to choose how we close the contour. For sake of example,
let us close the contour above so we pick up poles 2 and 4. We now analyze both

poles individually.
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The pole at 4 induces ¢4 — 1¢4. Our constraints therefore become:

c5(235) = (Y23) — ¢y (123) — ieq (234) (3.165)
5 (135) = —(V31)+ ¢y (123) — ieq (134) (3.166)
5 (125) = (Y12) — 3 (123) — ey (124) (3.167)

There are now four poles left for c5, corresponding to 1,2,3 and 5. The poles at 1
and 3 are clearly below the real line, as evident in the equations above, while the the
pole at 5 is obviously above (see Figure . The pole at 2, however, is more subtle
and deserves closer attention. In the limit co — i€y, we find from the second equation

above that

¢5 (135) = = (Y31) +iq (3.168)

where ¢ = €3 (123) — ¢4 (134). If ¢ > 0, then the pole at 2 is above the real line, and
if ¢ < 0, then the pole is below. So the relative size of the €; parameters makes a
difference to the computation. However, as we now show, the final result is unaffected
by the sign of ¢. Suppose ¢ > 0, then we can close the c5 contour above and pick up

the following poles

Res(45) + Res(24) = [123] + [135] (3.169)

Alternatively, we can close below and pick up

Res(34) + Res(14) = [125] + [235] (3.170)

The two results, of course, are identical since there is no pole at infinity. So the pole

at 4 produces the following result regardless of how the c5 contour is closed, provided
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24 (g>0) 45 24 (q>0) o5 23
° ® ° (Y

[} [ o [ J
24 (q<0) 14 34 24 (g<0) 12

Figure 3.5: The pole locations of ¢5 under ¢4 — i€y (left) and co — iey (right).
Note that in both graphs the position of the 24 pole relative to the real line differs
depending on the sign of ¢q. See the caption under Figure for explanations of the
pole coloring.

that ¢ > 0.

Cqy — i€4 ;g > 0 ~ Q(ZhZQ, Zg,Zg,) (3171)

If ¢ < 0, then Res(24) migrates below the real line, in which case closing the contour

above would give

Res(45) = [123] (3.172)

and closing below would give

Res(34) + Res(14) — Res(24) = [125] + [235] — [135] (3.173)

which of course are equivalent. The minus sign in front of Res(24) appears due to the

orientation of the contour. In summary,

Cq —> 1€4 ;g < 0 ~ Q(Zl, ZQ, Zg) (3174)

Now let us move on to the pole of ¢4 at 2 which induces ¢y — ie5. Again, there
are four poles left for c5, this time corresponding to 1,3,4,5. After re-arranging the

95



constraints using Schouten identities, we find

5 (123) (345) = (V'34) (123) — (123) (1 (134) + ie (234)) (3.175)
ca (145) (123) = —(Y41) (123) + (123) (iez (124) + 5 (134))  (3.176)
5 (135) = (Y13) + i€y (123) — ¢4 (134) (3.177)

Evidently, the poles at 3 and 5 are above the real line, while the pole at 1 is below
(see Figure . The pole at 4, however, is above if ¢ > 0 and below if ¢ < 0.

For ¢ > 0, closing the c5 contour above gives

Res(23) — Res(24) + Res(25) = [145] — [135] + [134] (3.178)

while closing below gives

Res(12) = [345] (3.179)

which are equivalent, so

co =165 ¢q>0 ~ Q(Zg, Ly, Z5) (3180)

For ¢ < 0, closing the contour above gives

Res(23) + Res(25) = [145] + [134] (3.181)

while closing below gives

Res(12) + Res(24) = [345] + [135] (3.182)

96



which are again equivalent, so
o — i€y q>0 ~ Q(Zy, 23,2y, Zs) (3.183)
We now sum over the ¢4 — 7¢4 and ¢y — i€y contributions. For ¢ > 0, we get
UA) = U2y, Zz, Z3, Zs) + QU Zs, Zs, Zs) (3.184)
and for ¢ < 0, we get
UA) = U7y, Zy, Z3) + QU 21, Zs, Za, Zs) (3.185)

Both results are of course correct. Again, we see triangulation independence as a
result of Cauchy’s theorem, but with additional subtleties involving the sign of q.
Furthermore, we could have closed the ¢; contour below instead and achieved a dif-

ferent set of triangulations.

We now argue for all m > 0 and all n > m+1 that the ie contour integral (3.149)
is equivalent to the dual volume formula (3.118)). Let S denote the right hand side
of (3.149)). We begin by writing the delta function in terms of its Fourier transform

with dual variable W € R™*!L,

_ n 1 , C
j=1

Then we integrate over each c¢; using the following identity:

de; |
/ S g WZy — (97) O(W - Z;) (3.187)
R

Cj — Z€j
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where 6(z) is the Heaviside step function. It follows that

Z‘m—i—l

S:

/ dmtwe VT oW - Z)) (3.188)

i=1

m!

We also change variables to radial coordinates p := |[W| and W := W/|W| with
|W| denoting the Euclidean norm of W. We have W = pW so that the measure
now becomes d™ W = p™dp <deW> /m!, where <deW> is the pull back of
(Wd™W) to the sphere W € S™.

Now recall the Fourier transform identity:

1 (—i)m+!

— [ dz 2™f(z)e ™ = ——~L 3.189
m!/R x z™0(x)e (g =iy ( )

for some small ¢ > 0 which we take to zero in the end. The integral over p > 0

therefore becomes:

1 00 - _\m+1 _\m—+1
—/ dp p"e Y = — <,Z) = E i) (3.190)
m! Jo (WY —ie)ym+t (W .Y)m+l
where we set € — 0 on the right.
It follows that
s = 2 / <deW> ! ﬁe(W Z,) (3.191)
m! Wesm (W . Y)m—o—l ol J .
1 1
= — Wwdm™w = 3.192
m!/*< >(W.Y)m+1 ( )

which is the volume formula for Q(A) in the limit Y — Y. In the last step,
we used that fact that the inequalities W - Z; > 0 imposed by the step functions
carve out the interior of the dual polytope A* C P™. Furthermore, on the last line we
removed the “gauge” choice W e S™ since the resulting integral is gauge invariant
under GL(1) action.
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We stress that it is absolutely crucial for Y to be on the polytope’s interior.
Otherwise, the denominator factor W - Y can vanish and cause divergent behavior.
From the contour point of view, as shown in examples above, the position of Y affects

the location of poles relative to the contour.

3.4.4 Projective space contours part II

We now consider an alternative contour integral that is in essence identical to the

previous, but represented in a very different way. The result is the following

1 qr—m- 1B
_ (3.194)

2m)n=m=Im! Jpek H;L:1(C]Q —1B;j)

for any point C% = (C?,C3, ..., C}) € R" such that Y = 3% | C?Z; and C7 > 0. In
the second equation, K C R" denotes the (n—m—1) dimensional kernel of the map

7 :R™ = R™ The measure on K is defined as

n dBy, ---dB
4B = / d"B o™+ (ZBJ-Z]): b (3.195)

for any partition {jo, ..., jm} U {k1,...,kn_m_1} of the index set {1,...,n}. On the
right, it is understood that B - Z = 0.

We now argue that is equivalent to . An immediate consequence is
that this contour integral is independent of the choice of C°.

We begin with the ie contour (3.149), fix a choice ¢” satisfying Y = * - Z, and

. . . . L 0 - .
change integration variables ¢; — b; = ¢j — ¢;.

YA = (27i)n—m— 1m'/ | J bb — i€j) 57”“ <Z ijj) (3:196)
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For each b;, there is a pole at b; = c? — 4€; which lives in the fourth quadrant
on the complex plane of b;. Since we are currently integrating over the real line, it
is possible to do a clockwise Wick rotation b; — B; = —ib; to integrate over the

imaginary line (i.e. B; € R) without picking up any of the poles. It follows that

1 d"B i (=
QA)(Y) = r i) / H?Zl(cg?—iBj—iej)(S <;BJZ]) (3.197)

We can now set €; — 0 as it no longer affects the contour of integration. In this
limit, we recover ¢! — C? and Y — Y, giving Y = C° - Z and hence the desired

result. The formula (3.193]) was first established as Theorem 5.5 in [44].

Let us work out one example.

Ezample 3.4.8. Let A C P? have vertices {(1,0,0),(0,1,0),(0,0,1),(1,1,—1)}, as
in Example [3.4.4, The kernel is K = {(z,z,—z,—z) : * € R} C R*" For Y =
(YO, Y1, Y?) we pick C° = (Y — a,Y! —a,Y? + a,a) for some a € R, with the

assumption that all entries are positive. Thus

1 o dz
2AEY) = (2m)2! /OO (YO —a—ix)(Y'—a—iz)(Y2+a+ix)(a+ ix) (3.198)

1 1 1
= - 3.199
2! (Y0Y1Y2 YO+ V2 (YT + Y?)Y?) (3199)

where we have chosen to close the contour by picking the poles z = ia and z =

i(Y? + a) with positive imaginary part. This is independent of a, as expected, and
agrees with (3.143)).

It is interesting to contrast these contour representations with the Newton poly-
tope pushforward formula discussed in Section [3.3.2] For the former, the combina-
torial structure of the convex polytope is automatically “discovered” by the contour

integration without prior knowledge. For the latter, the combinatorial structure must
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be reflected in the choice of the Newton polytope, which may not be possible for poly-
topes whose combinatorial structure cannot be realized with integral coordinates (e.g.

non-rational polytopes [45]).
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Chapter 4

The associahedron

We introduce the associahedron, an important polytope discovered by mathemati-
cians in the 1960’s [19, 20], 21], from the point of view of positive geometries. We
show that an infinite family of associahedra appears naturally in the kinematic space
of tree level particle scattering with color ordered particles. Furthermore, we present
the striking fact that the canonical form of any of this family of associahedra is the
tree level color ordered amplitude of cubic ¢* theory, also known as bi-adjoint scalar
theory [13]. Furthermore, we “rediscover” the Feynman diagram expansion as one
of many triangulations of the polytope. In this sense, we say that the kinematic
associahedron is the amplituhedron of the bi-adjoint theory. While for simplicity we
focus our attention on this particular scalar theory in the present section, many of
our results generalize to gluons and pions as discussed in Section [6]

We begin by introducing planar scattering forms in Section [4.1], which are differen-
tial forms on kinematic space that encode all information about tree level amplitudes.
In Section [4.2] we present a precise construction of the associahedron in kinematic
space. In Section [1.3] we argue that well-known properties of the amplitudes like
factorization and various “soft” limits can be understood as geometric properties.

In Section we discuss methods for computing the canonical form, and provide
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a geometric interpretation of the Feynman diagram expansion. Finally, Section

provides a discussion on the vertex coordinates of the polytope.

4.1 The planar scattering form on kinematic space

We introduce the planar scattering form, which is a differential form on the space of
kinematic variables that encodes all information about on-shell tree-level scattering
amplitudes of the bi-adjoint scalar. We emphasize the importance of constructing
amplitudes as forms, as this is the first step to understanding amplitudes from the

positive geometry point of view.

4.1.1 Kinematic space

We begin by defining the kinematic space K, for n massless momenta p; for ¢ =
1,...,n as the space spanned by linearly independent Mandelstam variables in space-

time dimension D > n—1:
sij == (pi +pj)2 = 2p; - pj (4.1)

For D < n—1 there are further constraints on Mandelstam variables—Gram deter-
minant conditions—so the number of independent variables is lower. Due to the
massless on-shell conditions and momentum conservation, we have n linearly inde-

pendent constraints

Z s;j=0 fori=1,2,...,n (4.2)

=1 j#i

The dimensionality of kinematic space is therefore

dim KC,, = (") g Mn=3) (4.3)



Figure 4.1: Correspondence between a 3-diagonal partial triangulation and a triple
cut. Note that the vertices are numbered on the left while the edges/particles are
numbered on the right.

More generally, for any set of particle labels I C {1,...,n}, we define the Mandelstam

variable

Sy 1= <2p1> = Z Sij (4-4)

iel ijel; i<j
It follows from momentum conservation that s; = s7, where I is the complement of
I. For mutually disjoint index sets I3, ..., 14, we define sy,..;, := spu..ur,. We also

define, for any pair of index sets I, J:

s117 =2 (Zpi> : (ij> = > s (4.5)

el jeJ el jeJ
4.1.2 Planar kinematic variables

We now focus on kinematic variables that are particularly useful for cyclically ordered
particles. For the standard ordering (1,2,...,n), we define planar variables with

manifest cyclic symmetry:
Xij = Siit1,.j—1 (4.6)
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for any pair of indices 1 < i < j < n. Note that X,;;; and X, vanish. Given a
convex n-gon with cyclically ordered vertices, the variable X;; can be visualized as
the diagonal between vertices ¢ and j, as in Figure (left).

The Mandelstam variables in particular can be expanded in terms of these vari-

ables, by the easily verified identity:

Sij = Xijy1 + Xiv1j — Xij — Xit1j11 (4.7)

It follows that the non-vanishing planar variables form a spanning set of kinematic
space. However, they also form a basis, since there are exactly dim /C,, = n(n—3)/2
of them. It is rather curious that the number of planar variables is precisely the
dimension of kinematic space. Examples of the basis include {s := X3, 1= Xo4}
for n=4 particles and {s1o = X133, 523 = Xo4, 531 = X35, 5123 = X1,4, 5034 = Xo5} for
n=>s.

More generally, for an ordering a := (a(1),...,a(n)) of the external particles, we

define a-planar variables

Xa(i).a(j) 7= Sa(i).ali+1),..a(i—1) (4.8)

for any pair ¢ < j modulo n. As before, X,()a(i+1) and Xq(1),a(n) vanish, and the
non-vanishing variables form a basis of kinematic space. Also, each variable can be

visualized as a diagonal of a convex n-gon whose vertices are cyclically ordered by a.

4.1.3 The planar scattering form

We now move on to our main task of defining the planar scattering form. Let g denote

a (tree) cubic graph with propagators X;, ;. for a =1,...,n—3. For each ordering of

aJa
these propagators, we assign a value sign(g) € {£1} to the graph with the property

that swapping two propagators flips the sign. Then, we assign to the graph a dlog
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Figure 4.2: Two planar graphs related by a mutation given by an exchange of channel
X j — Xy jy in a four point subgraph

form:

n—3

sign(g) /\ dlog X;, j. (4.9)

a=1

where the sign(g) is evaluated on the ordering in which the propagators appear in
the wedge product. There are of course two sign choices for each graph. Finally, we

introduce the planar scattering form of rank (n—3):

n—3
Qn=3) .= Z sign(g) /\ dlog Xi, ;. (4.10)

planar g a=1

where we sum over a dlog form for every planar cubic graph g. Note that a particle
ordering is implicitly assumed by the construction, so we also denote the form as
Qm=3)[1,...,n] when we wish to emphasize the ordering. For n=3, we define 9510:)3 =
+1.

Since there are two sign choices for each graph, this amounts to many different
scattering forms. However, there is a natural choice (unique up to overall sign)

obtained by making the following requirement:

The planar scattering form is projective.
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In other words, we require the form to be invariant under local GL(1) transformations
X;; = A(X)X;; for any index pair (4, j), or equivalently s; — A(s)s; for any index
set I. This fixes the scattering form up to an overall sign which we ignore.
Projectivity is equivalent to the natural statement that the form only depends on
ratios of Mandelstam variables, as we can explicitly see in some simple examples for

n=4,5:

X
Q0 (1,2,3,4) = dlogs — dlogt — = — 9 _ d10g (;) — dlog (ﬁ) (4.11)
S

Q(Q)(]_, 2, 37 4, 5) = leg X174 A leg X173 + leg X173 AN leg X375 + leg X375 N leg X275
+ leg X275 VAN leg X274 + leg X274 A leg X174

X3 X3 X3 X
= dlog—= Adlo —+d1 —/\dl 4.12
B, ey, Taeey, A dlee T (4.12)

where we have written on the last expression for each example the form in terms of
ratios of X’s only. For n=6, the form is given by summing over 14 planar graphs

which can be expressed as ratios in the following way:

X X X X X

Q¥ = dlog 222 A dlog =22 A dlog =2 + dlog 225 A dlog 228 A dlog S48
=0 gX13 gX46 gX46 gX13 X13 gX35
X26 X25 X24 X24 X46 X26

— dlog =28 A dlog A dlog — dlog A dlog A dlog .
DA D S P LA

We emphasize that projectivity is a rather remarkable property of the scattering
form which is not true for each Feynman diagram separately. Indeed, no proper
subset of Feynman diagrams provides a projective form—only the sum over all the
diagrams (satisfying the sign flip rule) is projective. This foreshadows something
we will see much more explicitly later on in connection to the positive geometry

of the associahedron: the Feynman diagram expansion provides just one type of
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triangulation of the geometry, which introduces a spurious “pole at infinity” that
cancels only in the sum over all terms. But other triangulations that are manifestly
projective term-by-term are also possible, and often lead to even shorter expressions.

Projectivity can also be described equivalently by a simple sign-flip rule. We
say that two planar graphs g, ¢’ are related by a mutation if one can be obtained
from the other by an exchange of channel in a four-point sub-graph (See Figure .
Let X, ;, Xy ;» denote the mutated propagators, respectively, and let X;, ;, for b =
1,...,n—4 denote the shared propagators. Under a local GL(1) transformation, the

A-dependence of the scattering form becomes:

n—4
(sign(g) + sign(g')) dlog A A (/\ dlog Xibd‘b) + - (4.13)

b=1

where we have only written the terms involving the dlog of all shared propagators of
g and ¢'. Here sign(g’) is evaluated on the same propagator ordering as sign(g) but
with X, ; replaced by X . The form is projective if the A-dependence disappears,

i.e. when we have

sign(g) = —sign(g’) (4.14)

for each mutation.
The sign flip rule has several immediate consequences. For instance, it ensures

that the form is cyclically invariant up to a sign:

i—itl = QY 4 (—1)nB Qlnd) (4.15)

n

since it takes (n—3) mutations (mod 2) to achieve the cyclic shift. The sign flip

rule also ensures that the form factorizes correctly. Indeed, it suffices to consider the
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channel X ,, — 0 for any m = 3,...,n—1 for which

1,m dX m —m— —
Qm=9(1,2,... n) ﬁ’—_—m—>Q(m_3)(1,2,...,m—l,])/\%/\@m m=)([~ m,...,n),
1,m
(4.16)
where p; = —Z:.':llpi is the on-shell internal particle. General channels can be

obtained via cyclic shift.

Finally, for a general ordering « of the external particles, we define the scattering
form Q"=3[a] by making index replacements i — a(i) on Q0% which is equivalent
to replacing with a sum over a-planar graphs. Recall that a cubic graph is
called a-planar if it is planar when external legs are ordered by «; alternatively, we
say that the graph is compatible with the ordering. Projectivity holds regardless of

the ordering.

4.2 The kinematic associahedron

We introduce the associahedron polytope [21) 19, 20] and discuss its connection to the
bi-adjoint scalar theory. We begin by reviewing the combinatorial structure of the
associahedron before providing a novel construction of the associahedron in kinematic
space. We then argue that the tree level amplitude is the canonical form of the
associahedron, thus establishing the associahedron as the “amplituhedron” of the

(tree) bi-adjoint theory.

4.2.1 The associahedron from planar cubic diagrams

There are many beautiful, combinatorial ways of constructing associahedra; an excel-
lent survey of the subject, together with comprehensive references to the literature,

is given by [34]. In this section, we discuss one of the most fundamental descriptions
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T ™/

Figure 4.3: Combinatorial structure of the n=>5 associahedron (left) and the n=6
associahedron (right). For simplicity, only vertices are labeled for the latter.

of the associahedron which is also most closely related to scattering amplitudes. We
begin by clarifying some terminology regarding polytopes.

A boundary of a polytope refers to a boundary of any codimension. A k-boundary
is a boundary of dimension k. A facet is a codimension 1 boundary. Given a convex
n-gon, a diagonal is a straight line between any two non-adjacent vertices. A partial
triangulation is a collection of mutually non-crossing diagonals. A full triangulation
or simply a triangulation is a partial triangulation with maximal number of diagonals,
namely (n—3).

For any n>3, consider a convex polytope of dimension (n—3) with the following

properties:

1. For every d = 0,1,...,n—3, there exists a one-to-one correspondence between
the codimension d boundaries and the d-diagonal partial triangulations of a

convex n-gon.

2. A codimension d boundary F; and a codimension d+k boundary F, are adjacent
if and only if the partial triangulation of F, can be obtained by addition of k

diagonals to the partial triangulation of Fj.

110



In particular, the triangulation with no diagonals corresponds to the polytope’s inte-

rior, and:

The vertices correspond to the full triangulations. (4.17)

A classic result in combinatorics says that the number of full triangulations, and hence
the number of vertices of our polytope, is the Catalan number C,,_5 [46]. Any polytope
A, satisfying these properties is an associahedron. See Figure for examples.

We make a few observations that will guide us to finding the connection to am-
plitudes. Let us order the edges of the n-gon cyclically with 1,...,n, and recall

that:

d-diagonal partial triangulations of the n-gon are in one-to-one correspondence

with d-cuts on n-particle planar cubic diagrams. (See Figure d.1) (4.18)

The edges of the n-gon correspond to external particles, while the diagonals corre-
spond to cuts.

Furthermore, the associahedron factorizes combinatorially. That is, consider a
facet F' corresponding to some diagonal that subdivides the n-gon into a m-gon and
a (n—m+2)-gon (See Figure[4.11]). The two lower polygons provide the combinatorial
properties for two lower associahedra A,, and A, _,,.2, respectively, and the facet is

combinatorially identical to their direct product:

F Ay X Aymio (4.19)

We show in Section that this implies the factorization properties of amplitudes.
Finally, we observe that the associahedron is a simple polytope, meaning that

each vertex is adjacent to precisely dim .A,, = (n—3) facets. Indeed, given any asso-
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ciahedron vertex and its corresponding triangulation, the adjacent facets correspond

to the (n—3) diagonals.

4.2.2 The kinematic associahedron

We now show that there is an associahedron naturally living in the kinematic space
for n particles. The construction depends on an ordering for the particles which we
take to be the standard ordering for simplicity.

We first define a region A,, in kinematic space by imposing the inequalities

X;; >0 foralll<i<j<n (4.20)

Recall that X, 1, and X3, are trivially zero and therefore do not provide conditions.
Since the number of non-vanishing planar variables is exactly the dimension of kine-
matic space, it follows that A, is a simplex with a facet at infinity. This leads to
an obvious problem. The associahedron A,, should have dimension (n—3), which for
n > 3 is lower than the kinematic space dimension. We resolve this by restricting to

a (n—3)-subspace H, C K, defined by a set of constants:

Let ¢;j == X, ; + Xit1,j41 — Xij+1 — Xit1,; be a positive constant

for every pair of non-adjacent indices 1 <17 < j <n—1 (4.21)

Note that we have deliberately omitted n from the index range. Also, (4.7)) implies

the following simple identity:

Cij = —S8ij (422)

The condition (4.21)) is therefore equivalent to requiring s;; to be a negative constant
for the same index range. Counting the number of constraints, we find the desired
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X24

Figure 4.4: Kinematic associahedra for n=4 (top left), n=5 (top right) and n=6
(bottom).

dimension:
— N (n —
dim H,, = dim G, — " )2(” 9 3 (4.23)

Finally, we let A, := H, N A,, be a polytope. We claim that A, is an associahedron
of dimension (n—3). See Figure for examples. Recall from Section that the
associahedron factorizes combinatorially, meaning that each facet is combinatorially
the direct product of two lower associahedra as in . In Section we show
that the same property holds for the kinematic polytope A,,, thereby implying our

claim.
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Here we highlight the key observation needed for showing factorization and hence
the associahedron structure. Note that the boundaries are enforced by the positivity
conditions X; ; > 0, so that we can reach any codimension 1 boundary by setting some
particular X;; — 0. But then, to reach a lower dimensional boundary, we cannot
set Xy, — 0 for any diagonal (k,[) that crosses (i,7) (See Figure [4.5). Indeed, if we
begin with the basic identity with (4, 7) replaced by (a,b) and sum a,b over

the range i < a < j and k < b < [, the sums telescope and we find

X+ Xig = Xip + X5 — Z Cab (4.24)

i<a<j
k<b<l

forany 1 <17 < j <k <l <n. Now consider a situation like Figure (top) where

the diagonals X;; = 0 and X;; = 0 cross, then

Xik+Xii ==Y ca (4.25)

i<a<j
k<b<l

which is a contradiction since the left side is nonnegative while the right side is
strictly megative. Geometrically, this means that every boundary of A, is labeled
by a set of non-crossing diagonals (i.e. a partial triangulation), as expected for the
associahedron.

Let us do some quick examples. For n=4, the kinematic space with variables
(s,t,u) satisfies the constraint s + ¢ +u = 0 and is 2-dimensional. However, the
kinematic associahedron is given by the line segment 0 < s < —u where u < 0
is a constant, as shown in Figure (top left). For n=>5, the kinematic space is
5-dimensional, but the subspace H,_5 is 2-dimensional defined by three constants

C13, C14, C24. 1f we parameterize the subspace in the basis (X 3, Xj4), then the associ-
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Not allowed!

Figure 4.5: Planar variables X;; corresponding to crossing diagonals cannot be si-
multaneously set to zero.

ahedron A,,_5 is a pentagon with edges given by:

X3 =2 0 (4.26)
X35 = —Xiatceuteu>0 (4.27)
Xop = —Xigtcazt+cu=>0 (4.28)
Xoy = Xiu—Xi3+c3=>0 (4.29)
Xi4a 20 (4.30)

where the edges are given in clockwise order (See Figure (top right)). The n=6
example is given in Figure (bottom).
The associahedron A,, in kinematic space is only one step away from scattering

amplitudes, as we now show.

4.2.3 Bi-adjoint cubic scalar amplitudes

We now show the connection between the kinematic associahedron A,, and scattering
amplitudes in bi-adjoint scalar theory. The discussion here applies to tree amplitudes
with a pair of standard ordering, which we denote by m,,. We generalize to arbitrary
ordering pairs m|[a|f] in Section 4.2.4]

We make two claims in this section:
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1. The pullback of the cyclic scattering form Q"™ to the subspace H, is the

canonical form of the associahedron A,,.

2. The canonical form of the associahedron A, determines the tree amplitude of

the bi-adjoint theory with identical ordering.

Recall that the associahedron is a simple polytope, and the canonical form of a
simple polytope (See ) is a sum over its vertices. For each vertex Z, let X;_; =
0 denote its adjacent facets for a = 1,...,n—3. Furthermore, for each ordering of the
facets, let sign(Z) € {£1} denote its orientation relative to the inherited orientation.

The canonical form is therefore

n—3
QA,) = Z sign(2) /\ dlog X, ;. (4.31)
vertex Z a=1

where sign(Z) is evaluated on the ordering of the facets in the wedge product. Since
the form is defined on the subspace H,,, it may be helpful to express the X; ; variables
in terms of a basis of (n—3) variables like (4.68).

We argue that is equivalently the pullback of the scattering form (4.10)
to the subspace H,. Since there is a one-to-one correspondence between vertices 7
and planar cubic graphs g, it suffices to show that the pullback of the g term is the
Z term. This is true by inspection since g and its corresponding Z have the same
propagators X;, ;.. The only subtlety is that the sign(Z) appearing in is
defined geometrically, while the sign(g) appearing in is defined by local GL(1)
invariance. We now argue equivalence of the two by showing that sign(Z) satisfies
the sign flip rule.

Suppose Z, Z' are vertices whose triangulations are related by a mutation. While
mutations are defined as relations between planar cubic graphs (See Figure , they
can equivalently be interpreted from the triangulation point of view. Indeed, two

triangulations are related by a mutation if one can be obtained from the other by ex-
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Figure 4.6: Two triangulations related by a mutation X; , — X, (top) or equivalently
S1j — SJK (bOttOIﬂ).

changing exactly one diagonal. For example, the two triangulations of a quadrilateral
are related by mutation. For a generic triangulation of the n-gon, every mutation
can be obtained by identifying a quadrilateral in the triangulation and exchanging its
diagonal. In Figure (top), we show an example where a mutation is applied to the
quadrilateral (i, 7, k,[) with the diagonal (7, k) in Z exchanged for the diagonal (j,1)
in Z’. Note that we have implicitly assumed 1 < 7 < j < k < [ < n. Furthermore,

taking the exterior derivative of the kinematic identity (4.24) gives us
dXjp +dXiy = dXip +d X (4.32)

Note that the two propagators on the left appear in both diagrams, while the two

propagators on the right are related by mutation. It follows that

n—3 n—3
N dXi, . == )\ dXi . (4.33)
a=1 a=1
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The crucial part is the minus sign, which implies the sign flip rule:
sign(Z) = —sign(2’) (4.34)

We can therefore identify sign(Z) = sign(g). Furthermore, an important consequence

of (4.33)) is that the following quantity is independent of g on the pullback:
n—3
d" X := sign(g) /\ dXi, j. (4.35)
a=1
Substituting into (4.31)) gives

QA,) = ( Z %) d" X =m,d" X (4.36)

planar g Ha:l a,Ja

which gives the expected amplitude m,,, thus completing the argument for our second
claim. For convenience we sometimes denote the item in parentheses as Q(.A,,), called

the canonical rational function. Thus,

Let us do a quick and informative example for n=4. We use the usual Mandelstam
variables (s,t,u) := (X33, Xo4, —X13 — Xo4 = —ci13). Here u is a negative constant,
and the associahedron is simply the line segment 0 < s < —u in Figure (top left),
whose canonical form is

Q(Ay_y) = (1 _ ) ds — G 4 %) ds (4.38)

S S+ u

which of course is also the desired amplitude up to the ds factor. Now consider

pulling back the planar scattering form (4.11)). Since u is a constant on H,—, and
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s+t+wu =0, hence ds = —dt on the pullback. It follows that

1 1
Ul = (57 ) ds (139

which is equal to . We also demonstrate an example for n = 5 where the associ-
ahedron is a pentagon as shown in Figure (top right). We argue that the pullback
of determines the 5-point amplitude by showing that the numerators have
the expected sign on the pullback, namely d.X; 4dX; 3 = dX;3d X35 = dX35dXs5 =
dX95d X9 4 = dX54d X, 4. For instance, the identity X35 = —X; 4 + c14 + c24 implies
0(X14,X13)/0(X13,X55) = 1, leading to the first equality. We leave the rest as an
exercise for the reader. It follows that the pullback determines the corresponding

amplitude.

1 1 1 L !
Q| _< n + + + >d2X 4.40
n=5Hn=s Xi3Xia  X3sXi3  XiaXos XosXzs XouXos ( )

Of course, this is also the canonical form of the pentagon.

4.2.4 All ordering pairs of bi-adjoint cubic amplitudes

We now generalize our results to every ordering pair of the bi-adjoint theory. Given an
ordering pair «, 3, the amplitude is given by the sum of all cubic diagrams compatible
with both orderings, with an overall sign from the trace decomposition [I3] that we
postpone to Section and more specifically . Here we ignore the overall sign
and simply define m|«|f3] to be the sum over the cubic graphs.

We first review a simple diagrammatic procedure [I3] for obtaining all the graphs

appearing in m|a|f] as illustrated in Figure :
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Figure 4.7: Step-by-step procedure for obtaining the mutual cuts (3" picture) and
the mutual partial triangulation (4'") for («, 3) = (12345678|81267354). The first
three pictures are found in [13].

1. Draw n points on the boundary of a disk ordered cyclically by a.

2. Draw a closed path of line segments connecting the points in order 5. These

line segments enclose a set of polygons, forming a polygon decomposition.

3. The internal vertices of the decomposition correspond to cuts on cubic graphs

called mutual cuts.

4. The cuts correspond to diagonals of the a-ordered n-gon, forming a mutual

partial triangulation.

The cubic graphs compatible with both orderings are precisely those that admit
all the mutual cuts. Equivalently, they correspond to all triangulations of the a-
ordered n-gon containing the mutual partial triangulation. Conversely, given a graph
of mutual cuts or equivalently a mutual partial triangulation, we can reverse engineer

the ordering 3 up to dihedral transformation as follows:

1. Color each vertex of the graph white or black like Figure [4.§ so that no two

adjacent vertices have the same color.

2. Draw a closed path that winds around white vertices clockwise and black vertices

counterclockwise.

3. The path gives the ordering 8 up to cyclic shift. Changing the coloring corre-

sponds to a reflection.
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Figure 4.8: This mutual cut diagram gives rise to (a, f) = (12345678,81267354) by
the described rules.

The path gives the 8 up to cyclic shift. Swapping the colors reverses the particle
ordering. It follows that § can be obtained up to dihedral transformations.

We are now ready to construct the kinematic polytope for an arbitrary ordering
pair. We break the symmetry between the two orderings by using planar variables

Xa(i),a(j) discussed at the end of Section In analogy with (4.20)), we define a

simplex A[a] in kinematic space by requiring that:
Xa(iyay) = 0forall 1 <i<j<n. (4.41)

Similar to before, X ;) a(i+1) and Xq(1),a(n) vanish and therefore do not provide condi-
tions. We can visualize the variable X, .q(j) as the diagonal (a(i), a(j)) of a regular
n-gon whose vertices are labeled by a. Furthermore, we construct a (n—3)-subspace

H{a|B] of kinematic space by making the following requirements:

1. For each diagonal («(i), (7)) that crosses at least one diagonal in the mutual
partial triangulation, we require bu(i)a(j) = Xa@)a) > 0 to be a positive

constant.

2. The mutual triangulation (assuming d diagonals) subdivides the n-gon into
(d+1) sub-polygons, and we impose the non-adjacent constant conditions ({4.21))

to each sub-polygon.
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(a) (1234) (b) (1324) (c) (2134)
u < 0 const s > 0 const t > 0 const
dlog(s/t) dlogt dlog s

Figure 4.9: Three orderings for the n=4 kinematic polytopes. We assume the same
a = (1234) but different 5 (displayed above). Furthermore, we present the constant
and canonical form for each geometry.

For the last step, it is necessary to omit an edge from each sub-polygon when im-
posing the non-adjacent constants. By convention, we omit edges corresponding
to the diagonals of the mutual triangulation as well as edge n of the m-gon so
that no two sub-polygons omit the same element. A moment’s thought reveals
that there is only one way to do this. Finally, we define the kinematic polytope
Ala|f] := H[a|f]N Ala]. In particular, for the standard ordering o = § = (1,...,n),
we recover (Ala], H|o|f], Ala|f]) = (An, Hp,y Ay).

Let us get some intuition for the shape of the kinematic polytope. Clearly Afa|a]
is just the associahedron with boundaries relabeled by «. For general «, 3, we can
think of the mutual partial triangulation (with d diagonals) as a partial triangulation
corresponding to some codimension d boundary of the associahedron Afa|a]. Now
imagine “zooming in” on the boundary by pushing all non-adjacent boundaries to
infinity. The non-adjacent boundaries precisely correspond to partial triangulations
of the a-ordered n-gon that cross at least one diagonal of the mutual partial triangu-
lation. This provides the correct intuition for the “shape” of the kinematic polytope
Ala|f]. Said in another way, the polytope A[a|f] is again an associahedron but with

incompatible boundaries pushed to infinity.
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For n=4, the three distinct kinematic polytopes are shown in Figure For n=5,
consider the case («, ) = (12345,13245). The mutual partial triangulation consists
of the regular pentagon with the single diagonal (2,4) (See Figure (left)) with two
compatible cubic graphs corresponding to the channels (X34, Xo5) and (Xa4, X1.4).

The constants are given by

bl’g = Xl’g >0 (442)
b3’5 = X3’5 >0 (443)
Clqg = X1’4 -+ X275 — X274 >0 (444)

and the inequalities are given by

Xo4 2 0 (4.45)
Xo5 = 0 (4.46)
X4 > 0 (4.47)

Finally we plot this region in the basis (X34, X25) as shown in Figure where the
first two inequalities simply give the positive quadrant while the last inequality gives
the diagonal boundary X4 = c14 — Xo5 + Xo4 > 0.

Having constructed the kinematic polytope Al«|f5], we now discuss its connection
to bi-adjoint tree amplitude m|[a|5] (omitting the overall sign). We make the following

two claims in analogy to the two claims made near the beginning of Section

1. The pullback of the cyclic scattering form Q™3 [a] to the subspace H[a|p] is

the canonical form of the kinematic polytope A[«|f]. That is,

Q" Ia]| mias) = A(AlalB)) (4.48)
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Xos

Figure 4.10: The mutual partial triangulation for («, 5) = (12345, 13245) (left) and its
kinematic polytope (right). The faded area corresponds to the boundary at infinity.
The two vertices correspond to the two cubic graphs compatible with both orderings.

2. The canonical form of the kinematic polytope A[«|f] determines the amplitude

m[a|f]. That is,

Q(Alalf]) = m[a|f] (4.49)

The derivation is not substantially different than what we have seen before, so we
simply highlight a few subtleties. For the first claim, recall that the scattering form

is a sum over all a-planar graphs:

n—3
Q] = " sign(g) /\ d1og Xagi,) a6 (4.50)
a-planar g a=1

We claim that on the pullback to the subspace H[a|S], the numerator is identical and

non-zero for every (a, §)-planar graph g and zero otherwise:

_ n—3 d"3X if g is B-planar
sign(g) /\ dXa(in) a0, = (4.51)
a=1 0 otherwise
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The pullback therefore sums all the g-planar diagrams and destroys all other dia-

grams, thus giving the desired amplitude m[«a|f]:

_ 1 . .
Vel = | D s | O = mlal X (452
a=1 A(%a )2 Ja

(a,8)-planar g

As before, it can be shown that this is also the canonical form of the kinematic
polytope A[a|f]. The canonical forms for the n=4 examples are given in Figure 4.9]

The canonical form for the n=5 example in Figure [4.10] is

Q(A[12345’13245]) = legXZg)lengA+legX2’4d10gX174

1 1
= + ?X 4.53
(X2,5X2,4 X2,4X1,4) ( )

where we used the fact that d.Xs5dXs 4 = dX54dX; 4 on the pullback, which follows

from the 1dent1ty X174 = C14 — X275 + X274.

4.2.5 The associahedron as the amplituhedron for bi-adjoint

cubic theory

Let us summarize the story so far for the bi-adjoint ¢* theory. We have an obvious
kinematic space IC,, parametrized by the X;; which is n(n — 3)/2-dimensional. We
also have a scattering form Q"™ of rank (n—3) defined on this space, which for
n > 3 is of lower than top rank. This scattering form is fully determined by its
association with a positive geometry living in the kinematic space defined in the
following way. First, there is a top-dimensional “positive region” in the kinematic
space given by X;; > 0 whose boundaries are associated with all the poles of the
planar graphs. Next, there is a family of (n—3)-dimensional linear subspaces defined
by Xi; + Xit1,j41 — Xij+1 — Xit1; = ¢i;. With appropriate positivity constraints
on the constants ¢;; > 0, this subspace intersects the “positive region” in a positive
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geometry—the kinematic associahedron A,,. Furthermore, the scattering form Qi)
on the full kinematic space is fully determined by the property of pulling back to the
canonical form of the associahedron on this family of subspaces. Hence, the physics of
on-shell tree-level bi-adjoint ¢* amplitudes are completely determined by the positive
geometry not in any auxiliary space but directly in kinematic space.

Furthermore, there is a striking similarity between this description of bi-adjoint ¢?
scattering amplitudes and the description of planar A" = 4 super Yang-Mills (SYM)
with the amplituhedron as the positive geometry [22]. Indeed the general structure
is identical. There is once again a kinematic space, which for planar N' =4 SYM is
given by the momentum twistor variables Z; € P3(R) for i = 1,...,n, and a differen-
tial form Q4% of rank 4 x k (for N¥MHV) on kinematic space that is fully determined
by its association with a positive geometry. We again begin with a “positive region”
in the kinematic space which enforces positivity of all the poles of planar graphs via
(Z;Zi112;Z;11) > 0; however, also required is a set of topological “winding number”
conditions enforced by a particular “binary code” of sign-flip patterns for the mo-
mentum twistor data. This is a top-dimensional subspace of the full kinematic space.
There is also a canonical 4 x k dimensional subspace of the kinematic space, corre-
sponding to an affine translation of a given set of external data Z, in the direction of a
fixed k-plane A in n dimensions; this subspace is thus specified by a (44 k) x n matrix
Z = (Z,,A)T. Provided the condition that all ordered (4+k) x (4+k) minors of Z
are positive, this subspace intersects the “positive region” in a positive geometry—
the (tree) amplituhedron. The form Q) on the full space is fully determined by
the property of pulling back to the canonical form of the amplituhedron found on
this family of subspaces. Once again this connection between scattering forms and
positive geometry is seen directly in ordinary momentum twistor space, without any
reference to the auxiliary Grassmannian spaces where amplituhedra were originally

defined to live.

126



The nature of the relationship between “kinematic space”, “positive region”, “pos-
itive family of subspaces” and “scattering form” is literally identical in the two stories.
We say therefore that “the associahedron is the amplituhedron for bi-adjoint ¢® the-
ory”.

Of course there are some clear differences as well. Most notably, the scattering
form QU is directly the super-amplitude with the differentials dZ! interpreted as
Grassmann variables n!, whereas for the bi-adjoint ¢* theory we have forms on the
space of Mandelstam variables with no supersymmetric interpretation. While the
planar N = 4 scattering forms are unifying different helicities into a single natural
object, what are the forms in Mandelstam space doing? As we have already seen

in the bi-adjoint example, and with more to come in later sections, these forms are

instead geometrizing color factors, as established in Section [6]

4.3 Factorization and*“soft” limit

We now derive two important properties of amplitudes by exploiting geometric prop-

erties of the associahedron:
1. The amplitude factorizes on physical poles.
2. The amplitude vanishes in a “soft” limit.

We emphasize that both properties follow from geometric arguments. While ampli-
tude factorization is familiar, here it emerges from the “geometric factorization” of
the associahedron; and the vanishing in the “soft” limit is a property of the amplitude

that is made more manifest by the geometry than Feynman diagrams.
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4.3.1 Factorization

Recall from Section that the associahedron factorizes combinatorially, i.e. each
facet is combinatorially identical to a product of two lower associahedra (See (4.19)).
We now demonstrate this explicitly for the kinematic polytope A,, thus giving a
simple derivation of the fact that A, is indeed an associahedron. While (4.19)
is a purely combinatorial statement, we go further in this section and find explicit
geometric constructions for the two lower associahedra. We therefore say that A,
factorizes geometrically. Furthermore, we argue that geometric factorization of A,
directly implies amplitude factorization, so that locality and unitarity of the amplitude
are emergent properties of the geometry.

We rewrite the kinematic associahedron A, as A(1,2,...,7n) to emphasize the
particle labels and their ordering; we put a bar over index n to emphasize that the
subspace H,, is defined with non-adjacent indices omitting n (See ([4.21))). We make

the following observations:

1. Geometric factorization: The facet X, ; = 0 is equivalent to a product polytope
Aulx, ,—o & AL X Ag (4.54)
where

Ay = A(ii+1,...,j—1,1)

Arp = A(,...,i=1,1,j,j+1,...,7) (4.55)

and I denotes the intermediate particle. The cut can be visualized as the

diagonal (4, 7) on the convex n-gon (See Figure |4.11]).
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2. Amplitude factorization: The residue of the canonical form along the facet

X, ; = 0 factors:

Resx, —oQ(A,) = Q(AL) A Q(Ap) (4.56)

This implies factorization of the amplitude.

We first construct the “left associahedron” A; and the “right associahedron” Ag
by (4.55) as independent associahedra living in independent kinematic spaces. The
indices appearing in the construction are nothing more than well-chosen labels at this

point. To emphasize this, we use independent planar variables for Ay and Ag:

Ap ¢ Lgpfori<a<b<yj (4.57)

Ar ¢ Rypforl<a<b<mnexcepti<a<b<j (4.58)

The index ranges can be visualized as Figure where the “left” planar variables
L, correspond to diagonals of the “left” subpolygon, and likewise for the “right”.
Furthermore, the two associahedra come with positive non-adjacent constants [,
Tap, Tespectively. For [, the indices consist of all non-adjacent pairs a, b in the range
1 < a < b < j. For ry they consist of all non-adjacent pairs a,b in the range
(1,...,a—1,1,7,j+1,...,n—1).

We now argue that there exists a one-to-one correspondence:

ALX.AR%JAH

X;,;=0 (459>

We begin by picking a kinematic basis for Ay, consisting of L, variables corresponding
to some triangulation of the left subpolygon in Figure [4.11} and similarly for the R,
variables. The two triangulations combine to form a partial triangulation of the n-

gon with the diagonal (i, j) omitted. Each diagonal corresponds to a planar variable,
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thus providing a basis for the subspace H,|x, ,—o. Furthermore, we assume that the
non-adjacent constants match so that c,, = [y, for all [,,. As for ry,, we assume that
Cab = Tap for all 74, where a,b # I. Furthermore, 747 = >, . cax for all 7,;.

We then write down the most obvious map Ay x Ar — H,

X; ;=0 given by:

Xap = Lgy for all left basis variables L, (4.60)

Xop = Ry for all right basis variables R, (4.61)

)

Since the X, ; variables in the image form a basis for A, | X; =0, this completely defines
the map. We observe that X,;, = L,; holds not just for left basis variables, but for
all left variables L, ;. The idea is to rewrite L, in terms of basis variables and non-
adjacent constants. Since the same formula holds for X, ;, and the constants match
by assumption, therefore the desired result must follow. Similarly, X,; = R, holds

for all right variables Rq .

Now we argue that the image of the embedding lies in the facet A, |x, =0, which
requires showing that all planar propagators X, ; are positive under the embedding
except for X;; = 0. This is trivially true for propagators whose diagonals do not
cross (i,7), since either X, = Lyp or X,p = Rqp. Now consider a crossing diagonal

(k,1) satisfying 1 < i < k < j <[ <mn. Applying (4.24) with indices j, k swapped

and setting X; ; = 0 gives

Xy = Xpj + Xig + Z Cab (4.62)

i<a<k
7<b<l

Since X, ; is a diagonal of the left subpolygon and X ; is a diagonal of the right, they
are both positive. It follows that the right hand side is term-by-term positive, hence
our crossing term Xj; must also be positive, as claimed. We emphasize that X} ; is

actually strictly positive, implying that it cannot be cut. This is important because

130



Figure 4.11: The diagonal (4, 7) subdivides the 8-gon into a 4-gon (on the “left”) and
a 6-gon (on the “right”), suggesting that the facet X, 7 = 0 of the associahedron A,,_g
is combinatorially identical to A,—4 X A, —.

cutting crossing propagators simultaneously would violate the planar graph structure
of the associahedron. Finally, it is easy to see that this is a one-to-one map, thus
completing our argument for the first assertion (4.54)).

As an example, consider the n=6 kinematic associahedron shown in Figure 4.4
(bottom). Let us consider the facet X55 = 0 which by geometric factorization is a
product of 4-point associahedra (i.e. a product of line segments) and must therefore
be a quadrilateral. This agrees with Figure (bottom) by inspection. The same is
true for the facets X;4 = 0 and X34 = 0. In contrast, the facet X35 = 0 is given by
the product of a point with a pentagon, and is therefore also a pentagon. The same
holds for the remaining 5 facets.

The second assertion (4.56|) follows immediately from the first:

Resx, —oQ(A,) = Q(Aulx, —o) = QAL x Ap) = Q(AL) AQ(Ap)  (4.63)

where the first equality follows from the residue property ((P2) of Section , the

second from the first assertion (4.54) and the third from the product property (2.1)).
This provides a geometric explanation for the factorization of the amplitude first

discussed in (|4.16)).
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4.3.2 “Soft” limit

The associahedron geometry suggests a natural “soft limit” where the polytope is
“squashed” to a lower dimensional one, whereby the amplitude obviously vanishes.
Consider the associahedron A,, which lives in the subspace H,, defined by non-

adjacent constants c¢;;. Let us consider the “soft” limit where the non-adjacent con-

stants ¢;; — 0 go to zero for i = 3,...,n—1. It follows from kinematic constraints
that
n—1 n—1
X173 + X27n = S19 + S1p, = — ZSM = Z C1;y — 0 (464)
i=3 i=3

But since both terms on the left are nonnegative X 3, X5, > 0 inside the associahe-
dron, the limit “squashes” the geometry to a lower dimension where X; 3 = X5, = 0.
The canonical form must therefore vanish everywhere on H,,, implying that the am-
plitude is identically zero. Note that if we restrict kinematic variables to the interior
of the associahedron, then p; - p; — 0 for every i, yielding the true soft limit p; — 0.
A similar argument can be given to show that the canonical form vanishes in the
“soft” limit where ¢;,_1 — 0 for every « = 1,...,n—3. And by cyclic symmetry, the
amplitude must vanish under every “soft” limit given by s;; — 0 for some fixed index
7 and every index j # i—1,i+1.

Furthermore, given any triangulation of the associahedron A,, of the kind discussed
in Section [.4.4] every piece of the triangulation is squashed by the “soft” limit. It
follows that the canonical form of each piece must vanish individually.

The fact that the amplitude m,, vanishes in this limit is rather non-trivial from a
physical point of view. While the geometric argument we provided is straightforward,

there does not appear to be any obvious physical reason for it. It is another feature

of the amplitude made obvious by the associahedron geometry.
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As an example, the n=5 amplitude (4.40) vanishes in the limit ¢3,c14 — 0,
which can be seen by substituting the equivalent limits X;3 — X;4 — X4 and

X5 — Xo4 — X 4 directly into the amplitude (4.40)).

4.4 'Triangulations and recursion relations

Since the scattering forms pull back to the canonical form on our associahedra, it is
natural to expect that concrete expressions for the scattering amplitudes correspond
to natural triangulations of the associahedron. This connection between triangula-
tions of a positive geometry and various physical representations of amplitudes has
been vigorously explored in the context of the positive Grassmannian/amplituhedron,
with various triangulations of spaces and their duals corresponding to BCFW and “lo-
cal” forms for scattering amplitudes. In the present case of study for bi-adjoint ¢?
theories, we encounter a lovely surprise: one of the canonical triangulations of the
associahedron literally reproduced the Feynman diagram expansion! Ironically this
representation also introduces spurious poles (at infinity) that only cancel in the full
sum over all diagrams; also, other properties of the amplitude, such as the vanishing
in the “soft” limit discussed in Section [£.3.2] are also not manifest term-by-term in
this triangulation. We also explore a number of other natural triangulations of the
geometry that make manifest the features hidden by the Feynman diagram triangula-
tion. Quite surprisingly, some triangulations lead to even more compact expressions
for these familiar and already very simple amplitudes! Finally, we introduce a novel

recursion relation for amplitudes based on the factorization properties discussed in

Section [4.3.1]
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4.4.1 The dual associahedron and its volume as the bi-adjoint

amplitude

Recall that every convex polytope A has a dual polytope A* whose volume determines

the canonical rational function of A.

Q(A) = Vol(A*) (4.65)

Applying (4.65)) to our discussion implies that the canonical form of the associahe-

hdron A, is determined by the volume of the dual associahedron A:

Q(A,) = Vol(A?) (4.66)

But in the same way, the canonical rational function is determined by the amplitude

my, via (4.37)), thus suggesting that the amplitude is the volume of the dual:

my, = Vol(A”) (4.67)

This leads to yet another geometric interpretation of the bi-adjoint amplitude. For
the remainder of this section, we describe the construction of the dual associahedron
in more detail, and provide the example for n=>5.

We embed the subspace H, in projective space P"~3(R), and we choose a basis of

Mandelstam variables Xy jr, ..., Xy

it i _, to denote coordinates on the subspace:

33 In—

Y =(1,X

gl Xi € P"3(R) (4.68)

/ -/ )
n—3Jn—3

Here we have introduced a zeroth component “1” since the coordinates are embed-
ded projectively. Any other basis can be obtained via a GL(n—2) transformation.

Furthermore, we denote the facets of the associahedron in projective coordinates.
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Recall that every facet of A, is of the form X;; = 0. We rewrite this in the form
W;;-Y = 0 for some dual vector W; ;. For example, consider n = 5 in the basis

Y = (1,X173,X174). Then

Y - Was=Xos=cis+c1a —X13=(c13+c1s,—1,0)- Y (4.69)

which implies that Wa5 = (c13 + 14, —1,0). More generally, the components of any
W; ; can be read off from the expansion of X;; in terms of basis variables X ; and

non-adjacent constants. Here we present all the dual vectors for the n = 5 pentagon

in Figure (top right):

W1,3 = (Oa 1a O)
Wss = (c14+ 24,0, —1)
Was = (c13+ c1q,—1,0)

W2,4 = (Cl?n_lal)

Wis = (0,0,1) (4.70)

Once the coordinates for the dual vectors W; ; are computed, they can be thought of
as vertices of the dual associahedron A in the dual projective space. For n=>5, the

dual associahedron is a pentagon whose vertices are (4.70]) (See Figure 4.12)).

4.4.2 Feynman diagrams as a triangulation of the dual asso-

ciahedron volume

We now compute the volume of A* by triangulation in the manner described in Ex-
ample Let Z denote a facet of the dual A;. Then Z is adjacent to some vertices
X

Wiigs--oy Wi, ., corresponding to propagators X; in5in_3

1,010+ respeCtiVGly.

By taking the convex hull of the facet Z with W, and taking the union over all facets,
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Ws s Ws s

W1,3 W2,5 Wis W2,5

)

W274 W2,4
W1 4 Wl 4

) )

Figure 4.12: Two triangulations of the dual associahedron A _.

we get a triangulation of the dual associahedron whose volume is the sum over the
volume of each simplex. Recalling the formula for the volume of a simplex (3.125)),

we find

Vol(A47,) = Z Vol (W, Wi s - 7mn737jn73)
vertex Z
_ Z Slgn(Z) <W*Wi1,j1 e mn_g,jn_3> (4 71)
vertex Z <Y ) W*) HZ;?(Y ’ ma:ja)
where sign(Z2) is the orientation of the adjacent vertices Wi, ;,,..., W, ., . (in that

order) relative to the inherited orientation. Note that the antisymmetry of sign(Z7) is
compensated by the antisymmetry of the determinant (- - - ) in the numerator, and the
sum is independent of the choice of reference point W,. Furthermore, the sign(Z) here
is equivalent to the sign(Z) appearing in (4.31)) where Z denotes the corresponding
vertex of A,,.

We now argue that for an appropriate choice of reference point W, the Feynman
diagram expansion is term-by-term equivalent to the expression , where
each Z is associated with its corresponding planar cubic graph g. With the benefit
of hindsight, we set the reference point to W, = (1,0...,0), which is particularly

convenient because the numerators in (4.71]) are now equivalent for all Z. Indeed,
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since X;, ;, =Y - W,_ ., we have

510, ST GRS ' ‘
aEXi,m o Xe ) sign(2) fsign(Z)  (1.72)

g ., )
1:J1° n—3Jn—3

<W*Wi1,i1 e M/Yin73ajn*3> =

where the primed variables form the basis we chose back in (4.68)), and the second
equality follows from (4.33). This shows that all the numerators in (4.71)) are

equivalent to sign(Z’), which we set to one. Finally, substituting (Y - W,) = 1 and

(Y - Wi, .) = Xi,j. into (4.71) and replacing Z by g gives

Vol(Az) = > !

n—3
planar g Ha:l tasJa

(4.73)

which is precisely the Feynman diagram expansion (4.36)) for the amplitude. It

follows that the amplitude is the volume of the dual associahedron
Vol(A}) = Q(A,) = ms, (4.74)

of which the Feynman diagram expansion is a particular triangulation.

We point out that the Feynman diagram expansion introduces a spurious vertex
W.,, which term-by-term gives rise to a pole at infinity that cancels in the sum. From
the point of view of the original associahedron, this corresponds to a “signed” trian-
gulation of A, with overlapping simplices, whereby every simplex consists of all the
facets that meet at a vertex together with the boundary at infinity. The presence of
bad poles at infinity in individual Feynman diagrams that only cancel in the sum over
all diagrams bears striking resemblance to the behavior of Feynman diagrams under
BCFW shifts in gauge theories and gravity. There too, individual Feynman diagrams
have poles at infinity, even though the final amplitude does not, and this surprising
vanishing at infinity is critically related to the magical properties of amplitudes in

these theories. Indeed, the absence of poles at infinity in Yang-Mills theory finds a
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deeper explanation in terms of the symmetry of dual conformal invariance. It is thus
particularly amusing to see an analog of this hidden symmetry even for something
as innocent-seeming as bi-adjoint ¢* theory! Furthermore, the scattering form in
the full kinematic space is projectively invariant, a symmetry invisible in individual
diagrams. And the pullback of the forms to the associahedron subspaces are also
projectively invariant, with no pole at infinity. In Yang-Mills theories, we have dis-
covered representations (such as those based on BCFW recursion relations) that make
the dual conformal symmetry manifest term-by-term, and these were much later seen
to be associated with triangulations of the amplituhedron. Similarly, we now turn to
other natural triangulations of the associahedron which do not introduce new vertices
and thus have no spurious poles at infinity, thus making manifest term-by-term the

analogous feature of bi-adjoint ¢* amplitudes that is hidden in Feynman diagrams.

4.4.3 More triangulations of the dual associahedron

Returning to (4.71]), a different choice of W, would have led to alternative trian-
gulations, and hence novel formulas for the amplitude. For instance, for n=>5, we
can take the limit W, — Wj3. This Kkills two volume terms and gives a three-term

triangulation as shown in Figure (right):

X3+ Xops X3+ Xos  Xiz— Xia+ Xoy
Mp=5 + +

- 4.75
Xi13X35Xo5  X13X95X04 X13X24X1 4 (4.75)

Note that we have re-written the non-adjacent constants c;; in terms of planar vari-
ables via (4.21)). The sum of these three volumes gives the volume of the dual
associahedron, and hence the amplitude. Furthermore, since no spurious vertices are
introduced, the result makes manifest term-by-term the absence of poles at infinity.

This contrasts the Feynman diagram expansion where spurious poles appear term-
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by-term. Finally, this method of setting W, to one of the vertices can be repeated for

arbitrary n, and in general produces fewer terms than with Feynman diagrams.

4.4.4 Direct triangulations of the kinematic associahedron

Recall that canonical forms are triangulation independent. We now exploit this prop-
erty to compute the canonical form of the associahedron, thus establishing another
method for computing amplitudes.

We wish to compute the n=>5 amplitude for which the associahedron is a pentagon.
We choose the basis Y = (1, X3, X14), and triangulate the associahedron as the union

of three triangles ABC, ACD and ADE (See Figure 4.13)). It follows that

O(An_s) = Q(ABC) + Q(ACD) + Q(ADE) (4.76)

Note that the triangles must be oriented in the same way as the associahedron (clock-
wise in this case). Getting the wrong orientation would cause a sign error. The

boundaries of the triangles are given by W - Y = 0 for:

Wap =(0,1,0) Wpe = (c14 + c24,0, —1)
Wep = (c13+ ¢, —1,0)  Wpg = (c13,—1,1)  Waug =(0,0,1)

Wac = (0, —c14 — cos,c13+ c1a)  Wap = (0, —c14, c13 + C14) (4.77)
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B X5 C

Xo5

A X4 E
Figure 4.13: A triangulation of the associahedron A,_;

Recalling the canonical form for a simplex ([2.17)), we get

(X153 + Xo5)(X14+ X35)d2X

Q(ABC
( ) X1 3X35(X14X05 — X13X35)
Q(ACD) = (X134 Xo5)*(Xou — Xo5 + X3 5)d*X
Xos(—X14Xo5 — X13Xo4 + X13X05)(X1.4Xo5 — X13X55)
Q(ADE) = (Xi3 = Xia+ Xoa) (= Xou + Xiu + Xo5)d*X

X1,4X2,4(_X1,4X2,5 - X1,3X2,4 + X1,3X2,5)

QA,=5) = Q(ABC)+QACD) + Q(ADE)

where again we have rewritten the non-adjacent constants ¢;; in terms of planar
variables via (4.21)). The sum of these three quantities determines the amplitude.
This expansion is fundamentally different in character from the Feynman diagram
expansion due to the appearance of (non-linear) spurious poles that occur in the
presence of spurious boundaries AC and AD.

This approach can be extended to all n provided that a triangulation is known.
Two important properties of the bi-adjoint amplitude, which are obscured by indi-
vidual Feynman diagrams, become manifest in this triangulation. First, unlike that

for each Feynman diagram, the form for each piece of the triangulation is projective,
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which means it only depends on the ratio of X variables. Moreover, geometrically it
is obvious that the vanishing “soft” limit also works term-by-term, which is certainly

not the case for each Feynman diagram.

4.5 Vertex coordinates of the kinematic associahe-
dron

We now provide a recursive algorithm for deriving the vertices of the associahedron
A,,. Consider a vertex Z; corresponding to a triangulation of the n-gon. Our goal is
to work out all planar components X; ; of Z; in terms of the non-adjacent constants
ck- Our strategy is to compute the components one planar basis (i.e. a basis of
planar variables given by the diagonals of any triangulation) at a time by starting
with the basis where all components vanish, and applying a sequence of mutations.
Since every planar basis can be reached by such a sequence, this establishes a recursive
procedure for computing all planar components. It suffices then to discuss how the
components are related by mutation. Consider a mutation Z — Z’ like the one shown

in Figure (top) where X, mutates to Xj;. From (4.24) we find

Xjo = Xje + Xy — Xip + Z Cab (4.78)

1<a<j
k<b<l

which computes X;; from the basis of Z, thus completing the algorithm.
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Here we present the vertex coordinates for the kinematic associahedron A, —5 from

Figure (top right) in the basis Y = (1, Xi3, X14):

Z

Zp

(1,0,0)

(1,0, c14 + c24)

(1,c13 + cua, c1a + C24)
(1, c13 + c14, C14)

(]-a 13, 0)
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Chapter 5

The worldsheet

We have seen that scattering amplitudes can be thought of as differential forms on the
space of kinematic variables that pullback to the canonical forms of associahedra in
kinematic space. This is a deeply satisfying connection. After all, the associahedron
is perhaps the most fundamental and primitive object whose boundary structure
embodies “factorization” as a combinatorial and geometric property.

Furthermore, string theorists have long known of the fundamental role of the
associahedron for the open string. After all, the boundary structure of the open string
moduli space—the moduli space of n ordered points on the boundary of a disk—also
famously “factorizes” in the same way. In fact, it is well-known that the Deligne-
Mumford compactification [23, 24] of this space has precisely the same boundary
structure as the associahedron. The implications of this “worldsheet associahedron”
for aspects of stringy physics have also been explored in e.g. [47, [4§].

Moreover, from general considerations of positive geometries we know that there

13

should also be a “worldsheet canonical form” associated with this worldsheet associ-
ahedron, which turns out to be the famous “worldsheet Parke-Taylor form” [49] (for

related discussions see e.g. [48,[50]), an object whose importance has been highlighted
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in Nair’s observation [51] and Witten’s twistor string [5], and especially in the story of
scattering equations and the CHY formulas for scattering amplitudes [11], 12} 10} 13].

But how is the worldsheet associahedron related to the kinematic associahedron?
This simple question has a striking answer: The scattering equations act as a diffeo-
morphism from the worldsheet associahedron to the kinematic associahedron! From
general grounds, it follows that the kinematic scattering form is the pushforward of
the worldsheet Parke-Taylor form under the scattering equation map. This gives a
beautiful meaning to the scattering equations, and a quick geometric derivation of

the bi-adjoint CHY formulas. We now explain these ideas in more detail.

5.1 Associahedron from the open string moduli
space

Recall that the moduli space of genus zero My, is the space of configurations of
n distinct punctures on the Riemann sphere CP' modulo SL(2,C). The real part
Mo, (R) is the open-string moduli space consisting of all distinct points o; (i =
1,...,n) on the real line (and infinity) modulo SL(2,R). While there are n! ways
of ordering the ¢; variables, any pair of orderings related by dihedral transformation
are SL(2,R) equivalent. It follows that the real part is tiled by (n—1)!/2 distinct
regions given by inequivalent orderings of the o; variables [24]. The region given by
the standard ordering is called the positive part of the open string moduli space or

more simply the positive moduli space
Mg, ={o1 <02 <--- <0,}/SL(2,R) (5.1)

where the SL(2,R) redundancy can be “gauge fixed” in the standard way by setting

fixing three variables (01, 0,-1,0,) = (0,1, 00) in which case Mg, ={0 <0y <--- <

144



On—2 < 1}. Sometimes we also denote the space by Main(l, 2,...,n) to emphasize
the ordering. Furthermore, recall that Mg, can also be constructed as the (strictly)
positive Grassmannian G-((2, n) modded out by the torus action RZ,. More precisely,
we consider the set of all 2 xn matrices (C1, . .., C,,) with positive Pliicker coordinates
(ab) := det(C,, Cy) > 0 for 1 < a < b < n, modded out by GL(2) action and column
rescaling.

In analogy to what we did for the kinematic polytope, we make two claims for the

positive moduli space:

1. The (compactified) positive moduli space is an associahedron which we call the

worldsheet associahedron.

2. The canonical form of the worldsheet associahedron is the Parke-Taylor form,

- d*C,
WS | | | | a
“n vol SL +1 Oa — Oa+l vol [SL(2) ><GL a:l (aa+1) 2)

where in the last expression we rewrote the form in Pliicker coordinates.

More precisely, the process of compactification provides the positive moduli space
Ma“, , with boundaries of all codimensions, and here we present a natural compact-
ification called the wu-space compactification that produces the boundary structure
of the associahedron. Of course, the associahedron structure of the positive moduli
space is well-known [23], 24], but the discussion we present here is instructive for later
sections.

The compactification is very subtle in o; variables because our naive gauge choice
fails to make all boundaries manifest. Nonetheless, all the boundaries can be visu-
alized via a “blowup” procedure. Consider the case n=5 where only three of the
five boundaries are manifest in the standard gauge as shown in Figure [5.1. The
two “hidden” boundaries can be recovered by introducing a blowup at the vertices

(02,03) = (0,0) and (1,1) as shown in Figure 5.1} A similar procedure applies for all
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0 1 09

Figure 5.1: A blowup of the n=5 worldsheet associahedron showing all boundaries.

n. We will come back to this picture when we discuss the canonical form, but now
we provide an explicit compactification that makes manifest all the boundaries.

We introduce the variables w;; for 1 < ¢ < j—1 < n which are constrained to
the region 0 < w;; < 1. The w;; is analogous to the planar kinematic variable
X, ; introduced in ([4.6), and can therefore be visualized as the diagonal (i, ;) of a
convex n-gon with cyclically ordered labels like Figure (left). There are of course

n(n—3)/2 of these variables. Furthermore, we impose the non-crossing identity

U 5 = 1-— H Ukl (53)

(kD (i)

for each diagonal (7, j), where (7, )¢ denotes the set of all diagonals that cross (i, j).
Only (n—2)(n—3)/2 of these n(n—3)/2 constraints are independent, so the space is
of dimension (n—3). See [52] for a generalization of these identities.

Let us consider some examples. For n=4 we have two variables with one constraint
U3 =1—1us4 (5.4)
For n=>5 we have five variables satisfying the constraint

U3 =1—1uzy ugs, (5.5)
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and four others related by cyclic shift; but only three constraints are independent,
thus giving a 2-dimensional surface shown in Figure For n=6, there are two
types of constraints corresponding to two types of diagonals of the hexagon. Here we
present the constraints for the diagonals (1,3) and (1,4), and the rest are related via

cyclic shift.

Uz =1—1uzy Uss Usg Upga=1—1uzs Usp U35 Usg, (5.6)

This gives 6 + 3 = 9 constraints, but only six are independent.
The u-space provides an explicit compactification of the positive moduli space.
To see this, we begin by constructing a map from the positive moduli space MS” , to

the interior of u-space via the following cross ratio formula:

ws (0i —0j1)(oi1—0;) _ (ij=1)(i=1}) (57)

(0i —0o)(0icr —oj1)  (4)(i—17-1)

which has already been studied extensively in the original dual resonance model
(c.f. [53] and more recently in [54]). The map provides a diffeomorphism between the
positive moduli space and the u-space interior. Taking the closure in u-space thereby
provides the required compactification. Henceforth we denote u-space by MJ -

We now argue that the compactification ﬂgn is an associahedron. We begin by
showing that there are exactly n(n—3)/2 codimension 1 boundaries given individually
by w; ; = 0 for every diagonal (¢, 7). We then show that every codimension 1 boundary
“factors” like , from which the desired conclusion follows.

Clearly the boundaries of the space are given by w;; = 0 or 1. However, if
u;; = 1 then by the non-crossing identity we must have uy; = 0 for at least one
diagonal (k,1) € (4, 7). It therefore suffices to only consider u; ; = 0. We claim that

every boundary w;; = 0 “factors” geometrically into a product of lower-dimensional

147



worldsheets:

a(ivj)MO,n = MO,nL X MO,nR (58)
where
ot —t :
MO,”L = MO,nL (Z7 e ,]—1, ]) (59)
Ve t . :
Mo = Mopp(L,ooi=11,4,...,n) (5.10)

with I denoting an auxiliary label and (np,ng) = (j—i+1,n+i—j+1). Similar to
the geometric factorization of the kinematic polytope discussed in Section [.3.1], we
visualize the geometric factorization of the compactification as the diagonal (i, j) that
subdivides the convex n-gon into a “left” subpolygon and a “right” subpolygon as
shown in Figure m Furthermore, note that immediately implies that the
boundary is of dimension (n — 4) and hence codimension 1. From the o-space point
of view, the limit u; ; = 0 corresponds to the usual degeneration where the o, for
all @ =1,...,7—1 pinch together on the left subpolygon, and similarly the o, for all
a=j,...,n,1,...,12—1 pinch together on the right subpolygon.

To derive , let L, R denote the set of diagonals of the left and right subpoly-
gons, respectively. Then in the limit u; ; = 0, we get u;,; = 1 for every diagonal (k, )
that crosses (i,7). It follows that the constraints (/5.3]) split into two independent

sets of constraints, one for each subpolygon:
Left: Uy =1— H Upq | (k1) €L (5.11)
(p,g)€(k,l)sNL

Right: upi=1- [ g| (k1) ER (5.12)

(p.a)e(k,l)°NR
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Figure 5.2: The worldsheet associahedron for n=>5 presented in a coordinate chart
where all boundaries are manifest. We caution the reader that some coordinate charts
do not make manifest all the boundaries.

These provide precisely the constraints for the left and right factors Hof n, and M:{ _
thereby implying . We conclude therefore that the compactified space M; n 1S
an associahedron. As an example, the n=5 worldsheet associahedron is shown in
Figure

We now compute the canonical form. Since the worldsheet associahedron has the
same boundary structure as the kinematic associahedron, therefore its canonical form
should take on a similar form as . Indeed, let us work in the standard gauge
(01,0n-1,0,) = (0,1,00) where the moduli space interior is the simplex 0 < 0y <
03 < -+- < 0,_9 < 1. We now blow up the boundaries of the simplex to form an
associahedron polytope, in the manner discussed earlier. We assume that our blowup
is small of order €, with boundaries given by B;;(e;0) > 0 corresponding to the
diagonals (i,7) of the n-gon. The exact expression for B; ; is not unique; however,
since the boundary (7, j) corresponds to the limit where o;,0;41,...,0,_1 pinch, it
is thereby necessary that lim. o B; ;(¢,0) = 0;;-1. Now, we compute the canonical

form by substituting X, ; — B;; into (4.31)), then removing the blowup by taking
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the limit € — 0:

n—3
Q(H;Q = lg% Z sign(g) /\dlogBimja(e;cr) (5.13)
planar g a=1
n—3
= Z sign(g) /\dlogaimja,l (5.14)
planar g a=1

where we sum over all planar cubic graphs g, and for every g the (i,,j,) for a =
1,...,n—3 are the diagonals of the corresponding triangulation. The sign(g) is defined
by the sign flip rule as before. We caution the reader that the naive substitution
Xi; — u,; is incorrect; since the u; ; variables are constrained by non-linear equations
(i.e. the non-crossing identities ([5.3))), hence there is no known dual polytope with
boundaries u; ; > 0 whose volume takes the form (4.31]).

Furthermore, since the € — 0 limit reduces to a simplex, the canonical form must
also reduce to the form for that simplex, which we recognize as the Parke-Taylor
form (5.2)) given below. The particular way in which the simplex is blown up does

not matter, since they all reduce to the same geometry in this limit.

d" 3¢

o9(03—03) -+ (0p—a — 1)

QO (M{n) _ (5.15)
While (5.13) and (5.15)) look very different, their equivalence is guaranteed by the
geometric argument provided. In fact, the former can be thought of as a triangulation

(with overlapping pieces that “cancel”) of the latter.

Finally, we present ([5.13)) in a SL(2) invariant way:

n—3
Q (MJH) = Z sign(g) /\ dlog (Ui“’ja_l Tin Un_l’"> (5.16)

planar g a=1 O1,n=1 Oign Oja—1,n
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5.2 Scattering equations as a diffeomorphism be-
tween associahedra

We have now seen two associahedra: the kinematic associahedron A,, in kinematic
space KC,, and the worldsheet associahedron M{ ,, in moduli space M, ,,. Furthermore,
recall that the scattering equations [11] relate points in moduli space to points in
kinematic space. It is therefore natural to expect that the same equations should
relate the two associahedra. We begin by reinterpreting the scattering equations as
a map from moduli space to kinematic space, giving the scattering equation map.
We then make the striking observation that the scattering equation map acts as a

diffeomorphim between the two associahedra.

scattering equations

Mo, K, (5.17)

as a map

—-—+ scattering equations
My, A (5.18)

as a diffeomorphism

This has immediate consequences for amplitudes, including a novel derivation of the
CHY formula for bi-adjoint scalars and much more. But before jumping ahead, let
us establish the map.

Recall that the scattering equations [I1] read

n

50
B = U_0 fori=1,..., 5.19
| Z s or i n (5.19)
Jj=lg#e "
where 0, ; := 0; — 0, and only (n—3) equations are independent due to SL(2) re-

dundancy. It is convenient to first send o,, — oo so that by adding all Ey, F, ..., E.

together we find

Sij
Sc,e+l = — E Oc,c+1 . (520)
; 05
1<i<c g
c+1<5<n—-1
(4.9)#(c,e+1)
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for the range 1 < ¢ < n—2. Combining variables s..;; that have adjacent indices
and variables s;; that have non-adjacent indices (i.e. j—i > 1) gives us a formula for

every planar variable X, j:

5y (5.21)

Y

ab_ E Oa,j
J g;

1<i<a ] a<i<b Y 1<i<a 0]
a<j<b b<j<n b<j<n

whereby every index pair ¢, on the right hand side is non-adjacent with 7,5 #
n. This provides a remarkable rewriting of the scattering equations because every
Mandelstam variable on the right is a constant s;; = —c¢;;. Substituting the constants
and recovering the SL(2) invariance by rewriting the o variables as cross-ratios of

Pliicker coordinates gives

zb 1 in)(jn)(ab—1
Xap = Z c”~|— Z ;Cij‘{‘ Z Eij;((;n))éb— >cl-§5.22)

» .7) , In)
1<i<a a<i<b—1 1<i<a
a<j<b b<j<n b<j<n

Since the right hand side consists only of constants and o variables, this provides a
map o — X from moduli space to kinematic space (more specifically to the subspace
H,, when the o; variables are real), thus providing the scattering equation map that
we are after.

Let us look at the map more closely. First and foremost, every point X,; on the
image is manifestly positive when the o; variables are ordered since the constants
c;j > 0 are positive. It follows that maps the worldsheet associahedron M{ n
into the kinematic associahedron A,,.

Moreover, every boundary of the worldsheet associahedron (of any codimension)
is mapped to the corresponding boundary of the kinematic associahedron. Indeed,
consider a codimension 1 boundary u,; — 0. In this limit, the variables oy, ..., 051
all pinch to a point so that o;; — 0 for all @ < ¢ < j < b. By direct inspection of

(5.22) we find that X,, — 0 in this limit. It follows therefore that every boundary
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C — X1,3

O<oa<og<1

X14

)

Figure 5.3: Graphical evidence demonstrating that for n=>5, the interior of the world-
sheet associahedron is mapped diffeomorphically to the interior of the kinematic as-
sociahedron by the scattering equation map. Each contour line denotes a locus where
one of 09,03 is constant.

ugp = 0 of the worldsheet associahedron is mapped to the corresponding boundary
Xap = 0 of the kinematic associahedron. An extended statement holds for boundaries
of all codimensions. We say therefore that the scattering equation map preserves the
associahedron boundary structure. Furthermore, this suggests that every point on
the kinematic associahedron is reached by the map.

Finally, we make a numerical observation. For every point on the interior of the
kinematic polytope, exactly one of the (n—3)! solutions of the scattering equations
lies on the interior of the worldsheet associahedron. In other words, provided that
planar propagators s,..,—1 > 0 are positive and the non-adjacent constants s;; < 0
are negative, then there exists exactly one real ordered solution o; < --- < g,. We
have checked this thoroughly up to n=10 for a substantial amount of data. Note
that our kinematic inequalities are different from the ones introduced in [55] where
all solutions are real.

We conjecture therefore that the scattering equation map is a diffeomorphism from

the worldsheet associahedron to the kinematic associahedron. For n=>5, the scattering
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equation map is given by

o
X173 = —2(013 —f- 0'3614) (523)
03
1
X174 = 1 o ((0'3 - 0'2)024 + 0'3(1 — 0'2)014) (524)
— 02

In Figure [5.3] we present graphical evidence showing that these equations provide a
diffeomorphism.

Diffeomorphisms play an important role in the theory of positive geometries and
canonical forms. Recall from Heuristic that provided a diffeomorphism ¢ : A —

B between two positive geometries, the map pushes the canonical form of one to the

other:
A diffeomorphism ¢, B (5.25)
Q(A) pushforward by ¢, Q(B) (5.26)

Applying this to our scenario, we find that the scattering equation map pushes the

canonical form of the worldsheet associahedron to that of the kinematic associahedron.

YRS scattering equations
M., > A, (5.27)
’ as diffeomorphism
was pushforward by
0 (M0n> , Q(A,) (5.28)
’ scattering equations

But (5.15) and (E36) imply

WWS pushforward by mndn_3X (529)

scattering equations

It follows that the amplitude m,, can be obtained by pushing forward the Parke-
Taylor form via the scattering equations. Recalling the definition of the pushforward

as a sum over roots, we obtain the amplitude form by taking the Parke-Taylor form,
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substituting all roots of the scattering equations and summing over all roots.

> WS = m,d" X (5.30)

sol. o

For a general ordering pair «, 3, this generalizes to the following statement

> wSla] = mla|gld X (5.31)

sol. o

WS

» "] denotes the Parke-Taylor form for the ordering «, and the scattering

where w
equations are reinterpreted as a map M, — K, that restricts to a diffeomorphism
Ma Wla) = Ala|s], where ﬂ:{ .la] denotes the (compactified) a-ordered part of the
open string moduli space.

We caution the reader that the pullback of the right hand side in does not
produce the left hand side. Indeed, pulling back a canonical form does not necessarily
produce another canonical form. For instance, pulling back dlogy via y = 22 gives
2dlog x, which does not even have unit residue.

We observe that is reminiscent of the CHY formula for the bi-adjoint scalar.

Indeed they are equivalent, as we now show. We begin by rewriting our pushforward

in delta function form:

ma= [ ] [f[ 5(Xiwgs — ¢a<o>>] (5.32)

where the variables X, ; form a planar basis (corresponding to the diagonals of
a triangulation), and X;, ;, = ¢.(0) is the scattering equation map (5.22)). It is
necessary that the basis variables appear with unit Jacobian in the delta functions,
because m,, is obtained from Q(.A,,) by stripping away H;:f dsy,. In other words, the

delta functions must be normalized in the basis in which m,, is obtained from Q(A,,).
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Now we claim that (5.32)) is equivalent to the corresponding CHY formula:

My, CHY :Z/WXVS[U] [HZ (00— 0at1) H(S <Z oa—0b>

Here we have deliberately isolated the Parke-Taylor form and grouped the other

(5.33)

Parke-Taylor factor with the delta function. With a little bit of work, it can be
shown that the square bracket expressions in ([5.33) and are equivalent. Thus,
the second Parke-Taylor factor acts as a Jacobian factor for pushing forward onto
the subspace H,. More generally, a delta function dressed with an a-ordered Parke-
Taylor factor provides the pushforward onto the subspace H[a| defined in or

equivalently H [a|a] defined in Section It follows that

my = mmCHY (534)

We have thus provided a novel derivation of the CHY formula for the bi-adjoint
scalar. This derivation is purely geometric, and does not rely on the usual arguments
involving factorization.

Finally, we make a brief comment about all ordering pairs. In Section [4.2.4] we
obtained the partial amplitude m[«|S] from the pullback of the planar scattering form
Q=3[a] to the subspace H|a|B]. However, around we argue that the same
amplitude can also be obtained by pulling back the same form to a different subspace
H|[p]. Hence, the amplitude can be expressed as the integral of the a-ordered Parke-
Taylor form over the delta function dressed with S-ordered Parke-Taylor factor, which

is precisely the CHY formula. It follows that

mla|f] = meny|ald] (5.35)

for every ordering pair.
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Chapter 6

Color and kinematics

We explain a new manifestation of the color-kinematics duality. We begin by con-
sidering generalized scattering forms that apply to all colored/flavored amplitudes,
including gluons and pions. We find that projectivity of the form leads to many fur-
ther consequences in this generalized context. In particular, we find that they lead
to the well-known kinematic Jacobi relations, as well as the BCJ relations. In addi-
tion, we find a general duality between colored/flavored amplitudes and differential
forms on kinematic space, which relies on the curious observation that differential
forms satisfy a set of “Jacobi relations” analogous to the Jacobi relations satisfied by

structure constants.

6.1 The big kinematic space

*

., which is an extended version

We begin by constructing the big kinematic space K
of the usual kinematic space. The importance of the big kinematic space will become
clear when we introduce generalized scattering forms. Consider a set of abstract

variables S; indexed by all subsets I C {1,2,...,n} subject to two conditions,
e S; = S7 where I is the complement of |
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Figure 6.1: A four set partition Iy Ll Iy U I3 U I, of the external labels and the three
corresponding channels. The three graphs gs, g;, g, are identical except for a 4-point
subgraph.

e S;=0for |I|=0,1,n—1,n

For example, K} _, is a 3-dimensional space spanned by the variables

{512 = S347 513 = S24; 514 = 523} (61)

while K _; is a 10-dimensional space spanned by S;;’s, and K _; is a 25-dimensional

space spanned by 15 S;;’s and 10 S;;;’s. The dimension for general n is given by

dim K = 2"t —n—1 (6.2)

which for n > 3 is higher than the dimension n(n—3)/2 of the small kinematic space
IC,.. Nonetheless, the latter can be recovered by imposing a 7-term identity which we
now describe.

For every partition of n particles into four subsets

]1|_]]2|_|]3|_|I4:{172,"',n} (63)
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we impose the following identity consisting of 7 terms (See Figure :
Sni, + SI2I3 + 51113 =5n + 51, + SI3 + 51, (64)

where Sy := Spyy. We can visualize this identity as a triplet of cubic graphs which
are identical except for a four point subgraph, with the propagators on the left cor-
responding to the three channels of the subgraph, and the propagators on the right
corresponding to the four legs of the subgraph. See Figure for an illustration.
Moreover, recall that while is usually presented as a derived property of 4-point
kinematics, here we take a different point of view whereby the small kinematic space
IC,, is constructed by requiring as an “axiomatic identity” from which the usual

kinematic identities follow:

S; = Z Si; for all I; Z Si; =0 foralli (6.5)

i<j;i,jel J=Lj#i

We derive the first identity by induction on m = |I|, which is trivial for m < 2.
Now assume that the assertion has been proven for m < k, and |I| = k for some
index set I. We first isolate two elements a,b € I and define K := I'\{a,b}. Applying
to the partition I LI K U {a} LI {b} gives

Sap + Sarx + Spx = Sk + St (6.6)
where we used S, = S, = 0. It follows that

Sr =57 =Sw+ Sax + Sk —Sk= > Sy (6.7)

1<j; 1,J€1

where for the last equality we applied the induction hypothesis to each of the four

terms on the left hand side. This completes the derivation.

159



For the second identity in (6.5)), we apply the first identity to I for I := {i} which

gives

Y Su=85=8=0 (6.8)

a<b; a,b#i

Applying the first identity again to the full index set gives

> Sw=0 (6.9)

a<b

Subtracting from gives the desired result.

It follows therefore that the 7-term identity reduces the big kinematic space K to
the small kinematic space IC,,, in which case the abstract variables can be identified

with Mandelstam variables:
S;=sy foreach I (6.10)

For some purposes, we find it useful to study geometries and differential forms directly

in the big kinematic space prior to imposing the 7-term identity.

6.2 Scattering forms and projectivity

We introduce scattering forms as a generalization of the planar scattering forms from
Section to all cubic graphs. We then explore the implications of projectivity in
this general framework and discover Jacobi identities for kinematic numerators as a
direct consequence.

Before defining the scattering forms, we establish the properties of cubic graphs
from the point of view of the big space. Recall that a cubic graph ¢ consists of (n—3)

Mandelstam variables s;, corresponding to the propagators of the graph. Then the
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corresponding big S;, variables form a mutually compatible set, whereby any pair
of variables S; and S are said to be compatible if the index sets are either disjoint
INJ =0 or one is contained in the other. Furthermore, we define an ordered cubic
graph as a pair (g|a) consisting of a cubic graph g and an ordering « for the external
legs, assuming that g is compatible with a.

For every ordered cubic graph (g|a) with propagators S;,, we define a dlog form

n—3

Q09 (gla) = sign(gla) /\ dlog Sy, (6.11)

a=1

where sign(g|a,) € {£1} depends not only on the ordered graph but also on the
ordering of the propagators so that swapping two propagators changes the sign. The
antisymmetry of the sign is of course compensated by the antisymmetry of the wedge
product. Furthermore, we impose relations between the sign of different ordered cubic
graphs via a sign flip rule. Recall that two graphs g, ¢’ with the same ordering « are
related by a mutation if one can be obtained from the other by an exchange of channel
in a 4-point subgraph like Figure 1.2l We assume that planarity in the ordering «
is preserved by the mutation, so that only one mutation is possible in every 4-point
subgraph of any cubic graph. Furthermore, we say that two orderings «, o’ for the
same graph ¢ are related by a vertex flip if (g|a/) can be obtained from (g|a) by
exchanging two legs of a vertex (See Figure . Finally, we define the sign flip rule

by requiring a sign change for every mutation and every vertex flip.

Mutation: sign(g|a) = —sign(¢'|c) (6.12)

Vertex flip: sign(gla) = —sign(g|a) (6.13)
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Figure 6.2: A vertex flip at the red vertex

For a generic pair of ordered graphs (g|a), (g|3) related by a sequence of sign flips,

let flip(cv, 8) denote the number of flips involved (modulo 2) so that

sign(gla) = (=1)"*Psign(g|6) (6.14)

If we restrict o to the standard ordering, then the vertex flip is irrelevant and we
reduce to the sign flip rule for the planar scattering form . More generally,
we require the sign rule under vertex flip for any quantity @(g|«) labeled by ordered
cubic graphs. It follows that a product like Q(g|a)@Q’(g|a) of two such quantities
is independent of the ordering and can therefore be written in a condensed form
Q9)Q'(9).

We now define the scattering form for n particles as a rank (n—3) form on K of

the following form

QUIN] = Y N(glag)2" ) (glay) (6.15)

cubic g

where we sum over all cubic graphs ¢, and to every cubic graph we assign an ordering
a, and a kinematic numerator N(g|o,) which we assume to be independent of big

S variables. However, since every term is independent of the ordering «y, we can
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condense our notation as follows:

QUIN] = > N(g)Q" ) (g) (6.16)

cubic g

Furthermore, we consider projective scattering forms, which are scattering forms
that are invariant under local GL(1) transformations S; — A(S)S;. This imposes
constraints on the kinematic numerators which we now explain. Consider a triplet of
cubic graphs g¢s, g¢, g, like Figure [6.1] Under the transformation, the A-dependence

of the scattering form becomes

n—4

(N(gs| 11 Io1314)+N (ge| 1 s Lo I3)+ N (gu|[1131415)) dlog A A (/\ dlog SJb) +--(6.17)
b=1

where the S, denote the (n—4) propagators shared by the triplet, and the - - - denotes
similar expressions for all other triplets. Now, since the non-vanishing propagators are
independent in the big kinematic space, therefore the A-dependence vanishes precisely
if the coefficient of every triplet vanishes. This gives us (2n—>5)!!(n—3)/3 identities

(not all independent), one for each triplet, of the following form:
N(gs|11]213[4)—|—N(gt|11]4]2[3)—|—N(gu|11]3]412) =0 (618)

Note that we have explicitly written out the ordering for each graph which is impor-
tant for making sure that the three terms add. We refer to as a Jacobi identity
due to its similarity to the Jacobi identity for structure constants of Lie groups. It
follows that the scattering form is projective if and only if its numerators satisfy
Jacobi identities.

We make a few comments before providing examples. Note that is derived
without imposing the 7-term identity . This is crucial, as imposing the identity

would reduce us to the small kinematic space K, where the set of all propagators no
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longer forms a basis (although the set of all planar propagators does), in which case
we cannot require the coefficient of every triplet in to vanish. Furthermore,
the GL(1) transformation does not act on the kinematic numerators, which may
depend on usual kinematic quantities like (p; - p;), (& - p;) and (¢; - €;) that we assume
to be independent of big S variables. Nonetheless, we can define a similar local
GL(1) transformation acting directly on the small space via p; — \/W pi. It is
straightforward then to show that GL(1) invariance in the big space directly implies
GL(1) covariance in the small space, meaning Q[N]™~%)(s) — AP/2Q"=3)[N](s) where
D is the mass dimension of the numerators.

Let us consider some examples of projective scattering forms. The simplest case

is the a-planar scattering form

n—3
Q((;,_g)[a] = Z sign(g|a) /\ dlog Sy, (6.19)
a=1

a-planar g =

where we sum over all cubic graphs g compatible with the ordering «. For the
standard ordering this reduces to in the small kinematic space. In this case,
the kinematic numerator N(g|a) vanishes for any graph incompatible with «, and is
+1 otherwise. More specifically, for every triplet, either none of the three graphs is
compatible, or exactly two are. For instance, if the first two of the triplet g, g:, .

are compatible, then
N(gs|11[213.[4) = :l:l N(gt|11.[4]2[3) = :F]. N(gu|11]3[412) = 0 (620)

One way to generalize the planar scattering form without introducing any ad-
ditional structures such as spin or color is to drop the planarity requirement and
consider all projective scattering forms whose numerators are 0, &1. This provides a
large class of scattering forms called dlog scattering forms of which the planar case is

only one. Furthermore, as the planar form is closely tied to the geometry of the asso-
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ciahedron, many of these other forms are also closely tied to polytopes of their own
such as the permutohedron. We provide more details on this topic in the Outlook.

Furthermore, we point out that while planar forms have cyclic symmetry, it is also
possible to construct projective forms with permutation symmetry. As will be dis-
cussed in the next section, such scattering forms can be obtained from color-dressed
amplitudes that are permutation invariant, via an important connection between dif-
ferential forms and color. These include scattering forms for theories like Yang-Mills
and Non-linear Sigma Model, which we discuss in more detail in Section [6.0]

Last but not least, we state an important property for any projective scatter-
ing form. Since planar scattering forms are projective, it follows that every linear

combination of them is also projective:

QA= Y C(@)ly o] (6.21)

€S/ Zn
where the C(a) coefficients are independent of big S variables. Remarkably, the
converse is also true, i.e. every projective scattering form is a linear combination of
planar scattering forms. A detailed derivation is given in Appendix C of [1I], and the
upshot is that any projective scattering form can be expanded in terms of a basis of

(n—2)! planar forms,

Q)= Y () QYL R(2), . 7w (n—1),n). (6.22)

TESH—_2

6.3 Duality between color and form

We establish the duality between color factors and differential forms on kinematic
space IC,, by showing that the latter satisfy Jacobi relations similar to the usual
Jacobi relations for structure constants. This leads naturally to a duality between

color-dressed amplitudes and scattering forms.
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We begin by reviewing the algebra of color. Given an ordered graph we define a
color factor C'(g|a) by first drawing g as a planar graph whose external legs are ordered
clockwise by a (See Figure (left)). Then, for each internal and external line we
assign an index, and for each vertex v we assign a structure constant f®° ¢ where the
indices a,, b,, ¢, correspond to the three adjacent lines in clockwise order. Finally,
we obtain the color factor by multiplying the structure constants and contracting

repeated indices (which occur along internal lines). Hence,

Clgla) = [ ] £t (6.23)

v

where index contraction is implicitly assumed. The antisymmetry of the structure
constants implies the vertex flip sign rule ([6.24]) while the usual Jacobi identities for
the structure constants imply Jacobi identities for the color factors (6.25)) for any

triple like Figure 6.1}

Clgla) = (=1)"P@AC(g|p) (6.24)

C(gs|I1121314)+C(ge| 11 1412 13)+C (gu| 1 I31415) = 0 (6.25)

We now argue that a similar set of identities hold for differential forms on the
kinematic space K,. For every ordered graph (g|a) with propagators sy, for a =
1,...,n—3, we define the (n—3)-form

n—3

W(gla) = sign(gla) A dsi, (6.26)

a=1
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We claim that the form satisfies the vertex flip sign rule (6.27)) and the Jacobi identity

(6.28) in perfect analogy with color factors.

W(gla) = (=1 (g|8) (6.27)

W(gs|[112]3]4)+W(gt|]1]4Iz]3)—|—W(gu|]113]4]2) =0 (628)

The former follows from the sign(g|a) factor in  (6.26). The latter follows from

applying the 7-term identity (6.4) to the triplet gs, g, g, from Figure
dS[1]2 + dS[2[3 -+ d811[3 = d811 + dS[2 + dS[S + dS[4 (629)

Note that on the left the propagators correspond to the three channels of the triplet,
while on the right the propagators correspond to the legs of the 4-point subgraph.
Moreover, let s;, for b =1,...,n—4 denote the propagators shared by the triplet. It

follows that
n—4
(dsnp, + dspr, + dsn,) A /\ dsy, =0 (6.30)
b=1

where every term on the right hand side has vanished. In particular, external legs
vanish by on-shell condition while internal legs vanish since they already appear in
the product /\gz_fds J5,- The result is precisely the sought after Jacobi relation.

This implies a duality between color factors and differential forms on kinematic

space K,,:

C(gla) H W(g|a) (6.31)
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Figure 6.3: An example of the duality between color factors and differential forms

Hence “Color is Kinematics”. We emphasize that the 7-term identity is absolutely
crucial for this property to hold, thus providing one of the motivations for constructing
kinematic space K,, by the 7-term identity directly.

We provide some examples for low n. For n=4, there are three color factors dual

to 1-forms:

Cs _ fa1a2bfba3a4 RN ds
— aiaqb rbazas

C, = forasdy o dt
— aiasb rbasas

For n=>5, color factors are dual to 2-forms. Here we provide one example as illustrated
in Figure (6.3

Furthermore, the duality leads naturally to a duality between color-dressed
amplitudes and scattering forms. Consider a colored-dressed amplitude M,,[N] with

kinematic numerators N:

M, = 3 Nglag)Clgla,) [T + (632

cubic g Ieg

where we sum over all cubic graphs g, and s; for I € g denote the propagators in the
graph. We now map this amplitude to a form on kinematic space by applying ((6.31)

to each color factor individually, giving

Q"IN = 37 Niglay)W (glay) [T (633

cubic g Ieg
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which we recognize as a scattering form ((6.15) with S; — s;. Likewise, we can return

to the amplitude (6.32) by applying (6.31) backwards. Thus, the duality (6.31])
implies the duality (6.34)

M,,[N] & Q=3N] (6.34)

We henceforth refer to both dualities as color-form duality. Note that for any
permutation-invariant color-dressed amplitude, gives a scattering form that is
nicely permutation invariant. Furthermore, we comment on the role of projectivity.
Recall that the numerators N (g) satisfy Jacobi relations provided that the scattering
form Q"=3)[N](s) is derived from a projective form in the big kinematic space. The
dual amplitude M, [N] therefore admits an expansion with N(g) as BCJ numerators,
first proposed by Bern, Carrasco and Johansson in [14].

For the special case of bi-adjoint scalar with double color group SU(N) x SU(N).

The scattering form is obtained by simply choosing N(g) = C(g) for every graph g:

n—3
Q;g_?’) = Z C(glay) sign(glay) /\ dlog sy, (6.35)
cubic g a=1

which is both permutation invariant and projective. The corresponding double color-

dressed amplitude is given by

Mg, = Y C)Clo) (6.36)

6.4 Trace decomposition from scattering form

We explore color-form duality further by examining partial amplitudes and their inter-

pretation from the differential form point of view. We find that trace decomposition
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of color-dressed amplitudes are dual to pullbacks of the scattering form to appropriate
subspaces of dimension (n—3).

Recall that for the color groups U(N) and SU(N), the color factors can be de-
composed as traces from which partial amplitudes are obtained. More precisely, we

have

Clgla)= > (~)™@ITe(B(1),.... B(n)) (6.37)

Be0(9)/Zn

where O(g)/Z,, denotes all 22 orderings compatible with the graph g modulo cyclic
transformations. In other words, out of all (n—1)! distinct trace terms, the color factor
C(g|a) is expanded precisely in terms of those traces whose ordering is compatible

with the graph.

Substituting (6.37]) into (6.32)) for every graph g gives us the trace decomposition

for the amplitude:

M,[N]= > Tr(B(1),...,B5(n)M,[N; 5] (6.38)

BESh/Zn

where the partial amplitude M, [N; /3] is given by a sum over S-planar graphs:

i = Y Nald ]+ (6.39)

B—planar g Ieg

As an example, for n=4, the color factors decompose as

C,=Tr(1234) — Tr(2134) — Tr(1243) + Tr(2143) (6.40)
C,=Tr(1423) — Tr(4123) — Tr(1432) + Tr(4132) (6.41)
C,=Tr(1342) — Tr(3142) — Tr(1324) + Tr(3124) (6.42)
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where both the s and ¢ channels contribute to the ordering 5 = (1234), thus giving

N(s1234) | N(t[1234)

M,y|N;1234| =
4[ ) ] S n

(6.43)

We now argue that the partial amplitude (6.39) can be obtained by pulling back
the scattering form ((6.33)) to an (n—3)-dimensional subspace H[5] which we define

by imposing (n—2)(n—3)/2 independent conditions:
HI[B] == {spwps() is constant | 1 <i<j—1<n—2} (6.44)

This coincides with the subspace H, define in (4.21)) if 5 is the standard ordering
and the constants sg(;)s(;) are negative. Now for any graph g compatible with 3, we

define the pullback

dV [B] :== W(g|B)|up (6.45)

which is independent of the graph as shown around (4.35)) for the standard ordering.

More generally, for a pair of orderings «, 5, we have

(—1)fes(@B) gV (5] if g is compatible with 3
W (gla)|mig = (6.46)

0 otherwise

where the first line follows immediately from the definition , while the second
line requires a proof for which we provide a sketch. Our strategy is to argue by
induction on the number of particles, beginning with n=4 which can be verified
directly. For higher n, suppose g is a cubic graph that is compatible with o but not
with 3, and for simplicity let us assume that g is the standard ordering. We observe
that the graph must consist of at least one propagator of the form s;; where i < j

and ¢, j # n. If 4, j are non-adjacent, then ds;; = 0 on the pullback, and we are done.
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1 ‘ ‘ n
Figure 6.4: Multi-peripheral graph with respect to 1 and n for the ordering © € S,,_»

Otherwise, the propagator must be s, ;.1, giving W(g) = ds; ;41 AW'(g) for some form
W'(g). Since factors of ds; ;41 within W'(g) do not contribute, we can therefore think
of W'(g) as the form for a reduced graph ¢’ obtained from g by collapsing particles
i and i+1 into a single particle. But W’(g) vanishes by induction, thus completing
the argument. One subtlety of the last step is that the particle (i, + 1) is generically
off-shell with mass-squared given by s;;+1, which appears to violate the induction
hypothesis. But since factors of ds; ;11 are effectively zero, the induction still holds.
It follows that the pullback of the scattering form Q™= 3[N] to the subspace H[A]

gives the partial amplitude M, [N; 5]:

_ 1

QO[N] g = ( > N(QIB)H;) dV[B] = My[N; pldV[s]  (6.47)
B-planar g Icg I

Applying this to the planar scattering form Q((;;_S) [a] for the bi-adjoint scalar gives

us the double partial amplitude m[«|f]:
Quso] g = (= 1)@ malFldV (6] (6.48)

This is very different from (4.48) where the same amplitude was obtained by pulling
back to a different subspace H|[«|f5]. The advantage of the latter is that it provides a
geometric interpretation for the amplitude (form) as the canonical form of a positive
geometry as in (4.49). The former, however, can be applied to trace decompose any
colored tree amplitude.

Finally, we discuss the role of some well-known amplitude relations. Recall the

decomposition a la Del Duca, Dixon and Maltoni (DDM) [56] given in ([6.49), where g,
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denotes the multi-peripheral graph with respect to 1 and n for the ordering © € S,,_»

as shown in Figure [6.4]

M, [N] = Y Cl(galr) Mo[N;1,7(2),..., 7(n—1),1n] (6.49)

TE€Spn—2
It follows that the color-dressed amplitude can be expanded in terms of only (n—2)!
partial amplitudes of the form given in (6.49), which is more efficient than the
(n—1)!-term expansion of the standard trace decomposition. This also follows from
the Kleiss-Kuijf (KK) [57] relations. Furthermore, applying the color-form duality to

(6.49) gives an analogous identity for the scattering form

QU IIN] = Y Wgalm) Mu[N:1,7(2),...,7(n—1),n] (6.50)
TESp—2

Note that the expansion is unique both for the color-dressed amplitude and for the
form, since the multi-peripheral graphs g, form a basis. Furthermore, we find that
Bern-Carrasco-Johansson (BCJ) relations [14] follow from requiring the scattering

form to be projective, as discussed in Section [6.5
Last but not least, as we have discussed around , every projective form can
be expanded in a basis of (n—1)! planar scattering forms labeled by the orderings
7w € S,_2, and now we can spell out the coefficients. As shown in Appendix C of [I],

the coefficient for the 7 term is nothing but the kinematic numerator N (g|m):

QUIN] = 37 Ngalm) QG (1, 7(2), - ,w(n—1),m). (6.51)

TESn—_2

Note that (6.50)) and (6.51]) are complementary to each other. By the color-form

duality, the latter is equivalent to the well-known dual-basis expansion [58] of the

173



color-dressed amplitude:

M,[N] = Y N(ga|m)MZ[1,7(2),...,7(n—1),7] (6.52)

TESH_2

6.5 BCJ relations

We now argue that projectivity of the form implies that the partial amplitudes satisfy
kinematic Jacobi relations. A full derivation is given in Appendix C of [1]. Here we
simply present an example at n = 4, which suffices to demonstrate the structure of
the general argument.

We begin by writing down the n = 4 scattering form.

ds dt du

QW[N] = N,— + N,— + N,— (6.53)
S t U
N, N N, N,
= - (——t + —S) dt + (—“ - —3) du (6.54)
t S U S
= —M,y[N;1234]dt + My[N; 1243)du (6.55)

where Ny = N(s|1234), N; = N(t|1423) and N,, = N(u|1342). In the last expression,
we simply rewrote the form in terms of partial amplitudes. Under a local GL(1)

transformation, the form becomes

QW[N] — APPQWN] 4 AP (—tMy[N; 1234) + uMy[N; 1243]) dA  (6.56)

where D is the mass dimension of the numerator factors. The coefficient of dA vanishes

by the requirement of projectivity, from which the BCJ relations follow.

tM4[N; 1234] = uM,[N; 1243] (6.57)
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6.6 Scattering forms for gluons and pions

There are two prime examples of permutation invariant forms on kinematic space: the
scattering forms associated with the scattering of gluons in Yang-Mills theory, and of
pions in the Non-linear Sigma Model. Let us stress again the central novelty of this
claim: there is a differential form on the kinematic space, with coefficients that depend
on either momenta and polarization vectors (for Yang-Mills) or Mandelstam variables
(for the NLSM), which are fully permutation invariant with no fe¢ factors anywhere
in sight. Nonetheless, the geometrization of color discussed in the previous sections
tells us that these forms contain all the information about color-dressed amplitudes.

In fact more is true: the scattering forms for gluons and pions are remarkably rigid
objects. For gluons, we find that there is a unique differential form with the usual
minimal power-counting in momenta that is both gauge invariant and projectively
invariant. In particular, the permutation invariance need not be stipulated but is
derived. Similarly, the form for pions is the unique form where the requirement
of gauge invariance for each leg is replaced with that of the Adler zero in the soft
limit. Such “uniqueness theorems” have recently been established in [25], for partial
amplitudes from which the uniqueness of the full scattering form follows, provided
the crucial extra requirement of projectivity. We also show that these forms have a

natural pushforward origin from the worldsheet.

6.6.1 Gauge invariance, Adler zero, and uniqueness of scat-

tering forms for gluons and pions

We establish general conditions under which scattering forms for gluons and (two-
derivative-couple, massless) pions are unique. Consider general scattering forms
Q"3 and Q" for pure gluons and pure pions, respectively. For the gluons, we

gluon pion

require the kinematic numerators to consist of contractions in momenta p! and po-
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larizations ¢! with each polarization appearing exactly once; moreover we require the
expected power counting, which suggests in particular that there can be no more than
(n—2) contractions like (¢; - p;) in any term; finally, we require gauge invariance (i.e.
invariance under the shift /' — €/ + ap!’). For the pions, we require the numerators
to be polynomials of Mandelstam variables with the right power counting (i.e. with
degree (n—2) in Mandelstams), and the Adler zero condition (i.e. vanishing under
every soft limit p!' — 0). Finally, we assume that the forms are projective. We claim
that in both cases, the scattering form is unique up to an overall constant.

To derive these two claims, we decompose the scattering forms a la DDM ,
and denote the partial amplitudes for the ordering 7 € S, o as M&"%(7) and
MPen (), respectively, which are given by with appropriate numerators. Given

the linear-independence of the W (g,|m) factors, it is clear that each gluon partial am-

(n—3)

gluon. While each pion partial amplitude inher-

plitude inherits gauge invariance from 2
its Adler zero from Q;?(;l?’). However, the main result of [25] states that any expression
satisfying the assumptions of M&""(7) must be the Yang-Mills partial amplitude
MYM(7) up to a constant, and similarly any expression satisfying the assumptions of
MP*(7r) must be the Non-linear Sigma Model partial amplitude MNSM (7). Hence,
there exist constants a,, o for every 7 so that

Mgluon(ﬂ_) — aﬂ_Mg"M(ﬂ_) MPiOn(Tr) — OC;-M};ILSM(W) (658)

n n

Finally, recall that the partial amplitudes satisfy BCJ relations due to projectivity of
the form. It follows that the constants « := «, are identical for all = and likewise for

o/ := ol so that the scattering forms are unique up to a constant:

Q(n—g) -« Q%’}I\ZE}) Q(n_3) — O/ QI(\?L_S?\)/I (659)

gluon pion
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Note that projectivity plays a crucial role without which we could have put arbi-
trary constants on the right hand side of (6.50]), thus leading to a (n—2)!-parameter
family of solutions. Furthermore, permutation symmetry, unitarity and factorization
all emerge as natural consequences of gauge invariance/Adler’s zero and projectivity
(and some technical constraints on the numerators), even though none was assumed.

For all n, these forms can be obtained from the color-dressed amplitude by directly
applying the relation , thus establishing their existence. Here we give explicit

examples for n=4. The NLSM form reads:
Q(l) _ SN
NLsy = Stdlog (;)—tds—sdt (6.60)

which also equals (udt — tdu) = (sdu — uds) and is thus permutation invariant up

to a sign. We can express the YM form as a combination of two ¢?® forms:
Ol = N, dlog (;) + N, dlog (%) (6.61)
where Ny, N, are BCJ numerators for the s and w channels (see e.g. [59]).

6.6.2 Scattering forms from the worldsheet

We now discuss the worldsheet origin of projective scattering forms with YM and
NLSM as the primary examples. First we show that every projective scattering form
Q=3)[N] on K, can be obtained as the pushforward of an equivalence class of forms
wy[N] on the moduli space My ,,. In particular, the planar scattering form Qg;_g) [a]

is obtained by pushing forward the Parke-Taylor form w5[a].
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Recall that given any form w, (o) on moduli space, its pushforward is given by

substituting and summing over all solutions of the scattering equations

wio) = Y wio) (6.62)

Note that two forms w, and w] are pushed to the same forward if and only if they

are equivalent on the support of the scattering equations. We therefore “equate”

!/

' (o) that are equivalent on the support of the scattering

moduli space forms w,(0),w

equations for which

walo) = w(o) = ) walo) =) (o) (6.63)

We now wish to classify all forms on moduli space that pushforward to projec-
tive scattering forms. As discussed in Appendix C of [I], every projective form can
be expanded in a basis of (n—2)! planar scattering forms with coefficients given by

kinematic numerators for multi-peripheral graphs:

Q"SIN = Y N(ga|m)Ql V1, 7(2),... . 7(n—1),7] (6.64)

TI'ESn—Q

which can obviously be obtained by pushing forward the following form on moduli

space:

w[NT= D N(galm)wi¥S(m) (6.65)

ﬂ'€Sn72

In this way, we can construct a worldsheet form that gives any projective form as a

linear combination of Parke-Taylor forms with different orderings.
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Two important worldsheet forms are the YM and NLSM forms, which are deter-

mined by the corresponding CHY half-integrand. More precisely, we claim that

AN =3 dp, PR, QG = Y du det' A, (6.66)

sol. o sol. o

where dp,, := d"c/vol [SL(2)] and Pf'U,, and det’'A, are the reduced Pfaffian and
determinant (both permutation invariant), respectively, as defined in [12].

POV  getra, =

PV, = (—1)i+j
Ui,j g,

det |A,]:? -
= ———= forany 1 <i<j<n (6.67)

0]

Here U, (0, ¢€,p) is the 2n x 2n matrix built from polarizations and momenta

A —CT
U, = (6.68)
C B

where A, 4, Bap, Cop are n X n block matrices given by:

(

Bem g o4 wa oL}
Aa,b = “ Ba,b = o
0 a=>b 0 a=>b
; (6.69)
i‘;ﬁ a#b
Ca,b == o
- ZC#CL Ca,c a = b

\

An important property of these worldsheet forms is that, on the support of scattering
equations, Pf'W,, is manifestly gauge invariant [12] and det’ A,, has the Adler zero [60]:

PI'W, (" — ' + ap) = P, (") lim det’A, = 0 (6.70)

pf—>0

The uniqueness of the YM and NLSM forms under the conditions discussed above

implies that there is a unique equivalence class of worldsheet forms for each theory,
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which by (6.70) must be given by Pf'U,, and det’ A,,, respectively. Finally, it is well
known that both Pf'¥,, and det’ A, can be expanded in terms of Parke-Taylor forms

with coefficients given by BCJ numerators [13], which reaffirms the result already

found in (6.65)). For example, the n=4 forms are

24
det Aydpy = % — st (WS(1234) + WS (1324)) = st w}¥S(1423)
12~ 34

PfWdpy = Ny wis>(1234) — N, wyy®(1324)
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Chapter 7

The amplituhedron

The amplithedron was first introduced in [I7] as an independent, geometric formu-
lation of planar on-shell scattering amplitudes of A" = 4 super Yang-Mills. In Sec-
tion [7.1] we construct the amplituhedron as a positive geometry purely from a math-
ematical point of view, and postpone discussion of its relation to physics to Section [§
In Section[7.2] we give examples of the amplituhedron in the simplest cases. Through-
out subsequent sections, we develop various methods for computing canonical forms
of the amplituhedron, including contour integration on Grassmannians, Wilson loop

integrals, pushforwards, and volume integrals over dual geometries.

7.1 Properties of the amplituhedron

The amplituhedron is a special case of a more general construction called the Grass-
mann polytope [33]. Here we give an independent discussion.

Consider a n x (k+m) matrix Z. We assume that all ordered maximal minors of Z
are positive. In other words, we assume that the ordered rows of Z form the vertices
of a cyclic polytope. Moreover, we think of Z as a linear map Z : R” — R*¥*™ which
further induces a map that takes every linear subspace in R™ to a linear subspace

of the same dimension in R¥*™. We define the tree amplituhedron A(k,n,m) as the
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image of the Grassmannian G>(k,n) under Z,
A(k,n,m) := Z(Gso(k,n)) (7.1)

In particular, the tree amplituhedron for £ = 1 is a cyclic polytope in P™(R). Fur-
thermore, we define the L-loop amplituhedron as the image of the loop Grassmannian

G(k,n;1*) under Z,
Ak, n,m; 7)== Z(Gso(k,n; 7)) (7.2)

We also refer to this space more simply as the amplituhedron whenever the loop level
L is understood. In particular, the 0-loop amplituhedron is the tree amplituhedron.

We conjecture that the amplituhedron is a positive geometry. Proving this is a
subtle and outstanding problem; in particular, the existence of the canonical form has
not been established rigorously. Nonetheless, existence is well motivated by physics,
since the form directly determines scattering amplitudes as discussed in Section [§ A

more detailed description of the subtleties involved is provided in Section 6.6 of [2].

7.2 The tree amplituhedron for m = 1,2

By now there is a very solid understanding of the tree amplituhedron with m = 1,2
for any k£ and n, which we now discuss. Here we simply describe without proof some
simple triangulations of these amplituhedra, and give their associated canonical forms.
We let A := A(k,n,m) whenever k,n, m are understood. The results presented here
are also provided in [22]. For m = 1, see also [61].

In the m = 1 amplituhedron, Y/ is a k-plane in (k+1) dimensions with s = 1,..., k
indexing a basis for the plane and I = 0,...,k indexing the vector components in

(k+1) dimensions. We will triangulate by images of k—dimensional cells of G~ (k,n);
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in other words for each cell we will look at the image Y = Y"1 | Cyi(ou, ..., o) Z],

where aq, ..., q are positive A—like co-ordinates for that cell. For every collection
of k integers {i1,...,ix} with 1 <4y < iy < --- <ip <n— 1, there is a cell where
1 a =1
Cliid = & o a =i, +1 (7.3)

0 otherwise

with the positive variables ay > 0. In other words in this cell we have YSI = Zifs +
asZiIs 41

Geometrically, in this cell the k-plane Y intersects the cyclic polytope of external
data in the k 1-dimensional edges (Z;,, Zi,+1); - - - (Zi, Zi,+1). The claim that these
cells triangulate the m = 1 amplituhedron is then equivalent to the statement that
this amplituhedron is the set of all k-planes which intersect the cyclic polytope in pre-
cisely k of its 1-dimensional consecutive edges (i.e. an edge between two consecutive
vertices).

The motivation for this triangulation is given (together with associated new char-
acterizations of the amplituhedron itself) in [22]. For now we can at least show that

these cells are non-overlapping in Y space, by noting that in this cell, the following

sequence of minors

{(Y1),(Y2),--- . (Yn)} (7.4)

have precisely k sign flips, with the flips occurring at the locations (ig,is + 1) for
s =1,...,k. Since the sign patterns are different in different cells, we can see that
the cells are non-overlapping; the fact that they triangulate the amplituhedron is

more interesting and will be explained at greater length in [22].
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The k-form associated with this cell is

k
o (Y, 1
it zk}zz*<||dlogas) ||d10 ( ZS+> >> (7.5)
s=1

and the full form is

QA= > ot (7.6)

1< << <n—1
It is easy to further simplify this expression since the sums collapse telescopically.
For instance for kK = 1 we have
(Y,i1+1) (Yn)

dl =dl — 7.7
S on (Tyt) = aon (55 0
1<i1<n—1
Note the cancellation of spurious poles in the sum leading nicely to the final result.

The same telescopic cancellation occurs for general k, and for even k£ we are left with

the final form

dkx(k—i—l)y

UA) = T GL(k)

Z [17j1_17j17"'7jk/2_17jk/2] (78)
2<1—1<g1<-
<Jkj2—1<Jk2<n

while for odd k& we are left with

dkx(k+1)Y . . . ‘
Q(A) = Vol GL (k) Z 1, =151, Jk—1)2—1, Joe—1y/2, ] (7.9)

251G
<Jk-1)/2—1<Jk—1)/2<n—1

where the brackets denote

(Jo---Jr)
(Yio) - (Yj)

[jOajlv"wjk] = (710)
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for any indices jo, ..., Jx. The brackets satisfy

k .
(Vjs) | _ dty .
gdlog (<Yjs—1> - Vol GL(I{?) [.707]17"'7jk] (711)

Note that each bracket can be interpreted as a simplex volume in P¥(R) whose

Z

vertices are the Z; e, With Y the hyperplane at infinity. Note also that the

s s
combinatorial structure of the triangulation is identical to triangulation of cyclic
polytopes discussed in Section . Indeed, when (Yi) > 0 for each 4, the canonical
rational function can be interpreted as the volume of the convex cyclic polytope
with vertices Z. However, these conditions do not hold for Y on the interior of the
amplituhedron, since Y must pass through the interior of the cyclic polytope as it
intersects k 1-dimensional consecutive edges.

Starting with k& = 2, this is not a positively convex geometry (see Section 9 of [2]):
the form has zeros (and poles) on the interior of the amplituhedron. We can see this
easily for e.g. k = 2,n = 4. We have a single term with a pole at (Y2) — 0, so it is
indeed a boundary component, but it is trivial to see that (Y'2) can take either sign
in the amplituhedron, so the form has poles and zeros on the interior.

We now consider the case m = 2, and triangulate the amplituhedron with the
image of a collection of 2 x k dimensional cells of G~q(k,n). That is, for each cell we
look at the image Y] = > | Cyi(an, B, ..., o, B)Z]. Similar to m = 1, the cells
are indexed by {i1,...,ix} with 2 <1y < iy < - - <ix < (n—1). Now the C matrices

are given by

{il,...,ik} Qs Z = 2.S
cl = (7.12)
Bs 1=15+1

0 otherwise )
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In other words, in this cell we have Y = (=1)*"'Z{ + o, Z] +8,Z] ,,. Asform =1, it
is easy to see that images of these cells are non-overlapping in Y space for essentially

the identical reason; in this cell it is easy to check that the sequence of minors
{(Y12),(Y'13),...,(Y1In)} (7.13)

again has precisely k sign flips, that occur at the locations (is,is+ 1) for s =1,... k.

The 2k-form associated with this cell is

k
Qlinin})  — Z. (Hdlogozs d10g65>

s=1
(Y1i,) (Y10, + 1)
= dl dl —_
H o8 ( YZS) s + 1>) o (<Yis,is + 1))
dk (k+2)

where

[<(Yk 1)SIP1Q1T1> <Yk 1)5’“kaka> €s1-- sk]k
28 (Ypiqr) Yaqury) (Ypire) - - (Yoear) (Y aure) (Y per)

[P1,qus1; 5 P Gy TR) =
for any indices ps, qs,7s with s = 1,..., k and

(Y1) =Y, A---AY,

Sk—1

e (7.15)

As usual the full form arises from summing over the form for each piece of the trian-

gulation

QA) = > ot (7.16)

2<i1 < i <n—1
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In particular, for £ = 2, we have

Q(A2,2,n) = (YdV1)(Yd’Ys) x (7.17)
2
(Yi,i=1,0,041)  (Y1,5—1,5,5+1)
2 7 (Y10) (V1,i41) (Vi i41) (Y1) (Y1, j+1) (Y], j+1)

2<i<j<n—1

det

This is called the Kermit representation, and the summands [1,4,i+1;1, j, j+1] are
called Kermit terms. These are important for 1-loop MHV scattering amplitudes
whose physical amplituhedron A(0,n; L=1) is isomorphic to the amplituhedron
A(2,n,2).

Returning to general k, of course the form also has spurious poles that cancel
between the terms, though unlike the case of m = 1 it cannot be trivially summed
into a simple expression with only physical poles. However there is an entirely dif-
ferent representation of the form, not obviously related to the triangulation of the

amplituhedron, which is (almost) free of all spurious poles. This takes the form

dkk+2)y
~ Vol GL(k) ~
3 (YR =1, a0, i+ 1) - (YR )™ =1, i, it L) €5y sy (X1 - i)
Y X)TIE, (Vig, i +1)

Q(A) (7.18)

1<i1 << <n

Note the presence of a reference X’” in this expression, playing an analogous role to
a “triangulation point” in a triangulation of a polygon into triangles [X,i,i+1]. The
final expression is however X-independent. Note also that apart from the (Y X)) pole,
all the poles in this expression are physical.

This second “local” representation of the form €2(.A) allows us to exhibit some-
thing that looks miraculous from the trianguation expression: €2(.A) is positive when

Y is inside the amplituhedron, and so the m = 2 amplituhedron is indeed a positively
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convex geometry (see Section 9 of [2])! Indeed, if we choose X judiciously to be e.g.
X = (Z,Z;,1)" for some [, then trivially all the factors in the denominator are
positive. Also, (XZ;, ---Z;,) > 0 trivially due to the positivity of the Z data. The
positivity of the first factor in the numerator is not obvious; however, it follows imme-
diately from somewhat magical positivity properties of the following “determinants
of minors”. For instance for k = 2 the claim is that as long as the Z data is positive,

aai_lvivi—f_l a,j_l,j,j+1
det | ¢ a =0 (7.19)

for any a < b and ¢ < j. Similarly for k = 3,

(a,bi—1,ii+1) (a,b,j—1,7.7+1) (a,bk—1kk+1)
det <G,C,i—1,i,i+1> <a,C,j_1,j,j+1> <CL,C,/€—1,]€,/€+1> >0 (720)

(byc,i—1,ii+1) (be,j—1,5,7+1) (bek—1,kk-+1)

for any a < b < ¢;1 < j < k, with the obvious generalization holding for higher k.
These identities hold quite non-trivially as a consequence of the positivity of the Z
data.

The existence of this second representation of the canonical form, and especially
the way it makes the positivity of the form manifest, is quite striking. The same phe-
nomenon occurs for k = 1 and any m—the canonical forms are always positive inside
the polytope, even though the determination of the form obtained by triangulating
the polytope does not make this manifest. For polytopes, this property is made man-
ifest by the much more satisfying representation of the form as the volume integral
over the dual polytope. The fact that the same properties hold for the amplituhedron
(at least for even m) suggests that we should think of the “local” expression (|7.18))

for the form we have seen for m = 2 as associated with the “triangulation” of a “dual
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amplituhedron”. We will have more to say about dual amplituhedra in upcoming

work.

7.3 Grassmannian contours

We now discuss a novel method for computing canonical forms at tree level. The idea
is to take the ie contour prescription from Section for computing the k = 1 case,
and generalize to £ > 1. So far this approach has only been partially successful, and
here we describe both its successes and its difficulties, and we make a conjecture for
what a working prescription may look like.

We conjecture that the canonical rational function of the tree amplituhedron is

given by a contour integral of the following form,

1 dkan
Q(A) = kx(ktm) (y _ . 7 21
2UA) (2mi)kn=m=R) (m))* Jr. [T, Ci,i+1,-..,i+k715 ( ¢-2) (r4)

where the delta functions impose the usual Y = C-Z constraint while the measure over
C' is the usual cyclic Grassmannian measure on G>(k,n). The integral is performed
over some contour I' which we have yet to define. The ultimate goal of this program
is to identify a working contour.

For n = m+k, there is no contour and we trivially get the expected result. For
n = m-+k+1, we have naively guessed a contour that appears to work for even m
according to numerical computations. The idea is to simply change variables C' — ¢
so that for every Pliicker coordinate we have ¢;, ; = Cj,

. i, T 1€, i, for a small

11111

constant €, ; > 0. We will assume that Zl<i1<---<ik<n €iy.inZiy \ ...\ Z;, = €Y for
some € > 0 and define Y := (1 + €)Y (We are re-scaling Pliicker coordinates here,
not components of the matrix representation.) so we can re-express ¥ = C' - Z as

Y = ¢ Z as we did for the polytope. Again, we assume that Y is real and Y is
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slightly complex. We then integrate over the real part of c.

dkx(m+k+1)c

l / m+k+1 .
(2m2)*(m!) H [Ciit1,nith—1— 1€ it 1, ith—1]

g (Y — ¢ Z) (7.22)

X

QAY) =

After integrating over the delta function constraints, there are effectively only k in-
tegrals left to do. Conveniently, the poles appearing in the cyclic measure are linear
in each integration variable, and can therefore be integrated by applying Cauchy’s
theorem.

One obvious attempt for generalizing beyond n > m+k+1 is to impose the exact
same i€ deformation. However, after having integrated over the delta functions, the
cyclic minors are at least of quadratic order in the integration variables, thus mak-
ing the integral very challenging to perform (and possibly ill-defined in the small €
limit). It is therefore still a challenge to extend the contour integral picture to the
amplituhedron.

Despite the difficulty of extending the ie contour, our optimism stems from the
well-known observation that the canonical rational function of the physical amplituhe-
dron is given by a sum of global residues of the Grassmannian measure constrained
on Y = C - Z, which was observed in the study of scattering amplitudes. See for
instance [36] and references therein. It is therefore reasonable to speculate that a
choice of contour would pick up the correct collection of poles whose global residues
sum to the expected result, and that different collections of residues that sum to the
same result appear as different deformations of the same contour.

We expect these constructions to continue for the L-loop amplituhedron.
Namely, we expect that the canonical rational function of the L-loop amplituhedron
A(k,n,m;I*) to be given by a sum over global residues of the canonical form of the

L-loop Grassmannian G(k, k+m; %) constrained by Y = Z(C) for C € G(k, k+m; 1Y)
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and YV € A(k,n,m;I"). A non-trivial example for the 1-loop physical amplituhe-
dron A(1,6; L=1) is given in [3]. At higher loops, the canonical form of the loop

Grassmannian is only known partially.

7.4 Wilson loops and surfaces

Let us now consider yet another approach for computing the canonical form for k =
0,m =2 and L = 0. The idea is to extend the dual volume integral for polytopes as
described in Section to a surface integral whose boundary is a Wilson loop.
But let us begin by describing why the problem is challenging, returning to the
k = 1 polygon example for m = 2. Here we have a polygon whose vertices are Z/, and
the amplituhedron (a polygon) is just the convex hull of these vertices. Now for any k,
the co-dimension one boundaries of the m = 2 amplituhedron are W}’ := (Z;Z;, 1)1/,
which are 2-planes in (2+ k&) dimensions. Here the product Z;Z;.; is a wedge product,
so W1/ is alternating, and projectively can be thought of as points in A2R?* =2 RS or
IP5 when projectivized. Loosely speaking, we would like the dual amplituhedron to be
the “convex hull of the W//”. But there is a basic difficulty: while we can add vectors
(i.e. 1-planes) together to get other vectors, we cannot in general add k—planes to
get other k—planes. In the special case where k = 1, the W}/ = /7KW, are dual
to points Wk, and so can be added. Note of course that the W;g are just vertices of
the dual polytope. But for general k£, if a natural notion of the “dual” amplituhedron
is to exist along these lines we must learn how to deal with adding k-planes together.
We begin by noting that while we cannot add arbitrary 2-planes W!7 to get other

2-planes, adding two consecutive W’s does yield a 2-plane; to wit:

oW + W = [Zi(—aZi_y + BZi1)])" (7.23)
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(a) The standard measure on the Grassmannian G(k, k+m) is formed by
connecting the arrows on the left with those on the right in the most
natural way. Namely, for each blue node, the k£ outgoing arrows should
be connected with each of the k orange nodes.

i

-~

(b) The measure for ({AWWdW)y,...1,, ,. The index contractions are de-
fined graphically. In particular, we note that ~WI 7 should have 2 upstairs
indices and hence 2 outgoing arrows, while dW7, . j, should have k incom-

m

2k-2

ing arrows.
k 2k2
2k-2 k
k 2k-2
(c) Index contraction for the numerator of wy(Wi,...,W;Y'). For each

orange node, the k£ outgoing arrows should be connected with each of the
k purple nodes.

Figure 7.1: Diagrams representing tensor contractions. Each node denotes a tensor,
with each outgoing arrow denoting an upstairs index of the tensor, and each incoming
arrow denoting a downstairs index.
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For a, 8 > 0, this gives us a line from W,_; to W, within the Grassmannian. Thus
there is a natural “polygon” P in G(2, 2+k) with the vertices W7 joined consecutively
by line segments as above. Here we have not specified an interior for the polygon,
only its edges. In fact, since the embedding space G(2,2+k) has dimension greater
than 2 for k£ > 1, the polygon does not necessarily have a unique interior. We return
to this important point shortly.

Since our canonical form has rank 2 x &, it is natural to expect the “dual integral”
representation to be an integral over a 2 x k dimensional space. Given this canonical
one-dimensional boundary in G(2,2+k), a simple possibility presents itself. Consider
any 2-dimensional surface whose boundary is the one-dimensional polygon P. Now
consider any k of these surfaces ¥, for s = 1,--- , k, which may be distinct. Then we
would like to consider a k-fold integral over the space ¥ := 31 x - -+ x ¥. This gives
us a 2 X k dimensional integral as desired but appears to depend on the choice of ¥
for each s; our only hope is that the forms are closed (in each of the k£ components
independently) and thus the integral depends only on the (canonical) polygon P and
not on the particular surface spanning it. As we will see, the structure of this form is
essentially fixed by demanding that it is consistently defined on the Grassmannian,
and it will indeed turn out to be closed in each component independently.

Let us first recall what fixes the structure of forms on the Grassmannian
(see also the discussion in Appendix C of [2]). Consider first the Grassmannian
G(k, k+m) associated with a matrix Y! with s = 1,....,k and I = 1,---  k+m.
We can think of Y in a more GL(k) invariant way as a k—fold antisymmetric
tensor Y/l = sty Yo Tt is also natural to consider the m-plane
f{;l... T = EDyeIp o g, Y iIe - The Pliicker relations satisfied by Y are then contained
in the simple statement Y Yg,..;. = 0.

It will be convenient to introduce a graphical notation for the GL(k+m) indices

here. Each node represents a tensor; and for each tensor, an upstairs index is denoted
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by an arrow outgoing from the node and a downstairs index by an incoming one.
Then Y% is a node with k outgoing arrows and }711,“ 1,, 18 a node with m incoming
ones, as shown by the orange nodes in Figure

Now as discussed in Appendix C of [2], in order for a differential form to be well-
defined on the Grassmannian, it must be invariant under local GL(k) transformations,
Y! — LL(Y)Y!. We repeat the argument here from a graphical point of view. Since
dY — L((L7'dL)Y +dY’) under this transformation, we must have that the measure
is unchanged if we replace any single factor of dY! with any Y;!. This fixes the
standard measure factor (Y'd™Y) in projective space up to scale. Generalizing to the
Grassmannian, we are looking for a k x m form. It is natural to consider the GL(k)
invariant k-form (d*Y)""Ix defined as minors of the matrix of dY’s, or (d*Y)/1 1k .=
e sedy e dY k. For local GL(k) invariance, every leg of (d¥Y’) must be contracted
with some Y, so that the replacement dY; — Y;! vanishes by Pliicker. Thus there
is a natural £ x m form on the Grassmannian, whose diagram is a complete graph
connecting m factors of (d*Y") on one side, and k factors of Y on the other side, as
in Figure It is easy to see that in the standard gauge-fixing by GL(k) where a
k x k block of the matrix representation of G(k, k+m) is set to the identity, this form
is simply the wedge product of the remaining variables. Any top-form on G(k, k+m)
is expressible as this universal factor multiplied by a GL(k) co-variant function of the
Y’s with weight —(k+m).

We now use the same ideas to determine the structure of the 2k-form on ». Let
us start with the case £ = 2. We are looking for a 4-form that is the product of two
2-forms, on the space of W{/ and WJ”. Here the subscripts 1,2 index the integration
variables, not the vertices W;; the distinction should be clear form context. By the
same logic as above, we will build the form out of the building blocks (dWWdW);;
(see Figure [7.1D]), which are invariant under local GL(2). We then find a form with
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appropriate weights under both the W and Y rescaling, given by

(dL@}L@&dL@&) (dvigvvgdvig) YIKyJL
~IJ _ KL
(Wy-Y)3(Wy-Y)3

wi=2 (W1, Wa;Y) = (7.24)

We then claim that the canonical rational function for the m = 2, k = 2 amplituhedron

can be expressed as

QA2,2,m))(Y) = / a (W1, Wi V) (7.25)

21 XEQ

For general k& we will have k factors of (W -Y)3 in the denominator, thus to
have the correct weight —(2 + k) in minors of Y, we have to have 2k — 2 factors

of Y upstairs. Now the objects (dWsWstVi) 1. each have 2k — 2 incoming ar-

Iap—2
rows (as in Figure [7.1b)), while every Y/1Ir has k outgoing arrows. We can thus
express wi (W1, -+, Wy;Y) graphically as the complete graph linking the & factors of
(AWWdW) on one side and the (2k — 2) Y’s on the other, as shown in Figure .

We then claim that

QM%Z@MOZmey“M@W (7.26)

These expressions indeed reproduce the correct canonical rational function for the
m = 2 amplituhedron for all £. Let us illustrate how this works for the case of
k = 2. A straightforward computation shows that the form wy—o(W;, Ws;Y') is closed
in W;, W, independently; indeed it is closed even if the W/7 are not constrained by
the Pliicker relations, and can be thought of as being general points in P5. Thus
the result of the integral is independent of the surface ¥, provided that 9%, = P for
each s. We will thus construct each surface ¥, by triangulating it like the interior
of a polygon. We begin by picking an arbitrary reference point X’“, and taking the

triangle in P° with vertices X, W;_1, W;, which we denote by [X, W;_;, W;]. It follows
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that the union U, [X, W;_1, W] forms a surface with boundary P, so we will take it
to be our definition of X, for each s.
Suppose we integrate over the triangle pair (Wp,Ws) € [X, W1, W;] x

(X, W;_1,W;]. We can parametrize the triangle pair by

W1 = X+ qui_lZZ» + /BlZiZiH (727)

W2 = X + ang_le + BQZij—&-l (728)

where a9 > 0; 812 > 0.
The only non-trivial part of the computation is working out the numerator index

contraction in ((7.24)). After a series of index gymnastics, we get for each i, j:

ey (M (i,4) + Nai, 5))dPad?B
T 2((YX) o (Yie1,0) 4 By (Vi i+1))? (YX) + o (Yi—j,§) + B (Y], j+1))°
(7.29)
where
M(i,7) = (YX)(Xij) (Y(i—1,i,i4+1) N (j—1, 4, j+1)) (7.30)
No(iy§) == —(Y(i—=1,i,i+1) N (X)) (Y (j—1,7,j+1) N (X))  (7.31)

where (Y (abe) N (def)) := (Yiabe) (Yadef) — (Y1 < Ys) for any vectors a, b, ¢, d, e, f.

Integrating over a2 > 0; 812 > 0 and summing over all ¢, j gives us

n

/E“’“ZQ =52 (YX) (Yi—1,i) (Yi,i+1) (Vi—1,5) (Y3, j+1) (732)

ij=1

This is one of several local expressions for the canonical rational function Q(.A(2,2,n)).
That is, there are no spurious singularities, except at (Y X) — 0. Interestingly, if we

keep only one of the numerator terms N7, N, then the result would still sum to (half)
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the correct answer. Perhaps some clever manipulation of the integration measure
would make this manifest. If we only keep the first numerator, then we recover the
local form given in (|7.18]).

It is possible, through a clever choice of the surface Y, to recover the Kermit rep-
resentation of the canonical rational function. While the equivalence between
the Kermit representation and the local form appears non-trivial as an algebraic
statement, it follows easily from the surface-independence of the integral.

This computation can be extended easily to higher k. Furthermore, since the
surfaces X, ..., Y are independent, it is possible to have picked a different X for

each surface, giving a local form with arbitrary reference points Xy, ..., Xj.

7.5 Pushforwards

We present a pushforward prescription for computing canonical forms of amplituhe-
dra similar to the kind described in Section for computing canonical forms of
polytopes. In particular, We conjecture that the canonical form can be formulated

as a pushforward from the standard simplex.

Conjecture 7.5.1. Given a morphism ® : AP — A(k,n,m;1") from positive coor-

dinates to the amplituhedron, the amplituhedron form is given by the pushforward

Q(A(k,n,m; %)) = @, (H d;f) (7.33)

a=1

where D is the dimension of the amplituhedron.

While this is nothing more than a direct application of our favorite Heuristic [2.3.1],
we emphasize that it is in general very challenging to construct diffeomorphisms
between the simplex and amplituhedra. In this section, we let A := A(k,n, m;I").

Before providing explicit examples, we reformulate our conjecture in terms of the
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canonical rational function Q(A)(Y) of the amplituhedron, as defined in Appendix C
of [2.

Conjecture 7.5.2. Given a morphism ® : AP — A(k,n,m;1) from positive coor-

dinates to the amplituhedron, the amplitude is given by:

dP X

- [ e (7.34)

2(A)(Y)

for any point Y € A. For computational purposes, Y and ®(X) are represented as

matrices modded out by a left group action, as discussed below ([2.70)).

The delta function §2(),)”) is the unique (up to an overall normalization) delta
function on G(k, k+m;(") that is invariant under the group action G(k; k) (defined
below on )’ and scales inversely as the measure (C10) of [2] under the same
group action on Y. The inverted scaling ensures that the canonical form is locally

invariant under the action.

Example 7.5.3. For k =1 and m = 4, the physical tree amplituhedron A is a convex
cyclic polytope with vertices Z; € P*(R). Morphisms @ : (P4, A1) — (P4, A) are given

by convex cyclic Newton polytopes from (3.53), and the amplitude is given by:

QA)(Y) = / #f%w;w» (7.35)

where Y € P* and the delta function is given in ([3.59)) with m = 4.

We now provide some examples for k = 2,m = 2,1 = 2, L. = 0. While we do
not have a complete construction of such morphisms for all n, we did find a few
non-trivial examples for small n. We stress that the existence of such morphisms is
an absolutely remarkable fact. We also speculate that a complete understanding of

morphisms to the tree amplituhedron may provide insight on extending toric varieties
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to the Grassmannian, as morphisms to the polytope were given by projective toric
varieties.
Let us begin by clarifying the pushforward computation, which for the present

case is given by:

Q@@—i/——ﬁﬂz——ﬁﬁﬁéLXD (7.36)
= ) XX Xs X, ’ ‘
where

4 Ve _l/ d2><2p 2x4 PN v/

YY) =1 (detp>25 Y —p-Y (7.37)

is the delta function that imposes the constraint Y = Y for any pair of 2 x 4 matrices
Y, Y’ where the tilde indicates that the two sides are only equivalent up to an overall
GL(2) transformation. The p is a 2 x 2 matrix that acts as a GL(2) transformation
on Y’ from the left, and the d**?p/(det p)? measure is GL(2) invariant in p both from
the left and the right. We see therefore that the delta function has GL(2) weights
(—4,0) in (Y, Y”), as expected.

Ezample 7.5.4. Consider the amplituhedron for (k,m,n,l, L) = (2,2,4,2,0), which is

simply

A=1{C-ZeG2,4)|C e G0(2,4)} (7.38)

where Z is a 4 x 4 matrix with positive determinant. Since Z is non-singular, A is iso-
morphic to G>¢(2,4). A (degree-one) morphism from (P4, A*) to the amplituhedron

is therefore:

1 X, 0 —X,

C(X) = (7.39)
0 X, 1 X

d(X) = C(X)-Z (7.40)
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sending the interior Int(A%) (where X; > 0 for i = 1,2,3,4) to the interior of the

amplituhedron. Substituting into ([7.36)) gives:

0(A) = (1234)?

1
T 4(V12) (Y23) (V34) (Y14) (7.41)

Example 7.5.5. We now move on to the first non-trivial example beyond the polytope.

Consider the same case as Example but now with n = 5. The amplituhedron is
A=1{C-ZeG2,4)]C e G0(2,5) (7.42)

with all the maximal ordered minors of Z positive. The interior of this amplituhedron
has no obvious diffeomorphisms with the interior Int(A%) of the 4-simplex. But we

have managed to stumble across a few lucky guesses, such as the following:

I X X1Xy Xo 0

c(X) = (7.43)
0 X1X3 XiXo(X3+X3Xy) Xo(X3+X3X4+Xy) 1

o(X) = CX)-Z (7.44)

for X1, X5, X3, X, > 0. We have verified numerically that the pushforward given
by ([7.43)) gives the correct 5-point 1-loop integrand. A careful analytic argument can
be provided to prove that the restriction Int(A*) — Int(A) is indeed a diffeomor-

phism.

Ezxample 7.5.6. We also provide an example for n = 6. The setup is the same as

Example [7.5.5) with the C'(X) matrix given by

o) X3X2 X+ XEX3X3; X7PX2X3X?2 X3XsX? X, 0
—X!X2 - X, X3 0 X2X3X2 14+X2X2 XPX2X?
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The pushforward was verified numerically. We challenge the reader to prove that this

map restricts to a diffeomorphism Int(A*) — Int(A).

7.6 Dual amplituhedra

Recall from Section[2.5.3]that the canonical rational function of a polytope is precisely
the volume of the dual polytope. This leads us to conjecture, for every amplituhedron,
the existence of a dual geometry whose volume precisely gives the canonical rational
function. The existence of this dual geometry has already been established at tree
level for n = k+m and any k,m, and even for some loop level cases, and will be
described in future work.

We motivate the existence of the dual by thinking about triangulations. As ar-
gued in Section , a signed triangulation of a positive geometry A = . A; implies
Q(A) = >, Q(A;). This was argued based on the observation that spurious poles
cancel among the triangulating terms, thus leaving only the physical poles. In our
discussion of the dual polytope in Section we argued that the volume formu-
lation of the canonical rational function (under certain assumptions) provides an
alternative understanding of triangulation independence. We therefore wish to ex-
tend these assumptions to the amplituhedron and conjecture a volume interpretation
of the canonical rational function. We restrict our conjecture to even m, since the
volume formula implies positive convexity (see Section 9 of [2]), which in most cases
does not hold for odd m.

Let A denote an amplituhedron, and let X denote the irreducible variety in which

it is embedded. We conjecture the following:

Conjecture 7.6.1. 1. For each Y € X not on a boundary component of A, there

exists an irreducible variety X3, called the dual variety at ), with a bijection
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(X,B) — (X3, B3) that maps positive geometries in X to positive geometries

in X35. In particular, there exists a dual amplituhedron A3, for each Y.
2. Let By be positive geometries in X. Then By C By if and only if B3y, C Biy,.

3. Given a triangulation of B in X, we have
B=) B = By=)Y B (7.45)
4. There exists a Y-dependent measure dVol on X3;(R) so that:

QB)(Y) = Vol (B) := / dVol (7.46)

By

Following the reasoning outlined around (3.124]), we arrive at the desired conclu-

sion:

A=A = Ap=> A, = (7.47)

Vol () = D oVol () = Q(4) = D Q(4) (7.48)

In words, we say that the triangulation independence of the dual volume explains
the triangulation independence of the form. This provides an alternative argument

to cancellation of spurious poles.
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Chapter 8

Planar N = 4 super Yang-Mills

Following the construction of the amplituhedron in Section |7} we now discuss its pre-
cise connection to on-shell scattering amplitudes of planar N = 4 super Yang-Mills.
We begin in Section by introducing supersymmetric momentum twistors, which
are kinematic variables that make manifest the hidden dual super conformal symme-
try [8]. In Section [8.2] we show how amplitudes are determined by canonical forms
of amplituhedra. Finally, in Section [8.3] we discuss BCFW recursion in momentum

twistor space and its geometric interpretation.

8.1 Supersymmetric momentum twistors

Momentum twistors were first introduced in [29], which we now review. Denote the

n-point N¥MHV L-loop amplitude as Aff,z and let A;le denote the same amplitude

with the MHV tree factor stripped off,

b C O 0

Ak = T (niny(nl) ke (8.1)

where a, & = 1,2 are SU(2) indices of spinors \; and their conjugates A encoding

the null momenta of n particles, and A = 1,...,4 is the SU(4) index of Grassmann
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variables 7n; describing their helicity states. The Wilson loop dual to the n-point
amplitude is formulated along a n-sided null polygon in a chiral superspace with

coordinates (z,0); for i = 1,...,n, we have

;E‘?‘O" — ;E?_o.él = )\?S\Za’ 97;0“4 - 0?_‘41 = /\anZA, (82)

3 (2

The super momentum twistors are in the fundamental representation of the super-

conformal group of this dual space; explicitly
Zi = (Z71x) = Vo 15 1XE) = Ko 27 Nial 05 M) - (8.3)

The momentum twistors are unconstrained and they determine A\, n via,

con ()i F =1 () @) (]x)io
(Aln)s = (i—14)(ii+1)

(8.4)

We further define the contraction of four bosonic twistors (ijkl) = sabchfZJl?Z,‘;Zld.

The factorization poles xf = 0 where ; ; = x; — x; can be written in these variables

as (i—1ij—17) = 0. In addition, we have the basic R-invariant of five super-twistors,

0" ({(ij kim)))
(igkl) (Fkim)(klma)(Imij){(mijk)’

[i,7,k,[,m] = (8.5)

where the argument of Grassmann delta function is {{(i j kIl m))* = x2(jkim) +cyclic.
The central object we will study in this paper is the integrand of amplitudes/Wil-
son loops in momentum twistor space. We will denote the integrand for A;L,z as Yn(i,),

which is a form of degree 4L in the L loop variables denoted as ¢’s. Formally we have

L
Agf,z :/ Yn(f’;)(zl, PN 7Zn;{£1, ce ,KL}) = / H d4€m]7(L7Lk)(Zl7 .. ,Zn;{fl, Ce ,KL})
reg

reg =1
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where “reg” means regularizations which are needed for the loop integrals, and by

)

writing the integral measure explicitly, the remaining part of Yn(i, as a rational

function, is denoted as ITSL,C) Note that both Y and I are cyclic in external twistors
which are denoted as 1, ..., n; they are also completely symmetrized in loop variables.

The loop variables ¢’s correspond to points in dual space. For computing Wilson
loops, they are positions of Lagrangian insertions [62]. Accordingly, they are lines
in momentum twistor space, and we will always represent ¢’s by bi-twistors ¢, =
(AmBm) = (AB),, form = 1,..., L. The loop integral measure in momentum twistor
space is defined as

A Zad*Zp

4y _ 2 2o\ _
d'0 = (ABPA)(ABd'B) = 2% 3

(8.6)

where the factors of (AB) always drop out because the integrand is dual conformal
invariant, so we have neglected writing them in (8.6]). The integral over the line (AB)
is given by that over a pair of points (twistors) Z4 and Zp, divided by the GL(2)
redundancies labeling their positions on the line [28]. The integrand has, in addition
to factorization poles, poles from a propagator involving loop variables going on shell,
e.g. the so-called single cut corresponds to poles of the form (A,,B,,i—14) = 0 for

the loop variable /£,,.

8.2 Scattering amplitudes from the amplituhedron

As first conjectured in [I7], the m = 4,1 = 2 amplituhedron forms a completely inde-
pendent, geometric formulation of all the planar scattering amplitudes in N' = 4
super Yang-Mills. More precisely, the n-point N*MHV L-loop amplitude is de-
termined by the canonical form of the amplituhderon A(k,n,4;2%), in a manner

we now describe. Note that we often denote the the physical amplituhedron as
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A(k,n; L) = A(k,n,4;2F) for simplicity, and the physical tree amplituhedron as
A(k,n) = A(k,n, 4;2°).

Recall that the amplituhedron is defined by a n x (k + 4) matrix Z, whose com-
ponents we write as Z! fori =1,...,nand I =1,...,k + 4. The index i labels the
n external particles. For every i, we identify the first four components of Z! with the
components of the bosonic momentum twistor Z. The last k& components, however,

are more subtle. We first introduce auxiliary Grassmann variables ¢; 4,..., ¢ 4 for

A=1,2,3,4, and we let

ZI = (28, diax?, ..., dreaxd) (8.7)

where the index A is implicitly summed in each of the last & components. The
goal of this construction is to make the amplituhedron a purely bosonic object that
nevertheless contains all information about superamplitudes. This is a rather novel
way of encoding supersymmetry, first introduced in [40]. Next, we compute the
canonical form of A(k, n; L) without introducing any auxiliary Grassmann variables;
that is, we simply assume all the components of the Z matrix to be real. We then
localize the canonical form to a special point Yy = (04x|lxxx) before substituting the
auxiliary variables . The localization ensures that the result is a polynomial in
the Grassmann variables. Finally, the auxiliary variables are integrated out, giving

the super-amplitude, which has Grassmann degree 4k.

y®H(z1) = / B'n - / Q(A(k, n; L))5* (Y5 Yo) (3.8)

8.3 BCFW recursion and positive geometry

In [6], a recursion relation was described for on-shell tree amplitudes in Yang-Mills
theory. For planar maximally supersymmetric Yang-Mills, an all-loop extension was
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described in [28]. We do not prove the recursion relation here. Instead we give a
general description for the idea behind the proof, then present the recursion relation
in momentum twistor space. Most importantly for our discussion, we interpret the
recursion as a triangulation of the amplituhedron.

The construction and proof of the recursion goes as follows. We begin by intro-
ducing an extra parameter z and define the shift 7z, — Z,, + 2Z,,_1, which gives
Q(A) — Q(A(z)). The principle of locality suggests that the canonical form can only

develop simple poles in z (including possibly a simple pole at infinity). It follows that

Q(A) = fc Zaa)) (8.9)

where the contour C' is a small counter-clockwise loop around the origin. Applying

Cauchy’s theorem by expanding the loop to infinity gives

Q) =-Y Res. .. 2AED o400 (8.10)

z

where z; denotes all the poles. The residue at infinity is simply the canonical form of

the amplituhedron with Z,, removed. The residues at z; are described as follows.

e There exists a A-like positive geometry C; in the loop Grassmannian G(k, n; 2%)

of dimension D = dim(A).
e There exists a subset A; of A also of dimension D, called a BCFW cell.

e The map under 7 : C; — A; is a degree-one morphism. Since C; is A-like, hence

so is A;.
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e Given A—like coordinates (1, a1, ...,a;p) € PP(R) on C;, the residue at z; is

given by the following pushforward.

Res,,. MAGD _ (H do‘”’) — Q(A4) (8.11)

aij

At L = 0, each set C; is a positroid cell of the positive Grassmannian and A; is the
image under Z. For L > 0 some generalization of this statement is expected to hold.
The precise construction of C; is explained in Section [9] from the point of view of
momentum twistor diagrams. We point out that while BCFW cells are A-like, they
are not necessarily simplex-like, since their canonical forms may have zeros.

From (8.11)) and the discussion in Section , it follows that the BCFW cells form

a boundary triangulation of the amplituhedron:

QA) = Q(A) (8.12)

Furthermore, it appears based on extensive numerical checks that the BCFW cells
have mutually disjoint interiors. We point out that if our assumptions on BCFW
cells hold, then the amplituhedron must be a positive geometry.

Finally, we present the formula for the recursion, which describes the integrand

as a sum over three different contributions,
v (1,...,n) = B+ FAC + FL (8.13)

where for simplicity we have used indices 1,2,...,n to denote super-twistors

Z1,2,..., 2,, and we have suppressed loop variables.
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Here B represents the boundary contribution from w — oo, given by removing

Z,.
B=Y" ,(1,....,n—1). (8.14)
The FAC term represents contributions from factorization poles,

FAC—%iZZ —1,i,n—1,n, 1]Yl(k,)(1,. -1 Z)YTEJIZQLZ),C oy =1, 7y)
" i=3 k' L' o

where we sum over all the poles of the form (i—1in1) = 0, and at each pole the
internal leg and the shifted leg are given by i = (i—1,i)N(1,n—1,n), 1, = (n—1,n)N
(1,4 — 1,4), with (a,b) N (¢,d,e) = Z,(bede) — Zy{acde) defined as the intersection
of the line (a,b) with the plane (¢,d,e). In addition, we sum over k' = 0,...,k—1,
L' =0,...,L, and over distributions of ¢y,...,¢; into the two subsets, with L’ and
(L—L') variables, which explains the overall symmetrization factor 1/L!.

The FL term represents the forward-limit contributions which come from single

cuts,

d3|4ZAd3\4ZB o )
Z/ vol GL /GL( )[Am’Bm’n 1 n, ]‘]Yn+2 k+1(1 '7n_17n€m7Am7Bm)

where we sum over L loop variables ¢, = (AB),, (with a symmetrization factor 1/L),
and each term comes from the pole (A,,B,,nl) =0, with n, = (n — 1,n) N (A, B, 1).
The fGL(Z) integral is defined as follows. We first set Z4 — Z4 + aZp = Z/; and
Zp — Zp+ PZs = Zj for parameters «, 3, which is equivalent to moving the two
points Z 4, Zp without changing the line they span. Then, we take a double residue

in «, such that (A, 1,n—1,n),(B’,1,n—1,n) — 0, which is equivalent to taking
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A’ B’ to lie on the plane (1,n—1,n). Formally, we have

/ z/ da/ dB (1 — ap)? (8.15)
GL(2) (A’ 1,n—1,n)—0 (B',1,n—1,n)—0

This residue is equivalent to setting Z'y, Zp — (A, B) N (1,n—1,n). The (1 —af)? is

a determinant factor that makes the poles in «, 5 simple.
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Chapter 9

Momentum twistor diagrams

As argued in Section 8.3 every BCFW term appearing in planar N' = 4 super Yang-
Mills theory corresponds to a cell of the loop Grassmannian whose image under Z
gives a cell of the amplituhedron, called a BCFW cell. In this section, we show that
every BCFW cell can be described by an equivalence class of plabic diagrams. In
particular, every such diagram encodes a set of Grassmannian coordinates for the
cell, which can be read off from the diagram by a simple prescription. As discussed
in , the pushforward of the product of d-log of these coordinates gives the
corresponding BCFW term. Furthermore, we show that BCFW recursion can be
applied diagrammatically, thus providing a recursive algorithm for constructing the
equivalence class of diagrams for any BCFW term. The connection between Grass-
mannians and plabic graphs goes back to the pioneering work of Postnikov [30], which
was subsequently applied to planar N' = 4 super Yang-Mills in on-shell momentum

space [16], and later in momentum twistor space [4].

9.1 On-shell diagrams in momentum twistor space

We start by presenting fundamental ingredients for on-shell diagrams in momentum

twistor space. A generic on-shell diagram consists of trivalent white and black vertices
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connected by external and internal edges, all drawn on a disk. Note that we do not
assume that the diagrams are planar. In fact, as we will discuss later, non-planarity
is a surprising feature that only appears in forward limit terms at loop level, despite

the fact that they compute planar loop amplitudes.

e Every diagram consists of n external legs connected to the boundary of a disk.
They represent the n color-ordered external states, and are associated with

momentum twistors 2y, Zs, ..., 2Z,.

e Each internal edge of the diagram is associated with a momentum twistor Z
which is then integrated over with the measure

atz

Pz =—=_
vol GL(1)

(9.1)
e Each white vertex with three (internal or external) twistors Z,, Z,, Z. is repre-

sented by an integral over C' € G(1,3) (a 1x3 matrix with GL(1) redundancies),

b
Wi(a,b,c) = (9.2)

c a

- 1 dleC m
B /VOIGL(l) (a)(b)(c)(s (CaZat+CpZ2p+Ce2.) (9.3)

where (i) = C; for i = a,b,c. The white vertex thus enforces Z,, 2, Z. to be

on the same projective line.

e Each black vertex with three (internal or external) twistors Z,, Z;, Z. is repre-

sented by an integral over C' € G(2, 3) (a 2x 3 matrix up to GL(2) redundancies,
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with minors defined as (i j) = Cy,C2; — C2,C1 ),

b
B(a,b,c) = (9.4)

c a
2

1 d2><3c« A
— |4
/VOI GL(2) (ab)(bc)(ca) }:[1 0"(CaaZa+Coap Zo+Co . 2:09.5)

The black vertex thus identifies Z,, 2, Z. projectively. There are degenerate
cases: a black vertex with two edges can be deleted from the diagram, with the
two edges identified to be one edge (the two twistors are identified); and a black
vertex connected to the boundary by one external edge can also be deleted,

making the diagram independent of the corresponding external twistor.

9.1.1 The Grassmannian representation of momentum

twistor diagrams

We now describe the Grassmannian representation of momentum twistor diagrams in
parallel with [16].

We begin by noting that the k-charge here (the Grassmann degree is defined as 4k)
is related to the k-charge in the original space (the MHV degree of the full amplitude)
by khere = Koriginai—2. The k-charge of a diagram is easy to determine: each trivalent
white vertex has k£ = 1 and each trivalent black vertex has k = 2; for each internal

edge the k is reduced by one, thus the total k-charge is

k= nw+2nB—TL[ s (96)
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where ny,ng and n; are the number of trivalent white vertices, black vertices and

internal edges. Another useful relation is

n=3(nw +ng) —2n;. (9.7)

Note that for both formulas, we assumed that every vertex is attached to exactly
three edges, so lollipops and degenerate cases must be taken into account separately.

The diagram can be evaluated in its Grassmannian representation in the manner
described in Section 4 of [16] by a procedure called boundary measurement. To
summarize, we perform all integrals over internal twistors, which leaves us with a
collection of 4k bosonic and 4k fermionic delta functions, multiplied by the product

of d-log of edge variables,

da b o
/HvolGlrL(l) 11 a H o (Zcf,a(a)zi), (9.8)

where v, e runs over all vertices and edges (internal and external), respectively. Here
C € G(k,n) can be computed as follows. We first choose k external edges as “sinks”
(i.e. directed inward) labeled by A (or B), and let the remaining (n—k) external
edges be “sources” (i.e. directed outward) labeled by a. Furthermore, we impose a
direction on each edge so that every white vertex has one sink and two sources, and
every black vertex has two sinks and one source. We then set Cy g = 04,5 to be the
identity matrix, and compute C4, by summing over all directed paths I' from A to

a, with each path evaluated as (minus) the product of edge variables along that path.

Caa=— Y. []ee- (9.9)

re{A—a} ecl’
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Equivalently, one can define the boundary measurements in terms of face variables,

Caa=— > [ (9.10)

re{A—a} fef‘
where I is the set of faces enclosed by the counterclockwise completion of I', and the
value of the graph is given by

/ ﬁu) 1;[ % [T Cra(nz). (9.11)

I=1 a=1

We note that there is an overall GL(1) redundancy for the face variables since the

product of all face variables is unity.

9.1.2 Examples and operations on the diagrams

Given the general prescription, we first study a few simple examples, which are useful
for defining some basic operations acting on momentum twistor diagrams.

The so-called “lollipop diagrams” are those with all external edges connected to
monovalent black vertices. They evaluate to unity, and are interpreted as the MHV

tree amplitude in momentum twistor space. Here we draw a 6 point example.

3

(9.12)
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The simplest non-trivial diagram is given by two white vertices connected by an

external edge, with n =4,k =1,

/ A Z W (a, b, YW (I, c,d) (9.13)

L[l daaa
B volGL(1) « B v 0

= W(a,b,c,d) = / BEZ W (b, e, NW(I,d,a). (9.15)

S Z 4B 2y 2402y (9.14)

where on the second line we have seen that the two collinear constraints together
enforce the four twistors Z,, 2, Z., Z4 to be on a projective plane. This is manifestly
cyclic, thus we can merge it as a single white vertex with four edges attached to it,
which we denote as W(a,b,c,d). We can also expand it along the other channel.

These equivalences can be summarized diagrammatically as follows.

c b C b ¢ b
@ ] @ ) @ N
d a d a d a

This is nothing but the simplest factorization diagram (i.e. with propagator put on-
shell) one can access in momentum twistor space. Note that the two-particle channels
of the MHV amplitude is invisible since it is stripped off, thus the simplest factor-
ization would be that of a NMHV (k = 1) amplitude, divided by MHV amplitude.
Consider the factorization pole (i—1ij—17) = 0, then we can perform the integrals

in (9.13) using a reference twistor Z, (the result is independent of x):

L . .. . 50|4(<<*7i_17i7j_17j>>>
- 6(<Z_1Z‘7_1j>)<*i—1ij—1><*i—1ij><*j—1jz’—1)< xj—1714)

(9.18)
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which is indeed the residue at the factorization pole (i—17j—1j) = 0 for any NMHV
R-invariant with this pole.

Given the factorization diagram that depends on four twistors, we can obtain the
full R-invariant, which depends on five twistors, by adding a BCFW bridge. The
operation involves attaching a bridge with a black vertex and a white vertex to two
adjacent external edges. Denoting the original diagram by Y (1,...,n), then adding
the bridge br(n,1), with white and black vertex attached to n and 1 respectively,

amounts to
Y'(1,...,n) =br(n,1)-Y(1,...,n) = /—Y(l,...,ﬁ) (9.19)

where ’Zn = Z, 4+ cZ; and c is the edge variable associated with the bridge. Dia-

grammatically, this gives
br(n,1)-Y(1,...,n) = (9.20)

Now consider the four-point diagram W (a, b, ¢, d) with a black lollipop B(e). By
adding a BCFW bridge br(d, ), we obtain

br(d,e) - (W(a,b,c,d) ® Ble)) = /%W(a, bc,d) = |a,b,c,d, e (9.21)
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c
c : b
e a e 4

which is the on-shell diagram for an R-invariant that manifests the factorization
channel W(a,b, c¢,d). Furthermore, we can merge and re-expand the white vertices

and obtain various different representations of the same R-invariant:

C c C
b b J b
d :d — @ (9.23)
e a e a . a

In addition to BCFW bridges, we can have operations that add or remove particles
for on-shell diagrams. For a generic diagram with external particles 1,...,n—1, one
can add an additional particle n which produces a diagram with n external particles.
This corresponds to the “inverse soft limit”, which has two cases, the k-preserving
and k-increasing operations.

The k-preserving operation simply adds a lollipop. The external edge n is attached

to a monovalent black vertex, and the evaluation of the diagram is unaffected.

n-1

Y'(1,....n) = =Y(,...,n—1)®B(n) =Y(,...,n—1) (9.24)

The k-increasing operation is more interesting. It produces an R-invariant fac-

tor (thus increase the k-charge by 1) which involves the additional leg n and four

218



neighboring legs n—2,n—1,1,2, and it also involves shifting the two legs n—1,1,

—

Y'(1,...,n) = [n—=2,n—1,n,1,2]Y(1,...,n—1) (9.25)

(9.26)

where the shifted variables are n—1 = (n—2,n—1) N (n,1,2) and 1 = (1,2) N
(n—2,n—1,n). As justification for the evaluation of this diagram, we argue that the
twistor Z; at the edge labeled 1 indeed evaluates to the twistor (1,2) N (n—2,n—1,n)
as claimed. We first recognize that Zj, Z,, Z, are projectively identical, since they
are connected to a black vertex. Furthermore, Z, must lie on the line (1,2) since
a,1,2 are connected to a white vertex, and Z, must lie on the plane (n—1,n—2,n)
since b is connected to n—1,n—2,n via a sequence of white vertices (the black ver-
tex appearing along this sequence does not affect our argument). The desired result
follows. Furthermore, we justify the appearance of the R-invariant. We first observe
that, compared to Y, the k-charge of the diagram is higher by 1. Indeed, the diagram
introduces 3 new white vertices, 2 new black vertices, and 6 new internal lines, so
that Ak = Any + 2Ang — An; = 3+ 2 x 2 — 6 = 1. Moreover, the only possible
R-invariant that could appear is [n—2,n—1,n,1,2]. If we look at the shifted variable
1 =(1,2) N (n—2,n—1,n) that appears in Y, we notice that there are two ways of

expanding the shift. Namely,

2 = Z2,n-2,n—1,n) — 2, (1,n—2,n—1,n) (9.27)

Z = Z,22,1,n—1,n)+ 2, 1(2,n—-2,1,n)+ Z,(2,n—2,n—1,1) (9.28)

219



These two expansions must be equivalent. For the bosonic components this is true
by the Schouten identity. However, for the fermionic components there is no such
identity. The only way for the two expansions to agree is if they are both evaluated

on the support of the fermionic delta function
50|4(771 (2,n—2,n—1,n) + cyclic) (9.29)

This is precisely the delta function provided by the R-invariant that appears in the
k-increasing operation, thus justifying our claim. Note that the R-invariant required
by the other shift n—1is identical, so only one R-invariant is needed.

The opposite operations are those that remove a particle from the diagrams of
the form above. Correspondingly they are k-preserving and k-decreasing soft limits,

respectively.

Y, -1 =Y (1., 20— Zo1),

Y'(1,...,n—1) = /d3|4ZnY(1, S, (9.30)

9.2 Boundary diagrams

We now discuss the diagrammatic representation of BCFW terms from Section [8.3|
We begin with the B term, which is the residue at w — oo. This is nothing but
the k-preserving soft limit (9.24) given by a lower point diagram with a lollipop on

particle n.
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n-1

B= 1 (9.31)

9.3 Factorization diagrams

Now we move to the factorization term corresponding to the pole (j—1jn1) = 0.
Recall that we have worked out the simplest cases with £ =1 in (9.17]), where both
left and right part are unity MHV amplitudes. In general, by connecting the left and

right amplitudes with W (j—1, j,n, 1) we obtain the factorization limit,

Y3, 7, ..n)Wi—=1,4,n,1) Ye(1,...,j—1,7)
6((j—1jn1)) &% (((*,i—1,4,j—1,5)))
(vi—1dj—1)(xi—1ij)(xj—17i—1)( % j—1ji

> YL(j,j,...,n) YR<1,,]—175)

where j = (j—17) N (*nl) = (nl) N (xj—14) is exactly the twistor corresponding to
the intersection of the lines (j—1j) and (nl), as shown in the diagram of (9.33).
The diagram is clearly independent of the reference *, and note that at this stage it
is symmetric under the exchange of left and right amplitude (including (j—1,j) <>

(n,1)). The corresponding contribution to the FAC term can be obtained by attaching
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the BCEW bridge br(n,n—1) to the factorization limit,

b?“(n,n—l) ’ (YL(jajv s 7”) W[j_]-7j7n7 1] YR(L s 7]_175))

= [-14,n-1n1Y.(5,4,....75) Yr(1,...,j—1,7) (9.32)
where we have j = (j—1,5) N (n—1,n,1) and #; = (n—1,n) N (1,5—1,5), which are

the two intersection points in the diagram. Summing over the relevant poles gives us

the full FAC term.

(9.33)

Given that this is our first full-fledged example, we explain it carefully here.
Rather than directly computing the diagram, it is more insightful to see why the
result is correct, as we did for the k-increasing operation. For instance, we can check
that the line n; and the two lines 7 have the correct shifts. Using the rules from be-
fore, we find that n; lies on the line (n—1,n) and the plane (1, j—1, j), which implies
that 7; = (j—1,5) N (1,n—1,n). Similarly for j on (j—1,5) and (n,n—1,1), thus
7 =(j—1,j)N(n—1,n,1). Furthermore, it is easy to see that the k-charge of the full
diagram is given by k = kp + kg + 1 as required by the FAC term. We denote the
sub-diagram with vertices or edges in the diagram not already present in Y, or Yy as
A, then its k-charge is Ak =k —k, —kr = Any +2Ang —An; =3+2x7—-16 = 1.

Here recall that the counting only applies to trivalent graphs. Since there is a quartic
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vertex at the center of the diagram, we should split that vertex into two cubic vertices,

which introduces one new black vertex and one new internal line as shown below.

= , (9.34)

The fact that Ak = 1 implies that the diagram evaluates to Y7 times Yz with an
extra R-invariant. As before, we claim that the R-invariant that appears in FAC is
the only one it could be, because the fermionic components of n; and 7 only make
sense on the support of its fermionic delta function. This concludes our justification

of the FAC diagram.

9.4 Forward limit diagrams

We now turn to the forward limit term. For the BCFW shift 2, = Z, + wZ,_1,
the FL contribution comes from the residue at (ABln) — 0 and is given by
nyﬁ;izrl(l,...,ﬁ,A,B;{E}/(AB)). The diagrammatic representation can be ex-

pressed as follows,

(9.35)

where the GL(2) integral sign is just there to remind us that there is a GL(2) residue
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we must take, which we discuss momentarily. From the diagram it is clear that n
lies on both the line (n—1,n) and the plane (1, A, B), hence n = (n—1,n)N (1, A, B),
which gives the required shift. Furthermore, the k-charge of the diagram is given by
that of the sub-diagram Y plus Ak = k—ky = Any+2A5—An; = 3+2x3—-10 = —1.
The minus sign in the degree means that prior to integrating out the fermionic parts
of A, B, we should find one R-invariant multiplied by Y. This R-invariant must be
[A, B,1,n—1,n] so that the fermionic parts of the shift n are well-defined.

One main novelty of the diagrammatic method is that the GL(2) residue can
be performed diagrammatically. However, in order to do so, we must first apply
BCFW recursion on the sub-diagram YnLJ:Q}k +1- In particular, we apply the shift

Zp — Zp+wZ;. This gives a boundary term which vanishes, a factorization channel
FL-FAC, and a forward limit FL-FL.
For FL-FAC, we have

(9.36)

where we sum over all left and right sub-diagrams for which L;, + L = L — 1,
kr +kr = k, and ngy + ng = n + 4. The boundary case Z; = 2,%” vanishes after
doing the fermionic loop integrals, and so is not included in the summation. Now
we can perform the GL(2) integral. Recall that the GL(2) residue takes Z4, Zp —
(A,B)N (1,n — 1,n). The point (A, B) N (1,n — 1,n) can be found on the diagram,
and is labeled by a cross. When taking the residue, the line A coming out of the

left sub-diagram must be cut and reconnected to the crossed line. Furthermore, a
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quick look at the diagram shows that Zz = (1, B) N (j — 1,7, A), which also becomes
Zp — (A,B) N (1,n — 1,n) when taking the residue. So the B line must also be
reconnected to the cross. This completes the GL(2) residue. The advantage of using
diagrams is that we did not have to do this residue analytically. The final form of the

FL-FAC term is thus given by

where the second diagram is obtained from the first by merge and expansion of white
vertices.

It is important to note that the diagram degenerates for the boundary case with
7 =n—1. In our diagram above, it appears as if the point j appears twice since n—1
is identical to 7, but this is obviously not the right interpretation. Indeed, we should
modify the diagram slightly to account for this case by identifying the external points
7 and n—1. In other words, the line that connects Y7, to the external edge n—1 should
be merged with the line that connects Y7 to 7. We also merge the corresponding two

black vertices, and the result is

(9.38)




We notice that the process of doing the GL(2) integral introduces one degree
of non-planarity in the diagram. Although this may seem peculiar, we can still do
boundary measurements in the usual way. Furthermore, we see that the loop variables
Z 4, Zp have been isolated in a bubble-like structure. This is convenient for writing
down the loop integrand, as we show in a moment. In future work, we show that the
non-planarity appearing in the forward limit can always be removed in a systematic
way without changing the value of the diagram.

We postpone discussion of FI-FL to Section [9.7

9.5 Tree diagrams

We now present computations of tree amplitudes by the diagrammatic recursion rela-

tions. Since we are working at tree level, only the boundary and factorization terms

are needed. Detailed examples for NMHV and N2MHYV are provided.

9.5.1 NMHYV tree

We wish to obtain diagrammatically the Yangian invariant Y, x—1(21,.., Z,) for
NMHYV trees, where we have suppressed writing the L = 0 superscript. Recall that
NMHYV trees factorize as the product of two MHV trees. By representing MHV

amplitudes as a series of lollipops, the factorization term becomes

-1

n—2
FAC =

i=3

i
no

(9.39)

<.
Il
w

n-1
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In going from the first diagram to the second, we deleted any lollipops attached to
internal lines, and any vertex attached to only two lines. Recall from our earlier
discussion that this diagram is just the R-invariant [1,j—1,j,n—1,n|. The BCFW

recursion is therefore

N

n—

Yok=1(1,.on) =Y, g1 (l,..on—1) + 1,j—1,7,n—1,n] (9.40)

I
w

As is well known, the following closed form expression for Y,, ,—; satisfies the recursion

relation.

Yoset (L, on) = > [1i=1,4,j-1,5] . (9.41)

1<j
9.5.2 N2MHYV trees

We now wish to obtain diagrams for N°MHYV trees, which factorize as the product of
MHYV and NMHV. Consider for example the 6 point case where the B term vanishes.
A moment’s thought reveals that there is only one FAC diagram that contributes,

which contains 5 point NMHYV tree on the left and 3-point MHV tree on the right.

We can then compute this diagram by performing boundary measurements. Since
the diagram contains ngp = 9 faces, the number of integration variables must be

np—1 =8, so we can gauge fix some of the bridge variables until only 8 are left. The
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diagram above shows one particular choice of leftover bridge variables. The explicit

formula for this diagram is thus given by

dey ... d
FAC = / u54|4(21 — C5Z5 - Cﬁzﬁ - C’?ZQ - CSZ?)) (943)

C1 ... Cg

X (54|4(Z4 — Cngzg — 62(0722 + CBZ3> — 03<C5Z5 + C6Z6) — C4C5Z5)

(9.44)
On the support of the first delta function, it is easy to see that
C5Z5 + CGZG ~ (56) N (123) = Zé

Substituting these into the second delta function and rescaling the integration vari-

ables appropriately gives

dey ... d
FAC = / “ s 54|4(Zl — 525 — 625 — 129 — g 23)

C1 ... Cg

X54|4(Z4 — 0123 — CQZé — CgZé — C4Z5) . (946)
The integral is now trivial to perform. It just gives us two R-invariants.

Yor—2(Z1,...,26) = [3,4,5,2',5[1,2,3,5,0]

= [3,4,5,(23) N (156), (56) N (123)][1,2,3,5,6]  (9.47)

As mentioned above, in practice it is usually not productive to work out all the
boundary measurements step by step and identify all proper shifts like ZJ and Zf on
the support of the delta functions; the shifts can be identified more quickly by looking

at the diagram and remembering the role of the black and white vertices. From our
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general rules and examples, it is straightforward to work out (reduced) momentum

twistor diagrams for all tree-level amplitudes/Wilson loops.

9.6 One loop diagrams

We now apply our diagrammatic method to compute one-loop integrands, where the
forward limit contribution is needed. Omne important advantage of our diagrams is
that it bypasses the technical difficulties of performing GL(2) integrals in the forward
limit, and the result can be read off from the diagram without ever having to the do
the integral by hand. We begin by studying MHV integrands. We then move on to

general k whereby the Kermit representation [63] is derived diagrammatically.

9.6.1 One loop diagrams for n-point MHV

Consider the one-loop n-point MHV integrand. In this case, only the B and FL-FAC
terms contribute, where the latter involves a factorization into two MHV trees. It

follows that

In the boundary case where 7 = n—1, we identify the external lines j and n—1 as
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follows.

(9.49)

Any one of these diagrams contains nyp = 7 faces, and so must involve np — 1 =6
integration variables. As a general rule, we will always attach two extra GL(1) gauges
for every forward limit we take, so this reduces the diagram to a 4-form. But let us
keep all 6 variables for now. There are no delta functions since the k-charge of this

diagram is 0 (i.e. there are no arrows going into the diagram). So we have,

dsdt dc;_y dc; de,—1 dey,
d t Ci—1 Cj Ch—1 Cp

(9.50)

By following the arrows in the diagram and doing the usual boundary measurements,

we can rewrite ¢y, ..., ¢4 in terms of Zy4, Zp.

ZA + tZB = Zl + ijlzjfl + Cij

Zp+8Zs = Zi+cpaZaa ez, (9.51)
It follows that
1 ds dt il
¢ VOl[GL(l)P s t ABng AB( T yhy 1, J 7]) (95 )
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where we have abbreviated d*(,5 = (ABd?A) (ABd?B), and we define the Kermit

KAB(lan_lan7 ]-7.]_]-aj) <953)
(AB(1,n—1,n) N (1,j—1, )"
(AB1n—1) (AB1n) (ABn—1n) (AB1 j—1) (AB1 j) (AB j—1n)

(9.54)

We can now gauge fix s,t — 1 to obtain

n—1
FL-FAC = d*(4p Y  Kap(1,n—1,n;1,j—1,5) (9.55)
j=3
This last step is universal, so we will often omit writing the dlog s and dlogt factors.

Thus the full BCFW recursion for one-loop MHV gives

V221, ... 2,) = B+FL-FAC
n—1
= Y hoo(lon=1) +d"ap > Kap(l,n —1,n;1,5 — 1,5)
Jj=3

(9.56)

Solving this relation in closed form gives the well-known Kermit form of one-loop

MHV,

V221, 20) = dap Y Kap(li—1,4;1,j-1, ) (9.57)

1<j

It is well known that each Kermit diagram is given by dlog ¢;_; dlog ¢; dlog c;_; dlog ¢,
which corresponds to a cell of the one-loop MHV amplituhedron, and the Kermit

expansion provides a triangulation of the amplituhedron.
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9.6.2 One loop Kermit expansion

For one-loop, in addition to B and FAC terms, only the FL-FAC term contributes

with both sub-amplitudes as trees. This gives a generalized Kermit expansion,

FL-FAC = (9.58)

n—1
dci_idce;de,_1dc, A SN .
= Y Yy (25,25, Bt B Znan) YR (21, 251, 25, Znas)

s Cj—1CjCn—1Cp
(9.59)
where the loop variables are given by
Za+tZp = Zy+ 120+ 2
(9.60)

Zp+8Zs = Zi+cp1Znat e,

and Z; = (j —1,7) N (1, A, B), Zuap = (A,B)N(1,n—1,n) and Z, = (n — 1,n) N

(1, A, B). It follows that the dlog ¢ form just becomes a Kermit, so we get

n—1

FL-FAC = d'ap Y Kap(l,j—1,j;1,n—1n)
=3
XYnLLLJgL (2ja Zja () anla ZAnv 2’}nAB)Y;LLRB:/WR(Zl7 ceey ijla 2j> ZnAB)
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9.6.3 One loop 5 point NMHV

Here we present a compute calculation of the one loop 5-point NMHV integrand
Vii=!, which requires FAC and FL-FAC contributions.
The FAC term involves only one diagram and is given by the factorization with

4-point 1-loop MHV on the left and 3-point MHV tree on the right.

This graph has np = 11 faces, so it should have ny — 1 = 10 integration variables.
But remember that we mod out the s,¢ using two GL(1) gauges so we really only
have 8 integrations. There is only one arrow going into the diagram, which means

that the diagram is NMHV, so there should be one delta function §*4(...). Indeed,

the diagram is given by

dey ... d
FAC = /u54|4(21 — 129 — CyZiy — 324 — €4 Z5) (9.62)

Cp ... Cg

Doing the boundary measurements for the loop variables gives

ZA + tZB = Zg + C5Z4 + 66(0122 + 6223)

ZB -+ SZA = (C324 + C4Z5> + C7(C122 + CQZg) + CgZ4 (963)
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On the support of the delta function, we see that

0122 -+ 0223 ~ (23) N (145) = Zé

After rescaling some of the integration variables we get

ZA+tZB = Zg+C5Z4+CGZé

ZB + SZA = ZQ + C7Z§ + CgZ4 (965)

This looks just like the Kermit, so the cs, ..., cg part of the form would just give a
Kermit. The remaining variables cy, ..., c4 can be integrated trivially over the delta

function to yield the R-invariant [1,2, 3,4, 5]. The result is

FAC = d*"4pK4p(432';44'2')[1,2,3,4, 5] (9.66)

which simplifies to

SO (ny (2345) + g (3451) + 03 (4512) 4 1y (5123) + 15 (1234))

FAC = d"'lap (1245) (1235) (AB23) (AB34) (AB45) (AB1(45) N (123))

(9.67)

Now let us work on the FL-FAC term. There are two diagrams FL-FAC = FL-
FAC-1 4+ FL-FAC-2. The first diagram FL-FAC-1 is the forward limit of a factor-

ization channel with 5-point NMHV tree on the left and 4-point MHV tree on the
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right.

FL-FAC-1 =

(9.68)

Again, this diagram has np = 11 faces, so we should find 8 integration variables and

one delta function 6%4(...). We find

dey ... d
FL-FAC-1 = / %5‘“4((31 — 125 — cs24) — &) (9.69)
1 ... C8

The loop variables are given by

ZA -+ SZB = 0522 -+ CﬁZg + (6725 + CgZ4 -+ f)

Zp+tZs = & (9.70)
where
E =125+ ca(cs 2y + c623) + c3¢8 24 + ca(cr 25 + s Zy) (9.71)
On the support of the delta function, we can rewrite the loop variables as
Za+sZp = Z1+ 529+ 623
Zp+tZy, = Z|— 25— 32y (9.72)
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Using these new loop variable expressions, we find the following shifts

Zl — C7Z5 - CSZ4 ~ (AB) N (145) = ZIZ
C7Z5 + CSZ4 ~ (45) N (].AB) = Zﬁ,ll

0522 + 6623 ~ (23) N (1AB) = Zg (973)

Substituting these into the delta function and rescaling the integration variables ap-

propriately gives us

dey ... deg

54l4(21/¢; + 6123 + ngg + 0324 + 04241/) (974)
C1 ... Cg

FL-FAC-1 = /

Like before, the loop variables take on the Kermit form, so the cs, ..., cg part of the
form just gives us a Kermit, and the remaining integrals can be integrated over the

delta function to give an R-invariant. The result is

FL-FAC-1 = d*,pKp(123;145)[3,4, A", 4" 2"]

09 (11 (2345) 4 m (3451) + 13 (4512) + 14 (5123) + 15 (1234))
(2345) (AB12) (AB23) (1345) (AB15) (AB4(15) N (234))

(9.75)

= d*p

Finally, the last term FL-FAC-2 is given as the forward limit of the factorization with

4-point MHV tree on the left and 5-point NMHYV tree on the right. We just give the
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result here

FL-FAC-2 =

which is equal to

FL-FAC-2 = d*/ 5K 45(134; 145)[1, 2,3, (34) N (1AB), (AB) N (145)] (9.77)
5014 (ny (2345) + 15 (3451) + 13 (4512) + 14 (5123) + 05 (1234)) (AB14)
(1234) (AB12) (AB34) (AB45) (AB15) (AB1(45) N (123)) (AB4(51) N (234))

= d*.p

The final result for the 5-point 1-loop NMHV integrand is the sum of all the

contributions
Vi (21, ..., Z5) = FAC + FL-FAC-1 + FL-FAC-2. (9.78)

These diagrams also give the three C, D-matrices for three cells of the amplituhedron.
It is already non-trivial to see how the three cells provide a triangulation of this one-

loop five-point NMHV case.

9.7 Two loop diagrams

At higher loops, the only new feature one would encounter is the iteration of forward

limits, and the general structure is very clear: there are L bubbles at L loops. Here
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we restrict ourselves to two loops. The B, FAC and FL-FAC contributions are of
the same form as before. The new contribution is the FL-FL term, which involves
yet another GL(2) residue. Let us call the second loop variable C'D. We begin by

drawing the diagram corresponding to the two forward limits,

FL-FL

where the second diagram is obtained by doing the GL(2) integral for AB. The
procedure here is the same as before. Just reattach the two lines A and B coming
out of the sub-diagram to the crossed line.

Going one step further, we perform yet another BCFW shift on the sub-diagram.
We use the shift Zo — Zo + wZ4, which is convenient because the boundary term
vanishes in the forward limit of C'D. Hence, the FL-FL-FAC term gives the final

contribution at two loops. Diagrammatically, we have the following.

FL-FL-FAC
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In the second diagram we have done the GL(2) integral for C'D by reattaching the
two lines C and D coming out of the two sub-diagrams to the crossed line. Recalling
that the forward limit takes C, D — (C, D) N (1, A, B), we see that the crossed line

precisely represents this limit. We note that k;,+kr = k+1 and L;+Lr = L—2.

9.7.1 Two loop diagrams for 4 point MHV

We now present a full example: the 4-point 2 loop integrand. The computation is
already quite non-trivial and interesting, which shows all the essential features of
our diagrammatic formulation of multi-loop integrands. The result is given by the
forward limit of the one-loop six-point NMHV integrand, which includes 16 terms.
When applying the forward limit to it using , we find only 8 non-vanishing
terms. There are 2 terms for FL-FAC and 6 terms for FL-FL, the expressions for
which we list below. For each term we also include the momentum twistor diagram

and the corresponding matrix expression as follows.

DB = (9.81)
Dep

To write the expressions in a more compact form, we introduce shifted twistors.

A = (A,B)N(1,3,4), ' =(C,D)n(1,A,B),
3 = (23)N(1,A,B), 4=(3,4N(1,A B),

2 = (1,2)N(A,C,D), 3=(2,3)n(A,C,D), 4= (3,4 N(A C, D){9.82)
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—1 —Cy —Cy 0
1 0 —C3 —Cy
Cg —C1 — Cy —C9 — C3Cg —CyCg
1+ Cr Cg —C3C7 —CyC7
(1234)*( AB13)?

FL-FAC-1 =

(AB23)(AB34)(AB14)(C D12)(C'D23)(CD3 A)(CD1A)

1 Cy Cy 0
-1 0 C3 C1
0 CoCq C4 + C3C5 + C4Cg C1C5

—1 —cc7r 3 — 407+ 308 ¢+ cicy

(1234)4(AB13)?

FL-FAC-2 =

(AB12)(AB23)(AB14)(C D23)(C'D34)(C D4'1)(C' D3 A)
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—Co+C3—Cq4 —C4Cg —C1—C7—C3C7 —Cg—C3Cq
1 0 —Cr —Cg
C3—C4 —CyCg —C1—Cy—C3Cy —Cg—C3Cq
I+cs Cs —C5C7 —C5C6

(9.87)

FL-FL-1 =

(AB(134) N (1CD))?(AC"12)2(1234)3(AB34)(C D.A1)?

(AB14)(ABC'DY(C'D12)(C'D.A2)(C"134) (24'C" A) (23 AC") <Cy,é34><9~88)

1 0 —Cr —Cg
1+c—c3 cg+cycg €1 +c3¢7  C3c6

1+ Cx Cg —CyC7 —CyCgq

1-— C3 Cg + C4C8 C1 + C3C7 C3Cq

(9.89)

(AB(134) N (1CD))?(AC"12)(1234)3(AB13)?
(AB14)(AB34)(ABCD)(CDA1)(CD12)(AC"23)(AC"32)(C"123)

FL-FL-2 =

(9.90)
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1 0
Cc1+cCs Cg
Co 0
Cy Cg

FL-FL-3 =

1+CgC4+CgC7—C5C7
—Cy—Cr—C2Cr

1+CgC4+CgC7—C5C7

(AB(134) N (1CD))?(AB34)3(C"134) (1234)3

C3C6—C5Cp

—Cg—C2Cgq

C3C6—C5C6

(AB14)(ABCD){(C D34)(C D4 A)(C'234) (4C" A2)(C".A23)

1
1+01+C5

Co

1+C5

FL-FL-4 =

0
Cs
0

Cg

CsCyq + C3C7 — C5C7
—C4 — C7 — G20y

c3cy + c3cr + cscr

(9.91)
(9.92)
C3Cg — CrCq
—Cg — C2Cp
C3Cg — CxCq
(9.93)

(AB(134) N (1CD))?(C"134)%(.A412)*

(AB14)(ABC'D)(C'D.A3)(C D34)(C"412)(C"4.A1)(C"4.A2)(C" A12)(C DA'1)
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—C1+Cy —C5C8 —C3C4—C4C5—C7—CoC7 —Cg—CaCg
1 0 —c7 —Cg
C2 —C5C8  —C3C —CyCs—Cr—CaCr —Cp—C2Cp
1 Cg Cy—Cr —Cg
(9.95)

(AB(134) N (10D))*(AB34)(C" A23) (1234)

FL-FL-5 = - A
(AB14)(ABCD){(CDA2)(C D23)(C"134)(A3C"4')(C"234)

(9.96)

1 0 —Cr —Cg
Cl1+Cy+cCq4 Cg—+C3Cyg C3— CaCr —CoCg

Co + Cy Cg + C3Cg C3 — CoC7  —CrC

—Cs Cg 1+ C5Cr C5Cq

(9.97)

(AB(134) N (1CD))2(C" A23) (A123)3
(AB13)(AB14)(AB34)(ABCD)(C'D23)(CD3.A)(C"123)(3C" A1)(C" A12)
(9.98)

FL-FL-6 =
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The two-loop four-point integrand is the sum of the 8 terms, plus the other 8
terms obtained by (AB <+ C'D). As one can check numerically, given a set of positive
data and a random point inside the amplituhedron, it lies in one and only one of the
cells with the above D matrices, except for points on the boundary of cells. The fact
that the cells triangulate the amplituhedron is a highly non-trivial statement about
geometry, and is in fact very difficult to prove. Nonetheless, BCFW terms appear to
provide cells that triangulate the amplituhedron when summed.

We can compare our result to results obtained elsewhere via different methods,

such as the following expression from [26].

v® _ 1 (1234)°
407 2 | (AB12) (AB23) (AB34) (ABCD) (CD34) (CD14) (CD12)
(1234)*
* (AB23) (AB34) (AB14) (ABCD) (C'D14) (CD12) (C'D23)
+ (AB + CD) (9.99)

We find agreement via numerical checks.
For a discussion on computation of general 2-loop integrands (for any k), which

involves a 2-loop extension of the Kermit, see Section 4.3.3 of [4].
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Chapter 10

One-loop amplitudes of planar

N =4 super Yang-Mills

We now provide a detailed study of the positive loop Grassmannian Gs(1,n;1),
whose image under Z gives the NMHV one-loop amplituhedron A(1,n;1). In partic-
ular, we provide a detailed classification of the Grassmannian cells of top dimension.
Contrary to tree level, more than one top dimensional cell appears. We describe
properties of these top cells in detail, and discuss how they can be obtained from
0-dimensional cells via the method of successive shifts. In Section we study the
canonical form of top cells called top cell measures. In particular, we argue that every
planar one-loop NMHV BCFW integrand can be obtained by taking a sequence of
residues on a top cell measure before pushing it forward by Z. This is a generalization
of earlier work done at tree level in momentum space [30], 16]. Also, throughout these
sections, we generalize to k > 1 wherever possible. However, we emphasize that the

notion of top cell is still unclear for £ > 1.
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10.1 The one-loop k£ =1 Grassmannian

The general loop Grassmannian was introduced in Section [2.5.5] Here we specialize
to k =1 and L = 1, whereby we think of a point P € G>¢(1,n;1) as a 3 x n matrix
whose first two rows form the D matrix and the last row is the C' matrix, modded
out by the parabolic group GL(1;1) (See (2.1) of [3]). Note that in Section [2.5.5 the
D matrix is positioned below the C' matrix. There is a torus 759 = GL>o(1)" that
acts on G'>o(1,n;1) by scaling the columns independently by positive scalars.

We describe X = G»o(1,n;1)/T50 explicitly in terms of spaces of n points in the
projective plane P2, = (R* x Rxq)/R,, which is the space of all vectors of the form
(dy,dy, c)T with ¢ > 0 modded out by overall multiplication by positive scalars. Fix
a line at infinity Lo, C P%, which we can take to be the set of all non-zero vectors
with ¢ = 0, and let A% = IP’%O \ Lo denote the affine plane. The space X consists of

collections P = (Py, P, ..., P,) of n points where each P, is either
1. a point P, € A%, or
2. apoint P; € L., or
3. “zero” (equivalently, a point not on P%).

Case (1) occurs if the third entry of the i-th column of C' is non-zero. Then the i-th
column of P can be scaled to the column vector (d,ds, 1)T, representing the point
(dy,d2)T ~ (dy,dy, )T € A%
Case (2) occurs if the third entry of the i-th column of C' is zero, but the i-th column
of P is non-zero. Then we have the column vector (dy, ds, 0)T, representing the point
(dy,d2)T ~ (dy,dy,0)T € L.
Case (3) occurs if the i-th column of P is the zero vector.

The positivity of the collection P = (Py, Ps,...,P,) implies that the column

vectors form the ordered vertices of a convex polygon which we also refer to as P,
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which may have points at infinity. Furthermore, two matrices P and P’ represent the

same point in G>o(1,n;1) if they are related by one of the three operations.

1. The GLx¢(1)-action on the row C, which rescales the polygon relative to the

origin of the affine plane.

2. The GL>((2)-action on the two rows D, which linearly transforms the polygon

on the affine plane while preserving convexity.

3. The T action that adds a multiple of C' to one of the rows of D, which translates

the polygon.

In other words, X is the space of n-points in IP’ZZO in convex position (with a dis-
tinguished line at infinity), modulo the action of affine transformations. A simple

example of a polygon P is given by the following, where 0, = 27s/6 for s =0, ..., 5.

dz

L.OF
0.57 1 cosbfy cosf; cosfy cosfs; cosly cosbs
0.0 ¢ P=|sin6, sinf, sinf, sinf; sinf, sinbs (10.1)
e 1 1 1 1 1 1
-10k - ]
10 =05 00 05 10

10.1.1 O0O-dimensional cells

We now wish to discuss the 0-dimensional cells of G>((1,n;1). These innocuous parts
of the geometry are actually crucial, because they are the seeds from which all other
diagrams can be constructed.

We first remind ourselves of the 0-dimensional cells appearing in the tree level
Grassmannian G>o(k,n). We pick n external states aq, ..., ay and gauge fix the Grass-

mannian to be identity in the k£ x k block corresponding to columns ag, ..., ax, and
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set all other components to zero. For instance, for G>0(2,5) and (a1, a2) = (2, 3), the

0-dimensional cell is given by the following.

5 1

01000
2 C= (10.2)

4 00100

3

Here we have also included the corresponding momentum twistor diagram. In gen-
eral, a O-dimensional cell consists of black and white “lollipops” attached to the ex-
ternal legs of the diagram. The white lollipops are positioned precisely at the indices
ai, ..., ax. The number of white lollipops is therefore the k charge of the diagram. In
particular, the MHV tree diagram is just a ring of black lollipops.

We now return to the one-loop k = 1 case. The 0-dimensional cells of G>(1,n;1)
are exactly the torus-invariant points of G>o(1,n;1). They are determined by picking
a € {1,2,...,n} and another unordered pair (b,c) € {1,2,...,n} — {a}. The cell
1,4 consists of a point P, € A? and distinct points P,, P. € Lo. By an affine
transformation, we can assume that P,, P, P, are precisely the standard unit vector
basis in IP’ZZO. For example, if n = 5, we have that II; 3 4 is represented by the following

matrix.

00100
2 P=[oo0oo0 10 (10.3)

10000
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Again we have included the corresponding diagram. As in the tree level case, we must
have one white lollipop at particle a corresponding to the &k = 1 charge. The novelty
at one loop is that we have one “bubble” attached to two external legs. The bubble
represents the loop variable while the legs reflect the corresponding G L(2) symmetry.
For 0-dimensional cells, these two legs must be connected to the two external particles
labeled b, c. At one loop, this is the only type of O-dimensional cell that can appear.
At higher loops, the classification of O-dimensional cells is still unclear. For instance,
we can imagine connecting two bubbles together through their external legs. Whether
or not this type of diagram should be classified as a 0-dimensional cell, and what other

cells are possible, are still open questions.

10.1.2 Top cells

We now describe the top cells of G>¢(1, n;1); more specifically we describe the corre-
sponding top cells of X = G>o(1,n;1)/To.

Suppose that P = (Py,...,P,) is a convex n-gon in A? with points occuring in
cyclic counterclockwise order. Suppose that a,a+1,b,b+ 1 are in cyclic order, where
a+ 1 can equal b, but @ # b+ 1. Let us say that the edges (a,a + 1) and (b,b+ 1)
intersect positively if the intersection point (a,a+1) N (b,b+1) = Py(a,a+1,b+1) —
Pyi1(a,a+1,b) of the two lines is on the opposite side of the line (a + 1,b) to both a
and b+ 1. If the intersection point X is on the other side of (a + 1,b), then we say
that (a,a + 1) and (b,b + 1) intersect negatively. Note that (a,a + 1) and (b,b+ 1)
intersect positively if and only if (b,b+1) and (a, a+ 1) intersect negatively. For short
we say that [a,a + 1;b,0 + 1] is positive. If a + 1 = b, then [a,a + 1;a+ 1,a + 2] is
always positive. The condition that [a,a + 1;b,b + 1] is positive is equivalent to the

algebraic condition

[(a,a+1) N (b, b+1)] = [b](a, a+1,b+1) — [b+1](a, a+1,b) > 0. (10.4)
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Here [a] denotes a minor of the row C, and (a, b, ¢) denotes a minor of the matrix P.
For example, suppose n = 4 and a = 1 and b = 3. By an affine transformation, a
convex quadrilateral in A? can be made to have vertices (0,0), (1,0), (x,y), (0,1), so

that the corresponding P matrix is

142 1:2:
1.0 1.0
08 1 o0s 01 2 0
0.6 {1 os - P=10o o0 y 1 ‘(10.5)
04 1 o4
1 1 11
0.2 1 0.2
0.0 T T T T 1 1 i 0.0 T T T 1 L
0.0 02 04 06 0.8 1.0 12 0.0 02 04 06 0.8 1.0 12
y<l y>1

The convexity of the quadrilateral is equivalent to the conditions (123) =y > 0 and
(134) =2z > 0 and (234) =z +y — 1 > 0. The condition that (12) and (34) intersect
positively is the condition y < 1, or equivalently, [(12)N(34)] = [3](124)—[4](123) > 0.

A top cell can be described in the following way: it is the space of convex n-
gons in A2, considered up to affine transformations, satisfying additional constraints
specifying that certain pairs of edges (a,a+1) and (b, b+ 1) intersect positively. These
constraints are only specified for some pairs of edges. Other pairs of edges are allowed
to intersect either positively or negatively. There are (g) top cells in total. Given a
3-element subset S C {1,2,...,n}, we now describe the corresponding top cell IIg.
Let S = {a <b<c} C{1,2,...,n}. Then the intersection constraints for Ilg are
that [a,a + 1;0,b 4+ 1], [b,b+ 1;¢,c + 1], and [¢,c + 1;a,a + 1] are positive. Note
that [a,a + 1;b,b+ 1] being positive implies that [a’,a’ + 1;b, b+ 1] is positive for all
a < a’ < b. Thus Ilg is cut out of G>¢(1,n;1) by three quadratic equations of the

form (|10.4)).
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Another way to describe Ilg, ;) is as follows. Start with the intersection points
X1 = (a,a+1) N (b,b+1), X5 = (b, b+1) N (¢, c+1), X3 = (¢, c+1) N (a,a+1). (10.6)

The convex hull of these three points is a big triangle A. Then Il is the space
of n-gons that can be inscribed inside A so that the edges (a,a + 1), (b,b+ 1) and

(¢,c+ 1) lie on the three edges of A, as shown in the following picture.

b+ (10.7)

..........

Another way to think about the inscribed n-gon is that it is obtained from A
by slicing it a number of times. If a + 1 = b, then the intersection point X; =
(a,a+1)N(a+1,a+ 2) is simply a + 1, so sometimes A shares some of its vertices

with the n-gon P.

10.1.3 Shifts

The top cells [1g can be built up from 0-dimensional cells via shifts of columns of the
P matrix. The geometry of the intersection conditions on edges arises naturally in
this way.

We consider two kinds of shifts: The shift (i + 1 — ¢) acts by adding aP; to P44
while (i — i + 1) acts by adding aP,y; to P;, where a is positive and will later be
interpreted as a bridge variable. These shifts send points in G>¢(1,7;1) to points in
G>o(1,n;1). In terms of point configurations, (i +1 — i) moves P;;; to a point on

the interval connecting P; and P;,q, while (i — i + 1) moves P; to a point on the
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(10.8)

Figure 10.1: The shift (i + 1 — i) where P11 — Piy1+aP;

same interval. Note that if P;,; = 0 is not on P?, then (i + 1 — 7) just places Py at
the location of P;.

As we are showing in Figure [10.1] the shifts have a simple interpretation as a
BCFW bridge. For instance, by doing the shift (i +1 — i) we are simply attaching a
new pair of black and white vertices at positions ¢ and i+ 1. The two ways of coloring
the vertices reflects the two possible shifts (i + 1 — ¢) and (¢ — ¢ + 1), of which we
have drawn the former. The variable a appears as a bridge variable on the diagram,
which is consistent with the fact that adding a bridge increases the number of faces,
and hence the dimension, of the diagram by 1.

Using shifts where a varies over R, we can build up higher-dimensional cells from
0-dimensional cells, at least at one loop. We can obtain all top cells of G>¢(1,n;1)
in this way, though in general we need to allow non-adjacent shifts, and possibly
negative values for a, in which case we use —a so that a > 0. The same is probably
true to all loops, though it is not clear what all the 0-dimensional cells are in those
cases, as discussed earlier.

Any momentum twistor diagram can be decomposed into a sequence of bridges,
or shifts. In other words, there exists a sequence of shifts that takes a 0-dimensional
cell to the full diagram. In practice, this sequence is obtained by starting with the

full diagram and removing one bridge at a time. This is related to the fact that each
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permutation in the symmetric group S,, can be written as a composition of transposi-
tions, as explained in the original reference [16]. Of course, the decomposition is not

unique, and neither is the 0-dimensional cell.

10.1.4 5 point

We now apply our preceding formalism to the n = 5 one-loop NMHYV integrand,
which is expressed as a sum of three BCFW terms B-1,B-2,B-3. The expressions
for these terms are given in Appendix A of [3] as the first 3 of 16 BCFW terms
for the n = 6 integrand. But since these 3 terms form the boundary contribution
to the n = 6 case, they can also be interpreted as a complete BCFW expansion
of the n = 5 integrand. In the discussion that follows, we focus on the term B-1,
which corresponds to a Grassmannian cell whose coordinates we construct via shifts
starting from a 0O-dimensional cell. At each step, we present the coordinates for the
P matrix, the momentum twistor diagram, and a picture for the vertices P; showing

their linear relations.

(0) Start with the 0-dimensional cell IT;.35. Thus we have a point P; € A?, and two

points P53, P5 € L.

1 N 5
°
00100 N
AN
P=|oo0o0o0 1 2 N (10.9)
5 \.3
10000 \

4 3 1@ A

(1) Apply the shift (2 — 3). This places P, at the same location as Psj.
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00 ar 100 *
AN
P=|0o 0 00 1 N (10.10)
32
10000 L3
1@ )

N 54
0a 1 0 0 *
\
P={0 0 0 a 1 N (10.11)
32
1 0 0 0 O \'\
1@ A

(3) Apply the shift (2 — 5). This moves P, towards Ps. To keep the arrangement
convex, this is visualized with P, being pushed away from P5. This is an example of
a non-adjacent shift with a negative bridge variable P, — P, — a3 P5. So we have the
space of degenerate pentagons (Py, Py, Ps, Py, P5) in P?) where P, P, and Py, = Ps

lie at infinity and P, lies in A%

N\ 54
0 a 1 0 0 *
AN
P=10 —a3 0 ay 1 N (10.12)
3
1 0 0 0 0 \‘;2
1@ h

(4) Apply the shift (5 — 1). Thus Ps is moved off the line at infinity towards P;.
So we have the space of degenerate pentagons (P, Py, P3, Py, Ps) in P, where Py, Ps,
and Py lie at infinity and Ps lies on the line joining P; and Pj.
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0 aq@ 1 0 O
P = 0 —as 0 ay 1
1 0 0 0 ay

(5) Apply the shift (4 — 5). Thus P, is moved towards Ps. So we have the space of
degenerate pentagons (P;, Py, P3, Py, P5) in P2, where P, and P lie at infinity and Pj

lies on the line joining P; and Pj.

N
0 a 1 0 0 AR
AN
P = 0 —as 0 as + as 1 5 N (1014)
o 3
1 0 0 a40as5 ay \.2

(6) Apply the shift (4 — 3). Thus P, is moved towards Ps;. So we now have the space

of pentagons (P, P, P3, Py, Ps) in P?, where P, and P; lie at infinity.

(10.15)
3
.,

P = 0 —as3 0 as+as 1

1 0 0 a40as5 ay

(7) Apply the shift (2 — 1). Thus P, is moved towards P;. So we now have the
space of pentagons (Pp, Py, Ps, Py, Ps) in P2, where Pj is on the line at infinity. In the
diagram below, you should imagine that Pj is placed infinitely away so that the two
dashed lines are parallel, and so that the interior angles at P, and P, are less than 7.

In particular, given any point P, on the half-line (2, 3), the extended lines (2, 3) and
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(4,5) intersect on the side of (4, %) containing P, and Ps. This observation is crucial

for the next step.

0 ay 1 Qg 0
P = 0 —as3 0 ay+as 1

1 a7 0 asas au

(8) Apply the shift (3 — 2). This moves Ps off the line at infinity towards P,
along (2,3). As noted earlier, the lines (2,3) and (4,5) intersect on the side of (3,4)
containing P, and Ps. In other words, [4,5; 2, 3] is positive. So we now have the space
of pentagons (Py, P, P35, Py, P5) in A?, where (4,5) and (2, 3) intersect positively. We
have thus obtained the top cell IIg where S = {2,3,4}. (The conditions that (2, 3)

intersects (3, 4) positively, and (3, 4) intersects (4, 5) positively are trivially satisfied.)

0 o 1+ ajas ag 0
P = 0 —as —asas as +as 1
1 ay aras a4as ay

The diagram above is identical to the B-1 diagram in Appendix A of [3] with the
black lollipop at particle 6 stripped off, since we are only concerned with the 5 point
integrand. However, the matrix P is not the same as the B-1 matrix with the sixth
column removed. Nonetheless, they parametrize the same Grassmannian cell, which

can be seen by a change of gauge followed by a change of variables. First change the
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gauge by acting P on the left by

1 0 0
9=10 ay 0| €GL(1;1). (10.18)
0 0 1

then perform the monomial coordinate change a; — c¢ic6,a0 — cg/cq,a3 —
c1C7/cq, a4 — ¢4, a5 — C3/Cq, a6 — C5,a7 — C1,a8 — co/c1. Note that this change of
variables is a diffeomorphism of RS, which must be the case for any change of gauge

between positive variables.

10.1.5 6 point

We repeat the analysis of the previous section for the FL-2 term of the BCFW
expansion for the n = 6 one-loop NMHYV integrand, as provided in Appendix A of [3].

We denote the corresponding top cell as Ilgy,s.

(0) Start with the O-dimensional cell 1.1 . Thus we have a point P, € A% and distinct
points P, Ps € L. There is a unique such configuration up to affine transformations.

The points P, P3, Ps are not on the projective plane. A representative matrix is

6 ! N
10000 0 ®
AN
N
P=looooo0 -1 2 N (1019)
00010 0 .
4 3 4‘ A

(1) Perform the shift (2 — 1). This places P, on top of P;. Thus we have the space

of degenerate quadrilaterals (P, P, Py, Ps) where Py = P, and P, P3, P lie on L.
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A representative matrix for this one-dimensional cell is

21
AN
1a 000 0 @
AN
00000 —1 AN (10.20)
6
00010 0 .
o N

(2) Perform the shift (6 — 4). This moves Ps towards P, along the line joining P,
and Ps. Now we have a space of degenerate quadrilaterals (P, Py, Py, Ps), where two
vertices Py, Ps lie in A?, and P, = P, lies on L.,. A representative matrix for this

two-dimensional cell is

1 aa 00 0 O
0 0 000 -1
0 0 01 0 a

(3) Perform the shift (2 — 4). This moves P, towards P, along the line joining P,
and Pj. So now we have the space of degenerate quadrilaterals (P, Py, Py, Ps), where
P, lies on the line segment (1,4), and P; lies on L. A representative matrix for this

three-dimensional cell is

T
e
1 ag 000 0 NN
! AN
00 000 —1 2@ N (10.22)
AN
0 a3 0 1 0 ao N
4 AN
6
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(4) Perform the shift (5 — 6). This places P5 at the same location as Ps. Now we
have the space of degenerate pentagons (Py, Ps, Py, Ps, Ps), where P, lies on the line
segment (1,4), and P; lies on L, and Ps = FPs;. A representative matrix for this

four-dimensional cell is

T
e
1 a 00 0 0 NN
! AN
00 00 —ay —1 2@ N (10.23)
AN
Oa301a4a2a2 N\
4 N
56

(5) Perform the shift (1 — 6). This moves P, towards P along the line joining P
and Fs. So now we have the space of degenerate pentagons (Py, Py, Py, P5, Ps) where
all points lie in A%, and in addition the edge (1,6) is parallel to the edge (2,4), and

P5 = Ps. A representative matrix for this five-dimensional cell is

e
1 a 00 0 0 PON
: ' \
—a; 0 00 —ay —1 2 7N\ (10.24)
asas az3 0 1 aqas as 4 \\
56

(6) Perform the shift (5 — 4). This moves P5 towards P, along the line joining P
and Py. So now we have the space of degenerate pentagons (P, Py, Py, P5, Ps) where

all points lie in A%, the edge (1,6) is parallel to the edge (2,4), and the point Pj lies
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on the edge P,FPs. A representative matrix for this six-dimensional cell is

AN
e
1 a 00 0 0 N
,' s\
—as 0 0 0 —ay —1 2 7 N (10.25)
asas az 0 1 agas+ ag as 4 \\
5 6

(7) Perform the shift (3 — 4). This places Ps at the same location as P;. So now we
have the space of degenerate convex hexagons (Py, P, P3, Py, Ps, Ps) where all points
lie in A2, the edge (1,6) is parallel to the edge (2,4), the point Pj lies on the edge

P,Ps, and P3 = P;. A representative matrix for this seven-dimensional cell is

e
1 a 0 0 0 0 N
l' * N
—as 0 0 0 —ay -1 2 7\\(10.26)
AN
asas asz a7 1 agao 4+ ag  as u N
5 6

(8) Perform the shift (3 — 2). This moves P3 towards P along the line joining P, and
P;. So now we have the space of degenerate convex hexagons (Py, Py, Ps, Py, Ps, Ps)
where all points lie in A%, the edge (1, 6) is parallel to the edge (2, 4), the point P; lies
on the edge (4,6), and the point P3 lies on the edge (2,4). A representative matrix

for this eight-dimensional cell is

1 o aiag 0 0 0
—das 0 0 0 —ay -1

asas a3 artasag 1 agastag as
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Note that vanishing of the minors (234) and (456) is immediate from the geometric
description. The vanishing of [(16) N (24)] is equivalent to the statement that the
edge (1,6) is parallel to the edge (2,4). Again, in the polygon diagram above, we
should imagine that the intersection (1,6)N(2,4) is placed infinitely away so that the
dashed lines are parallel.

The matrix P parametrizes the same Grassmannian cell as the FL-2 matrix in
Appendix A of [3], which can be seen by a change of gauge followed by a change of

variables. First act on P from the left by

O a% (121(12
o 2Y5
g=1-1 0 - | €GL(11). (10.28)
asas
0o 0 -l

Then perform the monomial coordinate change a; — c¢5,a0 — cg/c3, a3 —
cics/cs, a4 — crfcg,as — 1/cg,ag — cycr/cs,ar — cacg/cs,as — cgfcs. As
required, this is a diffeomorphism of R%

We can describe the cell g, o C Go(1,n;1) as the space of degenerate convex
hexagons P = (Py, P», P, Py, Ps, Bs) where all points lie in A2, the edge (1,6) is
parallel to the edge (2,4), the point Ps lies on the edge (4,6), and the point Py lies
on the edge (2,4). We claim that Ilgp 5 is a codimension-3 boundary of the eleven-
dimensional top cell II{346,. This top cell is the space of convex hexagons that can
be inscribed into a big triangle, so that the edges (2,3), (4,5) and (6,1) lie on the

edges of the big triangle, as illustrated below on the left.

3 (10.29)
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To obtain Ilpr.p as a boundary of It 46y, first move P, away from P5 until it lies
on the line (2, 3), then move Ps away from P; until it lies on (4,5). Thus, P, Ps, P,
are now collinear and Py, Ps, Ps are now collinear. Finally, move the point P; away
from P, until (1,6) is parallel to (2,3). The three steps are equivalent to taking
(234), (456),[(16) N (24)] to zero. The resulting space of degenerate hexagons, as
shown on the upper right diagram where the directed lines are parallel, is the cell
Hpr.o. We should note that Il 46} is not the only top cell from which Ilgr., can be

obtained. Another possibility is I3 46}

10.2 The one-loop Grassmannian measure

Recall from Section that the canonical form of the positive Grassmannian
G>o(k,n) is the beautiful cyclic measure [2.51] Furthermore, the canonical form
for every Grassmannian cell can be obtained by taking a sequence of residues on this
measure. We now wish to generalize these ideas to one loop. However, new subtleties
arise, since for k = 1 there are multiple top cells each with its own canonical form.
Also, for k > 1, the notion of top cell is still undefined.

We begin with a general discussion of the properties that the measure must satisfy
before writing down specific formulas. We mostly focus on the £ = 1 case where the
measure has a beautiful interpretation as the volume of polygon, and generalize to

k > 1 where possible.

10.2.1 The general setup

We construct a family of integration measures on the one-loop Grassmannian (i.e. the

space of P matrices) which we claim generate one-loop BCEW terms. We consider

d*+2n P /vol GL(k; 1) /

My (P) = (P) (10.30)
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which is defined on G'>o(k,n;1). The factor M} , (P) is called the geometric factor
and My, ,,(P) the measure. We propose that BCEW terms can be generated by taking

residues of the following integral

dtonp / (k-+2)(k-+4)
Vin = T G islie2 - iheD) M, (P) 0 (Y-P.Z) (10.31)
=1

where

(il Z‘2 te ik+2) = 6A17.”7Ak+2PA1i1 T PAk+2ik+2 (1032)

s : ai,...,a
[ivig -+ i) = € Chpyy o Cagiy

(10.33)

The repeated indices Ay, ..., Apo =1,...,k+2and ay,aq,...,a, =1,2,..., kareim-
plicitly summed over their respective range. The indices iy, s, ...,k € {1,2,...,n}
label the columns of the C' and P matrices. Thus (iy,...,ix12) denotes the deter-
minant of the matrix formed by the columns 41, ...,ig1o of the P matrix, while
i1, ...,1x] denotes the determinant of the matrix formed by the columns iy, ..., of

the C' matrix. In subsequent parts, we will also make use of the following notation:
[il Z.2 e Z'S]Tl,A..,T‘t = €T1,...,Tta1’m7ascalil T Casis (1034>

where s +t = k. This denotes, up to a sign, the determinant of the matrix formed
by columns i1, ...,is of the C' matrix with rows rq,...,r; removed. The indices are
raised and lowered with the all plus metric, so we can raise and lower them arbitrarily.
For t = 0, we get back the square bracket defined earlier.

In the definition of our measure, we have not yet used the square bracket. Nonethe-
less, both brackets are important because they are covariant under GL(k;1) trans-
formations. The round brackets appearing in the denominator of the measure is the

familiar cyclic factor. However, the most important part of the measure is the ge-
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ometric factor My (P). We provide detailed examples of the geometric factor in
the subsequent section. For now we simply describe some constraints it must sat-
isfy. First of all, it must be covariant under GL(k; 1) transformations. Namely, M,
should scale as det(G)* det(J)*™ (See (2.1) of [3]). The exponents are chosen so
that a GL(k; 1) transformation on ) makes the integrand scale as det(G)* det(J)**+2,
which is the expected result. Furthermore, covariance implies that M, should only
depend on round brackets and square brackets. The number of integrations we are
left with after integrating out the delta functions is (k + 2)(n — k — 4). We interpret
these integrals as contour integrals, or as a sum over multi-variable residues. We show

later that the residues of this integral are BCFW terms (or sums of them), provided

an appropriate choice of M’.

10.2.2 The measure
The main content of our proposed formula is the geometric factor M , (P), which
we now describe.

For k = 0, the full measure is simply the cyclic measure, hence,

' (P)=1 (10.35)

0,n

In the case n = 4, there is no contour, and the measure precisely gives the 4-point
MHYV 1-loop integrand. For higher n, we have a (2n — 8)-dimensional form, and it is
a well known fact that residues of this form give BCFW terms, also known as Kermit
terms in [40].

Starting at k = 1, the geometric factor M’ is no longer trivial. To guess the form
of M’ we begin by analyzing the simplest case n = 5. Since there is no contour, we

expect the measure to give the exact integrand. Here we skip the details and just
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give the result, which is clean and simple.

n

Xy i1+1
5= ; m (10.36)
Here X; € P? is an arbitrary point. Readers familiar with polytopes in projective
space would immediately recognize M’ as the area of the pentagon whose vertices
are formed by the columns of the P matrix. We have checked analytically that this
measure precisely gives the 5-point 1-loop NMHV integrand.

We now make a curious and surprising observation. It is well known that this
integrand consists of three BCFW terms. Naively, we should expect there to exist
a measure whose residues give precisely those three terms. This intuition, however,
is incorrect. What we have learned from this measure is that the MHV case does
not require a contour. In fact, as we will see in a moment, this is true for higher k
as well, and is probably true to all loops. But this still does not explain where the
three BCFW terms come from. Let us go back to the observation of M 5 as the
area of a pentagon, which can be written in multiple ways, depending on the choice

of triangulation. For instance, we can write
Mis=1{3,4,(23) N (45)} +{1,2,(23) N (15)} + {5, (23) N (15), (23) N (45)}10.37)

where {ay,as,a3} denotes the signed area of the triangle whose vertices are the
columns aq, as, az of the P matrix, and (ajas) N (azay) the intersection of lines (ajas)
and (agaq). See Appendix A of [3] for precise definitions. ((10.37)) is simply a trian-

gulation of the measure, which we depict in the following picture.

(10.38)




These three terms correspond to the three BCFW terms.
Even before moving on to more complicated cases, there is a great deal of physical
insight that can be learned from this measure. Let us write down the full integral

explicitly,

A5 p
/ (123)(234)(345)(451)(512)

1 7 z—l—l
10.39
i][i+1] ( )

5

=1

where we omitted writing the delta functions, and we have set X; — 1. First, we
observe that all the poles of the integrand are manifest in the measure. For example,
the (123) factor corresponds to the pole (Y AB45), which is easy to see on the support
of the delta functions. In fact, it is generally the case that (a a+1 a+2) corresponds
to the pole (Y AB a+3 a+4), where the indices are mod 5 as usual. So all the poles
coming from propagators that lie inside the loop are manifest. Of course there are also
propagators that do not lie inside the loop. These are manifest in the square brackets.
Namely, the square bracket [a] corresponds to the pole (Y a+1 a+2 a+3 a+4). We
see that the pole structure of the amplitudes places very severe constraints on the
measure. In fact, one may have even guessed the measure purely from this insight.
Furthermore, in the limit where the external data Z is positive and the variables
Y AB live on the inside of Z, we see that the P matrix, which is uniquely constrained
by the delta functions, must be positive in the one-loop Grassmannian sense. Geomet-
rically, positivity of the P matrix means that the polygon is convex. This is a rather
neat observation, and is in fact connected to the pole structure of the integrand. For
instance, the pole (a a+1 a+2) — 0 simply corresponds to the vertices a, a+1, a+2
becoming collinear. Moreover, the pole [a] — 0 corresponds to the vertex a going to
infinity. Hence, poles involving the loop correspond to a degenerating polygon while

poles not involving the loop correspond to a polygon whose area blows up to infinity.
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We make one last observation. There are two classes of triangulations of the
pentagon discussed so far, which we will refer to as “spurious” and “non-spurious”
triangulations respectively. A spurious triangulation consists of triangles formed by
edges (possibly extended in either direction if needed) of the pentagon. These tri-
angles lie partially outside the pentagon. The BCFW representation shown above
is an example of a spurious triangulation. A non-spurious triangulation consists of
triangles formed by vertices of the pentagon. These triangles all lie inside the pen-
tagon and tile the pentagon perfectly. An example of a non-spurious triangulation is
(10.39). Non-spurious triangulations are also called “local” triangulations.

For higher n, the canonical form of the positive loop Grassmannian Go(1,n;1) is

n

L (Xyiitl)
1a(P) = Z:; CAIE (10.40)

For k = 2, the canonical form of G>0(2,n;1) is

[i+10y [+ | |(Xydi+1d42) (X jj+1 j+2)
/ n i)y [+1e| |[(Xo i1 i42) (Xs j j+1 j+2)
(P)=2_ (X, Xol[i it [t 142 -1+ j+2]

(10.41)

2n
i.j=1

where X, Xy are arbitrary 4-vectors, and the vertical bars denote taking the deter-
minant. We do not yet have a rigorous proof that this is the correct answer, but our
answer is supported by the fact that the measure gives the correct 1-loop integrand
for the n = 6 NNMHYV case where there is no contour.

Finally, we present the canonical form of G (k,n;1).

;ﬂn(P) _ i detst[it—i;l, . ,Zt+k—1]s detst(XS. it . ’lt+k'> . (1042)
’ (X, X Tpey [ip dpt1 <o dpth—1)[ip+1 ip+2 - itk

i1, ip=1

267



where dety; denotes the determinant of a matrix whose row and column indices are
s, t, respectively. The constants Xi,..., X} are arbitrary (k + 2)-vectors. We have

tested this measure numerically against the integrand in the MHV case up to k = 4.

10.2.3 Top cells and BCFW terms

We now address the problem of obtaining BCFW terms as residues of some measure.
Naively, one may be tempted to think that BCFW terms are simply residues of a
single measure, such as the canonical form of the positive one-loop Grassmannian.
However, this is obviously incorrect. Even for n = 5, the BCFW terms are given by
areas of triangles rather than the full area of the pentagon. In fact, we argue in this
section that these triangular pieces are nothing other than the canonical forms of top
cells, which we call top cell measures.

For each top cell IT C G>o(1,n;1), we let My denote its canonical form. Recall
that there exists a triangle A whose vertices X1, X5, X3 are given by , such that
the polygon is inscribed inside the triangle. Clearly, we can approach any boundary
of IT by going to the limit where one of the vertices of A approaches infinity. Thus, it
is natural to expect that the measure My should have simple poles at [X;] — 0 for
1 =1,2,3. It follows that the geometric factor of the top cell measure is given by the

area of A:

n = {X1, Xo, X3} (10.43)

We prove this in Section [10.2.5]

For n = 5, we find that the canonical form of the one-loop Grassmannian is the

sum of three top cell measures.

Mz = MH{2,3,4} + MH{1,2,5} + MH{2,4,5} (10.44)
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The three measures match term-by-term with the triangle areas in , and hence
also with the BCFW terms. In Section[10.2.4] we show that these three top cells form
a triangulation of the one-loop Grassmannian.

We therefore make the conjecture that each BCFW term for £ = 1 and any n is
given as some multi-dimensional residue of a top cell measure. Both the top cell and
residue can be identified using a series of simple steps that we now illustrate.

Consider again the FL-2 term for the 6 point NMHV 1-loop integrand. Recall
from Section that the top cell Ilgr.o of this term is given by a codimension-
3 boundary of Il; 46 by taking (234),(456),[(16) N (24)] — 0. It follows that the
canonical form Mg of the FL-2 cell must be obtained from the top cell measure
Muy, , 4 by taking three residues given by the three zero conditions. Hence, the FL-2

term is given by

asp
FL-2y shnce = Res M., oY - PZ 10.45
Yop / (234)—0 H?Zl(a’a+17a_’_2) It2,4,6) ( ) )
(456)—0

[(16)N(24)] =0

In practice, the residue can be computed by using the following change of variables.

P3 = 061P2 + OéQP4 + lel (1046)
P5 = 043P4 + 044P6 + ZQPl (1047)
[(16)N (24)] = 2 (10.48)

Then take residues where 21, 25, 23 — 0, which gives the following.

B d*ad® Pyd? Pyd® Pyd? Py (124)\ o5
FL-2v space / aapazag(124)(246)(612)[4][6] ([1] ~- 16 246)) Cy-rZ)
(10.49)
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The remaining part of the integral is straightforward since there are precisely enough
delta functions to localize the integrals.

We should note that the top cell from which the FL-2 cell is obtained is not unique.
For each term in Appendix A of [3], we indicate only one possible top cell. In fact, for
some BCFW terms, it is possible to obtain the cell for the term as a codimension-3
boundary of the full one-loop positive Grassmannian. In such casees, it is canonical

to use the full polygon area as the geometric factor.

10.2.4 Triangulation of the one-loop Grassmannian with top

cells

We argue that G>¢(1,n;1) can be triangulated as a union of the top cells IIg. More
precisely, let C,, be a convex n-gon that is different from the n-gon (P, P, ..., P,).
Furthermore, suppose we are given a triangulation G = {57, S,...,S, 2} of C,,
where each S; is a triangle of ), and thus a three-element subset of {1,2,... n}.
Then we claim that 7 = {Ilg,,...,Ig, ,} is a collection of top cells of G>¢(1,n;1)
that triangulate G>o(1,n;1).

A detailed proof for all n is given in Section 4.4 of [3]. Here we simply demon-
strate an example. In particular, for n = 5 and G = {125,234,245}, we claim
that the one loop Grassmannian G>o(1,n;1) is triangulated by the top cells T =
{125y, 2343, 12,45y} Recall that

o The cell IIj; 55 is given by the condition that [2,3;5, 1] is positive.

o The cell Il 34y is given by the condition that [4,5;2, 3] is positive.

e The cell 545 is given by the conditions that [2,3;4,5] and [5,1;2,3] are
positive.

Given a nondegenerate convex pentagon, (2, 3; 5, 1] is either positive or negative. Sim-

ilarly, [4, 5; 2, 3] is either positive or negative. It follows that every nondegenerate con-
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vex pentagon belongs to exactly one of Ilgy o5y, [I{23 43, 12,451, S0 T is a triangulation

of G>o(1,m;1), as claimed.
10.2.5 Geometric factor

We prove ((10.43)) that

d*"P/vol GL(1;1)

My = ——— .
1 I (i +1,i42)

{ X0, Xo, X5} (10.50)

is the canonical form of the top cell II. In the following, we do not worry about global
signs.
The proof is by induction on n, where the base case is n = 3. In this case, there

is only one top cell IT = Ily; 531, and we can gauge fix P to be

1 0 0
P=10o0 10 (10.51)
fa o 1

where («a, ) are the positive coordinates. Thus the LHS of is equal
to (1/af)dadB. The geometric factor {Xi, Xy, X3} is equal to 1/a?8 and
d*+2n P /vol GL(1;1) = dad(fa) = adadf. Since all the cyclic minors are equal to
1, holds in this case.

Now suppose holds for some value of n. After cyclically relabelling the
n + 1 vertices, any top cell II' for G>((1,n + 1;1) can be obtained from some top cell

IT for G>0(1,n;1) in the following way:
1. Start with the space of n-gons (P, P, ..., P,) for II.
2. Perform the shift (n — n 4 1), placing P,+1 on top of P,.

3. Perform the shift (n +1 — 1), moving P, towards P;.
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4. Perform the shift (n — n — 1) moving P, towards P,_;.

Note that each of the shifts (2),(3),(4) increases the dimension of the cell by one
(so dimIT" = dim IT + 3), and introduces a new positive coordinate denoted «, 3,7
respectively. If P is the original matrix for II with columns Py, P, ..., P,, then the

new matrix is

P/:(Pl,PQ,...,Pnfl,Pn—i—’}/Pn,l,OéPn—'—ﬁPl).

It is not difficult to check that
> P Jvol GL(1;1) = £d*" Pa(n — 1,n, 1)dadBdy/vol GL(1;1)
where (n — 1,n,1) denotes a minor of P. But we also have

(n—2,n—1,n)=(Mn-2,n—1,n)
(n—1,n,n+1)=pMn-1,n,1)
(n,n+1,1) =ay(n—1,n,1)

(n+1,1,2) = a(n, 1,2).

So

d**P/vol GL(1;1 d**P/vol GL(1;1 1
Hi:l (272+172+2)/ &67H121<Z77’+177’+2)

{Xl) X27 X3}

since M = MH%Y. Now as triangles in P2, the triangle A for IT and A’ for

IT" are identical. So {Xi, X2, X3} = {X{, X}, Xi}. Thus we have

Wléxé}MH/’ completing the proof of ([10.50)).

1
{X1,X2,X3} My
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Chapter 11

Conclusion

We have introduced positive geometries and canonical forms as a new mathematical
framework for studying scattering amplitudes. In Section 2.1 we described posi-
tive geometry as a pair (X, X>¢) consisting of a complex projective variety X and
a non-negative part X, which generically has boundaries of all codimensions. As-
sociated with every positive geometry is a unique meromorphic top form called its
canonical form whose singularities are controlled by the boundaries of the geometry.
We then gave a series of examples, including generalized simplices and generalized
polytopes. Subsequently, in Section [3| we discussed various techniques for computing
canonical forms, including direct construction from poles and zeroes, triangulations,
pushforwards, and various integral representations.

In Section [} we introduced the associahedron as a positive geometry in kinematic
space for color-ordered scattering amplitudes, thus providing our first physical exam-
ple. We showed that there exists an infinite family of associahedra whose canonical
form gives the color-ordered tree amplitudes of the bi-adjoint cubic scalar theory. Our
formalism provides an independent construction of these amplitudes without reference
to any of the traditional machinery of quantum field theory, canonical quantization,

or path integrals which rely heavily on the principles of locality and unitarity. On
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the contrary, we presented a novel point of view: locality and unitary are emergent
properties of the positive geometry (see for instance Section . This is a recurrent
theme throughout the remainder of this text. We then discussed the worldsheet as
a positive geometry, and showed that its canonical form is the famous Parke-Taylor
form. Most importantly, we argued that the worldsheet associahedron is directly re-
lated to the kinematic associahedron via a diffeomorphism—the scattering equations.
This observation, combined with the machinery of positive geometries, provides a
complete and independent explanation for the CHY formula for the bi-adjoint scalar.
Finally, in Section [6] we discussed the color-kinematics duality from the point of view
of positive geometries, and presented a general duality between colored amplitudes
and differential forms on kinematic space called scattering forms. Moreover, we found
that various properties of the amplitudes like kinematic Jacobi relations, trace de-
composition and BCJ relations can all be understood as geometric properties of the
form. In essence, this provides a generalization of our work on the associahedron to a
larger class of theories that includes Yang-Mills and Non-linear Sigma Model at tree
level.

Beginning in Section [7, we provided a construction of the amplituhedron as a
positive geometry, for which the Grassmannian is the fundamental building block.
As first discussed in [I7], the canonical form of the amplituhdron determines the
scattering amplitudes of planar N' = 4 super Yang-Mills to all loops, although the
language of “canonical forms” was not introduced until [2]. A precise prescription for
mapping the canonical form to the scattering amplitude is provided in Section [8.2]
which involves a novel procedure for “bosonizing” supersymmetry also discussed for
the first time in [I7]. Moreover, we demonstrate the striking fact that BCFW re-
cursion is simply a triangulation of the amplituhedron. In Section [9] we provided a
diagrammatic procedure for computing any BCFW term, with many examples. In

Section [10] we focused on the geometry of the one-loop case.
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There are many obvious unanswered questions and open avenues of investigation
suggested by our results. For instance: Is there a complete geometrization of scat-
tering forms for YM and the NLSM that brings the polarization vectors into the
geometry? This question is of course also relevant to the search for geometries con-
nected to gravity amplitudes. While we do not have any natural scattering forms
due to the absence of color, the amplitudes can be obtained using the double-copy
construction a la BCJ [14] [I5]. More precisely, for a double copy of the form L ® R
between theories L and R, the amplitude for the product theory can be obtained

)

directly from either Q(Ln_g for the L theory or Qg_:)’) for the R theory by replacing

the wedge products W (g) with appropriate kinematic numerators:

Ni(9) Nr(g) n—3 n-3
Mo = N S R O v = U Wi . (111)

HIGg S1

cubic g

For example, we obtain gravity from the product YM ® YM, Born-Infeld theory from
the product YM ® NLSM and the so-called special Galileon theory from NLSM ®
NLSM [60]. Along this line, it is very tempting to connect our worldsheet picture
for the open string to the ambitwistor string [64, 65, 66] [67], and related world-
sheet methods using scattering equations [68, [69] which are exclusively for the closed
string. Furthermore, could we understand the double-copy construction, and pos-
sible geometries for gravity amplitudes in a way similar to the Kawai-Lewellen-Tye
relations connecting open- and closed-string amplitudes [70] (See [71], [72] for related
ideas)?

Let us end with a few suggestions for immediate avenues of progress which are

more continuously connected to the themes introduced in this paper.

General dlog projective forms: permutohedra and beyond Recall that a
scattering form ([11.2)) is called dlog scattering form if it is projective and every

kinematic numerator is either 0 or 1. A classification of all such forms is then
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equivalent to solving the Jacobi relations (6.18) provided N(g|a,) € {0, £1}.

QG085 = 3 N(g) Q" (g)(8) (11.2)

cubic g

While we do not have a complete classification, we can discuss some general prop-
erties. To every dlog scattering form, we assign a connected graph YT consisting of a
vertex for every cubic graph g whose numerator N (g) is non-zero, with a line between
any two vertices related by mutation. Furthermore, projectivity is satisfied precisely
if every vertex is adjacent to exactly (n—3) lines (i.e. the graph is “simple”), and a
sign flip occurs between any two vertices related by mutation. In particular, walking
along any closed path in the graph T should return us back to the same sign. Note
that this does not imply that the path must be of even length, since the sign at
the initial vertex depends on its propagators which may have been reordered by the
sequence of mutations.

The simplest example of of dlog scattering forms is of course the planar scattering
form Q((;,_?’) [a] whose connected graph Y is given by the skeleton of the a-ordered
associahedron, also known as the Tamari lattice [73]. In fact, for every n, the Tamari
lattice provides the smallest number of vertices possible. However, the Tamari lattice
is only the beginning of a large class of examples. For n=4, there is only one possible
topology for the graph (i.e. aline segment). For n=5, we have seen possible topologies
are pentagon, hexagon, octagon and nonagon.

For all n, a large class of possible connected graphs are given by the skeleton of
the “Cayley polytopes” discussed in [74] whose dlog scattering forms were obtained
by pushing forward Cayley functions (expressed as a form on moduli space) via the
scattering equations. The Cayley polytopes are polytopes constructed directly in

kinematic space, of which the kinematic associahedron is one example. Furthermore,

276



much of our associahedron discussion generalizes word-for-word to the Cayley poly-

topes, a summary of which is provided below.

e The Cayley polytope (whose skeleton is the connected graph T) is constructed
directly in kinematic space KC,, by intersecting a (n—3)-dimensional subspace
with the positive region defined by setting s; > 0 for every propagator appearing

in the cubic graphs.

e The pullback of the dlog scattering form to the subspace gives the canonical

form of the Cayley polytope.

e The scattering form can be obtained as the pushforward of a form on moduli

space M.

Here we present the construction for one example: permutohedron P, [75], which
is the Cayley polytope with largest number of vertices for any n, where each of the
(n—2)! vertices corresponding to a multi-peripheral cubic graph with respect to 1 and
n as shown in Figure [6.4]

We begin by defining the top-dimensional “positive region” where all possible

poles of the multi-peripheral graphs are positive:

Slay-ap form=1,...,n-3and2<a; < ---<a, <n—1 (11.3)

where every cut corresponds one of the (2"2—2) facets of the permutohedron. Fur-

thermore, the subspace is given by the following (n—2)(n—3)/2 conditions:

Sij is a negative constant for 2 <i < j<n—1, (11.4)

which are the analog of non-adjacent constants for the associahedron case. One can
prove that the intersection of the positive region with the subspace gives the permu-

tohedron by showing geometric factorization on all possible boundaries. Note that
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Figure 11.1: Permutohedra for n=>5 (left) and n==6 (right)

P-4 is a line segment; and P,—5 is a hexagon while P,_¢ is a truncated octahedron,

as shown in Figure ((11.1)).

Similar to that for associahedron, the (projective) scattering form for P, is given

by

n—2
Qgi:?’) = Z Sgn(ﬂ') /\ leg S$17(2)--7(a) (115)
a=2

TESn—_2
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where sgn(m) is the signum of permutation 7. Furthermore, the pullback of the
scattering form to the subspace (denoted @,,) gives the canonical form of the permu-

tohedron:

. 1
W= Y == d" s (11.6)
rions Hazt 172 m(a)
Finally, the scattering form can be obtained as a pushforward of the following form

on moduli space:

wp, = Z sgn(m)w)VS () (11.7)

as suggested by ([6.65]).

The discussion provided above can be generalized to all Cayley polytpes studied
in [74]. which belong in the much larger class of generalized permutohedra studied
by Postnikov [76] [77]. In on-going discussions with Postnikov we have learned that
our construction for these polytopes are equivalent to his under a natural change of
variables. It is likely that a corresponding d log scattering form exists for generalized
permutohedra. Moreover, for recent studies of worldsheet forms that are relevant to

our construction, see 78, [79].

Massive scalar amplitudes, non-logarithmic forms While we have ostensibly
focused on amplitudes for massless particles, for the bi-adjoint ¢* theory in particular
it is clear that there is no obstruction to dealing with the scattering of massive par-
ticles. One interesting point about doing this is the following: we know that we can
generate e.g. ¢? couplings from a cubic theory once massive particles are integrated
out. Now, suppose we started with a ¢* theory; there are already small subtleties on
how to geometrize the scattering form in this case related to the fact that the form

simply does not have logarithmic singularities, and have singularities at infinity. The
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addiction to “forms with logarithmic singularities” is perhaps the central obstacle to
seeing connections to positive geometries. But if we generate the quartic coupling
by integrating out massive scalars in a cubic theory, the full theory does have loga-
rithmic singularities, and so we can “sneak up” on the hard problem of dealing with
non-logarithmic singularities by regulating them as logarithmic ones which are then
sent to infinity. Furthermore, the scattering forms for the NLSM have non-trivial
residues on all the poles as well as poles at infinity; it would again be fascinating to

find a purely geometrical characterization of these residues.

Loops Furthermore, we can immediately start to explore scattering forms and pos-
sible positive geometries associated with the loop integrand for e.g. the bi-adjoint
scalar theory. We can attempt to mimic the steps needed to “upgrade” the ampli-
tude to a differential form at loop level. An early and obvious source of annoyance is
what to do about bubble topologies, since naively including them would give double
and higher poles, thus ruining the logarithmic singularities of the form. It is perhaps
reasonable to then sum over all diagrams excluding these bubbles. At four points and
one loop, this leaves us with a sum over five dlog forms. Can these forms be made
to be projective, and is there a positive geometry in the extended kinematic space of
loop and Mandelstam variables attached to the loop scattering forms?

Going beyond the bi-adjoint scalar case, one can consider scattering forms for loop
integrands in gauge theories and more general theories with color. In particular, it
should be straightforward to write down forms for one-loop maximally supersymmet-
ric Yang-Mills amplitudes in general dimensions, since there is no contribution from
bubbles. Similarly we expect these forms for loop integrands to have a worldsheet
origin that may be related to scattering equations and ambitwistor strings at loop

level [65, 80, BT, 82, R3, [84], 85, 36, 87, [33).
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Scattering forms, amplituhedron and twistor strings in four dimensions
We have now seen two notions of scattering forms. In the story of the amplituhe-
dron the forms play the role of combining different helicity amplitudes (as does the
super-amplitude) into a single object, while in this paper the differential forms are
tied to the geometrization of color. How are these pictures related to each other?
There must be a connection, not only for moral reasons, but for more pragmatic and
technical ones. We know that the scattering equations and the CHY formula for
gluon amplitudes transition smoothly in four-dimensional spacetime to the Roiban-
Spradlin-Volovich (RSV) equations and the twistor-string formulas for N' = 4 SYM
scattering amplitudes [89]. The latter is deeply connected to the geometry of the pos-
itive Grassmannian and the amplituhedron, while we have exposed the connection
of the former to the worldsheet associahedron. Making progress on these particular
questions will undoubtedly need some conceptually new ideas.

On the other hand, first steps have been taken in identifying scattering forms

for (tree-level) super-amplitudes in N' = 4 SYM and the “amplituhedron” in ordi-
1)

nary, four-dimensional momentum space; these are (2n—4)-forms Qi encoding
all helicity amplitudes in the space of {),, A | a =1,2,--- ,n} subject to momen-

tum conservation, and the (2n—4)-dimensional “amplituhedron” lives in a “positive
region” in the space with correct “winding numbers” [90, 49]. In close analogy with
our associahedron story, there is strong evidence that the four-dimensional scattering
equations (RSV) provide a diffeomorphism from G+¢(2,n) (the twistor-string world-
sheet) to the “amplituhedron” in momentum space; its canonical form, or the pullback
of Q2" to the subspace where it lives, is then given by the pushforward of the cyclic
form of G+¢(2,n) [90, 49]. We leave the study of these exciting questions for future

investigations.
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Extended positive geometries for gluons and pions? It is clear that the gluon
and pion scattering forms are fundamental objects, with a canonical purpose in life
directly in kinematic space as well as on the worldsheet. What we are still missing
is the complete connection of these scattering forms with positive geometries. The
obstacle is the most obvious one: while the forms are dictated by god-given properties
of gauge-invariance/Adler zero and projective invariance, they are not canonical forms
which must have not only logarithmic singularities but also unit leading residues. This
may be taken as an invitation to e.g. further “geometrize” the polarization vectors—
something we have already seen as a critical part of the amplituhedron story in four
dimensions—or there may be other ways to more naturally tie the “prefactors” in both
YM and the NLSM to the underlying (associahedron) geometry universally associated

with the poles of (planar) cubic graphs.
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