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ABSTRACT

As cosmological simulations have grown in size, the permanent storage requirements of their particle data have also grown. Even
modest simulations present a major logistical challenge for the groups which run these boxes and researchers without access to
high performance computing facilities often need to restrict their analysis to lower quality data. In this paper, we present GUPPY, a
compression algorithm and code base tailored to reduce the sizes of dark matter-only cosmological simulations by approximately
an order of magnitude. GUPPY is a ‘lossy’ algorithm, meaning that it injects a small amount of controlled and uncorrelated noise
into particle properties. We perform extensive tests on the impact that this noise has on the internal structure of dark matter
haloes, and identify conservative accuracy limits which ensure that compression has no practical impact on single-snapshot halo
properties, profiles, and abundances. We also release functional prototype libraries in C, Python, and Go for reading and creating

GUPPY data.

Key words: methods: numerical —software: public release —dark matter.

1 INTRODUCTION

In 2005, the hard drives required to store ten snapshots of the
world’s largest cosmological simulation would have cost $2800,
after correcting for inflation.! Today, the equivalent task would cost
$9900.2

As theoretical cosmology progresses, simulators have an ever-
increasing demand for storage, even relative to the best available
technology. Part of this demand comes from the grand scope
of some modern theoretical projects. For example, the Abacus
Summit simulation suite (Maksimova et al. 2021) aims to provide
cosmology predictions for next-generation survey instruments such
as the Dark Energy Spectroscopic Instrument (DESI) and the Roman
Space Telescope, and thus spans a wide range of cosmologies
while maintaining high mass resolution (m, ~2 x 10° h~' M)
across large scales (L = 2 h~! Gpc). This leads to their public data
release being over 2PB in size, despite substantial subsampling.
More generally, a combination of different Moore’s law slopes and
increased investment in computing mean that the speed of high-
performance computing has been outpacing the decreasing cost of
hard drive space for decades. Between 2005 and 2023, the cost-
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'Millenium Simulation (Springel et al. 2005). Median hard drive price
from https://jcmit.net/diskprice.htm. Corrected for inflation according to the
Consumer Price Index. Electricity and server maintenance not included.
2Uchuu (Ishiyama et al. 2021). Median hard drive price from https:/jcmit.
net/diskprice.htm. Electricity and server maintenance not included. Stanford
RCC would currently charge about $1700 per month to store these data on
its high-performance system.

per-byte of storage has only decreased by a factor of thirty, but
the combined speed of the 500 most powerful supercomputers has
increased by a factor of more than two thousand.’

Cosmological simulations are expensive and time-consuming to
run. Data restrictions substantially affect the community’s ability to
use the simulations we have invested so many resources in running
and reduces the scientific output-per-dollar. Researchers will often
need to heavily subsample their simulation data (e.g. Maksimova
et al. 2021) or only store particles at a coarse snapshot cadences (e.g.
Klypin, Prada & Comparat 2017). Subsampling makes it difficult to
study the detailed small-scale structure of haloes and their subhaloes,
while coarse output cadence prevents analysis that requires tracking
particles over time, like merger tree construction (e.g. Srisawat et al.
2013), particle tracking (e.g. Diemer 2017), and some types of
‘orphan’ halo modelling (e.g. Guo et al. 2011). Some researchers will
run detailed analysis ‘on the fly’, generating all their halo catalogues
and data products as their simulations run and never outputting full
snapshots (e.g. Angulo et al. 2012). Some N-body codes such as
SWIFT (Schaller 2018) and GADGET-4 (Springel et al. 2021) build
this feature in by default. While this process is the right choice for
some projects, it locks researchers in to their initial analysis choices,
makes it more difficult to explore unintended research directions, and
completely prevents many forms of replication.

One of the greatest drawbacks of large simulation sizes is ac-
cessibility. There are relatively few well-funded groups which have
access to the large data servers needed to comfortably work with
simulation snapshots. In many research groups, a student who wanted
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to work with particle data would need to store that data on their
personal computer, a task which is impractical for even modest data
sets. This means that even though there is a wealth of publicly
available simulation data (e.g. Klypin et al. 2017; Nelson et al.
2019; Maksimova et al. 2021; Villaescusa-Navarro et al. 2021), entire
categories of analysis of this data are locked off from a substantial
portion of our community due to data sizes.

One option for mitigating the impact of simulation sizes is data
compression. Compression replaces the on-disc representation of a
data set’s integers, floats, and strings with an alternative representa-
tion that requires fewer bits (e.g. Sayood 2006). By leveraging the
properties of their data set, researchers can develop algorithms which
outperform generic compression tools in the same way that the JPEG
format can store images more efficiently than gzip can after being
applied to a raw image bitmap.

Computational biologists and chemists have used specialized
compression algorithms to deal with the sizes of their N-body
molecular dynamics simulations for decades. The general framework
of this approach has been to modestly reduce accuracy, then to use
a variety of tricks and data symmetries to store the lower accuracy
values. This process is called ‘lossy’ compression, a technique that
is widely used in image (e.g. Wallace 1992), audio (e.g. Sterne
2012), and video (e.g. Le Gall 1991) formats. Omeltchenko et al.
(2000) was the first to develop a specialized lossy format for
molecular dynamics data sets and later authors have developed a
wide range of alternative compression algorithms (e.g. Meyer et al.
2006; Marais et al. 2012; Kumar et al. 2013; Huwald et al. 2016;
Dvoriak, Manak & Vasa 2020). In our view, none of these methods
can be directly applied to cosmological simulations as-is. The most
effective methods either re-order data, erasing information on particle
identities (e.g. Omeltchenko et al. 2000), take advantage of the
comparatively fine output cadences required by molecular dynamics
analysis (e.g. Huwald et al. 2016), leverage physical symmetries in
molecule-scale data that do not exist at larger scales (e.g. Dvorak
et al. 2020), or are more appropriate for simulations with lower
accuracy tolerances than most cosmological analysis requires (e.g.
Meyer et al. 2006).

Compression algorithms have long been used in the compression
of astrophysical images (e.g. Hanisch et al. 2001; Pence, White &
Seaman 2010), and several authors have written compression al-
gorithms directly targeting N-body data (Di & Cappello 2016; Tao
etal. 2017; Li et al. 2018; Di et al. 2019; Cheng et al. 2020; Jin et al.
2020). While some cutting-edge algorithms perform very poorly on
N-body data (see comparison in Tao et al. 2017), others claim very
respectable compression ratios, ranging from a factor of four (Cheng
et al. 2020) to a factor of twenty (Di et al. 2019). However, there
is substantial uncertainty in what these compression ratios actually
mean. The storage efficiencies of all lossy compression algorithms
are strongly dependent on their accuracy, and there is no clarity in the
literature on how much accuracy simulation outputs actually need.
Many existing tests are run at accuracies which are too coarse for
cosmological analysis (see Section 3) and the few tests on the impact
of compression that do exist are not sensitive to the inner structure
of haloes (see Section 3). There is also a wide disparity in the ways
that different approaches control error sizes.

In addition to these more theoretical works, conservative com-
pression techniques have been used in a few large-scale simulations.
Abacus Summit (Maksimova et al. 2021) uses a pair of compression
algorithms, RVINT and PACK9, which reduce positions and velocities
to roughly 8.5 bytes per particle. TianNu (Emberson et al. 2017)
uses a similar scheme which allows them to store both vectors with 9
bytes per particle. The Symphony zoom-in simulation (Nadler et al.
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2023) suite stores only the floating-point mantissa of its positions and
velocities, truncated at two bytes, giving positions, velocities, IDs,
and other particle metadata at the cost of 12 bytes per particle. All
three simulation teams err on the side of caution and store particles
to much finer accuracies than are typically used by the dedicated
compression literature. This is due to the issue mentioned above:
there is no clear guidance on how much precision is needed.

This paper is essentially an argument to the cosmology community
to begin applying these aggressive compression techniques to our
data. First, we present the compression algorithm GUPPY in Section 2.
This algorithm is based on old but effective compression techniques
which have shown promise in recent tests (Di et al. 2019). More
importantly, in Section 3, we perform an extensive suite of tests
which demonstrate the impact of different compression accuracies
on dark matter halo properties and recommend accuracy limits that
ensure virtually no impact on halo properties. Lastly, in Section 4,
we show that GUPPY can reduce the sizes of simulations by an order
of magnitude at this accuracy level.

Upon the publication of this paper, we will release an open source
implementation of the GUPPY algorithm in the programming language
Go and provide libraries for using it in GO, C, and PYTHON.* This
code is under active development and we aim to help support projects
which wish to use it.

2 THE curpry ALGORITHM

The core of the GUPPY algorithm follows a well-worn pattern for
compressing floating point data (see Sayood 2006 for a pedagogical
discussion of this framework and Omeltchenko et al. 2000 for a
classic application).

(i) The user chooses how accurately a variable should be stored.
That variable is converted into a set of indices specifying a cell in a
grid whose cell width is at least as small as the target accuracy. This
is called ‘quantization’ (Section 2.2).

(i) While compressing an array, GUPPY attempts to predict the
value of the i element based on the elements O to i — 1. Then the
exact difference between this prediction and the true value is stored
(Sections 2.1 and 2.3).

(iii) Lastly, a generic compression step, called ‘entropy encoding’
is performed on these offsets using an industry-standard compression
library (Section 2.4).

This process is illustrated with a cartoon in Fig. 1. Overall, the
structure of GUPPY is similar to the method discussed in Di et al.
(2019), although in detail a number of parts of the two designs are
different.

Throughout this paper, we assume that the compression target
is a dark matter-only cosmological simulation, which natively stores
positions and velocities as 3-vectors of 32-bit floats and stores particle
IDs as 64-bit integers. We also assume that there is some unique
mapping between a particle’s location in the initial conditions grid
(i.e. its Lagrangian coordinates). These assumptions are true for, e.g.
a Gadget-2 simulation run with 20483 particles (Springel 2005a).

Simulations with fewer than 232 particles can get away with using
32-bit IDs natively. To convert our reported compression ratios to
these smaller simulations, multiply them by 1.143 = (3 x 4+ 3 x
44+8)/3x4+3x4+4).

The GUPPY algorithm would also work on other particle properties,
such as acceleration, density, or hydrodynamic variables. We do not

“https://github.com/phil-mansfield/guppy
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Figure 1. An illustration of the particle ordering used by GUPPY (left) and of delta encoding (right). Left: Data in GUPPY is arranged into ‘skewers’, lines
of particles through Lagrangian space whose offsets relative to one another are encoded. Skewers are arranged to fill out the entire volume of a block of
particles within Lagrangian space, while ensuring that all but the first contain a previously encoded/decoded particle immediately before the start of the skewer
(Section 2.1). This ensures that only a single absolute offset needs to be stored. In this figure, the black cube in the lower left corner shows the particle whose value
is stored directly. Next, the orange skewer (left-most arrow pointing upwards) is stored along the x;, direction in Lagrangian space, then the red skewers (middle
arrow, pointing right) along yy,, then the blue (right-most arrow, pointing right) along z;,. The arrows indicate the direction that offsets are calculated along. Right:
GUPPY ‘quantizes’ floating point values onto an integer grid (Section 2.2). GUPPY then predicts the value of the next integer given the previous one. and only records
the difference between the prediction and actual value, the ‘delta’. (Section 2.3). This figure illustrates a scheme where each particle is predicted to have the
same value as the preceding particle in Lagrangian space. Our approach is similar in philosophy, but there have been several small modifications which improve
compression ratios (see Section 2.4). Here, x;, stands in for whichever Lagrangian coordinate a skewer changes over, and x stands in for any particle property.

test this type of application in this paper, and recommend that users
interested in doing so preform tests comparable to those in Section 3.

2.1 Data ordering

The core fact underpinning the GUPPY algorithm is that most particles
stay relatively close to the particles that had been their neighbours
in the initial conditions. For particles which have not fallen into
collapsed structures, the mapping between initial (‘Lagrangian’) and
final positions, X(X;) is a smooth and slowly changing function.
Particles which fall into haloes or filaments will quickly separate from
their old neighbours (see Hahn, Abel & Kaehler 2013; Sousbie &
Colombi 2016, for a beautiful illustrations of this), but still stay
localized within an object much smaller than the simulation box.

To take advantage of this, GUPPY stores particles in ‘blocks’, 1D
arrays that contain all the particles within some 3D grid in the
initial conditions. There are many elegant 1D orderings of grid cells
(e.g. Butz 1971), however our testing showed that these orderings
have worse compression properties than the substantially less elegant
method we outline below when combined with the prediction method
described in Section 2.3.

GUPPY’s blocks are broken up into a number of 1D ‘skewers’
through the initial conditions grid. These skewers hold two La-
grangian coordinates fixed, while incrementing the third.

The skewer ordering that GUPPY uses is illustrated in the left panel
of Fig. 1. Each small cube represents the location of a particle in the
initial conditions, and the dark cubes show example skewers through
this grid. First, the initial particle is stored (black). Next, a single
skewer adjacent to the initial particle is stored (orange). Next, a face
of the grid is filled out with skewers which are perpendicular to the
direction of the initial skewer. Lastly, the body of the grid is filled
out with skewers which are parallel to the normal of that face (blue).
This ordering means that every skewer is stored later in the block
than the particle immediately preceding it in the initial conditions
grid.

MNRAS 531, 1870-1883 (2024)

Later encoding steps become more efficient if the mean change in
a variable along a skewer is zero. Because of this, when GUPPY is
storing x or v,, the first (orange) skewer is in the & direction. Then a
face is filled out in the y direction and the body of the block is filled
out in the Z direction. The direction of the first skewer is chosen
analogously for the other positions and velocity variables.

Compression rates are not strongly dependent on the size of
these blocks. Throughout this paper we use blocks containing 128>
particles.

2.2 Quantization and dequantization

GUPPY handles lossy compression through a quantization step while
writing data and a dequantization step when reading data. A data
point, x; is quantized to an index, d; via

di = [x;/8:], (1)

where §, is the user-specified accuracy. Upon reading, d; is dequan-
tized back into x; via

x;p = 8x(di + U0, 1). @

Here, U£(0, 1) is a uniform random number between 0 and 1.
Quantization is the only step in GUPPY which loses information:
all other steps are exact. This means that all errors induced by
GUPPY are strictly bounded. Users can exactly simulate the impact
of compression on their data easily without needing to run GUPPY
by applying equations (1) and (2) to their data in sequence. Errors
experienced by different particles are completely uncorrelated.

2.2.1 Alternative quantization schemes

There are many possible alternative quantization schemes. One could
imagine, for example, storing vectors as a quantized norm and a pair
of quantized angles (using, e.g. HEALPIX indices; Gorski et al. 2005),
or using relative (i.e. split-logarithmic) errors instead of absolute
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ones. Such alternative quantizations have been shown to lead to high
compression ratios when applied to velocity vectors (Di et al. 2019;
Cheng et al. 2020). In principle, GUPPY can accommodate these types
of schemes if the user applies a remapping to input variables prior
to compression, but we strongly urge against quantizing velocity
vectors in this way.

None of the schemes mentioned above are invariant under changes
in reference frame velocity. This means that the internal motions of
particles inside haloes will be resolved with different accuracies
depending on the halo’s velocity relative to the arbitrary rest frame
of the simulation. For example, small dark matter haloes with
internal velocity dispersions < 100kms™! can easily be found in
large-scale bulk flows with velocities of 100s of kms~' or orbiting
cluster-mass haloes at 1000s of kms~!. In these cases, internal
velocities will be more poorly resolved in the inertial frame of these
small haloes and the resulting errors could be highly anisotropic.
Additionally, a dependence on a halo’s inertial frame would mean
that compression errors would pick up correlations with physically
meaningful quantities like large-scale environment.

In principle, the choice of pseudo-random number generator
(PRNG) could impact the quality of the dequantization process.
Numerous early PRNGs experienced highly non-random correlations
in their output. The most famous of these failures is likely IMB’s
RANDU, a 60’s-era linear congruential generator which shows
obvious ‘stripes’ in its output when used to populate a 3D cube with
points (e.g. Entacher 1998). The class of test which can detect these
stripes within unit cubes of various dimensionalities —a ‘spectral test’
—is included as part of exhaustive modern PRNG test batteries (e.g.
L’ecuyer & Simard 2007). GUPPY uses ‘xorshift128+’ (Vigna 2014)
a variant of the xorshift class of PRNGs introduced in Marsaglia
(2003). We chose this PRNG primarily due to its combination of
speed and reliability, a combination which has made it see common
use in numerous industry applications, particularly in the internal
JavaScript engines for essentially all major web browsers.

TestUO1 ‘BigCrush’ (L’ecuyer & Simard 2007)° is an exhaustive
set of 106 statistical tests of randomness for PRNGs and is generally
considered to be the gold standard for PRNG reliability. There is
some controversy over whether xorshift1284- actually passes all
the BigCrush tests. Vigna (2014) claim that the algorithm passes
the full test suite, while some reproducible, open source testing
projects®7-3: find that it fails some tests (see also, Lemire & O’Neill
2019), particularly the smarsa MatrixRank test (which tests
the independence of columns in large random binary matrices) and
the scomp_LinearComp test (which measures the complexity of
a bit sequence based on the Lempel-Ziv compression algorithm).
Whether or not xorshift128+ actually passes these higher order tests
is not important for us: for our purposes it is only important that it
generates uniform distributions within a 6D phase cube. This is well-
established by other passed tests in the BigCrush suite, particularly
the snpair series of tests, which checks properties of the nearest
neighbour distribution for uniformly generated points in up to 12
dimensions, and the set of spectral tests performed by the suite. To
our knowledge, these test results are not contested, except at scales far

Shttp://simul.iro.umontreal.ca/testu01/tu01.html
Shttps://github.com/lemire/testingRNG
7https://lemire.me/blog/2017/09/08/the- xorshift128-random-number-
generator-fails-bigcrush/

8https://xoshiro.di.unimi.it/hwd.php
https://www.pcg-random.org/statistical-tests.html

Cosmological simulation compression 1873

below the precision required by this paper (Haramoto & Matsumoto
2019).

2.3 Delta encoding and decoding

To encode quantized d; values, GUPPY attempts to predict the value of
d; using the previousi — 1 values, and then stores the exact difference
between its prediction and the true values, Ap; = d; — p;.

The simplest method of this kind is referred to as delta encoding
(e.g. Cherry 1953). In this case,

pi =4ai—. (3)

In other words, the prediction for each value is identical to the
previous decoded value. This is illustrated in the right figure of 1.

Surprisingly, our experiments showed that delta encoding mod-
estly outperforms the compression ratios achieved by more com-
plicated methods and substantially outperforms the speed of some
such methods. We tested methods including linear extrapolation,
pi =2d;_y —d;_, extrapolating various polynomial fits to the
previous several decoded points, storing the coefficients to a local
fit to d;, f(x.), for an entire skewer, then encoding p; = | f(x..;)],
as well as allowing GUPPY to switch between methods depending on
how locally effective a prediction method was.

The unexpected success of delta encoding seems to be because
predicting the location of particles in haloes is very difficult, and most
of the bytes in a given GUPPY file are spent encoding halo particles
rather than the easier-to-predict uncollapsed particles. This means
that although all the aforementioned methods are wildly successful at
compressing particles in this pre-collapse phase, that added efficacy
has little impact on the total compression ratio. The failure mode of
delta encoding is also less catastrophic than other methods, which
counterintuitively leads to better performance in haloes. As such,
GUPPY uses delta encoding during its prediction step.

2.3.1 PFarticle trajectories

In addition to the ID-based encoding which GUPPY uses, we also
experimented extensively with trajectory-based approaches, where
particle properties are predicted either by extrapolating particle
properties from previous snapshots or by measuring deviations
from some fit to particles’ trajectories. This is the approach taken
by the most effective molecular dynamics compression algorithms
(Huwald et al. 2016) and can lead to impressive compression ratios
in cosmological simulations, too (Li et al. 2018). While this is an
extremely promising field of research, we did not use this class of
approach for the initial release of GUPPY for the following reasons:

(i) Extrapolation-based compression requires that the reader open
and analyse files in order, meaning that analysing a single snapshot
near the end of a simulation can be a computationally expensive task.
It also requires that users store all the preceding snapshots locally.
This can result in an increased storage requirement for users who are
only interested in a single snapshot and therefore does not necessarily
help data accessibility. This issue can be somewhat mitigated by
intermittently storing non-extrapolated snapshots which can be used
as the starting point for several following extrapolated snapshots (Li
etal. 2018), but even this approach requires that users always store at
least one non-extrapolated snapshot, which limits the savings these
methods can achieve on low-resource systems.

(ii) Fit-based approaches have fast random-access times, but need
to amortize the cost of storing fit parameters across many snapshots
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to realize their space savings. So this method also suffers from
accessibility issues for low-disc-space users.

(iii) Trajectory-based approaches are fantastically effective at
compressing particles in the linear pre-collapse regime, but effec-
tively compressing particles once they experience strong acceler-
ations within halo centres requires fairly fine snapshot cadence.
For a particle on a circular orbit, velocity-based extrapolation only
outperforms randomly picking a point within the particle’s orbit when
snapshot cadences are smaller than =~ 1.75 T, /27 . For a simulation
with the fine output cadence of IllustrisTNG, this will be true for
most orbits smaller than & R,;;/5 of their respective haloes and for
a simulation with an output cadence similar to AbacusSummit, this
will occur at approximately ~ R /2.

2.4 Entropy encoding

After a block of simulation data has been converted to an array
of small integers, GUPPY applies an ‘entropy encoding’ step which
represents those integers in the smallest amount of space possible.
The bulk of this work is done by an industry-leading compression
library called ZSTANDARD.'® ZSTANDARD was developed primarily
by Yann Collet and was designed to be a faster alternative to ZLIB,
the library used to create . gzip files.

ZSTANDARD reads in a stream of bytes and breaks it up into a
set of ‘literals:’ Literals are individual bytes or sequences of bytes
that the library will represent directly. ZSTANDARD constructs a data
structure called a ‘Huffman tree’ (Huffman 1952) which assigns
each literal a code based on its frequency. More common literals are
given shorter codes. The much older Morse Code relies on a similar
principle: common letters like E and T are only one keystroke, but
uncommon letters like X and Z are four keystrokes. Once the set
of literals is fixed, a Huffman tree produces the most space-efficient
coding possible given their frequency in a data set. ZSTANDARD uses
an extremely efficient Huffman tree library, HUFFOQ.!!

Once ZSTANDARD has converted its literals into the optimal set of
codes, itidentifies literals that repeat several times, called ‘sequences’
and represents them as a single literal and the number of repetitions.
This is called ‘run-length encoding’ (Cherry et al. 1963).'? Lastly,
ZSTANDARD further encodes all its own internal data structures — such
as its sequences and Huffman trees — with Finite State Encoding, an
algorithm whose theory was developed by Duda (2013) and which
is implemented by the FSE library.'3

Qualitatively, ZSTANDARD is most effective at compressing data
where some values appear much more frequently than others and
where the same values are repeated many times in a row. The same
is true for almost all major compression libraries.

The simplest way to compress the array of A p; values produced
by the delta encoding discussed in Section 2.3 would be to convert
the array of integers to bytes and feed those bytes to ZSTANDARD.
However, this approach produces very poor compression. Even
though |A p;| is small, half of all Ap; values are negative. Negative
integers are represented using two’s complement, meaning that most
of their higher order bits are 1’s, instead of 0’s. This means that
the byte stream received by ZSTANDARD is mostly small sequences

10https://github.com/facebook/zstd
https://github.com/Cyan4973/FiniteStateEntropy

12Run-length encoding has probably been in use as a bookkeeping tool since
the invention of writing itself. The cited example of it is the first time that it
was applied to compress electronic signals that we could identify.
Bhttps://github.com/Cyan4973/FiniteStateEntropy
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of 0x00 and O0xff bytes which flip back and forth between one
another almost at random, interspersed by small amounts of ‘real’
data. In practice ZSTANDARD (and all other entropy encoding libraries
we tested) cannot effectively take advantage of the structure in this
data.

To rectify this, we add two pre-processing steps. First, we add an
offset, Py to Ap;. This is common practice when delta encoding,
and usually Py = min(A p;) to ensure that all the deltas are positive.
However, if mode(A p;) mod 128 is close to 0 or 127, roughly half
of all A p; values will have one value for the second-least-significant
byte and the other half will have a different value. To avoid this effect,
we scan the histogram of A p; values and find a value A pyindgow Which
maximizes the sum

Apwindow+127

{Ap; = j}. “4)
J=APwindow
‘We then set
Po = min(Ap;) + (min(A p;) — A pyindow) mod 128). )]

This ensures that the second-least-significant bytes of the integers
given to ZSTANDARD stay fixed for the overwhelming majority of
Ap; values. Adding this step improves compression ratios at the
few-per cent level. This step also ensures that if there is an average,
non-zero offset between particles and their predicted values along
the encoding order, it will have no effect on final compression ratio,
so we do not need to permute the dimensional ordering of skewers
when compressing different components of vector quantities.

Lastly, we transpose the bytes of the integer array so that all least-
significant bytes are consecutive, all second-least-significant bytes
are consecutive, etc. Each set of bytes is compressed separately.
This allows ZSTANDARD’s run-length encoding to compress the
unchanging higher order bytes by factors of & thousands and prevents
the values that these bytes hold from polluting the literal frequencies
used to construct the Huffman tree which encodes the lower order
bytes.

Entropy encoding is GUPPY’s most computationally expensive
step, with almost all of that time being spent in ZSTANDARD. A
comparison of ZSTANDARD against other leading entropy encoders
shows that at a fixed compression ratio, ZSTANDARD outperforms
most of its competitors,'* so this performance bottleneck would exist
regardless of which particular library we used.

2.5 Public release of code

Upon publication, the publicly available source code for GUPPY
1.0.0 will be found at https://github.com/phil-mansfield/guppy. This
release will include a command line program which converts Gadget
snapshot files to Guppy files, libraries for reading Guppy files in C,
PYTHON, and GO. We have also added support for GUPPY files to the
ROCKSTAR halo finder (Behroozi, Wechsler & Wu 2013).'3

Many applications require detecting whether the particles in a
file overlap with a particular region of space. Unlike many other
simulation output files, the Lagrangian ordering of GUPPY files
sometimes causes the files to span across the periodic boundaries
of simulation boxes or have widths that are larger than half the
simulation box size. Both facts can cause commonly used algorithms
for detecting the overlap between two regions to fail, as these

“https://quixdb.github.io/squash-benchmark/
I5This is currently done through the fork https:/bitbucket.org/philip-
mansfield/rockstar/src/main/
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algorithms often implicitly assume that both regions are smaller
than half the box size. We briefly describe an algorithm for correctly
computing bounding boxes in Appendix A. We recommend that users
adapting their code to work with GUPPY use these algorithms instead
of their existing bounding box functions.

3 COMPRESSION ACCURACY

In this section, we perform a battery of tests designed to determine
accuracy limits on positions and velocities, §, and §, which are small
enough to prevent biasing most research performed on simulation
snapshots. As a review of Section 2.3, particles are effectively
discretized to a 6D grid with cell widths of éx in the x dimensions
and év in the v dimensions. When a particle is decompressed, it is
given a random value within that cell. This means that §, and §,
are maximum bounds on the error in each dimension, not average
values. The maximum total errors in || and || are +/38, and +/38,,
respectively.

We choose to focus on the small-scale properties of dark matter
haloes and on subhalo statistics, as these are both commonly used
and have strict accuracy requirements. Researchers interested in the
larger scale distribution of matter could comfortably use coarser
accuracies.

3.1 Simulations and external codes

To study the accuracy and compression efficiency of GUPPY, we use
a number of simulations and public codes.

In this paper, we primarily use the dark matter-only sim-
ulation Erebos_CBol L125 (Diemer & Kravtsov 2015). Ere-
bos_CBol 125 is a 1024° —particle Gadget-2 simulation (Springel
2005b) with L = 125 h~'Mpc, m, = 1.36 x 108 h~' M, a co-
moving Plummer-equivalent force softening scale € = 2.4 h~' kpc,
and timestepping parameter ErrTol IntAcc = 0.025. It was sim-
ulated with the same WMAP-like cosmology as the Bolshoi sim-
ulation (Klypin, Trujillo-Gomez & Primack 2011), €2, = 0.27,
Qp =0.73 Q, =0.047, 03 =0.82, and h = Hy/(100 kms~!) =
0.70. It contains a hundred snapshots logarithmically spaced
between z =20 and z=0. In a few places, we also use
other boxes in the Erebos suite, Erebos_.CBol L63, Ere-
bos_CBol_L250, Erebos_.CBol L500, and Erebos_ CBol L1000
(Diemer & Kravtsov 2015). These boxes are configured similarly
to Erebos_CBol_L125, but with m, = 1.70 x 105h™! Mg, 1.09 x
1002 'Mg, 8.79 x 10°h7' Mg, and 7 x 10~ Mg, respec-
tively, and € = 1 h~'kpc, 5.8 h 'kpc, 14h~'kpc, and 33 h~'kpc,
respectively. Each Erebos box totals 3.3 TB of data per simulation.

We also perform some analysis on ROCKSTAR halo catalogues.
ROCKSTAR is a halo finder which identifies halo centres by finding 6D
friends-of-friends groups in phase space with successively smaller
and smaller linking lengths (Behroozi et al. 2013). We analyse max-
imum circular velocities, V., NFW concentrations, cy;;, Bullock
spin parameters, A, normalized offsets between a halo’s centre of
mass and its most bound particle, x, short-to-long ellipsoidal axis
ratios, c/a, and virial ratios, | T /U |. Readers can find a review of how
the latest version of ROCKSTAR calculates these properties in section
2.4 of Mansfield & Avestruz (2021).

Throughout this paper, we use the Bryan & Norman (1998)
definition of the virial radius, R, and the corresponding definitions
of the virial mass, My = (4m/ 3)pvi,R\3,ir and virial circular velocity,
Viir = vGM,;:/R,;;. Note that at a fixed redshift, all haloes of the
same virial mass have the same virial velocity.

Cosmological simulation compression 1875
In some places, we use the quantity
Vvir,lOO = \/GMvir(Nvir = 100)/Rvir(Nvir = 100)7 (6)

i.e. the virial velocity of a hundred-particle halo. This is used to
provide a characteristic velocity scale for simulations which scales
with resolution.

3.2 Calculating halo properties

In Section 3.3 we will study the impact of §, and §, on enclosed
mass profiles, V.i.(< r) shape profiles, (c/a)(r), angular momentum
profiles, Z(r), and bound mass profiles, fuouna(7). In this section, we
review the details of how these profiles are calculated.

We only calculate the first three properties on bound particles. To
estimate boundedness, we compute the kinetic energy of particles,
KE, in the frame of the halo, as estimated by ROCKSTAR. We then
use a KD-tree'® to compute the potential energy, PE, of particles.
Particles are removed from analysis if KE >|PE|. We note that this
is not the correct procedure to estimate the boundedness of particles
in subhaloes as it does not account for external tidal fields, but we
use it anyway to emulate the behaviour of halo finders which almost
universally do not include the impact of tides in their boundedness
calculations.

Enclosed mass profiles are parametrized as Vie(<r)=

G M (< r)/r. Shape profiles are computed by computing the shape
tensor from particles within a single spherical shell and using the
eigenvalues of that tensor to find the short-to-long axis ratio, ¢/a, of
an ellipsoidal shell with the same shape tensor. Angular momentum
is calculated by adding the angular momentum vectors of all the
particles in a spherical shell. Bound fractions are calculated by
finding Nvound/(NVbound + Nunbouna) Within a given spherical shell.

For simplicity, we do not iteratively remove particles after un-
binding and do not iteratively recompute shape tensors within our
spherical shells. However, if single-iteration boundedness fractions
and shapes before and after compression are nearly identical, the
fully iterative boundedness fractions and shapes will also be very
similar.

3.3 Profile accuracy

Before performing statistically rigorous analysis on the impact
of compression on large populations of haloes, we first perform
qualitative analysis on the impact of compression on the detailed
properties of individual haloes which. As we will show, limits on
compression accuracy that one would infer from these individual
haloes similar to the limits one would infer from analysis of large
halo populations. It is important to consider individual haloes first
because if one were only to study the averages of large populations
of haloes, one runs the risk that compression increases noise on
an individual halo-by-halo basis, but does not change population
averages.

In Fig. 2 we show the impact of different §, values on the
circular velocity and enclosed shape profiles of a A~ 10° particle
dark matter halo. In the left panel, the grey contour shows an
estimate of the systematic bias already baked into the rotation curve
by the simulation’s force softening according to the simulation-
calibrated models in Mansfield & Avestruz (2021) (using simulation
data from Ludlow, Schaye & Bower 2019). No equivalent model
exists for ¢/a(< r), so instead we shade all radii smaller than 4e,

16https://github.com/phil-mansfield/gravitree
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Figure 2. The impact of position accuracy on Virc(r) (left) and shape, (c/a)(r), (right) profiles. A single halo with ~ 100 particles is shown from a simulation
with € = 1 kms™!, Erebos_CBol_L63. The black lines show the true profiles of the halo and the coloured lines show increasingly coarse spatial accuracies in
ascending rainbow order. The grey shaded region in the left panel shows the level of systematic bias injected into the circular velocity profile by force softening
(Mansfield & Avestruz 2021), and the grey shaded region in the right-hand panel shows 4 €. Setting §, < 2¢ has barely any impact on the halo and what little

~

impact it does have is restricted to regions which are already unreliable for scientific analysis. Our recommended accuracy of §; = € is comfortably below this

limit. See Section 3.3 for discussion.

the approximate radius where biases in V(< r) start becoming
significant. This is a conservative choice for our analysis (which
becomes more restrictive with smaller convergence regions), as
Mansfield & Avestruz (2021) showed that force softening scales
has a larger impact on (c¢/a)(< R.i) than it does on V.

For this halo, compression with §x < 2¢ has less impact on the
mass profile than the intrinsic bias due to force softening. This is
because force softening reduces central densities far beyond the
radius where gravitational forces are altered (see discussion in
Mansfield & Avestruz 2021), while the scales that compression
impacts is more strictly bounded. We repeated this measurement
for forty randomly chosen haloes with particle counts ranging from
100 to 10°, and the level of bias shown here is typical. In a few cases,
8, = 2¢ led to noticeable biases in Vi, but §, = € was always well
below existing biases. We defer a statistically rigorous analysis of
this to the next section, but chose the halo in Fig. 2 because it was
qualitatively representative of the full sample.

The shape profile shows a similar story. The halo becomes rounder
at r < 28, because compression flattens small-scale anisotropies.
As before, the results for this halo are typical among forty ran-
domly chosen test haloes, with a few outliers which required
8, Se.

The sudden downturn in the full-accuracy (c/a)(< r) profile at
small radii is likely caused by numerical effects. The small number
of particles at these radii allows the shape tensor to find low-axis ratio
configurations purely by chance. We see this behaviour in all our test
haloes, although the radius where it occurs can change depending on
the inner particle number density. The tests in Mansfield & Avestruz
(2021) suggest that unrelated, force-softening-based biases likely
extend to much larger radii than this down-turn.

Inaccuracies in velocities have little impact on mass and shape
profiles, so to study the impact of §,, we focus on the angular
momentum profiles and bound mass profiles of subhaloes rather
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than massive central haloes. Velocity information is used directly
in computing both profiles and is critical for differentiating host
particles from subhalo particles. We show |Z(r)| and fyouna(r) for a
representative subhalo in Fig. 3. We choose to illustrate the effect
with this subhalo because its fyouna profile is strongly dependent
on radius, implying that velocity information is more important for
correctly resolving its structure than it would be for a more fully
bound subhalo.

Compression has little impact on either profile, even as §,
approaches V,;./2. This is because both quantities are computed
from averages across many particles and quantization does not bias
velocities low or high. However, when very large §, thresholds
are used, additional noise appears in the Z(r) profile. Therefore,
these profiles do not place strong constraints on §, other than
that §, < Vi, /4 can prevent excess noise in some quantities.
These profiles are typical among the 40 random subhaloes we
tested.

3.4 Halo catalogue accuracy

In addition to a qualitative study of individual objects, we look
at the statistical impact of compression on full halo catalogues.
We added support for GUPPY files to the ROCKSTAR halo finder
(Behroozi et al. 2013) and generated halo catalogues for a range
of 8, and §,. Throughout this section, we focus on the simulation
Erebos_CBol_L125. We have chosen this simulation because its
convergence properties can be measured directly against the higher
resolution Erebos_CBol L63, and because its halo properties have
been empirically shown to converge at relatively low particle counts
compared to similar cosmological boxes (Mansfield & Avestruz
2021). This makes Erebos_CBol_L125 a particularly strict test box
because compression-induced biases in halo properties are only
meaningful when those properties are otherwise converged.
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Figure 3. The same as Fig. 2, except scaled angular momentum (left) and bound mass fraction (right) profiles are shown and the curves correspond to different
velocity accuracies, scaled by the virial velocity of the target halo. The halo shown here is a 1000-particle subhalo, chosen so fioung Vvaries strongly with radius.
Even §,, values far larger than the values we recommend for low-resolution haloes have little impact on halo properties. Note that our recommendation is actually
more conservative than shown here: we recommend that 100-particle haloes are compressed to 8, = Vyir/8, not 1000-particle haloes. However, such poorly
resolved haloes have profiles which are too noisy to visually evaluate in the matter shown in this figure.

Fig. 4 shows the subhalo mass functions of group-mass haloes
(103 h~'Mg < My < 10" h~' My). This subhalo mass function
is shown down to 50-particle haloes, the smallest objects available
in our catalogues. Historically, authors have argued for subhalo mass
function convergence limits as low as 100 particles (e.g. Springel
et al. 2008), but modern idealized simulations have demonstrated
that the true convergence limit for subhalo abundances which are
vastly larger than this (e.g. Errani & Navarro 2021, and references
therein). We compare the subhalo mass function measured from the
original uncompressed simulation against simulations which have
various compression-induced spatial resolutions (left) and velocity
resolutions (right).

We use the same host centres and radii across the different
catalogues, regardless of what the masses and positions of the hosts
are in the compressed catalogue. We do this because we want to study
biases which are much smaller than the stochastic noise associated
with a single realization of the subhalo mass function within a
box of this size. Compression can slightly alter the masses of host
haloes stochastically, which can result in a small number of objects
leaving or entering the studied mass range. These sorts of changes
in host sample can lead to small correlated — but entirely random
— errors across different subhalo mass bins. This could give the
impression that the compression itself is applying a small bias to
subhalo abundance.

Compression has little impact on subhalo abundances. =
1 per cent biases can only be seen at low masses for very coarse ac-
curacies, 8, = 4€ and 8, 2 Vyir100/2. At 8, = € and 8, = Viir.100/8,
biases are kept well below the per-cent level. Compression injects
some unbiased noise into the subhalo mass function relative to the
original, but this noise is much smaller than the shot noise already
present in the subhalo mass function. As such, this noise will have
little impact on the number of hosts needed to bring fluctuations
below some target analysis level.

We also manually inspected the positions and radii of the subhaloes
within ten 10%-particle haloes to test whether compression had a
substantial impact on individual subhalo populations. We found that
for the most part, subhaloes found after compression maintain very
similar masses and positions to what they had before compression.
This is expected, given that compression noise is far below the
Poissonian level.

We find that compression does impact subhaloes which are likely
to be numerical artefacts. ROCKSTAR will occasionally generate a
fake — but large — subhalo which overlaps with the centre of its host
and will occasionally identify subhaloes in the tidal tails of larger
disrupting objects. See Srisawat et al. (2013) (section 5.3) Mansfield
et al. (2023) (section 6.2 and appendix B) for extended discussions
on tree errors and spurious haloes. These objects fluctuate in-and-
out of existence from snapshot to snapshot and compression can
sometimes change whether an artefact does or does not appear in
particular snapshot for a particular halo. We found no evidence that
compression increases or decreases the frequency of these artefacts,
but note that these false haloes seem particularly sensitive to the
exact positions and velocities of their particles and thus artefacts
that appear in catalogues generated from full particle snapshots
may be missing in GUPPY-generated catalogues and visa versa.
We recommend that researchers remove these objects from their
halo catalogues anyway,!” so their exact frequency is not important.
Compression can also affect haloes very close to the particle limit: a
small increase or decrease in N(< R,;;) can cause a halo to fluctuate
above or below the limit of the catalogue. We found that both effects
occur even when particles are randomly perturbed by amounts many

17For those unfamiliar, this removal can be done by tracing the main branches
of all subhaloes back to their first snapshots and checking whether the object
was already a subhalo at this point.
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Figure 4. The impact of compression on subhalo abundances around group-sized haloes in Erebos_CBol_L125. Both panels show the differential subhalo mass
function around host haloes with masses between 10! 1=! M and 10'* 4=! M. The left panels show the subhalo mass function from the original simulation
as a dashed black line and the mass subhalo mass function measured in compressed catalogues with different spatial resolutions as coloured curves. The top
panel shows the average number of subhaloes per host halo and the bottom panel shows the fractional difference in this average between each compressed
simulation and the original. The grey shaded contour shows the 1-o uncertainty on subhalo counts from uncorrelated shot noise. At &, < 2e, there is little
systematic bias in subhalo abundances and the added noise is highly subdominant to Poissonian noise. The right panel shows the same quantities but at different
velocity compression levels. Similarly, the impact of compression on subhalo abundances is negligible when 8, < Viir, 100/4. In the left panel, velocities are
compressed to §, = Vyir,100/32 and in the right panel positions are compressed to §, = €.

times smaller than the §, and &8, ranges shown in Fig. 4, so we
suspect that this stochasticity is mostly coming from fragility in the
halo finder to subresolution noise.

Internal halo properties are more sensitive to compression res-
olution. Fig. 5 shows the biases in halo properties which are
induced by different compression-induced spatial resolutions. For
this figure, §, is set to a small value of 8, = V. 100/32 to isolate the
impact of position resolution. Fig. 5 shows the convergence limits
for Erebos_CBol_L125 from (Mansfield & Avestruz 2021), which
effectively means that they were estimated from comparison against
Erebos_CBol_L63. Grey contours show 1-o errors on the different
halo properties, as estimated by jackknife-resampling performed on
eight equal-volume sub-cubes.

Compression at §, < € has virtually no impact on the average val-
ues of halo properties at converged mass ranges. Even compression
at 8, = 2 € generally leads to biases which are at the ~ per-cent-level
even at low masses. This is likely because most haloes are unaffected
by compression at §, = 2¢, with only a few outliers seeing noticeable
effects (Section 3.3). Bin-to-bin scatter for 8, < € is substantially
smaller than sample variance, meaning that bias-free noise added by
compression is unlikely to be important for most analysis.

Based on Fig. 5 and our earlier analysis in Fig. 2, we recommend

ax,rec =€ (7)

as a conservative spatial resolution.

Fig. 6 shows similar analysis which investigates the impact of
velocity resolution on halo properties. In this case, the different
colours show different values of §,, with spatial resolution fixed
to our recommendation of §, = €. Only properties with an explicit
dependence on a halo’s kinetic energy experience meaningful §,-
induced biases. For converged haloes, these biases are at the &
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per-cent-level for §, < Vi 100/4 and are essentially negligible for
8y < Viir100/8. The bin-to-bin scatter induced by compression is
negligible compared to the existing noise in the measurement due to
sample variance.

Based on Fig. 6 and our earlier analysis in Fig. 3, we recommend

‘Su,rec = vir4,100/8 (8)

as a conservative velocity resolution.

3.5 Merger trees

The previous sections only consider the accuracy of compression in a
single snapshot, but many forms of analysis focus on the evolution of
haloes over time. We consider a full test of the intersection between
time evolution and compression to be outside the scope of this work
due to its complexity, but note that there are several a priori reasons to
expect that compression limits sufficient for single-snapshot analysis
will also be sufficient for time-dependent (i.e. merger-tree-based)
analysis. There are two types of halo evolution we should consider:
the evolution of a central halo and the evolution of a subhalo.

For central haloes, creating a merger tree is usually relatively easy.
An isolated halo that is not undergoing a significant merger will still
contain most of its particles in the next snapshot, meaning that even
very simple methods based on particle count cross-correlation or
most-bound particles will be able to select the correct descendant
halo (Srisawat et al. 2013). Quantization at our recommended levels
is unlikely to alter this, as 8, is too small to perturb a deeply bound
particle out of its host halo or lead to a meaningful amount of particle
flow into/out of a halo’s virial radius.

Major mergers may be a different story. During nearly equal-
mass mergers, the fundamental approximation of all halo finders —
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Figure 5. The impact of compression on halo properties. Each panel focuses
on a different halo property, X, and shows the ratio (X ) guppy / (X )true : the ratio
of the mean of a property measured from compressed catalogues, (X)guppy, to
the original full-accuracy simulation, (X )ye. The ratios are shown as different
colours for different spatial resolutions using the same colour scheme as the
left panel of Fig. 4: red is §, = €/2, orange is §y = €, blue is 6, = 2 €, and
purple is 6, = 4 €. 1-0 jackknife-estimated errors on the averages are shown
as grey contours. The ratios are shown as dashed lines below the convergence
limit for X and solid lines above it, as given by Mansfield & Avestruz
(2021). Compression at §, < € has almost no impact on these averages at
converged mass ranges. Even compression at §y = 2¢ only introduces ~per-
cent-level biases in most properties at low masses. The orange curve shows
our recommended spatial resolution, §, = €.

that haloes are roughly spherical objects which can be analysed in
isolation — breaks down and this causes many modern halo finders
similarly break down in this regime (Behroozi et al. 2015). This often
leads to unpredictable switching of mass between the central halo
and its secondary as relatively small snapshot-to-snapshot changes
propagate out into large inferred changes in the properties of the
joint system (Mansfield & Kravtsov 2020; Wang et al. 2023). We
find it plausible that this sensitivity to seemingly irrelevant small-
scale shifts in mass may mean that for a particular halo finder
that breaks down mid-merger, compression may cause the break
down to behave slightly differently between the compressed and
uncompressed simulation (for example, leading to mass switches
occurring at different snapshots). But this would not be a failure
of compression: it is still a failure of the halo finder. Constructing
quantitative tests of how effectively major mergers are tracked is
difficult given that halo catalogues constructed on the underlying
simulation cannot necessarily be treated as a reliable base truth.
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Figure 6. The same as Fig. 5, except the coloured curves show varying
velocity resolutions instead of spatial resolutions. Colours have the same
meaning as in the right panel of Fig. 5: red is 8, = V4ir,100/16, orange is §,, =
Wyir,100/8, blue is &, = Wyir,100/4, and purple is 8, = Vyir, 100/2. Velocity
compression has little effect on most properties and is restricted to quantities
with explicit dependencies on the internal kinetic energy of the halo, such as
A and |T/U|. Even very coarse velocity resolutions have a minimal impact
on halo properties, with biases for 8, < Vyir 100/4 largely staying at the sub-
per-cent level. The orange curve shows our recommended velocity resolution,
‘Sv = Vvir,100/8'

Similarly, subhalo evolution may be affected by compression due
to failures in subhalo finding routines. As discussed at length in
Mansfield et al. (2023), it is common for the ROCKSTAR to experience
catastrophic errors during the final few snapshots of a halo’s life, mis-
estimating its properties and potentially ‘stitching’ it onto spurious
phase space fluctuations. Once again, in a regime where a subhalo
finder is highly sensitive to noise, it is possible that slightly perturbing
particles may lead to a different result.

The solution to both the above ambiguities would be to do
the comparison in a subhalo analysis framework which does not
experience either class of error and which makes robust estimates
of how reliable a given subhalo identification is. As demonstrated in
Mansfield et al. (2023), the particle-tracking subhalo finder SYMFIND
and its surrounding statistical framework is a strong candidate for
such a system. We cannot combine it with GUPPY at this time
because GUPPY currently only works on uniform-mass cosmological
simulations and SYMFIND only works on single-host, multiresolution
zoom-in simulations.

Lastly, we note that one of the intermediate data products used
by the SYMFIND pipeline is a set of quantized, compressed particle
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Figure 7. The size of GUPPY files relative to the original simulation files. Left: The ratio of GUPPY sizes to uncompressed sizes for various simulations in the
Erebos_CBol suite as a function of accuracy. Each curve is a different simulation, ranging from the high-resolution L63 (slightly less resolution than TNG100-
1-Dark) to the low-resolution L1000 (with slightly less resolution than the main DarkSkies box, ds14-a). The vertical dashed line shows the recommended
resolution at which compression has essentially no impact on halo properties (see Section 3). Compression improves snapshot size by a factor of ~ 10 — 7, and
decreasing accuracy only modestly improves this ratio. Right: GUPPY’s compression efficiency as a function of scale factor of scale factor for different particle
properties for Erebos_CBol_L.125 when compressed to the recommended accuracy. The horizontal black line shows the total compression ratio GUPPY achieves
across all properties and snapshots. Positions are the most difficult quantity to compress, and both positions and velocities become more difficult to compress at

later times when a larger fraction of mass has collapsed into haloes.

snapshots. §, and 8, for these snapshots change dynamically on a
subhalo-by-subhalo basis, but in the highest resolution simulations
considered in Mansfield et al. (2023), most highly disrupted sub-
haloes with tidal tails that have begun to phase mix with the host
halo will have quantization scales are similar to the fiducial accuracy
levels suggested in this work. Despite this compression, SYMFIND
is able to follow heavily disrupted subhaloes to masses which are
orders of magnitude lower than those achievable by ROCKSTAR
without stitching errors and can follow major mergers without mass-
switching errors. Thus, we find it unlikely that quantization will
fundamentally hamper studies that require reliable subhalo evolution
or that §, and §, would need to be insignificantly altered.

3.6 Comparison with previous work

There has been little testing of how much compression simulation
snapshots can withstand without distorting halo properties. Most
previous work has either focused primarily on the numerical and
algorithmic properties of different compression algorithms (e.g. Tao
et al. 2017) or compressed particles so accurately that there would
obviously be no impact on analysis (e.g. Emberson et al. 2017). The
existing tests that we are aware of consist of & Gpc to 100 Mpc-scale
images of error- and displacement-fields (Di et al. 2019) as well as
power spectra and the halo mass function (Jin et al. 2020).

These are important tests and would certainly catch defects in very
aggressive compression schemes, and may be entirely sufficient for
analysis restricted to large scales. However, they are not sufficient
to inspire confidence in general-purpose analysis which may reach
small radii. As Jin et al. (2020) demonstrate, even compression
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accuracies which have next to no impact on the power spectrum can
still be coarse enough to suppress the halo mass function at small
masses. And as a comparison between Fig. 4 and Figs 5 and 6 show
even accuracies that have no impact on the more stringent subhalo
mass function can still bias internal halo properties substantially.

Therefore, we hope that the criteria outlined in the preceding
section will allow lossy compression algorithms to be used with
more confidence and that these limits will be useful to future studies
of compression techniques.

4 COMPRESSION RATIOS

In Fig. 7 we show how effectively GUPPY can compress simulation
snapshots as a function of accuracy. The left panel shows the ratio
of compressed-to-original sizes for a variety of accuracy levels. A
different curve is shown for each box in the Erebos suite. The highest
resolution box, Erebos_CBol_L63 has slightly less resolution than
TNG100-Dark (Marinacci et al. 2018; Naiman et al. 2018; Nelson
et al. 2018; Pillepich et al. 2018; Springel et al. 2018). The lowest,
Erebos_CBol_L1000 has slightly less resolution than the flagship
DarkSkies box, ds14-a (Skillman et al. 2014). Each point represents
a data set which was roughly 3.3 TB prior to compression.

Accuracies are shown relative to our recommended position
accuracy, 8y .. = € and velocity accuracy, 8, ec = Vyir,100/8. At the
recommended accuracy level, the sizes of simulations are reduced
by a factor of 7 to 10, without any meaningful bias to halo properties
or small-radius profiles (Section 3).

Compressed file size only has a weak dependence on accuracy.
Increasing §, and §, by a factor of 2 only reduces simulations sizes
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by roughly 20 percent. While we showed in Section 3 that most
analysis could safely double §, and 6, above our recommended
limits, the benefits of doing so are modest, so we recommend erring
on the side of caution.

Compressed file sizes show a modest dependence on simula-
tion resolution, with lower resolutions enjoying smaller file sizes.
This is due to a combination of two factors. First, the ratio of
€ to a box’s mean interparticle spacing slightly increases with
decreasing resolution. This is because Erebos was tuned to study
the mass—concentration relation and smaller force softening scales
are needed in low mass haloes due to their high concentrations
(Diemer & Kravtsov 2015). However, this is a weak trend: € /(L/N)
in Erebos_CBol_ L1000 is only twice as large as €/(L/N) in
Erebos_CBol_L63. The second effect is that as particle masses
become larger, the ratio of m, to the exponential cutoff in the halo
mass function becomes smaller, meaning that a larger fraction of
particles have not undergone shell-crossing and are therefore easier
to compress.

The right panel shows how effectively different fields are com-
pressed as a function of scale factor in the Erebos_CBol_L125 box
when compressed to our recommended accuracy limits. The solid,
dashed, and dotted orange curves show the position, velocity, and ID
fields, respectively, and the black dashed line shows the average
compression ratio across all three. As more structure collapses
in the simulation, compression becomes more difficult, leading to
worse compression ratios. Our recommended accuracy limits lead
to velocities being compressed more coarsely than positions, which
means that they are stored more efficiently. IDs are stored implicitly
and therefore take up no space.

4.1 Comparison with previous work

As discussed in the introduction, many previous authors have worked
on compression algorithms which are designed for N-body data sets.
Some methods which err on the side of simple decoding methods
can modestly reduce data sizes by factors of two to three (Emberson
et al. 2017; Maksimova et al. 2021). Other more aggressive and
complicated schemes claim factors for four (Cheng et al. 2020) to
twenty (Di et al. 2019).

It is not easy to compare methods apples-to-apples across these
studies, as many different error schemes are used, and the com-
pression ratios of all lossy compression algorithms depend strongly
on accuracy. Many papers characterize compression errors in terms
of PSNR = 20 loglo(\/ (| Xque — xcompressed\z)), however as Jin et al.
(2020) point out, different schemes with the same PSNR can
have very different impacts on analysis targets. Additionally, some
existing algorithms either rely on earlier snapshots to work (see
Section 2.3.1) or use a relative error scheme to encode velocities
(see Section 2.2.1). As we argue in the aforementioned sections,
while there are certainly specific types of analysis for which either
or both methods are acceptable (and even optimal), they would not
be appropriate for, say, allowing users with very limited computing
resources access to individual snapshots. Lastly, the compression
ratio one achieves is a strong function of the fraction of particles
which have collapsed into haloes, meaning that comparisons need to
be performed at a fixed particle mass and redshift range.

Therefore, we do not believe that it is possible to directly compare
compression ratios between these different algorithms using only
published data, other than to say that many of these algorithms
will presumably continue to give ~ order-of-magnitude compression
ratios when run at the same accuracy limits and make no claims that
GUPPY outperforms the compression ratios of these algorithms. A
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comparison would require a detailed cross-comparison on the same
data with the same accuracy limits. We defer this to future work.

5 DISCUSSION

Currently, the most important challenge in the field of cosmological
data compression is not the development of new algorithms, but in
increasing community adoption of these techniques. There currently
exist numerous techniques which are capable of reducing the size of
simulation snapshots by ~ an order of magnitude (both GUPPY, and
earlier works such at Li et al. 2018; Di et al. 2019), and the work in
Section 3 has established clear, conservative limits on how accurately
particles need to be stored. Given that the overwhelming majority of
cosmological data is currently stored in an uncompressed form, the
top priority of the field should be making it easier for researchers to
compress their data.

In the authors’ view, the most important steps forward are to inte-
grate compression codes directly into popular cosmology software,
and to provide user-friendly libraries which can read and write this
data across a range of languages. GUPPY libraries are available in
C, PYTHON, and GO, and as part of this paper, we have integrated it
into the ROCKSTAR halo finder. This type of integration is not always
trivial: in the case of ROCKSTAR, we had to alter ROCKSTAR’s internal
bounds-calculation and bounds-checking code (see Appendix A),
and ROCKSTAR’s paralellization model was incompatible with the
initial multithreading scheme used by GUPPY. Both issues required
substantial testing to identify. Because of this, this type of integration
work could act as a very real barrier to entry, and it is important to
approach it as a serious research effort rather than something that
users will be able to do trivially.

6 CONCLUSIONS

In this paper, we have presented and tested the GUPPY compres-
sion algorithm which can compress dark-matter-only cosmological
simulation snapshots by roughly an order-of-magnitude. GUPPY is
a ‘lossy’ algorithm, meaning that it introduces a small amount of
strictly bounded noise into particle properties which is uncorrelated
between particles. We have extensively tested the properties of this
noise and have identified conservative limits, &y rec and &, rec, Which
do not have any meaningful impact on single-snapshot dark matter
halo properties. Upon publication, we will release version 1.0.0 of a
code implementing this algorithm'® which can compress Gadget-2
particle files. We have also added support for the resulting files to the
popular ROCKSTAR halo finder."”

A typical reader will likely be most interested in Section 3 (par-
ticularly Sections 3.3, 3.4) and Figs 2-6, where we identify accuracy
limits which have little-to-no impact on the internal properties of dark
matter haloes. In Section 2 and Fig. 1, we cover the inner workings
of GUPPY. In Section 4 and Fig. 7, we show the space savings that
can be achieved by the GUPPY algorithm. Lastly, in Section 5, we
discuss what we view to be the most important next steps in the field
of cosmological data compression. Readers interested in integrating
GUPPY into existing analysis software or data pipelines may want to
review Appendix A, which covers how to perform various operations
in periodic space.

Bhttps://github.com/phil-mansfield/guppy
1https://bitbucket.org/philip- mansfield/rockstar/src/main/
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APPENDIX A: MEASURING THE BOUNDING
BOXES AROUND COLLECTIONS OF POINTS IN
PERIODIC SPACE

As discussed in Section 2.5, many applications call for measuring
bounding boxes around collections of points in periodic space and
for detecting whether bounding boxes overlap with one another. For
example, load-balancing in ROCKSTAR is performed by measuring
bounding boxes around the particles associated with every reader
process and constructing bounding boxes for the regions of space
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associated with each writer process, then sending particles from a
reader to a writer when their boxes overlap with one another.

We have noticed that constructing bounding boxes in periodic
conditions is a frequent point of confusion for students, and that
many public codes use bounding box algorithms that are only correct
in the special case where bounding boxes are smaller than L/2 in
each dimension, where L is the width of the simulation. So in this
Appendix, we review how to construct bounding boxes in periodic
boundary conditions and how to test for overlap.

First, we note that each dimension of a bounding box is indepen-
dent of the others, meaning that computing a bounding box reduces
to computing the 1D bounding interval of the points along each
dimension and that detecting overlap between two 3D bounding
boxes reduces to detecting that they are simultaneously overlapping
in all three dimensions. Because of this, we will focus on the
bounding interval associated with a 1D set of points, x; on the periodic
range [0, L).

Without periodic boundary conditions, the simplest way to define
a bounding interval is with its minimum and maximum values, X,
and xp.c. This no longer works with periodicity, as a small patch
of points that spans the edge of the range could have an interval as
large as xpi, = 0, and x,.x = L. In periodic conditions, it is better to
define intervals as a point x,;, and a width, w, and to then define the
bounding interval as the range with the smallest w which contains
all the points.

Under this definition, finding the bounding interval reduces to
finding the largest gap, g = x;4+; — x;, between consecutive points.
For the purposes of finding the bounding interval, xy and x; are
consecutive and their gap is g = L — xy + x;. Once the largest gap
is found to be between x; and x; 4, the bounding range of the points
is given by Xpin = x;4; and w = L — g.

One could identify the gaps by looping over sorted x; values, but
there is a faster approach that relies on ‘bucket-sorting” the points.?’
Qualitatively, this algorithm is an approximate solution that breaks
[0, L) into a set of uniform width ‘buckets’ which each track of
the left-most and right-most point assigned to that bucket. Gaps are
found between the left-most and right-most particles in neighbouring
buckets, potentially skipping over empty buckets. This procedure will
always produce a valid bounding range and will give the smallest
possible bounding range if said smallest range is smaller than 1-the
size of a single bucket. For a sufficiently large number of buckets,
this approximation only means that some particle distributions which
span nearly all of [0, L) may not have optimally small bounding
boxes, but this will barely change the number of intersection checks
passed by this range.

First, construct two arrays of some length M, min; and max;.
Each element of these arrays corresponds to a consecutive, length-
L/M segment the full periodic range. Calculate the maximum and
minimum of the x; within each segment and store these values in the
associated arrays. If a bucket is empty, one can either store a sentinel
value (e.g. NaN) in that bucket or keep trackof which buckets are
empty with a second array. Store sentinel values, such as -1 or NaN,
in the array elements that correspond to empty segments. To find the
largest gap, look at every non-sentinel maximum, max;, and pair it

20While a version of this algorithm appears in many ‘coding interview
practice’ compilations, we were unable to identify its original author. The
earliest reference we could find was in a set of 2011 lecture notes by the late
Godfried Toussaint, but it is unclear to us whether he created the algorithm.
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At the time of publication, these notes are hosted at http://cgm.cs.mcgill.ca
/~godfried/teaching/dm-reading-assignments/Maximum-Gap-Problem.pdf
with a non-sentinel minimum, miny, for the smallest k that is larger

than j. As a special case to handle periodicity, pair the last non-
sentinel maximum with the first non-sentinel minimum. The largest
gap is the maximum of min; — max;. This procedure will give the
smallest possible bounding range if g >= L/M. Setting M = 1024
is good enough for our purposes. Pseudocode for this algorithm is
given in Algorithm 1.

Algorithm 1 An algorithm for finding the smallest range — with
starting point x,;, and width w — that contains all the points, x, in a
periodic range [0, L). Assumes that the [0, L) range has been broken
up into M equal-size ‘buckets’.

Min (array) <— minimum x in each bucket
Max (array) <— maximum x in each bucket
Start <— index of first non-empty bucket
End <« index of last non-empty bucket
g < L + Min[Start] - Max[End]
Xmin < Min[Start]
Jj < Start
while j < M do
k <— next non-empty bucket after j
g’ < Min[k] - Max[]
if ¢’ > g then
g<¢g
Xmin < Min[k]
end if
Jj <k
end while
w<«L—g

Two bounding ranges, (Xmin.1, W1) and (Xmin2, W2) can only
overlap if either xpi,; is contained within range 2, or Xpin2 is
contained within range 1. To check whether a point, x, is within
the bounding range (xy, w), first check whether x > x,. If so, the
range contains x if and only if x < xpi, + w. Otherwise, the range
contains x if and only if xp,;, + w — L > x. Pseudocode for this
algorithm is given in Algorithm 2.

Algorithm 2 An algorithm for computing Overlap, a boolean
which is true if two periodic ranges characterised by (Xmin.1, W1)
and (xmin2, wo) overlap within a periodic range, [0, L), and false
otherwise.
procedure CONTAINSPERIODIC(Start, End, x)
if End <L then
return Start < x and End >x
else
return End - L > x or Start < x
end if
end procedure
Overlap; <— CONTAINSPERIODIC(Xmin,1, Xmin,1 + W1, Xmin,2)
Overlap, <— CONTAINSPERIODIC(Xyin 2, Xmin,2 + W2, Xmin,1)
Overlap < Overlap, or Overlap,
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