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A B S T R A C T 

As cosmological simulations have grown in size, the permanent storage requirements of their particle data have also grown. Even 

modest simulations present a major logistical challenge for the groups which run these boxes and researchers without access to 

high performance computing facilities often need to restrict their analysis to lower quality data. In this paper, we present GUPPY , a 
compression algorithm and code base tailored to reduce the sizes of dark matter-only cosmological simulations by approximately 

an order of magnitude. GUPPY is a ‘lossy’ algorithm, meaning that it injects a small amount of controlled and uncorrelated noise 
into particle properties. We perform e xtensiv e tests on the impact that this noise has on the internal structure of dark matter 
haloes, and identify conserv ati v e accurac y limits which ensure that compression has no practical impact on single-snapshot halo 

properties, profiles, and abundances. We also release functional prototype libraries in C, Python, and Go for reading and creating 

GUPPY data. 

Key words: methods: numerical – software: public release – dark matter. 
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 I N T RO D U C T I O N  

n 2005, the hard drives required to store ten snapshots of the
orld’s largest cosmological simulation would have cost $2800,

fter correcting for inflation. 1 Today, the equi v alent task would cost
9900. 2 

As theoretical cosmology progresses, simulators have an ever-
ncreasing demand for storage, even relative to the best available
echnology. Part of this demand comes from the grand scope
f some modern theoretical projects. For example, the Abacus
ummit simulation suite (Maksimova et al. 2021 ) aims to provide
osmology predictions for ne xt-generation surv e y instruments such
s the Dark Energy Spectroscopic Instrument (DESI) and the Roman
pace Telescope , and thus spans a wide range of cosmologies
hile maintaining high mass resolution ( m p ≈ 2 × 10 9 h 

−1 M �)
cross large scales ( L = 2 h 

−1 Gpc). This leads to their public data
elease being o v er 2 PB in size, despite substantial subsampling.

ore generally, a combination of different Moore’s law slopes and
ncreased investment in computing mean that the speed of high-
erformance computing has been outpacing the decreasing cost of
ard drive space for decades. Between 2005 and 2023, the cost-
 E-mail: phil1@stanford.edu 
 Millenium Simulation (Springel et al. 2005 ). Median hard drive price 
rom https:// jcmit.net/ diskprice.htm . Corrected for inflation according to the 
onsumer Price Index. Electricity and server maintenance not included. 
 Uchuu (Ishiyama et al. 2021 ). Median hard drive price from https://jcmit. 
et/diskprice.htm . Electricity and server maintenance not included. Stanford 
CC would currently charge about $1700 per month to store these data on 

ts high-performance system. 
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er-byte of storage has only decreased by a factor of thirty, but
he combined speed of the 500 most powerful supercomputers has
ncreased by a factor of more than two thousand. 3 

Cosmological simulations are e xpensiv e and time-consuming to
un. Data restrictions substantially affect the community’s ability to
se the simulations we have invested so many resources in running
nd reduces the scientific output-per-dollar. Researchers will often
eed to heavily subsample their simulation data (e.g. Maksimova
t al. 2021 ) or only store particles at a coarse snapshot cadences (e.g.
lypin, Prada & Comparat 2017 ). Subsampling makes it difficult to

tudy the detailed small-scale structure of haloes and their subhaloes,
hile coarse output cadence prevents analysis that requires tracking
articles o v er time, like merger tree construction (e.g. Srisa wat et al.
013 ), particle tracking (e.g. Diemer 2017 ), and some types of
orphan’ halo modelling (e.g. Guo et al. 2011 ). Some researchers will
un detailed analysis ‘on the fly’, generating all their halo catalogues
nd data products as their simulations run and never outputting full
napshots (e.g. Angulo et al. 2012 ). Some N -body codes such as
WIFT (Schaller 2018 ) and GADGET-4 (Springel et al. 2021 ) build
his feature in by default. While this process is the right choice for
ome projects, it locks researchers in to their initial analysis choices,
akes it more difficult to explore unintended research directions, and

ompletely prevents many forms of replication. 
One of the greatest drawbacks of large simulation sizes is ac-

essibility. There are relatively few well-funded groups which have
ccess to the large data servers needed to comfortably work with
imulation snapshots. In many research groups, a student who wanted
 www.top500.org 
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o work with particle data would need to store that data on their
ersonal computer, a task which is impractical for even modest data 
ets. This means that even though there is a wealth of publicly
vailable simulation data (e.g. Klypin et al. 2017 ; Nelson et al.
019 ; Maksimova et al. 2021 ; Villaescusa-Navarro et al. 2021 ), entire
ategories of analysis of this data are locked off from a substantial
ortion of our community due to data sizes. 
One option for mitigating the impact of simulation sizes is data 

ompression. Compression replaces the on-disc representation of a 
ata set’s integers, floats, and strings with an alternative representa- 
ion that requires fewer bits (e.g. Sayood 2006 ). By leveraging the
roperties of their data set, researchers can develop algorithms which 
utperform generic compression tools in the same way that the JPEG
ormat can store images more efficiently than gzip can after being 
pplied to a raw image bitmap. 

Computational biologists and chemists have used specialized 
ompression algorithms to deal with the sizes of their N -body
olecular dynamics simulations for decades. The general framework 

f this approach has been to modestly reduce accuracy, then to use
 variety of tricks and data symmetries to store the lower accuracy
alues. This process is called ‘lossy’ compression, a technique that 
s widely used in image (e.g. Wallace 1992 ), audio (e.g. Sterne
012 ), and video (e.g. Le Gall 1991 ) formats. Omeltchenko et al.
 2000 ) was the first to develop a specialized lossy format for
olecular dynamics data sets and later authors have developed a 
ide range of alternative compression algorithms (e.g. Meyer et al. 
006 ; Marais et al. 2012 ; Kumar et al. 2013 ; Huwald et al. 2016 ;
vo ̌r ́ak, Ma ̌n ́ak & V ́a ̌sa 2020 ). In our view, none of these methods

an be directly applied to cosmological simulations as-is. The most 
f fecti ve methods either re-order data, erasing information on particle 
dentities (e.g. Omeltchenko et al. 2000 ), take advantage of the 
omparatively fine output cadences required by molecular dynamics 
nalysis (e.g. Huwald et al. 2016 ), leverage physical symmetries in 
olecule-scale data that do not exist at larger scales (e.g. Dvo ̌r ́ak

t al. 2020 ), or are more appropriate for simulations with lower
ccuracy tolerances than most cosmological analysis requires (e.g. 
eyer et al. 2006 ). 
Compression algorithms have long been used in the compression 

f astrophysical images (e.g. Hanisch et al. 2001 ; Pence, White &
eaman 2010 ), and several authors have written compression al- 
orithms directly targeting N -body data (Di & Cappello 2016 ; Tao
t al. 2017 ; Li et al. 2018 ; Di et al. 2019 ; Cheng et al. 2020 ; Jin et al.
020 ). While some cutting-edge algorithms perform very poorly on 
 -body data (see comparison in Tao et al. 2017 ), others claim very

espectable compression ratios, ranging from a factor of four (Cheng 
t al. 2020 ) to a factor of twenty (Di et al. 2019 ). Ho we ver, there
s substantial uncertainty in what these compression ratios actually 
ean. The storage efficiencies of all lossy compression algorithms 

re strongly dependent on their accuracy, and there is no clarity in the
iterature on how much accuracy simulation outputs actually need. 

an y e xisting tests are run at accuracies which are too coarse for
osmological analysis (see Section 3 ) and the few tests on the impact
f compression that do exist are not sensitive to the inner structure
f haloes (see Section 3 ). There is also a wide disparity in the ways
hat different approaches control error sizes. 

In addition to these more theoretical works, conserv ati ve com- 
ression techniques have been used in a few large-scale simulations. 
bacus Summit (Maksimova et al. 2021 ) uses a pair of compression

lgorithms, RVINT and PACK9 , which reduce positions and velocities 
o roughly 8.5 bytes per particle. TianNu (Emberson et al. 2017 )
ses a similar scheme which allows them to store both vectors with 9
ytes per particle. The Symphony zoom-in simulation (Nadler et al. 
023 ) suite stores only the floating-point mantissa of its positions and
elocities, truncated at two bytes, giving positions, velocities, IDs, 
nd other particle metadata at the cost of 12 bytes per particle. All
hree simulation teams err on the side of caution and store particles
o much finer accuracies than are typically used by the dedicated
ompression literature. This is due to the issue mentioned abo v e:
here is no clear guidance on how much precision is needed. 

This paper is essentially an argument to the cosmology community 
o begin applying these aggressive compression techniques to our 
ata. First, we present the compression algorithm GUPPY in Section 2 .
his algorithm is based on old but ef fecti ve compression techniques
hich have shown promise in recent tests (Di et al. 2019 ). More

mportantly, in Section 3 , we perform an e xtensiv e suite of tests
hich demonstrate the impact of different compression accuracies 
n dark matter halo properties and recommend accuracy limits that 
nsure virtually no impact on halo properties. Lastly, in Section 4 ,
e show that GUPPY can reduce the sizes of simulations by an order
f magnitude at this accuracy level. 
Upon the publication of this paper, we will release an open source

mplementation of the GUPPY algorithm in the programming language 
o and provide libraries for using it in GO , C , and PYTHON . 4 This

ode is under active development and we aim to help support projects
hich wish to use it. 

 T H E  G U P P Y A L G O R I T H M  

he core of the GUPPY algorithm follows a well-worn pattern for
ompressing floating point data (see Sayood 2006 for a pedagogical 
iscussion of this framework and Omeltchenko et al. 2000 for a
lassic application). 

(i) The user chooses how accurately a variable should be stored. 
hat variable is converted into a set of indices specifying a cell in a
rid whose cell width is at least as small as the target accuracy. This
s called ‘quantization’ (Section 2.2 ). 

(ii) While compressing an array, GUPPY attempts to predict the 
alue of the i th element based on the elements 0 to i − 1. Then the
xact difference between this prediction and the true value is stored
Sections 2.1 and 2.3 ). 

(iii) Lastly, a generic compression step, called ‘entropy encoding’ 
s performed on these offsets using an industry-standard compression 
ibrary (Section 2.4 ). 

This process is illustrated with a cartoon in Fig. 1 . Overall, the
tructure of GUPPY is similar to the method discussed in Di et al.
 2019 ), although in detail a number of parts of the two designs are
ifferent. 
Throughout this paper, we assume that the compression target 

s a dark matter-only cosmological simulation, which natively stores 
ositions and velocities as 3-vectors of 32-bit floats and stores particle
Ds as 64-bit integers. We also assume that there is some unique
apping between a particle’s location in the initial conditions grid 

i.e. its Lagrangian coordinates). These assumptions are true for, e.g. 
 Gadget-2 simulation run with 2048 3 particles (Springel 2005a ). 

Simulations with fewer than 2 32 particles can get away with using
2-bit IDs natively. To convert our reported compression ratios to 
hese smaller simulations, multiply them by 1 . 143 = (3 × 4 + 3 ×
 + 8) / (3 × 4 + 3 × 4 + 4) . 
The GUPPY algorithm would also work on other particle properties, 

uch as acceleration, density, or hydrodynamic variables. We do not 
MNRAS 531, 1870–1883 (2024) 

https://github.com/phil-mansfield/guppy


1872 P. Mansfield and T. Abel 

M

Figure 1. An illustration of the particle ordering used by GUPPY (left) and of delta encoding (right). Left: Data in GUPPY is arranged into ‘skewers’, lines 
of particles through Lagrangian space whose of fsets relati ve to one another are encoded. Skewers are arranged to fill out the entire volume of a block of 
particles within Lagrangian space, while ensuring that all but the first contain a previously encoded/decoded particle immediately before the start of the skewer 
(Section 2.1 ). This ensures that only a single absolute offset needs to be stored. In this figure, the black cube in the lower left corner shows the particle whose value 
is stored directly. Next, the orange skewer (left-most arrow pointing upwards) is stored along the x L direction in Lagrangian space, then the red skewers (middle 
arrow, pointing right) along y L , then the blue (right-most arrow, pointing right) along z L . The arrows indicate the direction that offsets are calculated along. Right: 
GUPPY ‘quantizes’ floating point values onto an integer grid (Section 2.2 ). GUPPY then predicts the value of the ne xt inte ger giv en the previous one. and only records 
the difference between the prediction and actual value, the ‘delta’. (Section 2.3 ). This figure illustrates a scheme where each particle is predicted to have the 
same value as the preceding particle in Lagrangian space. Our approach is similar in philosophy, but there have been several small modifications which impro v e 
compression ratios (see Section 2.4 ). Here, x L stands in for whichever Lagrangian coordinate a skewer changes o v er, and x stands in for any particle property. 
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est this type of application in this paper, and recommend that users
nterested in doing so preform tests comparable to those in Section 3 .

.1 Data ordering 

he core fact underpinning the GUPPY algorithm is that most particles
tay relatively close to the particles that had been their neighbours
n the initial conditions. For particles which have not fallen into
ollapsed structures, the mapping between initial (‘Lagrangian’) and
nal positions, � x ( � x L ) is a smooth and slowly changing function.
articles which fall into haloes or filaments will quickly separate from

heir old neighbours (see Hahn, Abel & Kaehler 2013 ; Sousbie &
olombi 2016 , for a beautiful illustrations of this), but still stay

ocalized within an object much smaller than the simulation box. 
To take advantage of this, GUPPY stores particles in ‘blocks’, 1D

rrays that contain all the particles within some 3D grid in the
nitial conditions. There are many elegant 1D orderings of grid cells
e.g. Butz 1971 ), ho we ver our testing sho wed that these orderings
ave worse compression properties than the substantially less elegant
ethod we outline below when combined with the prediction method

escribed in Section 2.3 . 
GUPPY ’s blocks are broken up into a number of 1D ‘skewers’

hrough the initial conditions grid. These skewers hold two La-
rangian coordinates fixed, while incrementing the third. 
The skewer ordering that GUPPY uses is illustrated in the left panel

f Fig. 1 . Each small cube represents the location of a particle in the
nitial conditions, and the dark cubes show example skewers through
his grid. First, the initial particle is stored (black). Next, a single
kewer adjacent to the initial particle is stored (orange). Next, a face
f the grid is filled out with skewers which are perpendicular to the
irection of the initial skewer. Lastly, the body of the grid is filled
ut with skewers which are parallel to the normal of that face (blue).
his ordering means that every skewer is stored later in the block

han the particle immediately preceding it in the initial conditions
rid. 
NRAS 531, 1870–1883 (2024) 
Later encoding steps become more efficient if the mean change in
 variable along a skewer is zero. Because of this, when GUPPY is
toring x or v x , the first (orange) skewer is in the ˆ x direction. Then a
ace is filled out in the ˆ y direction and the body of the block is filled
ut in the ˆ z direction. The direction of the first skewer is chosen
nalogously for the other positions and velocity variables. 

Compression rates are not strongly dependent on the size of
hese blocks. Throughout this paper we use blocks containing 128 3 

articles. 

.2 Quantization and dequantization 

UPPY handles lossy compression through a quantization step while
riting data and a dequantization step when reading data. A data
oint, x i is quantized to an index, d i via 

 i = � x i /δx � , (1) 

here δx is the user-specified accuracy. Upon reading, d i is dequan-
ized back into x i via 

 i = δx ( d i + U(0 , 1)) . (2) 

ere, U(0 , 1) is a uniform random number between 0 and 1. 
Quantization is the only step in GUPPY which loses information:

ll other steps are exact. This means that all errors induced by
UPPY are strictly bounded. Users can exactly simulate the impact
f compression on their data easily without needing to run GUPPY

y applying equations ( 1 ) and ( 2 ) to their data in sequence. Errors
xperienced by different particles are completely uncorrelated. 

.2.1 Alternative quantization schemes 

here are many possible alternative quantization schemes. One could
magine, for example, storing vectors as a quantized norm and a pair
f quantized angles (using, e.g. HEALPIX indices; Gorski et al. 2005 ),
r using relative (i.e. split-logarithmic) errors instead of absolute



Cosmological simulation compression 1873 

o
c  

C  

o  

t
v

 

i  

p
d
o
i
l
c
v  

s
A
t
m

(
N
i  

R
o  

p  

s
–  

L  

a
(  

s
u
J

 

s  

c  

s  

t  

t
p  

2
t
t
a
W  

i  

g
e
t
n
d  

o

5

6

7

g
8

9

b
2

2

T  

d  

b
 

(

p

I  

p

e
p
s
p  

p  

fi  

a  

h

p  

o  

r
t
c
h  

d
c
G

2

I  

e
p
p
f  

b
(  

i  

e  

a

a  

n  

I  

T  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/531/1/1870/7680596 by D
eutsches Elektronen Synchrotron D

ESY user on 19 June 2
nes. Such alternative quantizations have been shown to lead to high 
ompression ratios when applied to v elocity v ectors (Di et al. 2019 ;
heng et al. 2020 ). In principle, GUPPY can accommodate these types
f schemes if the user applies a remapping to input variables prior
o compression, but we strongly urge against quantizing velocity 
ectors in this way. 

None of the schemes mentioned abo v e are invariant under changes
n reference frame velocity. This means that the internal motions of
articles inside haloes will be resolved with different accuracies 
epending on the halo’s velocity relative to the arbitrary rest frame 
f the simulation. For example, small dark matter haloes with 
nternal velocity dispersions � 100 km s −1 can easily be found in 
arge-scale bulk flows with velocities of 100s of km s −1 or orbiting 
luster-mass haloes at 1000s of km s −1 . In these cases, internal 
elocities will be more poorly resolved in the inertial frame of these
mall haloes and the resulting errors could be highly anisotropic. 
dditionally, a dependence on a halo’s inertial frame would mean 

hat compression errors would pick up correlations with physically 
eaningful quantities like large-scale environment. 
In principle, the choice of pseudo-random number generator 

PRNG) could impact the quality of the dequantization process. 
umerous early PRNGs experienced highly non-random correlations 

n their output. The most famous of these failures is likely IMB’s
ANDU, a 60’s-era linear congruential generator which shows 
bvious ‘stripes’ in its output when used to populate a 3D cube with
oints (e.g. Entacher 1998 ). The class of test which can detect these
tripes within unit cubes of various dimensionalities – a ‘spectral test’ 
is included as part of e xhaustiv e modern PRNG test batteries (e.g.
’ecuyer & Simard 2007 ). GUPPY uses ‘xorshift128 + ’ (Vigna 2014 )
 variant of the xorshift class of PRNGs introduced in Marsaglia 
 2003 ). We chose this PRNG primarily due to its combination of
peed and reliability, a combination which has made it see common 
se in numerous industry applications, particularly in the internal 
avaScript engines for essentially all major web browsers. 

TestU01 ‘BigCrush’ (L’ecuyer & Simard 2007 ) 5 is an e xhaustiv e
et of 106 statistical tests of randomness for PRNGs and is generally
onsidered to be the gold standard for PRNG reliability. There is
ome contro v ersy o v er whether xorshift128 + actually passes all
he BigCrush tests. Vigna ( 2014 ) claim that the algorithm passes
he full test suite, while some reproducible, open source testing 
rojects 6 , 7 , 8 , 9 find that it fails some tests (see also, Lemire & O’Neill
019 ), particularly the smarsa MatrixRank test (which tests 
he independence of columns in large random binary matrices) and 
he scomp LinearComp test (which measures the complexity of 
 bit sequence based on the Lempel-Ziv compression algorithm). 

hether or not xorshift128 + actually passes these higher order tests
s not important for us: for our purposes it is only important that it
enerates uniform distributions within a 6D phase cube. This is well- 
stablished by other passed tests in the BigCrush suite, particularly 
he snpair series of tests, which checks properties of the nearest 
eighbour distribution for uniformly generated points in up to 12 
imensions, and the set of spectral tests performed by the suite. To
ur knowledge, these test results are not contested, except at scales far 
 http:// simul.iro.umontreal.ca/ testu01/ tu01.html 
 https:// github.com/ lemire/ testingRNG 

 https:// lemire.me/ blog/ 2017/ 09/ 08/ the- xorshift128- random- number- 
enerator- fails- bigcrush/
 https:// xoshiro.di.unimi.it/ hwd.php 
 https:// www.pcg-random.org/ statistical-tests.html 
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elow the precision required by this paper (Haramoto & Matsumoto 
019 ). 

.3 Delta encoding and decoding 

o encode quantized d i values, GUPPY attempts to predict the value of
 i using the previous i − 1 values, and then stores the exact difference
etween its prediction and the true values, �p i = d i − p i . 

The simplest method of this kind is referred to as delta encoding
e.g. Cherry 1953 ). In this case, 

 i = d i−1 . (3) 

n other words, the prediction for each value is identical to the
revious decoded value. This is illustrated in the right figure of 1 . 
Surprisingly, our experiments showed that delta encoding mod- 

stly outperforms the compression ratios achieved by more com- 
licated methods and substantially outperforms the speed of some 
uch methods. We tested methods including linear extrapolation, 
 i = 2 d i−1 − d i−2 , extrapolating various polynomial fits to the
re vious se veral decoded points, storing the coef ficients to a local
t to d i , f ( x L ), for an entire skewer, then encoding p i = � f ( x L,i ) � ,
s well as allowing GUPPY to switch between methods depending on
ow locally effective a prediction method was. 
The unexpected success of delta encoding seems to be because 

redicting the location of particles in haloes is very difficult, and most
f the bytes in a given GUPPY file are spent encoding halo particles
ather than the easier-to-predict uncollapsed particles. This means 
hat although all the aforementioned methods are wildly successful at 
ompressing particles in this pre-collapse phase, that added efficacy 
as little impact on the total compression ratio. The failure mode of
elta encoding is also less catastrophic than other methods, which 
ounterintuitively leads to better performance in haloes. As such, 
UPPY uses delta encoding during its prediction step. 

.3.1 Particle trajectories 

n addition to the ID-based encoding which GUPPY uses, we also
 xperimented e xtensiv ely with trajectory-based approaches, where 
article properties are predicted either by extrapolating particle 
roperties from previous snapshots or by measuring deviations 
rom some fit to particles’ trajectories. This is the approach taken
y the most ef fecti ve molecular dynamics compression algorithms 
Huwald et al. 2016 ) and can lead to impressive compression ratios
n cosmological simulations, too (Li et al. 2018 ). While this is an
xtremely promising field of research, we did not use this class of
pproach for the initial release of GUPPY for the following reasons: 

(i) Extrapolation-based compression requires that the reader open 
nd analyse files in order, meaning that analysing a single snapshot
ear the end of a simulation can be a computationally e xpensiv e task.
t also requires that users store all the preceding snapshots locally.
his can result in an increased storage requirement for users who are
nly interested in a single snapshot and therefore does not necessarily
elp data accessibility. This issue can be somewhat mitigated by 
ntermittently storing non-extrapolated snapshots which can be used 
s the starting point for several following extrapolated snapshots (Li 
t al. 2018 ), but even this approach requires that users al w ays store at
east one non-extrapolated snapshot, which limits the savings these 

ethods can achieve on low-resource systems. 
(ii) Fit-based approaches have fast random-access times, but need 

o amortize the cost of storing fit parameters across many snapshots
MNRAS 531, 1870–1883 (2024) 

http://simul.iro.umontreal.ca/testu01/tu01.html
https://github.com/lemire/testingRNG
https://lemire.me/blog/2017/09/08/the-xorshift128-random-number-generator-fails-bigcrush/
https://xoshiro.di.unimi.it/hwd.php
https://www.pcg-random.org/statistical-tests.html


1874 P. Mansfield and T. Abel 

M

t  

a
 

c  

t  

a  

F  

o  

s  

w  

m  

a  

w

2

A  

o  

r  

T  

l  

b  

t
 

s  

t  

s  

e  

g  

p  

u  

o  

c  

a
 

c  

a  

T  

Z  

a  

a  

i
 

w  

w  

i
 

b  

t  

H  

t  

i  

o  

t  

1

1

1

t
w
1

o  

a  

d  

w  

d
 

o  

a  

H  

o  

b  

w  

m

W

P

T  

g  

�  

f  

n  

t  

s  

w
 

s  

a  

T  

u  

t  

u  

b
 

s  

c  

s  

m  

r

2

U  

1  

r  

s  

P  

R

 

fi  

s  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/531/1/1870/7680596 by D
eutsches Elektronen Synchrotron D

ESY user on 19 June 2024
o realize their space savings. So this method also suffers from
ccessibility issues for low-disc-space users. 

(iii) Trajectory-based approaches are fantastically ef fecti ve at
ompressing particles in the linear pre-collapse regime, but effec-
ively compressing particles once they experience strong acceler-
tions within halo centres requires fairly fine snapshot cadence.
or a particle on a circular orbit, v elocity-based e xtrapolation only
utperforms randomly picking a point within the particle’s orbit when
napshot cadences are smaller than ≈ 1 . 75 T orbit / 2 π . For a simulation
ith the fine output cadence of IllustrisTNG, this will be true for
ost orbits smaller than ≈ R vir / 5 of their respective haloes and for
 simulation with an output cadence similar to AbacusSummit, this
ill occur at approximately ≈ R vir / 2 . 

.4 Entropy encoding 

fter a block of simulation data has been converted to an array
f small integers, GUPPY applies an ‘entropy encoding’ step which
epresents those integers in the smallest amount of space possible.
he bulk of this work is done by an industry-leading compression

ibrary called ZSTANDARD. 10 ZSTANDARD was developed primarily
y Yann Collet and was designed to be a faster alternative to ZLIB ,
he library used to create .gzip files. 

ZSTANDARD reads in a stream of bytes and breaks it up into a
et of ‘literals:’ Literals are individual bytes or sequences of bytes
hat the library will represent directly. ZSTANDARD constructs a data
tructure called a ‘Huffman tree’ (Huffman 1952 ) which assigns
ach literal a code based on its frequency. More common literals are
iven shorter codes. The much older Morse Code relies on a similar
rinciple: common letters like E and T are only one k eystrok e, but
ncommon letters like X and Z are four k eystrok es. Once the set
f literals is fixed, a Huffman tree produces the most space-efficient
oding possible given their frequency in a data set. ZSTANDARD uses
n extremely efficient Huffman tree library, HUFF0 . 11 

Once ZSTANDARD has converted its literals into the optimal set of
odes, it identifies literals that repeat several times, called ‘sequences’
nd represents them as a single literal and the number of repetitions.
his is called ‘run-length encoding’ (Cherry et al. 1963 ). 12 Lastly,
STANDARD further encodes all its own internal data structures – such
s its sequences and Huffman trees – with Finite State Encoding, an
lgorithm whose theory was developed by Duda ( 2013 ) and which
s implemented by the FSE library. 13 

Qualitatively, ZSTANDARD is most effective at compressing data
here some values appear much mor e fr equently than others and
here the same values are repeated many times in a row . The same

s true for almost all major compression libraries. 
The simplest way to compress the array of �p i values produced

y the delta encoding discussed in Section 2.3 would be to convert
he array of integers to bytes and feed those bytes to ZSTANDARD .
o we ver, this approach produces very poor compression. Even

hough | �p i | is small, half of all �p i values are ne gativ e. Ne gativ e
ntegers are represented using two’s complement, meaning that most
f their higher order bits are 1’s, instead of 0’s. This means that
he byte stream received by ZSTANDARD is mostly small sequences
NRAS 531, 1870–1883 (2024) 

0 https:// github.com/ facebook/ zstd 
1 https:// github.com/ Cyan4973/ FiniteStateEntropy 
2 Run-length encoding has probably been in use as a bookkeeping tool since 
he invention of writing itself. The cited example of it is the first time that it 
as applied to compress electronic signals that we could identify. 

3 https:// github.com/ Cyan4973/ FiniteStateEntropy 
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f 0x00 and 0xff bytes which flip back and forth between one
nother almost at random, interspersed by small amounts of ‘real’
ata. In practice ZSTANDARD (and all other entropy encoding libraries
e tested) cannot ef fecti vely take advantage of the structure in this
ata. 
To rectify this, we add two pre-processing steps. First, we add an

ffset, P 0 to �p i . This is common practice when delta encoding,
nd usually P 0 = min ( �p i ) to ensure that all the deltas are positive.
o we ver, if mode ( �p i ) mod 128 is close to 0 or 127, roughly half
f all �p i values will have one value for the second-least-significant
yte and the other half will have a different value. To a v oid this effect,
e scan the histogram of �p i values and find a value �p window which
aximizes the sum 

�p window + 127 ∑ 

j= �p window 

|{ �p i = j}| . (4) 

e then set 

 0 = min ( �p i ) + (( min ( �p i ) − �p window ) mod 128) . (5) 

his ensures that the second-least-significant bytes of the integers
iven to ZSTANDARD stay fixed for the overwhelming majority of
p i values. Adding this step impro v es compression ratios at the

e w-per cent le v el. This step also ensures that if there is an av erage,
on-zero offset between particles and their predicted values along
he encoding order, it will have no effect on final compression ratio,
o we do not need to permute the dimensional ordering of skewers
hen compressing different components of vector quantities. 
Lastly, we transpose the bytes of the integer array so that all least-

ignificant bytes are consecutive, all second-least-significant bytes
re consecutive, etc. Each set of bytes is compressed separately.
his allows ZSTANDARD ’s run-length encoding to compress the
nchanging higher order bytes by factors of ≈ thousands and prevents
he values that these bytes hold from polluting the literal frequencies
sed to construct the Huffman tree which encodes the lower order
ytes. 
Entropy encoding is GUPPY ’s most computationally e xpensiv e

tep, with almost all of that time being spent in ZSTANDARD . A
omparison of ZSTANDARD against other leading entropy encoders
hows that at a fixed compression ratio, ZSTANDARD outperforms
ost of its competitors, 14 so this performance bottleneck would exist

egardless of which particular library we used. 

.5 Public release of code 

pon publication, the publicly available source code for GUPPY

.0.0 will be found at https:// github.com/ phil-mansfield/ guppy . This
elease will include a command line program which converts Gadget
napshot files to Guppy files, libraries for reading Guppy files in C ,
YTHON , and GO . We have also added support for GUPPY files to the
OCKSTAR halo finder (Behroozi, Wechsler & Wu 2013 ). 15 

Many applications require detecting whether the particles in a
le o v erlap with a particular re gion of space. Unlike man y other
imulation output files, the Lagrangian ordering of GUPPY files
ometimes causes the files to span across the periodic boundaries
f simulation boxes or have widths that are larger than half the
imulation box size. Both facts can cause commonly used algorithms
or detecting the o v erlap between two regions to fail, as these
4 https://quixdb .github .io/squash-benchmark/
5 This is currently done through the fork https:// bitbucket.org/ philip- 
ansfield/ rockstar/ src/ main/ 

https://github.com/facebook/zstd
https://github.com/Cyan4973/FiniteStateEntropy
https://github.com/Cyan4973/FiniteStateEntropy
https://github.com/phil-mansfield/guppy
https://quixdb.github.io/squash-benchmark/
https://bitbucket.org/philip-mansfield/rockstar/src/main/
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lgorithms often implicitly assume that both regions are smaller 
han half the box size. We briefly describe an algorithm for correctly
omputing bounding boxes in Appendix A . We recommend that users 
dapting their code to work with GUPPY use these algorithms instead 
f their existing bounding box functions. 

 COM P R ESSION  A  C C U R A  C Y  

n this section, we perform a battery of tests designed to determine
ccuracy limits on positions and velocities, δx and δv which are small 
nough to prevent biasing most research performed on simulation 
napshots. As a re vie w of Section 2.3 , particles are ef fecti vely
iscretized to a 6D grid with cell widths of δx in the x dimensions
nd δv in the v dimensions. When a particle is decompressed, it is
iven a random value within that cell. This means that δx and δv 

re maximum bounds on the error in each dimension, not average 
alues. The maximum total errors in | � x | and | � v | are 

√ 

3 δx and 
√ 

3 δv ,
espectively. 

We choose to focus on the small-scale properties of dark matter 
aloes and on subhalo statistics, as these are both commonly used 
nd have strict accuracy requirements. Researchers interested in the 
arger scale distribution of matter could comfortably use coarser 
ccuracies. 

.1 Simulations and external codes 

o study the accuracy and compression efficiency of GUPPY , we use
 number of simulations and public codes. 

In this paper, we primarily use the dark matter-only sim- 
lation Erebos CBol L125 (Diemer & Kravtsov 2015 ). Ere- 
os CBol L125 is a 1024 3 −particle Gadget-2 simulation (Springel 
005b ) with L = 125 h 

−1 Mpc, m p = 1 . 36 × 10 8 h 

−1 M �, a co-
oving Plummer-equi v alent force softening scale ε = 2 . 4 h 

−1 kpc ,
nd timestepping parameter ErrTolIntAcc = 0 . 025. It was sim-
lated with the same WMAP-like cosmology as the Bolshoi sim- 
lation (Klypin, Trujillo-Gomez & Primack 2011 ), �m 

= 0 . 27, 
� 

= 0 . 73 �b = 0 . 047, σ8 = 0 . 82, and h = H 0 / ( 100 km s −1 ) =
 . 70 . It contains a hundred snapshots logarithmically spaced 
etween z = 20 and z = 0. In a few places, we also use
ther boxes in the Erebos suite, Erebos CBol L63, Ere- 
os CBol L250, Erebos CBol L500, and Erebos CBol L1000 
Diemer & Kravtsov 2015 ). These boxes are configured similarly 
o Erebos CBol L125, but with m p = 1 . 70 × 10 6 h 

−1 M �, 1 . 09 ×
0 9 h 

−1 M �, 8 . 79 × 10 9 h 

−1 M �, and 7 × 10 10 h 

−1 M �, respec-
ively, and ε = 1 h 

−1 kpc , 5 . 8 h 

−1 kpc , 14 h 

−1 kpc , and 33 h 

−1 kpc ,
espectively. Each Erebos box totals 3.3 TB of data per simulation. 

We also perform some analysis on ROCKSTAR halo catalogues. 
OCKSTAR is a halo finder which identifies halo centres by finding 6D
riends-of-friends groups in phase space with successively smaller 
nd smaller linking lengths (Behroozi et al. 2013 ). We analyse max-
mum circular velocities, V max , NFW concentrations, c vir , Bullock 
pin parameters, λ, normalized offsets between a halo’s centre of 
ass and its most bound particle, x off , short-to-long ellipsoidal axis 

atios, c/a, and virial ratios, | T /U | . Readers can find a re vie w of ho w
he latest version of ROCKSTAR calculates these properties in section 
.4 of Mansfield & Avestruz ( 2021 ). 
Throughout this paper, we use the Bryan & Norman ( 1998 )

efinition of the virial radius, R vir , and the corresponding definitions 
f the virial mass, M vir = (4 π/ 3) ρvir R 

3 
vir and virial circular velocity,

 vir = 

√ 

GM vir /R vir . Note that at a fixed redshift, all haloes of the
ame virial mass have the same virial velocity. 
In some places, we use the quantity 

 vir, 100 = 

√ 

GM vir ( N vir = 100) /R vir ( N vir = 100) , (6) 

.e. the virial velocity of a hundred-particle halo. This is used to
rovide a characteristic velocity scale for simulations which scales 
ith resolution. 

.2 Calculating halo properties 

n Section 3.3 we will study the impact of δx and δv on enclosed
ass profiles, V circ ( < r) shape profiles, ( c/a)( r), angular momentum

rofiles, � L ( r) , and bound mass profiles, f bound ( r) . In this section, we
e vie w the details of how these profiles are calculated. 

We only calculate the first three properties on bound particles. To
stimate boundedness, we compute the kinetic energy of particles, 
E, in the frame of the halo, as estimated by ROCKSTAR . We then
se a KD-tree 16 to compute the potential energy, PE, of particles.
articles are removed from analysis if KE > | PE | . We note that this

s not the correct procedure to estimate the boundedness of particles
n subhaloes as it does not account for external tidal fields, but we
se it anyway to emulate the behaviour of halo finders which almost
niversally do not include the impact of tides in their boundedness
alculations. 

Enclosed mass profiles are parametrized as V circ ( < r) =
 

GM ( < r ) /r . Shape profiles are computed by computing the shape 
ensor from particles within a single spherical shell and using the
igenvalues of that tensor to find the short-to-long axis ratio, c/a, of
n ellipsoidal shell with the same shape tensor. Angular momentum 

s calculated by adding the angular momentum vectors of all the
articles in a spherical shell. Bound fractions are calculated by 
nding N bound / ( N bound + N unbound ) within a given spherical shell. 
For simplicity, we do not iteratively remove particles after un- 

inding and do not iteratively recompute shape tensors within our 
pherical shells. Ho we ver, if single-iteration boundedness fractions 
nd shapes before and after compression are nearly identical, the 
ully iterative boundedness fractions and shapes will also be very 
imilar. 

.3 Profile accuracy 

efore performing statistically rigorous analysis on the impact 
f compression on large populations of haloes, we first perform 

ualitative analysis on the impact of compression on the detailed 
roperties of individual haloes which. As we will show, limits on
ompression accuracy that one would infer from these individual 
aloes similar to the limits one would infer from analysis of large
alo populations. It is important to consider individual haloes first 
ecause if one were only to study the averages of large populations
f haloes, one runs the risk that compression increases noise on
n individual halo-by-halo basis, but does not change population 
verages. 

In Fig. 2 we show the impact of different δx values on the
ircular velocity and enclosed shape profiles of a ≈ 10 6 particle 
ark matter halo. In the left panel, the grey contour shows an
stimate of the systematic bias already baked into the rotation curve
y the simulation’s force softening according to the simulation- 
alibrated models in Mansfield & Avestruz ( 2021 ) (using simulation
ata from Ludlow, Schaye & Bower 2019 ). No equivalent model
xists for c/a( < r), so instead we shade all radii smaller than 4 ε,
MNRAS 531, 1870–1883 (2024) 

https://github.com/phil-mansfield/gravitree
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M

Figure 2. The impact of position accuracy on V circ ( r) (left) and shape, ( c/a)( r), (right) profiles. A single halo with ≈ 10 6 particles is shown from a simulation 
with ε = 1 km s −1 , Erebos CBol L63. The black lines show the true profiles of the halo and the coloured lines show increasingly coarse spatial accuracies in 
ascending rainbow order. The grey shaded region in the left panel shows the level of systematic bias injected into the circular velocity profile by force softening 
(Mansfield & Avestruz 2021 ), and the grey shaded region in the right-hand panel shows 4 ε. Setting δx � 2 ε has barely any impact on the halo and what little 
impact it does have is restricted to regions which are already unreliable for scientific analysis. Our recommended accuracy of δx = ε is comfortably below this 
limit. See Section 3.3 for discussion. 
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he approximate radius where biases in V circ ( < r) start becoming
ignificant. This is a conserv ati ve choice for our analysis (which
ecomes more restrictive with smaller convergence regions), as
ansfield & Avestruz ( 2021 ) showed that force softening scales

as a larger impact on ( c/a)( < R vir ) than it does on V max . 

For this halo, compression with δx � 2 ε has less impact on the
ass profile than the intrinsic bias due to force softening. This is

ecause force softening reduces central densities far beyond the
adius where gravitational forces are altered (see discussion in

ansfield & Avestruz 2021 ), while the scales that compression
mpacts is more strictly bounded. We repeated this measurement
or forty randomly chosen haloes with particle counts ranging from
00 to 10 6 , and the level of bias shown here is typical. In a few cases,
x = 2 ε led to noticeable biases in V max , but δx = ε w as al w ays well
elow existing biases. We defer a statistically rigorous analysis of
his to the next section, but chose the halo in Fig. 2 because it was
ualitati vely representati ve of the full sample. 
The shape profile shows a similar story. The halo becomes rounder

t r � 2 δx because compression flattens small-scale anisotropies.
s before, the results for this halo are typical among forty ran-
omly chosen test haloes, with a few outliers which required
x � ε. 

The sudden downturn in the full-accuracy ( c/a)( < r) profile at
mall radii is likely caused by numerical effects. The small number
f particles at these radii allows the shape tensor to find low-axis ratio
onfigurations purely by chance. We see this behaviour in all our test
aloes, although the radius where it occurs can change depending on
he inner particle number density. The tests in Mansfield & Avestruz
 2021 ) suggest that unrelated, force-softening-based biases likely
xtend to much larger radii than this down-turn. 

Inaccuracies in velocities have little impact on mass and shape
rofiles, so to study the impact of δv , we focus on the angular
omentum profiles and bound mass profiles of subhaloes rather
NRAS 531, 1870–1883 (2024) 
han massive central haloes. Velocity information is used directly
n computing both profiles and is critical for differentiating host
articles from subhalo particles. We show | � L ( r) | and f bound ( r) for a
epresentative subhalo in Fig. 3 . We choose to illustrate the effect
ith this subhalo because its f bound profile is strongly dependent
n radius, implying that velocity information is more important for
orrectly resolving its structure than it would be for a more fully
ound subhalo. 
Compression has little impact on either profile, even as δv 

pproaches V vir / 2. This is because both quantities are computed
rom averages across many particles and quantization does not bias
elocities low or high. However, when very large δv thresholds
re used, additional noise appears in the � L ( r) profile. Therefore,
hese profiles do not place strong constraints on δv other than
hat δv � V vir / 4 can prev ent e xcess noise in some quantities.
hese profiles are typical among the 40 random subhaloes we

ested. 

.4 Halo catalogue accuracy 

n addition to a qualitative study of individual objects, we look
t the statistical impact of compression on full halo catalogues.
e added support for GUPPY files to the ROCKSTAR halo finder

Behroozi et al. 2013 ) and generated halo catalogues for a range
f δx and δv . Throughout this section, we focus on the simulation
rebos CBol L125. We have chosen this simulation because its
onvergence properties can be measured directly against the higher
esolution Erebos CBol L63, and because its halo properties have
een empirically shown to converge at relatively low particle counts
ompared to similar cosmological boxes (Mansfield & Avestruz
021 ). This makes Erebos CBol L125 a particularly strict test box
ecause compression-induced biases in halo properties are only
eaningful when those properties are otherwise converged. 
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Figure 3. The same as Fig. 2 , except scaled angular momentum (left) and bound mass fraction (right) profiles are shown and the curves correspond to different 
velocity accuracies, scaled by the virial velocity of the target halo. The halo shown here is a 1000-particle subhalo, chosen so f bound varies strongly with radius. 
Even δv values far larger than the values we recommend for low-resolution haloes have little impact on halo properties. Note that our recommendation is actually 
more conserv ati ve than sho wn here: we recommend that 100-particle haloes are compressed to δv = V vir / 8 , not 1000-particle haloes. Ho we ver, such poorly 
resolved haloes have profiles which are too noisy to visually e v aluate in the matter shown in this figure. 
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17 For those unfamiliar, this removal can be done by tracing the main branches 
of all subhaloes back to their first snapshots and checking whether the object 
was already a subhalo at this point. 
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Fig. 4 shows the subhalo mass functions of group-mass haloes 
10 13 h 

−1 M � < M vir < 10 14 h 

−1 M �). This subhalo mass function
s shown down to 50-particle haloes, the smallest objects available 
n our catalogues. Historically, authors have argued for subhalo mass 
unction convergence limits as low as 100 particles (e.g. Springel 
t al. 2008 ), but modern idealized simulations have demonstrated 
hat the true convergence limit for subhalo abundances which are 
astly larger than this (e.g. Errani & Navarro 2021 , and references
herein). We compare the subhalo mass function measured from the 
riginal uncompressed simulation against simulations which have 
arious compression-induced spatial resolutions (left) and velocity 
esolutions (right). 

We use the same host centres and radii across the different 
atalogues, regardless of what the masses and positions of the hosts
re in the compressed catalogue. We do this because we want to study
iases which are much smaller than the stochastic noise associated 
ith a single realization of the subhalo mass function within a 
ox of this size. Compression can slightly alter the masses of host
aloes stochastically, which can result in a small number of objects 
eaving or entering the studied mass range. These sorts of changes 
n host sample can lead to small correlated – but entirely random 

errors across different subhalo mass bins. This could give the 
mpression that the compression itself is applying a small bias to 
ubhalo abundance. 

Compression has little impact on subhalo abundances. ≈
 per cent biases can only be seen at low masses for very coarse ac-
uracies, δx � 4 ε and δv � V vir, 100 / 2 . At δx = ε and δv = V vir, 100 / 8,
iases are kept well below the per-cent level. Compression injects 
ome unbiased noise into the subhalo mass function relative to the 
riginal, but this noise is much smaller than the shot noise already
resent in the subhalo mass function. As such, this noise will have
ittle impact on the number of hosts needed to bring fluctuations 
elow some target analysis level. 
We also manually inspected the positions and radii of the subhaloes
ithin ten 10 6 -particle haloes to test whether compression had a

ubstantial impact on individual subhalo populations. We found that 
or the most part, subhaloes found after compression maintain very 
imilar masses and positions to what they had before compression. 
his is e xpected, giv en that compression noise is far below the
oissonian level. 
We find that compression does impact subhaloes which are likely 

o be numerical artefacts. ROCKSTAR will occasionally generate a 
 ak e – but large – subhalo which o v erlaps with the centre of its host
nd will occasionally identify subhaloes in the tidal tails of larger
isrupting objects. See Srisawat et al. ( 2013 ) (section 5.3) Mansfield
t al. ( 2023 ) (section 6.2 and appendix B) for extended discussions
n tree errors and spurious haloes. These objects fluctuate in-and- 
ut of existence from snapshot to snapshot and compression can 
ometimes change whether an artefact does or does not appear in
articular snapshot for a particular halo. We found no evidence that
ompression increases or decreases the frequency of these artefacts, 
ut note that these false haloes seem particularly sensitive to the
xact positions and velocities of their particles and thus artefacts 
hat appear in catalogues generated from full particle snapshots 
ay be missing in GUPPY -generated catalogues and visa versa. 
e recommend that researchers remo v e these objects from their

alo catalogues anyway, 17 so their e xact frequenc y is not important.
ompression can also affect haloes very close to the particle limit: a

mall increase or decrease in N ( < R vir ) can cause a halo to fluctuate
bo v e or below the limit of the catalogue. We found that both effects
ccur even when particles are randomly perturbed by amounts many 
MNRAS 531, 1870–1883 (2024) 
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Figure 4. The impact of compression on subhalo abundances around group-sized haloes in Erebos CBol L125. Both panels show the differential subhalo mass 
function around host haloes with masses between 10 13 h −1 M � and 10 14 h −1 M �. The left panels show the subhalo mass function from the original simulation 
as a dashed black line and the mass subhalo mass function measured in compressed catalogues with different spatial resolutions as coloured curves. The top 
panel shows the average number of subhaloes per host halo and the bottom panel shows the fractional difference in this average between each compressed 
simulation and the original. The grey shaded contour shows the 1- σ uncertainty on subhalo counts from uncorrelated shot noise. At δx � 2 ε, there is little 
systematic bias in subhalo abundances and the added noise is highly subdominant to Poissonian noise. The right panel shows the same quantities but at different 
v elocity compression lev els. Similarly, the impact of compression on subhalo abundances is negligible when δv � V vir, 100 / 4. In the left panel, velocities are 
compressed to δv = V vir, 100 / 32 and in the right panel positions are compressed to δx = ε. 
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imes smaller than the δx and δv ranges shown in Fig. 4 , so we
uspect that this stochasticity is mostly coming from fragility in the
alo finder to subresolution noise. 
Internal halo properties are more sensitive to compression res-

lution. Fig. 5 shows the biases in halo properties which are
nduced by different compression-induced spatial resolutions. For
his figure, δv is set to a small value of δv = V vir, 100 / 32 to isolate the
mpact of position resolution. Fig. 5 shows the convergence limits
or Erebos CBol L125 from (Mansfield & Avestruz 2021 ), which
f fecti vely means that they were estimated from comparison against
rebos CBol L63. Grey contours show 1- σ errors on the different
alo properties, as estimated by jackknife-resampling performed on
ight equal-volume sub-cubes. 

Compression at δx ≤ ε has virtually no impact on the average val-
es of halo properties at converged mass ranges. Even compression
t δx = 2 ε generally leads to biases which are at the ≈ per-cent-level
ven at low masses. This is likely because most haloes are unaffected
y compression at δx = 2 ε, with only a few outliers seeing noticeable
ffects (Section 3.3 ). Bin-to-bin scatter for δx ≤ ε is substantially
maller than sample variance, meaning that bias-free noise added by
ompression is unlikely to be important for most analysis. 

Based on Fig. 5 and our earlier analysis in Fig. 2 , we recommend 

x, rec = ε (7) 

s a conserv ati ve spatial resolution. 
Fig. 6 shows similar analysis which investigates the impact of

elocity resolution on halo properties. In this case, the different
olours show different values of δv , with spatial resolution fixed
o our recommendation of δx = ε. Only properties with an explicit
ependence on a halo’s kinetic energy experience meaningful δv -
nduced biases. For converged haloes, these biases are at the ≈
NRAS 531, 1870–1883 (2024) 
er-cent-level for δv ≤ V vir, 100 / 4 and are essentially negligible for
v ≤ V vir, 100 / 8 . The bin-to-bin scatter induced by compression is
egligible compared to the existing noise in the measurement due to
ample variance. 

Based on Fig. 6 and our earlier analysis in Fig. 3 , we recommend 

v, rec = V vir, 100 / 8 (8) 

s a conserv ati v e v elocity resolution. 

.5 Merger trees 

he previous sections only consider the accuracy of compression in a
ingle snapshot, but many forms of analysis focus on the evolution of
aloes o v er time. We consider a full test of the intersection between
ime evolution and compression to be outside the scope of this work
ue to its complexity, but note that there are several a priori reasons to
xpect that compression limits sufficient for single-snapshot analysis
ill also be sufficient for time-dependent (i.e. merger-tree-based)

nalysis. There are two types of halo evolution we should consider:
he evolution of a central halo and the evolution of a subhalo. 

For central haloes, creating a merger tree is usually relatively easy.
n isolated halo that is not undergoing a significant merger will still

ontain most of its particles in the next snapshot, meaning that even
ery simple methods based on particle count cross-correlation or
ost-bound particles will be able to select the correct descendant

alo (Srisawat et al. 2013 ). Quantization at our recommended levels
s unlikely to alter this, as δx is too small to perturb a deeply bound
article out of its host halo or lead to a meaningful amount of particle
ow into/out of a halo’s virial radius. 
Major mergers may be a different story. During nearly equal-
ass mergers, the fundamental approximation of all halo finders –
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Figure 5. The impact of compression on halo properties. Each panel focuses 
on a different halo property, X, and shows the ratio 〈 X 〉 guppy / 〈 X 〉 true : the ratio 
of the mean of a property measured from compressed catalogues, 〈 X〉 guppy , to 
the original full-accuracy simulation, 〈 X〉 true . The ratios are shown as different 
colours for different spatial resolutions using the same colour scheme as the 
left panel of Fig. 4 : red is δx = ε/ 2, orange is δx = ε, blue is δx = 2 ε, and 
purple is δx = 4 ε. 1- σ jackknife-estimated errors on the averages are shown 
as grey contours. The ratios are shown as dashed lines below the convergence 
limit for X and solid lines abo v e it, as giv en by Mansfield & Avestruz 
( 2021 ). Compression at δx ≤ ε has almost no impact on these averages at 
conv erged mass ranges. Ev en compression at δx = 2 ε only introduces ≈per- 
cent-level biases in most properties at low masses. The orange curve shows 
our recommended spatial resolution, δx = ε. 
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Figure 6. The same as Fig. 5 , except the coloured curves show varying 
velocity resolutions instead of spatial resolutions. Colours have the same 
meaning as in the right panel of Fig. 5 : red is δv = V vir, 100 / 16, orange is δv = 

V vir, 100 / 8, blue is δv = V vir, 100 / 4, and purple is δv = V vir, 100 / 2. Velocity 
compression has little effect on most properties and is restricted to quantities 
with explicit dependencies on the internal kinetic energy of the halo, such as 
λ and | T /U | . Ev en v ery coarse v elocity resolutions hav e a minimal impact 
on halo properties, with biases for δv < V vir, 100 / 4 largely staying at the sub- 
per-cent level. The orange curve shows our recommended velocity resolution, 
δv = V vir, 100 / 8. 
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hat haloes are roughly spherical objects which can be analysed in 
solation – breaks down and this causes many modern halo finders 
imilarly break down in this regime (Behroozi et al. 2015 ). This often
eads to unpredictable switching of mass between the central halo 
nd its secondary as relatively small snapshot-to-snapshot changes 
ropagate out into large inferred changes in the properties of the 
oint system (Mansfield & Kravtsov 2020 ; Wang et al. 2023 ). We
nd it plausible that this sensitivity to seemingly irrelevant small- 
cale shifts in mass may mean that for a particular halo finder
hat breaks down mid-merger, compression may cause the break 
own to behave slightly differently between the compressed and 
ncompressed simulation (for example, leading to mass switches 
ccurring at different snapshots). But this would not be a failure 
f compression: it is still a failure of the halo finder. Constructing
uantitative tests of how effectively major mergers are tracked is 
if ficult gi ven that halo catalogues constructed on the underlying 
imulation cannot necessarily be treated as a reliable base truth. 
Similarly, subhalo evolution may be affected by compression due 
o failures in subhalo finding routines. As discussed at length in

ansfield et al. ( 2023 ), it is common for the ROCKSTAR to experience
atastrophic errors during the final few snapshots of a halo’s life, mis-
stimating its properties and potentially ‘stitching’ it onto spurious 
hase space fluctuations. Once again, in a regime where a subhalo
nder is highly sensitive to noise, it is possible that slightly perturbing
articles may lead to a different result. 
The solution to both the abo v e ambiguities would be to do

he comparison in a subhalo analysis framework which does not 
xperience either class of error and which makes robust estimates 
f how reliable a given subhalo identification is. As demonstrated in
ansfield et al. ( 2023 ), the particle-tracking subhalo finder SYMFIND

nd its surrounding statistical framework is a strong candidate for 
uch a system. We cannot combine it with GUPPY at this time
ecause GUPPY currently only works on uniform-mass cosmological 
imulations and SYMFIND only works on single-host, multiresolution 
oom-in simulations. 

Lastly, we note that one of the intermediate data products used
y the SYMFIND pipeline is a set of quantized, compressed particle
MNRAS 531, 1870–1883 (2024) 
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M

Figure 7. The size of GUPPY files relative to the original simulation files. Left: The ratio of GUPPY sizes to uncompressed sizes for various simulations in the 
Erebos CBol suite as a function of accuracy. Each curve is a different simulation, ranging from the high-resolution L63 (slightly less resolution than TNG100- 
1-Dark) to the low-resolution L1000 (with slightly less resolution than the main DarkSkies box, ds14-a). The vertical dashed line shows the recommended 
resolution at which compression has essentially no impact on halo properties (see Section 3 ). Compression impro v es snapshot size by a factor of ≈ 10 − 7, and 
decreasing accuracy only modestly improves this ratio. Right: GUPPY ’s compression efficiency as a function of scale factor of scale factor for different particle 
properties for Erebos CBol L125 when compressed to the recommended accuracy. The horizontal black line shows the total compression ratio GUPPY achieves 
across all properties and snapshots. Positions are the most difficult quantity to compress, and both positions and velocities become more difficult to compress at 
later times when a larger fraction of mass has collapsed into haloes. 
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napshots. δx and δv for these snapshots change dynamically on a
ubhalo-by-subhalo basis, but in the highest resolution simulations
onsidered in Mansfield et al. ( 2023 ), most highly disrupted sub-
aloes with tidal tails that hav e be gun to phase mix with the host
alo will have quantization scales are similar to the fiducial accuracy
evels suggested in this work. Despite this compression, SYMFIND

s able to follow heavily disrupted subhaloes to masses which are
rders of magnitude lower than those achie v able by ROCKSTAR

ithout stitching errors and can follow major mergers without mass-
witching errors. Thus, we find it unlikely that quantization will
undamentally hamper studies that require reliable subhalo evolution
r that δx and δv would need to be insignificantly altered. 

.6 Comparison with previous work 

here has been little testing of how much compression simulation
napshots can withstand without distorting halo properties. Most
revious work has either focused primarily on the numerical and
lgorithmic properties of different compression algorithms (e.g. Tao
t al. 2017 ) or compressed particles so accurately that there would
bviously be no impact on analysis (e.g. Emberson et al. 2017 ). The
xisting tests that we are aware of consist of ≈ Gpc to 100 Mpc-scale
mages of error- and displacement-fields (Di et al. 2019 ) as well as
ower spectra and the halo mass function (Jin et al. 2020 ). 
These are important tests and would certainly catch defects in very

ggressive compression schemes, and may be entirely sufficient for
nalysis restricted to large scales. Ho we v er, the y are not sufficient
o inspire confidence in general-purpose analysis which may reach
mall radii. As Jin et al. ( 2020 ) demonstrate, even compression
NRAS 531, 1870–1883 (2024) 
ccuracies which hav e ne xt to no impact on the power spectrum can
till be coarse enough to suppress the halo mass function at small
asses. And as a comparison between Fig. 4 and Figs 5 and 6 show

ven accuracies that have no impact on the more stringent subhalo
ass function can still bias internal halo properties substantially. 
Therefore, we hope that the criteria outlined in the preceding

ection will allow lossy compression algorithms to be used with
ore confidence and that these limits will be useful to future studies

f compression techniques. 

 COMPRESSI ON  R AT I O S  

n Fig. 7 we show how effectively GUPPY can compress simulation
napshots as a function of accuracy. The left panel shows the ratio
f compressed-to-original sizes for a variety of accuracy levels. A
ifferent curve is shown for each box in the Erebos suite. The highest
esolution box, Erebos CBol L63 has slightly less resolution than
NG100-Dark (Marinacci et al. 2018 ; Naiman et al. 2018 ; Nelson
t al. 2018 ; Pillepich et al. 2018 ; Springel et al. 2018 ). The lowest,
rebos CBol L1000 has slightly less resolution than the flagship
arkSkies box, ds14-a (Skillman et al. 2014 ). Each point represents
 data set which was roughly 3.3 TB prior to compression. 

Accuracies are shown relative to our recommended position
ccurac y, δx, rec = ε and v elocity accurac y, δv, rec = V vir, 100 / 8 . At the
ecommended accuracy level, the sizes of simulations are reduced
y a factor of 7 to 10, without any meaningful bias to halo properties
r small-radius profiles (Section 3 ). 
Compressed file size only has a weak dependence on accuracy.

ncreasing δx and δv by a factor of 2 only reduces simulations sizes
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y roughly 20 per cent. While we showed in Section 3 that most
nalysis could safely double δx and δv abo v e our recommended 
imits, the benefits of doing so are modest, so we recommend erring
n the side of caution. 
Compressed file sizes show a modest dependence on simula- 

ion resolution, with lower resolutions enjoying smaller file sizes. 
his is due to a combination of two factors. First, the ratio of
to a box’s mean interparticle spacing slightly increases with 

ecreasing resolution. This is because Erebos was tuned to study 
he mass–concentration relation and smaller force softening scales 
re needed in low mass haloes due to their high concentrations 
Diemer & Kravtsov 2015 ). Ho we ver, this is a weak trend: ε/ ( L/N )
n Erebos CBol L1000 is only twice as large as ε/ ( L/N ) in
rebos CBol L63. The second effect is that as particle masses
ecome larger, the ratio of m p to the exponential cutoff in the halo
ass function becomes smaller, meaning that a larger fraction of 

articles have not undergone shell-crossing and are therefore easier 
o compress. 

The right panel shows how effectively different fields are com- 
ressed as a function of scale factor in the Erebos CBol L125 box
hen compressed to our recommended accuracy limits. The solid, 
ashed, and dotted orange curves show the position, velocity, and ID 

elds, respectively, and the black dashed line shows the average 
ompression ratio across all three. As more structure collapses 
n the simulation, compression becomes more difficult, leading to 
orse compression ratios. Our recommended accuracy limits lead 

o velocities being compressed more coarsely than positions, which 
eans that they are stored more efficiently. IDs are stored implicitly 

nd therefore take up no space. 

.1 Comparison with previous work 

s discussed in the introduction, many previous authors have w ork ed
n compression algorithms which are designed for N -body data sets.
ome methods which err on the side of simple decoding methods 
an modestly reduce data sizes by factors of two to three (Emberson
t al. 2017 ; Maksimova et al. 2021 ). Other more aggressive and
omplicated schemes claim factors for four (Cheng et al. 2020 ) to
wenty (Di et al. 2019 ). 

It is not easy to compare methods apples-to-apples across these 
tudies, as many different error schemes are used, and the com- 
ression ratios of all lossy compression algorithms depend strongly 
n accurac y. Man y papers characterize compression errors in terms
f PSNR = 20 log 10 ( 

√ 〈| x true − x compressed | 2 〉 ), ho we ver as Jin et al.
 2020 ) point out, different schemes with the same PSNR can
av e v ery different impacts on analysis targets. Additionally, some 
xisting algorithms either rely on earlier snapshots to work (see 
ection 2.3.1 ) or use a relative error scheme to encode velocities
see Section 2.2.1 ). As we argue in the aforementioned sections, 
hile there are certainly specific types of analysis for which either 
r both methods are acceptable (and ev en optimal), the y would not
e appropriate for, say, allowing users with very limited computing 
esources access to individual snapshots. Lastly, the compression 
atio one achieves is a strong function of the fraction of particles
hich have collapsed into haloes, meaning that comparisons need to 
e performed at a fixed particle mass and redshift range. 
Therefore, we do not believe that it is possible to directly compare

ompression ratios between these different algorithms using only 
ublished data, other than to say that many of these algorithms 
ill presumably continue to give ≈ order-of-magnitude compression 

atios when run at the same accuracy limits and make no claims that
UPPY outperforms the compression ratios of these algorithms. A 
omparison would require a detailed cross-comparison on the same 
ata with the same accuracy limits. We defer this to future work. 

 DI SCUSSI ON  

urrently, the most important challenge in the field of cosmological 
ata compression is not the development of new algorithms, but in
ncreasing community adoption of these techniques. There currently 
xist numerous techniques which are capable of reducing the size of
imulation snapshots by ≈ an order of magnitude (both GUPPY , and
arlier works such at Li et al. 2018 ; Di et al. 2019 ), and the work in
ection 3 has established clear, conserv ati ve limits on ho w accurately
articles need to be stored. Given that the overwhelming majority of
osmological data is currently stored in an uncompressed form, the 
op priority of the field should be making it easier for researchers to
ompress their data. 

In the authors’ view, the most important steps forward are to inte-
rate compression codes directly into popular cosmology software, 
nd to provide user-friendly libraries which can read and write this
ata across a range of languages. GUPPY libraries are available in
 , PYTHON , and GO , and as part of this paper, we hav e inte grated it

nto the ROCKSTAR halo finder. This type of integration is not al w ays
rivial: in the case of ROCKSTAR , we had to alter ROCKSTAR ’s internal
ounds-calculation and bounds-checking code (see Appendix A ), 
nd ROCKSTAR ’s paralellization model was incompatible with the 
nitial multithreading scheme used by GUPPY . Both issues required 
ubstantial testing to identify. Because of this, this type of integration
ork could act as a very real barrier to entry, and it is important to

pproach it as a serious research effort rather than something that
sers will be able to do trivially. 

 C O N C L U S I O N S  

n this paper, we have presented and tested the GUPPY compres-
ion algorithm which can compress dark-matter-only cosmological 
imulation snapshots by roughly an order-of-magnitude. GUPPY is 
 ‘lossy’ algorithm, meaning that it introduces a small amount of
trictly bounded noise into particle properties which is uncorrelated 
etween particles. We have extensively tested the properties of this 
oise and have identified conserv ati ve limits, δx, rec and δv, rec , which
o not have any meaningful impact on single-snapshot dark matter 
alo properties. Upon publication, we will release version 1.0.0 of a
ode implementing this algorithm 

18 which can compress Gadget-2 
article files. We have also added support for the resulting files to the
opular ROCKSTAR halo finder. 19 

A typical reader will likely be most interested in Section 3 (par-
icularly Sections 3.3 , 3.4 ) and Figs 2 –6 , where we identify accuracy
imits which have little-to-no impact on the internal properties of dark 
atter haloes. In Section 2 and Fig. 1 , we co v er the inner workings

f GUPPY . In Section 4 and Fig. 7 , we show the space savings that
an be achieved by the GUPPY algorithm. Lastly, in Section 5 , we
iscuss what we view to be the most important next steps in the field
f cosmological data compression. Readers interested in integrating 
UPPY into existing analysis software or data pipelines may want to
e vie w Appendix A , which co v ers how to perform various operations
n periodic space. 
MNRAS 531, 1870–1883 (2024) 

https://github.com/phil-mansfield/guppy
https://bitbucket.org/philip-mansfield/rockstar/src/main/
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ssociated with each writer process, then sending particles from a 
eader to a writer when their boxes overlap with one another. 

We have noticed that constructing bounding boxes in periodic 
onditions is a frequent point of confusion for students, and that 
any public codes use bounding box algorithms that are only correct 

n the special case where bounding boxes are smaller than L/ 2 in
ach dimension, where L is the width of the simulation. So in this
ppendix, we re vie w ho w to construct bounding boxes in periodic
oundary conditions and how to test for o v erlap. 
First, we note that each dimension of a bounding box is indepen-

ent of the others, meaning that computing a bounding box reduces 
o computing the 1D bounding interval of the points along each 
imension and that detecting o v erlap between two 3D bounding 
oxes reduces to detecting that they are simultaneously o v erlapping 
n all three dimensions. Because of this, we will focus on the
ounding interval associated with a 1D set of points, x i on the periodic
ange [0 , L ) . 

Without periodic boundary conditions, the simplest way to define 
 bounding interval is with its minimum and maximum values, x min 

nd x max . This no longer works with periodicity, as a small patch
f points that spans the edge of the range could have an interval as
arge as x min = 0 , and x max = L . In periodic conditions, it is better to
efine intervals as a point x min and a width, w, and to then define the
ounding interval as the range with the smallest w which contains 
ll the points. 

Under this definition, finding the bounding interval reduces to 
nding the largest gap, g = x i+ 1 − x i , between consecutive points.
or the purposes of finding the bounding interval, x N and x 1 are
onsecutive and their gap is g = L − x N + x 1 . Once the largest gap
s found to be between x i and x i+ 1 , the bounding range of the points
s given by x min = x i+ 1 and w = L − g. 

One could identify the gaps by looping o v er sorted x i values, but
here is a faster approach that relies on ‘bucket-sorting’ the points. 20 

ualitatively, this algorithm is an approximate solution that breaks 
0 , L ) into a set of uniform width ‘buckets’ which each track of
he left-most and right-most point assigned to that bucket. Gaps are 
ound between the left-most and right-most particles in neighbouring 
uckets, potentially skipping o v er empty buckets. This procedure will 
l w ays produce a valid bounding range and will give the smallest
ossible bounding range if said smallest range is smaller than 1-the 
ize of a single bucket. For a sufficiently large number of buckets,
his approximation only means that some particle distributions which 
pan nearly all of [0 , L ) may not have optimally small bounding
oxes, but this will barely change the number of intersection checks 
assed by this range. 
First, construct two arrays of some length M , min j and max j . 

ach element of these arrays corresponds to a consecutive, length- 
/M segment the full periodic range. Calculate the maximum and 
inimum of the x i within each segment and store these values in the

ssociated arrays. If a bucket is empty, one can either store a sentinel
alue (e.g. NaN) in that bucket or keep trackof which buckets are
mpty with a second array. Store sentinel values, such as -1 or NaN,
n the array elements that correspond to empty segments. To find the
argest gap, look at every non-sentinel maximum, max j , and pair it

0 While a version of this algorithm appears in many ‘coding interview 

ractice’ compilations, we were unable to identify its original author. The 
arliest reference we could find was in a set of 2011 lecture notes by the late
odfried Toussaint, but it is unclear to us whether he created the algorithm.
2024 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. This is an Open
 https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reuse, distribution, and rep
t the time of publication, these notes are hosted at http://cgm.cs.mcgill.ca 
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ith a non-sentinel minimum, min k , for the smallest k that is larger

han j . As a special case to handle periodicity, pair the last non-
entinel maximum with the first non-sentinel minimum. The largest 
ap is the maximum of min k − max j . This procedure will give the
mallest possible bounding range if g > = L/M. Setting M = 1024
s good enough for our purposes. Pseudocode for this algorithm is
iven in Algorithm 1. 

lgorithm 1 An algorithm for finding the smallest range – with 
tarting point x min and width w – that contains all the points, x, in a
eriodic range [0 , L ). Assumes that the [0 , L ) range has been broken
p into M equal-size ‘buckets’. 
Min (array) ← minimum x in each bucket 
Max (array) ← maximum x in each bucket 
Start ← index of first non-empty bucket 
End ← index of last non-empty bucket 
g ← L + Min[Start] - Max[End] 
x min ← Min[Start] 
j ← Start 
while j < M do 

k ← next non-empty bucket after j 
g ′ ← Min[ k] - Max[ j ] 
if g ′ > g then 

g ← g ′ 

x min ← Min[ k] 
end if 
j ← k 

end while 
w ← L − g 

Two bounding ranges, ( x min , 1 , w 1 ) and ( x min , 2 , w 2 ) can only
 v erlap if either x min , 1 is contained within range 2, or x min , 2 is
ontained within range 1. To check whether a point, x, is within
he bounding range ( x min w) , first check whether x > x min . If so, the
ange contains x if and only if x < x min + w. Otherwise, the range
ontains x if and only if x min + w − L > x. Pseudocode for this
lgorithm is given in Algorithm 2. 

lgorithm 2 An algorithm for computing Overlap, a boolean 
hich is true if two periodic ranges characterised by ( x min , 1 , w 1 )

nd ( x min , 2 , w 2 ) o v erlap within a periodic range, [0 , L ), and false
therwise. 
pr ocedur e CONTAINSPERIODIC (Start, End, x) 

if End < L then 

return Start ≤ x and End > x 

else 
return End - L > x or Start ≤ x 

end if 
end pr ocedur e 
Overlap 1 ← CONTAINSPERIODIC ( x min , 1 , x min , 1 + w 1 , x min , 2 ) 
Overlap 2 ← CONTAINSPERIODIC ( x min , 2 , x min , 2 + w 2 , x min , 1 ) 
Overlap ← Overlap 1 or Overlap 2 
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