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Abstract: We present a new perspective on the symmetries that govern the formation of large-scale
structures across the Universe, particularly focusing on the transition from the seeds of galaxy
clusters to the seeds of galaxies themselves. We address two main features of cosmological fluid
dynamics pertaining to both the linear and non-linear regimes. The linear dynamics of cosmological
perturbations within the Hubble horizon is characterized by the Jeans length, which separates
stable configurations from unstable fluctuations due to the gravitational effect on sufficiently large
(and therefore, massive enough) overdensities. On the other hand, the non-linear dynamics of
the cosmological fluid is associated with a turbulent behavior once the Reynolds numbers reach a
sufficiently high level. This turbulent regime leads to energy dissipation across smaller and smaller
scales, resulting in a fractal distribution of eddies throughout physical space. The proposed scenario
suggests that the spatial scale of eddy formation is associated with the Jeans length of various levels
of fragmentation from an original large-scale structure. By focusing on the fragmentation of galaxy
cluster seeds versus galaxy seeds, we arrived at a phenomenological law that links the ratio of the
two structure densities to the number of galaxies in each cluster and to the Hausdorff number of
the Universe matter distribution. Finally, we introduced a primordial magnetic field and studied its
influence on the Jeans length dynamics. The resulting anisotropic behavior of the density contrast led
us to infer that the main features of the turbulence could be reduced to a 2D Euler equation. Numerical
simulations showed that the two lowest wavenumbers contained the major energy contribution of
the spectrum.

Keywords: Jeans instability; fractal turbulence; Universe large-scale structures

1. Introduction

One of the most successful research areas in cosmology concerns the characterization of
large-scale structure formation [1]. This endeavor has elucidates how primordial quantum
fluctuations of the inflation field [2-5] were magnified by the expansion of the Universe,
becoming the seeds for structure formation. Upon re-entering the Hubble horizon, these
fluctuations manifested as energy density contrasts, including scalar, vector, and tensor
perturbations that are dynamically separable [6-8].

The linear dynamics of these perturbations—scalar, vector, and tensor—has been
extensively studied in [2,6]. However, tracing the evolution of density contrasts and
velocity fluctuations remains challenging, even within the confines of the horizon, where
the Newtonian picture of the gravitational field applies. Describing structure formation on
a universal scale in the non-linear regime often requires extensive N-body simulations to
replicate the clustering processes of matter clouds soon after hydrogen recombination (see,
for instance, [9,10]).

Here, we narrowed our focus to the dynamics of the gravity—matter system, as en-
capsulated by three equations: the continuity equation for mass-energy density, the Euler
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equation predicting the velocity field evolution, and the Poisson equation governing the
gravitational field in the Newtonian regime. This dynamical scheme is justified as long as
we examine fluctuations in density, velocity, and gravity with wavelengths much smaller
than the Hubble size, where special relativity effects remain insignificant (i.e., the velocity
field remains much slower than the speed of light). This scenario often introduces the
concept of the Jeans length [6,11], extending it from the linear to non-linear evolution of the
fundamental fields. In other words, we considered the validity of this proposed dynamical
scheme in its non-perturbative nature without reducing it to linearity when the fluctuations
were small against a given background configuration.

After establishing stability conditions for linearized dynamics (i.e., introducing the
Jeans length for the considered configuration), we presumed that for sufficiently large
Reynolds numbers (accounting for the bulk and shear viscosity of the cosmological fluid),
the dynamics naturally evolve into a turbulent regime. Here, the gravitational field mini-
mally alters the dynamics, leading to the formation of eddies within a matter fluid asso-
ciated with energy dissipation across progressively smaller scales [12,13]. Kolmogorov’s
postulation [12] suggests the formation of smaller eddies characterized by a constant rate
of energy dissipation across various scales, filling the entire physical space. Approximately
30 years later, Mandelbrot argued [14] that eddy formation may not fill the entire spatial
configuration but could be associated with a Hausdorff number less than 3, introducing the
concept of fractal turbulence. This concept successfully reproduced certain experimental
features of non-linear fluid dynamics. Subsequently, Parisi and Frisch expanded the Man-
delbrot idea, proposing multi-fractal turbulence where the Hausdorff number dependence
on a parameter is allowed [15,16].

We confined our focus to simple fractal turbulence but proposed a crucial conjecture
that associates the symmetries of cosmological fluid fragmentation into sub-eddies with
the evolving values of the Jeans length. Put differently, we imposed an additional constraint
on fractal turbulence: the eddy scale, velocity, and mass density are related according to
the Jeans formula. This natural assumption led us to derive a fundamental relationship
governing the fragmentation of galaxy cluster seeds into galaxy seeds. Focusing solely on
these two stages of eddy formation, which undoubtedly exist in the non-linear regime, they
are likely influenced by the proposed scenario.

The primary outcome of our analysis is a constitutive formula that interlinks the values
of galaxy cluster to galaxy mass densities, the number of galaxies typical within a cluster,
and the Hausdorff number characterizing the fractality of these structures [17,18]. Such a
formula can serve as a valuable tool to validate our conjecture using data sets, elucidating
the extent to which the Universe exhibits a fractal structure, at least within the two main
classes of observed large-scale non-linear structures.

Finally, we provide a specific cosmological implementation of the theoretical model
that could describe the emergence of turbulence in the structure formation. We first
included in the problem the role that a primordial magnetic field can play in influencing
the non-linear regime of fluctuation growth. To this end, we analyzed the dynamical
behavior of the Jeans length in the presence of a magnetic field coupled to the small plasma
component of the recombined Universe. We stress how the ambipolar diffusion between the
baryon neutrals and plasma contribution is responsible, at cosmological spatial scales, for a
tight coupling of these two phases, which we can treat as a single fluid. According to the
analyses in [19-22], we see how the Jeans length acquires non-isotropic behavior as a result
of the magnetic pressure direction dependence. Since this anisotropy of the linear density
contrasts (which are squeezed on the plane perpendicular to the magnetic field) is an initial
condition for the non-linear problem, and since we can expect that the non-linear collapse is
able to enhance such anisotropy, we arrived at studying a 2D Euler equation to describe the
turbulent dynamics of the baryon fluid. Actually, the Boussinesq approximation is allowed
by the high value of the plasma B-parameter. Then, we performed a numerical simulation
to show how the so-called “condensation phenomenon” (i.e., an inverse cascade in energy)
is able to limit the dominant energy content to the first two modes only (in our paradigm,
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clusters and galaxies). The remaining part of the energy spectrum decays with the inverse-
squared wavenumbers according to a direct enstrophy cascade [12,23-25]. We remark
how a crucial role is played in the structure formation of the large-scale Universe by the
presence of dark matter. However, interpreting this component of the Universe as weakly
interacting particles [26,27], we see how no direct interaction takes place between the fractal
turbulence of the baryonic matter and the cold dark skeleton of the Universe. Actually,
the latter provides an external boundary condition to the dynamics of the former via the
assignment of the dominant gravitational contribution. In other words, the backreaction
of the turbulent baryonic matter on the dark energy component can be neglected with
a good degree of accuracy. The assignment of a realistic background gravitational field
coming from the dark matter contribution on which the present turbulence scheme had to
be evolved is beyond the scope of the present analysis, though it remains an important issue
for a more predictive investigation of the proposed picture. We account for the presence of
dark matter by including it in the background Universe density, which interacts with the
gravitational field.

This manuscript is structured as follows. In Section 2, we provide the theoretical
framework and the dynamical system underlying the proposed idea. The linear stability of
the cosmological fluid is discussed and the paradigm of the Jeans fragmentation is outlined.
In Section 3, we implement the fractal turbulence scenario for the cosmological fluid non-
linear dynamics. The so-called B-model is applied when scale lengths and velocity fields
are related by the Jeans formula. A phenomenological law is determined when considering
the fragmentation of galaxy cluster seeds into galaxy seeds. This result is shown to be a
valuable tool to investigate the possible Universe fractality. In Section 4, we propose a
cosmological implementation of the fractal turbulence scenario by considering the role
of the primordial magnetic field and studying the evolution of the Jeans length. A 2D
reduction in the dynamics was argued and numerical simulations of the turbulent energy
spectrum were performed. Concluding remarks follow.

2. The Jeans Length for a Viscous Cosmological Fluid

We now investigate the gravitational stability of a cosmological fluid taken well inside
the Hubble horizon of the considered stage of evolution. In this scenario, the gravitational
field can be properly treated on a Newtonian footing and a fluid representation of the
cosmological medium is appropriate. In particular, here we take into account the shear
and bulk viscosity effects, which are justified by the inhomogeneity of the perturbations
and by the rapid expansion of the nearly recombined Universe, respectively. In fact, on
the one hand, the presence of density inhomogeneities and of their associated velocity
fields makes the resulting picture compatible with the friction of adjacent fluid layer
and, on the other hand, the Universe expansion hinders the thermodynamic equilibrium,
requiring the introduction of bulk dissipation to account for small deviations from such
an equilibrium. Clearly, these viscosity contributions are expected to be very small and
their relevance increases with the wavenumber of the perturbations [6,20,28], but it is just
in correspondence with high values of the Reynolds number (which are surely guaranteed
for a weak viscous fluid) that the turbulence phenomena discussed below take place.

The dynamics of the cosmological fluid inside the Hubble horizon is governed by the
continuity equation (ensuring the mass conservation of the system):

oo+ V- (ov) =0, 1)
by the Euler equation (guaranteeing the momentum conservation of the system):
1
p(0v+v-Vv)=—-Vp—pVD+yAv+ (517+1>V(V~v), (2)
and, eventually, by the Poisson equation (describing the self-gravitation of the fluid):

A® = 47Gp. ©)
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Above, p denotes the mass energy density, p denotes the pressure, & denotes the gravi-
tational potential, and G denotes Newton’s constant. Furthermore, 77 and ¢ stand for the
shear and bulk viscosity coefficients, respectively. We also observe that the following
relation holds:

d
Vp= lep =v;Vp, 4
P
where we assumed the validity of a barotropic equation of state p = p(p) and v; denotes
the sound speed. Introducing the specific (or kinematical) coefficients v = r7/pand § = ¢/p,
we can now rewrite Equation (2) in the form

2
atv+v~Vv:Z;:VpV®+vAv+(;v+§)V(V~v). )

The equation above is crucial for the study of the fractal turbulence in the next section
in view of its scale invariance. Actually, the major (~280%) non-relativistic energy density
contribution comes from the dark matter component, which, being (reliably) constituted
by weakly interacting particles, is essentially pressureless. However, we included a non-
zero pressure term in the dynamics of the cosmological fluid because the baryon matter
component (~20%) is strongly coupled to the radiation, not only when the Universe is
a plasma, but also after the recombination era. A non-negligible radiation pressure also
existing in the recombined Universe is a consequence of the very large photon/baryon
ratio (~10”) such that the photon-baryon scattering generating and a non-zero pressure
term has to be included in the cosmological dynamics up to a redshift ~100 [6,19].

2.1. Linear Stability

Here, we study the linear stability of the dynamical system of Equations (1)-(3) around
a background configuration characterized by a constant and uniform mass energy density
0o, a zero gravitational potential (since we consider the fluid homogeneity on a spatial scale
much greater than the typical perturbation wavelength); and, eventually, a null velocity
field. Hence, we can decompose the fluid density as p = pg + dp (here |dp| < pp), and we
introduce the density contrast § = dp/pg. For the gravitational potential and the velocity
field, we retain the notation above for the perturbations (i.e., ® and v) since they have a
null background component.

If we linearize the system around the considered background, we obtain the follow-
ing equations:

00 =—-V-v, (6)
v = —12V5— Vd+vAv+ (%v—f—g)V(Vv), 7)
A® = 471Gpyd . (8)

Taking the divergence of Equation (7) and using both Equations (6) and (8), we obtain the
following equation for the density contrast:

026 = v2AS + 4tGpod + udiAG, ©9)

where y = 4v/3 + & For this equation, taking the plane wave solution § ~ el(kx-w)

provides a dispersion relation of the form
w? — K*v? + 4Gpg + iwpk* = 0 (10)

in the Fourier space of frequencies w and wavenumbers k = |k| (the direction of the
wavevector is not involved for a homogeneous and isotropic background). The associated
wavelength is defined as A = 27t /k.
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To extract the physical content of this dispersion relation, we set w = w;, + iy so that
its imaginary part provides v = —uk? /2, which ensures a net damping due to the viscosity
terms. However, in what follows, we are interested in the so-called “inertial region”, where
the viscous dissipation does not prevent the development of turbulent behavior; therefore,
we can neglect, with good physical significance, the terms of Equation (10) proportional to
y. The resulting system stability is evaluated from the condition w? > 0 and it is ensured
by the standard Jeans condition [11,29]

2
A<A = %, (11)

where A denotes the Jeans length. A detailed analysis of the dispersion relation is provided
in Appendix A (see also [28]).

2.2. Jeans Fragmentation Mechanism

The formula of the Jeans length, when analyzed in the context of non-linear stages of
evolution, suggests the idea that a possible mechanism of fragmentation of the cosmological
fluid in substructures could have taken place in the formation of large-scale structures in
the Universe [30]. This idea also provides the theoretical framework for proposing fractal
features of the matter distribution across the Universe [31-33].

According to Equation (11), we assumed that at given time f;, the value of the Jeans
length is Aj;. Then, all the scales A > Aj; can start growing and, consequently, at least one
of them will achieve the non-linear regime in which the density contrast is greater than
unity. In such a regime, the overdensity starts to gravitationally collapse and it increases its
density. At a given instant {, > t1, the overdensity size becomes comparable with the new
value of the Jeans length Aj, < Ajq,ie,

T2
Ap =] = < Ay, 12
2 o1 1 (12)

where we assumed p, > p;, while we retained an almost constant sound speed value.

This scheme can be iterated to produce the fragmentation of the original homogeneous
patch in a series of homogeneous substructures of higher density. However, no concrete
proof exists that this scenario could have been a real mechanism in the large-scale structure
formation across the early Universe. In what follows, we concentrate our attention to a
specific step of the structure formation, i.e., the passage from clusters of galaxies to single
galaxies, which is the only clear representation of structures vs. substructures that occur in
the non-linear regime today.

The idea here proposed does not rely only on the gravitational physics to justify the
fragmentation of galaxy clusters into isolated substructures, but we interpreted this process
as a consequence of the non-linear feature of the fluid dynamics in its full nature. More
specifically, we assumed that the fragmentation should be interpreted as a phenomenon
of the fractal turbulence characterizing the fluid dynamics in the inertial region, where
the value of the Reynolds number is sufficiently large [14-16]. In other words, we consid-
ered the non-linear structure to be identified with the seed of a galaxy cluster as a large
turbulent eddy that is subjected to a spontaneous fragmentation into a class of smaller
eddies because of the energy transport from larger to smaller spatial scales. The physical
motivation for such fragmentation is, therefore, the tendency of the homogeneous patches
to gravitationally collapse according to the driving process of a direct energy cascade across
turbulent eddies.

3. Fractal Turbulence

In this section, we develop some basic considerations regarding the fractal turbulence
referred to in the dynamical system of Equations (1), (3) and (5) in order to characterize, via
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the simple model discussed in [15], the turbulent eddy fragmentation. Then, identifying
the eddy spatial scale with the Jeans length for the structure formation, we define a basic
scale law linking the density contrast of galaxies over galaxy clusters to the number of
galaxies in each cluster (in what follows, we limit our attention to a single non-linear
fragmentation step).

3.1. Scaling Law of the Dynamics

Conversely to the analysis presented in [15], the considered dynamical equations con-
tain the bulk viscosity term and, more importantly, the additional gravitational interaction
represented by the gradients of the potential ® in Equations (3) and (5). It is easy to see
that Equation (5) is scale invariant by a factor 62"=1 (9 and h are real numbers) under the
following re-parameterization:

x—=0x, t—07", vootv, & o, (13)

and the constants v, v, and ¢ are scaled according to their dimensionality. Furthermore,
from Equation (3), we obtain the scaling law for the density in the form

o0 — 92h72p , (14)

which implies the following scaling for the mass:
M= / pdV — g2+1M, (15)
Jv

where V denotes a generic space volume. Clearly, as it must be, Equation (14) is consistent
with the Jeans length definition in Equation (11).

The energy dissipated via the the shear viscosity (the situation is similar in its estimates
for the bulk contribution) is given by

e~ v(Vv)?, (16)
which implies the well-known scaling law
e — 0% le. (17)

According to the conjecture of Kolmogorov [12] stating that the quantity € has to be constant
across the spatial scales, we make the corresponding choice & = 1/3. As discussed in [15],
this scenario implies that the velocity gradients are characterized by singular points across
space since the following relation holds:
.| Av|
ég% e #0. (18)
However, Kolmogorov assumed that these singular points, which are de facto turbu-
lent eddies, continuously fill the space, while Mandelbrot [14] proposed the idea that such
singular points are distributed according to a fractal structure. In particular, Mandelbrot
postulated that the probability of having a singular point in space is of the form Py ~ 63D,
where D is a positive constant 0 < D < 3, which is dubbed the “Hausdorf number”. Then,
this idea was generalized in [16] to the so-called “multi-fractal turbulence”, i.e., in order to
account for the behavior of the velocity correlation functions, it was postulated that the
Haushdorf number must become a function of the scaling exponent D = D(h).

3.2. Generalized B-Model

We now implement the fractal turbulence scenario [Mandelbrot74] to the cosmological
fluid dynamics by identifying the sub-eddy formation with the Jeans fragmentation scales.
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In particular, we adopt the so-called f-model, as discussed in [15] and slightly generalized
to the present context.
Starting from an eddy with a spatial scale ¢y, we consider the following fragmentation
law in a series of sub-eddies: ;
=ty ) 19)

N

where N is a fixed integer number (in [15], it was taken to be equal to 2) and n = 1,2,3, ...
According to Equation (16), the energy dissipation behaves as € ~ v /¢ such that we obtain

the relation X

en~ 7 (20)

where v, is the velocity scale associated with the eddy of length scale ¢, and p < 11is
a factor that accounts for the fractal nature of the fragmentation, i.e., it ensures that the
eddy formation does not fill the whole physical space. It is natural to take the -parameter
equal to the probability to have a specific spatial scale, that is, 87 = (£,/£y)>~P = N(P=3)n,
Furthermore, since the energy dissipation is assumed to be scale independent (e, — €), we
easily arrive at the following expression for the velocity scale [15]:

On gn (D-2)/3 _

Henceforth, we focus our attention on the first step of eddy fragmentation, i.e., setting
n = 1 in the formula above. Furthermore, we implement this scenario in the passages from
galaxy cluster seeds (n = 0) and galaxy seeds (n = 1). According to this idea, we identify
the fragmentation scales with the Jeans length values and the eddy velocity with the sound
velocity. Then, from Equation (11), we obtain

2
3 AS o8
o= e ) @
p° \Af o

where the labels (¢) and (g) indicate galaxy clusters and galaxies, respectively. Combining
Equations (21) and (22), we arrive at the fundamental relation between the ratio of the
galaxy over the galaxy cluster energy density and the number of galaxies within a single
cluster, i.e.,

f;f _ N265-D)/3 (23)

This formula constitutes a phenomenological tool to investigate data on the large-
scale matter distribution across the Universe in order to determine the average Hausdorf
number of the structure formation process. In this respect, let us consider the following
estimate [17] for the average values of the mass densities: p8 € (1072%,10722) g/cm® and
p° € (107%,107%) g/cm3. We, thus, obtain p&/p° € (10,10%), and in Figure 1, we plot the
contours of the density ratio from Equation (23). As an example, let us consider a galaxy
cluster with p8/p¢ = 5 x 10%: if the number of the contained galaxies is N = 2000, the
fractal clustering index is D ~ 2.86, while reducing the galaxy number to N = 1000 it
results in D ~ 2.65.

In general, we see that the fractality of the structure formation emerges in correspon-
dence with a given density ratio in the region of smaller numbers of constituents (galaxies)
with respect to larger ones, where D =~ 3. This result offers an interesting tool to search
across the Universe galaxy distributions with dimensionality D < 3, especially in those
clusters that are less populated. The validity of this theoretical conjecture, as expressed by
the predictivity of Equation (23), can be tested only via a systematic and statistical analysis
of the large-scale matter distribution, which will be allowed by the James Webb Space
Telescope [34] and Euclid [35].
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1 |
1000 2000 3000 4000 5000

N

Figure 1. Contour plot of p8 /p° from Equation (23) as a function of N and D. The white excluded
region represents p¢/p° > 10°. Colored dashed lines correspond to p%/p° = 1000 (red), 10,000
(green), and 50,000 (purple).

We conclude by stressing that we chose to implement the fractal turbulence scenario
to clusters of galaxies and galaxies only because the application of the proposed theoretical
scheme requires fully developed non-linear fluid dynamics and these two structures of the
Universe are the only ones in a surely non-linear regime among the most important spatial
scales for the matter distribution.

4. Cosmological Implementation of the Model

We now set a possible reference scenario in which the idea that the fractal turbulence
triggers the galaxy formation from galaxy clusters can be properly assessed. We considered
a small background magnetic field, as analyzed for the linear dynamics in [19], in order to
elucidate the possibility that the relevant turbulent behavior of the fluid is mainly reduced
to a 2D Euler equation. A numerical analysis was then performed in the limit when the
so-called “condensation phenomenon” [12] dominates the turbulence spectrum [36].

4.1. The Evolution of the Jeans Length

The initial conditions for the linear perturbation evolution are provided by the scale-
invariant spectrum generated during the de Sitter phase of the inflationary Universe [2,3,6],
according to which the perturbations re-enter the Hubble horizon (in the radiation or
matter-dominated era of the Universe), all with the same amplitude, independently of
their wavelength.

During the radiation-dominated Universe, the equation of state of the cosmological
fluid is p, = p,/3 (the suffix r refers to the radiation component) and the sound velocity
remains correspondingly constant and equal to the value c¢/+/3. Since the energy density
decreases with decreasing redshift z as p, « (1 + z)%, clearly, the Jeans length during the
radiation-dominated era increases as A, o« (1+ z) 2, according to Equation (11). Apart
from irrelevant numerical factors, such behavior also remains valid in the case of an
expanding Universe well inside the Hubble scale [3]. This picture for the Jeans length
evolution also holds after the equivalence age and up to the recombination. This is due to
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the fact that as far as the Universe is in the state of a plasma, the baryon—photon scattering
is efficient, as in the radiation-dominated era. The only difference is that now, the energy
density is dominated by the matter and the Jeans length increases as (1 + z)~3/2.

The situation drastically changes when the hydrogen recombines, becoming transpar-
ent to photons. However, also after the recombination, the radiation pressure significantly
affects the cosmological fluid dynamics simply because, due to a photon/baryon ratio
of about 10%, a photon scattering on a baryon strongly survives from the redshift value
z =~ 1100 up to z =~ 100. In this redshift interval, while the pressure is still p, ~ p,/3, the
Universe density is dominated by the matter contribution, i.e., pg ~ p;;, where the suffix m
refers to the matter component. Thus, an approximated equation of state for the Universe in
this stage is p, ~ puKpgTy/my, o p%{ 3 (here, Ty is the baryon temperature, m, is the baryon
mass, and Kp is the Boltzmann constant) [37], and for the corresponding sound velocity,

we obtain
~ A 4KgT,

2
1 11 o~ ~
v%(100 < z < 1100) 3om =3 m,

x(1+2z). (24)

This formula states that the sound velocity has a jump by a factor about 10°, which
agrees with the recombination value of the matter density. As a result, we see that near the
recombination era, the Jeans length has its maximum [19]. Thus, to ensure that the Jeans
mechanism of fragmentation can concern galaxy cluster and galaxies, we have to require
that their present day mass (a constant of the structure evolution) is contained in a Jeans
sphere of volume A?, ie.,

2
Mg < i (A = A5, 25)
which can be easily restated as follows:
2GM
R = = < 22] =~ 10¥em. (26)

Above, the label rec refers to the recombination era and Rg denotes the Schwarzschild radius
of the considered objects. The condition above is clearly satisfied since the Schwarzschild
radius of the Sun is about 3 x 10° cm, while a galaxy contains about 10'? solar masses and a
galaxy cluster is constituted by 10? to 10* galaxies. Thus, the estimate above clearly allows
for implementing the concept of Jeans fragmentation and then turbulent dynamics at the
spatial scales of galaxies and galaxy clusters since they are already able to increase in the
linear regime.

4.2. The Role of the Magnetic Field

After the recombination, say from z ~ 1100 up to z =~ 10, where the large scale
structure formation takes place, the cosmological fluid is constituted by three main matter
components: the dark matter, the neutral baryonic matter, and the plasma baryonic relic
(actually a fraction of the primordial plasma, i.e., x, >~ 2.5 x 104, cannot recombine due
to the expansion rate [2,38]). Although the plasma component is very small, particularly
compared with the radiation contribution, its presence has a relevant dynamical implication.
As discussed in [19], this important role of the plasma is due to the intense ambipolar
diffusion term [39-42], which significantly couples the ionized and neutral components
at large enough cosmological scales. This feature becomes dynamically important if we
postulate the presence of a primordial magnetic field according to well-grounded theoretical
proposals [43] and the observation of an appreciable field at the present galaxy scale [44].
According to the constraints coming from the microwave background radiation [45-47], the
strength of the primordial magnetic field at the recombination age cannot exceed the value
of about 10~ G and we recall that its intensity scales as (1 + z)?. The important point here
is that the magnetic field influences the linear and non-linear dynamics of the fluctuations
in the plasma component and, hence, the dynamics of the baryonic fluid. However, before
discussing how the linear dynamics of the perturbation are influenced by the magnetic
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field and which implications can come out on the turbulence dynamics, a brief digression
must be dedicated to the role of dark matter.

We aligned our point of view to the main scientific stream that interprets dark matter
in terms of weakly interacting particles, leaving a very small trace on the last scattered
photons, but providing the dominant gravitational skeleton for the structure formation. At
the recombination age, the analysis of the phenomena mainly characterizing the photon—
matter interaction [1] fixes the baryonic density contrast as 5p;,/pj, =~ 10~3. Since this linear
density contrast evolves as (1 + z) !, today, it would be of order unity and the non-linear
structure formation process could not have taken place. Thus, we are led to postulate that at
the recombination, the density contrast of the dark matter fluctuations were about 20 times
greater than that of the baryonic component.

In principle, the dark matter contribution to the Universe density could be treated as a
pressureless fluid, although its weak collisionality could suggest the necessity of a kinetic
description of its dynamics. However, for what concerns the problem of the baryonic
large-scale structures (say, the visible component of cluster of galaxies), the dark matter
presence can be regarded as an assigned background gravitational component on which
the baryonic (neutral and non-neutral) fluid evolves. The detailed account of this gravi-
tational interaction between dark and baryon matter could be clearly accommodated in
the proposed dynamical scenario by means of the system Equations (1)—(3) as soon as we
consider a more realistic perturbation scheme in which the background gravitational field
is inhomogeneous and provided by a complementary study of the dark matter gravita-
tional instability. This perspective can be reliable pursued, but it has some challenging
aspects, especially regarding the necessity of numerically demanding N-body simulations
to describe the highly non-linear matter clustering [9,10]. To obtain a physical insight of the
influence that a magnetic field can have on the presently proposed picture, we followed
the same approximation adopted in [19], where the concept of the Jeans length is recovered
in the presence of both the Universe’s expansion and a constant background magnetic field
By. Thus, when we consider the propagation of the baryon fluctuations, the background
quantities are calculated using the baryonic matter energy density only, while when the
gravitational field enters the problem, it interacts with the full Universe energy density po,
including the dark matter term.

For a detailed discussion of the linear perturbation dynamics in the case of a mag-
netized cosmological fluid, we refer the reader to [43]. However, coherently with the
discussion in Section 2, below we discuss the main physical effects, limiting our attention to
a static background, which is surely a good approximation for the case of short perturbation
wavelengths (i.e., much less than the Hubble horizon). According to the considerations
above, if we treat the (ionized and neutral) baryonic matter as a single magnetized fluid,
following a linear perturbation analysis similar to the one in Section 2 (see Appendix B),
the resulting solution of the dispersion relation takes the following form:

k2
w? =wh = > [52 + 04 + \/(52 + vﬁ)z — 40202 cos? 6|, (27)

where v4 denotes the background Alfvén velocity (vi = B(z) /4mpyp), 7 = v2 — 4ntGpo /K2,
and cos® = By - k. We stress how, according to [21], we calculate the Alfvén velocity
with the baryon matter density only, while for 32, we used the full Universe matter en-
ergy density.

We separately analyzed the two limiting cases 8 = 71/2, i.e., the wavevector lying
in the plane perpendicular to the magnetic field, and 6 = 0, i.e., when the perturbations
propagate along the magnetic field direction. When 6 = 71/2, the solution with the (—)
sign in Equation (27) provides w_ = 0, i.e., we deal with a trivial redefinition of the
background. In the opposite case, when we retain the (+) sign, it is easy to recognize that
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the perturbations grow when k? < 471Gpg/ (v2 + v% ), which corresponds to restating the
Jeans length as follows:

7t (vZ + %)
Gpo

This result has a clear physical explanation: in the fast magnetoacoustic branch [48],

the magnetic field strength provides a pressure contribution, i.e., By - 6B/47, with 6B being

the field perturbation, which supports the thermal pressure and then increases the Jeans

length value.
When we consider § = 0, we immediately obtain

k2
wi:5<ﬁz+vi:&\62—vi|), (29)

and from a careful inspection of both the sign cases, we simply obtain that the gravitational
instability takes place for perturbations with a wavelength larger than the standard Jeans
length of Equation (11) (propagating Alfvén modes are also available). This feature has
a natural interpretation in terms of the geometry of the problem. In fact, the perturbed
magnetic field is naturally divergenceless, and then 0B - k = 0; since k is aligned with B,
we must also have By - 0B = 0. In other words, we are dealing with a vanishing perturbed
magnetic pressure and the Jeans length remains unaffected by the non-zero magnetic
shear contribution.

In the oblique case 0 < cosf < 1, the situation is intermediate, as discussed in detail
in [21] (see also [22]), and anisotropic behavior of the linear perturbation is introduced. In
fact, an initial spherical overdensity in space tends, as the system evolves, to squeeze on the
plane perpendicular to the background magnetic field. Thus, we are led to infer that when
the tight coupling between the neutral and ionized baryon component of the Universe is
considered, the non-linear evolution of the density contrast, which has the linear evolution
as the initial and boundary conditions, could exhibit a certain axial symmetry characterized
by a tendency to form squeezed structures (see [49] for the derivation of a similar scenario
for a strong field context).

Furthermore, the plasma configuration that we are considering has a high value for
the B-parameter, i.e.,
8ty 2

~02——— > 1. (30)
B(Z) UE} |t:trec

B =

This value is z-independent, and due to the large ambipolar diffusion at large scales, we
can apply the Boussinesq approximation to the baryonic fluid [50]. Thus, we can assume
that the velocity field is dominated by its divergenceless component. We can finally write
the fluid velocity field as

Uy = =0y, vy = XY, v, ~0, (31)

where ¢ (x, y) is the stream function [13], and we have assumed, without loss of generality,
that the constant and uniform magnetic field By is along the z-direction.

Now, by means of the velocity field above and taking the curl of Equation (5), we
easily arrive at the following viscous Euler equation:

OtAY + Ox Iy AP — Jy oA = VA%, (32)

where A denotes the 2D Laplacian operator. We stress that (V x v), = A is the vorticity
field, and the associated enstrophy cascade [12] is responsible for the fragmentation of the
turbulent eddies at smaller and smaller scales. The presence of vorticity at the galaxy spatial
scale suggests that in proto-galaxies, a certain amount of angular momentum is present and
this consideration could imply that the structure formed according to our scenario mainly
concerns galaxies associated with a significant rotation, especially spiral galaxies [51-53].
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However, if the galaxies correspond, as proposed in the numerical simulations of the
subsection below, to one of the two fundamental scales of a condensation phenomenon [12],
the vorticity contribution is not so large and the highly rotating eddies are significantly
affected by viscosity dissipation.

4.3. Numerical Analysis

In order to deal with a dimensionless equation, we introduce a fundamental fluid speed
u and a fundamental length L. We can, thus, define the following dimensionless quantities:

=T x_xL, _yL, T_utL, v_uL. (33)
The Euler Equation (32) can be now restated as
0:D?Y + 0:¥9;D*Y — 9;¥9:D*Y = 1D*Y, (34)

where D? denotes the Laplacian in the barred coordinates.

Let us now assume periodic boundary conditions, which allow us to numerically
simulate the equation above by means of a truncated Fourier approach. Specifically, we
consider the Fourier expansion ¥(%,7,T) = ¥y, ¥¢,,(T) ¢/**"9). Here, the mode num-
bers (I, m) are integers and the reality constraint reads ¥_, _,,, = ‘T”,ﬁm When addressing
the spectral evolution, the non-linear terms in Equation (34) are treated by implementing
a pseudo-spectral approach for the resulting convolution product, while a fourth-order
Runge-Kutta algorithm evolves the components ¥ ,, () in time. In the following, we set
u = 300 km/s (according to a typical value in spiral galaxies) and L = 0.01 Mpc (which
is the present day spatial scale of a spiral galaxy). For the viscosity parameter, we used
a hydrogen-like plasma with T = 50 K and p = 1072¢ g cm~3. We thus obtained, from
tabulated data, 7 >~ 1.8 x 105 g cm~1s71, and thus, 7 ~ 2 x 1078.

The energy spectrum was obtained using the quantity Wy = k?|¥,,,|?, where the
definition k> = (271/L)?*(¢* + m?) held and averages over equal (¢£2 + m?) values were
implemented. In Figure 2, we plot Wy at a fixed time evolved from an initial condition
in which three modes were non-zero and their wavenumbers were taken in the ratio
corresponding to N = 2,ie, k = 1,2, 4. We clearly see that the energy was mainly
concentrated in the first two modes, while the remaining part of the spectrum rapidly
decayed as 1/ k2. This was the result of the so-called condensation phenomenon, which is
well-known in fluid dynamics [12]: while a direct cascade of enstrophy was observable and
it corresponded to the 1/ K2 profile (see [54] for a detailed discussion), an inverse cascade
of energy produced the lowest k values. This scenario, when referred to the cosmological
setting, clarifies why we reliably apply the fragmentation due to eddy vorticity to two
spatial scales only: de facto clusters of galaxies and galaxies. In other words, we propose the
idea that the fractal turbulence of the baryon fluid can play a role in structure formation, but
its fingerprint can concern the formation of galaxies only and, in this sense, observational
evidence of fractality could be recovered at this spatial scale of the Universe.

From the perspective of comparing the idea proposed here (where a full develop-
ment requires significant effort that involves theoretical and numerical investigation) with
observational data, the most promising prediction is to be identified in Equation (23). A
statistical analysis of the cluster and galaxy distribution in space can offer a suitable sample
of data to be compared with Figure 1. In this respect, the incoming data sets from the James
Webb Space Telescope and Euclid could provide the required information.
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Figure 2. Log—log plot of Wi (blue circles) in arbitrary units as a function of k at a fixed time, as
indicated above the graph. The orange dashed line indicates the behavior o« 1/k2.

5. Concluding Remarks

Here, we present a conceptual framework for interpreting the evolutionary step linking
clusters of galaxies to individual galaxies as a consequence of a fragmentation process
within turbulent eddies following a fractal distribution law [13,17]. The specific aspect in
which the turbulence of the cosmological fluid within the non-linear regime influences the
gravitational stability of overdensities was identified as the coincidence between the eddy
scale and the Jeans length during that stage of the Universe evolution.

It is important to emphasize that when discussing galaxy clusters fragmenting into
galaxies, our focus was clearly on proto-structures of this nature, which people commonly
refer to as “non-linear seeds” in the structure formation. In other words, the concept
developed above illustrates the formation of proto-galaxies as sub-eddies within the orig-
inal turbulent eddy corresponding to a single cluster. The crucial point here is that as a
residual influence of the system linear stability (as per the so-called Jeans fragmentation
mechanism [11]), the formation of galaxies is dictated by the scale corresponding to their
Jeans length during that primordial cosmological evolution.

The primary merit of this analysis lay in determining the phenomenological law
in Equation (23), which provides a clear guideline for the conjectured fragmentation
mechanism when compared against statistically representative data samples. By evaluating
the density transitioning from a cluster to an average contained galaxy, and considering
the number of galaxies within the cluster, we can estimate the Hausdorff number for
the given large-scale matter distribution. Through the analysis of statistical samples, we
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could approximate the average Hausdorff number across the Universe’s large-scale matter
distribution. Consequently, this proposed conjecture serves as a valuable tool for assessing
the tendency of the Universe’s large-scale structures to exhibit certain fractal features,
which based on a rough estimate, seem to be present in some cases.

The introduction of the magnetic field in the primordial Universe allowed us to clarify
how the turbulent dynamics characterizing the perturbation non-linear growth could be
reduced to a 2D Euler equation. In fact, although the plasma component of the Universe
is, after the recombination age, a very small fraction (~2.5 x 10~%), the strong ambipolar
diffusion at the spatial scales of cosmological interest induces a coupling with the neutral
hydrogen fluid, which has to be taken into account in the structure formation problem.
Since the magnetic field provides an anisotropic pressure contribution to the linear plasma
perturbations, this squeezing effect onto the plane perpendicular to the magnetic field is
transferred to the neutral hydrogen. We were then led to argue that the fully non-linear
dynamics of the baryon fluctuations is governed by an essentially 2D scheme, to which
we could also apply the Boussinesq approximation as a consequence of the high value
of the plasma p-parameter. The numerical simulations we performed were initialized by
considering only three major modes, where the modulus corresponds to a geometrical
progression of factor 2. We demonstrated that a continuous energy spectrum emerges with
a strong trace of an inverse cascade of energy. In fact, only the first two modes (for us,
this corresponded to the seeds of clusters and galaxies, respectively) have a significant
energy content. The amplitude of the remaining spectrum decays as 1/k* according to
an enstrophy direct cascade. This feature, which corresponds to a condensation of the
spectrum, can explain why the process of structure formation is associated with a turbulent
fragmentation for what concerns only a few (de facto two) spatial scales. Moreover, the
fractal nature of the eddy fragmentation can be recovered at the smallest (galactic) scale of
matter distribution.
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Appendix A

In this appendix, we study in some detail the dispersion relation in Equation (10). We
already stressed that when taking a solution as w = w; + i7, the resulting values of y are
always negative, thus yielding damped and stable behavior of the density contrast. In what
follows, we instead discuss the specific solution branch with a pure imaginary frequency,
i.e.,, w = i7y. The dispersion relation is rewritten as

Y2 + ukPy + k02 — 4nGpy =0 . (A1)

The solutions of the equation above constitute two branches: the negative one again results
in a stable evolution, and thus, we focused on the following solution:

2
¥ = —% + %\/ U2k — 4v2k2 + 167Gy (A2)

Considering the stability constraint oy < 0, the viscous term cancels out and it provides the
standard Jeans condition in Equation (11), i.e., k > kj, where

4G
k= vzpo . (A3)
S
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This analysis enforces the study presented in this work for which the inertial regime
was assumed by neglecting viscosity effects in determining the Jeans length. However,
attention must be put on the compatibility conditions of the solution. In particular,
the inequality

12kt — 40%k% +161Gp > 0, (A4)

must hold. Such a relationship provides an upper bound for the viscous parameter derived
from the reality condition of the solutions, namely,

2
% (A5)

S
y /4rtGpg

which indicates how the viscosity is strongly constrained when the density is assumed to
be time dependent and starts to grow. Following Equation (A5), we can define the new
parameter u as

U= K ,
vs/ U

0<u<li, (A6)

where we excluded the null value since it should correspond to 4 = 0 and the whole
analysis should fall into the standard Jeans condition. In this scheme, Equation (A4) is
satisfied for

k<k_, ki<k, ki:% 2(11\/1—112), (A7)

and we have k_ < k4 by construction. We can deduce how a compatibility gap emerges in
the k space if u # 1; in fact, the 7y solution in Equation (A2) is not valid for k_ < k < k.

At the same time, when the viscous term is maximized according to Equation (A5),
thus implying u = 1, we obtain k_ = k and the all the k values are allowed. We recall
that these are compatibility conditions and not stability constraints: the density contrast
evolution is stable according to the Jeans condition provided in Equation (A3). In this
respect, we now compare the critical values k. to k; when u # 1. Provided that in this
range, k- < k4, in Figure Al, it can be appreciated how k; < k_. This demonstrates
the existence of an available region of gravitational instability of our system, even in the
presence of a viscous contribution.

1.25,

1.20f

u

Figure A1. Plot of k— /k; from Equation (A7) as a function of u.
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Appendix B

In this appendix, we derive the dispersion relation in Equation (27). The dynamics
of the magnetized cosmological plasma is described by the continuity Equation (1), the
Poisson Equation (3), and the Euler Equation (2) corrected by the presence of a magnetic
field B. Such a system must be coupled with the evolution equation for B and by the Gauss
condition V - B = 0. In the case under consideration, we neglect the viscous terms in the
Euler equation for the sake of simplicity (see [21] for a detailed analysis). The complete set
of dynamical equations thus reads

dp+ V- (ov) =0, (A8)

A® —471Gp =0, (A9)
p(0v+v-Vv)+Vp+pVP— (V xB)xB/4mr =0, (A10)
0B—V x (vxB)=0. (A11)

As in Section 2, we address a static background characterized by constant density and
magnetic field and by a null velocity and gravitational potential (for these two quantities,
we retain the same notation). Perturbing the equations above up to first order under such
conditions, the system can be reduced to the following relation for the velocity fluctuations:

02V — 02V (V -v) + Vo, + 4By x (By x (V(V -v)))+
+v4Bo x (By- V)(V xv)) =0, (A12)
where, as already discussed, v, indicates the background Alfvén velocity calculated as

v% = B3/4mpy. Introducing the plane wave expansion v « ¢** and decomposing the
velocity field as v = vk + v, Equation (A12) splits into the system

E)fvﬂ + (K*3* + (1 — cos? G)kzvi)vu — k*v% cosB(By-v,) =0, (A13)

02v, +k*v% v cos + k*v% cosO(kcosf — By) =0, (Al14)

where 3% = 02 — 47Gpo/k* and cos6 = By - k. The system above reduces to a single

equation for the field o), and taking | vt we finally obtain the dispersion relation
written as

wt — K2(8% 4 v4)w? + K45%0% cos? 6 = 0, (A15)

admitting the solutions in Equation (27).
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