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Orbital optimized unitary coupled cluster theory for quantum computer
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We propose an orbital optimized method for unitary coupled cluster theory (OO-UCC) within the variational
quantum eigensolver (VQE) framework for quantum computers. OO-UCC variationally determines the coupled
cluster amplitudes and also molecular orbital coefficients. Owing to its fully variational nature, first-order
properties are readily available. This feature allows the optimization of molecular structures in VQE without
solving any additional equations. Furthermore, the method requires smaller active space and shallower quantum
circuits than UCC to achieve the same accuracy. We present numerical examples of OO-UCC using quantum
simulators, which include the geometry optimization of water and ammonia molecules using analytical first
derivatives of the VQE.
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I. INTRODUCTION

Coupled cluster theory (CC) is one of the most representa-
tive electron correlation methods in quantum chemistry [1–3].
It has some vital features to describe molecular electronic
structures reliably. CC is size-extensive and can be improved
systematically by increasing the excitation level. It converges
to full configuration interactions (FCI) faster than truncated
configuration interactions (CI) or Møller-Plesset perturbation
theory. Furthermore, its energy is invariant to unitary transfor-
mations among the occupied/virtual orbitals. It is well known
that for an electronic state where the mean-field approxi-
mation works well, the CC models considering up to triple
excitations can provide chemical accuracy (e.g., 1 kcal/mol),
if sufficiently large basis functions are employed. In partic-
ular, it has been established that CC singles and doubles
with perturbative triples (i.e., CCSD (T)), which incorporates
three-body interactions perturbatively, is a highly accurate
method. It is often called the gold standard of molecular
electronic structure theory [4].

In the framework of the traditional CC (TCC), the wave-
function parameters are determined by solving projected
amplitude equations and not variationally. Owing to its nonva-
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riational properties, the validity of TCC is strongly dependent
on the reference Hartree–Fock wave function. Indeed, CCSD
and CCSD(T) often suffer from breakdowns in the systems
where static electron correlations are strong, for example,
multiple-chemical-bond breaking systems [1].

This issue can be solved if a CC wave function is
parametrized variationally [5]. Some benchmark studies
showed that the difference between the variational CC (VCC)
and TCC is small for weakly correlated regions [5–7].
Nonetheless, VCC has a factorial scaling in the computational
cost. Therefore it is only applicable to a tiny system where FCI
can be performed. However, it has recently been shown that
a variant of VCC—unitary coupled cluster (UCC) [8–15]—
can be solved at a polynomial-scaling cost using a quantum
computer [16]. A UCC wave function can be prepared on
a quantum computer using the Trotter approximation with
a polynomial number of quantum gates. Although the gate
count for the accurate UCC can be much larger than what
today’s quantum devices are capable of [17], UCC can be a
good starting point for analyzing the power of the quantum
computer in the field of quantum chemistry.

The method enabling UCC on a quantum computer is
called variational quantum eigensolver (VQE), which is a
kind of quantum-classical hybrid algorithm [16]. In the
VQE, a wave function is prepared through a parametrized
quantum circuit corresponding to a wave function ansatz
(e.g., UCC). Then, we measure its energy for given cir-
cuit parameters. The parameters of the circuit are iteratively
tuned by a nonlinear optimizer running on a classical com-
puter to minimize the energy. VQE calculations using actual
quantum computers have already been performed for small
molecules [16,18–23]. Recently, researchers have proposed
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electron-correlation methods based on UCC for quantum
computers [24–33].

Although VQE allows the determination of UCC param-
eters based on the Rayleigh–Ritz variational procedure, the
obtained UCC wave functions are not fully variational. UCC
and its variants employ a Hartree–Fock determinant as a ref-
erence wave function; the orbitals are fixed and not altered
during a UCC calculation. However, it is well known that the
Hartree–Fock orbitals are not optimal orbitals for a correlated
wave function. One method for obtaining such optimal or-
bitals is to optimize orbitals in such a way that the gradients of
the energy with respect to orbital rotation parameters vanish.
The combination of CC with orbital optimization (OO-CC)
was first briefly mentioned in the paper of Purvis and Bartlett
and then introduced by Sherrill et al. [34,35]. Since then,
orbital optimized coupled cluster doubles (OO-CCD) and its
variants have been developed by various researchers [35–52].

This paper concerns the orbital-optimization technique to
UCC in the context of VQE. At this moment, the size of the
orbital space that can be handled by a quantum computer is
severely limited because of the number of available qubits.
Therefore active space approximation is indispensable when
we wish to use a quantum computer for quantum chemical
problems. Improvement of the active space can be achieved by
optimizing molecular orbitals with the VQE, which leads to a
reduced number of qubits. Furthermore, the orbital-optimized
VQE (OO-VQE) is a fully variational method, and the molec-
ular gradients of OO-VQE (e.g., forces) can be calculated
without solving response equations. The idea of using the
orbital-optimization techniques for quantum computers has
already been reported by Reiher et al. for the phase estimation
algorithm (PEA) [53] and by Takeshita et al. for the VQE [54].

In this study, we implement OO-VQE using a quantum cir-
cuit simulator; we propose an orbital optimized unitary cou-
pled cluster doubles (OO-UCCD) as a wave-function model
for OO-VQE. It must be noted that after posting the initial
manuscript of this work on the arXiv preprint server, an im-
plementation of OO-UCCD by Sokolov et al. was uploaded on
arXiv [55]. Their study carefully performed the cost and accu-
racy analysis of several variants of OO-UCCD methods, while
our work focused on its fully variational nature and computed
analytical derivatives for geometry optimizations which are a
vital part of quantum chemical calculations. To the best of our
knowledge, this is the first time that geometry optimizations
have been performed for polyatomic molecules using analytic
first derivatives of the VQE and ab initio Hamiltonian.

The remainder of this paper is organized as follows. First,
Sec. II describes the theory of orbital optimized UCC (OO-
UCC) based on VQE. Section III provides a brief description
of the implementation of OO-UCC using a quantum cir-
cuit simulator. Section III also discusses simple numerical
experiments to demonstrate its usefulness. Finally, Sec. IV
concludes the paper.

II. THEORY

A. Unitary coupled cluster

The molecular electronic Hamiltonian in a spin-free form
is expressed as

Ĥ =
∑

p,q

hpqÊpq +
∑

p,q,r,s

hpqrs{ÊpqÊrs − δqrÊps}, (1)

where hpq and hpqrs are one- and two-electron integrals, re-
spectively. Êpq is a singlet excitation operator and is defined
as Êpq = ĉ†

p,α ĉq,α + ĉ†
p,β ĉq,β , where ĉ†

p,α and ĉp,β are creation
and annihilation second quantized operators, respectively.
p, q, r, s are the indices of general molecular spatial orbitals.

A wave function in the traditional coupled cluster ansatz is
given as

|�〉 = eT̂ |0〉 , (2)

where T̂ is an excitation operator T̂ = T̂1 + T̂2 + T̂3 + · · ·
and |0〉 is a reference wave function. In contrast, UCC uses
an anti-Hermite operator Â defined by the difference of the
amplitude operator T̂ of TCC and its Hermitian conjugate, i.e.,
Â = T̂ − T̂ †. Therefore a wave function of the UCC ansatz is
expressed as

|�〉 = eÂ |0〉 . (3)

The Baker–Campbell–Hausdorff (BCH) expansion of the
similarity transformed Hamiltonian of the traditional CC is
terminated at the finite order, whereas that of UCC is not, ow-
ing to de-excitation operators T̂ †. The infinite BCH expansion
makes the implementation of UCC on a classical computer
unfeasible.

B. Orbital optimization

Optimizing orbitals is equivalent to minimizing a wave
function with respect to orbital rotation parameters κ . The
energy function of OO-UCC is given by

E (A, κ ) = 〈�|e−κ̂Ĥeκ̂ |�〉 = 〈0|e−Âe−κ̂Ĥeκ̂eÂ|0〉 , (4)

where the orbital rotation operator is defined as κ̂ =∑
pq κpq(Êpq − Êqp). When UCC parameters A are fixed, the

second order expansion of the energy function becomes

E (A, κ ) ≈ 〈�|Ĥ |�〉 +
∑

pq

κpq 〈�|[Ĥ , Ê−
pq]|�〉

+ 1

2

∑

pq,rs

κpq 〈�| [[Ĥ, Ê−
pq], Ê−

rs ]

+ [[Ĥ, Ê−
rs ], Ê−

pq] |�〉 κrs, (5)

where Ê−
pq = Êpq − Êqp. By taking the derivative with respect

to κ , the following Newton–Raphson equation is obtained

Hκ = −g, (6)

whose elements are

Hpq,rs = 1
2 〈�|[[Ĥ , Ê−

pq], E−
rs ] + [[Ĥ, Ê−

rs ], Ê−
pq]|�〉 (7)

gpq = 〈�|[Ĥ , Ê−
pq]|�〉 . (8)

H and g are often called electronic Hessian and gradients,
respectively. One-particle and two-particle reduced density
matrices (1RDM and 2RDM) are required to compute them
in addition to the molecular Hamiltonian integrals hpq and
hpqrs. They are readily available in VQE, because it measures
1RDM and 2RDM to compute electronic energy in a given
quantum circuit.
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C. Orbital optimized unitary coupled cluster doubles

The UCC singles and doubles (UCCSD) can be
expressed as

|�UCCSD〉 = eÂ1+Â2 |0〉 , (9)

where Ân = T̂n − T̂ †
n consists of n-excitation operators T̂n and

their conjugates. Starting from the UCCSD ansatz (9), we
consider the following wave-function model by separating the
singles and doubles parts:

|�UCCSD′ 〉 = eÂ2 eÂ1 |0〉 . (10)

The UCC operator Â is not commutable unlike TCC, be-
cause of the existence of de-excitation operators T̂ †. Therefore
the decomposed UCCSD ansatz is different from the orig-
inal ansatz. The singles part eÂ1 in this model is identical
to the orbital rotation unitary operator eκ̂ that is present in
Eq. (4). This implies that we can optimize its singles part
eÂ1 variationally using a classical computer via the well-
established orbital-optimization technique. The singles only
alter the Hartree–Fock determinant to another determinant
|0̃〉 = eÂ1 |0〉.

Considering the Slater determinant |0̃〉 as a reference
wave function for UCC, we rewrite Eq. (10) and propose
the orbital-optimized unitary coupled cluster doubles (OO-
UCCD) model, given as

|�OO−UCCD〉 = e
ˆ̃A2 |0̃〉 . (11)

The doubles part e
ˆ̃A2 in Eq. (11) is optimized by the VQE,

while the reference determinant (i.e., the singles) is optimized
by a classical computer using 1RDM and 2RDM from VQE.
In the framework of VQE, these quantities need to be evalu-
ated via measurements. Formally, measuring 2RDM scales to
the fourth power with respect to the number of qubits, and it
is a major bottleneck not only in VQE but also in OO-VQE.
In addition, the measurement introduces statistical errors. In
that sense, OO-UCCD (OO-VQE) is related to the multi-
configurational self-consistent field methods; these are based
on stochastic electron correlation approaches such as full
configuration interaction quantum Monte Carlo [56,57], the
heat-bath CI [58], and variational Monte Carlo [59–64]. The
costs and errors owing to the measurements can be reduced
using simultaneous measurements and/or other techniques.
Such techniques have been actively developed [65–75], and
they can be used to alleviate the problems caused by measur-
ing 1 and 2RDMs.

In practice, OO-VQE repeatedly performs the VQE and
the orbital optimization until convergence. The computational
cost of OO-UCCD is, therefore, higher than that of UCCSD
(or UCCD) by a factor of the number of iterations (typ-
ically several to several tens of times). Nonetheless, since
the number of iterations is independent of the size of a
molecule, OO-UCCD is applicable to the problems where
UCCD (or UCCSD) is feasible in terms of computational
time. In return for this increase in computational cost owing to
self-consistency, Eq. (11) has the advantage that all the wave
function parameters are fully variationally determined, and
it requires a less complicated quantum circuit than Eq. (10).
This property makes it easy to compute the first derivative

and simplifies the higher-order derivative computations, as
discussed in the next subsection. Furthermore, OO-UCCD can
also incorporate correlations outside the active space. Similar
to other existing orbital optimization methods, this feature is
beneficial, especially for the system where the orbital relax-
ation effects play crucial roles, and the number of orbitals
is larger than the number of available qubits (e.g., transition-
metal complexes).

D. Analytical first derivatives of energy

An important advantage of OO-VQE including OO-UCCD
is that all the wave-function parameters are variationally
determined. This feature allows us to compute first analyti-
cal derivatives of the energy without solving any additional
equation. They are vital quantities for quantum chemical cal-
culations, because static molecular properties such as forces
on nuclei are defined as the derivatives of the energy with
respect to external parameters x (such as a position of atom or
an external electric field). Here, the energy is considered as a
function of external parameters x, the VQE circuit parameters
θ and the orbital parameters κ , denoted as E (x, θ, κ ) in this
subsection. Then, the first derivatives of the VQE energy are
given as

dE (x, θ, κ )

dx
= ∂E (x, θ, κ )

∂x
+ ∂E (x, θ, κ )

∂θ

∂θ

∂x

+ ∂E (x, θ, κ )

∂κ

∂κ

∂x
, (12)

where θ and κ indicate the quantum circuit parameters and
molecular orbital parameters, respectively. The first term of
the right-hand side of Eq. (12) is the Hellmann-Feynman term
and is equivalent to the expectation value of the derivative
of the Hamiltonian. The second term is zero since the VQE
variationally determines θ . In the same way, the third term is
also zero when the orbital is optimized. Thus the first-order
OO-VQE energy derivatives can be determined by evaluating
the expectation value of the derivative of the Hamiltonian.

This is not the case for the standard VQE without OO,
which needs the third term to compute the first derivatives.
To obtain the orbital response ∂κ/∂x in that term, we must
solve the following first-order coupled-perturbed Hartree–
Fock (CPHF) equation:

∂2EHF(x, κ )

∂κ∂κ

∂κ

∂x
= ∂2EHF(x, κ )

∂x∂κ
, (13)

where EHF(x, κ ) is the Hartree–Fock energy. In practice, we
use the Z-vector technique [76,77] so that we can avoid
solving Eq. (13) for each of the external parameters (e.g.
each Cartesian coordinate of a molecule) [78]. The second or
higher-order derivatives require not only the orbital response
but also the circuit parameter response. The latter can be
computed analytically on a quantum computer using a method
recently developed by a few of authors of this study [79].

E. Trotterization and Brueckner orbitals

Translating the UCC generator eÂ into a quantum cir-
cuit needs Trotterization, which introduces an error owing
to the finite Trotter number. Hereafter, we denote UCCSD
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and UCC doubles (UCCD) approximated by the n-step Trot-
ter expansion as UCCSDn and UCCDn, respectively. The
wave-function ansatz, which we implement in this study,
corresponds to OO-UCCD1, where the Trotter expansion is
truncated at the very first step. The OO-UCCD1 ansatz can be
written as

|�〉 =
∏

μ

(e
ˆ̃A2,μ )eÂ1 |0〉

=
∏

μ

(e
ˆ̃A2,μ ) |0̃〉 , (14)

where μ is an index for each double excitation (and
de-excitation) operator and Â2 = ∑

μ Â2,μ. Although a single-
Trotter-step UCC ansatz appears to be a crude approximation,
Barkoutsos et al. have shown that it actually reproduces
ground-state energy accurately [80]. O’Malley et al. have
pointed out that the variational flexibility allows such an ap-
proximated wave function model to absorb the Trotterization
error [18].

Note that the Trotter error depends on the ordering of the
operators [81,82]. This order dependency makes UCCSDn

inequivalent to OO-UCCDn even when n = 1. The orbital
rotations of OO-UCCD1 alter the doubles Â2 in Hartree–
Fock orbitals to ˆ̃A2 in OO-UCCD1’s optimized orbitals, which
appear in Eqs. (11) and (14). Because of this change, the
ordering of the doubles in OO-UCCD1 is not matched to that
in UCCSD1. There is, thus, a difference between UCCSD1

and OO-UCCD1 caused by the dependency on the ordering
of the doubles. Izmaylov et al. have recently proposed a way
to reduce the order dependency based on the Lie algebra–Lie
group connection [82].

A notable feature of the OO-UCCD ansatz is that the varia-
tional orbitals coincide with the commonly known Brueckner
orbitals. Brueckner orbitals are optimal orbitals for a corre-
lated wave function, where the singles’ contribution (i.e., T̂1 or
Â1) vanishes. It is known that in the TCC framework, the vari-
ationally optimized orbitals are not the same as the Brueckner
orbitals. This is because of the difference between T̂1 and the
orbital rotation operators. Meanwhile, the singles of UCC Â1

are identical to the orbital rotatioon operators. Nonetheless,
the Brueckner orbitals of UCCSD are not identical to the
OO-UCCSD optimzied orbitals because the anti-Hermitian
operators Â1 and Â2 are not generally commutable with each
other and the Trotterization makes a difference. The OO-
UCCD ansatz is based on the separation of the singles and
doubles a posteriori as shown in Eq. (10). Therefore the OO-

UCCD naturally satisfies the Brueckner condition e
ˆ̃A1 = 0 and

the variational condition ∂E
∂κ

= 0, simultaneously: variational
orbitals are Brueckner orbitals in this ansatz.

III. NUMERICAL EXAMPLES

In this section, we present some numerical results using
the proposed method. Computational details are as follows.
We have implemented OO-UCCD in Python using Qulacs,
PySCF [83], and OpenFermion [84] program packages.
Qulacs is used to simulate quantum circuits. PYSCF is used
for orbital optimizations and for evaluating molecular Hamil-
tonian integrals [85]. OpenFermion is employed for mapping

molecular Hamiltonian into a quantum circuit based on the
Jordan–Wigner transformation. 1 and 2RDMs are computed
not by sampling but by directly using a state vector. This
implies that we have not considered (statistical) noise.

We employ the following ordering of the Trotterized opera-
tors on the quantum circuits for UCCSD1 (UCCD1): first, the
doubles from two spatial occupied-virtual pairs; second, the
doubles from the same spatial occupied-virtual pairs; finally,
the singles. The double excitation operators T̂n = t rs

pqĉ†
pĉ†

qĉr ĉs

are generated so that the index strings psqr are in lexico-
graphical order, where t rs

pq is a doubles amplitude. Although
Grimsley et al. have illustrated that the effect of the operator
ordering could be significant, their results suggest that the
impact of the ordering is not important in the systems used
in this study [81].

A. Without the active space approximation

In this section, we show the results without the active space
approximation. It means that all the orbitals were mapped
into qubits. Then, the results with active space approximation
will be presented in the next subsection. Hereafter, we denote
the OO-UCCD and UCCSD using the active space approach
as S-OO-UCCD and AS-UCCSD, respectively, to distinguish
them from no-active-space calculations. In addition, the ac-
tive space sizes are explicitly written after the name of an
electron correlation method whenever the approximation is
used. Let OO-UCCD and MP2 with the active space con-
sisting of 6 spatial orbitals and 4 electrons be written as
AS-OO-UCCD(6o, 4e) and MP2(6o, 4e), respectively.

We first investigate the potential energy curve (PEC) of
LiH. Figure 1 shows the errors of our method with respect
to the PECs computed by FCI and UCCSD1 with the STO-3G
basis sets. We did not employ the active space approximation.
It can be seen that the energy difference between UCCSD1 and
OO-UCCD1 is notably small in the entire range of the PEC.
The energy deviation of OO-UCCD1 from UCCSD1 is 10−7

mhartree at 1.3 Å Li-H distance, whereas at 2.1 Å it is 3 ×
10−5 mhatree. As mentioned above, the difference between
UCCSD1 and OO-UCCD1 essentially comes from the order
dependency of the doubles. Indeed, Grimsley et al. reported
that the typical doubles-operator-order dependency results in
an energy difference of an order of less than a microhartree for
UCCSD1 near the equilibrium geometry for LiH, whereas the
magnitude of the order-dependency increases with an increase
in the LiH bond length [81]. Our results are consistent with
theirs.

In contrast, the deviation of UCCD1 is at least five orders
of magnitude larger than OO-UCCD1. OO-UCCD is as accu-
rate as UCCSD; likewise the standard OO-CCD calculations
reproduce the CCSD results well. This indicates that UCCSD-
level results can be obtained with a shallower quantum circuit
using the orbital optimization technique at the cost of repeated
VQE optimizations.

We next consider the double dissociation of the H2O
molecule using the STO-3G basis sets, where the two
O-H bonds symmetrically stretch with a fixed HOH angle of
104.5◦. Figure 2 illustrates that all the three unitary coupled
cluster variants correctly describe the PEC of this reaction
even in the bond-dissociation regime where four electrons are
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FIG. 1. Error of the OO-UCCD1 method along with potential
energy curves of the LiH molecule using the STO-3G basis sets.
(a) Deviations from FCI energies compared with UCCSD1 and the
standard CCSD method. (b) Deviations from UCCSD1 energies com-
pared with UCCD1.

strongly correlated. Meanwhile, as is well known, the error
of CCSD with respect to FCI increases with the length of
the O-H bonds, resulting in an artificial maximum at around
2.0 Å [5]. Though the PECs of UCCSD1 and OO-UCCD1

behaves similar to FCI, their errors also increase as the
O-H distance increases. The deviations of UCCSD1 and OO-
UCCD1 from the FCI are within 1 kcal/mol if the O-H bond
length is less than 2 Å, while the error at 3 Å, where the PEC
is almost flat, reaches 4 kcal/mol. This behavior of UCC is
close to the results of the variational coupled cluster theory
reported by Van Voorhis and Head-Gordon [5].

Third, we report the geometry optimization of the water
and ammonia molecules with STO-3G basis sets using the
analytical derivatives of UCCD1, UCCSD1, and OO-UCCD1.
For comparison, we carried out Hartree–Fock, MP2, CCSD,
CCSD(T), and FCI calculations. The CCSD and CCSD(T) ge-
ometries were obtained by the ORCA program package using
numerical gradients [86,87]. All electrons were correlated in
these calculations.

Table I shows the error of the total energy from FCI for
each optimized geometry and the root mean square deviation
(RMSD) error of each optimized structure. The RMSD er-
ror is a commonly used measure of the structural difference
of two molecules. It was computed using the deviations of
Cartesian coordinates of atoms from the reference FCI val-
ues, where the molecular structure was superimposed on the
reference structure. It shows that OO-UCCD1 is close to FCI
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FIG. 2. Potential energy curves of the double dissociation of
the water molecule’s OH bonds computed at OO-UCCD1, UCCD1,
UCCSD1, CCSD, and FCI using the STO-3G basis sets.

in terms of both structure (i.e., 3 × 10−4 Å) and energy (i.e.,
0.2 mhartree). One can see that OO-UCCD1 and UCCSD1

provided virtually the same geometries and energies for these
two systems, though they are not exactly same to each other

TABLE I. RMSD errors (in angstrom) for geometries optimized
by OO-UCCD1/STO-3G and standard wave-function models HF,
MP2, CCSD, and CCSD(T) relative to FCI. The parentheses show
deviations of energies at optimized geometries from FCI.

NH3 H2O

HF 3.2 × 10−2 (7.3 × 10−2) 2.4 × 10−2 (5.7 × 10−2)
MP2 9.0 × 10−3 (2.1 × 10−2) 9.3 × 10−3 (1.7 × 10−2)
CCSD 2.9 × 10−4 (2.5 × 10−4) 1.7 × 10−4 (1.5 × 10−4)
UCCD1 5.1 × 10−4 (3.7 × 10−4) 5.1 × 10−4 (4.1 × 10−4)
UCCSD1 3.3 × 10−4 (1.8 × 10−4) 7.1 × 10−5 (1.0 × 10−4)
OO-UCCD1 3.3 × 10−4 (1.8 × 10−4) 6.7 × 10−5 (1.0 × 10−4)
CCSD(T) 8.1 × 10−5 (1.3 × 10−4) 1.7 × 10−4 (7.8 × 10−5)
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FIG. 3. Potential energy curves of the N2 molecule com-
puted at AS-OO-UCCD1(6o, 6e), MP2(6o, 6e), CISD(6o, 6e),
CCSD(6o, 6e), and FCI(6o, 6e) using the STO-3G basis sets,
where six orbitals and six electrons were correlated. Other orbitals
were kept fixed and not used during all the post-Hartree–Fock
calculations; here, the external orbital rotation was omitted for
AS-OO-UCCD1(6o, 6e).

owing to the order dependency of the doubles as explained
above (e.g., 4 μÅ in the RMSD error of H2O).

On the other hand, UCCD1 is less accurate than CCSD
and the other two UCC models because of the lack of the
singles contributions, though UCCD1 is more precise than
MP2. The number of the VQE parameters θ and the depth
of the quantum circuits of OO-UCCD1 and UCCD1 were 120
and 2720, respectively, for NH3, while those of UCCSD1 were
135 and 2780, respectively. These results demonstrate that the
orbital-optimization allows us to slightly reduce the circuit
depth while retaining the accuracy.

Furthermore, a comparison with CCSD and CCSD(T) sug-
gests that OO-UCCD1’s energy is more accurate than that of
CCSD and less accurate than that of CCSD(T) when electron
correlation is weak. This tendency is consistent with the find-
ings of Kühn et al. for the total energy and reaction energy
[17]; in terms of geometry, OO-UCCD1 is slightly better than
both CCSD and CCSD(T) for H2O, while for NH3 it is close
to CCSD and worse than CCSD(T).

B. With the active space approximation

Next, we examine the potential energy curve (PEC) of
N2 using the active space approximation. This system, in-
volving triple bond breaking, is a well-known benchmark for
electron correlation methods, where the standard methods of
many body perturbation theory such as MP2, CCSD, and
CCSD(T) breakdown. We have computed the PEC at the
AS-OO-UCCD1(6o, 6e)/STO-3G level of theory by fixing
the lowest four occupied orbitals and eight electrons. Figure 3
shows the PEC along with those computed by MP2(6o, 6e),
CISD(6o, 6e), CCSD(6o, 6e), and FCI(6o, 6e). It shows that
AS-OO-UCCD can treat a multiple-bond-breaking system ap-
propriately where electrons of the breaking chemical bond are
strongly correlated. In this system, the differences among AS-
UCCD, AS-OO-UCCD, and AS-UCCSD were small. They
are at most 0.2 kcal/mol owing to the little orbital relaxation

En
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OO-UCCD
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UCCSD1 
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FIG. 4. Potential energy curves of the LiH molecule computed
at AS-OO-UCCD1(4o, 2e), AS-UCCSD1(4o, 2e), and FCI using the
6-311G basis sets. AS-OO-UCCD1 and AS-UCCSD1 calculations
employed active space consisting of four orbitals and two electrons
[i.e., (4o, 2e)], while all the orbitals and electrons were correlated for
FCI.

effect in the small basis sets. The root mean square deviations
(RMSD) of AS-UCCD1(6o, 6e) and AS-OO-UCCD1(6o, 6e)
with respect to AS-UCCSD1(6o, 6e) PEC is 0.02 kcal/mol in
the range of 1.0–2.1 Å.

The PEC of LiH with 6-311G basis sets, given in Fig. 4,
is another example. For comparison, we computed the PEC
by AS-OO-UCCD1(4o, 2e) and also by AS-UCCSD1(4o, 2e)
and FCI. Only four orbitals and two electrons were correlated
in these VQE calculations, and the orbital optimization was
performed for all the orbitals and electrons. This example
shows how the orbital optimization effectively considers the
electron correlations outside the active space. Figure 4 illus-
trates that AS-OO-UCCD1(4o, 2e) has lower energy and is
closer to FCI without active space than AS-UCCSD(4o, 2e),
indicating that AS-OO-UCCD1 captures more electron corre-
lation effects.

IV. SUMMARY

In this work, we have developed OO-UCCD. OO-UCCD
treats singles contributions not on quantum computers but
on classical computers. All the wave function parameters
are fully variationally determined in OO-UCC. This prop-
erty makes the time-independent first-order properties readily
available. Therefore geometry optimization or ab initio molec-
ular dynamics can be performed using VQE without solving
orbital response equations. Moreover, OO-UCCD incorpo-
rates the electron correlation effects outside the active space
effectively. These aspects seem useful, especially in the age of
noisy intermediate-scale quantum computers (NISQ) [88,89],
where the number of qubits and the coherence time are
severely limited. Such an OO-VQE method may be useful for
solving quantum chemical problems once quantum computers
become commonplace.
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