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one-dimensional strings.

We quantize the two-dimensional projectable Hordva-Lifshitz gravity with a bi-local as well as space-
like wormhole interaction. The resulting quantum Hamiltonian coincides with the one obtained through
summing over all genus in the string field theory for two-dimensional causal dynamical triangulations.
This implies that our wormhole interaction can be interpreted as a splitting or joining interaction of
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1. Introduction

Quantum gravity in two dimensions is a pedagogical laboratory
in which one can test ideas beyond the framework of perturbation
theory. One of non-perturbative toy models for quantum gravity is
two-dimensional causal dynamical triangulations (2d CDT) [1], in
which one introduces a global time foliation to quantum geome-
tries used in calculation of amplitudes of the theory. The 2d CDT
model regularizes a gravitational path-integral by a sum over ge-
ometries discretized by certain triangles which serve as a regulator,
and the continuum limit that removes the regulator can be per-
formed analytically [1]. Yet another example of 2d quantum grav-
ity that includes a global time foliation is the 2d Horava-Lifshitz
(HL) quantum gravity, which was originally introduced in higher
dimensions to circumvent the perturbative non-renormalizability
of quantum gravity [2]. It was shown that the quantum Hamilto-
nian of the 2d projectable HL gravity becomes equivalent to the
continuum Hamiltonian of 2d CDT [3]. Projectable HL gravity is
here defined to be the version of HL gravity where the lapse func-
tion that ensures time reparametrization invariance is a function
of time only.

In the framework of 2d CDT, a baby-universe creation is not
allowed to occur due to the causality constraint imposed at the
quantum level. In this regard, however, one can relax the con-
straint in such a way that quantum geometries keep the time-
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foliation structure, but baby universes can be created and anni-
hilated, which is controlled by a “string coupling constant”. This
model is called the 2d generalized CDT (2d GCDT) [4], and the sum
of baby universes can be performed based on a third-quantization
technique of string field theory for 2d CDT [5], a continuum matrix
model [6] and a new scaling limit of matrix models [7]. Therefore,
topology of spacetime can change in 2d GCDT, and in fact, the sum
over all possible topologies, i.e. genus, can be done in the string
field theory for 2d CDT [8], which gives us non-perturbative multi-
loop amplitudes. What is remarkable here is that such multi-loop
amplitudes can be completely expressed in terms of a one-loop
amplitude, and the one-loop amplitude, called the Hartle-Hawking
wave function, is obtained as the zero-energy eigenstate of the
continuum Hamiltonian of 2d GCDT. Furthermore, the continuum
Hamiltonian can be constructed by adding a simple interaction
term into the continuum Hamiltonian of 2d CDT, and it includes
the effects from the sum over all genus.'

2d CDT is born as a quantum theory, but by construction it
does not allow for baby universes or wormholes. As mentioned we
know how to generalize this quantum theory to include a summa-
tion over such configurations. Since the 2d projectable HL quantum
gravity is identical to 2d CDT also this theory does not allow for
baby universes or wormbholes. In this case we have a classical HL
theory which can be canonically quantized (and results in 2d CDT)
[3]. So it is natural to ask if there is a generalized classical 2d HL
theory which when canonically quantized will lead to the above
mentioned GCDT quantum Hamiltonian which includes the sum-
mation over all baby universes and wormholes. It has been argued

1 A related result is also known in 2d Liouville quantum gravity [9,10].
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that in a low energy approximation of the quantum theory, the
effect of wormholes and baby universes should be described by
adding certain effective bi-local terms to the effective action of the
quantum theory (see for instance [11] and references therein). The
lack of a higher dimensional theory of quantum gravity where one
can perform detailed calculations has made these discussions qual-
itative rather than explicit. In this paper we show that in 2d HL
gravity one can add a term which is spatial bi-local and that the
corresponding theory can be canonically quantized and the result-
ing Hamiltonian is precisely the quantum Hamiltonian found in 2d
GCDT which includes the effects of baby universes and wormholes.
Canonical quantization does not allow in any straightforward way
a change in the spatial topology, but we will argue that the bi-local
term we have added contains the seed for such a change.

This article is organized as follows: In section 2, we will re-
view the 2d projectable HL gravity, and explain its relation to 2d
CDT after the quantization. In addition, 2d GCDT will be briefly ex-
plained. In section 3, we will introduce the wormhole interaction
to the 2d projectable HL gravity, explain how to quantize the sys-
tem and show the relation between the 2d projectable HL gravity
with the wormhole interaction and 2d GCDT. Section 4 is devoted
to discussions.

2. 2d projectable HL gravity

We briefly review the 2d projectable Horava-Lifshitz (HL) grav-
ity. Let us start with a 2d spacetime manifold M equipped with a
time foliation, i.e.

M= ] =, (21)
te[0,1]

where X; is a 1d space labelled by t:

Se={xteM| f(x*)=t}, with u=0,1. (2.2)

Choosing that f =x% =t, the time direction can be decomposed

into the two directions, i.e. normal and tangential to X;:

axH
()M = - = NnH + NTEX (2.3)

where n* and Eé‘ are respectively a unit normal vector and a tan-
gent vector defined as

nt =(1/N,—N'/N) , E{ =s5}". (2.4)

Here N and N! are called the lapse function and the shift vector,
respectively. Using eq. (2.3), a metric g,, on M has the Arnowitt-
Deser-Misner form:

ds? = guudx*dx’ = —N2dt® + hyq (dx + N'dt) (dx + N'dt) |
(2.5)
where t =x0 and x:=x!; hq; is the spatial metric on X; defined
as hiy := E{'EV guuv.
The 2d HL gravity is a theory that keeps the structure of time

foliation above, or in other words, it is invariant under the foliation
preserving diffeomorphisms (FPD):

t>t+E00), x> x+E'(t,%). (2.6)
Under the FPD (2.6), the fields transform as

8¢h11 =£%0h11 + £'81h11 + 2h11 &1, (2.7)
8: N1 = EM 0, N1 + N10y& +hipdos! (2.8)
8N =&EM3,N + Ndog? (2.9)
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where N; = hy;NL.

Note that if the lapse function N is a function of time, N = N(t),
it stays as a function of time under the FPD. The 2d projectable
HL gravity satisfies this condition on N, and it is defined by the
following action:
= % /dtdx Nvh ((1 —MK? - 2A) , (2.10)
where A, A and « are a dimensionless parameter, the cosmologi-
cal constant and the dimensionless gravitational coupling constant,
respectively; h is the determinant of the metric hqy1, i.e. h=hq1; K
is a trace of the extrinsic curvature K11 defined as

1
K11 = 3N (doh11 —2V1N1) , with ViN;:=3 Ny —T];Ny.
(2.11)

Here I'l, is the spatial Christoffel symbol:

rl =%h“81h11. (212)
In principle, one can add higher spatial derivative terms into the
action (2.10), but they would not be important in 2d and we omit
such terms.

In [3,12], the quantization of 2d projectable HL gravity was
discussed, and in particular, it was shown that the quantum Hamil-
tonian coincides with the continuum Hamiltonian of 2d CDT under
the following identification of the parameters [3]:

A

—, A<1,
2(1 -1

A>0, (2.13)

Acat =
where A is the renormalized cosmological constant in 2d CDT.?

Essentially, the physics of the quantized system is described by
the quantum mechanics of the spatial 1d universe with the length
invariant under the spatial diffeomorphism,

L@t) = / dx/h(t,x) , (2.14)
with the Hamiltonian operator:
A9y = (LT1%)g + Acgel, with a=0,%1, (2.15)

where the subscript a specifies the operator ordering:

d d d? d?
(1), =—gitar - (11°) ==Lz (107) =gt
(2.16)

Each ordering has a precise geometric meaning (see [3] for the
detail) and makes Héo) Hermitian in the product,

(@A 1Y) = / S* APy (L) dug(L), with dug(L) = L%L,
0

(217)

where ¢ and ¢ are scalar functions. In this quantum theory, topol-
ogy of the 1d space stays the same.

The 2d generalized CDT (2d GCDT) allows for splitting and join-
ing interactions of the 1d space with the gauge-invariant length L,
resulting in the change of topology. Based on the method of string
field theory for 2d CDT, in which the “string” means the 1d uni-
verse, the summation over all possible genus has been done [8],

2 We have set unimportant dimensionless gravitational constant as k = 4(1 — 1).
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and in that case, the quantum Hamiltonian (2.15) is replaced with
the following one:

Ho(L) = (LTI + Acgel — GsL?, with a=0, £1, (218)

where G; is a “string coupling constant” that controls the strength
of splitting and joining interactions. The L in (2.18) is still the
length of a single connected spatial universe and it is remarkable
that the effect of splitting such a universe in two or joining it with
another universe and in the process over time changing the topol-
ogy not only of the spatial universe but also changing the topology
of spacetime in all possible ways, seen from a single spatial uni-
verse is summarized by the simple last term (2.18). Let us also
remark that the so-called Hartle-Hawking wave function, again in-
cluding the sum over all spacetime topologies is the zero-energy
eigenstate of the continuum Hamiltonian (2.18) [8].

In the next section, we will show that the continuum Hamilto-
nian of 2d GCDT (2.18) can be reproduced if we quantize the 2d
projectable HL gravity with a wormhole interaction.

3. Quantization of 2d projectable HL gravity with a wormhole
interaction

We consider the 2d projectable HL gravity with a space-like
wormhole interaction given by the action:

S:/dtdxﬁ

= %/dtde(t)\/h(t,x) ((1 — DKt x) — 2A>
+,3/dl’N(t)/d)quZ\/h(t,X])\/h(t,Xz) , (3.1)

where B is a dimension-full coupling constant. One can show that
the action (3.1) is invariant under the FPD (2.6) with the pro-
jectable lapse function, N = N(t). The bi-local interaction in (3.1)
relates two distinct points at an equal time. The action is a simpli-
fied version of the general bi-local action suggested in [11], made
possible because HL gravity is invariant only under the foliation
preserving diffeomorphisms (2.6) and not the full set of diffeomor-
phisms.

Following the procedure used in [3], we wish to quantize the
system governed by the action (3.1). We first introduce a new vari-
able:

¢:=+h. (32)
In terms of the variables (3.2), the trace of extrinsic curvature is
recast as

1 [0t 1 a4
K=—|———=01N1+—5N1| . 33

N < .~ Nt 3 1) (33)
For passing to the Hamiltonian formalism, we introduce the conju-
gate momentum of £:

oL 2(1—-2)

Ti=——=——"K.

d0pl K
We then define the Hamiltonian H and its density H through the
Legendre transformation:

(34)

H:/dx(naol—ﬁ) ::/dx?—l, (3.5)

where

=Ny (=) N (=204 20— e [dxoe
- 1( ﬂ) (4(1—A)” « ﬂf"z O‘”)'
(3.6)
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To obtain the Hamiltonian, we used

9
o0l = N72¢ — Ny 17” +on (Vi 1) , (3.7)

14

and omitted the last total derivative term. The variables, ¢ and 7,
satisfy the Poisson bracket:

20-»

e, x), 7, x)y=8(x—x). (3.8)

Since the lapse function and the shift vector are non-dynamical,
we have the two kinds of constraint:

o (t, x) N

1 -
C (t,Xx) := N

0, (3.9)
@) '—/dx (an(t X)L(t, x) + EM(t X)
o 41— 1) ’ ’ K ’

— BL(t, x)/dxﬂ(t,xﬁ) ~0, (3.10)
where Cl(t,x) and C(t) are called the momentum constraint and
the Hamiltonian constraint, respectively. Note that the Hamiltonian
constraint becomes a global constraint due to the projectable con-
dition, N = N(t).

Our strategy is to solve the local momentum constraint at the
classical level, i.e.

Clt,x)=0, = m=n()=1T1(0), (3.11)

and reduce the model to the 1-dimensional system with the
Hamiltonian,

K
H=N<

2 2 2
—— MPL+ ZAL—-BL?)
41— 1) K

with L(t) ::/dx £(t, x) , (3.12)

where L and IT satisfy the Poisson bracket, {L(t), I1(t)} = 1. Here-
after, without loss of generality, we choose

k=4s5(1—1)>0, (3.13)

where s, is a signum function, s; = sgn(1 — ). Accordingly, the
Hamiltonian becomes
A
25, (1—=2)
(3.14)

H=N(5AH2L+[~\L—;SL2)=NC, with A =

Let us first consider that 8 = 0, which is the case of the 2d
projectable HL gravity. As shown in [3], if A/(A — 1) >0, one can
solve the Hamiltonian constraint C as

A
= >
20—-1) —

resulting in a constant extrinsic curvature on the constraint sur-
face. On the other hand, if A/(A — 1) < 0, the Hamiltonian con-
straint C yields L(t) = 0. It is shown that if one performs a path-
integral quantization, there is no formal difficulties associated with
the quantization around L(t) =0, and this is the case that one can
recover the continuum limit of 2d CDT [3].

In the case that 8 # 0, the Hamiltonian constraint can be solved

& 0, (3.15)

as

n’=- +s58L>0, (3.16)

A
2(1—1)

for the following six cases:
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1) B>0,A>0,A<1,L>A/B, (317)
2 B>0,A>0,1>1,L<A/B, (3.18)
(3) B>0,A<0,r<1,L>0, (319)
(4 B<0,A>0,1>1,L>0, (3.20)
(5) B<0,A<0,r<1,L<A/B, (3.21)
6) B<0,A<0,A>1,L>A/B. (3.22)

Otherwise, the constraint C requires L(t) = 0 on the constraint sur-
face. As in the 8 =0 case, when quantizing the system based on
a path-integral, we don’t have any problem with respect to the
quantization around L(t) = 0.

The classical 1d system with the Hamiltonian (3.14) can be al-
ternatively described by the following action:

1

i2 -
S= | dt — ANL + 8NL?) ,
/ <4s,\NL +p )

0

(3.23)

where L :=dL/dt. This system is invariant under the time repara-
metrization, t — t + £0(t), which is ensured by the lapse function.
In fact, the proper time,

1

=/dtN(t),

0

(3.24)

and the length, L = L(t), are invariant under the time reparame-
trization, and so it makes sense to discuss the probability ampli-
tude for a 1d universe to propagates in the proper time T (> 0),
starting from the state with the length L1 and ending up in the one
with length L [3]. Such an amplitude can be computed based on
a path-integral, and we evaluate it by a rotation to the Euclidean
signature for convenience. In our foliated spacetime, for A < 1, we
can implement this procedure by a formal rotation, t — it, which
yields the amplitude:

DN(®) / DL(t)e~SENO.LOT (3.25)

Gy, L1;T) = | ——
(2 I T) / Diff[0, 1]
where L(0) =Ly and L(1) = L,; Diff[0, 1] is the volume of the time
reparametrization; Sg is the Euclidean action given by

tz
Sp= [ dt( — + ANL — BNL? 3.26
E / (4NL+ p > (3.26)
0

where L := dL/dt. Hereafter, we will consider the case with A < 1.

We set N =1 as a gauge choice. One can show that the cor-
responding Faddeev-Popov determinant only gives an overall con-
stant, which we will omit in the following. The amplitude (3.25)
then becomes

T
G(LZ,L1;T):/DL(t)exp /dt( +AL— ,3L2> ,
0

(3.27)

which can be expressed in terms of the quantum Hamiltonian H
that is unknown at the moment:
(L2le"™|Ly)

G(La,[1;T) = (3.28)

where |L) is a quantum state of the 1d universe with the length
L. Based on a standard method (see e.g. [3]), one can read off the
quantum Hamiltonian from eq. (3.27) and eq. (3.28):
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Hao(L) = (LT1%)q + AL — BL?, with a=0,+1, (3.29)

where (LTT?), is the same as the one defined in eq. (2.16), and
accordingly the integral measure becomes

t=T
DL(t) = ]_[ LAt)dL(t) .

t=0

(3.30)

The measure (3.30) gives a precise geometric meaning of the or-
dering (2.16) [3].

As a result, if Gg =8 and Ae = A = A/(2(1 — 1)) where 8 >
0, A >0 and A < 1, the quantum Hamiltonian (3.29) is indeed
equivalent to the continuum Hamiltonian of 2d GCDT (2.18).

4. Discussion

We have quantized the 2d projectable HL gravity with a space-
like wormhole interaction. We have shown that the quantum
Hamiltonian is equivalent to the continuum Hamiltonian of 2d
GCDT, if Gs=pB and A = A = A/(2(1 — 1)) where §>0, A >0
and A < 1.

In the parameter region corresponding to 2d GCDT, let us con-
sider the classical Hamiltonian constraint C. When /A4l > 1/£
where £ is a dimensionless quantity defined by & := GS/A%Z. one
can have on the constraint surface I12 = — A4 + GsL > 0. However,
when /A4 L < 1/&, the only allowed solution is L = 0. In the case
of the 2d projectable HL gravity (8 = Gs = 0), with the parameter
region corresponding to 2d CDT, i.e. A4 > 0, the only solution
to the classical Hamiltonian constraint is L = 0. Therefore, when
VActl < 1/€, the classical solution of the 2d projectable HL with
the wormhole interaction would be close to that of the 2d pro-
jectable HL gravity, if one sits in the parameter region above; they
can be quite different when /AL > 1/&. Such a relation also
holds at the quantum level: As shown in [13], the eigenfunctions
of the continuum Hamiltonian A_; of 2d GCDT (2.18) can be well
approximated by the eigenfunctions of the continuum Hamiltonian

A of 2d CDT (2.15), when /AggL < 1/. On the other hand,
when /AcgeL > 1/&, their behaviors are quite different, and in this
case, in order for the theory to be well-defined, the unbounded
nature of A_; should be counteracted by the kinetic term, which
would be a reflection of the classical Hamiltonian constraint (3.15).

The picture of creation and annihilation of baby universes and
wormbholes is conceptually straightforward in the string field the-
ory formulation of 2d GCDT [5]. Nevertheless it is somewhat sur-
prising that one from this can derive an effective Hamiltonian
which can describe propagation of a single spatial universe, i.e. the
propagation where the spatial universe starts with the topology of
a circle and at a later time T has the same topology, but where it
in the intermediate times is allowed to split in two and either one
part disappears in the vacuum (a baby universe), or the two parts
join again at a later time (then changing the spacetime topology).
This process of joining and splitting can be iterated at intermediate
times and using string field theory we can perform the summa-
tion of all iterations and derive the effective Hamiltonian (2.18).
From the point of view of unitary evolution (or Euclidean time,
semigroup evolution, to be more precise), as given in eq. (3.28),
it is difficult to understand how a complete set of intermediate
states can both be given by the one spatial universe states |L) and
by the complete multi-universe Fock states of the string field the-
ory. However, this seems to be the case by explicit calculation, and
we find it even more surprising that the simplest wormhole inter-
action term added to the classical action as in eq. (3.1) leads to
precisely the same single universe quantum Hamiltonian as found
in the GCDT string field theory.
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