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Abstract

We propose a new framework for spherical charged compact objects admitting conformal

motion in five-dimensional spacetime. The outer spacetime is considered as Reissner-

Nordström to obtain matching conditions. The behavior of model characteristics like stress,

pressure, and surface tension for the specific density profile is investigated by using Ein-

stein’s Maxwell field equations in a five-dimensional framework. For the proposed solution,

all physical parameters behave very well even for variations in electric charge parameters.

The existence of charged compact stars is also predicted by this study.

Introduction

In general relativity (GR), the Einstein-Maxwell field equations (EMFEs) are used to analyze

charged relativistic objects. This analysis is very challenging due to the nonlinearity of the

EMFEs and the general exact solution is nearly impossible to obtain. So different authors used

various constraints in relativistic astrophysics to obtain restricted solutions. The interesting

results employing conformal killing vectors (CKV) were presented in [1–3]. Mak and Harko

[4] developed a precise solution that reflected a strange quark star with charge. When the

space–time configuration is taken to be spherically symmetric, their solution describes the

interior of the star. Esculpi and Alomá [5] investigated the conformal anisotropic relativistic

charged fluid spheres using a linear equation of state. Shamir [6] discussed the massive charged

compact Bardeen stars with conformal motion. Lemos and his coworkers [7–9] studied the

regular black hole solutions are obtained within general relativity connected to Maxwell’s elec-

tromagnetism and charged matter, and they also examined the quasi-black hole solutions

from extremal charged dust. Charged radiating sphere with anisotropic fluid have been inves-

tigated by many authors [10, 11]. Thirukkanesh and Maharaj [12] used the linear equation of

state to examine the strange stars with anisotropy and electric charge.

The EMFEs are the cornerstone of the general theory of relativity as they link geometry and

matter in space-time configuration. One approach to obtaining EMFEs solutions is to impose
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some symmetry requirements. These symmetry constraints play a vital role in the theory of

GR since they are very useful in determining the solutions of EMFEs. Killing symmetry, char-

acterized by the vanishing of the Lie derivative of a metric tensor, stands as a fundamental and

significant form of symmetry.

On the other hand, inheritance symmetry is useful for investigating the natural relationship

between geometry and matter using EMFEs. The symmetry under CKV is a well-known inher-

itance symmetry that can be expressed as

Lxgmn ¼ cgmn; m; n ¼ 1; 2; 3; 4; 5; ð1Þ

where L denotes the Lie derivative of the metric tensor g. The relationship between the vector

field ξ and the inner gravitational field of a compact objects (CO) is shown by this equation.

Conformal symmetry is characterized by the vector ξ, enabling the metric g to undergo confor-

mal translations along ξ and map onto itself. The conformal factor, denoted as ψ, is a function

that depends on the variable r and has the freedom to vary in any manner. Therefore, in a static

metric, it’s noteworthy that both ξ and ψ aren’t mandated to remain static [13, 14]. If ψ = 0,

Eq (1) yields the Killing vector, which is homothetic when ψ is constant. The existence of

ψ = ψ(x, t) enables the construction of a conformal vector [15]. The study of CO makes exten-

sive use of conformal motion. The anisotropic matter is studied for the existence of a one-

parameter group of conformal motions. The analysis shows that the EMFEs clearly define the

equation of state for both isotropic and anisotropic matters. Moreover, since the positive

energy densities of both solutions exceed the stresses across the whole spherical region, they

are both consistent with the Schwarzschild exterior metric [16]. Conformal motions are

employed to address the EMFEs linked to spherically symmetric configurations of both isotro-

pic and anisotropic matter. Solutions with a surface potential of 1/3 align with the Schwarzs-

child exterior metric. The third set of solutions characterizes oscillating black holes, whereas

the initial two sets elucidate the dynamics of expanding and contracting spheres. Each solution

exhibits a density profile surpassing the stress level [17, 18]. The discussion of a one-parameter

group with conformal motions and spherical symmetry has resulted in analytical solutions for

static EMFEs in both perfect and anisotropic fluids. These solutions show positive energy den-

sity all the time when they are coupled to the Reissner-Nordström metric, and they exceed the

total stresses of the sphere [19]. There are many techniques to solving the EMFEs for an aniso-

tropic matter distribution with spherical symmetry. These solutions coincide with Minkowski

spacetime at the boundary, despite the pressures and energy densities remaining within the

sphere [20]. Anisotropic fluids admitting conformal collineation, a generalization of conformal

motion, are addressed in GR [21]. The findings of the research gave rise to spacetimes with a

conformal motion group on S2 that has just one parameter and is axially and reflection sym-

metric. For the Einstein vacuum field equations, Minkowski represents the only physically

meaningful solution [22].

Kinematics and dynamics in GR are defined by variables and constraints. A significant limi-

tation pertains to symmetry, which can be classified into two groups: killing vectors and curva-

ture collineations. The EMFEs for general spacelike collineations and matter are made simpler

by using the CKV. Applications to spacelike CKV and matter characterized by perfect or

anisotropic fluids are considered. We demonstrate that matter does not inherit symmetry [23],

by extending the concept of symmetry inheritance to CKV. Within the thin-wall approxima-

tion, two groups of time-dependent EMFEs solutions characterize scalar soliton stars. Second-

order phase transitions emerge due to the self-similarity of space-time within stars. Di Prisco

[24] furnishes details about the minimum and maximum surface potentials involved in this

phenomenon. In order to explore all conceivable evolution scenarios, the differential equation
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governing the time evolution of self-similar scalar soliton star models, as mentioned in [25], is

contrasted with specific solutions. Specific situations are unified and generalized by the con-

formal Killing equation of static spherically symmetric spacetimes.

In a one-parameter spherically symmetric spacetime, they investigated the structure for

conformal motions of charged strange quark matter coupled to a string cloud. To do this,

EMFEs for spherically symmetric spacetime are solved taking into consideration the confor-

mal motions used by strange quark matter to cling to the string cloud. They also explore the

properties of the obtained solutions [26]. They carry out a general examination using a CKV

into static fluids that are axially symmetric. This kind of symmetry is highlighted in terms of

its physical significance. After that, they examine every potential consequence that could result

from implementing this kind of symmetry. A specific treatment is given to the problem of

symmetry inheritance [27]. Exact analytical solutions are derived for dynamic spherically sym-

metric fluids with CKV, considering various CKV possibilities in both adiabatic and dissipa-

tive regimes. The study examines various methods for identifying novel approaches and

whether they are appropriate for outcomes in astrophysical settings [28]. Herrera et al. recently

showed in their work [16] that when the resulting CKV field is orthogonal to the four veloci-

ties, the equation of state p = ρ is uniquely determined for particular conformal motions. They

modify this obstacle and show that there is no particular conformal collineation for which the

equation of state is intended to [29]. Ray et al. [30] explored the electromagnetic mass model

admitting conformal motion and analyzed the several features of COs. Herrera et al. [28] stud-

ied non-static spherically symmetric fluids with a conformal Killing vector revealing several

exact analytical solutions for different CKV choices in dissipative adiabatic regimes. They dis-

cussed the applications and alternative approaches to find solutions. Pradhan and Sahoo [31]

studied the massive compact star admitting conformal motion under bardeen geometry. Their

analysis reveals that the resulting compact star solutions are physically acceptable and authen-

tic when considering the presence of charge with conformal motion in f(Q) gravity.

In recent years, the theory of GR has played a vital role in higher dimensions. In order to

evaluate the viability of gravitational redshift, light bending, perihelion shift, and gravitational

time delay, Rahaman et al. [32] examined four solar system experimentation scenarios. Further

investigation into the motion of a test particle in greater dimensions was carried out by Liu

and Overduin [33]. Rahaman et al. [34] study D-dimensional gravastar. A new class of four-

dimensional interior solutions for anisotropic compact stars was studied by Rahaman et al.

[1]. They [35] also used noncommutative geometry with a Gaussian energy density distribu-

tion to study fluids in both the higher and lower dimensions. They proved that there is only

one stable four-dimensional configuration for a spherically symmetric star system. Zahra et al.

[36] studied the conformal motion for higher dimensional COs. Bhar et al. [37] provided evi-

dence for the existence of higher dimensional anisotropic compact stars in noncommutative

space-time. They found that the physical behaviors of the model parameters, such as matter

energy density, radial and transverse pressures, anisotropy, and other characteristics, are gen-

erally consistent throughout the stellar structure. They also mention that as one goes to higher

dimensions, the central densities abruptly decrease, and that the measure of anisotropy gradu-

ally increases, reaching its maximum at five dimensions. A star’s central density is greatest in

four dimensions and lowest in higher dimensions.

Many researchers studied higher dimensional gravity theory and motivated us to explore

more about higher dimensional charged COs admitting conformal motion. Chattopadhyay

[38] and his coworkers discussed the relativistic charged star solutions in higher dimensions

and found that dependence of the central density on space-time dimensions enables a practical

model for D� 4. The significance of the strong energy and weak energy conditions is investi-

gated for COs. New solutions with captivating stellar models are discovered, allowing for stars
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with varying core properties. Dey and Paul [39] examined relativistic solutions with Finch-

Skea geometry of anisotropic charged COs with hydro-dynamical equilibrium in higher

dimensions. By establishing physically feasible stellar models with these solutions, radial varia-

tions in density, pressure, and other physical parameters are investigated. The findings could

be useful in predicting equation of state under extreme conditions and in comprehending the

physical characteristics of known stars.

Numerous investigators come to the conclusion that the (Tolman–Oppenheimer–Volkoff)

TOV equation is satisfied by a homogeneous, isotropic, or perfect fluid which supports the CO

underlying matter distribution [40, 41]. This method is widely used in the description of CO,

especially neutron stars and polytropic CO [42]. Recent theoretical developments show that

pressure anisotropy can arise from several sources and that pressure within a CO does not

have to be entirely isotropic [43]. In actuality, a great deal of research has been done on aniso-

tropic fluids in the past with the goal of identifying causes of sustained anisotropy. [44] offers a

comprehensive description of anisotropic fluids as well as a long list of possible physical events

that could be involved in the emergence of pressure anisotropy. As shown in [45], we exam-

ined the five-dimensional dynamic spherically symmetric distribution with a particular energy

density profile. Bhar et al. [46] investigated the effect of f(Q) gravity on an anisotropic compact

star model and stability study of hybrid star models. Rashid et al. [47] explored Bardeen stars

with conformal motion under f(G) gravity. They discovered that COs are physically viable and

stable under conformal motion in the conditions of Bardeen geometry for different models of

the f(G) theory of gravity. They suggested that using the Bardeen model with f(G) gravity can

result in more massive star objects than general relativity. Asghar et al. [48, 49] examined the

embedded class-I fluid spheres in f(R, ϕ) and f(R, T) gravity with the Karmarkar condition.

The articles [50–54] investigated the modeling of COs in the framework of modified gravity

theory. These articles are possible extensions to this existing work.

In this article, we will show that CO also exists in the five-dimensional non-static charged

spherical symmetric spacetime. An outline for this article is as follows: We provided the

EMFEs for the internal spacetime of the charged isotropic star in Section 2. Section 3 solves

the EMFEs using the specific density profile given in Equation ([1]). We provided the five-

dimensional exact solution for the physical parameter analysis in Sect. 4. The external space-

time and charge-induced anisotropy are presented in Section 5. In Sect. 6, we examined the

properties of the model, the stability requirements, and the fifth-dimension graphical plot. We

present our final remarks in Sect. 7 to conclude the paper.

The higher dimension EMFEs

The five-dimensional line element is assumed to be dynamic spherically symmetric spacetime

as follows [55]:

ds2 ¼ enðr;tÞdt2 � elðr;tÞdr2 � r2ðdy2
þ sin2d�2

Þ � emðr;tÞdw2; ð2Þ

The spacetime coordinates are x0 = t, x1 = r, x2 = θ, x3 = ϕ, x4 = w. The components of the

energy-momentum tensor for the matter source and the electromagnetic field are provided as

follows:

TmðmÞ
n
¼ ðrþ pÞumun � pgm

n
; ð3Þ

TmðemÞ
n
¼

1

4p
½FnkF

mk �
1

4
gm
n
FskF

sk�: ð4Þ

Here ρ, p, and uμ, represent the density, pressure, and fluid five velocity (with um ¼ e� n=2d
m

0
Þ
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respectively. The corresponding Maxwell electromagnetic field equations are

ð
ffiffiffiffiffiffi
� gp FmnÞ

;n
¼ 4p

ffiffiffiffiffiffi
� gp Jm; ð5Þ

F½mn;s� ¼ 0; ð6Þ

where the expression Jμ = σuμ denotes the five-vector for electric current, where σ represents

electrical conductivity. In this context, the symbols “,” and “;” signify partial differentiation

and covariant derivative concerning the specified coordinate, respectively.

The EMFEs in five dimensions consist of the energy-momentum tensor given in Eqs (3)

and (4) and the line element expressed in Eq (2) is given in [56].

8prþ E2 ¼
1

r2
� e� l

1

r2
þ
m;r � l;r

r
þ
m2
;r � m;rl;r

4
þ
m;rr

2

� �

� e� n
m;tl;t

4

� �

;

ð7Þ

� 8ppþ E2 ¼
1

r2
� e� l

1

r2
þ
n;r þ m;r

r
þ
m;rn;r

4

� �

þ
e� n

4
2m;tt þ m;t

2 � m;tn;t

� �

;

ð8Þ

8ppþ E2 ¼
e� n

4
2 m;tt þ l;tt
� �

þ l;t l;t � n;t
� �

þ m;t m;t � n;t þ l;t
� �

� �

�
e� l

4

�

n2

;r þ m
2

;r � n;rl;r þ 2 n;rr þ m;rr
� �

� m;r l;r þ n;r
� �� �

þ
2

r
n;r þ m;r � l;r

� ��

;

ð9Þ

8pT0
1
¼

m;rm;t

4
�
m;tn;r

4
�
m;rl;t

4
þ
m;tr

2
�
l;t

r

� �

; ð10Þ

and

½r2E�
;r ¼ 4pr2seðlþmÞ=2: ð11Þ

The subscripts t indicate the partial derivative with respect to time, while the subscripts r
denote the partial derivative with respect to radius. Eq (11) can be expressed for the electric

field E in the following equivalent form:

EðrÞ ¼
1

r2

Z r

0

4pr2seðlþmÞ=2dr ¼
qðrÞ
r2

ð12Þ

Five-dimensional CKV

A more useful formulation of the CKV that given in Eq (1) is as follows:

Lxgmn ¼ xm;n þ xn;m ¼ cgmn; m; n ¼ 1; 2; 3; 4; 5: ð13Þ

In this instance, ξ represents the orbit group and ψ represents the conformal factor. The

metric gmn is conformally transformed to itself while considering ξi. Let’s also expand on the
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supposition that the group’s orbit is orthogonal to the vector field that represents the fluid’s

velocity.

x
mum ¼ 0: ð14Þ

The following results from the spherical symmetry found in Eq (14):

x
1
¼ x

3
¼ :::: ¼ x

nþ1
¼ 0:

The CKV applied to the line element (2) provides the following set of equations:

n;rx
2
¼ c; ð15Þ

l;rx
2
þ 2x

2

;2
¼ c; ð16Þ

x
2
¼
cr
2
; ð17Þ

m;rx
2
¼ c: ð18Þ

The result of the previous set of equations is

en ¼ r2C2

1
; ð19Þ

el ¼
C2

2

c
2
; ð20Þ

em ¼ r2C2

3
; ð21Þ

where the integration constants are denoted by C1, C2, and C3. By substituting the EMFEs

(7)–(9) with the equivalents of (19)–(21), we get:

8prþ E2 ¼
1

r2
1 �

3c
2

C2
2

� �

�
3cc;r

rC2
2

; ð22Þ

� 8ppþ E2 ¼
1

r2
1 �

6c
2

C2
2

� �

; ð23Þ

8ppþ E2 ¼ �
2cc;r

rC2
2

þ
c

2

r2C2
2

�
2

r2
�
c;r

rc
: ð24Þ

From the above Eqs (22)–(24), we can obtain the values of E, ρ and p [57].

E2 ¼ �
cc;r

rC2
2

�
5c

2

2r2C2
2

�
1

2r2
�
c;r

2rc
; ð25Þ

8pr ¼
3

2r2
�

2cc;r

rC2
2

�
c

2

2r2C2
2

þ
c;r

2rc
; ð26Þ

8pp ¼ �
3

2r2
�
cc;r

rC2
2

þ
7c

2

2r2C2
2

�
c;r

2rc
: ð27Þ
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Note that the relationship between the metric potentials and the physical parameters ρ and p is

significantly provided by Eqs (26) and (27):

8pðrþ pÞ ¼
3c

2

r2C2
2

�
3cc;r

rC2
2

: ð28Þ

The three dependent variables in the non-linear differential equation system above are ρ, p,

and ψ, whereas the independent variable is r. Therefore, we have two different equations that

involve the three unknowns ρ, p, and ψ in Eqs (26) and (27). As a result, we have two equations

and three unknowns. To balance the equations, we will use the density profile, which is pro-

vided in [1] as

r ¼
1

8p
ð
a
r2
þ 3bÞ: ð29Þ

Different star configurations are produced here by the constants a and b. Consequently, we

obtain by changing Eq (29) for Eq (26).

2

5
cþ

4r
3c
�

1

3
¼

2

3c
ð3 � 2aÞC2

2
� bC2

2
ð
4r2

c
� 2r �

c

5
Þ; ð30Þ

From Eq (30), we get

c ¼
1

6ð2þ bC2
2
Þ

�

5þ 30brC2

2
Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð� 5 � 30brC2
2
Þ

2
� 4ð6þ 3bC2

2
Þð� 30C2

2
þ 20aC2

2
þ 20r þ 60bC2

2
r2Þ

q �

:

Exact analytical solution for the model

The exact analytical solution can be obtained as

el ¼ C2
2
ð12þ 6bC2

2
Þ

2

�

ð5þ 30brC2
2
Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð� 5 � 30brC2
2
Þ

2
� 4ð6þ 3bC2

2
Þð� 30C2

2
þ 20aC2

2
þ 20r þ 60bC2

2
r2Þ

q �� 2

:

ð31Þ

The radial pressure is obtained as

p ¼
1

8p

 
� 3

2r2
�

30bC2
2
� a

2b

2rð5þ 30brC2
2
� bÞ

�
30bC2

2
� a

2b

36ð2þ bC2
2
Þ

2C2
2
r
ð5þ 30brC2

2
� bÞ þ

ð5þ 30brC2
2
� bÞ

2

72ð2þ bC2
2
Þ

2C2
2
r2

! ð32Þ

where

a ¼ ð� 60bC2

2
ð� 5 � 30brC2

2
Þ � 4ð6þ 3bC2

2
Þð20þ 120brC2

2
ÞÞ; ð33Þ

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð� 5 � 30brC2
2
Þ

2
� 4ð6þ 3bC2

2
Þð� 30C2

2
þ 20r þ 60br2C2

2
þ 20aC2

2
Þ

q

: ð34Þ
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Higher dimensional exterior spacetime and anisotropy induced by

electric charge

The exterior geometry associated with the higher-dimensional electromagnetic field in the

context of Reissner-Nordström-Vaidya is studied in [58]

ds2 ¼ 1 �
MðuÞ
R2
þ

q2

3r4

� �

du2 þ 2dudR � R2 dy2

1
þ sin2y1 dy2

2
þ siny2

2
dy3

2

� �� �
; ð35Þ

When we apply the junction conditions at the r = a5 boundary, we get

1 �
m
a2

5

þ
q2

3a4
5

¼ C2

2
a2

5
; ð36Þ

and

1 �
m
a2

5

þ
q2

3a4
5

¼
1

C2
2
ð12þ 6bC2

2
Þ

2

�

ð5þ 30brC2

2
Þ

�

�

ð� 5 � 30brC2
2
Þ

2
� ð24þ 12bC2

2
Þð� 30C2

2
þ 20aC2

2
þ 20r þ 60bC2

2
r2Þ

�1=2�2

:

ð37Þ

The anisotropy induced by electric charge in higher dimension in a form equivalent to an

anisotropic fluid

pt ¼
1

8p

 
� 3

2r2
�

30bC2
2
� a

2b

2rð5þ 30brC2
2
� bÞ

�
30bC2

2
� a

2b

36ð2þ bC2
2
Þ

2C2
2
r
ð5þ 30brC2

2
� bÞ þ

ð5þ 30brC2
2
� bÞ

2

72ð2þ bC2
2
Þ

2C2
2
r2

!

;

ð38Þ

where α and β are defined in (33) and (34).

Analysis of model

We shall now move forward with a comparative analysis of the physical characteristics. There

are various techniques that can be used for this. But we’ll be concentrating on two key areas in

this study. First and foremost, we will assess the stability of the models in higher dimensions.

Second, in order to get additional understanding, we will investigate how charge varies with

respect to different physical factors, including conformal parameter, metric potential, ρ, p, and

Δ. The modified TOV equation is represented as

n;r þ m;r

2

� �

rþ pr �
dpr
dr
þ

2

r
ðpt � prÞ ¼ 0: ð39Þ

The above-mentioned TOV equation describes the star configuration’s equilibrium under the

effects of gravity. The effects of gravity are described as Fg, hydrostatic force Fh, and anisotropic

stress Fa and it can be represented as follows:

Fg þ Fh þ Fa ¼ 0; ð40Þ
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where

Fg ¼ �
ðn;r þ m;rÞ

2
ðrþ prÞ; ð41Þ

Fh ¼ �
dpr
dr
; ð42Þ

Fa ¼
2

r
ðpt � prÞ: ð43Þ

Energy conditions

First, let’s delve into a crucial aspect of stellar models. Understanding the energy conditions

within the scope of GR is pivotal in studying CO. Here, we investigate three key energy condi-

tions—(i) the Null Energy Condition (NEC), (ii) the Weak Energy Condition (WEC), and (iii)

the Strong Energy Condition (SEC)—simultaneously held at all points within the star’s inte-

rior, outlined by the following inequalities:

• NEC: ρ� 0,

• WEC: ρ + pr� 0, ρ + pt� 0,

• SEC: ρ + pr + 2pt� 0.

Figs 1–8 display the model’s characteristics graphically.

Summary and analysis

In this study, we investigated a new framework for isotropic charged sphere conformal motion

in a five-dimensional non-static spherical system. This spacetime geometry’s EMFEs are to be

Fig 1. The variation of conformal factor (ψ) for E (b = 0.03, C2 = 0.1).

https://doi.org/10.1371/journal.pone.0307489.g001
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solved using a certain density distribution function. Bhar [59] discussed about the higher

dimensional charged gravastar admitting conformal motion. For this analysis, he considered

static spherically symmetric spacetime in higher dimensions and found the mass of the thin

shell. This study motivated us to develop the framework for charged COs admitting conformal

motion in higher dimensions. We considered the dynamic spherically symmetric spacetime in

five dimensions for anisotropic fluid distribution. The anisotropy induced due to electric

charge in higher dimensioanl spacetime. Here, the pressure of the fluid is divided into two dis-

tinct components: transverse pressure and radial pressure. The dissimilarity between these

Fig 2. Variation of metric coefficient (eλ) for E (b = 0.03, C2 = 0.1).

https://doi.org/10.1371/journal.pone.0307489.g002

Fig 3. The density profile (ρ) for b = 0.03.

https://doi.org/10.1371/journal.pone.0307489.g003

PLOS ONE Framework for charged compact objects admitting conformal motion in higher dimension

PLOS ONE | https://doi.org/10.1371/journal.pone.0307489 August 26, 2024 10 / 16

https://doi.org/10.1371/journal.pone.0307489.g002
https://doi.org/10.1371/journal.pone.0307489.g003
https://doi.org/10.1371/journal.pone.0307489


values signifies the relationship between the stiffness of the star’s core and its surface tension.

In this instance, we have introduced a novel analytical approach that describes charged CO

that allow for conformal motion.

These well-defined and compact solutions are an excellent tool for deepening our under-

standing of the physical dynamics of charged, CO. Establishing a stable solution and gaining a

deeper understanding requires examining the behaviours of fundamental physical parameters

Fig 4. Variation of isotropic pressure for E (b = 0.03, C2 = 0.1).

https://doi.org/10.1371/journal.pone.0307489.g004

Fig 5. Anisotropy factor for E (b = 0.03, C2 = 0.1).

https://doi.org/10.1371/journal.pone.0307489.g005
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including density, stellar configuration equilibrium and forces. Figs 1–8 display the character-

istics of the model’s behavior.

• Figs 1 and 2 illustrate variations in the conformal factor and metric potential, respectively.

• Fig 3 shows a positive characteristic and a stable configuration of the energy density.

• In Fig 4, the isotropic pressure exhibits a positive characteristic.

Fig 7. The three forces (Fg, Fh, Fa) for E (b = 0.03, C2 = 0.1).

https://doi.org/10.1371/journal.pone.0307489.g007

Fig 6. Variation of anisotropy force for E (b = 0.03, C2 = 0.1).

https://doi.org/10.1371/journal.pone.0307489.g006
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• The electrical charge-induced anisotropy in a sphere. The anisotropy is oriented inward if Δ
> 0, and outward if Δ< 0. While the curve in Fig 5 demonstrates that both the anisotropic

force and Δ< 0 are attractive in nature, the Δ> 0 suggests a repulsive anisotropic force.

• The anisotropic force due to the star’s nature is D

r . This force is repulsive if Dr > 0; otherwise,

it is attracting.

• The Fig 7 illustrates the three forces Fg, Fh, and Fa that are derived from the TOV equation

for our specified source and contribute to system stability.

• The energy conditions depicted in Fig 8 are satisfied by the interior spacetime in five

dimensions.

To analyze the stability of the general framework, we have opted generalized TOV equation

and energy conditions. We have found that our framework satisfies all the necessary condi-

tions. Based on the facts presented here, we could make assumptions about the existence of

charged CO in higher dimensions. The characteristics of the model, including conformal fac-

tor, metric potential, energy conditions, pressure, and anisotropy, are examined using a spe-

cific density profile for five-dimensional spacetime. For the solution of charged higher

dimensional spacetime, all of these parameters are well-behaved. The selected energy density

distribution strongly demonstrates that CO exists in higher dimensions.
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