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Abstract: This experiment to search for the one of the charged lepton flavor-violating processes,
muon-electron conversion, DeeMe, is being conducted at the J-PARC MLF H-Line in Japan. This
experiment utilizes a pulsed proton beam from the Rapid Cycling Synchrotron (RCS). A graphite
target is bombarded with a pulsed proton beam, negative pion production and pion-in-flight-decay
to negative muon; then, the creation of muonic atoms is caused in the same pion production target. A
converted electron is expected to be emitted after 1 ~ 2 micro second-delayed timing. And two-body
reaction of the new process, = + (A,Z) — e~ + (A, Z), results in 105 MeV monoenergetic electron.
Thus, 1 ~ 2 micro second-delayed 105 MeV monoenergetic electron is a searched signal. Electrons
around 105 MeV are transported by the H-Line and analyzed using the dipole magnet (0.4 T) and
four multi-wire proportional chambers (MWPCs). However, the burst pulse reaching 10® charged
particles/pulse attributable to the RCS pulse leads to significant dead time for the MWPC. Thus, the
HV switching scheme is introduced to handle the prompt burst. The target single event sensitivity is
10713, The H-Line construction was completed, and commissioning went well. The overview of the
experiment and the current status are described in this article.

Keywords: charged lepton flavor violation; muon—-electron conversion; H-Line

1. Introduction
1.1. Charged Lepton Flavor Violation

Lepton flavor violation is forbidden in the original standard model. Since the neutrino
oscillation was discovered, it has been found that the flavor violation of neutral lepton
occurs. But the charged lepton flavor violation (CLFV) such as y — ey, y — eee, uyN — eN
(N is a nucleus) has not been discovered yet. On the other hand, charged lepton flavor vio-
lation induced by neutrino flavor mixing is possible. However, for example, the branching
fraction of # — ey becomes 1054; thus, it is too small to be observed experimentally in
the framework of the standard model. Therefore, experimental observation of the CLFV
process is clear evidence of the new physics beyond the standard model. There are some
theoretical models beyond the standard model which predict the enhancement of the
charged lepton flavor violation, such as SUSY GUT, SUSY-seesaw, and doubly charged
Higgs, among others. And the predicted branching fraction of CLFV in those models is
10~13 ~ 107", which is a sizable branching fraction. The current upper limits for the CLFV
processes from experiments are range from 10712 to 10~13. So, a new experimental search
with sensitivity under 10~!3 should be started in a timely manner.

1.2. Muonic Atoms

When p~ stops in the matter, 1~ is captured by a nucleus, and a muonic atom (1S)
is created. In the framework of the standard model, muon decay in orbit (DIO), y= —
e~ + vy + 7, occurs with 92% for C and 33% for Si. Another process in the standard
model is muon capture, = + (A,Z) — v, + (A,Z — 1), with 8% for C and 66% for Si.
And the lifetimes are 2.0 us and 0.7 ps, respectively. On the other hand, as a new physics,
muon-electron conversion in the nuclear field, y~ + (A,Z) — e~ + (A, Z), is expected to
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occur. This is a charged lepton flavor violation process. Since this is a two-body process, an
electron is monoenergetic around 105 MeV. Also, the signal is delayed by ~2 us.

2. DeeMe Experiment

This experiment to search for muon-electron conversion, DeeMe, is conducted at
J-PARC Materials and Life Science Experimental Facility (MLF) (Figure 1). We use a high-
purity pulsed proton beam from the 3-GeV Rapid Cycling Synchrotron (RCS) [1]. The beam
is a fast extracted one and the power is currently 830 kW, which is upgraded to 1 MW. Also,
the beam consists of 25 Hz double pulses. DeeMe is performed at the H-Line [2], a newly
built large-acceptance beamline for fundamental physics. The H-Line construction was
completed in January 2022. As shown in Figure 2, in the DeeMe experiment, negative pion
production, pion-in-flight-decay to negative muon and muon stopping happen inside the
same production target made from graphite. We utilize muonic atoms formed in the pion
production target. This means we have no pion decay volume and no additional stopping
target. This is contrast to the conventional muon-electron conversion search experiment.
Using the secondary beamline, we transport the signal electrons of 105 MeV /c. The mo-
mentum is selected by the beamline, and the low-momentum background is suppressed.
Using the magnet spectrometer, we analyze the particle momentum and identify the signal
electrons. The spectrometer consists of a dipole magnet (PACMAN; 0.4 T) and multi-wire
proportional chambers (MWPCs).

Figure 3 shows the beam structure and the time window for analysis. We use a pulsed
proton beam by 25 Hz of double pulse, of which each width is 200 ns, and the time interval
is 600 ns. In order to reject the prompt burst, the time window for analysis is set at 300 ns
after the second pulse.

The current upper limits for muon—electron conversion are 4.6 x 10~'2 [3] for a tita-
nium target obtained via the experiment at TRIUMF, 4.3 x 10~!2 [4] for a titanium target
and 7 x 10713 [5] for a gold target obtained via the SINDRUM-II experiment at PSI. We
aim to achieve the single event sensitivity of 1 x 1073 for a graphite target with 1-year run
(2 x 107 s) with 1 MW primary proton beam to observe the CLFV or to improve the current
limit by one order of magnitude.
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Figure 1. Photo of an overall perspective of J-PARC.
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Figure 2. Schematic of the DeeMe experiment.
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Figure 3. Beam structure and the time window for analysis.

3. HV Switching MWPC

Protons hitting the production target produce a lot of electrons in the prompt timing.
The detector is required to tolerate the prompt burst beam bunch of 108 charged particles.
Instantaneous hit rate on the detector is expected to be approximately 70 GHz/mm?. Also,
the detector should return to operational 300 ns after the beam pulse to detect delayed
electrons. Therefore, we have developed an HV switching MWPC [6,7]. In this scheme,
anode wires and potential wires are aligned alternately with a pitch of 0.7 mm in a plane
between cathodes as shown in Figure 4. The chamber gas is a mixture of Ar, iso-butane,
and methylal with a ratio of 75:15:10. Anode wires are always set around 1500 V, and we
switch the voltage for potential wires. The potential wires are set at the same voltage as
the anode wires as a usual state, the detector is protected during the burst, and no space
charge is created. The gas gain is in the order of 1. And the potential wires are set at 0 V in
the analysis time window after the prompt burst to detect a delayed signal. The gas gain
is in the order of 10* as shown in Figure 5. The hit information is read out from cathode
strips through amplifiers with large current tolerance [8] and 10-bit flash analog-to-digital
converters (FADCs) with a sampling rate of 100 MHz [9].

Cathode plane
A I
3mm  Q.7mm Anode wire
L O [ ] [ ]
3 mm

I Ar +1s0C4H10 +C3HgO3 gas

Figure 4. Cross sectional view of the HV switching MWPC.
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Figure 5. Gas gain for the analysis time window.
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4. Background

As for background, considering the running time of 2 x 107 s (1-year data acquisition
period), the decay-in-orbit background is estimated to be 0.09, and the after-proton-induced
background, which is produced from extracted protons at kick-off time, is estimated to be
less than 0.027. Regarding the cosmic backgrounds, due to the small detector live-time duty
of 1/20,000, the electron background is less than 0.018 and the muon background is less
than 0.001. The beam pion capture background, which is created the following reaction,

T+ (AZ) = (AZ-1)" > y+(AZ-1), 7—ete
comes the prompt timing and is restricted to 0.0009 by the delayed analysis time window.

5. Current Status

The H-Line construction was completed in January 2022, and the DeeMe commis-
sioning runs were performed in June 2022. In the commissioning run, every system
including the gas supply and circulation system and the data acquisition system worked
well. Figure 6 shows the MWPCs and PACMAN in the H1 area. Figure 7 shows a beam
profile of the prompt burst 105 MeV /¢ electrons. DeeMe is ready to take physics data. We
made a quick data analysis for a positron dataset at 50 MeV /¢ for Michel edge measurement.
Positron momentum was reconstructed successfully, as shown in Figure 8.

Figure 6. Four MWPCs and a dipole magnet (PACMAN) in the H1 area. The beam comes from the
right side.
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Figure 7. Beam—profile for 105 MeV /¢ electrons.
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Figure 8. Reconstructed momentum spectrum for a positron dataset at 50 MeV /c.

6. Summary

The DeeMe experiment at J-PARC MLF is conducted to search for the muon-electron
conversion process in the nuclear field with a target single event sensitivity of 1 x 10713.
The detector needs to be tolerant of high-rate prompt burst and to be able to detect a
signal electron for muon—electron conversion soon after T prompt burst charged particles
produced by the pulsed proton beam. We have developed an HV switching MWPC to
satisfy the above requirements. We are ready to take physics data.
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