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Abstract
The LHCb experiment located at the Large Hadron Collider at CERN collected its first data

from proton-proton collisions between December 2009 and December 2012.

Based on data recorded in 2010, several software alignments of the LHCb tracking stations are

performed. The procedure includes vertex and mass constraints from the D0 → K +π− decay.

A precision of 15 µm is achieved and the alignment constants were used for high-precision

measurements at LHCb with 2010 data. In addition the results of the alignments helped to

improve the understanding of the procedure.

Exploiting the data set recorded during the year 2011, the masses of the weakly-decaying Λ0
b ,

Ξ−
b and Ω−

b baryons are measured:

M(Λ0
b) = 5619.53±0.13 (stat)±0.45 (syst) MeV/c2,

M(Ξ−
b ) = 5795.8±0.9 (stat)±0.4 (syst) MeV/c2,

M(Ω−
b ) = 6046.0±2.2 (stat)±0.5 (syst) MeV/c2.

The first (second) quoted uncertainty is statistical (systematic). These mass measurements

are the most precise to date. Furthermore, the Ω−
b mass measurement allowed to settle the

discrepancy between the results of the CDF and D0 experiments, which disagree by more than

six standard deviations. The Ω−
b mass measurement presented here is in agreement with the

CDF measurement and in disagreement with the D0 one.

A preliminary search for the neutral Ξ0
b baryon is also presented. A statistically significant

signal is observed when both data sets from 2011 and 2012 are combined. Using this same

data set, the lifetimes of the Ξ−
b and Ω−

b baryons are measured:

τ(Ξ−
b ) = 1.55+0.10

−0.09 (stat)±0.03 (syst) ps,

τ(Ω−
b ) = 1.54+0.26

−0.21 (stat)±0.05 (syst) ps.

These are the most precise lifetime measurements of these b baryons to date. All b-baryon

property measurements presented here provide a unique and valuable input for models in

quantum chromodynamics at low energies.

Keywords: LHCb, software alignment, mass measurements, lifetime measurements, b baryons
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Zusammenfassung
Das LHCb Experiment am Grossen Hadronen-Speicherring am CERN hat zwischen Dezember

2009 und Dezember 2012 seine ersten Daten von Proton-Proton Kollisionen aufgenommen.

Mit den im Jahr 2010 aufgezeichneten Daten wurden mehrere Programmausrichtungen der

Spurendetektoren durchgeführt. Die Prozedur beinhaltet Vertex- und Massenzwangsbedin-

gungen vom D0 → K +π− Zerfall. Als Resultat wurde die damalige Ausrichtungsprozedur

verbessert und eine Präzision von 15 µm erreicht. Die erhaltenen Ausrichtungskonstanten

wurden für Präzisionsmessungen basierend auf den Datensatz von 2010 verwendet.

Mit den Daten aus 2011 wurden die Massen der durch die schwache Wechselwirkung zerfal-

lenden Λ0
b , Ξ−

b und Ω−
b Baryonen gemessen:

M(Λ0
b) = 5619.53±0.13 (stat)±0.45 (syst) MeV/c2,

M(Ξ−
b ) = 5795.8±0.9 (stat)±0.4 (syst) MeV/c2,

M(Ω−
b ) = 6046.0±2.2 (stat)±0.5 (syst) MeV/c2.

Dies sind die derzeit genauesten Messungen. Darüber hinaus hat die Messung der Ω−
b Masse

es ermöglicht die experimentale Uneinigkeit von über sechs Standardabweichungen zwischen

den Resultaten der CDF und D0 Experimente zu klären. Der hier präsentierte Wert für die Ω−
b

Masse stimmt mit der CDF Messung überein jedoch nicht mit der D0 Messung.

Es wird ebenfalls eine vorläufige Suche nach dem neutralen Ξ0
b Baryon vorgestellt. Ein sta-

tistisch aussagekräftiges Signal wird beobachtet wenn beide Datensätze von 2011 und 2012

kombiniert werden. Mit diesem kombinierten Datensatz sind auch die Lebensdauern von Ξ−
b

und Ω−
b gemessen:

τ(Ξ−
b ) = 1.55+0.10

−0.09 (stat)±0.03 (syst) ps,

τ(Ω−
b ) = 1.54+0.26

−0.21 (stat)±0.05 (syst) ps.

Dies sind derzeit die genausten Lebensdauermessungen dieser b Baryone. Die hier darge-

legten Eigenschaften der b baryonen ergeben einen einzigartigen und wertvollen Beitrag für

verschieden Modelle der Quantenchromodynamik im Bereich niegriger Energien.

Stichworte: LHCb, Detektorausrichtung, Massmessungen, Lebensdauermessungen, b Baryone
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Résumé
L’expérience LHCb située sur le Grand collisionneur de hadrons au CERN a enregistré ses

premières données de collisions proton-proton entre décembre 2009 et décembre 2012.

Sur la base des données enregistrées en 2010, plusieurs alignement informatiques du tra-

jectographe de LHCb ont été réalisés. La procédure inclut des contraintes géométriques et

cinématiques de la désintégration D0 → K +π−. Une précision de 15 µm a été atteinte et les

constantes d’alignement ont été utilisées pour des mesures de haute précision à LHCb avec les

données 2010. De plus, les résultats de l’alignement ont permis d’améliorer la compréhension

de la procédure elle-même.

En exploitant les données enregistrées pendant l’année 2011, les masses des baryons Λ0
b , Ξ−

b

et Ω−
b se désintégrant par la force faible ont été mesurées :

M(Λ0
b) = 5619.53±0.13 (stat)±0.45 (syst) MeV/c2,

M(Ξ−
b ) = 5795.8±0.9 (stat)±0.4 (syst) MeV/c2,

M(Ω−
b ) = 6046.0±2.2 (stat)±0.5 (syst) MeV/c2.

Ces mesures de masse sont les plus précises à ce jour. La mesure de la masse du baryon Ω−
b a

permis de résoudre le désaccord entre les résultats des expériences CDF et de D0 qui diffèrent

par plus de 6 déviations standard. La mesure de la masse du baryon Ω−
b présentée ici est

compatible avec la mesure de CDF et incompatible avec celle de D0.

Une recherche préliminaire du baryon neutreΞ0
b est aussi présentée. Un signal statistiquement

significatif est observé quand les données de 2011 et 2012 sont combinées. En utilisant ces

mêmes données, les temps de vie des baryons Ξ−
b et Ω−

b sont mesurés :

τ(Ξ−
b ) = 1.55+0.10

−0.09 (stat)±0.03 (syst) ps,

τ(Ω−
b ) = 1.54+0.26

−0.21 (stat)±0.05 (syst) ps.

Ce sont les mesures les plus précises de ces temps de vie à ce jour. Toutes les mesures des

propriétés des baryons b présentées ici fournissent des ingrédients uniques et pertinents pour

une meilleure compréhension des modèles de chromodynamique quantique à basse énergie.

Mots-clés : LHCb, alignement informatique, mesures de masse, mesures de temps de vie, baryons b
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1 Introduction

1.1 The Standard Model

The currently most accurate theory describing the fundamental interactions and particles is

called the Standard Model [11–13]. It includes the strong, weak and electromagnetic sectors

but lacks the description of the gravitational force. The Standard Model has 19 parameters,

which are to be determined experimentally. The mathematical framework this theory relies on

is Quantum Field Theory (QFT) where the whole description can be derived from a Lagrangian.

The total Lagrangian of the Standard Model is the sum of the terms describing each sector.

In the Standard Model there are particles that have either an integer spin value called bosons

or a half-integer spin value called fermions. The elementary fermions are the quarks and the

leptons. The Standard Model states the existence of three generations of quarks and three

generations of leptons. Each quark generation contains two different quarks and each lepton

generation contains a charged lepton and an associated neutrino. In addition each quark has

an associated anti-particle and exists in three colours. The leptons as well have associated

anti-particles but no colour. Thus, without counting the spin projections, a total of 36 different

quark states and 12 different lepton states exist in the Standard Model.

There are also twelve vector bosons, carrying the fundamental interactions, and one scalar

boson [14–16]. The gluons carry the strong force, the γ boson carries the electromagnetic force,

and the W and Z bosons carry the weak force. All bosons with the exception of the charged

W are their own anti-particles. Gluons carry a linear combination of colour states composed

of always one colour and one anti-colour among the three. Thus they can be described with

an SU (3) representation giving eight independent colour states. Including the 13 predicted

bosons, the total number of elementary particles in the Standard Model is 61, as summarised

in Table 1.1. All of these particles have been observed; the latest observation, the Higgs boson,

was announced by the ATLAS and CMS experiments at CERN in July 2012 [17, 18].
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Chapter 1. Introduction

Table 1.1: Elementary particles in the Standard Model.

Quarks
up (u) strange (s) bottom (b)

down (d) charm (c) top (t )

Leptons
electron (e) muon (µ) tau (τ)

electron neutrino (νe ) muon neutrino (νµ) tau neutrino (ντ)

Bosons
gluon (g ) photon (γ) W ± and Z 0 Higgs (H)

1.2 Weakly-decaying b baryons

Quarks, bound by the strong force mediated by gluons, form composite particles called

hadrons. Hadrons are found to be colourless combinations of two or three quarks, called

mesons and baryons respectively. In this thesis, combinations of three quarks among which at

least one is a b, the so-called b baryons, are studied. The total number of predicted b-baryon

ground states is 16, listed in Table 1.2.

The decay of the b quark can only happen through the weak force since the quark flavour is

conserved by the strong and electromagnetic interactions. Hence the typical lifetime of a b

hadron is large compared to strong or electromagnetic decays and is of the order of 1.5 ps. The

b baryons (and their quark contents) that are studied hereafter are the Λ0
b (udb), Ξ−

b (d sb),

Ξ0
b (usb) and Ω−

b (ssb).

1.2.1 b-baryon mass predictions

b hadrons are described at the fundamental level by Quantum Chromodynamics (QCD).

The masses of b baryons are predicted by several different theoretical calculations. One

approach consists in comparing the calculation of the b baryon mass with the calculation of

the corresponding c baryon mass (the b quark being replaced by the c quark). This technique

permits to well predict the mass difference between a b baryon and a similar c baryon. Hence

the Λ0
b mass is computed based on a precise Λ+

c mass measurement, the Ξ−
b mass based on

a precise Ξ+
c mass measurement, and so on. The calculation itself has been done using the

constituent-quark model (CQM) [19] and a model-independent 1/Nc expansion [20] where Nc

is the number of quark colours. These calculations produce the predictions with the smallest

uncertainties. The CQM-based approach produces a more precise prediction, however it

relies on the approximation that the virtual gluons and virtual quarks inside the hadron are

constituents of one of the quarks composing the hadron.

2



1.2. Weakly-decaying b baryons

Table 1.2: b-baryon ground states predicted by the Standard Model. All of them decay weakly, except
the Σb states which decay strongly to Λ0

bπ. A bold font indicates that the state has been experimentally
confirmed.

Name Quark content Isospin Spin-parity (J P )
Λ0

b ud b 0 1/2+

Σ−
b uub 1 1/2+

Σ0
b udb 1 1/2+

Σ+
b d d b 1 1/2+

Ξ0
b usb 1/2 1/2+

Ξ−
b d sb 1/2 1/2+

Ξ+
cb ucb 1/2 1/2+

Ξ0
cb dcb 1/2 1/2+

Ξ0
bb ubb 1/2 1/2+

Ξ−
bb dbb 1/2 1/2+

Ω−
b ssb 0 1/2+

Ω0
cb scb 0 1/2+

Ω+
ccb ccb 0 1/2+

Ω−
bb sbb 0 1/2+

Ω0
cbb cbb 0 1/2+

Ω−
bbb bbb 0 3/2+

It is also possible to perform a full calculation of the masses without direct comparison with

other experimental mass measurements. Using the CQM in a relativistic environment, the

so-called relativistic constituent-quark model (RCQM), it is possible to fully compute the

masses from scratch [21]. However, until recently, these calculations had only a limited range

of validity in the heavy quark sector. In an effort to create a single framework where all baryon

masses and reactions can be computed, an Austrian-Korean group developed a more general

RCQM [22]. This theory has a universal aspect, however the precision of the predictions is still

low.

Another promising model is the heavy quark effective field theory (HQET) where the heavy

baryon is approximated by a two-body system of a heavy quark and a light diquark. Based on

HQET and using the QCD sum rule approach, it is possible to predict the heavy-baryon mass

spectrum [23]. Performing a calculation using the QCD sum rule without the assumption

of the HQET [24] one gets a more independent result, yet it is not as powerful in terms of

precision.

A fully different approach is lattice QCD based on simulation [25]. Such calculations need a

large amount of computing power but provide an independent method as compared to the

ones described above. Nevertheless, today’s predictions from lattice QCD computation are as

precise as the ones obtained from HQET.
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Table 1.3: Mass predictions in MeV/c2 and their uncertainties for Λ0
b , Ξ−

b , Ξ0
b and Ω−

b baryons.

Model Λ0
b mass Ξ−

b mass Ξ0
b mass Ω−

b mass
CQM [19] Used as input 5790−5800 5786.7±3.0 6052.1±5.6
1/Nc expansion [20] Used as input Used as input − 6039.1±8.3
RCQM [21] 5622±100 5812±100 − 6065±100
Universal RCQM [22]∗ ∼ 5650 − − ∼ 6050
HQET+QCD sum rule [23] 5637+68

−56 5780+73
−68 − 6036±81

QCD sum rule [24] 5690±130 − 5750±130 5890±180
Lattice QCD [25] 5641±21+15

−33 5781±17+17
−16 − 6006±10+20

−19

∗Only figures are provided in this publication.

The numerical results of the previously presented approaches are summarised in Table 1.3 for

the b baryons studied in this thesis.

1.2.2 b-baryon lifetime predictions

Predictions on the lifetimes of weakly-decaying b baryons are more sparse. Indeed, comparing

with lifetimes from b mesons or c baryons does not work as well as for mass calculations. The

most recent predictions were made more than 10 years ago and until recently most of them

could not yet be tested experimentally.

A powerful way to predict b-baryon lifetimes in QCD is to use Heavy Quark Expansion in which

an expansion in powers ofΛQCD/mb is made whereΛQCD is the scale at which QCD becomes

non-perturbative and mb is the b-quark mass. Such a calculation was performed in 1995 [26]

but it appeared that the measured Λ0
b lifetime was inexplicably shorter than expected. In this

publication appeared as well a first prediction of the ratio between the Ξ−
b and Λ0

b lifetimes,

the case of the Ω−
b lifetime being referred to as "seeming too academic for the moment".

Taking again advantage of the Heavy Quark Expansion framework and using the bag model

and the non-relativistic quark model, heavy hadron lifetimes were computed again two years

later [27] but the problem with the Λ0
b lifetime persisted. However, for the first time two

predictions on the values of the Ξ−
b and Ω−

b lifetimes were calculated and so far, given the

current experimental uncertainties, even these first predictions could not be significantly

probed.

A new approach using the HQET attempted to solve the Λ0
b lifetime discrepancy [28]. In this

last publication the authors give a prediction on the lifetime ratio τ(Ξ−
b ) over τ(B 0) and point

out the importance of a precise Ω−
b lifetime measurement to select the best among compet-

ing models. Comparing the mentioned theoretical prediction, there is also a disagreement

concerning the hierarchy of the lifetimes of the weakly-decaying b baryons.
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1.2. Weakly-decaying b baryons

Table 1.4: Lifetime predictions in ps and their uncertainties for Ξ−
b and Ω−

b baryons.

Model Ξ−
b lifetime Ω−

b lifetime
Heavy Quark Expansion [26]∗ ≈ 1.57 −
Heavy Quark Expansion + non-relativistic bag model [27] ≈ 1.20 ≈ 1.01
HQET [28]∗ − 1.67±0.09

∗Only ratios are provided in these publications, hence they are combined with the appropriate world averages [1]
to obtain the lifetime predictions.

Table 1.4 gives a summary of the theoretical predictions for the lifetimes of the Ξ−
b and Ω−

b

baryons. It can be seen that the lifetime hierarchy is not the same in all predictions.

1.2.3 Experimental b-baryon spectroscopy results

The first observation of a bottom baryon, through the decay Λ0
b → J/ψΛ, was published by the

UA1 experiment at the SPS at CERN in 1991 [29]. The first Λ0
b lifetime measurements were also

performed at CERN, by the LEP experiments ALEPH and OPAL in 1995 [30, 31], and completed

shortly after by Tevatron results and other measurements by LEP experiments.

At around the same time, the LEP experiments DELPHI and ALEPH were the first to mea-

sure the average Ξb production fraction and lifetime using the partially reconstructed decay

b baryon →Ξ−l−X [32,33]. A revised analysis using the complete data set available by DELPHI

was published in 2005 [34] and superseded their previous result.

In June 2007, using a large sample of reconstructed Λ0
b →Λ+

c π
−, CDF observed for the first

time the Σb and Σ∗
b resonances decaying into Λ0

bπ
± [35]. Only one month later the Ξ−

b baryon

has been fully reconstructed for the first time by D0 in the decay mode Ξ−
b → J/ψΞ− [6] and

by CDF in the same channel [36]. One year later D0 announced the first observation of the Ω−
b

baryon [9] and CDF performed the same observation as well as new Ξ−
b measurements shortly

after [7]. However, the two Ω−
b mass measurements performed by CDF and D0 differ at the 6

standard deviations level.

In 2011, CDF published the firstΞ0
b observation in the decay modeΞ0

b →Ξ+
c π

− and a measure-

ment of the Ξ−
b mass in the Ξ0

c π
− decay mode [8]. Another year later three excited b-baryon

states were seen for the first time at the LHC: the CMS experiment reported a first observation

of the Ξ∗0
b baryon [37] and the LHCb experiment observed two excited Λ0

b states [38].

More precise mass and width measurements of the Σb and Σ∗
b resonances were performed in

2012 by CDF using the full recorded data set [39]. In 2013 the ATLAS collaboration published a

Λ0
b mass and lifetime measurement of unprecedented accuracy [5]. These results were recently

superseded and completed by the current most precise Λ0
b , Ξ−

b and Ω−
b mass and lifetime

measurements performed at the LHCb experiment [40, 41] and reported in this thesis.
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Figure 1.1: The LHCb detector.

In August 2013, new preliminary results from CDF based on the total recorded 9.6 fb−1 were

shown publicly [42, 43]. However, the precision of these measurements remains below the one

achieved at LHCb.

1.3 The LHCb experiment at CERN

The LHCb detector [44] is a single-arm forward spectrometer located on the Large Hadron

Collider (LHC) at CERN. It has been designed to study processes in the c- and b- quark sectors

as well as CP violation. The detector, shown in Fig. 1.1, is composed of several layers of

sub-detectors each having a specific purpose.

1.3.1 The VErtex LOcator

The pp collisions at LHCb happen in the vacuum tank of the VErtex LOcator (VELO) [45] sur-

rounding the interaction point. The VELO is a tracking device based on the silicon microstrip

technology. As depicted in Fig. 1.2, its half-circularly shaped sensors are either layers of radial

strips (φ) or perpendicular ones (R). There are a total of two times 21 layers of R-sensors and

as many φ-sensors along the beam axis. The particularity of the VELO is that all modules can

be moved away from the interaction point. This allows the sensors to be located near the

interaction point during data taking and still to be far enough not to be potentially harmed

when the beam is unstable during injection, setup and ramping. In the closed position, the

6
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Figure 1.2: The layout of the VELO.

modules are located 7 mm away from the beam line and therefore the first sensor strips are

8.2 mm away from the beam line. This is the shortest distance between the beam and a

detector element at any LHC experiment.

1.3.2 The Tracker Turicensis

The Tracker Turicensis (TT) [46] is located between the VELO and the magnet. It consists of

two tracking stations, called TTa and TTb, which are each formed of one vertically aligned

microstrip plane and one inclined with a stereo angle of 5◦. The two stations are separated by

a distance of 30 cm. As shown in Fig. 1.3 each of the four planes is divided into two times seven

(eight) vertical ladders for TTa (TTb) on the left and right sides and two half-ladders above

and below the beam pipe. The long ladders are composed of fourteen microstrip sensors

and the half-ladders contain seven sensors each. The colour code in Fig. 1.3 shows how the

long ladders are divided into four readout modules of three or four sensors and how the short

ladders are divided into three readout modules each of one to four sensors.
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Figure 1.3: The layout of the TTa vertical (left) and stereo (right) detector planes. The colour
code shows how the ladders are divided into readout modules. The dark blue ends at the top
and the bottom of each ladder represent the structures on which the sensors are mounted.

1.3.3 The magnet

A large dipole magnet of 4 Tm is placed right after the TT, curving the trajectory of charged

particles and allowing their momentum to be measured by the tracking system. The magnetic

field is vertical and the magnet can be exploited in both polarities. The field direction, up

or down, is regularly switched during data taking periods in order to record approximately

the same amount of data in the two conditions. Having data with both magnet polarities

permits to assess and cancel left-right detector and reconstruction asymmetries. An example

described more in detail in Sec. 2.3 is the so-called cowboy and marine effect arising from

misalignments and making the momentum scale depend on the kinematics of the measured

track.

1.3.4 The Inner Tracker

Downstream of the magnet are three tracking stations, called T-stations or individually T1, T2

and T3. They are divided into two sub-detectors using each a different technology. The central

region is, like the TT, a silicon microstrip detector and is called the Inner Tracker (IT) [47].

As shown in Fig. 1.4, each station of the IT is composed of four boxes in a cross-shaped layout.

In each box there are four layers of silicon sensors. The first and last layers (called X-layers)

have the microstrips vertically oriented whereas the second one (U-layer) and the third one

(V-layer) are inclined by a stereo angle of +5◦ and −5◦ respectively. Each layer is composed of

seven ladders which comprise one (top and bottom boxes) or two (lateral boxes) sensors as

depicted in Fig. 1.5.
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Figure 1.4: Layout sketches of one among the three T-stations. On the left a front view (as seen
from the VELO) and on the right a view from above of the central region. The IT is shown in
orange and the OT in blue. The dimensions are given in cm.
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Figure 1.5: The Inner Tracker layout of a vertical layer (left) and a stereo layer (right). Each
colour rectangle represents a silicon sensor. The central circle represents the beam pipe. The
dimensions are given in cm.

1.3.5 The Outer Tracker

The outer region of the T-stations is composed of straw tubes and is called the Outer Tracker

(OT) [48]. As shown in Fig. 1.4, the number of detection planes is the same as for the IT. Each

detection plane is formed of two layers of straw tubes where the straw tubes in the first layer

are shifted with respect to ones in the second layer by half the width of a straw tube in order to

provide maximal coverage. Figure 1.6 shows how each detector plane is subdivided into two

times seven long modules of type F and two times four short ones of types S1, S2 and S3. The

structures which hold the OT layers are called C-frames due to their shape. One OT C-frame

supports two consecutive vertically separated half-layers (for instance the left halves of the X1

and U layers of the first OT station are mounted on one C-frame).
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Figure 1.6: The Outer Tracker layout of a vertical layer (left) and a stereo layer (right).

1.3.6 The Ring Imaging Cherenkov detectors

A first Ring Imaging CHerenkov (RICH1) detector is located between the VELO and TT detec-

tors. It uses an aerogel and a gas volume of C4F10 to produce Cherenkov radiation measured by

photo-multipliers. The Cherenkov photons are detected with Hybrid Photon Detectors (HPDs)

that combine vacuum photo-multiplier tubes with silicon pixels being placed at the anodes. A

second RICH detector (RICH2) is situated between the T-stations and the calorimeters. The

RICH2 detector uses another gas (CF4) covering a higher kinematic range to identify charged

particles with momenta up to 150 GeV/c. The purpose of these two detectors is to identify

charged particles by measuring their velocity that depends on the angle of the Cherenkov

light cone. A delta-log-likelihood is calculated from the information of the full RICH system

between the probability that the particle is a pion and the probability that the particle is a

kaon (PIDK), proton (PIDp), electron (PIDe) etc.

1.3.7 The calorimeters

There are two layers of calorimetry [49]: first the electromagnetic calorimeter (ECAL) and

secondly the hadronic one (HCAL). They both use scintillators, interleaved with lead and iron

plates for the electromagnetic and hadronic calorimeter, respectively. In addition, there is a

Pre-Shower (PS) in front of the electromagnetic calorimeter and a Scintillator Pad Detector

(SPD) even further upstream. The PS has a longitudinal segmentation which allows the

discrimination of the large background in the electron trigger originating from charged pions.

The purpose of the SPD is to discriminate yet another type of background, coming from very

high transverse energyπ0 particles, which worsen as well the electron trigger efficiency. The PS

represents a total radiation length of 2 X0 and the main electromagnetic calorimeter of 25 X0.

The HCAL has a thickness of 5.6 interaction lengths. Since the calorimeters are heavily used
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in the first stage of the trigger, their design has been tuned to a good compromise between

energy resolution and trigger efficiency.

1.3.8 The muon chambers

The last sub-detectors of the LHCb experiment are the muon chambers. The first layer is

placed between the RICH2 and the calorimeters, the other four are located downstream of the

calorimeters. The used technology is multi-wire proportional chambers except for the central

region made of triple-GEM detectors. The last four layers of muon chambers are shielded

firstly by the calorimeter system and secondly by interleaved iron shields which have a total

thickness of 20 nuclear interaction lengths.

1.3.9 The trigger

In average only around 1% of the pp collisions contain a pair of b quarks of which around

15% fly into the geometrical acceptance of LHCb. Hence a trigger system [50] is deployed to

efficiently select such events and limit the amount of data written to disk. The LHCb trigger

is composed of three stages namely Level-0 (L0), High Level Trigger 1 (HLT1) and High Level

Trigger 2 (HLT2). The first stage is purely analogue and exploits mostly information from the

muon chambers and the calorimeters. As shown in Fig. 1.7, this first stage lowers the rate from

the initial 40 MHz to 1 MHz. The HLT1 and HLT2 stages reconstruct the events using a 29’000

CPU computer farm and select 5’000 events per second by applying kinematic and PID cuts

on the tracks as well as cuts on the reconstructed vertices. Each step is in addition divided into

so-called trigger lines which are specific sets of selection criteria on which the trigger may fire.

1.3.10 Data taking at LHCb

First proton-proton (pp) collisions were recorded in December 2009 at the LHC injection

centre-of-mass energy of
p

s = 900 GeV. These data led to the very first physics publication of

the LHCb collaboration measuring K 0
S and Λ production [51]. During the year 2010, a total

integrated luminosity of 36 pb−1 was recorded at
p

s = 7 TeV. In 2011 and 2012 the LHCb

experiment recorded 1.0 fb−1 at
p

s = 7 TeV and 2.0 fb−1 at
p

s = 8 TeV, respectively, resulting

in a total integrated luminosity of slightly above 3 fb−1. The average number of pp collisions

in the recorded events, called pileup, is approximately 1.8 for 2011 data and 2.1 for 2012 data.

1.3.11 LHCb simulation framework

A dedicated framework called Gauss [52] was developed by the LHCb collaboration to produce

simulated samples also referred to as Monte Carlo (MC) samples. Gauss includes a generator

and a simulation phase. The generator phase mainly relies on the Pythia [53] and EvtGen [54]
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Figure 1.7: Schematic description of the LHCb trigger.

packages and the simulation phase uses Geant4 [55, 56]. The generation phase uses as input

so called decay description files (also called DecFiles) that indicate which is the wanted decay.

For the different physics analyses at LHCb, official MC samples are produced by a dedicated

working group. The different sets of conditions reproducing the detector description, data

taking, triggering and selection are specifically named. Simulation samples reproducing

2011 data as reconstructed in real time are called MC11. The conditions for MC samples

reproducing the 2011 and 2012 data reprocessed during early 2013 with the latest versions of

the tracking and selection algorithms are called MC2011 and MC2012 respectively.

1.3.12 Tracking at LHCb

Most of the information used in the techniques and analysis hereafter comes from the tracking

system of the LHCb detector. This system is composed of the three tracking sub-systems

which are the VELO, the TT and the T-stations (including the IT and the OT). As a first step,

each of these sub-systems performs an independent track segment search. In a second step,

VELO segments are both linked to segments from the T-stations in order to form so-called long

tracks (L) and to segments from the TT to form so-called downstream tracks (D). If VELO or

T-station track segments are not linked to any other sub-detector track segment they remain

as they are and are called VELO tracks and T tracks respectively. Hits in the TT located within

a certain search window are later attached to long tracks or VELO tracks. Long tracks that

have attached TT hits remain called long tracks but VELO tracks that have attached TT hits are

called upstream tracks. As a last step, all clones are eliminated by deleting tracks that have too

many common hits. A schematic view of the different track type combinations reconstructed
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Figure 1.8: Track types reconstructed at LHCb.

at LHCb is shown in Fig. 1.8. Only long or downstream tracks have their momentum measured

since they are the only track types which are measured on both sides of the magnet. Therefore

only long and downstream tracks are used in most analyses at LHCb.

A quantity that estimates the quality of a reconstructed track is the track χ2 divided by the

number of degrees of freedom (track χ2/ndf). It is calculated as the sum of the squares of the

distances between the track (being an ideal curve) and the track measurements divided by

the squares of the measurement uncertainties. It can be computed for a track composed of

either one or several track segments. When it is computed for only the VELO track segment, it

is usually called the VELO χ2/ndf of a track. For long tracks, a quantity called match χ2/ndf is

also used to measure how well the VELO and T-station track segments match. It is defined as

the total track χ2/ndf minus the sum of the T-track segment χ2/ndf and the VELO+TT track

segment χ2/ndf.

1.3.13 Event stripping

After having been fully reconstructed, all events at LHCb undergo the so-called stripping

procedure which applies a loose selection and divides the data into around ten different

streams. Only the stripped data are directly available to the physicists of the LHCb collab-

oration. However the raw event data as recorded by the experiment remain stored and are

regularly reprocessed with the latest version of the reconstruction algorithms and the stripping

selections. Each set of selection cuts applied by the stripping, the so-called stripping lines,

targets a specific decay channel or set of decay channels. There are almost 1’000 distinct

stripping lines at LHCb.

Data recorded in 2011 was first processed with version 17b of the stripping. During the year

2012, version 20 of the stripping was used to process data collected at that time as well as
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reprocess the previously collected data from 2011. Therefore most analyses based on 2011

data use events from Stripping 17b and the analyses based on both data sets collected in 2011

and 2012 usually use Stripping 20.

1.4 Contributions of this research work

This section describes specifically the contributions I made to the detector exploitation and to

various physics analyses. It is organised in chronological order, which coincides by chance with

a certain logical order. In addition to the elements below I also served as a teaching assistant

for courses in various EPFL and UNIL, bachelor and master programs, I was trained to be a

Silicon Tracker piquet and performed several weeks of data-taking shifts, I regularly attended

courses of the doctoral cycle CUSO and a two-week summer school at Fermilab (USA) and I

gave several oral presentations at international conferences on high energy physics [57–64].

First half of 2010: V 0 production measurements

The topic of my master thesis [65] defended in February 2010 was Λ and K 0
S production

measurements at LHCb with the very first data recorded in 2009 at a centre-of-mass

energy of
p

s = 900 GeV. During the first few months of my thesis I continued working on

this subject by processing recorded and simulated data sets and performing studies on

the track type compositions and on primary vertex related effects. My work contributed

to the thesis of Matthias Knecht [66] as well as the very first physics publication of the

LHCb collaboration [51].

Late 2010 to early 2012: track-based software alignment

In autumn 2010 I started to work on the software alignment described in Chapter 2. A

new technique using vertex and mass constraints had just been implemented into the

LHCb framework and I started to tune and use it to align the tracking spectrometer of

the LHCb detector (TT, IT and OT). The knowledge of the physical position of individual

detector elements was improved and a better understanding of the alignment technique

itself was gained.

A large fraction of the data recorded in 2010 suffered from a quality issue due to a TT

operating temperature change. This was tackled with a set of per-period alignments

that I provided using the alignment technique I just got familiar with (see Section 2.4.1).

Many 2010 data analyses at LHCb needed these corrected per-period alignments to

obtain high precision momentum and mass measurements. Especially the mass mea-

surements of the b hadrons [4] and of the X (3872) meson [67] based on the 2010 data

set heavily relied on these alignment constants and the corresponding momentum scale

calibration.
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Between the end of 2011 and early 2012 an article was written by Wouter Hulsbergen,

Olivier Schneider and myself about the developed alignment technique using vertex

and mass constraints which has been published in Nuclear Instruments and Methods

A [68].

Late 2011 to early 2013: Λ0
b ,Ξ−

b andΩ−
b mass measurements

Close to the end of 2011 I joined the effort to measure the masses of the Λ0
b , Ξ−

b and Ω−
b

baryons using the full data set recorded in 2011. Rapidly I took over many responsibilities

including the application of the momentum scale in the fit of the decay chain, the fit of

the mass distributions, the estimation of the systematic uncertainties, the evaluation of

the statistical significance as well as the production of the Ω−
b simulated sample. The

results of this analysis were published early 2013 in Physical Review Letters [40].

In addition I performed a preliminary search for the Ξ0
b baryon. First in the decay

Ξ0
b → J/ψΞ(1530)0 using the data collected in 2011. Later I extended the search to

the non-resonant part of the decay by looking more generally at Ξ0
b → J/ψΞ−π+ and I

added the data recorded during the year 2012. The outcome of the second search is an

observation with statistical significance above five standard deviations. However more

time would have been needed to fully carry out and publish this analysis.

Early 2013 to mid 2013: b-hadron lifetime measurements

During the publication process of the b-baryon mass measurements I got involved in

a large analysis aiming at the measurement of the lifetimes of several b hadrons. My

contribution was to process both real and simulated data samples of Λ0
b → J/ψΛ and

B 0 → J/ψK 0
S with the so-called downstream tracking in order to remove lifetime biasing

requirements from the VELO. In parallel I also refitted the primary vertices with all final

state tracks from the b candidates explicitly removed. For simulated events I applied

the VELO online tracking algorithm used in the trigger in order to assess effects arising

from the slight difference between the VELO online and offline algorithms. The lifetime

measurements were published in early 2014 [41].

Mid 2013 to early 2014: Ξ−
b andΩ−

b lifetime measurements

Taking advantage of the expertise gained from the b-hadron lifetime measurements I

started a new analysis with the goal of measuring the lifetimes of Ξ−
b and Ω−

b using the

full 3.0 fb−1 data set recorded in 2011 and 2012. This was mainly an individual effort,

which is leading to a publication in the first half of 2014 [69].
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2 Alignment

2.1 Software alignment procedure

Particle detectors like the ones at the LHC target a spatial resolution for tracks at the microme-

ter level. However, the size of such detectors is generally of several meters. Hence a physical

alignment of the tracking sub-detectors with enough precision cannot be guaranteed at the

installation of the individual parts. The state of the art technique is to install the detector parts

with a millimeter precision, ensure them not to move during operation and only afterwards

measure their exact position. These measurements, called software alignment, exploit data

recorded by the detector itself. Whenever the word alignment is used hereafter, software

alignment is implied.

In the absence of matter and magnetic field, tracks of charged particles are perfectly straight

lines. This knowledge can be exploited to measure and correct for potential misalignments of

tracking detector parts with respect to others. When matter or a magnetic field are present,

the procedure becomes more complicated since a charged particle can be scattered or its

trajectory curved depending on the momentum. However, it is still possible to measure

and correct for misalignments using scattering corrections and extrapolations based on the

knowledge of the magnetic field.

One way to quantify the misalignments is to first calculate track residuals, which are the

distances separating a track, being an ideal curve, from its associated hits. Computing a

χ2 as the sum of χ2 contributions from each residual, one can find a condition where it is

minimal and which corresponds to the optimal alignment of all detector elements [70]. The

χ2 contribution for a track n with parameters x is given by

χ2
n =

H∑
i=1

(
mi (a)−hi (xn)

σi

)2

(2.1)
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where H is the total number of hits, mi is the position of hit i , a are the alignment parameters,

σi is the measurement error on mi and hi is the position of the track closest to hit i . The

expression of the track χ2 contributions given in Eq. 2.1 can also be written in a vector and

matrix form as

χ2
n =

(
m(a)−h(xn)

σ

)T

V −1
(

m(a)−h(xn)

σ

)
(2.2)

where V is the track covariance matrix which is usually diagonal and (m −h)/σ is a vector

with the H components (mi −hi )/σi . The set of alignment parameters a corresponds to the

spatial degrees of freedom which are used to describe the position and the orientation of each

detector element. Usually Cartesian coordinates (Tx, Ty, Tz) and three rotation angles around

the axes of the Cartesian system (Rx, Ry, Rz) are used.

The alignment parameters a are common to all tracks in the considered sample and the track

parameters x of a certain track n can be expressed as a function of these alignment parameters

xn = xn(a). With this expression, the alignment procedure is reduced to the problem of finding

the condition where the sum of all track χ2 contributions is minimal with respect to the

alignment parameters. This can be expressed with the total derivative as

dχ2

d a
≡ 0 where χ2 =∑

n
χ2

n . (2.3)

In order to obtain the minimal condition of the total χ2, the dependence of the χ2 on the track

and alignment parameters is linearly approximated around the initial values x0 and a0. The

minimum χ2 condition with new alignment parameters a = a0 +∆a is given by the solution of

d 2χ2

d a2

∣∣∣∣
a0

∆a =−dχ2

d a

∣∣∣∣
a0

. (2.4)

Solving this set of equations leads to a minimum limited to the linear approximation. Hence a

few iterations are needed to converge to a final solution being the global minimum of the total

χ2. At each step all tracks need to be refitted in order to propagate the alignment parameters

to the track parameters (xn = xn(a)) since the detector elements are displaced. Looking at the

total χ2 at each step provides a good measure of the convergence of the alignment procedure.
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Figure 2.1: Shearing weak mode in a planar tracking detector. What is called the actual position
is the physical position where the detector is located and the misaligned position is a position
giving the same χ2 without being physical.

2.1.1 Weak modes and associated challenges

Depending on the geometry of the detector, the software alignment procedure is not sensitive

to all degrees of freedom of all detector elements. It is sometimes even possible that a change

in a given degree of freedom of one or several detector parts does not change the value of the

total χ2. In this case this degree of freedom is called a weak mode. An illustration of a weak

mode in a planar detector is shown in Fig. 2.1.

Understanding which degrees of freedom are sensible to align and which are weak modes

represents a difficult challenge in the alignment procedure. Weak modes identified as such

are usually not left free in the alignment process. Therefore the position of the detector parts

along such degrees of freedom remains known with the precision of the survey performed

at the detector installation which is at the millimeter level. Usually such degrees of freedom

have a smaller impact on the quality of tracks and the precision of physics measurements than

those that are not weak modes. Often it does not represent a large loss not to know with high

precision the position of the detector elements along these directions.

2.1.2 Survey contributions

When certain degrees of freedom are not perfect weak modes or are not identified as such, it is

very helpful to add other contributions to the total χ2 which come from the laser survey of the

detector parts performed after the installation. Such contributions avoid the position of the

detector parts to move too far away from the surveyed position and be placed in physically

impossible positions. However it is important to know well the uncertainty on the surveyed

values to be used in the χ2 calculation to leave an appropriate weight to the track residuals

and take their contributions into account at the correct level of significance.
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2.1.3 Effect of a curvature bias on the invariant mass

Some weak modes can have a direct effect on physics parameters. When the momentum is

measured by tracking particles in a magnetic field which gives the curvature of the track, the

overall momentum scale is very sensitive to certain weak modes. As an example, the weak

modes shown in Fig. 2.2 have a direct effect on the invariant mass of two-track combinations.

In a uniform magnetic field B , the transverse momentum p⊥ in the plane perpendicular to the

field is measured from the curvature of the track. This curvature ω is defined as the inverse of

the radius R of the track (ω= 1/R). Applying the famous expression of the Lorentz force, the

relation between the measured curvature and the transverse momentum is

ω = QB

p⊥
, (2.5)

Q being the charge of the particle. As an example, a shearing weak mode like the one on

Fig. 2.2 introduces a constant bias in the measured curvature which, for a large curvature

radius, does not depend on the momentum of a particle nor its direction:

ω −→ ω+δω . (2.6)

Biased
track

Real
track

Curvature 
bias

Misa
lignment

Magnetic field

Biased
track

Real
track

Curvature 
bias

Misalignment

Figure 2.2: Example of a curvature bias in a cylindrical (left) and planar (right) tracking
detector.
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The invariant mass m computed from two very relativistic daughter particles with masses m−
and m+ and momenta p− and p+ respectively can be approximated by

m ≈
√

m2−+m2++2p−p+(1−cosθ)/c2 , (2.7)

where θ is the opening angle between the two tracks of the particles. From Eq. 2.5 and Eq. 2.6

one can compute the change in p⊥ for a certain curvature bias δω at first order in δω/ω:

p⊥ −→ p⊥
(
1− δω

ω

)
= p⊥

(
1− δωp⊥

QB

)
. (2.8)

In forward spectrometers, the momentum measurement is dominated by its component

perpendicular to the magnetic field, so Eq. 2.8 remains approximately correct when p⊥ is

replaced with p. Introducing the curvature bias from Eq. 2.6 into the expression of the invariant

mass in Eq. 2.7 for a particle reconstructed with two daughters of charges Q− =−e and Q+ = e

gives

m −→
√

m2−+m2++2p−p+
(
1+ δωp−

eB

)(
1− δωp+

eB

)
1−cosθ

c2 . (2.9)

Neglecting the terms of order δ2
ω results in the expression

m −→
√

m2−+m2++2p−p+
1−cosθ

c2 −2p+p−(p+−p−)
δω

eB

1−cosθ

c2 . (2.10)

The term in δω (the fourth term) being small compared to the expression of the unbiased

invariant mass (the first three terms) one can expand the square root into

m −→ m

(
1− (p+−p−)p+p−

1−cosθ

m2c2

δω

eB

)
. (2.11)
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Eliminating p+p−(1−cosθ) using Eq. 2.7 gives the measured invariant mass at first order in

δω/ω:

m −→ m

(
1 − (p+−p−)

m2 −m2−−m2+
2m2

δω

eB

)
, (2.12)

which is shifted by a quantity directly proportional to the curvature bias δω and to the mo-

mentum difference between the two daughter particles.

2.1.4 Vertex and mass constraints in software alignment

Vertices are very useful for the alignment because they carry additional spatial information as

compared to tracks. The knowledge that can be included is that all tracks originating from the

vertex must meet in one single point. Hence an additional penalty term can be added into the

χ2 calculation in a similar way than for the tracks. A term like in Eq. 2.1 is computed in which

h is replaced by a model where all tracks from the vertex meet in a single point [68].

Furthermore it is possible to turn the previously discussed momentum dependence issue

around and use mass information in the alignment procedure to make it sensitive to the

related weak modes. As seen previously, the invariant mass resulting from the combination of

two daughter particles strongly depends on the measured momentum of the daughter tracks

and gives a direct dependence on the momentum scale, hence on the associated degrees of

freedom. Using very clean samples of secondary reconstructed particles based on two or

more charged daughter particles gives a hint on the residual misalignment. Constraining the

invariant mass to its known value, by adding yet another penalty term to the χ2 calculation

proportional to the square of the mass residual (mreco −mtrue), makes the whole procedure

sensitive to the weak modes related to momentum measurements.

2.2 Application to the LHCb tracking detectors

At LHCb the alignment is performed in three steps. First the VELO sensors are aligned on their

own, secondly the tracking planes upstream and downstream of the magnet (TT, IT and OT)

are aligned with respect to the VELO, lastly all remaining detector parts (RICH, calorimeters,

muon chambers) are aligned with respect to the tracking systems. The coordinate system

at LHCb has a z axis along the beam line pointing from the VELO towards the calorimeters,

a vertical y axis pointing upwards and an x axis perpendicular to the other two, forming a

right-handed Cartesian coordinate system. All tracking detectors and their orientation in the

coordinate system of LHCb are schematically depicted in Fig. 2.3.
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Figure 2.3: Schematic view from the top of the LHCb tracking system.

2.2.1 VELO alignment

The first step of the alignment procedure at LHCb is the standalone VELO alignment [71]. A

global reference is needed with respect to which all other detector elements can be aligned

and this has been chosen to be a module of the VELO consisting of one φ- and one R-sensor

that have their position fixed. Both sensors have to be fixed to provide a three dimensional

point in space which is needed for an absolute reference. The initial values of all alignment

constants, used in the first iteration of the alignment, are given by the coordinates from the

laser survey conducted during and just after the detector installation.

In August and September 2008 controlled beam dumps on a target located a few hundred

metres upstream of the LHCb experiment provided a high illumination of the detector with

almost parallel tracks. These first recorded data, called hereafter TED data as a reference to

the Transfer line External beam Dump, were used to get a preliminary data-based alignment.

However in such data all tracks are parallel to the beam line which leaves the translation

degrees of freedom along z (Tz) unconstrained.

The latest alignment starts from the alignment constants obtained with TED data and uses

real pp collisions as well as collisions between protons and residual gas in the beam pipe

(called beam-gas collisions). In the pp collisions the primary vertex (PV) information is used

by applying a vertex constraint based on the PV and the tracks it is made of. This helps to link

the left and right VELO halves since both contribute to measure each PV. Overlap tracks, i.e.

tracks that have hits in VELO sensors from both halves, are also selected with priority in order

to align the halves with respect to each other.
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Besides the nominal pp collisions there are also beam-gas collisions and so-called satellite

collisions, happening at ±700 mm around the targeted interaction point. The satellite colli-

sions are collisions between a bunch of protons that is meant to collide and a bunch from

the opposite beam that arrives 5 ns later. This is possible due to the fact that the proton

acceleration in the LHC is performed by RF cavities that allow a minimal bunch spacing of

2.5 ns. Exploiting data containing these additional collisions helps reducing the Rz-twist weak

mode which is a rotation of the VELO modules around Rz that is directly proportional to the

z coordinate of the modules. Such a twist has a strong effect on the impact parameter (IP)

measurements of the tracks.

The fact that the VELO halves are physically moved each time a new run starts at the LHC

implies that the stability of its position needs to be monitored. This is done by looking at

the average x, y and z coordinates of the PVs reconstructed independently with each half.

The discrepancies between the averages show that during a whole year of data taking the

VELO halves are closed into the same position with a precision of ±5 µm. This is remarkable,

knowing that the VELO is opened and closed several hundred times by 3 cm.

With this alignment technique, the VELO sensor positions are known with a precision of 5 µm

along Tx and Ty and of 200 µrad around Rz. This permits a track resolution of around 4 µm

and a PV resolution of (13.0, 12.5, 68.5) µm along (x, y , z).

2.2.2 Global alignment

Once the VELO elements are aligned they are frozen and the other tracking detectors are

aligned with respect to the VELO. This procedure is called the global alignment or the align-

ment of the spectrometer. To perform it, a set of approximately 250’000 tracks from 100’000 pp

collision events is selected. There are three categories of selected tracks defined in Table 2.1.

The categories emphasize important requirements for tracks that are useful for the alignment.

It is necessary that all tracks leave many hits in all detector elements, that they are of good

quality (low track χ2/ndf), that they have high momentum and that a large fraction are overlap

tracks, i.e. tracks that pass through two neighbouring detector elements.

Simulation and data are both used to determine the degrees of freedom that are left free in

the alignment procedure [72]. A certain degree of freedom is included into the alignment if

there is enough sensitivity to make the procedure converge well after a reasonable number of

iterations, typically ten. To test the convergence in simulation, misalignments for a certain

degree of freedom are manually introduced into the constants from which the alignment

procedure starts. If the alignment is able to correct for these misalignment and determine

the actual simulated position of the detector elements from the simulated tracks, then it

is assumed that it makes sense to include this degree of freedom. The convergence of the

alignment on real data is also used to confirm these decisions.
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Table 2.1: Selection of tracks and primary vertices being used in the alignment of the TT, IT and OT
tracking detectors. The overlap tracks in Category 1 need to have hits in at least two different boxes of
IT or OT in the same layer (hence it includes purely IT, purely OT and IT+OT overlap tracks).

Category 1: overlap tracks Category 2: tracks with many IT hits
p 30−200 GeV/c p 50−200 GeV/c

Track χ2/ndf < 5 Track χ2/ndf < 5
Match χ2/ndf < 5 Match χ2/ndf < 5
VELO χ2/ndf < 5 VELO χ2/ndf < 5

Track type Long Track type Long
IT hits > 4 IT hits > 8

VELO R hits > 5 VELO R hits > 5
VELO φ hits > 5 VELO φ hits > 5

Require overlap True

Category 3: long tracks with many VELO hits Cuts on primary vertices
Track χ2/ndf < 5 χ2/ndf < 10

Match χ2/ndf < 5 Tracks > 5
VELO χ2/ndf < 5 Long tracks > 2

Track type Long x coordinate [−5;5] mm
VELO R hits > 13 y coordinate [−5;5] mm
VELO φ hits > 13 z coordinate [−200;200] mm

Table 2.2: Degrees of freedom left free in the global alignment procedure.

Detector element Number of elements Degree(s) of freedom
IT box 3×4 = 12 Tx Tz Rz

IT layer 12×4 = 48 Tx Tz
IT ladder 48×7 = 336 Tx Rz

OT C-frame 3×2×2 = 12 Tx
OT layer 12×2 = 24 Tz

OT module 24×2×9 = 432 Tx Rz
Whole TT 1 Tz

TT layer 2×2 = 4 Tz
TT module 280 Tx Rz

The best alignment precision that one can obtain for TT, IT and OT is along the Tx axis. This is

due to the fact that all three tracking sub-detectors have their sensors vertically oriented (along

y), hence there is only a small pitch along x between the microstrips or the straw tubes. For the

same reason, the only angular degree of freedom that can sensibly be aligned is Rz. Tracks with

large polar angles permit to constrain the Tz degree of freedom but only for large elements

that are highly illuminated. The degrees of freedom which are left free, i.e. are aligned, are

summarised in Table 2.2.
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Figure 2.4: Convergence of the global alignment procedure.

As shown in Fig. 2.4, the alignment of the TT, IT and OT converges within less than ten

iterations. Each iteration needs approximately 6800 s of computing time with a 2.8 GHz Xeon

processor.

Very little sensitivity along Ty can be obtained with the standard method described above. An

innovative technique using data recorded without magnetic field is applied [73]. VELO tracks

are extrapolated to the TT, IT and OT and corresponding hits are searched within a window of

a few mm around the expected position. The distribution of the found hits gives a measure

of the edges of the sensitive areas of each detector element. Fitting these distributions, the

position along y of each element is extracted.

2.2.3 J/ψ→µ+µ− and D0 → K −π+ mass constraints

The vertex and mass constraints described in Sec. 2.1.4 are applied using the abundantly

reconstructed decays J/ψ →µ+µ− and D0 → K −π+. However, it seems that the mass constraint

using D0 → K −π+ performs slightly better due to its kinematic asymmetry and to the fact that

at LHCb it is reconstructed with less background. Around 13’000 primary vertices and around

85’000 decays are selected in the 100’000 events needed for the alignment. Figure 2.5 shows

how the mass resolution is improved by more than 40% when a mass constraint is applied in

the alignment.

As previously described, a strong dependence of the invariant mass on the difference between

the momenta of two daughters appears when the detector is misaligned along a direction

perpendicular to the magnetic field. This can happen at LHCb in the form of a global shearing

along the degree of freedom Tx which is precisely perpendicular to the magnetic field. This

shearing is centred around the interaction point in the VELO and translates approximately into

a global shift of IT and OT along x. A mass constraint helps the alignment as demonstrated in

Fig. 2.6.
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structed D0 decays belong to a different sample than those used as input for the alignment.
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Figure 2.6: Average reconstructed D0 → K −π+ (left) and J/ψ →µ+µ− (right) invariant masses
as a function of the momentum difference between the two daughter particles using an
alignment without (red squares) and with (black dots) D0 mass constraint. The reconstructed
D0 decays belong to a different sample than those used as input for the alignment.

Using the slope s of the average mass as a function of the daughter momentum difference

(p+−p−) from Fig. 2.6 and combining it with Eq. 2.12 one can compute the curvature bias δω:

δω = 2meB s

m2 −m2−−m2+
(2.13)

In both the D0 and the J/ψ case the curvature bias from the alignment without mass constraint

equals δω = eB ×0.40×10−3 c · GeV−1. This gives confidence that the bias indeed comes from
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a single curvature bias. A study performed in Ref. [74] gives a relation between the curvature

bias and an expected misalignment of the T-stations along Tx with respect to the VELO:

δω

eB

1

∆Tx
= (2.20±0.05)×10−7 [c ·µm−1 · GeV−1]. (2.14)

The computation gives 1.8 mm which is perfectly consistent with the difference between the

alignment with and without mass constraint as illustrated on Fig. 2.7.

2.3 Momentum scale calibration

After the alignment, a so-called momentum scale calibration is performed [4, 40, 75]. Its pur-

pose is to calibrate the momentum measurement for each track using well known resonances

reconstructed at LHCb. It is needed because the alignment as well as the knowledge of the

magnetic field are not perfect. The alignment is made only for certain degrees of freedom

and can not take into account deformations, i.e. small discrepancies between the software

detector description and reality. The magnetic field has been measured in many thousand

points using a highly sensitive probe but there is still room for improvement. Especially the

knowledge of the global position and orientation of the magnetic field is limited to the mm

level.

The procedure of the momentum scale calibration is iterative. At each step an abundant

resonance (often J/ψ → µ+µ−) is reconstructed and a factor (1−α) is computed by which

the momenta of the final state particle need to be multiplied to shift the average of the
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reconstructed mass to the central value given by the Particle Data Group (PDG) [1]. The

computation is performed at first order using the approximation derived in Ref. [75]:

α= ∆m ·m

f −m2 with f = m2
++m2

−+ p−
p+

·m2
++ p+

p−
·m2

− (2.15)

where m is the average reconstructed invariant mass, ∆m is the difference between m and

the PDG mass and m± and p± are respectively the mass and the momentum in the laboratory

frame of the daughter particles. After the computation all final state particles have their

momenta multiplied by the (1−α) factor and the process starts again.

Once the procedure converged, the momentum scale is applied to the final state particles of

many other resonances in order to verify the consistency. An estimate of the uncertainty on

the α parameter is usually made from the spread of the remaining α computed using Eq. 2.15

for several other resonances. The final value of (1−α) is applied to all stable particles in each

analysis to ensure their momentum to be as accurately known as possible.

2.4 Alignment experience and performance

2.4.1 The TT operating temperature issue

Close to the end of the 2010 run it was noticed that the reconstructed mass of the J/ψ →µ+µ−

decays was not stable as a function of the data taking period, as shown in Fig. 2.8. In parallel

it was seen that alignments of different data taking periods did not converge to the same

constants or that the quality of a certain alignment is not constant like displayed in Fig. 2.9.

The suspect data were found to be runs 81310–81476 which represent 30% of the total inte-

grated luminosity of the 2010 data. It appeared that a change in the operating temperature of

the TT during this period had led to significant changes in the physical position of the sensors.

The operating temperature was changed from +5◦ to −5◦ in runs 81310–81375 and to −15◦ in

runs 81376–81476 before it was set back to +5◦. The purpose of these changes was to study

the reduction at lower operation temperatures of the silicon aging due to radiation damage.

Figure 2.8 uses J/ψ candidates reconstructed with an alignment based on data recorded during

a period where the TT operating temperature remained unchanged. Producing the same figure

than Fig. 2.8 but excluding all TT information in the reconstruction (but not in the alignment)

shows a lower trend as shown on Fig. 2.10. This confirmed the role of the TT in the instabilities

of the J/ψ mass.
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Figure 2.8: Reconstructed mass (top) and mass resolution (bottom) of J/ψ →µ+µ− decays as
a function of run number in 2010. The vertical lines correspond to changes in the operating
temperature of the TT. Points with large error bars correspond to low statistics runs.
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Figure 2.9: Distribution of TT residuals with alignments performed for two different periods
(left and right). The same alignment constants are used for both periods, determined with data
from the second period (on the right). The two periods differ by the TT operating temperature.

An alignment for each TT operating temperature was produced where only the TT was re-

aligned (using the same degrees of freedom described in Table 2.2). To correct for residual

steps due to effects that the alignment cannot correct for (non linear deformations, twisting,

etc.), the momentum scale calibration was also repeated separately for each TT operating

temperature condition. The stability plot of the J/ψ mass with all corrections applied is given

in Fig. 2.11. After all corrections the J/ψ mass remains stable within the statistical fluctuations.
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Figure 2.10: Reconstructed mass (top) and mass resolution (bottom) of J/ψ →µ+µ− decays
as a function of run number in 2010, without use of the TT information. The vertical lines
correspond to changes in the operating temperature of the TT.
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Figure 2.11: Reconstructed mass (top) and mass resolution (bottom) of J/ψ →µ+µ− decays
as a function of run number in 2010, using the new per-period alignments and the per-
period momentum calibrations. The vertical lines correspond to changes in the operating
temperature of the TT.

Another effect was also found when studying the reconstructed J/ψ mass as a function of the

angle between its decay plane and the direction of the magnetic field, illustrated on Fig. 2.12.

The per-period alignment using the D0 → K −π+ mass constraint also significantly reduces

this dependence which became stronger when the TT was operated at a different temperature.
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Figure 2.12: Reconstructed J/ψ → µ+µ− mass as a function of the angle between the decay
plane and the magnetic field for events before the TT temperature change (top left), events
after the TT temperature change (top right) and events after the TT temperature change with
the new alignment (bottom).

2.4.2 The particular case of the Tz degree of freedom

Due to the detector geometry, the Tz degree of freedom is weakly constrained in the alignment

as compared to other degrees of freedom like Tx. Only the few tracks that form a large angle

with the detector planes provide sensitivity along this direction. However the sensitivity is

strong enough to make the alignment converge when the Tz degree of freedom is left free for

large detector elements like full layers.

Some puzzling results appeared with the first alignments exploiting data from real pp colli-

sions in 2010. There was a discrepancy large enough to be physically impossible between the

surveyed values and the alignment constants in the Tz degree of freedom for both TT and the

T-stations.

For TTa (TTb) the difference between the z position given by the 2010 alignment procedure

and the corresponding position measured during the survey was of 1.5 mm (1.9 mm). This

difference is very difficult to explain since the survey has a precision below the mm level and

the alignment is expected to perform even better. For 2010 data it was decided to keep the

constants from the alignment procedure as reference for the reconstruction. However for 2011

data the Tz degree of freedom for the TT elements was removed from the alignment procedure
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Figure 2.13: Difference in the global position along z between the survey constants and
the 2010 alignment constants (left) or 2011 alignment constants (right) for IT (top) and OT
(bottom). The layout and colour code are the same as in Fig. 2.7. The two OT layers in OT3
appearing in white in the bottom right plot are the ones constrained to the survey values.

and the constants were fixed to their survey values. In 2012 and for the reprocessing of the

2011 data with Reco14, the TT elements were aligned again along the Tz degree of freedom.

In the T-stations there were two effects. First the overall z position of the whole T-system was

unstable in the alignment. This was corrected by fixing two OT layers from station T3 to the

surveyed z position for the 2011 and 2012 alignments.

A more astonishing result is that the distance between T1 and T3 differs between the alignment

result and the surveyed values by more than 10 mm. As shown in Fig. 2.13 it is not a uniform

deformation of the detector. The survey having been performed without the presence of

the magnetic field, a hypothesis was that detector elements close to the magnet move due

to the field. After more than one year a new survey was performed measuring the position

of the structure holding the IT boxes and a physical movement of around 5 mm for IT1

was measured when the magnetic field is switched on. This explains part of the observed

discrepancy between alignment and survey and shows that the alignment is sensitive along Tz

for a relative measure between the T-station layers.
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The remaining part of the discrepancy may be explained by the overall VELO z scale, the

limited knowledge of the magnetic field map (even though it was partially remeasured in 2011)

or the distance between the magnet and the VELO which is fixed in the alignment. No further

investigation was undertaken as these differences between the survey and alignment values

do not strongly affect the physics measurements.

2.4.3 Global alignment performance with 2010 data

For 2010 data the alignment strategy includes the previously described vertex and mass

constraints in addition to the high quality track input. A way to measure the performance of

the best alignment constants obtained is to look at the distribution of the so-called biased

track residuals for each aligned element, typically a readout-sector (corresponding to a ladder

for IT and a module for TT). This biased track residual is the track residual computed for a hit

that is included in the track fit, as opposed to the unbiased track residual in which the hit is

explicitly removed from the track fit.

The mean of the biased track residual distribution for a sector gives a hint on the remaining

local misalignment (a global misalignment of full detector boxes would have no effect). To

obtain an average estimate of the local misalignment in a full sub-detector, the means of the

biased track residual distributions for all readout-sectors are plotted in a histogram. These

histograms are called sector biased residuals and are shown in Fig. 2.14 for IT and TT using

the best alignment in 2010. The RMS of these distributions is a good measure of the average

remaining local misalignment and is equal to around 15 µm for both silicon trackers, IT and

TT.
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Figure 2.14: Distribution of sector biased residuals for IT (left) and TT (right).
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2.4.4 Global alignment for the 2011 and 2012 data sets

The alignment strategy for 2011 and 2012 was to perform several alignments during the year,

one for each data taking period. It was decided to use large D0 → K −π+ samples as mass

constraints. As previously described, the degrees of freedom left free in 2011 and 2012 are the

ones described in Table 2.2 with the exception of the Tz degree of freedom for the TT elements.

In addition two layers of OT3 are constrained to the surveyed values. The precision of these

alignments is comparable to what was obtained with 2010 data.
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b, Ξ−

b , Ξ0
b

and Ω−
b baryons

Using the whole data set recorded in 2011, corresponding to 1.0 fb−1 at
p

s = 7 TeV, the masses

of the Λ0
b , Ξ−

b and Ω−
b are measured by reconstructing the b baryons in exclusive b → J/ψX

modes. A search for the Ξ0
b → J/ψΞ−π+ decay is also performed.

3.1 Data and Monte Carlo samples

The data used for the mass measurements was recorded during the 2011 run, reconstructed

using Reco 12 and stripped with Stripping 17b. The total integrated luminosity is 1.0 fb−1 of pp

collisions with a centre-of-mass energy of
p

s = 7 TeV. Around half of the data was recorded

with the magnetic field pointing upwards and the other half with the magnetic field pointing

downwards.

Several Monte Carlo (MC) samples were generated as summarised in Table 3.1. All but the Ω−
b

sample were produced officially by the LHCb MC production team. All samples were applied

cuts at the generator level in order to remove decays with daughter particles flying outside

the LHCb detector acceptance. These cuts require the charged daughter particle tracks to

form an angle with respect to the z axis between 10 and 400 mrad and the muons between 5

and 400 mrad. The angle on which the cut is applied is taken at the point where a particle is

created, before it flies into the magnet region. The daughter particles of the long-lived hadrons

are excluded from these cuts.

The problem for theΩ−
b is that the generator (Pythia) generates random events of pp collisions

which do not necessarily contain the desired hadron. Whenever an event does not contain the

hadron, the generated event is discarded and the generation is repeated. The Ω−
b baryon is

generated very rarely as two s quarks and one b quark need to hadronize into a single particle.

Hence the computing time becomes dominated by the random generation of events and is too

large. The trick used to get around this issue consists of generating Ξ−
b baryons instead of Ω−

b

baryons, but giving to the Ξ−
b baryon in the simulation database the mass and the lifetime of

theΩ−
b and forcing it to decay into the wanted decay products (J/ψ Ω−). Applying this trick, by
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Table 3.1: Monte Carlo samples used in the analysis. The events have been required to pass acceptance
cuts (see text). The event type is a unique LHCb-internal identifier for each decay.

Simulated decay Event type Number of events
Λ0

b → J/ψΛ 15144103 8’000’000
Ξ−

b → J/ψΞ− 16145131 4’000’000
Ξ0

b → J/ψΞ(1530)0 16146141 2’000’000
Ω−

b → J/ψΩ− 16145132 500’000

writing a dedicated decay description file, and using the official LHCb simulation framework,

the sample of Ω−
b decay was simulated at the local computer cluster at EPFL.

3.2 Stripping and selection

All events passing any trigger line are considered in this analysis. The reconstructed decays

are Λ0
b → J/ψΛ, Ξ−

b → J/ψΞ−, Ξ0
b → J/ψΞ(1530)0 and Ω−

b → J/ψΩ− where the daughters are

reconstructed in the J/ψ → µ+µ−, Ξ(1530)0 →Ξ−π+, Ξ− → Λπ−, Ω− → ΛK − and Λ→ pπ−

decay modes. At LHCb the most common particles are directly reconstructed in all events

with very loose cuts as so-called Common Particles. The stripping lines building the b-baryon

candidates start from Common Particles of the J/ψ , the pions, the kaons and the Λ. The J/ψ

candidates are only reconstructed with muons from long tracks that also have hits in the

muon stations. The pions and kaons as well as the Λ daugthers are reconstructed as long or

downstream tracks.

The fact that both long and downstream tracks are used in the reconstruction implies that sev-

eral track type combinations are built. The Λ is reconstructed either with two long tracks (LL)

or with two downstream tracks (DD). The rare cases of LD or DL candidates are not considered.

The bachelor hadron (pion or kaon) from the Ξ− or Ω− decay can also be reconstructed as

a long or downstream track. Hence the Λ0
b candidates are either LL or DD and the Ξ−

b , Ξ0
b

and Ω−
b candidates are reconstructed as LLL, LDD or DDD, where the first letter denotes the

track type of the bachelor pion or kaon and the last two the track types of the Λ daughters.

The Ξ(1530)0 candidates are built by associating a long track pion with a Ξ− candidate. When

combining the final state tracks into candidates, the stripping algorithm applies the selection

summarised in Table 3.2.

Some quantities the stripping requirements are based on need to be defined. First the so-

called Impact Parameter (IP) is defined as the closest distance between a track and a vertex,

usually a Primary Vertex (PV). The IP χ2 of a track with respect to a vertex is defined as the

difference between the vertex χ2 of a fit where the considered track is included and the vertex

χ2 of a fit where the track is not included. The best PV with respect to a certain reconstructed

track or particle is chosen as the PV that gives the smallest IP χ2. Each b-baryon candidate
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Table 3.2: Requirements of the stripping selection. BPV DLS stands for the decay length significance of
the reconstructed particle with respect to the best PV. All mass windows are centered on the PDG mass
values [1].

Λ requirements Ξ− or Ω− requirements
Proton pT > 500 MeV/c Pion/kaon pT > 100 MeV/c
Pion pT > 100 MeV/c Pion/kaon IP χ2 > 9
Mass window ±15 MeV/c2 Mass window ±30 MeV/c2

Vertex χ2/ndf < 20 Vertex χ2/ndf < 25
BPV DLS (not for Λ0

b) > 5 BPV DLS > 5

Ξ(1530)0 requirements b-baryon requirements
Mass window ±150 MeV/c2 Λ0

b vertex χ2/ndf < 10
Vertex χ2/ndf < 25 Λ0

b mass window ±500 MeV/c2

Ξ−
b vertex χ2/ndf < 25

Other requirements Ξ−
b mass window ±300 MeV/c2

Pion PIDK < 5 Ξ0
b vertex χ2/ndf < 25

Kaon PIDK >−5 Ξ0
b mass window ±500 MeV/c2

All track χ2/ndf < 4 Ω−
b vertex χ2/ndf < 25

Ω−
b mass window ±500 MeV/c2

is associated with its best PV, assumed to be the proton-proton collision point where it is

produced.

After the reconstruction and selection of the candidates by the stripping, the full decay chain

is refitted using a fit based on a Kalman filter and implemented in the DecayTreeFitter (DTF)

tool [76]. The DTF tool also allows to constrain the invariant mass or the origin direction

of a reconstructed particle in the decay chain. For the present analysis, the masses of the

direct b-baryon decay products are constrained to their PDG value [1] and the b baryons are

constrained to originate from their associated PV.

The candidates passing the stripping selection undergo the so-called offline selection which is

cut-based and tuned to maximize the signal significance. The offline selection of Ξ−
b and Ω−

b

is optimized using MC simulated events to mimic the signal, real background events from the

mass sidebands and a signal yield estimate based on previous measurements [6, 7, 9] as well as

the preliminary LHCb measurement [77]. The yield estimate is used to scale the simulated

sample to reproduce the expected value. The quantity that is maximised is S/
p

S +B , where

S is the signal yield from a fit with a Gaussian function of the true signal candidates in the

scaled simulation and B the background fitted in data and computed in a mass window of

±30 MeV/c2 around the simulated mass of the b baryon. Figure 3.1 shows the signal and

background distributions of three observables used in the optimization, as well as the chosen

cuts.
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Figure 3.1: DTF χ2/ndf (top left), decay time (top right) and IP χ2 distribution of simulated Ξ−
b signal

candidates (black solid line) andΞ−
b candidates from sidebands in data (red solid line). All distributions

are normalised to unit area. The vertical dotted blue line shows the chosen cut value which maximises
the significance as described in the text.

The Λ0
b selection is taken from a previous mass measurement analysis [4] performed by

the EPFL group, as no large gain in terms of statistical uncertainty is expected from a re-

optimization. Because no expectations for the Ξ0
b yield exist, the offline selection criteria for

the Ξ0
b are taken to be identical to the ones for the Ξ−

b selection. Since only a ±150MeV/c2

mass window is applied to the Ξ(1530)0 candidates in the stripping and no further offline

cuts are added, some non-resonant component (Ξ0
b → J/ψπ+Ξ−) might contribute to the Ξ0

b
signal yield.

The offline selection is summarised in Tables 3.3 and 3.4. Since the topologies of the considered

decays are similar, the offline selections differ only slightly.

3.3 Track extrapolation and momentum scale

Many final state tracks, especially downstream tracks, are measured up to several metres away

from their origin vertex. Between the origin vertex and the measurement by a tracking detector,

a particle looses energy by radiating or interacting with detector material. Thus correcting for

these energy losses helps to improve the momentum resolution. Since the exact amount of

energy loss is unknown, an average correction is applied to the track when it is extrapolated
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3.3. Track extrapolation and momentum scale

Table 3.3: Requirements applied on Λ0
b → J/ψΛ candidates passing the stripping selection. All mass

windows are centered on the PDG mass values [1]. The quantity σJ/ψ
M is the per-event estimate of the

J/ψ mass uncertainty.

Λ requirements Λ0
b requirements

Vertex χ2/ndf < 20 Vertex χ2/ndf < 10.0
pT > 1000MeV/c DTF χ2/ndf < 5.0
Proper time significance > 5 Decay time > 0.3ps
Mass window ±6MeV/c2 Mass window 5470−5770MeV/c2

J/ψ requirements
Vertex χ2/ndf < 11

Mass window ±4.2×σJ/ψ
M

Table 3.4: Requirements applied on Ξ−
b → J/ψΞ−, Ξ0

b → J/ψΞ(1530)0 and Ω−
b → J/ψΩ− candidates

passing the stripping selection. All mass windows are centered on the PDG mass values [1]. The
quantity σM is the per-event estimate of the b-baryon mass uncertainty.

Λ requirements J/ψ requirements
Proper time significance > 0 Vertex χ2/ndf < 10

Mass window ±6MeV/c2 Mass window ±4.2×σJ/ψ
M

Ξ− or Ω− requirements b-baryon requirements
Vertex χ2/ndf < 10 DTF χ2/ndf < 4.0
Proper time significance > 0 Decay time > 0.25ps
Mass window ±11MeV/c2 σM < 14MeV/c2

IP χ2 < 16
Other requirement

Kaon PIDK > 5

back to its associated origin vertex using the TrackMasterExtrapolator algorithm. The size of

the correction depends on the flight distance. This reduces the effect of the energy loss on the

measured momenta and therefore on the measured masses, but some uncertainty remains.

The second correction of the measured track momenta is the momentum scale calibration.

This correction is performed in a more sophisticated way for 2011 data than that for the 2010

data described in Chapter 2. The overall technique however remains the same, a corrective

factor (1−α) multiplying the measured momentum of each track is computed in a way that

measured masses are shifted to their PDG values.

In a first step, an absolute α parameter is obtained by using the K + tracks of reconstructed

B+ → J/ψK + decays where the J/ψ mass is constrained to its known value. This permits to
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Table 3.5: Measured Λ0
b and B 0 masses (in MeV/c2) using Λ0

b → J/ψΛ and B 0 → J/ψK 0
S decays, after

momentum scale calibration, obtained in 2010 data [4] and in 2011 data with Stripping 17b. The
analysis is performed on the full sample, or on sub-samples split according to magnet polarity (“up”,
“down”), or to the track types used to reconstruct the Λ or K 0

S particle (“LL” for long-long, “DD” for
downstream-downstream). The first quoted error is the statistical uncertainty. The second quoted
error is the leading systematic uncertainty (coming from the momentum scale uncertainty).

2010 data [4] 2011 data (Stripping 17b)

Λ0
b 5619.19±0.70±0.30 5619.53±0.13±0.43

Λ0
b (up) – 5619.49±0.20±0.43

Λ0
b (down) – 5619.55±0.16±0.42

Λ0
b (LL) – 5619.27±0.21±0.37

Λ0
b (DD) – 5619.64±0.16±0.44

B 0 5279.58±0.29±0.33 5279.61±0.05±0.46
B 0 (up) – 5279.44±0.08±0.47
B 0 (down) – 5279.73±0.07±0.47
B 0 (LL) – 5279.48±0.09±0.39
B 0 (DD) – 5279.66±0.07±0.50

use an α parameter depending only on a single track and its kinematics. The α parameter is

computed in bins of the track slopes tx = px /pz and ty = py /pz because α is found to strongly

depend on them as shown in Fig. 3.2.

In order to ensure the stability of the momentum scale, the α parameter is given an offset

for different periods of data taking between which the running conditions changed. Large

samples of J/ψ → µ+µ− decays are available, hence the J/ψ mass is used for the period-

dependent correction of α. It has been verified that for different data-taking periods, the

relative corrections for different decays do not change.

The totalα parameter is of the order of 2−3 per mille and depends, as previously described, on

the data-taking period and on the slope of the considered track. To ensure that the momentum

scale calibration is accurate over a wide momentum range and for all track types, a cross-check

is performed where the residual α parameter is computed for several other resonances includ-

ing ones reconstructed exclusively with downstream tracks. Figure 3.3 shows the residual α

for several resonances after correction with the full calibration procedure described above.

In an ideal case, these residual biases should all be compatible with zero. In practice, their

absolute values seem to be smaller than 0.3 per mille, hence 0.3 per mille is chosen to be the

uncertainty on the α parameter.

To ensure that there is no other bias as a function of the magnet polarity or the final state track

type, the Λ0
b and B 0 masses are measured and compared to previous results. This study is

summarised in Table 3.5 and it shows that all measurements are consistent.
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Figure 3.2: Momentum scale correction α(tx , ty , q,polarity) in per mille as a function of the track
slopes tx and ty obtained with kaons from the B+ → J/ψK + decay mode for the case where the product
of the kaon charge times the magnet field polarity is positive (top) or negative (bottom). To apply the
correction each track momentum needs to be multiplied by 1−α(tx , ty , q,polarity).
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Figure 3.3: Remaining momentum scale bias α, extracted from the reconstructed mass of various
decay modes after the full period- and track-slope-dependent calibration procedure described in the
text. The black error bars represent the statistical uncertainty whilst the yellow filled areas also include
contributions to the systematic uncertainty from the fitting procedure, the effect of QED radiative
corrections, and the uncertainty quoted by the PDG [1] on the mass of the decaying meson. The
weighted average of all the measurements, ignoring correlations, is α = −0.06±0.02 per mille. The
K 0

S candidates are divided into two categories: K 0
S candidates built with long tracks (LL) and with

downstream tracks (DD).

3.4 Mass fit

The calculation of the b-baryon masses is performed with the DecayTreeFitter tool [76] where

the masses of all hyperons (Λ, Ξ− and Ω−) and of the J/ψ meson are constrained to their PDG

values. This helps reducing by a factor two the widths of the reconstructed b-baryon mass

distributions. The b-baryon candidates are also constrained to originate from their associated

PV.

An unbinned maximum likelihood fit is performed on the resulting reconstructed mass dis-

tributions. The fit has two components: one for the signal and one for the background. The

signal component is a single (double) Gaussian function for Ξ−
b , Ξ0

b , Ω−
b (Λ0

b) and the back-

ground component is an exponential function. The mean of the Gaussian function is left free

and in the case of the Λ0
b the two means are constrained to have the same free value. The

width(s) of the Gaussian function(s) is (are) left free for Ξ−
b (Λ0

b). For Ξ0
b and Ω−

b , the Gaussian

width is fixed to the one measured with Ξ−
b multiplied by the appropriate ratio extracted from

MC simulated events. The values are fixed to permit the fit to converge despite the limited

statistics available. The mass resolutions and ratios obtained from simulation are summarised

in Table 3.6.

To try to avoid fixing the width of the Gaussian function describing the Ω−
b signal component,

a simultaneous fit of theΞ−
b andΩ−

b is performed where both widths are left free but their ratio
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Table 3.6: Monte Carlo mass resolutions and their ratios. The uncertainties are statistical.

Decay mode σMC
M (MeV/c2) σMC

M /σMC
M(Λ0

b )
σMC

M /σMC
M(Ξ−

b )

Λ0
b → J/ψΛ 8.38±0.13 1

Ξ−
b → J/ψΞ− 8.86±0.06 1.057±0.017 1

Ξ0
b → J/ψΞ(1530)0 8.17±0.15 0.975±0.025 0.922±0.020

Ω−
b → J/ψΩ− 8.16±0.08 0.974±0.020 0.921±0.012

Table 3.7: Results of the fits to the invariant mass distributions of Fig. 3.4. The quoted uncertainties
are statistical.

Decay mode Signal yield Mass (MeV/c2) Width (MeV/c2)
σ1 = 6.37±0.46

Λ0
b → J/ψΛ 6870±110 5619.53±0.13 σ2 = 12.5 ±1.3

f1 = 1− f2 = 0.58±0.11
Ξ−

b → J/ψΞ− 111±12 5795.76±0.88 7.77±0.70
Ξ0

b → J/ψΞ(1530)0 3.2 +2.4
−1.7 5790.6 ±4.3 7.16 (fixed)

Ω−
b → J/ψΩ− 19.1±4.8 6046.0 ±2.2 7.16 (fixed)

fixed to the corresponding value in simulation. The result of this fit gives a larger statistical

uncertainty on the mass measurement (0.89 MeV/c2 and 2.3 MeV/c2 instead of 0.88 MeV/c2

and 2.2 MeV/c2 for Ξ−
b and Ω−

b respectively). The contribution to the systematic uncertainty

due to the fixed width of the Gaussian function describing the mass distribution of the Ω−
b

signal is ten times smaller than the statistical uncertainty, as shown in Section 3.6. Therefore

the total uncertainty is larger in the case of a simultaneous fit and this option is abandoned.

The fit ranges are 5.5–5.75 GeV/c2, 5.6–6.0 GeV/c2, 5.6–6.0 GeV/c2 and 5.8–6.3 GeV/c2 for Λ0
b ,

Ξ−
b , Ξ0

b and Ω−
b respectively. The four mass distributions and the result of the fits are shown

on Fig. 3.4. The values of the signal fit parameters are given in Table 3.7.

3.5 Likelihood scans and statistical significance

The significances of the Λ0
b and Ξ−

b mass peaks are large and do not need to be estimated.

However the Ξ0
b and Ω−

b signals need their significance to be calculated. Fixing the number

of signal events to zero and repeating the fit gives a different likelihood (L 0) than when

the number of signal events is free (Lmax). The log-likelihood difference between the two

scenarios is 2.7 and 23 for Ξ0
b and Ω−

b respectively. A naive calculation assuming that the

significance is equal to
√

2ln(Lmax/L0) results in significances of 2.3 σ and 6.5 σ respectively.

To illustrate at first sight the significance of each channel, so-called likelihood scans for the

number of signal events are given in Fig. 3.5. These scans show the calculated log-likelihood
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Figure 3.5: Likelihood scan of the number of signal events of Ξ0
b (left) and Ω−

b (right).

of the fit function that has all parameters fixed to the fitted values except the considered

parameter which is fixed to each value of the scan.

The significance of the Ξ0
b signal, being definitely below 3 σ, is not studied further. However

a more complete look is given to the one of the Ω−
b in order to take into account the look

elsewhere effect [78].
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Figure 3.6: The distribution of the negative log-likelihood difference in 2.5 million Ω−
b pseudo-

experiments with background only. The red arrow corresponds to the value observed in data.

Mass distributions are generated using the nominal Ω−
b fit function as probability density

function. The parameters of the fit are fixed to the values fitted in data with the exception of the

signal yield kept at zero. These distributions are pseudo-experiments in the sense that they are

other possible outcomes that could have been observed in data under the hypothesis that there

is no signal to be observed and that the fit function with its parameters perfectly describes

the underlying background mass distribution. A total of 2.5 M pseudo-experiments with

background only are generated and fitted with the nominal fit model. On Fig. 3.6, the negative

log-likelihood difference with respect to the fit with no signal component is plotted and it

appears that it never reaches the value observed in data (23). The distribution is exponential

and when performing an extrapolation it appears that around one generated distribution out

of 1010 would reach the log-likelihood difference observed in data. This leads to an estimate of

the statistical significance of the observed Ω−
b signal equal to 6.5 σ consistent with the naive

calculation.

3.6 Systematic uncertainties

The mass fit is repeated by varying in turn each parameter within its assigned uncertainty.

The difference between the measured mass obtained from this fit and the one from the

nominal fit is taken as the systematic uncertainty corresponding to the varied parameter. The

systematic uncertainties on mass differences are studied in a similar way. A summary of all

systematic uncertainties is given in Table 3.8. For the mass differences, only the systematic

uncertainties related to the energy loss correction are assumed fully correlated among the

different channels. The systematic uncertainty related to the momentum scale is propagated

to the mass differences and the other systematic uncertainties are assumed to be uncorrelated.

In the analysis presented here the systematic uncertainty on the Λ0
b mass is larger than the

systematic uncertainty of the 2010 data result [4]. This is due to the fact that the alignment
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Table 3.8: Systematic uncertainties (in MeV/c2) on the mass measurements and on their differences.

Systematic uncertainty on
Source of uncertainty masses mass differences

Λ0
b Ξ−

b Ξ0
b Ω−

b Ξ−
b −Λ0

b Ξ0
b −Λ0

b Ω−
b −Λ0

b
Average momentum scale 0.43 0.43 0.31 0.31 0.01 0.12 0.12
Energy loss correctiona 0.09 0.09 0.09 0.09 < 0.01 < 0.01 < 0.01
Hyperon mass constraint 0.01 0.07 0.06 0.25 0.07 0.06 0.25
Signal model 0.07 0.01 0.09 0.24 0.07 0.12 0.25
Background model 0.01 0.01 0.01 0.02 0.01 0.01 0.02
Quadratic sum 0.45 0.45 0.34 0.47 0.10 0.18 0.37
a The systematic uncertainties on the mass values are taken from the value for Λ0

b in the studies of
Ref. [4] and are assumed to be fully correlated.

strategy changed and fewer degrees of freedom are aligned as described in Chapter 2 leading

to a larger uncertainty on the momentum scale.

3.6.1 Momentum scale calibration

An uncertainty of ±0.3 per mille is assigned to the α parameter of the momentum scale as

described in Sec. 3.3. By applying anα parameter varied by 0.3 per mille to all final state tracks,

recomputing the masses and fitting gives a different mass measurement for each channel.

The difference between this value and the nominal measurement is taken as the systematic

uncertainty due to the momentum scale.

The limited knowledge of the detector alignment gives a large contribution to the momentum

scale uncertainty. Especially the detector length scale, known with a precision of 10−3 [79], is

expected to heavily contribute. Varying the scale within its uncertainty by manually changing

the horizontal and vertical slopes of the tracks by 10−3 in the reconstruction shows an average

change in α of ±0.13 per mille. This is covered by the uncertainty assigned on α giving

confidence in the estimation of this uncertainty.

The systematic uncertainty related to the momentum scale is the largest for all absolute mass

measurements. However, this uncertainty largely cancels in mass difference measurements.

3.6.2 Energy loss corrections

Energy lost by radiation and interaction with detector material is compensated in the recon-

struction with an average estimate, however there remains an uncertainty. The estimate of

the effect on the mass measurements coming from this remaining uncertainty is based on

the study performed in Ref. [4] where the energy loss corrections are varied by ±10% in the
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reconstruction. In addition these systematic uncertainties are assumed to be fully correlated

between the different mass measurements.

3.6.3 Hyperon mass constraint

The mass constraint applied to the J/ψ and hyperon candidates reduces the width of the mass

distribution and increases therefore the statistical power of the result. However, there is an

uncertainty emerging from the limited knowledge of the masses that are constrained. Espe-

cially the Ω− mass is known with a limited precision which affects the Ω−
b mass measurement

presented here.

The uncertainty on the Λ, Ξ− and Ω− masses is propagated analytically to the b-baryon

masses. The square of the reconstructed mass mb as a function of the J/ψ and the hyperon

masses (m J/ψ and mh respectively) and momenta (~p J/ψ and ~ph respectively) is given by the

expression

m2
b = m2

J/ψ +m2
h +2

√
(m2

J/ψ +p2
J/ψ )(m2

h +p2
h)−2~p J/ψ ·~ph . (3.1)

The expression of the uncertainty on the b-baryon massσ(mb) as a function of the uncertainty

on the hyperon mass σ(mh) depends on the ratio of the energies between the J/ψ (E J/ψ ) and

the hyperon (Eh) as follows:

σ(mb) =
∣∣∣∣∂mb

∂mh

∣∣∣∣ ·σ(mh) = mh

mb

(
1+ E J/ψ

Eh

)
·σ(mh). (3.2)

The sPlot technique is used to obtain the energy distributions of signal in data and the average

value is taken for the calculation. The uncertainty on the J/ψ mass is neglected because the

effect is small compared to the one arising from the hyperon mass uncertainty.

An additional study is performed to motivate the use of the hyperon mass constraints in

the case of the Ξ−
b and the Ω−

b . In the absence of this mass constraint, the resolution of

the Gaussian function describing the signal increases from 7.77 MeV/c2 (7.16 MeV/c2) to

8.73 MeV/c2 (7.60 MeV/c2) for Ξ−
b (Ω−

b ). Performing the nominal fit on the mass distribution

without the hyperon mass constraint in data increases the statistical uncertainty on the

measured mass from ±0.88 MeV/c2 (±2.2 MeV/c2) to ±1.02 MeV/c2 (±2.3 MeV/c2) forΞ−
b (Ω−

b ).

In both cases the total uncertainty is larger without the hyperon mass constraint.
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3.6.4 Signal modeling

For each b baryon, one or more alternative signal models are used in the fit and the maximal

change in the measured mass is taken as the systematic uncertainty on the signal model.

One alternative model is to constrain each of the two Gaussian functions used in the fit of

the Λ0
b mass distribution to describe either the LL or the DD component. The mean of both

Gaussian functions is forced to be the same and both widths are left free. The change in the

measured mass with respect to the nominal fit is less than 0.01 MeV/c2. Another model which

is the sum of two Crystal Ball functions [80] is used to take into account the radiative tail from

the J/ψ decay which might propagate to the invariant Λ0
b mass. The mean is again set to the

same value for both components and all other parameters left free. The expected change

from MC studies is 0.05 MeV/c2 and the one measured in data is 0.07 MeV/c2. Hence the

uncertainty on the signal model for the Λ0
b channel is taken to be 0.07 MeV/c2.

In the case of the Ξ−
b baryon, the fit is repeated once with the sum of two Gaussian functions

with common mean and free width and once with a single Crystal Ball function with all

parameters left free. The change between the mass fitted with these functions and the nominal

one is less than 0.01 MeV/c2.

The largest uncertainty on the Ξ0
b and Ω−

b signal models comes from the uncertainty on the

fixed width of the Gaussian function. As previously described, the width is the product of the

Ξ−
b width and the appropriate width ratio extracted from simulation. Hence to compute the

uncertainty on the fixed width, both contributions from the uncertainty on the Ξ−
b width as

well as the uncertainty on the ratio from simulation are summed in quadrature. The uncer-

tainty contribution from the Ξ−
b width is taken as the statistical error on the Ξ−

b width given by

the fit multiplied by the appropriate width ratio. Since the ratios are almost identical for Ξ0
b

and Ω−
b , this contribution is the same for both and equals ±0.64 MeV/c2. The uncertainty due

to the ratio extracted from simulation is estimated by calculating the fixed width using the Λ0
b

instead of theΞ−
b . By multiplying the measuredΛ0

b width in data and the appropriate MC ratio,

the calculated Ω−
b and Ξ0

b widths vary by less than 10% with respect to the Ξ−
b case. Therefore

the ratio is assumed to be known with a precision of 10%. Changing the ratio by 10% leads to a

change in the fixed width of ±0.72 MeV/c2 in both cases. The total uncertainty on the fixed

width is therefore ±0.96 MeV/c2. Finally the effect of the uncertainty on the fixed width on the

mass measurement is computed. This is done by varying the fixed width by + and − its error

and taking the largest difference in the measured mass with respect to the nominal value as

the systematic uncertainty related to the signal model.

3.6.5 Background modeling

For all channels the same alternative background model, a linear function instead of an

exponential one, is used. The fitted mass is only changed by a negligible amount of less than

0.01 MeV/c2. In order to also take into account the effect on the background estimate of the
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fitting range, the latter is changed to 5.65–5.95 GeV/c2, 5.4–6.2 GeV/c2 and 5.90–6.20 GeV/c2

for Ξ−
b , Ξ0

b and Ω−
b respectively. The change in the fitted mass value is taken as the systematic

uncertainty related to the background model.

The background in theΩ−
b mass distribution seems to present a slight excess in the lower third.

To quantify the effect of this excess, an ARGUS function [81] that has all parameters left free is

added to the background model in the fit. The difference between the mass obtained with

this alternative function and the nominal result is added as a contribution to the systematic

uncertainty on the Ω−
b mass.

3.7 Results

The final results of the absolute mass measurements for the significantly observed b baryons

are

M(Λ0
b) = 5619.53 ±0.13 (stat) ±0.45 (syst) MeV/c2,

M(Ξ−
b ) = 5795.8 ±0.9 (stat) ±0.4 (syst) MeV/c2,

M(Ω−
b ) = 6046.0 ±2.2 (stat) ±0.5 (syst) MeV/c2.

These are the most precise mass measurements of these weakly decaying b-baryons to date.

The Λ0
b measurement is in good agreement with the world average [1] and the Ξ−

b is in agree-

ment with the world average [1] at the 1.9 σ level. The Ω−
b measurement is in agreement with

the CDF measurement [7] and in disagreement with the D0 one [9]. Excluding the Ω−
b mass

measurement from D0 yields a new world average improved by a factor almost 20. A visual

summary of all experimental determinations of the Λ0
b , Ξ−

b and Ω−
b baryons is given in Fig. 3.7.

Each of the three mass measurements is in good agreement with the corresponding most

precise theoretical prediction given in Table 1.3. The total uncertainties of the LHCb measure-

ments are smaller than the uncertainties of the most accurate theoretical predictions. The

mass differences with respect to the measured Λ0
b mass, in which the systematic uncertainties

largely cancel, are

M(Ξ−
b )−M(Λ0

b) = 176.2 ±0.9 (stat) ±0.1 (syst) MeV/c2,

M(Ω−
b )−M(Λ0

b) = 426.4 ±2.2 (stat) ±0.4 (syst) MeV/c2.
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Figure 3.7: Measurements of the Λ0
b (top left), Ξ−

b (top right) and Ω−
b (bottom) masses. The new

averages are performed using the PDG prescription [1] which is a standard weighted least-squares
procedure assuming all measurements to be uncorrelated. The Λ0

b measurements are reported from
Refs. [2–5], the Ξ−

b measurements from Refs. [1, 6–8] and the Ω−
b measurements from Refs. [1, 7, 9].
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The LHCb mass measurement of the Λ0
b baryon performed with data from the 2010 run [4]

was M(Λ0
b) = 5619.19±0.70(stat)±0.30(syst)MeV/c2. The data taking conditions (alignment,

momentum scale calibration, etc.) were completely different and independent between the

2010 and 2011 runs. Hence the systematic uncertainties, with the exception of the one related

to the energy loss corrections, are assumed to be totally uncorrelated. The weighted average

of the 2010 result with the 2011 one is

M(Λ0
b) = 5619.44±0.13(stat)±0.38(syst) MeV/c2.

The Ξ0
b → J/ψΞ(1530)0 decay mode is seen in 2011 data with a significance of approximately

2.3σ and the Ξ0
b mass and its difference with respect to the Λ0

b mass are measured to be

M(Ξ0
b) = 5790.6 ±4.3 (stat) ±0.3 (syst) MeV/c2,

M(Ξ0
b)−M(Λ0

b) = 171.1 ±4.3 (stat) ±0.2 (syst) MeV/c2.

This result is more precise and in good agreement with the published CDF measurement using

Ξ0
b →Ξ+

c π
− [8] that yields 5787.8 ±5.0 (stat) ±1.3 (syst) MeV/c2 and with their preliminary

result [42, 43] of 5791.6 ±5.0 (stat) ±0.73 (syst) MeV/c2.

An article about the Λ0
b , Ξ−

b and Ω−
b mass measurements was published in the journal Physical

Review Letters [40]. The Ξ0
b result remains unpublished due to the low significance of the

signal.

3.8 Observation ofΞ0
b → J/ψΞ−π+ in the 2011 and 2012 data sets

A preliminary search for the decay Ξ0
b → J/ψΞ−π+ is performed on the complete data set

recorded in 2011 and 2012 corresponding to a total integrated luminosity of 3.0 fb−1. Like in

the previous analysis the reconstructed sub-decays are J/ψ →µ+µ− and Ξ− →Λπ− where the

Λ decays into pπ−. The purpose of this study is to estimate the significance of the signal in

order to motivate further studies. No momentum scale calibration is applied in this case and

no systematic uncertainties are considered. A full analysis of this decay mode requires more

time than available to carry out this thesis.

The candidates are built with version 20 of the stripping. In this version the cut on the

invariant Ξ−π+ mass is removed allowing the non-resonant contribution. However, removing

this cut increases the amount of combinatorial background by a factor between five and six.

Therefore the offline selection used for the mass measurements with 2011 data is tightened.

The requirement on the Ξ0
b decay time is increased to > 1.0 ps. In addition it seems that a

physics background from the decay Λ0
b → J/ψΛπ−π+ is peaking in the mass distribution. This

contribution is removed by requiring the Ξ− decay length significance to be larger than 3.
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Figure 3.8: Left: Invariant mass distribution of Ξ0
b → J/ψΞ−π+ candidates reconstructed in the full

data set of 3.0 fb−1. The result of the unbinned extended maximum likelihood fit is overlaid. Right:
Likelihood scan of the number of Ξ0

b signal events.

As for the b-baryon mass measurements, the invariant mass of theΞ0
b candidates is computed

by a refit of the whole decay chain where the J/ψ as well as the Ξ− masses are constrained to

their respective PDG averages [1]. An unbinned maximum likelihood fit is performed on the

invariant mass distribution where the signal is modeled with a single Gaussian function and

the background with an exponential function. The width of the Gaussian function is fixed to

the value obtained in the previous analysis. All other parameters are allowed to vary in the fit.

Figure 3.8 shows the invariant mass distribution and the overlaid fit result. A list of some fitted

variables are given in Table 3.9.

The significance of the Ξ0
b signal is obtained with the naive calculation described in Sec. 3.5.

The log-likelihood difference between the fit with and without a signal component is found

to be 18.0. Hence, from a naive perspective, the significance of the observed Ξ0
b signal is 6.0

standard deviations.

Since the momentum scale calibration is not applied, the mean of the fitted Gaussian function

is biased by an unknown amount. However, the uncertainty on the mean returned by the fit is

meaningful as it will not vary significantly when the momentum scale corrections are applied.

Therefore the expected precision of a mass measurement that would be performed with this

Table 3.9: Results of the fit to the invariant mass distribution of Fig. 3.8 (left). The quoted uncertainties
are statistical.

Parameter Value
Signal yield 31 ± 7
Signal mean mass [...] ± 2.0 MeV/c2

Signal width 7.16 MeV/c2 (fixed)
Background yield 232 ± 16
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data is ±2.0 MeV/c2. If a momentum scale correction is applied, the systematic uncertainty is

expected to be of the same order of magnitude than for the mass measurements with 2011

data. Hence the expected total uncertainty on a Ξ0
b mass measurement performed with 2011

and 2012 data is significantly lower than the currently most precise determination of the Ξ0
b

mass by CDF (±5.1 MeV/c2) [8].
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4 Lifetime measurements of Ξ−
b and Ω−

b

The previous chapter describes the significant Ξ−
b and Ω−

b signals observed with the first

1.0 fb−1 of LHCb data and how the masses of these baryons are measured. The same data is

used to measure the lifetimes of several b hadrons [41]. The result of these measurements are

τB+→J/ψK + = 1.637±0.004 (stat)±0.003 (syst) ps,

τB 0→J/ψK ∗0 = 1.524±0.006 (stat)±0.004 (syst) ps,

τB 0→J/ψK 0
S

= 1.499±0.013 (stat)±0.007 (syst) ps,

τΛ0
b→J/ψΛ = 1.415±0.027 (stat)±0.006 (syst) ps,

τeff
B 0

s →J/ψφ
= 1.480±0.011 (stat)±0.005 (syst) ps.

This chapter presents absolute lifetime measurements of the Ξ−
b and Ω−

b baryons performed

with the full 3.0 fb−1 of recorded data. This analysis strongly benefits from the expertise

and the techniques elaborated for the above-mentioned b-hadron lifetime analysis with

2011 data. Since the Λ0
b is reconstructed in a mode with a topology similar to those of the

Ξ−
b and Ω−

b , its lifetime is also measured with the same technique as a cross-check of the

methodology. The channels in which the b baryons are reconstructed are the same as those of

the mass measurements: Ξ−
b → J/ψΞ−, Ω−

b → J/ψΩ− and Λ0
b → J/ψΛ where the daughters are

reconstructed in the J/ψ →µ+µ−, Ξ− →Λπ−, Ω− →ΛK − and Λ→ pπ− modes.

4.1 Data samples

This analysis is based on the data sets recorded in 2011 and 2012. The total integrated lumi-

nosity is 3.0 fb−1 of pp collisions with a centre-of-mass energy of
p

s = 7 TeV in 2011 (1.0 fb−1)

and
p

s = 8 TeV in 2012 (2.0 fb−1). All events are reconstructed with Reco14 and pre-selected
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Table 4.1: Simulated data samples and conditions. The event type is a unique LHCb-internal identifier
for each decay.

Decay Event type Generated lifetime MC2011 events MC2012 events

Λ0
b → J/ψΛ 15144103 1.425 ps 1M 2M

Ξ−
b → J/ψΞ− 16145133 1.567 ps 4M 4M

Ω−
b → J/ψΩ− 16145134 1.390 ps 4M 4M

with dedicated lines in Stripping20.

An essential ingredient to this analysis are the simulated samples. Several million events of the

considered decays are generated by the official LHCb simulation production group. Both 2011

and 2012 data taking conditions are simulated and the respective data types are called MC2011

and MC2012. In order to mimic the recorded data, half of the events are simulated with a

positive magnet polarity and half with a negative one. The versions of the reconstruction

and selection algorithms are the same than for the recorded data samples. A summary of all

simulated samples used in this analysis is given in Table 4.1.

4.2 Trigger, stripping and selection

Only events that fire HLT1 lines Hlt1DiMuonHighMass or Hlt1TrackMuon and that fire HLT2

line Hlt2DiMuonDetachedJpsi on signal tracks are considered. The requirement that the signal

tracks (rather than other tracks in the event) fire the trigger line is called the Trigger On Signal

(TOS) requirement. The chosen HLT1 lines require the events to fire either of the two L0

lines L0Muon or L0DiMuon. The requirements of all the L0, HLT1 and HLT2 lines used in this

analysis are listed in Table 4.2.

Due to their requirements on the IP χ2 of some final state tracks and on the decay length

significance (DLS) of the b baryon, the two lines Hlt1TrackMuon and Hlt2DiMuonDetachedJpsi
have an efficiency which depends on the b-baryon decay time and are therefore called lifetime

biased lines. On the other hand, the selection criteria of the line Hlt1DiMuonHighMass have

no effect on the b-baryon decay-time distribution and this line is therefore called lifetime

unbiased. The biases due to the trigger requirements mainly affect the events with a low decay

time and they are taken into account in the lifetime measurements as described in Sec. 4.3.1.

The stripping lines used in the lifetime analysis are identical to the ones of the mass measure-

ments described in Sec. 3.2. They also bias the measured lifetime, especially for candidates

with a long decay time, and this is taken into account with the technique described in Sec. 4.3.2.

After having been pre-selected by the stripping, the events undergo a set of final selection cuts,

also called offline selection. The understanding of the quantities on which the requirements

are applied improved in the period between the mass and the lifetime measurements. Espe-
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Table 4.2: L0 trigger (top), HLT1 (middle) and HLT2 (bottom) requirements. DLS stands for the decay
length significance of the J/ψ candidate with respect to the best PV. The scale factor of 0.2 in trigger line
Hlt2DiMuonJpsi means that only 20% of the events satisfying the other criteria are randomly selected
to fire the line.

L0Muon L0DiMuon
SPD hit multiplicity < 600 SPD hit multiplicity < 900
Muon pT > 1480 MeV/c Muon1 pT × Muon2 pT > 1’680’000 MeV2/c2

Hlt1DiMuonHighMass (unbiased) Hlt1TrackMuon (biased)

Passed L0Muon or L0DiMuon
Muons have hits in VELO, T stations and muon chambers

Muon pT > 500 MeV/c Muon pT > 1000 MeV/c
Muon p > 6000 MeV/c Muon p > 8000 MeV/c
Track χ2/ndf < 4 Track χ2/ndf < 2
J/ψ mass > 2700 MeV/c2 Muon IP > 0.1 mm

Muon IP χ2 > 16

Hlt2DiMuonDetachedJpsi (biased) Hlt2DiMuonJpsi (unbiased, prescaled)

J/ψ vertex χ2/ndf < 25 J/ψ vertex χ2/ndf < 25
Track χ2/ndf < 5 Track χ2/ndf < 5
J/ψ mass window ± 120 MeV/c2 J/ψ mass window ± 120 MeV/c2

DLS > 3 Scale 0.2

cially the extensive effort on the signal optimization of the channel B 0
s → J/ψK +K − used to

measure the C P-violating phase φs [82] contributed to this improved understanding. Hence

the present offline selection is slightly revised compared to the one presented in Sec. 3.2. In par-

ticular the new understanding of the vertex and IP χ2 distributions suggests the corresponding

cuts to be slightly relaxed.

In order to reduce lifetime biases, a few additional cuts are applied. A bias can result from

wrongly-associated primary vertices (PV). Hence the IP χ2 of the b baryon with respect to

the next-best associated PV is required to be larger than 50. The next-best associated PV is

defined as the PV that gives the second smallest b-baryon IP χ2. Another bias results from

the geometrical VELO acceptance as seen by the b-baryon daughter particles. This heavily

depends on the position of the PV along the z axis. This effect is taken into account by a

procedure based on simulated events described in Sec. 4.3.2. However, it is known that the

simulation does not generate pp collisions as far from the nominal interaction point as what

is actually happening at LHCb. Hence a cut on the z coordinate of the PV associated to the b

baryon is applied to ensure the PV to lie within 100 mm around the nominal interaction point

(|zPV| < 100 mm). This cut removes approximately 6% of the signal candidates.
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Table 4.3: Offline selection. The mass windows are centred around the values from the PDG [1]. The
track clone distance is the Kullback-Liebler distance to the closest track [10] which helps to remove
clone tracks and the DLS is the decay length significance.

Λ Ξ− or Ω−

π/p track clone distance > 5000 Vertex χ2/ndf < 16
Mass window ±6 MeV/c2 Mass window ±11 MeV/c2

DLS (for Λ0
b only) > 3

Other requirement
J/ψ |zPV| < 100 mm

Vertex χ2/ndf < 16
Mass window ±60 MeV/c2 b baryon

DTF χ2/ndf < 4
π from Ξ−

b or K from Ω−
b Best PV IP χ2 < 25

Track clone distance > 5000 Next-best PV IP χ2 > 50
Kaon PIDK > 5

In each event, only a single b-baryon candidate is selected by taking the one with the lowest

DecayTreeFitter χ2. The total loss, including signal and background, due to events with

multiple candidates not passing this requirement is 0.32% for Λ0
b , 0.85% for Ξ−

b and 0.78% for

Ω−
b . All cuts applied in the offline selection are listed in Table 4.3.

4.3 Decay time acceptance

The expression decay time acceptance used hereafter refers to the trigger, reconstruction

and selection efficiency as a function of the reconstructed decay time. In this analysis the

total decay time acceptance is factorized into two independently studied parts: the part

coming only from the lifetime-biasing requirements of the trigger lines which affect mostly

low values of the decay time, called the lower decay time acceptance, and the part coming from

all reconstruction and selection effects which has a large impact for high values of the decay

time, called the upper decay time acceptance. The first is described in Sec. 4.3.1 and the second

in Sec. 4.3.2.

In the lifetime fit, the exponential function describing the b-baryon decay time distribution will

be multiplied by the two decay time acceptances in order to adequately model the distorted

distribution from recorded and reconstructed data.

4.3.1 Lower decay time acceptance

Candidates selected for this analysis did trigger HLT1 line Hlt1DiMuonHighMass (lifetime

unbiased) or Hlt1TrackMuon (lifetime biased) or both, and did necessarily trigger HLT2 line

Hlt2DiMuonDetachedJpsi (lifetime biased). Hence two categories of samples, according to
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which trigger line fired the events, are defined. The first has a lifetime bias only from HLT2

and the second suffers from two lifetimes biases, one from HLT1 and one from HLT2. The

definition of the sample categories are:

1. all events that are Hlt1DiMuonHighMass-TOS and Hlt2DiMuonDetachedJpsi-TOS
(singly-biased sample),

2. all events that are not Hlt1DiMuonHighMass-TOS but Hlt1TrackMuon-TOS and

Hlt2DiMuonDetachedJpsi-TOS (doubly-biased sample).

Simulated events and a lifetime unbiased HLT2 line (Hlt2DiMuonJpsi) are used to determine

the trigger efficiency as a function of the reconstructed decay time for each of the two cate-

gories. This unbiased HLT2 line is not used directly in this analysis because it is pre-scaled

by 20% in data, meaning that only 20% of the events that satisfy the trigger line criteria are

randomly selected to be accepted by the line.

The efficiencies are obtained as the ratio of two histograms of the reconstructed decay time. For

category 1, the efficiency is defined as the fraction of events passing Hlt2DiMuonDetachedJpsi-TOS
amongst all events passing Hlt1DiMuonHighMass-TOS and Hlt2DiMuonJpsi-TOS:

Hlt1DiMuonHighMass & Hlt2DiMuonJpsi & Hlt2DiMuonDetachedJpsi
Hlt1DiMuonHighMass & Hlt2DiMuonJpsi

. (4.1)

For category 2, the efficiency is defined as the ratio between the number of events of category

2 and the number of events passing the unbiased HLT1 and HLT2 lines:

!Hlt1DiMuonHighMass & Hlt1TrackMuon & Hlt2DiMuonDetachedJpsi
Hlt1DiMuonHighMass & Hlt2DiMuonJpsi

. (4.2)

The latter is not an efficiency properly speaking because it has an arbitrary normalisation.

This is not problematic because only the decay time dependence is important for the present

analysis, the normalisation being provided directly by the fit. The definitions of the two

sample categories can in principle be applied on data samples. However due to the lack of

data statistics, simulated signal events are used instead for the nominal results.

Since the online reconstruction algorithms were improved between 2011 and 2012, different

histograms are produced for the 2011 and 2012 data taking conditions using the corresponding

MC2011 and MC2012 samples. No significantly different histograms were obtained for the

different final state track type combinations (LL, DD, LLL, LDD and DDD). Hence one single

description of the lower decay time acceptance is used for each trigger category and each year

of data taking.
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Figure 4.1: Λ0
b (top), Ξ−

b (middle) and Ω−
b (bottom) lower decay time acceptances for trigger category

1. The acceptance extracted from MC2011 is on the left and from MC2012 on the right. The result of the
fit described in the text is overlaid.
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Figure 4.2: Λ0
b (top), Ξ−

b (middle) and Ω−
b (bottom) lower decay time acceptances for trigger category

2. The acceptance extracted from MC2011 is on the left and from MC2012 on the right. The result of the
fit described in the text is overlaid.
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The acceptance histograms are fitted with a function ε that has three free parameters called a,

t0 and n. This acceptance function is defined as

ε(t ) = Erf( a · (t − t0)n ) where Erf(t ) =
∫ t

0
e−x2

d x. (4.3)

This function is found to well describe all considered acceptances and has the property of

having a continuous derivative. The Λ0
b , Ξ−

b and Ω−
b efficiency histograms with the overlaid

fit results are shown in Figs. 4.1 and 4.2 for category 1 and 2 respectively. In the final lifetime

fit, the function describing the decay time distribution of the signal is multiplied by the

acceptance function corresponding to the category of the fitted events.

4.3.2 Upper decay time acceptance

The reconstruction and selection also have a non-flat efficiency as a function of the recon-

structed b-baryon decay time due to the finite detector acceptance and the correlation be-

tween selection variables and the decay time. These effects are assumed to be well-described

by the simulation since they are mainly of geometrical nature. The trigger also suffers from

the detector acceptance since an event needs to be located within the acceptance to trigger.

To take this into account but avoid effects from the lifetime biasing trigger requirements,

that are described in the previous section, the events used to determine the upper decay

time acceptance are required to fire the lifetime unbiased lines Hlt1DiMuonHighMass and

Hlt2DiMuonJpsi.

To probe the inefficiencies, simulated events are reconstructed, selected step by step and their

decay time distribution fitted with an exponential function at each stage. The hypothesis

that the decay time distribution is still well-described by an exponential function after full

reconstruction and selection is confirmed by the fit outcome. The difference between the fitted

lifetime and the lifetime used in the generation of the simulated samples, here called bias, is

reported for each step and shown in Fig. 4.3. The most significant bias appears when final

state tracks are required to be reconstructible, i.e. to have trajectories within the geometrical

detector acceptance (steps 1−10 in the figure).

The lifetime bias as a function of the reconstruction, stripping or selection steps for different

track type combinations are shown in Fig. 4.4 (Λ0
b), Fig. 4.5 (Ξ−

b ) and Fig. 4.6 (Ω−
b ). It appears

that the lifetime biases differ significantly for the different track type combinations. The biases

are especially strong if the final state hadron tracks are of the long type.
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Figure 4.3: Λ0
b (top), Ξ−

b (middle) and Ω−
b (bottom) lifetime bias for MC2011 (left) and MC2012 (right)

signal candidates reconstructed with all track combinations. Steps 1 to 11 show the effects of the
reconstruction and the stripping. Steps 12 to 20 are obtained by successively applying the offline
selection criteria. Steps 21 to 23 show the effect of the unbiased trigger lines. The detailed description
of each step is given in Appendix A. Similar plots for each track type combination are shown in Figs 4.4,
4.5 and 4.6.

65



Chapter 4. Lifetime measurements ofΞ−
b andΩ−

b

Step number
5 10 15 20

L
if

et
im

e 
b
ia

s 
[p

s]

­0.16

­0.14

­0.12

­0.1

­0.08

­0.06

­0.04

­0.02

0

0.02

LHCb simulation
Λ ψ J/→ 

0
bΛ

2011 ­ LL tracks

Step number
5 10 15 20

L
if

et
im

e 
b
ia

s 
[p

s]

­0.16

­0.14

­0.12

­0.1

­0.08

­0.06

­0.04

­0.02

0

0.02

LHCb simulation
Λ ψ J/→ 

0
bΛ

2012 ­ LL tracks

Step number
5 10 15 20

L
if

et
im

e 
b
ia

s 
[p

s]

­0.16

­0.14

­0.12

­0.1

­0.08

­0.06

­0.04

­0.02

0

0.02

LHCb simulation
Λ ψ J/→ 

0
bΛ

2011 ­ DD tracks

Step number
5 10 15 20

L
if

et
im

e 
b
ia

s 
[p

s]

­0.16

­0.14

­0.12

­0.1

­0.08

­0.06

­0.04

­0.02

0

0.02

LHCb simulation
Λ ψ J/→ 

0
bΛ

2012 ­ DD tracks

Figure 4.4: Λ0
b lifetime bias for MC2011 (left) and MC2012 (right) candidates reconstructed with LL

(top) and DD (bottom) track combinations. Steps 1 to 11 show the effects of the reconstruction and
the stripping. Steps 12 to 20 are obtained by successively applying the offline selection criteria. Steps
21 to 23 show the effect of the unbiased trigger lines. The detailed description of each step is given in
Appendix A.

The upper decay time acceptance is found to be well described by a linear function. Therefore

a slope parameter β is defined and the efficiency is modeled with the function (1+βt ) where

t is the reconstructed decay time. The β parameter is obtained by fitting the decay time

distribution of fully reconstructed and selected events from simulation. The events are fitted

with the function (1+βt) · exp(−t/τTrue) where τTrue is the lifetime used in the simulation.

Separate β parameters are obtained for 2011 and 2012 data. The fits on simulated data of the β

parameter for each decay mode and each year of data taking are shown in Fig. 4.7. The linear

description of the decay time acceptance seems to be a good model.
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Figure 4.5: Ξ−
b lifetime bias for MC2011 (left) and MC2012 (right) candidates reconstructed with LLL

(top), LDD (middle) and DDD (bottom) track combinations. Steps 1 to 11 show the effects of the
reconstruction and the stripping. Steps 12 to 20 are obtained by successively applying the offline
selection criteria. Steps 21 to 23 show the effect of the unbiased trigger lines. The detailed description
of each step is given in Appendix A.
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Figure 4.6: Ω−
b lifetime bias for MC2011 (left) and MC2012 (right) candidates reconstructed with

LLL (top), LDD (middle) and DDD (bottom) track combinations. Steps 1 to 11 show the effects of
the reconstruction and the stripping. Steps 12 to 20 are obtained by successively applying the offline
selection criteria. Steps 21 to 23 show the effect of the unbiased trigger lines. The detailed description
of each step is given in Appendix A.
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Figure 4.7: Distribution of the reconstructed decay time t in MC2011 (left) and MC2012 (right) after
the re-weighting for the track type combination abundances. The superimposed blue solid curves
are the results of fits with the function including a description of the upper decay time acceptance
(1+βt) ·exp(−t/τtrue), where τtrue is the generated lifetime and β the only free parameter in the fit.
The gray dashed curve is the function without the acceptance, i.e. exp(−t/τtrue). Below the decay time
distributions are shown the pull distributions of the fits including the acceptance description.

69



Chapter 4. Lifetime measurements ofΞ−
b andΩ−

b

Table 4.4: Relative abundances (in %) of the different combinations of track types for signal events.
The quoted uncertainties are purely statistical.

LL or LLL LDD DD or DDD

Λ0
b MC 21.3±0.2 – 78.7±0.2

Λ0
b data 27.2±0.7 – 72.9±0.7

Ξ−
b MC 6.5±0.2 51.0±0.4 42.5±0.4

Ξ−
b data 10.1±2.5 56.6±4.6 33.0±4.3

Ω−
b MC 7.2±0.1 54.5±0.3 38.3±0.3

Ω−
b data 16±7 67±11 18±8

Because the upper decay time acceptance seems to behave differently for the different track

type combinations, the abundances of these combinations are studied in simulation and in

data. The fractions of each type in both simulation and data are given in Table 4.4. The results

in MC2011 and MC2012 are identical within the statistical uncertainty, therefore only one

number is given.

It appears that the abundance of certain combinations is low which makes the computation

of individual β parameters difficult (ten times more simulation statistics would be needed to

achieve the same level of precision as for a unique β parameter). Therefore the differences

in abundances between simulation and real data are taken into account by re-weighting

the simulated candidates to reproduce the track type combination abundance observed

in data. Re-weighting for this abundance affects the β parameter by less than 20% of its

assigned uncertainty which has a relatively weak effect on the measured lifetimes. The values

of the β parameters obtained with re-weighted events from the simulated samples are given

in Table 4.5. The β values differ significantly for Λ0
b , Ξ−

b and Ω−
b but are consistent within

statistical uncertainties between MC2011 and MC2012.

The same function used to fit the β parameters is used in the lifetime fit of the data to describe

the upper decay time acceptance. However the β parameter remains fixed to the values

obtained from simulated events and the τTrue is replaced by the fitted signal lifetime parameter.

Table 4.5: β values (in ps−1) for simulated Λ0
b , Ξ−

b and Ω−
b decays. The quoted uncertainties are of

statistical nature due to the finite size of the MC simulated samples. The fits giving these results are
shown in Fig. 4.7

2011 2012

Λ0
b (−1.0±4.6)×10−3 (−6.1±3.5)×10−3

Ξ−
b (−13.1±4.8)×10−3 (−20.2±5.0)×10−3

Ω−
b (−23.3±3.5)×10−3 (−19.3±3.9)×10−3
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4.4 Decay time resolution

The reconstruction of the decay time, like for the mass, has a non-zero resolution. In the fit

this effect is taken into account by convolving the exponential function modeling the signal

and background decay time distributions with a Gaussian function. The width of this Gaussian

function is fixed in the final fit and taken from simulated events by performing a fit with a

Gaussian function of the distribution of the difference between the reconstructed decay time

and the simulated one (tReco − tTrue). Figure 4.8 shows the distribution of this difference for all

three channels and both years of data taking as well as the fit. It appears that a fit with the sum

of two Gaussian functions better describes the resolution. However, as shown in Sec. 4.6, using

one or two Gaussian functions does not affect the lifetime result at all. Therefore it is decided

to use only a single Gaussian in order to keep the procedure as simple as possible. A list of

the obtained values for the different channels and periods of data taking is given in Table 4.6.

The systematic uncertainties on these values and their propagation to the final results are

discussed in Sec. 4.6.

Table 4.6: Gaussian decay time resolution (in fs) obtained from simulation for the three channels
and both data taking conditions. The quoted uncertainties are statistical, due to the finite size of the
generated samples.

2011 2012

Λ0
b 45.8±0.3 47.5±0.2

Ξ−
b 47.2±0.3 49.1±0.4

Ω−
b 46.2±0.2 48.6±0.3
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Figure 4.8: Distribution for Λ0
b (top), Ξ−

b (middle) and Ω−
b (bottom) of the difference between the

reconstructed and generated decay time in MC2011 (left) and MC2012 (right). The results of a fit with
one Gaussian function (red dashed line) and a fit with the sum of two Gaussian functions (blue solid
line) are overlaid.
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4.5 Lifetime fit

During the setup of the fit, the evaluation of the systematic uncertainties and all sanity cross-

checks, the values of the fitted Ξ−
b and Ω−

b lifetimes were kept blinded. This means that the

lifetime result given by the fit remains hidden until the last step of the analysis in order to

avoid a bias from the person carrying out the measurements.

The b-baryon mass and decay time distributions are simultaneously fitted with a two-dimen-

sional extended unbinned maximum likelihood fit. For the calculation of the b-baryon mass,

the whole decay tree chain is refitted with the masses of the J/ψ and the primary hyperon (Λ

for Λ0
b , Ξ− for Ξ−

b and Ω− for Ω−
b ) constrained to their respective PDG values [1]. The decay

time is also computed with a full refit of the decay tree chain and, in addition, a full refit of the

associated PV from which all final state tracks of the candidate are explicitly removed. In the

decay time calculation the b baryon is constrained to originate from its associated PV but no

mass constraint is applied on any daughter.

The use of two different decay chain fitters for the invariant mass and decay time calculations

seems to be the optimal choice. Indeed the mass constraints applied in the decay chain fit for

the invariant mass lower the resolution by a factor two, strongly increasing the discrimination

between signal and background. However, if these mass constraints were applied in the decay

time computation, they would induce a strong correlation between the decay time and the

mass. Therefore the mass constraints are only used for the invariant mass calculation and are

not used for the decay time. By using this approach, no significant correlation between decay

time and mass is observed.

In the fit, the events are split into four categories corresponding to all possible combinations of

data taking periods (2011 and 2012) and trigger categories (singly-biased and doubly-biased).

Therefore eight free parameters for the yields of signal and background in each category are

determined.

In the mass distribution the signal is described with a single (double) Gaussian function for

Ξ−
b , Ω−

b (Λ0
b) with different mean values for data recorded in 2011 and in 2012. The widths

and the yield fraction between the two Gaussian functions in the Λ0
b case are common for all

categories and left free. The mass background is described with a single exponential function.

The fit ranges for the mass distribution are 5500–5750 MeV/c2 for Λ0
b , 5600–6000 MeV/c2 for

Ξ−
b and 5800–6300 MeV/c2 for Ω−

b .

The signal in the decay time distribution is modeled with an exponential function convolved

with a Gaussian function that has a fixed width for each data taking period as explained in

Sec. 4.4. This convolution is multiplied by the lower and upper decay time acceptances which

are determined from simulation as described in Secs. 4.3.1 and 4.3.2 respectively. Two (three)

exponential functions convolved as well with the Gaussian resolution function are used to

describe the decay time distribution of the background component for Ξ−
b , Ω−

b (Λ0
b). These

functions all have one free parameter in the exponent and their relative yields are left free in
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Table 4.7: Fitted parameters for the Λ0
b , Ξ−

b and Ω−
b signals. The quoted uncertainties are purely

statistical. The central values of the measured masses are meaningless since no momentum scale
calibration is applied.

Λ0
b → J/ψΛ Ξ−

b → J/ψΞ− Ω−
b → J/ψΩ−

Yield 18660±154 313±20 58±8
2011 mass [MeV/c2 ] 5621.08±0.13 5798.5±0.9 6051.2±2.4
2012 mass [MeV/c2 ] 5621.11±0.09 5799.5±0.7 6048.9±1.4
Mass resolution (1) [MeV/c2 ] 6.91±0.23 8.5±0.5 7.5±1.0
Mass resolution (2) [MeV/c2 ] 14.8±0.7 – –
Yield fraction (1)/(2) 0.70±0.05 – –
Lifetime [ps] 1.451±0.012 1.55+0.10

−0.09 1.54+0.26
−0.21

the fit. In order to remove a large fraction of the prompt J/ψ background, the decay time is

fitted in the range between 0.3 and 14 ps for all channels.

Finally, a total of eight parameters for the yields, four (six) parameters to model the mass

distribution and four (six) parameters to model the decay time distribution are left free in

the Ξ−
b , Ω−

b (Λ0
b) fit. The results of the fitted signal parameters are given in Table 4.7. The

yields equal approximately three times the yields observed in the mass measurements using

2011 data alone. Asymmetric statistical uncertainties are computed with MINOS [83, 84].

Figures 4.9, 4.10 and 4.11 show the projections of the fit results over the mass and decay time

distributions.

To ensure that the signal and background components in the decay time distributions are well

described by the fit, the decay time distribution for two mass regions is looked at separately.

The signal and background regions are defined in the mass distribution by cuts at three σ

around the measured mass. The results are also shown in Figs. 4.9, 4.10 and 4.11.

It appears that the Ξ−
b and Ω−

b distributions are well described. In the case of the Λ0
b , a

difference between the background description in the lower and upper mass sidebands is

seen in the region from 1 to 4 ps. This might be due to the B 0 → J/ψK 0
S background that is not

taken into account in the fit. Since the Λ0
b lifetime measurement is only a cross-check, this

shortcoming is not investigated further.
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Figure 4.9: Top: invariant mass (left) and decay time (right) distributions of Λ0
b → J/ψΛ candidates.

The result of the two-dimensional unbinned extended maximum likelihood fit is overlaid. Middle and
bottom: distributions and fit projections of the Λ0

b decay time in the signal mass region (middle left),
the background mass region (middle right), the lower mass sideband (bottom left) and the upper mass
sideband (bottom right). The pulls of the fit are shown below the distributions.
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Figure 4.10: Top: invariant mass (left) and decay time (right) distributions of Ξ−
b → J/ψΞ− candidates.

The result of the two-dimensional unbinned extended maximum likelihood fit is overlaid. Middle and
bottom: distributions and fit projections of the Ξ−

b decay time in the signal mass region (middle left),
the background mass region (middle right), the lower mass sideband (bottom left) and the upper mass
sideband (bottom right). The pulls of the fit are shown below the distributions.
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Figure 4.11: Top: invariant mass (left) and decay time (right) distributions of Ω−
b → J/ψΩ− candidates.

The result of the two-dimensional unbinned extended maximum likelihood fit is overlaid. Middle and
bottom: distributions and fit projections of the Ω−

b decay time in the signal mass region (middle left),
the background mass region (middle right), the lower mass sideband (bottom left) and the upper mass
sideband (bottom right). The pulls of the fit are shown below the distributions.
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4.6 Systematic uncertainties

Unless specified otherwise, the systematic uncertainties are assessed by performing an alter-

native lifetime fit where one parameter or part of the model is varied and taking the difference

between its lifetime result and the nominal fit result. The total systematic uncertainty is the

quadratic sum of all individual contributions. A summary of the systematic uncertainties is

given in Table 4.8.

4.6.1 Upper decay time acceptance

The upper decay time acceptance is described with a linear function of slope β. A first uncer-

tainty on the β parameter is of statistical nature and arises from the finite size of the simulated

samples. A second contribution takes into account the accuracy with which the simulation

describes this acceptance. The cause of a non-zero β parameter is the reconstruction and

selection efficiencies which depend mostly on the geometrical description of the system. It is

assumed that this description is at most wrong by ±50% in the LHCb simulation. Hence the

contribution to the β parameter uncertainty due to the difference between simulation and

data is taken as half its value. The total uncertainty on the β parameter is the quadratic sum of

these two contributions.

As described in Sec. 4.3.2, the β parameter is obtained from simulated events after a re-

weighting which reproduces the track type combination abundance observed in data. A check

was performed by computing the β parameter without the re-weighting and it appears that

the difference between the two results are well contained within the uncertainty assigned to β.

The systematic uncertainty on the lifetime measurement due to the limited knowledge of the

upper decay time acceptance is taken as the maximum difference between the result from a

fit where the β parameters are varied within their uncertainty and the nominal fit result. The

two β parameters for 2011 and 2012 are assumed to be fully correlated and are varied together.

Table 4.8: Summary of systematic uncertainties on the lifetime measurements in fs.

Source Λ0
b → J/ψΛ Ξ−

b → J/ψΞ− Ω−
b → J/ψΩ−

Upper decay time acceptance 10.2 29.0 45.0
Lower decay time acceptance 6.2 9.9 6.5

Signal modeling 3.1 5.9 11.4
Combinatorial background modeling 1.0 3.0 3.0

Physics backgrounds 1.1 0.1 11.1
Detector length scale 0.3 0.3 0.3

Quadratic sum 12.4 31.4 48.3
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4.6. Systematic uncertainties

Since this is the leading contribution to the total systematic uncertainty, a study testing the

statistical robustness of this result is performed and described in Sec. 4.7.

4.6.2 Lower decay time acceptance

Simulated events are also used to describe the lower decay time acceptance. Since this copes

with the efficiency of the trigger, other channels triggering on the same lines and having

similar decay topologies can be used as an alternative. The trigger lines considered here

heavily rely on the muons and the J/ψ . Another decay abundantly reconstructed at LHCb

with a J/ψ decaying to µ+µ− and which is similar to the ones considered in this analysis is

B 0 → J/ψK 0
S . As illustrated in Fig. 4.12, the same efficiency histograms as for the different

channels and categories are therefore made using real data from this channel. For each bin

of the histograms the mass distribution is fitted to extract the signal yields. An alternative

fit including the acceptance function obtained from these histograms from data instead of

the nominal ones from simulation is performed and the difference between its result and the

nominal lifetime result is assigned as the systematic uncertainty arising from the imperfect

knowledge of the lower decay time acceptance.

A second uncertainty related to the lower decay time acceptance arises from the limited size

of the simulated samples. This propagates to the uncertainty on the fitted parameters of the

acceptance function. The associated systematic uncertainty is therefore assessed by varying

in turn these parameters within their statistical uncertainty and by taking the largest observed

shift in the fitted lifetime. The total systematic uncertainty due to the limited knowledge of

the lower decay time acceptance is the quadratic sum of both contributions described here.
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Figure 4.12: B 0 → J/ψK 0
S lower decay time acceptances from 2011 data. The acceptance for trigger

category 1 (2) is on the left (right). The result of the fit described in the text is overlaid.
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4.6.3 Signal modeling

Decay time description:

The decay time resolution is fixed in the fit to values extracted from simulation. The

values are varied by ±10% which makes the lifetime fit result vary by less than 0.1 fs. In

another check, the single Gaussian function is replaced with a double Gaussian where

both widths and the yield ratio are fixed to values extracted from simulation. In this case

again the variation of the fitted lifetime is smaller than 0.1 fs. These two contributions

are negligible compared to the ones due to the mass description of the signal.

Mass description:

For theΞ−
b andΩ−

b fits the single Gaussian describing the signal in the mass distribution

is replaced with the sum of two Gaussian functions. The ratio between the widths

and the yields of the two Gaussian functions are fixed to the values obtained from

simulated events. The Λ0
b signal is alternatively fitted with the sum of two Crystal Ball

functions [80] instead of two Gaussian functions. All parameters of the two Crystal Ball

functions are left free but are common to the trigger and data taking period categories

with the exception of the central values which are different for 2011 and 2012 data.

It appears that with the alternative signal mass model the fitted Ω−
b lifetime changes

more than the ones of the Ξ−
b and Λ0

b baryons. To verify that the origin of this change

is not due to a statistical fluctuation a toy study is performed. In this study around

2’000 two-dimensional (mass and decay time) toy distributions are generated using the

nominal fit model and parameters. Fitting with both the nominal fit and the alternative

fit, it appears that the shift observed in data is expected. A more complete description

of this pseudo-experiment based study is given in Sec. 4.7.

4.6.4 Combinatorial background modeling

Decay time description:

The two (three) exponential functions describing the decay time distribution of the

combinatorial background are replaced with three (two) exponential functions. They

are still convolved with the Gaussian resolution function and all their parameters left

free. The change in the fitted lifetime is of 0.7 fs for Λ0
b and 3.0 fs for both Ξ−

b and Ω−
b .

It is again assumed that the relatively large changes for Ξ−
b and Ω−

b compared to the

change of the Λ0
b are due to the limited statistics of the former two channels.

Mass description:

Instead of an exponential function, a linear function is used to describe the combinato-

rial mass background. This alternative fit shifts the lifetime result by 0.7 fs for Λ0
b , 0.1 fs

for Ξ−
b and 0.4 fs for Ω−

b . In another alternative fit, the mass background is separately

modeled for events from the 2011 and from the 2012 data samples with one exponential

function for each year. The change in lifetime is 0.1 fs for Λ0
b , 0.3 fs for Ξ−

b and 0.2 fs for

Ω−
b this time.
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4.6. Systematic uncertainties

Once again a toy study with more than 2’000 generated mass and decay time distribu-

tions is performed. It shows that in all cases the fitted lifetime shifts observed in data

are as expected.

The total systematic uncertainty assigned to the combinatorial background modeling is taken

as the quadratic sum of the largest contribution from the decay time modeling and the largest

contribution from the mass modeling.

4.6.5 Physics backgrounds

A certain number of Ω−
b → J/ψΩ− decays might be reconstructed as Ξ−

b → J/ψΞ− (or vice-

versa) if the bachelor kaon (pion) is misidentified as a pion (kaon). To assess this background

the reconstruction of each channel is performed on simulation samples of the other. The

reconstructed physics background candidates are required to match the simulated decay

in order to avoid combinatorial background. Around 0.24 Ω−
b decays are expected to be

reconstructed as Ξ−
b and around 3.0 Ξ−

b decays as Ω−
b in the full 3.0 fb−1 data set and over the

full mass range considered in the fit. The mass and decay time distributions from simulation

scaled to the yields expected in 3.0 fb−1 of data are shown in Fig. 4.13.

The cross-feed background between Ξ−
b and Ω−

b are not strongly peaking in the mass distribu-

tions and are therefore mostly assigned to combinatorial background in the fit. To estimate the

potential lifetime bias, the nominal fit is performed on two simulated samples: one containing

and one not containing this physics background component. The difference between the two

fits is assigned as a systematic uncertainty due to the fact that these physics backgrounds are

not taken into account in the fit.

It can also happen that B 0 → J/ψK 0
S decays are reconstructed asΛ0

b → J/ψΛ due the misidenti-

fication of a charged kaon as a proton. Since theΛ0
b lifetime measurement is only a cross-check

of the methodology, the effect of this background is taken from the study of the Λ0
b lifetime

with only 2011 data [41]. In this analysis it has been shown that this is the major physics

background in Λ0
b → J/ψΛ and the bias is of 1.1 fs which we assign as the related systematic

uncertainty.

4.6.6 Detector length and momentum scales

The overall length of the VELO detector is known up to a relative precision of 2.2×10−4 [41].

The lifetime being proportional to the distance measurement, this number is directly taken

as the relative systematic uncertainty due to the imperfect knowledge of the detector length

scale.
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Figure 4.13: Distribution of the invariant mass (left) and the decay time (right) of reconstructed Ξ−
b

(top) and Ω−
b (bottom) decays in both Ξ−

b and Ω−
b simulated samples. All samples are scaled to the

corresponding yield expected in the 3 fb−1 of data. Considering the full mass range, around 0.24 Ω−
b

baryons are reconstructed as Ξ−
b and 3.0 Ξ−

b baryons as Ω−
b to be compared to the 313 Ξ−

b and 58 Ω−
b

signal candidates in data.

In the calculation of the decay time, the momentum scale only contributes at second order.

Indeed the decay time t is computed as

t = d

βγc
= dm

p
(4.4)

where d is the measured distance of flight, m the measured mass and p the measured mo-

mentum. The first order momentum dependence is contained both in m and p and therefore

cancels. A study performed for the lifetime measurements of different b-hadrons [41] shows

that without applying the momentum scale calibration, the measured lifetime is biased by

less than 0.1 fs, which is negligible.
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4.7. Checks with pseudo-experiments

4.7 Checks with pseudo-experiments

Approximately 2’000 pseudo-experiments were generated in the form of two-dimensional

mass-decay time distributions for both the Ξ−
b and Ω−

b channels. The function used in the fit

and the parameters returned by the nominal fit on data are used as the probability density

function for the generation.

In order to assess a bias from the fit model, the generated distributions are fitted with the

nominal fit function. The distribution of the difference between the lifetime fit result and

the value used in the generation, i.e. the measured lifetime in data, is shown on Fig. 4.14. It

appears that in both cases the mean of this distribution is consistent with zero and that the

width is consistent with the statistical uncertainty of the lifetime measurement. Therefore

confidence is gained that the fit model is appropriate and does not bias the result.

To take the check one step further, the so-called pull distribution is studied. It is defined as

τgen −τfit

σ+
τ

if τfit ≤ τgen

τfit −τgen

σ−
τ

if τfit > τgen (4.5)

where τgen is the generated lifetime, τfit is the fitted lifetime and σ±
τ are the positive and

negative statistical uncertainties returned by the fit. Figure 4.15 shows this distribution for the

Ξ−
b and Ω−

b pseudo-experiments and the result from a fit with a Gaussian function is overlaid.

The distribution is well-described with the Gaussian function, hence the asymmetric statistical

uncertainties returned by MINOS are appropriate.
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Figure 4.14: Difference between the lifetime fitted with the nominal fit and the value used in the
generation of the pseudo-experiments for Ξ−

b (left) and Ω−
b (right). The means are consistent with zero

and the widths are consistent with the statistical uncertainties of the final result.
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Figure 4.15: Asymmetric pull distribution of the fit on pseudo-experiments forΞ−
b (left) andΩ−

b (right).
The result of a fit with a Gaussian function is overlaid. The widths of the distributions are compatible
with one.

Since the statistical power of the data sample is weak a pseudo-experiment study is performed

to assess if the assigned systematic uncertainties are statistically robust. The same 2’000

generated distributions are fitted with all alternative fits. It appears that in all cases the

average difference with respect to the nominal fit is consistent with the assigned systematic

uncertainty.

The limited knowledge of the upper decay time acceptance is the origin of the largest contri-

bution to the systematic uncertainty. Hence the differences between the fit with the varied

β parameter and the nominal fit are shown in Figs 4.16 and 4.17. It appears that the average

shifts observed in the pseudo-experiments are in agreement with the values assigned to the

uncertainties related to the upper decay time.

4.8 The fully downstream alternative

As can be seen in Table 4.8, the uncertainty on the upper decay time acceptance is the largest

contribution to the total systematic uncertainty. Figures 4.4, 4.5 and 4.6 show that the bias

due to the upper decay time acceptance is the largest for track type combinations involving

long tracks. The associated systematic uncertainty being proportional to this bias (50% of the

β parameter) could be strongly reduced by using only downstream tracks and converting the

long tracks into downstream ones whenever possible.

Due to missing TT hits and the lower efficiency of the downstream tracking, the efficiency for

Ξ−
b and Ω−

b of reconstructing a final state long track as a downstream track is approximately

50%. Therefore around 87.5% of the LLL track type combinations (representing ∼ 10% of the

statistics) and around 50% of the LDD track type combinations (representing ∼ 55% of the

statistics) would be lost. In total the yield would decrease by around 8.75%+27.5% = 36.25%

and therefore the statistical uncertainty would increase by ∼ 25%.

84



4.8. The fully downstream alternative
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Figure 4.16: Difference between the Ξ−
b lifetime fitted with the nominal fit and the Ξ−

b lifetime fitted
with a fit where beta is subtracted (left) or added (right) its assigned uncertainty. The mean of the shift
is consistent with the assigned systematic uncertainty of 29.8 fs.
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Figure 4.17: Difference between the Ω−
b lifetime fitted with the nominal fit and the Ω−

b lifetime fitted
with a fit where beta is subtracted (left) or added (right) its assigned uncertainty. The mean of the shift
is consistent with the assigned systematic uncertainty of 55.4 fs.

The precision of the lifetime measurements is strongly limited by statistics. The Ξ−
b having a

lower statistical uncertainty is the channel whose total uncertainty would benefit the most

from an improvement of the systematic uncertainty. Assuming the extreme case in which the

whole systematic uncertainty would come from the upper decay time acceptance and would

decrease to zero by the use of only downstream tracks, the total uncertainty would change

from ±0.100 (stat)±0.030 (syst) =±104 (tot) ps to ±0.125 (stat)±0.000 (syst) =±0.125 (tot) ps.

This result is worse than the initial one and justifies the use of all track types.
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4.9 TheΛ0
b cross-check

Using the same techniques as for Ξ−
b and Ω−

b , the Λ0
b lifetime is measured to be

τ(Λ0
b) = 1.451±0.012 (stat)±0.012 (syst) ps.

Table 4.9 compares this result with the current PDG world average that contains measurements

from ALEPH [85], DELPHI [86], OPAL [87], CDF [88–90], D0 [91, 92] and ATLAS [5] as well as

with recent CMS [93] and LHCb [41, 94, 95] measurements. The table also displays the results

of sanity cross-checks where the data sample was split according to the year of data taking,

the magnet polarity and the track type combinations.

The single most precise determination of the Λ0
b lifetime is provided by LHCb [95] where the

lifetime ratio between Λ0
b and B 0 is measured and combined with the world average of the

B 0 lifetime. The high precision of this measurement comes from the fact that the considered

decay channels, Λ0
b → J/ψpK − and B 0 → J/ψπ−K +, are abundantly reconstructed at LHCb

and that the systematic uncertainties partially cancel in the ratio.

The approach of the absolute lifetime measurement using 2011 data presented in Ref. [41] leads

to larger statistical uncertainties than what is measured here with the same data set. Indeed

Table 4.9: Comparison between Λ0
b lifetime measurements in ps.

Measurement τ(Λ0
b) (stat) (syst) (tot)

Particle Data Group average [1] 1.429 ± 0.024
CMS Λ0

b → J/ψΛ (5 fb−1) [93] 1.503 ± 0.052 ± 0.031 ± 0.061
LHCb Λ0

b → J/ψΛ (1.0 fb−1) [41] 1.415 ± 0.027 ± 0.006 ± 0.028
LHCb Λ0

b → J/ψpK − (1.0 fb−1) [94] 1.482 ± 0.018 ± 0.012 ± 0.022
LHCb Λ0

b → J/ψpK − (3.0 fb−1) [95] 1.476 ± 0.009 ± 0.009 ± 0.013
This measurement (total 3.0 fb−1) 1.451 ± 0.012 ± 0.012 ± 0.017
- Only 2011 data (1.0 fb−1) 1.415 ± 0.019 ± 0.012∗ ± 0.022
- 2011 LL combinations 1.427 ± 0.037 ± 0.012∗ ± 0.039
- 2011 DD combinations 1.411 ± 0.023 ± 0.012∗ ± 0.026

- Only 2012 data (2.0 fb−1) 1.470 ± 0.014 ± 0.012∗ ± 0.018
- 2012 LL combinations 1.437 ± 0.027 ± 0.012∗ ± 0.030
- 2012 DD combinations 1.481 ± 0.017 ± 0.012∗ ± 0.021

- Only magnet up polarity 1.447 ± 0.017 ± 0.012∗ ± 0.021
- Only magnet down polarity 1.455 ± 0.016 ± 0.012∗ ± 0.020
- Only LL combinations 1.435 ± 0.022 ± 0.012∗ ± 0.025
- Only DD combinations 1.457 ± 0.014 ± 0.012∗ ± 0.018

∗ The systematic uncertainties on the sub-sample results are naively taken from the total result.
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4.9. TheΛ0
b cross-check

the strategy of the analysis presented in Ref. [41] is to minimize the systematic uncertainties

since most of the considered channels are limited by this uncertainty.

The two measured lifetimes based on the data samples from 2011 and 2012 present a difference

corresponding to 1.9 standard deviations. This might point towards a strong downward

fluctuation of the 2011 data and/or upward fluctuation of the 2012 data. Comparing to

the currently most precise measurement based on an independent data set [95], it seems

that the measurement from the 2011 data is the one that deviates. The discrepancy of 2.0

standard deviations appearing between the absolute lifetime measurement of Ref. [41] and

the measurement from the ratio [95] gives an additional hint that the decay Λ0
b → J/ψΛ

reconstructed with 2011 data presents indeed a downward fluctuation of the lifetime.

An ingredient to the lifetime measurement to which the result is highly sensitive is the descrip-

tion of the decay time acceptance. Hence it is verified that the discrepancy between the 2011

and 2012 results does not depend on the acceptances obtained from simulation. To check

this hypothesis for the lower decay time acceptance, the function describing the acceptance

in 2011 data is used with 2012 data and the other way around. The results of these fits are

identical to the nominal fit results at the 3 fs level, which does not explain the difference.

For the upper decay time acceptance, the 2011 and 2012 samples are split once more accord-

ing to the track types of the Λ daughters (LL or DD). Since the upper decay time acceptance

strongly depends on the track type, theΛ0
b lifetime measurements based on these sub-samples

show the dependence on the acceptance description. It appears that the fit results are consis-

tent and do not show a systematic trend. Hence it can be concluded that the difference is not

due to the description of the decay time acceptance.

In order to check whether the 2011 data suffer from a general systematic bias towards low

lifetime values, the Ξ−
b and Ω−

b lifetimes are separately fitted in the data sets of 2011 and 2012.

The results are shown in Table 4.10 and it appears that the trend of the Λ0
b is not confirmed.

Further confidence is gained that the 2011 and 2012 discrepancy is indeed of statistical nature.

Overall, all measurements are consistent with each other and with other high precision mea-

surements.
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Table 4.10: Comparison, in ps, between Ξ−
b and Ω−

b lifetime measurements based on sub-samples of
the data.

Measurement τ (stat) (syst) (tot)

Ξ−
b lifetime 1.55 +0.10

−0.09 ±0.03 ±0.10
- Only 2011 data (1.0 fb−1) 1.81 +0.20

−0.17 ±0.03∗ ±0.19
- Only 2012 data (2.0 fb−1) 1.39 +0.12

−0.10 ±0.03∗ ±0.11
Ω−

b lifetime 1.54 +0.26
−0.21 ±0.05 ±0.24

- Only 2011 data (1.0 fb−1) 1.23 +0.39
−0.28 ±0.05∗ ±0.34

- Only 2012 data (2.0 fb−1) 1.68 +0.35
−0.27 ±0.05∗ ±0.31

∗ The systematic uncertainties on the sub-sample results are naively
taken from the total result.

4.10 Results

The lifetimes of the Ξ−
b and Ω−

b baryons are measured to be

τ(Ξ−
b ) = 1.55+0.10

−0.09 (stat)±0.03 (syst) ps,

τ(Ω−
b ) = 1.54+0.26

−0.21 (stat)±0.05 (syst) ps.

These are the most precise measurements of these quantities to date. As shown in Table 4.11,

both results are in good agreement with the other measurements available from CDF. The

measured lifetimes also agree with the theoretical predictions summarized in Table 1.4 except

the one presented in Ref. [27]. However this particular prediction suffers from a strong bias

towards low lifetime values due to the general effort at this time to accommodate for the

unexpectedly low value of the measured Λ0
b lifetime. Since the results are still dominated by

the statistical uncertainty, more precise measurements will be easy to perform with the data

from the second run of the LHC.

Table 4.11: Comparison between the Ξ−
b and Ω−

b lifetime measurements from CDF and the ones
presented in this thesis. The quoted errors include statistical and systematic uncertainties. All values
are given in ps.

Measurement τ(Ξ−
b ) τ(Ω−

b )

CDF published [7] 1.56±0.26 1.13±0.47
CDF preliminary [42, 43] 1.36±0.15 1.77±0.48
LHCb (this thesis) 1.55±0.10 1.54±0.24
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5 Conclusions and outlook

The LHCb experiment at the Large Hadron Collider at CERN was designed to study C P-

violation and the c- and b-quark sectors. It recorded its first data from pp collisions in

December 2009 at a centre-of-mass energy equal to the LHC injection energy of 450 GeV.

During the years 2010 and 2011 it has collected data at a centre-of-mass energy of
p

s = 7 TeV

corresponding to a total integrated luminosity of 36 pb−1 in 2010 and 1.0 fb−1 in 2011. For

the run of 2012, the centre-of-mass energy was increased to
p

s = 8 TeV and pp collisions

corresponding to a total integrated luminosity of 2.0 fb−1 were recorded.

Several software alignments of the tracking stations using D0 → K −π+ vertex and mass con-

straints are performed with the data recorded in 2010. It has been shown that this technique

is robust and permits to tackle some problems related to weak modes. The Inner Tracker

and Tracker Turicensis detector positions are determined with an average precision of 15 µm.

In addition an issue due to different Tracker Turicensis operating temperatures that led to

physical movements of the detector is successfully addressed. Solving this problem is cru-

cial to several analyses at LHCb that rely on high precision momentum measurements. The

alignments of the detector with data recorded in 2011 and 2012 are cross-checked and their

understanding improved. The data of the second run of the LHC is soon to come and the

LHCb detector will be aligned with the procedure described here, including vertex and mass

constraints.

Very little is known about the baryons containing a b quark. The physics analysis part of this

thesis is dedicated to the study and measurement of basic properties of the lightest weakly-

decaying b baryons, called Λ0
b , Ξ−

b , Ξ0
b and Ω−

b and which contain the dub, d sb, usb and ssb

quark combinations respectively.

Using the data recorded in 2011, the masses of the Λ0
b , Ξ−

b and Ω−
b baryons are measured.

These measurements are the most precise to date. They are in agreement with the world

averages with the exception of the measured Ω−
b mass which is in agreement with the CDF

measurement but not in agreement with the D0 measurement. Since the uncertainties on the

Ξ−
b and Ω−

b mass measurements are dominated by the statistical contribution, a significant
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improvement can be expected from an analysis that would combine both the 2011 and 2012

data.

The Ξ0
b baryon is observed in the Ξ0

b → J/ψΞ−π+ decay mode using the complete data set

recorded at LHCb. If this analysis is continued, it can not only lead to a publication of the first

observation of this decay channel but also to the most precise determination of the Ξ0
b mass

to date.

The currently most precise determinations of the Ξ−
b and Ω−

b lifetimes are performed using

the data recorded in 2011 and 2012 at LHCb. The results are in agreement with the previous

measurements from CDF and with most of the few available theoretical predictions. More

statistics would not only help improving the statistical uncertainty of the results but also

allow a different strategy leading to reduced systematic uncertainties. Therefore a large

improvement of these measurements is expected when the data of the second run of the LHC

will be analysed.

Theoretical predictions of the quantities measured in this thesis are unprecise yet. Therefore

the results presented here provide a unique and valuable input for quantum chromodynamics

calculations in the low energy regime. More data at a higher centre-of-mass energy will allow

the LHCb experiment to push even further the b-baryon studies. In particular, they will allow

a more precise spectroscopy of the qqb systems (where q = u,d , s) and might open the door

for the first observation of a doubly heavy baryon like the Ξ+
bc or Ξ0

bc .
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A Upper decay time acceptance - step
definitions

The steps of progressive reconstruction and stripping used in the study of the upper decay

time acceptance in Figs. 4.3–4.6 are defined as follows:

1. No requirement

2. Muons have VELO hits

3. Bachelor has VELO hits (LLL, LDD) or no requirement (DDD) or no requirement (Λ0
b)

4. Λ daughters have VELO hits (LL, LLL) or no requirement (DD, LDD, DDD)

5. Muons reconstructible as long tracks

6. Bachelor reconstructible as long (LLL, LDD) or downstream (DDD) track or no require-

ment (Λ0
b)

7. Λ daughters reconstructible as long (LL, LLL) or downstream (DD, LDD, DDD) tracks

8. Muons reconstructed as long tracks

9. Bachelor reconstructed as long (LLL, LDD) or downstream (DDD) track or no require-

ment (Λ0
b)

10. Λ daughters reconstructed as long (LL, LLL) or downstream (DD, LDD, DDD) tracks

11. Full candidate is reconstructed and selected by the stripping

The steps of progressive offline selection are:

12. All track clone distances > 5000 and no track key duplicate

13. Kaon PIDK > 5 (Ω−
b ) or no requirement (Λ0

b , Ξ−
b )
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Appendix A. Upper decay time acceptance - step definitions

14. J/ψ vertex χ2/ndf < 16

15. Hyperon vertex χ2/ndf < 16

16. J/ψ mass within ±60 MeV/c2 window

17. Ξ− or Ω− mass within ±11 MeV/c2 window or no requirement (Λ0
b)

18. Λ mass within ±6 MeV/c2 window and (for Λ0
b only) Λ DLS > 3

19. DTF χ2/ndf < 4

20. b-baryon IP χ2 < 25

21. L0 triggered

22. Unbiased HLT1 triggered

23. Unbiased HLT2 triggered
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