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Abstract. We compute for the first time the near-side photon bremsstrahlung spectrum
associated with open heavy flavor propagating through a strongly-coupled quark-gluon plasma.
We expect that this observable will show measurably distinguishable differences between the
soupy slowdown in AdS/CFT compared to the sporadic stiff smacks from a weakly-coupled
pQCD plasma gas. Assuming the heavy quark loses energy from the usual AdS/CFT drag
setup we find that small angle photon radiation is suppressed in medium compared to vacuum
while wide angle radiation is enhanced.

1. Introduction
Experimental indications give a mixed picture of the relevant dynamics of the quark-gluon
plasma (QGP) created at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron
Collider (LHC). In particular, measurements of the distribution of low transverse momentum
(pT . 2 GeV/c) particles can be understood through near perfect viscous hydrodynamics with
a rapid hydrodynamization time [1–7] or from parton cascades [8–13]. Similarly, observables
related to single partons at high transverse momentum (pT & 15 GeV/c) can also be qualitatively
described using energy loss models based on either strong-coupling AdS/CFT [14–22] or weak-
coupling pQCD [23–39].

We therefore seek novel experimental handles to provide insight into the relevant dynamics
of the quark-gluon plasma (QGP) produced at the temperatures TQGP ∼ 400 MeV accessible at
RHIC and LHC. In particular with the massive increase in luminosity and detector sensitivity
that will come to the LHC after upgrades, the study of rare observables becomes possible.

A natural observable of potential interest is the measurement of the photon bremsstrahlung
associated with open heavy flavor propagation in QGP. Presumably the radiation pattern for
photons will differ depending on whether the heavy quark undergoes rare hard scattering events
as one expects from pQCD or if it rather is plowing through a strongly-coupled soup as described
by AdS/CFT. (Note that photon tagged heavy flavor production is different and refers to the
2→ 2 or 2→ 3 prompt hard photon production at heavy ion collision time t = 0 that is clearly
well described by standard perturbative field theory methods [40, 41].)

We provide here quantitative predictions for the photon bremsstrahlung produced by an open
heavy quark strongly-coupled to a strongly-coupled plasma. In this exploratory study we use
leading order heavy quark drag as derived from a steady state string setup in AdS/CFT [42, 43].
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The influence of fluctuations [44–46] in the momentum loss experienced by the heavy quark may
be an important contribution, but we leave it to future work.

2. Setup
We treat the heavy quark–anti-quark pair produced at the initial nuclear overlap at t = 0 and
moving in opposite directions as a classical current [47]

jµ(x) = Qe θ(t)
[
vµ(t)δ(3)(~x− ~x(t)

)
− ṽµ(t)δ(3)(~x+ ~x(t)

)]
(1)

coupled to the electromagnetic field

L = −1
4FµνF

µν + jµA
µ. (2)

In Eq. 1, Q is the fractional electric charge carried by the heavy quark, θ(t) is the usual
Heaviside step function, and

vµ(t) =
(
1, ~v(t)

)µ
ṽµ(t) =

(
1,−~v(t)

)µ (3)

~x(t) = ~x0 +
∫ t

0
dt′~v(t′).

For any generic current coupling to the electromagnetic field given by Eq. 2, one finds [16, 48]
that the momentum differential energy distribution of the emitted electromagnetic radiation is
given by

dE

d3k
= −1

2
1

(2π)3 j̃
µ(k)j̃µ(−k), (4)

where
j̃µ(k) ≡

∫
d4x e−ik·xjµ(x). (5)

2.1. Hard Production Electromagnetic Radiation
Since we will ultimately wish to compare to pQCD-based energy loss calculations for which
there are usually non-trivial UV and IR catastrophes associated with the factorization of the
hard production and subsequent dynamics, we wish to compute the difference in the radiated
energy in medium as compared to the vacuum. For the vacuum case, we have that, in the soft
radiation approximation, the heavy quark pair does not lose momentum after it is produced. In
this case we then take ~v(t) ≡ ~v0 and ~x(t) = ~v0t in Eq. 1. To perform the Fourier transform in
Eq. 5 one must insert a small convergence factor η. Evaluation of Eq. 5 then yields

j̃µvac(k) = lim
η→0

∫
d4x e−i[(ω−i η)t+~k·~x(t)] jµ(x)

= lim
η→0

Qe

[
vµ0

i ω − i~k · ~v0 + η
− ṽµ0

i ω + i~k · ~v0 + η

]

= −iQ e
[

vµ0

ω − ~k · ~v0
− ṽµ0

ω + ~k · ~v0

]
. (6)

After some manipulation and taking the motion of the quarks to be along the z direction, with
~k ·~v0 = ω v0 cos θ, ω ≡ k0, and v0 ≡ |~v0|, we find Eq. 4 yields for the differential energy radiated
in vacuum

dEvac
d3k

= 2
(2π)3 (Qe)2 1

ω2
v2

0 sin2 θ

(1− v2
0 cos2 θ)2 . (7)
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As is usual, we see that the total integrated energy radiated by the vacuum current grows
linearly with an artificially imposed UV cutoff ωmax. Interestingly, the inclusion of the pair of
quarks has tamed the usual IR divergence: the long wavelength physics knows that the total
charge remains 0 as the qq̄ pair separates.

2.2. AdS/CFT Induced Electromagnetic Radiation
The leading order energy loss of a heavy quark in a strongly-coupled N = 4 SYM plasma is
given by [42, 43]

d~p

dt
= −µ ~p, µ = π

√
λ

2
T 2

MQ
, (8)

where λ = g2Nc is the ’t Hooft coupling, T is the temperature of the plasma, and MQ is the
mass of the heavy quark.

From Eq. 8, and assuming motion is only in one dimension, we may solve for

p(t) ≡ |~p(t)| = p0e
−µ t

E(t) =
√
m2 + p2(t)

v(t) = p(t)/E(t) (9)

x(t) = 1
2µ ln

[
E0 + p0
E0 − p)

× E(t)− p(t)
E(t) + p(t)

]
.

We may plug in our results from Eq. 9 into our equation for the Fourier transform of the
current, Eq. 5, to find the Fourier transform of the current when the heavy quarks are subject
to the AdS/CFT heavy quark drag. Unfortunately, the result cannot be evaluated analytically.

3. Results
Once we have the Fourier transform of the current associated with a heavy quark pair separating
in a strongly-coupled AdS/CFT plasma, we may compute the difference in energy radiated by
the heavy quark in medium minus the energy radiated in vacuum. We show in Fig. 1 (left) the
result for mc = 1.5 GeV/c2 charm quarks and (right) mb = 4.75 GeV/c2 bottom quarks. Not
surprisingly, the biggest medium modification to ω2dE/d3k is centered at θmax ∼ mQ/pT ; one
can show numerically that the depth of the difference at θmax is a function of (mQ/pT )2.

One can understand the reduction in emitted photon radiation shown in the plot as follows.
In vacuum, the quarks are accelerated from rest to some non-zero velocity v0 associated with
the initial pT of the particles. The quarks in medium, on the other hand, immediately begin
decelerating due to the presence of the plasma. The produced photons will always have some
non-zero formation time. For the photons produced in-medium, the effective acceleration of
the quark is smaller than that for the quark in vacuum because of the immediate deceleration.
Therefore there is less radiation emitted from the in-medium quarks, and thus the suppression
observed in the subtracted spectrum.

4. Conclusions and Outlook
We presented the first prediction of photon bremsstrahlung for heavy quarks produced in a
strongly-coupled N = 4 SYM plasma. We derived the spectrum of emitted QED radiation
dE/d3k for a classical point current of given (potentially) time-dependent velocity in Eq. 4. We
then focused on the trajectory of a heavy quark strongly coupled to a strongly coupled plasma
as predicted by leading order AdS/CFT, in which case the momentum of the heavy quark is
modified according to the usual drag result dp/dt = −µp, where µ = π

√
λT 2/mQ. We plotted

the difference in the spectra of the photons produced in medium compared to those produced

Proceedings of SAIP2017

SA Institute of Physics ISBN 978-0-620-82077-6 393



Figure 1: (Colour online) dE/d3k|med − dE/d3k|vac for T = 400 MeV strongly-coupled N = 4
SYM plasma for (left) mc = 1.5 GeV/c2 charm quarks and (right) mb = 4.75 GeV/c2 bottom
quarks. For both plots the quarks have pT = 200 GeV/c, the photon has energy 20 GeV, and
λ = 12. In both plots, the thicker red curve corresponds to both quarks traversing an infinite
length plasma, the thick blue curve to both quarks traversing up to 5 fm of plasma, and the
thick black curve to both quarks traversing up to 1 fm of plasma. For the dashed green curve,
the quark moving in the z direction traverses a distance of up to 5 fm while the away side quark
traverses a 1 fm thick plasma; for the dashed orange curve, the distances are reversed.

in vacuum, ω2dE/d3k|med − ω2dE/d3k|vac, in Fig. 1. The presence of the medium suppresses
the radiation emitted by heavy quark compared to that in the vacuum. Given the very small
angle at which the modification is significant, θmax = mQ/pT � 1, it is currently unclear
whether the current experiments at the LHC could distinguish between a modification to the
production bremsstrahlung as shown here or a potential modification to the photons generated
in the hadronization process in which the heavy quarks become heavy mesons.
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