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ABSTRACT

In this dissertation I use lattice gauge theory to study models of electroweak symmetry
breaking that involve new strong dynamics.

Electroweak symmetry breaking (EWSB) is the process by which elementary particles
acquire mass. First proposed in the 1960s, this process has been clearly established by
experiments, and can now be considered a law of nature. However, the physics underly-
ing EWSB is still unknown, and understanding it remains a central challenge in particle
physics today. A natural possibility is that EWSB is driven by the dynamics of some new,
strongly-interacting force. Strong interactions invalidate the standard analytical approach
of perturbation theory, making these models difficult to study.

Lattice gauge theory is the premier method for obtaining quantitatively-reliable, non-
perturbative predictions from strongly-interacting theories. In this approach, we replace
spacetime by a regular, finite grid of discrete sites connected by links. The fields and
interactions described by the theory are likewise discretized, and defined on the lattice so
that we recover the original theory in continuous spacetime on an infinitely large lattice
with sites infinitesimally close together. The finite number of degrees of freedom in the
discretized system lets us simulate the lattice theory using high-performance computing.

Lattice gauge theory has long been applied to quantum chromodynamics, the theory of
strong nuclear interactions. Using lattice gauge theory to study dynamical EWSB, as I do in

this dissertation, is a new and exciting application of these methods. Of particular interest



is non-perturbative lattice calculation of the electroweak S parameter. Experimentally
S ~ —0.15(10), which tightly constrains dynamical EWSB. On the lattice, I extract S from
the momentum-dependence of vector and axial-vector current correlators. I created and
applied computer programs to calculate these correlators and analyze them to determine
S. T also calculated the masses and other properties of the new particles predicted by these
theories.

I find S Z 0.1 in the specific theories I study. Although this result still disagrees with
experiment, it is much closer to the experimental value than is the conventional wisdom
S 2 0.3. These results encourage further lattice studies to search for experimentally viable

strongly-interacting theories of EWSB.
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Chapter 1

Introduction

In this dissertation we discuss the application of lattice gauge theory to models of elec-
troweak symmetry breaking (EWSB) that involve new strong dynamics. After reviewing
technicolor models of dynamical EWSB, and lattice gauge theory methods that are used
to obtain non-perturbative predictions from strongly-interacting systems, we consider in-
vestigations of SU(3) gauge theory with Ny = 2, 6 and 10 fermions in the fundamental
representation [1, 2, 3, 4]. Our featured result is a lattice calculation of the electroweak S
parameter, which we find can be significantly smaller than naive scaling arguments would
suggest, though still larger than the experimental value.

The underlying questions motivating this research concern the origins of masses for
elementary particles. The explanation of elementary particles’ masses has been a deep
mystery since the 1960s proposal that the weak and electromagnetic interactions are com-
bined in a unified electroweak gauge theory [5]. Although electroweak unification initially
appeared incompatible with the existence of massive particles, this difficulty was overcome
by the discovery that electroweak gauge invariance could be hidden through a spontaneous
symmetry breaking process [6, 7, 8, 9, 10, 11]. While this generic picture of electroweak
symmetry breaking has been strongly supported by experiments since the 1970s [12, 13],
the dynamics underlying this process remain unknown. Understanding EWSB is a cen-
tral challenge in particle physics today, and is the main goal of the CERN Large Hadron
Collider (LHC).

A natural possibility is that EWSB is driven by the dynamics of some new strong force
at the TeV scale [14, 15, 16]. Such dynamical EWSB results from a process much like

spontaneous chiral symmetry breaking in quantum chromodynamics (QCD), the theory of
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the strong nuclear force. Because perturbation theory cannot make reliable predictions for
strongly-interacting theories, much of the conventional wisdom regarding dynamical EWSB
relies on this superficial similarity to QCD. By making the (unjustified) assumption that
new strong dynamics closely resemble the behavior of QCD, certain features of the former
can be estimated from the extensive experimental information available on the strong
nuclear force. Of particular interest is the electroweak S parameter [17, 18], which tightly
constrains QCD-like theories of dynamical EWSB.

The value of S in a given theory is related to that theory’s spectrum of vector and
axial-vector states. Precision electroweak measurements provide an experimental value
of S that is small or negative: for a “reference” Higgs boson mass of roughly 1 TeV,
S ~ —0.15(10) [13]. Taking experimental information on the spectrum of QCD and raising
it to the electroweak scale produces S = 0.32(3) [18]. For an SU(N.) gauge theory of
new strong dynamics with N; fermions in the fundamental representation, naive scaling

therefore suggests S ~ 0.3 , in considerable disagreement with experiment even for

Ny Ne
2 3
the minimal QCD-like case with Ny =2 and N, = 3.

This scaling argument is “naive” in the sense that it is not motivated by any first-
principles considerations, but primarily counts degrees of freedom, assuming that they do
not affect the dynamics of the theory. In fact, we know that as Ny increases for a fixed N,
these theories behave very differently than QCD [19, 20], making QCD-based conventional
wisdom unreliable. In order to determine the true theoretical status of EWSB through new
strong dynamics, we need to perform non-perturbative calculations. Lattice gauge theory
is the premier method for obtaining quantitatively-reliable, non-perturbative predictions
from strongly-interacting theories [21, 22].

In lattice gauge theory, we discretize euclidean spacetime into a regular grid of sites
connected by links. The fields and interactions described by the theory are likewise dis-
cretized, and defined on the lattice in such a way that the original theory in continuous

space and time is recovered when the lattice is taken to be infinitely large, with its sites in-

finitesimally close together. In particular, we recover Lorentz invariance in the continuum



limit, while gauge invariance is exactly maintained even with non-zero “lattice spacing”
between sites.

The finite number of degrees of freedom in the discretized system permits stochastic
simulation of the lattice theory using high-performance computing. Numerical techniques
for such simulations have steadily progressed for decades, primarily in application to QCD.
Lattice QCD is a mature field, in the sense that the systematic effects of working in a dis-
crete spacetime with a finite volume are understood and under control for most calculations
(cf. recent reviews [23, 24, 25, 26, 27] and notable results [28, 29, 30, 31, 32, 33, 34]). The
application of lattice gauge theory to strongly-interacting theories beyond QCD, especially
theories relevant to dynamical EWSB, is undergoing rapid development [35, 36, 37, 38, 39],
spurred by advances in both computing hardware and numerical algorithms. These calcu-
lations are still exploratory, and face severe practical challenges.

One difficulty that merits special note is our need for chiral symmetry on the lattice [40,
41, 42, 43, 44]. Common lattice discretizations of fermions explicitly break chiral symmetry,
obscuring the spontaneous chiral symmetry breaking that drives EWSB in technicolor
theories. We use domain wall fermions to address this issue [45, 46, 47, 48]. At the cost of
adding a fifth dimension to the lattice, this fermion formulation decouples the continuum
and chiral limits, making it possible (although computationally expensive) to recover chiral
symmetry at non-zero lattice spacing.

Ongoing studies of SU(3) lattice gauge theory with Ny = 6 and Ny = 10 fermions in the
fundamental representation have produced very interesting results [1, 2, 3, 4], which this
dissertation reports. More generally, non-perturbative explorations of strongly-interacting
gauge theories other than QCD will help improve our understanding of quantum field
theory itself, even if strong dynamics are not directly responsible for EWSB. Our featured
result is the first lattice calculation of the S parameter in a theory other than scaled-up
QCD. We find that S with Ny = 6 and Ny = 10 can be significantly smaller than QCD

dynamics would suggest, though still larger than the experimental value.



Outline

We include considerable detail in this outline to help the reader locate information of inter-
est. Briefly stated, Section 2 discusses the problem, Section 3 our methods and Section 4
our results.

In Section 2 we review electroweak gauge invariance and the spontaneous symmetry
breaking process that hides it. We begin in Section 2.1 by considering the standard model,
the simplest realization of this process. Some theoretically unsatisfying features of the stan-
dard model motivate the introduction of strongly-interacting alternatives in Section 2.2.
We consider chiral symmetry breaking in QCD to illustrate the “technicolor” scenario in
which a similar process at the electroweak scale drives EWSB. This framework must be
extended to communicate EWSB to the fermions, which we discuss in Section 2.2.2. In
Section 2.2.3 we briefly review some phenomenological challenges facing extended techni-
color. These include tension between fermion masses and flavor-changing neutral currents,
precision measurements of electroweak observables, and the large mass of the top quark.
In Section 2.2.4 we argue that some of these challenges can be addressed by theories with
approximately conformal (“walking”) dynamics, as opposed to QCD-like behavior. We
develop this concept in Section 2.3, and related to the “conformal windows” of gauge
theories.

Moving on to the lattice gauge theory techniques we use in our investigations, Sec-
tion 3.1 reviews the basic formulation of quantum field theories on the lattice, presenting
the euclidean path integral (Section 3.1.1) and simple lattice actions for gauge fields (Sec-
tion 3.1.2) and fermions (Section 3.1.3). Lattice fermions suffer from a “doubling problem”,
and we show how this is addressed both by Wilson fermions (which explicitly break chiral
symmetry) and overlap fermions (which preserve a modified chiral symmetry at non-zero
lattice spacing).

In Section 3.2 we present some numerical techniques we use in stochastic simulations,
dividing the work into the generation (Section 3.2.1) and analysis (Section 3.2.2) of gauge

configurations. For the former, we summarize the basic hybrid Monte Carlo (HMC) al-



gorithm. To illustrate simple lattice analyses, we discuss measurement of meson masses
and decay constants as well as the chiral condensate <E1/1> Next, in Section 3.2.3 we con-
sider some of the challenges of working on the lattice, focusing on autocorrelations between
measurements as well as systematic effects from working with massive fermions in a finite,
discrete spacetime.

We discuss domain wall fermions (DWFs) in Section 3.3, first relating them to the
overlap operator, then presenting their five-dimensional formulation in Section 3.3.1. Al-
though DWF possess exact chiral symmetry at finite lattice spacing in the limit that this
fifth dimension becomes infinitely long, numerical simulations must be performed on finite
lattices, and in Section 3.3.2 we discuss the residual chiral symmetry breaking that results.
Section 3.3.3 concludes this discussion by introducing the observables that enter our lattice
calculation of the S parameter.

Section 4 brings together the preceding discussions to consider the application of lattice
gauge theory to models of dynamical EWSB. We begin by presenting a brief overview of
the field in Section 4.1.1, reviewing the goals and status of this work, as well as some of
the unique challenges it faces. We then focus on the program and initial results of the
Lattice Strong Dynamics (LSD) Collaboration in Section 4.1.2, and dedicate Section 4.2 to
a detailed discussion of our lattice calculation of the S parameter. Section 4.2.1 presents
the formulation of S parameter on the lattice, and Section 4.2.2 discusses our data and
results. This discussion includes explicit consideration of the relevant systematic effects,
controlling which is one of the topics of ongoing research we summarize in Section 4.2.3.

Section 5 reviews the document and summarizes our conclusions.

Contributions

I carried out the work discussed in this dissertation as a member of the Lattice Strong

Dynamics (LSD) Collaboration. Within the LSD Collaboration, I was responsible for:

e developing custom software to measure the lattice observables that go into the cal-

culation of the S parameter, on top of the USQCD SciDAC software libraries;



e carrying out and validating these measurements on LSD Collaboration gauge config-

uration ensembles;
e analyzing these data to obtain results for S itself.

According to LSD Collaboration operating procedures, the final results were checked
through independent analyses by other collaboration members. Similarly, I carried out
such checks of other measurements, for example of my..s, Z4 and the light meson spec-
trum. My work on code development and validation was discussed and guided by regular
collaboration conference calls and through direct communication with other collaboration
members. The main aspect of LSD Collaboration work in which I did not play an active
role was the generation of the gauge configurations themselves.

Results presented below for m,.s, Z4, vector and axial-vector current correlators 11,
and related quantities such as the S parameter, are those produced by my own analyses.
Although as mentioned above I also performed some investigations of the light meson
spectrum, decay constants, <E¢> and other observables, analyses of these quantities by
other members of the LSD Collaboration include refinements above and beyond what
I implemented myself. For Ny = 2 and Ny = 6 I use those collaboration results in
this dissertation, while for ongoing Ny = 10 investigations, I present my own results. I

personally produced all figures in this document.



Chapter 2

Dynamical electroweak symmetry breaking

In this section we review the context of our studies: the as-yet-unknown mechanism re-
sponsible for the spontaneous symmetry breaking process that hides electroweak gauge
invariance, SU(2)r, x U(1)y — U(1)em. We proceed by considering the standard model
(SM), which introduces a single elementary scalar field as the agent of electroweak sym-
metry breaking. This scalar field has not yet been experimentally observed, and combined
with certain theoretically unsatisfying features of the standard model itself, this motivates
us to consider models of physics beyond the standard model (BSM) in which a new strongly-
interacting interaction is responsible for EWSB. Of course, these models have also have
not yet been experimentally confirmed, and face theoretical challenges of their own. We
conclude this section by considering ways in which at least some of these difficulties may
be overcome if the strongly-interacting theory exhibits approximately conformal (walking)

dynamics.

2.1 Electroweak symmetry breaking in the standard model

2.1.1 Electroweak interaction

The standard model joins the SU(2);, x U(1)y electroweak theory with quantum chromo-
dynamics [49, 50, 51], to form an SU(3)c x SU(2), xU(1)y gauge theory with fermions and
gauge fields transforming as illustrated in Table 2.1. Our notation most closely resembles
that used in [52, 53]; other useful reviews include [54, 55, 56, 57]. We omit discussion of
well-known complications such as the three generations of fermions, quark mixing described

by the Cabibbo-Kobayashi-Maskawa (CKM) matrix [58, 59], and massive neutrinos.



Table 2.1: Transformation properties of fermion and gauge fields in the
standard model.

Field SU@3)c | SU(2), | U(l)y | Lorentz
ur,
= 3 2 1/6 10
QL < dr, > / (2 )
UR 3 1 2/3 0,1)
dr 3 1 -1/3 | (0,3)
Ly = < VL 1 2 1/2 | (4,0)
er
€R 1 1 -1 (07 %)
G 8 1 0 (L, 1)
Wi 1 3 0 (3,3)
By L 1 0 (3,3)
We organize the standard model lagrangian as
ﬁSMzﬁg‘i‘ﬁf"‘ﬁH (2.1)
1 A ~Apv 1 a apy 1 v
Eg - _ZGUVG e ZWNVW e ZB;U'VBM (22)
Ly=> ¢ilpy. (2.3)
()
Here a =1, 2, 3; A= 1, ..., 8; the explicit sum runs over the fermions ¥ = Qr, ugr, dg,

L;, er; and the two-index objects are the usual field strength tensors, generically
Fl, = 0,F) — 0,F) + gf ""F\F] (2.4)
with structure coefficients % determined by
[T%,T7] = i f9kT*, (2.5)

The generators 7% = 0% and T 4= %/\A, where 0% are the Pauli matrices and A\ are

the Gell-Mann matrices. Finally, the sum over ¢ in Eqn. 2.3 involves gauge-covariant



derivatives D, that we can read off from Table 2.1:

iD,Qp = (i@u + g5 TAGE + pTWo + 9—613#> o (2.6)
tDyup = (10, + g3 lu‘i'?,uuR ()
iDydp = (0 + g5 TG %BH) ur (2.8)
iDLy = (i + 92T Wy - 9—213“) Ly (2.9)
iDyer = (i0, — g1B,) er. (2.10)

Before specifying L7, we note some features of the theory as it currently stands. First,
the gauge bosons Gﬁ, W, and B, all appear massless, since any mass term such as
%szBMB“ is not invariant under a gauge transformation B, — B, — gilaux.

Similarly, all fermions appear to be massless as well, due to the transformation prop-

erties in Table 2.1. Fermion mass terms have the form

myb = my (Prr +YpiL) (2.11)

where 9Yp = %(1 + v5)¢ = Pry and ¢, = %(1 — 75)1 = Pr are right- and left-handed
fermion fields, respectively. Because the standard model is a chiral gauge theory in which
right- and left-handed fermions are in different representations, we cannot construct gauge-
invariant fermion mass terms using only the fields listed in Table 2.1.

Based on these considerations, it appears that chiral gauge theories such as the elec-
troweak theory are unable to describe massive fermion and gauge boson fields. Ref. [5],
which introduced the SU(2);, x U(1)y electroweak theory, noted this feature as its “princi-
pal stumbling block”, and this is the content of our statement in Section 1 that “electroweak

unification initially appeared incompatible with the existence of massive particles”.

2.1.2 Electroweak symmetry breaking

Clearly, the purpose of Ly in the standard model lagrangian Eqn. 2.1 is to overcome this

stumbling block and allow the theory to describe the massive fields observed in nature.
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¢+

¢0
transforming in the (1,2, 1/2) representation of SU(3)c x SU(2)r, x U(1)y, with a gauge-

We accomplish this by introducing a (complex) elementary scalar doublet ® =

invariant potential engineered to produce spontaneous (global) symmetry breaking,
Ly = (D,®) (D'®) + p2®T® — |\|(®TD)% + Ly (2.12)

(We will return to the Yukawa interactions represented by Ly.) We have written the ®®
term with a positive sign to emphasize that the true vacuum state of the theory is not

® = 0, but can be chosen by a gauge transformation to be

@ - (2.13)

=% . , )
where v = /p2/|A[. Numerically, v = (Gpv/2)~ Y2 ~ 246 GeV, where G = 1.16637(1) x
107® GeV~2 is the Fermi constant. In essence, we are generalizing the Ginzburg-Landau

model of superconductivity [60] to a relativistic theory with gauge group SU(2);, x U(1)y.

A generic SU(2)r, x U(1)y gauge transformation

ex @I +if@)/2 [0

V2 v

(2.14)

would leave the vacuum (®) invariant if x! = x2 = 0 while x® = 3, which shows that the
spontaneous symmetry breaking preserves a U (1) subgroup of SU(2)r x U(1)y, which we
identify with electromagnetism. The other three independent gauge transformations corre-
spond to the Nambu—Goldstone bosons (NGBs) expected from the three broken generators
of SUR2) x U(l)y — U(1)em, [61, 62, 63].

We now parameterize

1
— , 215
V2 \uth@) ) Y2\ uth@) 219
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where h(z) is a real scalar field (the Higgs boson) with mass my = v/2u = vv/2), and U(x)
is a gauge transformation that we choose to be U(x) = 1 (the “unitary gauge”). This choice
of gauge appears to have removed the NGBs from the theory, but the remarkable fact noted
by Refs. [6, 7, 8,9, 10, 11], building on earlier work in the context of superconductivity [64,
65, 66, 67], is that the would-be-NGBs reappear as the longitudinal degrees of freedom of
massive gauge bosons. The gauge boson masses come from the kinetic term (DM(I))T(D‘L(ID),
which involves the gauge-covariant derivative

iDu® = (10, + goTW + 9—213“> ®. (2.16)

The relevant terms (since here we are not interested in exploring the couplings of the Higgs

boson to the gauge bosons) are

1 @Wi+ 1B, ga(W, —iW7) 0
A£mass = g ( 0 v > : : a a (217)
go(Wi+iW2) —gW2 +g1B, v
2
_ gv® ( - ) V95 + 91 Au/ 92 V2WE 0
8 VW, V95 + 9172/ 92 1
= my WIW ™+ tm3 2, 2",
In the second line, we define
WlFiWw? W3 —gB W3+ g B
Wr=_—#__ 1 a7 Z, = P2 9 A, = P2 T9 (2.18)

corresponding to the physical W, Z and photon, respectively. The photon is massless,

and the masses of the W+ and Z are

1 2 2
VI 9L, MW (2.19)

mw = —gov my =
W= 592 Z 2 cosf,’
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where we define the weak mixing angle

92 g1

V95 + 91 Vs + 9

Finally, in the standard model fermion masses are also obtained by introducing just

cos b, = sinf,, = (2.20)

this single field ® with the spontaneous symmetry breaking potential of Eqn. 2.12. All we

need are the gauge-invariant Yukawa interactions stored in Ly,
EYZ_Z/W{@L@) YR+ YR <¢T'W)}, (2.21)
P

where )\ is an arbitrary dimensionless coupling for each fermion field ¢). The fermion mass

is now obtained by expanding around the vacuum of Eqn. 2.13,

)\¢v — O _
Ly =—Y 249, - Yr+vp( 0 1 )9 (2.22)
Y %:\/i L 1 R R< ) L

1
= My = —2/\¢U. (2.23)

V2

While electroweak symmetry breaking is necessary for fermion masses generation, it is not
a sufficient condition, and there is no requirement that the agent of EWSB also provide
masses to the fermions. The fact that ® plays both roles in the standard model makes this

theory pleasantly simple and efficient.

2.1.3 Theoretically unsatisfying features of the standard model

Of course, theoretical simplicity is not the reason the model discussed above became the
standard model of particle physics. The SU(2)r, x U(1l)y — U(1)em EWSB framework
in general predicted the existence of the weak neutral current discovered in 1973 [68, 69],
and explained charged and neutral weak currents in terms of massive W* and Z gauge
bosons experimentally observed roughly a decade later [70, 71, 72, 73, 74]. More pertinent
to the standard model itself was the excellent agreement that gradually developed between

precise measurements of a wide variety of observables and the predictions of the theory [12].
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(The demonstration that the standard model is renormalizable also contributed to its
appeal [75], but this fact holds less significance in the context of present-day attitudes
concerning effective field theories.) At present, the standard model is consistent with all
experimental data [76, 13]. Although global electroweak fits prefer a Higgs boson mass
(mp ~ 95 GeV) that has been experimentally excluded by direct searches, a range of
possibilities 120 GeV < my, < 150 GeV remains viable [77].

Despite the continued phenomenological success of the standard model, there is broad
consensus that this theory is likely to break down around the TeV-scale energies that are
now being probed at the CERN Large Hadron Collider (LHC). (Of course the standard
model does not provide a quantum theory of gravity, but the most natural scale for such
physics is the Planck scale Mp; ~ 10! GeV, well above the TeV scale.) In part, this is
due to the discovery of phenomena such as dark matter that cannot be explained by the
standard model [78]. In addition, there are several aspects of the standard model that are
widely considered theoretically unsatisfying.

To motivate considering theories beyond the standard model, we will qualitatively re-
view some of these arguments. The first is that although the standard model provides a
description of EWSB; it does not provide any dynamical explanation of the process. In-
stead, the scalar field ® and its potential in Eqn. 2.12 are introduced by hand in order
to produce spontaneous symmetry breaking. All fermion masses and mixings are likewise
arbitrary free parameters, and the Yukawa couplings in Eqn. 2.22 range over many orders
of magnitude from y; ~ 1 for the top quark to y. ~ 107 for the electron (and even smaller
if the same framework is extended to accommodate non-zero neutrino masses). The simple
fact that @ is even an elementary scalar field may cause concern, since all known elementary
particles are either fermions or gauge bosons.

The triviality of scalar field theory in four dimensions may explain why no elementary
scalar fields have yet been observed. Triviality is the statement that the [ function de-

scribing the scale dependence of the coupling A(x) in Eqn. 2.12 is positive [79, 80]. In
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perturbation theory, the leading-order term is

OX 3N
A) =p— == +0\)>0. 2.24
BN = G = 5o+ O) > (224
(Comparable results hold non-perturbatively, established by both analytical considera-
tions [81, 82, 83], and numerical lattice simulations [84, 85, 86, 87, 88, 89].) This requires
that the standard model be considered an effective field theory valid only up to some scale

A at which new physics become important. Solving Eqn. 2.24 then gives

1 3 Ao\ 171 272
Alw) ~ A(Anewﬁﬁlog( . >] = 3log (new/p0)’ (2.25)

showing how the coupling flows to the trivial fixed point A — 0 as ﬁ — 0. The
connection between the coupling and the Higgs boson mass mj; = vv2\ requires that
my < 700 GeV in order for the theory to have any range of validity. If we want the
standard model to be valid up to the Plank scale around which quantum gravitational
effects should become important, we need my, < 200 GeV [89].

There is another problem with trying to push the cutoff A, up to very high scales,

namely that quantum corrections make m,% quadratically sensitive to A2 In the absence

new-
of some new physics to stabilize the electroweak scale, extreme fine-tuning is necessary to
maintain a large hierarchy between mj, and A,e,. Supersymmetry is a popular way to
stabilize the electroweak scale, but supersymmetric models accomplish this by introducing
a large number of elementary scalar fields, along with O(100) new free parameters [90].
These considerations lead to the general expectation that some new physics will be
found around the TeV scale. To motivate the form of new physics we consider, let us con-
clude this section by recalling our comment above that the standard model is a generaliza-
tion of Ginzburg-Landau phenomenology. In the microscopic theory of superconductivity
due to Bardeen, Cooper and Schrieffer (BCS) [91, 92], the scalar order-parameter field of

Ginzburg and Landau is supplanted by the dynamics of the fundamental fermionic degrees

of freedom. In the next section we will see how something similar can be done to obtain
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electroweak symmetry breaking without a elementary scalar fields.

2.2 New strong dynamics

Motivated by the considerations above, we want to consider theories in which electroweak
symmetry breaking is due to the dynamics of elementary fermion fields. Specifically, we
will focus on “technicolor” (TC) theories in which dynamical EWSB results from chiral
symmetry breaking (xSB) in a new, strongly-interacting sector. We begin by considering
quantum chromodynamics (QCD) as a concrete example of xSB due to strong interactions,
and show how this process can produce EWSB. Then we need to extend the framework
to accommodate fermion masses, which leads us to a discussion of some phenomenological
challenges that this approach faces. We conclude this section by considering how at least
some of these challenges may be addressed if the running coupling of the theory evolves
very slowly, or “walks”. Recent reviews of technicolor and related theories include Refs. [93,

94, 95, 96, 97, 98].
2.2.1 Technicolor

It is instructive to begin our discussion of technicolor by considering what would happen
if we were to remove L from Eqn. 2.1, but leave the rest of the theory the same (still
considering, for simplicity, a single generation) [52, 99]. Then the theory possesses a global
SU(2)r x SU(2)g chiral symmetry that is spontaneously broken to the vector subgroup
SU(2)y by the strong QCD interaction [61, 62, 100]. This is described by the appearance

of a non-zero vacuum expectation value for the chiral condensate

<E¢> = <EL¢R + ER¢L> # 0. (2.26)

Let us see how this spontaneous chiral symmetry breaking produces electroweak symmetry
breaking.
Three massless Nambu—Goldstone bosons (the pions 7%) appear as a result of chiral

symmetry breaking, in terms of which we can formulate an effective low-energy field theory
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known as chiral perturbation theory (xPT) [101, 102]. The leading-order chiral lagrangian

including electroweak interactions is

L T w L ia apv L W
L= [(DME) D 2] — Wi, W — 1B, B, (2.27)

where the gauge kinetic terms are the same as in Eqn. 2.2 and
A
Y =exp <fZTa7ra> . (2.28)

The flavor matrices T% are the same as in Eqn. 2.5. Because the pions are exact NGBs
(m; = 0) in this calculation, F' can be identified with the pion decay constant f; defined
by

(01 A% () |7"(p)) = ipy frd®Pe™ P, (2.29)

where p is the momentum of the pion and Af(x) is the axial-vector current
A(x) = D)y T (). (2.30)
The covariant derivative for the field X is [103]
iDyY = (i, + g2T*WS — 1 T°B,,) ¥ = (-%T“aﬂ“ + T W — ng?’Bu) ¥, (2.31)

where the SU(2) gauge fields W7 act only on the left of X.

We now expand FTzTr [(D,2)D*E] much as we expanded (D, ®)"(D*®) in the stan-
dard model (Eqn. 2.17). Applying {T “,Tb} = 1§% and neglecting terms proportional to
[¥, T3], we have

AL s = 20,7 — F(@m )W 4 52 (o2
mass—(uﬂ)_ (“7T) +T( M)+

Fgt
g

_ Fgag
4

2 3 3
B, + F(0,m)B" W, B".

(2.32)
By changing variables to

A = {W;,Wg,wj - ﬂBH} , (2.33)
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we obtain
F2g3 4 4
Aﬁmass = 3 <AZ - F—gga’ﬂa> <Aau - F—928”7T“> ) (234)
gauge boson mass terms for the fields Wg = Ay - FLQQQLW“. Accounting for the effects of

the field redefinition Eqn. 2.33 on the gauge field kinetic terms produces exactly the same

massive W+ and Z gauge bosons as in the standard model,

F2 2 F2 2 2
A£mass = 492 WJW_“ + wzuzu = m%vW;W_“ + %mzzZuZ“ (235)
1 /12 2
mwy = 5 g2 F my = Y2 T W (2.36)

2 2 cosf,’

if we identify F' = v = 246 GeV to match Eqn. 2.19.

Before proceeding, we note a few important features of this calculation. First, the pions
were exact Nambu—Goldstone bosons with m, = 0. When we work on the lattice, we are
not able to directly simulate massless pions, and have to extrapolate to the chiral limit.
Less obviously, the pions possessed the appropriate quantum numbers to be “eaten” by the
gauge bosons because of the electroweak SU(2)r, x U (1)y charges of the quark fields Qr, ur
and dp (Table 2.1). If more than two flavors of the massless strongly-interacting fermions
were charged in this way under the electroweak interaction, chiral symmetry breaking would
produce more than the three pions eaten by the W* and Z. Phenomenology requires that
any additional would-be NGBs obtain masses of O(100GeV) through interactions with
other sectors of the theory; we refer to these massive pseudoscalars as pseudo-Nambu—
Goldstone bosons (PNGBs).

Historically, Refs. [104, 105] introduced the idea that a strongly-coupled non-vectorial
gauge theory could spontaneously break a global symmetry and obtain massive gauge
bosons from the resulting NGBs, while Ref. [106] showed the relation my cos 0, = my =
g2F/2 for the case of SU(2) x U(1). Refs. [14, 15, 16] added the final ingredient of the
first technicolor models, the idea of a new, asymptotically-free gauge theory that becomes

strongly coupled around the electroweak scale v = 246 GeV. At least one pair of Ny
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massless technifermions charged under this new interaction form an electroweak doublet,
so that chiral symmetry breaking dynamics drive electroweak symmetry breaking.

For the purposes of this dissertation, we will take the technicolor gauge group to be
SU(N.); with N. > 2, the chiral symmetry breaking pattern SU(Ny)r x SU(N¢)r —
SU(Ny)v produces NJ% — 1 NGBs. NJ% — 4 of them must become PNGBs with masses
obtained from other interactions, as mentioned above and discussed in more detail below.
Notationally, we will use capital letters (7', U, D) to refer to technifermions, and Np > 1
to refer to the number of electroweak doublets in the technicolor sector. It is simplest to
put every left-handed technifermion into an electroweak doublet, Np = Ny/2, but this is

not necessary so long as anomaly cancellation can be satisfied.

2.2.2 Extended technicolor

Technicolor as discussed above addresses most of the criticisms of the standard model
raised in Section 2.1.3: no elementary scalar fields have been introduced, the theory is
asymptotically free, and there is no hierarchy problem destabilizing the electroweak scale.
However, we have yet to see how fermion masses and mixings can be accommodated in the
technicolor framework.

In order to avoid the reintroduction of elementary scalar fields, the typical technicolor
approach to explaining fermion masses proposes another new gauge interaction under which
both technifermions as well as the quarks and leptons are charged, and are in the same
representations [107, 108]. (For a brief review of some TC models that do reintroduce scalar
fields, bosonic technicolor and supersymmetric technicolor, see Ref. [93] and references
therein.) Exchange of ETC gauge bosons then generates quark and lepton masses as
illustrated in Fig. 2-1. This extended technicolor (ETC) gauge interaction is also assumed
to be asymptotically free, and dynamically broken to SU(N.)rcxSU(3)cxSU(2)L xU(1)y
at some very high scale Agpc > v. This gives the as-yet-unobserved ETC gauge bosons
very large masses Mpro ~ gercApreo, where gpre is the ETC gauge coupling, which we

expect to be strong gprc ~ 1 at the scale Mgrc.
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Figure 2-1: Diagram illustrating how extended technicolor theories gener-
ate fermion masses through the exchange of massive ETC gauge bosons.

The situation is in fact very complicated. To naturally account for large hierarchies
between the various quark and lepton masses, ETC models often assume a sequence of
dynamical symmetry breakings at several scales, at least one for each of the three genera-
tions [109]. Due to the lack of direct information on ETC dynamics, the strong interactions
involved, and the stringent experimental information on quark and lepton masses, mixings,
CP violation, etc., no reasonably realistic ETC model exists. This is not surprising, given
that ETC seeks to solve the “flavor problem” responsible for the considerable majority of
the free parameters in the standard model. For our purposes, we can simply integrate out
all the massive ETC gauge bosons, and consider the resulting effective field theory at much
lower scales A < Mgrc.

After integrating out the massive ETC gauge bosons, we are left with effective four-
fermion interactions involving technifermions (7"), quarks and leptons (¢), which we can

collect into the generic operators [93, 96]

2
g T a T T a — — a —
ETC {aab(T'V,ut TY(TA"T) + Bap (T, T)(@1"1°q) + Yap (@1t Q)(qv“tbQ)} (2.37)

where t® label the ETC generators and agp, Oqp and 7y, are dimensionless coefficients. The

Bap terms in Eqn. 2.37 connect the quarks and leptons to the technifermions, and produce
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generic quark and lepton masses [94]

gkre 7
m ~ B¢ (TT)

(2.38)
METC’

|METC ’

Here the mass and technifermion condensate <TT> are both renormalized at the scale
Mpgrc, since asymptotic freedom implies that the dominant momentum running around
the loop is O(Mgrc) [110, 111, 112]. We omit the “|as,,.” label on m since below Mgrc
the technicolor and flavor sectors decouple, and the running of m is given by the QCD
logarithmic evolution, which we neglect here. At scales u > Mg, the quark and lepton
masses fall off more rapidly, at least as fast as 1/u [94].

The scale-dependence of <TT> is not as clear-cut, since it depends on the anomalous
dimension v,,(a(p)) of the operator TT, which in turn depends on the running coupling
a(u) = g(p)?/(4). In the conventions of naive dimensional analysis [113, 114], around the

electroweak scale v < Mpgrc

(TT)| ., = 47(v/V/Np)?, (2.39)

where Ar¢ ~ 47v/y/Np and Np is the number of electroweak doublets.! The evolution of

<TT> from Arc to Mgre is given by its renormalization group equation

Mgrc
T = (T ex d—ﬂ (%
Tl = Do | [ Smtet | 210

where we ignore all interactions except for technicolor. If technicolor behaves like QCD,

~

then 7, (a(p)) is negligible for ;1 much above Ape, and we can approximate <TT>| Mpre

<TT>‘ Ao’ We will revisit this issue in Section 2.2.4 below.

Similar considerations allow us to obtain masses for the pseudo-Nambu—Goldstone

'"Due to the factor of v/v/Np, models with large Np are known as low-scale technicolor (LSTC).
Refs. [115, 116, 117] use the requirement that the technifermions, quarks and leptons all transform to-
gether in a few ETC representations [108], to suggest that Np is generically large. Experimental searches
for technihadrons usually consider LSTC models [118, 119, 120].
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bosons from the g terms in Eqn. 2.37, which connect four technifermions,

2

2
g P —

M3 yop METC (TTTT)|,,...- (2.41)
ETC

For large N., we can approximate <TT T > o~ <TT >2. Finally, the v, terms in Eqn. 2.37,
which involve only quark and lepton fields, represent potentially dangerous flavor-changing
neutral currents (FCNCs). Stringent constraints on FCNC processes provide some of the

most severe phenomenological challenges for extended technicolor.

2.2.3 Challenges

In this section we review some phenomenological challenges facing (extended) technicolor
theories as introduced above. In the next section, we consider possible means to address

at least some of these difficulties in the framework of walking technicolor.

Flavor-changing neutral currents

Notable flavor-changing neutral current processes include u — eee, u — ey, K — pe, and
mixing between the neutral mesons KK, D-D, B-B and B, Bs. Here we qualitatively
discuss the implications of these processes for extended technicolor, omitting detailed cal-
culations. The essential difficulty is the ETC prediction that both FCNC observables as
well as quark, lepton and PNGB masses are proportional to M E‘%C, since they are all dom-
inated by the operators in Eqn. 2.37. Experimental limits on FCNC processes therefore
imply limits on the quark and lepton masses obtainable from Eqn. 2.38 and the PNGB
masses obtainable from Eqn. 2.41.

For example, if we assume ETC interactions do not contribute to CP violation, then
limits on D—D mixing [121] imply M g%c > 1.5 x 10° TeV [122], where () indicates that
this constraint is specific to the ETC interactions responsible for the charm quark mass.
The resulting limit on the charm quark mass is m. < 1 MeV, far below its physical value.
(As discussed below Eqn. 2.38, this mass is defined at the scale M JSECI)“(,"? but varies only

logarithmically for energy scales down to Agcp ~ 1 GeV where strong QCD effects start
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to become important.) If ETC interactions are CP-violating, as they may well be, then
constraints on the imaginary part of the KK mass matrix lead to the limits M S:)FC > 104
TeV and mg < 0.1 MeV. If the theory possesses any PNGBs, they would receive masses of
at most O(GeV), far smaller than experimental bounds.

These limits assume that the ETC interactions introduce unsuppressed tree-level FC-
NCs. At least some ETC contributions to FCNC processes must be present in order for
extended technicolor to produce the CKM mixing matrix. While approximate flavor sym-
metries could suppress these FCNCs, in a way similar to the Glashow—Iliopoulos—Maiani
mechanism [123], ETC models attempting to incorporate this feature are (like most ETC
models) extremely complicated and little developed [124, 125, 93, 126, 127].

FCNCs are formally a problem of extended technicolor and flavor physics, as opposed
to technicolor as a theory of electroweak symmetry breaking. However, because ETC is

the natural means to communicate EWSB to the quarks and leptons in the TC framework,

FCNCs can be considered a reasonable means of constraining the entire approach.

Precision electroweak observables

Precision electroweak observables are quantities that we can use to search for the effects of
physics beyond the standard model, and thereby constrain BSM theories. This approach
has received much attention over the past couple of decades, due to the continuing lack
of direct evidence that would reveal the physics responsible for electroweak symmetry
breaking. The Higgs boson of the standard model remains undiscovered, as do the new
particles predicted by supersymmetric theories, technicolor, and other models of BSM
physics. Technicolor models, for example, predict a number of so-called technihadrons
(bound states of technifermions), the lightest of which include analogs of the p, w and
a1 mesons of QCD. As discussed in Section 2.2.1 above, there may also be a number of
massive pseudo-Nambu—Goldstone bosons.

While we expect experiments at the CERN Large Hadron Collider to find evidence

for such particles if they do exist [128, 129, 130] (and experiments at the Fermilab Teva-
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tron have made progress constraining their possible masses [13, 118, 119, 120]), precision
electroweak observables make it possible to constrain BSM theories with already-existing
data. These data encompass a variety of electroweak processes (from Z boson decays to
neutrino scattering to atomic parity violation [13]), and to make possible simple compar-
isons between theories and experiment, are typically represented by a small number of
parameters.

The most commonly used parameterization of precision electroweak observables as S,
T and U was introduced by Peskin and Takeuchi [17, 131, 18], building on the formal-
ism of Refs. [132, 133]. Other equivalent formulations were presented around the same
time [134, 135, 136, 137], and such parameterizations can be related to the electroweak
chiral lagrangian introduced much earlier [138, 139, 140, 103]. In the remainder of this
section we introduce the Peskin—Takeuchi parameterization, and qualitatively review its
implications for technicolor. We will have much more to say about the S parameter in
Section 4.2 below.

The S, T and U parameters represent the contributions of BSM physics to the vacuum
polarization functions shown in Fig. 2-2. In this figure, we imagine that each of the gauge
boson propagators appears as an internal line with momentum @ in diagrams describing
some scattering process such as ete™ — eTe™. (In anticipation of working on the lattice,
we consider euclidean Q? = —¢? > 0.) Because these processes only modify the gauge boson
propagators, they are sometimes called “oblique” corrections as opposed to the “direct”
(vertex and box) corrections that involve the external fermions not shown in Fig. 2-2.

Fig. 2-2 shows how the diagrams are related to the transverse electroweak vacuum
polarization functions IT(Q?), which we can define in terms of current correlators as

%
0?2

Q) = / d'ae @ (T (2)J7(0)) = 6" T1;(Q) — “55—[15(Q%) + T5(Q)],  (242)

where I1;;(Q?%) and HZ-Lj(Qz) are the transverse and longitudinal components of H’;J»V(Q),
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Figure 2-2: Electroweak vacuum polarization amplitudes (oblique correc-
tions), omitting terms that involve higher powers of the small IIs.

respectively.? In terms of these functions,

. d (new) ; ~2 (new) ; ~2 . d (new) ;/ ~2 (new) ; ~2
S = 167Td722 [ng (Q7) — 133 (@ )}Q2:0 = 47Td722 [va (Q7) =1, (@ )]Q2_0
(2.43)
4 (new) (new)
T—_ (=) (o) — 12 (0) (2.44)
sin? 6, cos? 6,ym?, [ 1 33 }

d (new) 2 (new) 2
U =g [M5@) -5 @)] . (2.45)
where in the first line we have introduced the vector and axial correlators via
g3 = (Iyy +1144) /4 5. = Hyy /2. (2.46)

Qualitatively, T" represents violations of the “custodial” SU(2)y isospin symmetry that
guarantees myy = my cos #,,, while S can be thought of as an isospin-symmetric measure
of the size of the sector responsible for electroweak symmetry breaking. The S parameter
places the tightest constraints on technicolor theories. Most models predict U to be very

small, and in effective field theories based on the standard model it corresponds to a

“These conventions follow Ref. [18]; some other authors (including Refs. [141, 142]) define the transverse
component of HZ”(Q) as QQH(U(QZ)7 and the longitudinal component as QQH(O)(QZ).
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dimension-eight operator, while S and T correspond to the dimension-six operators [143,

144]

S9291 7t ram ira ppv
ooz OTOW L, B

T2

T w i w
B g2g1 cos B, sin 0 \(I)TDMCI)P (2.47)

22
where ® is the scalar doublet introduced in Eqn. 2.12 and v is its vacuum expectation
value. Alternately, in chiral perturbation theory we have

miﬂTr [T“W;}VEBWT?’ET] . (2.48)

As an aside, we mention that there are two other dimension-six operators we do not discuss
here, which correspond to parameters called Y and W [145].

(new) in Eqns. 2.43 through 2.45 are meant to remind us that we are

The superscripts
interested only in the contributions from new physics beyond the standard model. Because
loops of Higgs bosons can appear in the diagrams of Fig. 2-2, we subtract this contribution
to the parameters so that S = 0 and 7" = 0 in the standard model. Performing this
subtraction requires specifying some “reference” value for the Higgs boson mass, which we

take to be M I({Tef ) =1 TeV, a typical technihadronic scale. Switching from one M I({Tef ) to

another changes AS = log (MI({I)/MI(?)) /(67). Experimentally, for Mgef) = 300 GeV [13],
S = —0.07(10) T =0.12(11) U = 0.07(10), (2.49)

so we conclude S ~ —0.15(10) for Mgef) =1 TeV.

Of course, the point of parameterizing precision electroweak measurements in this way is
to compare these experimental results with theoretical predictions. For strongly-interacting
theories, however, the diagrams in Fig. 2-2 require non-perturbative treatment to obtain
any quantitatively reliable result. Peskin and Takeuchi attempted to circumvent this diffi-
culty by assuming that the dynamics of the strongly-interacting theories closely resembled

those of QCD [18]. By taking experimental information on QCD and scaling it up to the
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electroweak scale, they found (as always, for M I(;ef ) =1 TeV)

Ny N,
~0.3-L ¢ 2.
8§~ 0355 (2.50)

in considerable disagreement with the experimental value S ~ —0.15(10).
Non-perturbative calculation of the S parameter using lattice gauge theory is the sub-
ject of Section 4.2 in this dissertation, so we will not discuss it here. While lattice gauge
theory (the subject of Section 3.1) is the premier method for non-perturbative calculations,
a very active field of research focuses on developing and applying relations between certain
strongly- and weakly-interacting theories. This approach encompasses gauge—gravity (or
AdS/CFT) dualities [146, 147, 148, 149], and electric-magnetic dualities [150, 151], and
ideally might permit determination of quantities such as S in strongly-interacting theories
through controlled perturbative calculations. While current results from this program are

interesting, they remain qualitative and inconclusive [152, 153, 154, 155, 156].

Top quark mass

The difficulty that the large top quark mass m; = 172 GeV poses to (extended) technicolor
goes beyond the issue of flavor-changing neutral currents discussed above. The top quark
mass is so large that the associated ETC scale (M ggpc ~ 3 TeV [157]) is comparable to
the electroweak scale itself. This calls into question our entire approach of separating
the technicolor dynamics responsible for electroweak symmetry breaking from the ETC
dynamics responsible for flavor physics.

In addition, the large splitting between the top and bottom quark masses requires
that the relevant ETC interactions strongly break isospin symmetry, which could generate
excessively large contribution to the 7" parameter discussed above [158, 159].

The top quark mass is arguably the single greatest challenge facing the (extended)
technicolor framework; below we will see that typical walking technicolor theories cannot

resolve this issue, and in Section 2.3 we will briefly mention some of the extensions that

aim to address it.
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2.2.4 Walking technicolor

Let us consider the first challenge discussed in the previous section, the tension between
quark and lepton masses on the one hand, and flavor changing neutral currents on the
other. Considering the relevant terms in Eqn. 2.37, we see that unlike the FCNC terms,

the masses in Eqn. 2.38 include a factor of <TT> . In all of the discussions above,

|METC

we assumed that <TT> ~ <TT>‘ Are = 47(v/+/Np)3. This is appropriate only for

|METC
precociously asymptotically free theories such as QCD, where the running coupling and
the anomalous dimension 7y, (a(x)) appearing in the (T'T") renormalization group equation
(Eqn. 2.40) drop precipitously at energies above the low-energy scale Ajp.

Thus we see a straightforward way in which achievable quark and lepton masses could
be increased without affecting FCNCs: simply suppose that 7, (a(r)) is large throughout
a wide range of scales between Apc and Mppe, which implies that «(u) itself is large and
slowly-varying. Models with a slowly-running coupling of this sort are known as walking
theories, and were introduced by Refs. [160, 161, 162, 163, 164, 165]. In this section we
discuss the consequences of walking, focusing on the issues discussed in Section 2.2.3 above.
In Section 2.3 below, we consider a more systematic framework for walking technicolor,
and non-QCD dynamics more generally.

First and most obviously, walking affects the <TT> renormalization group equation,

Eqn. 2.40. If for simplicity we suppose that the anomalous dimension is approximately

constant (but non-zero), v, (a(@)) =~ v, in the range from Apc up to Mprc, we have

METCd v o

e o I = ETC

(TT)|y1p, = (T4, exP / o= <TT>|ATC< Rre > : (2.51)
Arc

The approximate gap equation for the technifermion propagator (discussed further around
Eqn. 2.55 below) requires 7, < 1. Quark and lepton masses can therefore be enhanced
by a potentially large factor, given strange- and charm-quark FCNC constraints implying
M S%C, M g%c ~ 103-10*A7c. However, the top quark mass is so large that even for

Ym ~ 1 the associated ETC scale can only be raised from M g%po ~ 3 TeV to M ggpc ~ 10
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TeV [157].

Similarly, walking enhances the PNGB masses from Eqn. 2.41 above, M}%NGB o
<TTTT >‘ Mpro® This enhancement may be so large that these pseudoscalars might not
even be well-described as pseudo-Nambu—Goldstone bosons [166]. More significantly, this
enhancement of the PNGB mass may kinematically forbid decays of the vector techni-
hadrons pr, wr, ar into two or three pseudoscalars. This has important consequences
for collider phenomenology, implying that the technivectors may be very narrow reso-
nances [115, 167, 168, 169, 116, 117].

Finally, qualitative arguments suggest that the S parameter may be reduced in walking
theories compared to the QCD-based analysis discussed in Section 2.2.3 above [170, 171,
172]. At a minimum, walking invalidates that analysis, requiring the value of S to be
computed non-perturbatively. More speculatively, we can note from Eqn. 2.43 that S
depends on the difference between vector and axial vacuum polarization functions. The
connection between walking behavior and the conformal window suggests that the spectra
of walking theories may exhibit parity doubling [173], i.e., reduced splitting between vector

and axial spectral functions, which would decrease S. We now consider more carefully this

connection between walking behavior and the conformal window.
2.3 Conformal windows and non-QCD dynamics

In the previous section, we saw that by introducing a large, slowly-running coupling
a(u) = g(p)?/(4n), we could address some of the phenomenological challenges facing tech-
nicolor theories. In this section we argue that such walking behavior is not necessarily just
wishful thinking, but can be expected from general properties of SU(N.) gauge theories.
In particular, we introduce the concept of the conformal window NJ(CC) <N; < N}af ) for a
gauge theory with N; fermions transforming in representation R, and argue that walking
behavior may be realized when Ny is slightly below the critical value N ch) that defines the
lower edge of the conformal window.

We begin by considering the perturbative 5 function of SU(N,) Yang-Mills theory with
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Ny massless fermions in representation R [50, 51],

da

Bla) = a(log 122) = Boo® + fra’ + - (2.52)
fo = —ﬁ <1—31N - %T(R)Nf> (2.53)
pr = —ﬁ [33—4Nc —T(R)Ny (2—;NC + 402(1%))] , (2.54)

where T'(R) is the trace normalization and Cy(R) the quadratic Casimir. For the funda-
mental representation T(R) = 1/2 and Cy(R) = (N2 — 1)/(2N.), and we have applied
C3(Adj) = N, for the adjoint representation. While 3y and (; are universal, all higher-
order terms depend on the choice of renormalization scheme.

In order to maintain asymptotic freedom, we require By < 0, which implies N; <
11N./(4T(R)) = N](caf ). (While some of the first walking technicolor proposals imagined
models with nontrivial ultraviolet fixed points [160, 163], this scenario is more speculative,
and certain conditions must be satisfied in order to recover results that follow directly from
asymptotic freedom, such as Eqns. 2.38 and 2.41 above, or the Weinberg sum rules discussed
in Section 4.2.1 [18].) For N, = 3 with fermions in the fundamental representation, this is
the familiar N](caf) = 16.5.

Asymptotic freedom allows us to consider the evolution of the coupling down from some
high energy scale where « is small and the perturbative expansion reliable. For precociously
asymptotically free theories such as QCD, with Ny < N J(caf ), the coupling stays small until
rising precipitously around some low energy scale Arg,® as illustrated schematically in
Fig. 2-3. The (8 function, as a function of «, is always negative and quickly grows large in
magnitude as « increases, as shown in Fig. 2-4.

If instead of Ny < N }af ) we consider the other extreme N F S N](caf ), then the two-
loop [ function crosses zero while the coupling is small enough to trust the perturbative

expansion in Eqn. 2.52 [19, 20]. Because [y < 0, this indicates an infrared-attractive

3We introduced the naive dimensional analysis convention Ajr ~ 47 F in Section 2.2.2 above. Another
approach takes Arr to be the dimensional transmutation scale at which the running coupling in a given
perturbative scheme diverges [174]. We have in mind Agep ~ 0.1-1 GeV for QCD, Arc ~ 0.1-1 TeV for
technicolor.
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iFi)

Mg

Figure 2-3: Cartoon of the coupling « as a function of energy scale p for
a precociously asymptotically free theory such as QCD.

fixed point (IRFP), illustrated in Fig. 2-4. The theory is conformal in the infrared: chiral
symmetry is not broken, all particles are massless, and the coupling flows to a fixed value
arr at low energies, as shown in Fig. 2-5. As Ny decreases away from N](caf ), the IRFP
moves to stronger coupling and the perturbative analysis breaks down. Although the value
of the coupling associated with the IRFP is scheme-dependent, the existence of an IRFP
is scheme-independent, as is the value of the mass anomalous dimension ~,, at the fixed
point.

)

For small enough Ny less than some critical value N JEC , spontaneous chiral symmetry
breaking occurs before the renormalization group flow reaches an IRFP. If we call the
critical coupling associated with chiral symmetry breaking o, sp, then for Ny slightly
below N}C) we expect a,sp slightly below ajg, that is 0 < (ajr — aysg)/arr < 1. This
theory exhibits chiral symmetry breaking as required by technicolor, and we require that it
is “close enough” to the IRFP for the fixed point to approximately govern the dynamics of
the theory from the scale of chiral symmetry breaking up to some much higher scale where
either asymptotic freedom sets in, or new (e.g., extended technicolor) physics becomes

relevant. Over this range of scales p, the mass anomalous dimension 7, (1) approximately

equals the scheme-independent fixed-point value it would have taken had xSB not occurred



31

B
ZIR
conform al

ul FE' iF

. QCD-like
Figure 2-4: Cartoon of the § function as a function of the coupling a for a

QCD-like theory (lower line) and an IR-conformal theory (upper line) with
IR fixed point where the upper line crosses § =0 at asg.
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Figure 2-5: Cartoon of the coupling « as a function of energy scale u for an
IR-conformal theory. The IR fixed point at ajg is indicated with a dotted
horizontal line.
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and affected the dynamics. That is, we have located walking technicolor slightly below the
lower edge of the conformal window. We illustrate this scenario in Figs. 2-6 (for the
coupling) and 2-7 (for the ( function).

)
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Figure 2-6: Cartoon of the coupling a as a function of energy scale p for
a walking theory in which chiral symmetry breaking occurs at a coupling
slightly below the would-be IR fixed point at ajr (dotted horizontal line).

This approach to describing walking dynamics as approximately conformal was em-
phasized by Refs. [175, 176]. It can be formalized by considering the gap equation for the
fermion propagator [177, 164, 112], an approximation that relates the anomalous dimension

to the running coupling by

3C2(R
) = 1= /1= 380 (2.55)
This relation is assumed to break down when chiral symmetry breaking occurs, which

identifies ay g5 = #(R) and, more importantly, v(u) ~ 1 over the large range of scales u

for which a(p) is close to (but less than) o, gp. This result realizes the dream of Eqn. 2.51,
in that quark and lepton masses can be enhanced by a potentially large factor Mgrc/Arc
without affecting flavor-changing neutral currents.

The issue now becomes locating the lower edge of the conformal window, N JEC). We will

(c)

discuss results of lattice searches for N ) in Section 4.1.1 below, but there are also some
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Her)

Figure 2-7: Cartoon of the 3 function as a function of the coupling « for
a walking theory in which chiral symmetry breaking occurs at a coupling
o, SB slightly below the would-be IR fixed point at arg.

notable analytical estimates. For instance, Ref. [176] combines the critical coupling aysp
from the gap equation with the two-loop perturbative 8 function to find

N. [66Cy(R) + 17N,

N(C):
I 7 T(R) |30Cy(R) + 10N, |’

(2.56)

which becomes N}C) ~ 7.9 (11.9) for SU(2) (SU(3)) gauge theory with fermions in the
fundamental representation. However, the result depends fairly strongly on the scheme
used for the (3 function; the SU(3) prediction drops to N}C) ~ 9.9 in three-loop MS
perturbation theory [178]. An alternate approach conjectures that the Nambu—Goldstone
bosons of the theory in the infrared should have fewer degrees of freedom than the gluons
and fermions of the theory in the ultraviolet [179]. This implies NJ(f) ~ 4N, for N. > 3,
and N](cc) ~ 4 for N, = 2 (because of the pseudo-reality of SU(2) representations).

Finally, we note that the gap equation requires 7, < 1. As we saw in Section 2.2.4,
Ym < 1 does not solve the problem posed by the large top quark mass. However, the gap
equation is approximate, and 7,, > 1 is not excluded by this analysis (although unitarity

requires v, < 2 [180]). Early models with ~,, > 1 supposed that the ETC four-fermion

interactions were strong enough at the electroweak scale to play a role in the technifermions’
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chiral symmetry breaking [181, 182, 183]; this approach resembles the Nambu—Jona-Lasinio
model [184, 185] and tends to require significant fine-tuning.

A more recent proposal for obtaining 7, > 1 is to consider a theory that would be
IR-conformal in isolation (i.e., it is within the conformal window), but is driven to chiral
symmetry breaking by other interactions or relevant operators [186, 157, 187, 188]. Recent
analytical studies have begun to shed light on the range of behavior that is possible in
such theories [189, 190, 191, 192, 193]. There are also approaches to explaining the top
quark mass that do not use 7, > 1, such as topcolor-assisted technicolor [194] (which
proposes new strong gauge interactions specifically for the third generation), and monopole
condensation [195].

It is possible that ongoing or future lattice studies may find evidence for theories with
Ym > 1. We now turn to discuss lattice gauge theory and its application to strongly-

interacting theories.



Chapter 3

Lattice gauge theory

Lattice gauge theory (LGT) is a non-perturbative regularization of quantum gauge field
theories, in which we discretize euclidean spacetime into a regular grid of sites connected
by links. In this document we focus on hypercubic lattices of size L3x2L. In the combined
limit that the lattice becomes infinitely large (L — oo) while the lattice spacing a between
sites becomes infinitesimally small (¢ — 0), we must recover the original gauge theory
defined in the continuum.

In addition to regularizing the theory, the fact that the lattice formulation involves a
finite number of degrees of freedom permits numerical calculation of observables from the
defining path integral. Such numerical computations will be the focus of our discussion.
Although these calculations are non-perturbative, they are carried out through stochastic
importance sampling, which introduces statistical errors. Additional systematic effects
result from considering a discretized theory in a finite volume.

In this section we review the formulation and application of lattice gauge theory, consid-
ering lattice QCD (SU(3) gauge theory with Ny = 2 light fermions) as a relatively familiar
example. After summarizing basic lattice actions and observables, we discuss Monte Carlo
lattice simulation procedures, and consider the corresponding statistical and systematic
effects. Finally, we focus on a systematic effect that is particularly important to explor-
ing technicolor models on the lattice, the explicit chiral symmetry breaking that arises
both from the need to perform simulations at non-zero fermion mass as well as from many
common lattice actions themselves. We review domain wall fermions, a formulation that
decouples the continuum and chiral limits by adding a fifth dimension to the lattice.

Useful introductions to and reviews of lattice gauge theory include [196, 197, 198, 199,

35
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21, 22, 200]; in addition, several chapters from a forthcoming volume [201] are already

available [202, 102, 44, 203, 204, 205, 206, 207].

3.1 Formulation
3.1.1 Euclidean path integral

We begin our discussion of the formulation of lattice gauge theory by considering the
euclidean path integral for a generic gauge theory, assuming familiarity with the stan-
dard Wick rotation procedure for relating a euclidean theory to the physical theory in
Minkowski spacetime. Because we are working in euclidean spacetime, Q% = —¢? > 0 and
the spacetime index =1, ..., 4, where y = 4 corresponds to the Wick-rotated temporal
component. By using periodic boundary conditions, for most of these considerations we
can treat the lattice as though it were infinitely large, with fixed lattice spacing a > 0. For
convenience, we will often use “lattice units” which take a = 1.

Under local gauge transformations Q, € SU(3), the fermions transform as

The gauge-covariant derivative v, +apDpz now connects fermion fields at lattice sites
separated by a distance a > 0. In order to maintain exact gauge invariance, we associate

the gauge fields with the links between neighboring sites by defining
Uy, = exp [igaA,(x + api/2)], (3.2)

where A, (z) = Afj(x)T is the continuum gauge field. This notation is common, but

potentially confusing, because
val/« — Qxe7MQx+aﬁ7 (33)

so we consider U, ,, the parallel transporter along the link from site (x4 aft) to site x. The

oppositely-directed variable is U;[M, and since Uy, € SU(3), U}L,MULM = Um,uU::r[w =1
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Now that we have defined our variables, we can write down the partition function

Z = Tr [exp(—S)] = / DUDTDY exp [~ S(U, ¥, 7)) , (3.4)

where S is the lattice action and the integration is over all configurations of the gauge and
fermion fields on the lattice, for example [ DU = [[], di,. For [ DU = me“ AUy, we
use the gauge-invariant Haar measure, so that no gauge-fixing is required for the functional
integral to be well defined. If we take the temporal extent of the lattice to be finite, then
we can write

Z = Tt [exp(—aN,S)] = Tr [:FNt] , (3.5)

where T = exp(—aS) is the transfer matrix operator. Acting on a state in the Hilbert
space, T evolves the state through a euclidean time interval a. T must be positive (i.e.,
have only positive eigenvalues) in order for the theory to describe a unitary Hilbert space
with a real hamiltonian [208].

Similarly, the path integral defining the expectation value of an observable O is

(0) = 2 Tr[Oexp(~aN.)]
(3.6)

= %/DUD@D\IJO(U, U, W) exp [—Sy(U) — ¥D(U)¥] .

We break up the lattice action S into two pieces, S, for the gauge fields and Sy = UD(U)¥
for the fermions, where D(U) is a lattice Dirac operator. In the next two sections, we will
discuss each of Sy and Sy in turn, introducing simple lattice actions that possess a positive

transfer matrix.

3.1.2 Lattice gauge action

The simplest gauge action was introduced by Wilson [209], and is most conveniently written

in terms of the plaquette variables

Py =Tt [UI,MUH@,,UT ut ], (3.7)

T4V, TV
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where i # v and the trace is over color and spin indices that we will not write explicitly. The
plaquette corresponds to the unit lattice square bounded by the four links in the trace, with
normal vector defined by the direction of the links in the product. P;f,,w is the oppositely-
directed plaquette. Considering for a moment the abelian case F),, = 0,4, — 9,4, and

reintroducing the lattice spacing a,

Up, = exp igaA,(x + aji/2)]
= Py = e9%exp [Ay(z + 200) + Ay(z + afi + 2D) — Ay(z + av + 200) — Ay (z + 2D)]

~ exp [iga®F,, (z + afi/2 + av/2)] , (3.8)

where the final equality becomes exact in the continuum limit ¢ — 0. Therefore, to
reproduce a continuum gauge action of the form F; lﬁ,F A (veturning to SU(3)), we could

imagine a lattice action including terms like

9 _ oi9Fu (@) _ o=igFu(x) o Py — pto—9_ 2RePy - (3.9)

T, puv

We need to sum over all x and p, v with © # v in order to ensure that the action is

gauge-invariant. This line of reasoning gives us the plaquette gauge action

Splaq = BZ Z <1 - Nicpx,uu> 9 (310)

T pyip<y

where 3 = 2N./g% As a — 0, Spiaq — [ d'z1F F* + O(a?).

Given the simple form of the action when expressed in terms of the plaquette variables,
it is natural to consider generalizations of Eqn. 3.7 involving additional links in the trace.
Like the plaquette, the sum of such variables over lattice sites and orientations would be
gauge-invariant. The smallest closed loops after the plaquette involve six links, and so
correspond to dimension-six operators that introduce O(a?) lattice artifacts in quantities
calculated with the plaquette gauge action. However, by explicitly adding one or more of
these operators to the lattice action itself, we can hope to tune the coefficients of terms in

the action so that these artifacts are reduced in some observables.
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Of the three six-link loops, the simplest is the 2x 1 rectangle

Ry = Tr [Uw,uUH@MUH%auUl cro Ul UL (3.11)

The other two (the “chair” and “parallelogram” loops) involve links in three dimensions,
and we will not consider them. Adding a rectangle term to the plaquette gauge action, we

have the generic improved gauge action
1 1
Simp — ﬁz CO Z 1 - pr,,ulj + Cl Z 1 - FR:B“U'V (312)
T Vs <v ¢ 2l ¢
with the normalization ¢g = 1 — 8¢;. Noteworthy choices of the rectangle coefficient ¢;

include:

1
12

¢ =—0.331 (Iwasaki [211, 212])

= (tree-level Liischer—Weisz [210])

¢y = —1.4088 (DBW2: doubly-blocked from Wilson in two-coupling space [213, 214])

The tree-level Liischer—Weisz action is based on a one-loop perturbative calculation follow-
ing the Symanzik improvement program [215, 216] (so is sometimes known as the tree-level
Symanzik-improved action), while the Iwasaki and DBW2 actions are inspired by the

renormalization group.

3.1.3 Lattice fermions and doubling

Wilson [209] also introduced the simplest phenomenologically viable lattice action for
fermions. Let us start from the free theory, Sy = [ d*azy)(x)v*9,(x) + mip(z)(x), and

discretize the derivative as the lattice central difference

Duth(x) — Aty = % (3.13)
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(recall @ = 1 in lattice units). We need to use the link variables U, , to transport the 1

field between neighboring lattice sites, which introduces the gauge fields into the action,
1 - — N
Sf - 5 szfyu [Ux,uwm—i—ﬁ N Ul_ﬁwx—ﬁ] + mzlbx% = Y Dnaive (m)w (3.14)
T, T

By performing a Fourier transform, it is straightforward to find the free momentum-space

propagator
p —i? sin(p,) +m
> sin®(p,) +m?2’

where p,, = 2miz, /N, and N, is the length of the lattice in direction p. For small p, ~

Daive(pym) = (ir* sin(py) +m)~

naive

(3.15)

(0,0,0,0), we can approximate v*sin(p,) ~ p and recover the usual fermion propagator
in the continuum. However, the same thing (up to negative signs) happens at fifteen
other locations in the Brillouin zone, p, =~ (0,0,0,7), (0,0,,0), ..., (7,7, ,m). The
naive lattice fermion action we have written down therefore describes sixteen degenerate
fermions, not just one.

This is known as the “doubling problem”, and Wilson addressed it by adding another
term to Eqn. 3.14, the “Wilson term” r@mAfﬂ[)x. This term involves the central difference

discretization of the second-derivative,

2 ¢x+A - 2¢x + T;Z):c—/\
A, = = 2y

(3.16)

The Wilson term is a dimension-five operator, so it does not interfere with our recovery
of the correct continuum physics as a — 0. Here r is a free dimensionless parameter, and
setting r = 1 when we insert this term into Eqn. 3.14 produces a pleasantly compact result,

L _
Sy = =5 30T [(1 =9y + (1 YUz + ) 3
T, x (317)

Although the Wilson Dirac operator Dy is not hermitian, it satisfies “vys-hermiticity”,



41
which is the statement that Hyy = 5Dy is a hermitian operator, or
D}, = 5 Dws. (3.18)

Now the free momentum-space propagator becomes

Dyt (p,m) = [iv" sin(p) +m + > (1 = cos(py)] ™"
I
—iy*sin(py) +m+ 3, (1 — cos(py))

~ s (p) + [m o+ 3, (1 cos(p)) 2

(3.19)

so that all the doubler modes with any component p, ~ 7 obtain large masses a=l.

Unfortunately, the Wilson term explicitly introduces ¢ = ¥ ¥r + gy into the
action, thereby breaking the chiral symmetry of the massless lattice theory. (Again, this
chiral symmetry breaking vanishes in the continuum limit.) This consequence was general-
ized into a famous theorem by Nielsen and Ninomiya [40, 41, 42] (building on earlier work
by Refs. [217, 218, 219]), which states that in an even number of euclidean dimensions, the

fermion operator IN)(p) cannot simultaneously satisfy the four conditions [44]

1. 5(]9) is a periodic, analytic function of p;

2. D(p) o< y#py for |pu| < 1
3. ZND(p) is invertible everywhere except p,, = 0;

4. 45D(p) + D(p)ys = 0.

Here the second and third conditions forbid doublers, while the fourth condition is the
statement of chiral symmetry. The first condition guarantees that the operator is local in
coordinate space.

A tradeoff seems to be necessary between doubling and chiral symmetry. The naive
fermion action possesses both, while the Wilson fermion action possesses neither. In be-
tween, staggered fermions [220, 221, 222] retain a portion of the full chiral symmetry, and

at the same time reduce doubling from sixteen-fold to four-fold by spreading out the four
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spinor components of the fermionic field across the 2* hypercube. The resulting lattice

action is very computationally efficient, and improved forms of it are still widely used.
However, there are undoubled chiral lattice fermion actions that evade the Nielsen—

Ninomiya theorem, one of which we will consider in Section 3.3 below. In particular,

Ginsparg and Wilson showed that a remnant of chiral symmetry remains on the lattice [43],
Y5D(0) + D(0)y5 = 2D(0)v5 D(0) (3.20)

where D(m = 0) is the massless lattice Dirac operator. The Ginsparg-Wilson relation can

be considered a redefinition of what is meant by a chiral rotation [223],
75D(0) + D(0)75 = 0, (3.21)

where 75 = v5(1 — 2D(0)). Unfortunately, the lattice Dirac operators that exactly realize
this modified chiral symmetry at non-zero lattice spacing are extremely expensive to use
in the numerical simulations we discuss below. The outstanding example is the overlap
operator [224, 225, 226, 227, 228]

Doul(m) = (Ms + ) + (Ms — ) ssign s D (~Ms)] (3.22)

where 0 < M5 < 2 is a large mass parameter and numerically evaluating the operator sign

function
X
sign | X| = 3.23
X] = (323)

is the cause of its computational expense.

3.2 Simulation procedures

Now that we have presented the basic formulation of lattice gauge theory, let us consider
how we carry out numerical lattice simulations. In practice, we divide the work into
two pieces. First, we apply importance sampling Monte Carlo techniques to generate an

ensemble of gauge field configurations from the path integral for our lattice action. Then
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we analyze these stored gauge configurations to calculate observables of interest.

This division of the work into configuration generation on the one hand, and configu-
ration analysis on the other, is motivated by the different computational requirements of
each piece of the simulation. Configuration generation through the hybrid Monte Carlo
algorithm we discuss below involves running long molecular dynamics evolutions in order
to generate independent (uncorrelated) samples of the gauge fields. Because this evolution
must run for many molecular dynamics steps, it is most efficient to perform the calcula-
tion on the largest available supercomputing resources, to minimize the time to solution.
Once gauge configurations have been generated, however, they can trivially be analyzed in
parallel. Therefore it is most efficient to perform the analysis of each configuration on the
smallest computing resource that can handle the calculation.

In the next two sections we discuss each of these steps in turn, and then consider the

systematic effects inherent in lattice simulations.

3.2.1 Configuration generation

To use importance sampling Monte Carlo to simulate the euclidean theory described by

Eqn. 3.6, we must be able to interpret the factor e

as a probability distribution. This
requires that the action be positive. For the gauge action S; ~ F),, F'*, this condition
is easy to satisfy. The fermion action Sy = WDV is quadratic in the anti-commuting

fermionic fields, so this piece of the action can be reformulated in terms of more tractable

bosonic “pseudofermion” fields ®,
/ DUDV exp [~UDV] o det[D] / DO DD exp {-@TD—%D} (3.24)

(any constant factor from the gaussian integral on the left will be re-absorbed into the
gaussian integral on the right). In order to ensure positivity, we restrict ourselves to even
numbers of fermions Ny. In this case, y5-hermiticity implies det[D]? = det[D' D], and our
measure becomes

exp |—S, — ®T(D'D)™1®|,
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which is positive definite (because we assume a non-zero fermion mass m > 0), and can
therefore be treated as a probability distribution. Increasing Ny only requires adding more
pairs of pseudofermion fields to this expression. (See Refs. [229, 230] for an example of a
more complicated algorithm that is not restricted to even Ny.)

The complication introduced by the pseudofermion fields is the need to invert DD,
typically a large, sparse matrix. These inversions (calculated iteratively using an algo-
rithm such as conjugate gradient [231]) form the bulk of the computational expense of
lattice gauge theory simulations. In addition, because the inverse (or equivalently the
determinant) must be recomputed globally after any change in the gauge fields, local up-
dating schemes are inefficient. Instead, we want to use some global updating scheme that
generates a new configuration by changing all the link variables simultaneously. In the
remainder of this section, we briefly summarize the hybrid Monte Carlo (HMC) algo-
rithm [232, 233], some form of which is currently used in nearly all lattice gauge theory
simulations [234, 203]).

We divide the Markov step of the HMC algorithm into three pieces. First we generate
gaussian random values for the pseudofermion fields ®, as well as a real auxiliary field 7,

that we add to the action via

1= /Dﬂ@‘”z/z. (3.25)

This 7, plays the role of a fictitious momentum that is conjugate to the gauge field,
producing an effective hamiltonian H.py = %772 + Sy + ®1(DTD)"1®. The next piece
of the algorithm is hamiltonian evolution of 7, and the gauge field over a short trajec-
tory of length 7 in a “molecular dynamics time”. During this evolution we keep & fixed.
We perform this evolution through inexact integration of Hamilton’s equations, which di-
vides 7 into N; steps of length 7 = 7/N,, and introduces d7-dependent numerical errors
<AHe2f f>1/2 > 0. The first-order Verlet (leapfrog) method is a simple example of such an
integration algorithm, though higher-order methods such as the Omelyan integrator are

used in practice [235, 236].
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Note that the molecular dynamics evolution involves the force (Lie derivative)

toDTD
oU

T -1

dr oU oU T oU [(DTD)_%}’ (3.26)

which requires the expensive computation of the inverse at each step in the evolution. After
carrying out the NN, steps in the integration, we stochastically correct for the numerical
errors by performing a Metropolis (Rosenbluth—Teller) accept/reject test [237, 238], the
third and final piece of the algorithm. So long as the integrator is reversible and preserves
phase-space volume (i.e., is symplectic), this acceptance test guarantees that the algorithm
maintains detailed balance and will approach the correct fixed-point distribution.
Repeating the Markov step outlined above produces an ensemble of gauge configura-
tions. These configurations are not completely independent, to an extent that depends
on our choice of molecular dynamics integrator and evolution parameters, an issue we will
return to in Section 3.2.3. For now, let us consider how we analyze these configurations to

measure some observables of interest.

3.2.2 Configuration analysis

Assuming that we have used the HMC algorithm described above to generate an ensemble of
gauge configurations, in this section we discuss the analysis of these configurations. While
observables involving only the gauge fields (such as the plaquette averaged over the lattice)
are generally inexpensive to compute and can be useful to monitor the HMC evolution,
typically we are most interested in the behavior of the valence fermions. Therefore in this
section we focus on fairly simple but illustrative observables, including meson masses and
decay constants as well as the chiral condensate <E1/1>

Treating the euclidean action as a hamiltonian, a generic two-point correlation function

has the form

1 - 1 Hty, -
Cij(t) = 2T [0i(H)0; (0)e V] = = > (mle! Oie™ 1 0;e™ M |m), (3.27)

where |m) are a complete set of energy eigenstates, e N |m) = e=NtFm  Inserting another
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complete set of states produces

1 _ _ -
Cij(t) = §Z<ml0zl71><n|0a‘|m>e Fute=FmNi=t), (3.28)

m,n

In the case i = j, if we consider ¢ > 1 and Ny—t > 1 (and subtract the vacuum expectation
value [(0]O;]0)|? if it non-zero), then the correlator Cy; will be dominated by the lightest

state with the appropriate quantum numbers, whose energy we identify as its mass M,
C(t) ~ A(exp [-Mt] + exp [-M (N; — t)]). (3.29)

Fig. 3-1 shows an example of this approximation to the correlation function describing

propagation of a (flavor non-singlet) meson from a source at time ¢y to a sink at time ¢,

Cr(|t —to]) = <Z Tr [{ x, ) I T%(x, t)}{E(O,tO)Pwa(O,tO)H> (3.30)
_ <Z Tr [ (0, to: x, )T T D~ (x,t;O,to)FTb] >

where the sum over the spatial volume of the lattice projects out the zero-momentum
component of the correlator. We write the second line to emphasize that measuring
valence fermion observables requires additional inversions of the lattice Dirac operator,
against some source(s) placed on the gauge configurations being analyzed. (D~ !(y;z) =
Y5 (D‘l(:n; y))T% is the fermion propagator from site x to site y, and in the future we will
generally use translation invariance to write it as D~1(y — z).) As in Section 2.2.1, the
flavor matrices T'* are normalized so that Tr [T“Tb] = 109 (similar traces over color and
spin are not explicitly written). The I" is some product of v matrices. For example, the
pseudoscalar channel corresponds to I' = 75 and 7475 (because the pseudoscalar mass is
nonzero on the lattice, these two currents are related by the axial Ward—Takahashi identity
we will discuss in Section 3.3.3 below); the vector channel corresponds to I' = 7; and the

axial channel to I' = v;vs5, for i = 1, 2, 3. The specific correlator shown in Fig. 3-1 uses

FZ’Y{,.
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Figure 3-1: Comparing pseudoscalar C(t) data with the approximation
of Eqn. 3.29 (solid black line), using M s from the plateau in Fig. 3-2
for 323 x 64 LSD Collaboration ensembles with Ny = 2 and my = 0.01
(cf. Section 4.1.2 for details of ensembles and measurements). The dotted
lines showing the statistical error are too close to the solid line to see.

We see in Fig. 3-1 that the asymptotic form of Eqn. 3.29 only seems to describe the
correlator well for 10 < |t — tg| < 55. We can be more precise by considering the “effective

mass” formula

mesr(t) = log [%} . (3.31)

According to Eqn. 3.29, for 1 < |t — tg| < N; this function should show a “plateau”, i.e.,
megf(t) should be approximately constant for a range of ¢, at a value we take to be the
effective mass M, sy of the state. Because C(t) typically reaches a minimum around [t—to| ~
Ni/2 (as in Fig. 3-1), megs(t) crosses zero, breaking the plateau into two disconnected
pieces. A simple modification that evades this issue is to consider instead

C(t—1)+C(t+1)

200 — cosh(Mcfs), (3.32)

which possesses a long plateau shown in Fig. 3-2. Obtaining such long plateaus is the main

motivation for working on L3 x 2L lattices with temporal extent longer than the spatial
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length.

In practice, these effective mass plateaus are used simply to determine the proper
range of t to use in a direct fit to Eqn. 3.29 or more complicated forms involving additional
exponentials. However, for the simple case shown in Fig. 3-2, the effective mass result
M3 = 0.01904(22) is very close to the Lattice Strong Dynamics (LSD) Collaboration result
obtained by a simultaneous fit to eight correlators including both I' = 75, 7475, and using
four different combinations of sources and sinks, M3 = 0.01873(20). Baryon masses can be
obtained in essentially the same way, although the operators and contractions required are
more complicated, and the resulting correlators are noisier, with much shorter plateaus.

Meson decay constants are also measured from the same two-point correlation functions

we have been considering. Let us rewrite Eqn. 2.29 as

£y = O p=0) .

@ which is present to indicate that these

where we do not sum over the flavor index
operators are flavor non-singlet. Because (0|A§(x)|7%(p = 0)) is precisely the ground state
that we expect to dominate (>, Ad(x,t)AE(0,tp)) for 1 < [t —to| < Ny, we can determine

the decay constants from the coefficient A in Eqn. 3.29. For example,

<Z VA(x, )V(0, 0)> — géabZ\%F‘%Mv e Mvt 4 e‘Mv(Nt—“] , (3.34)

X,1

where the factor of % comes from the sum over spatial components ¢ and the trace over flavor
matrices. Note that measuring the decay constant F' requires previous determination of
the corresponding mass M, and in some cases the renormalization factor Z that we discuss
in Section 3.3.3 below.

Finally, the chiral condensate <E1,Z)> involves the complication that it directly connects

sources and sinks at the same lattice site,

7)== (ST ) = g (000} = g (10,
x ' (3.35)
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Figure 3-2: Jackknife fit results for the ratio [C'(t — 1) + C(t + 1)]/[2C(t)]
of pseudoscalar correlators, and cosh(Mc¢s) (solid black line), for the same
ensembles as Fig. 3-1. The bottom panel zooms in on the plateau in the
range 15 < |t — tp] < 50. The dotted lines show the statistical error in
cosh(Mcyy).
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where the first negative sign is a phase convention inserted to make <E¢> > 0 (for m > 0).
The factor of 4N, accounts for the implicit traces over color and spin. This is the simplest
example of a quark-line disconnected diagram, which on its face seems to require a number
of inversions proportional to the lattice volume V. In practice, we estimate the result
stochastically, by performing the inversions using only N,. random sources 7. Typically,
each 7 uses a unitary random number (e.g., an element of U(1) or Zs) for each color,
spin and spatial degree of freedom, so that 7}, (2)n53(y) = dap0asdzy [239]. For <E¢> this
straightforward approach suffices, and only a few random sources are needed to estimate
<Ew> with reasonably small error. This is because the chiral condensate is usually very
large in lattice simulations; the explicit chiral symmetry breaking due to non-zero fermion

mass introduces a contribution o m/a?, which would diverge in the continuum limit a — 0.

3.2.3 Systematic effects

Now that we have reviewed the basic features of numerical lattice gauge theory simulations,
let us consider some of the shortcomings of this approach. These include autocorrelations
in the measurements that we perform, as well as systematic effects from working with
massive fermions in a finite, discrete spacetime.

In principle these issues can be addressed by performing long-running simulations at
various lattice spacings a, on lattices of various sizes ~ L*, and with various pseudoscalar
masses M}%, in order to perform controlled extrapolations to the continuum (¢ — 0),
infinite-volume (L — o00) and chiral (M3 — 0) limits. Due to practical limitations in
computing power, often only chiral extrapolations are performed, while simulations at
different L or a (if they are performed at all) are used to estimate the magnitude of the
corresponding systematic effects.

In this section we consider in turn autocorrelations, discretization errors, finite volume
effects, and issues related to chiral extrapolations (both for lattice QCD and for studies
motivated by dynamical electroweak symmetry breaking). Our goal is to briefly summarize

the relevant issues and estimate the severity of the resulting systematic effects.
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Autocorrelations

Because the gauge configurations produced by the HMC algorithm are not completely
independent, there are autocorrelations between the measurements performed on them.
That is, the value of each observable measured on a given configuration is correlated with
the value measured on preceding and subsequent configurations. These autocorrelations
can depend strongly on the observable, on the evolution algorithm, on the lattice action,
and on the simulation parameters (lattice size, lattice spacing and fermion mass).

The straightforward statistical issue introduced by autocorrelations is the risk of un-
derestimating statistical errors. We address this by performing measurements on only a
subset of the configurations in the ensemble, and combining these measurements into blocks
(sometimes called bins) as described in Section 4.1.2 below. These blocks are the data used
in our analyses, which are all performed with jackknife procedures [240]. Given N blocks
of measurements, we construct N jackknife samples by removing a single block from the
data set and averaging over the rest. Referring to the data x; in the Jth jackknife sample

o

as x;"’,

o _ 1 ,
2" = > wilk). (3.36)
k£J

)

Analyses performed using data sample z;

(/)

produce output parameters ag . The overall

result of the jackknife procedure is

T = % i a) (3.37)
J=1
with standard deviation
o = % 3 (a&” - @)2. (3.39)
J=1

In general, this standard deviation suffices to quantify uncertainties, but in one case we

will propagate errors using the covariance matrix C,g given by

Cur= A (1 - 5) () - ). 53
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Ref. [203] encourages recomputing the covariance matrix for each jackknife sample, which
requires considering the jackknife samples of the jackknife samples (that is, samples formed
by discarding all possible pairs of blocks from the full data set). This allows estimation of
the statistical fluctuations (of order N=3/2) in Eqn. 3.39.

A related danger is that autocorrelations can grow dramatically as the lattice spacing a
decreases, especially autocorrelations in observables related to topology [241]. This critical
slowing down can undermine the statistical reliability of all observables (not just those
related to the topology), particularly for the small ensembles and small lattice spacings
used by the LSD Collaboration. At a minimum, insufficient topological evolution implies
that the theory is not being correctly sampled by the Monte Carlo simulation. Because we
expect the topology to be fixed in the infinite-volume limit, we may be able to treat errors

resulting solely from fixed topology as finite-volume effects [242].

Discretization errors

By discretization errors we refer to deviations of lattice measurements from the corre-
sponding continuum values that are proportional to the lattice spacing a. As discussed
in Section 3.1.2 above, much effort has gone into designing “improved” lattice actions
that reduce or eliminate leading O(a) discretization errors [215, 216], and we use modern
O(a?)-accurate actions in our simulations.

In practice, the lattice spacing does not appear as a tunable parameter in the lattice
action. Instead one adjusts the gauge coupling (3, and the scale-dependence of the running
coupling relates a change in the coupling to a change in the lattice spacing. The scale can be
translated into physical units through any well-known and reliably-calculated dimensionful
quantity, such as the mass of the lightest vector state My = limMI% _oMy. Modern
lattice QCD simulations [29] typically use (2My)~! < a < (4Myo)~ ! (specializing to
lattice QCD, Myo = m, = 770 MeV, this is 0.125 < a < 0.065 fm, or 1.5 < a™! < 3
GeV), with discretization errors below the percent level. LSD Collaboration simulations

are performed at small a =~ (5Myq)~" (for QCD, a ~ 0.055 fm or a~! ~ 3.6 GeV), and
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should therefore suffer from small discretization errors.

As mentioned in the previous section, it can be dangerous to reduce the lattice spac-
ing too much, because this increases autocorrelations and requires longer simulations to
produce the same number of independent measurements. Additional considerations imply
that the total cost of generating an independent gauge configuration using an algorithm
like hybrid Monte Carlo scales with a large negative power of a=%-a~7. For example,
maintaining the same physical volume requires that the size of the lattice scales as a™* (see

Refs. [243, 244] for the remainder of the accounting). Reducing the physical volume leads

to additional systematic effects, which we now discuss.

Finite volume effects

The danger of working on a finite spacetime with (anti-)periodic boundary conditions is
that observables may be affected by signals propagating all the way around the lattice. In
order for these unphysical contaminations to be negligible, the linear length L of the lattice
must be several times larger than the longest correlation length of the system, which is
generally the inverse mass M, L of the lightest pseudoscalar meson (the pseudo-Nambu—
Goldstone boson in theories exhibiting chiral symmetry breaking). Fortunately, these finite
volume effects are exponentially suppressed by MpL for the observables we consider [245],
and the conventional wisdom for lattice QCD is that MpL 2 4 reduces finite-volume errors
in the spectrum to the percent level or less.

While this general argument is not specific to QCD, we should expect to encounter more
severe finite volume effects in “walking” theories for which the coupling evolves more slowly
as the energy scale changes. Lattice simulations require that the coupling be relatively weak
at the scale of the inverse lattice spacing a™!, to avoid a transition into a strongly-coupled
lattice phase without a well-defined continuum limit. Walking behavior involves a large
separation between a~! and the scale of chiral symmetry breaking, which implies that the
lattice volume must grow very large in order to contain the low-energy physics of interest.

In the context of walking technicolor, for example, the separation between the ultra-
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violet scale where asymptotic freedom sets in and the infrared scale of chiral symmetry
breaking is expected to be Mgrc/Arc ~ 103-10*. It is very unlikely that the lattices
used in numerical simulations will exceed L/a < 10% in the foreseeable future. Lattice
studies of walking (and IR-conformal) theories are therefore likely to require step-scaling
and renormalization group techniques such as those summarized in Section 4.1.1 below, in
addition to zero-temperature simulations performed by the LSD Collaboration.

Such considerations were part of the motivation for the LSD Collaboration to proceed
cautiously from Ny = 2 QCD toward the SU(3) conformal window, as discussed further
in Section 4.1.2 below. Comparison with lattice QCD gives some confidence that finite
volume effects are small on all of our ensembles with MpL > 4, and direct confirmation of
this expectation is underway. However, for a given lattice size L, satisfying this condition

limits the range of masses we are able to study, introducing other systematic effects that

we now discuss.

Chiral extrapolations

With few exceptions, lattice gauge theory simulations are performed with unphysically
heavy particles, and chiral extrapolations are performed to connect numerical results to
continuum physics. In QCD, results are extrapolated (and, increasingly, interpolated) to
the physical point m, ~ 135 MeV, mg ~ 494 MeV, mq =~ 1.672 GeV, etc. In theories that
aim to model dynamical electroweak symmetry breaking, the situation is more complicated.
In principle, two of the N flavors of strongly-interacting fermions must be extrapolated to
the chiral limit m = 0 so that three exactly massless (M% = 0) Nambu-Goldstone bosons
are available to be eaten by the W* and Z. The other N ¢ — 2 flavors must remain massive
so that no unphysically light pseudo-NGBs appear in the spectrum.

In practice, such elaborate extrapolations are not performed as part of current lattice
calculations exploring technicolor theories, including those we discuss in Section 4. Instead,
all Ny fermions are taken to be degenerate. Some quantities (such as the mass My of the

lightest vector state) are well-behaved in the limit M3 — 0 with N]% — 1 NGBs; others
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(such as the S parameter) diverge in this limit if Ny > 2. In this situation we are forced to
keep MI% > 0 and estimate the effects of the two-flavor extrapolation by comparison with
the Ny = 2 theory.

For quantities related to the chiral symmetry breaking process itself (in particular Mp,
Fp and <E¢>), it is important to exploit chiral perturbation theory (xPT [101, 246]) to en-
sure that the chiral extrapolation uses the proper functional form (in particular accounting
for so-called chiral logarithms) [102]. Not surprisingly given our introduction of technicolor
in terms of a chiral lagrangian, Eqn. 2.27, it is possible to relate the S parameter to one of

the low energy constants of next-to-leading order xPT, Lj,(x). The relation is

@1
Mgef) 6 ’

(3.10)

re 1 r 1 m2
S, MJ(LI f)) = 1o [_1927T2 < 10(p) + 33472 {log [M—é{] + 1}) + log

where p is a (techni)hadronic renormalization scale (such as the mass of the lightest vector
meson state) and M gef ) is the reference Higgs boson mass. The kaon mass myg appears
because L'(x) is a parameter of three-flavor xPT; a related two-flavor formulation of xPT

uses the low-energy constant

U5(p) = Lio(p) + 384%2 <log [—z] + 1) , (3.41)

and a scale-invariant quantity f5 can be defined by cancelling out the p-dependence of

5 (1),

— m2
l5 = —19272(% (1) — log [M—;} . (3.42)
While xyPT cannot reliably be applied to chiral extrapolations of LSD Collaboration data
(due to large MI% and Ny > 2 [1, 2]), this approach is used to calculate S in scaled-

up QCD by Refs. [141, 142]. These studies fit low-M3, low-Q? data for Iy _4(Q?) =
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Oy (Q?) — T1aa(Q?) (cf. Eqn. 2.43) to the yPT expression

+ 2472

H(z)=(1+x) [\/H—:Elog <% +2>} :

thy (07, Q%) = —F2 — @2 st + 51 (108 [ 2] + 5 - 1)) | a9

where z = 4M3%/Q2.
3.3 Chiral lattice fermions

In addition to the explicit chiral symmetry breaking due to non-zero fermion mass, we saw
above in Section 3.1.3 that simple discretizations of the fermion action also introduce xSB
to evade the doubling problem. This has several unwelcome consequences. Without chiral
symmetry on the lattice, the input (bare) fermion mass m; may receive additive (not just
multiplicative) renormalization, so that the chiral limit M129 — 0 is not known a priori
in terms of my. In addition (assuming that the lattice gauge action is O(a?)-accurate),
lattice fermion actions that preserve chiral symmetry on the lattice automatically result in
discretization errors only quadratic in a, smaller than the O(a) discretization errors that
can occur from actions that break chiral symmetry [247]. Finally, lack of chiral symmetry
allows operators to mix that would not if the action were chiral, which can complicate
analyses and obscure signals. Qualitatively, because we are interested in applying lattice
gauge theory to models of electroweak symmetry breaking that result from spontaneous
xSB, we should make every effort to ensure that explicit chiral symmetry breaking does
not contaminate our investigations.

We also saw in Section 3.1.3 that lattice fermion can exactly possess a (modified)
chiral symmetry at non-zero lattice spacing, described by the Ginsparg—Wilson relation,
Eqn. 3.20. There we wrote down the overlap operator, Eqn. 3.22, and in this section
we consider a related formulation, the domain wall fermion (DWF) action introduced
by Refs. [45, 46, 47]. Originally motivated by the connection between anomalies in 2n

dimensions and currents in 2n+ 1 dimensions, the DWF formulation adds a fifth dimension
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to the lattice, of length L,. Actually, the fifth “dimension” consists of Ls copies of the
same four-dimensional gauge field, connected by the action we describe below.

However, the DWF operator can just as well be understood as an approximation (specif-
ically the polar approximation [248, 249, 250]) to the sign function in the overlap operator,

(1 + 1"15)LS — (1 — H5)LS
(1 + 1"15)1’5 + (1 - H5)LS

sign; [Hs| = (3.44)

where Hs = 5Dy (—M5) is used to form the transfer matrix that describes the propagation

of fermion modes along the fifth dimension,

~ 11— H;
Ts = . 3.45
= (3.45)

As Ly — oo, the approximation sign; [Hs] becomes exact, and in that limit domain wall
fermions possess exact chiral symmetry at finite lattice spacing.

Our goal in this section is not to review the fascinating field of chiral symmetry on the
lattice (for that purpose, see Ref. [44]), but primarily to establish our notational conventions
and introduce some DWF concepts that will play a role in the calculations we discuss in

Section 4. We begin with the formulation of the domain wall operator.

3.3.1 Domain wall formulation

Our notation and implementation of domain wall fermions largely follows the work of
the RBC and UKQCD Collaborations, Refs. [48, 251, 252, 253, 254, 247]. We label the
L, copies of the gauge field along the fifth dimension with the index s = 0,--- , L, — 1.
Although domain wall fermions only possess exact chiral symmetry in the limit Ly — oo,
we take the length of the fifth dimension Ly to be finite, and periodically identify s = L
with s = 0. In numerical simulations, Ls ~ O(10), and we will discuss the “residual” chiral
symmetry breaking due to finite Ly in Section 3.3.2 below.

The domain wall fermion action is Sy = VDpw r(m)¥ + ®TDpyr(m = 1)@, where
U(z,s) and ®(z, s) are five-dimensional fermion and Pauli-Villars regulator fields, respec-

tively. The domain wall Dirac operator Dpwr(m) is built from the four-dimensional
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Wilson Dirac operator Dy (m),

1
[DW(_MS)]m,y = (4 - M5)5:v,y - 5 [(1 + VM)U:::[,uéff,y—i—u + (1 - VM)ULM‘SHHM,?J]
[DDWF(mf)]s,s’ = [DW(_M5) + 1] 53,3’ + PL [(1 + mf)és,Ls—lés’,O - 58—1—1,3’] (3'46)

+ Pr [(1+my)8s00s, 1,1 — Os,5041] -

Here Pp =1 (14 5), P, =1 (1 —15) and 0 < M5 < 2 can be considered the height of the

domain wall. In the form of an Ly x Ls matrix, we can write the operator Dpy r(m) as

Dw(—M5)+1 —PL 0 mPR
—Pr Dy (—Ms) +1 —FPr, 0
0 —Pg Dw(—Ms)+1 - 0 . (347)
mPy, 0 0 -+« Dw(—=Ms)+1

In the fifth dimension the Pauli-Villars operator Dpw (1) has anti-periodic boundary
conditions, but the in the limit of zero fermion mass m — 0, the Dirac operator D py r(m)
has Dirichlet boundary conditions. Dpwp is vs-hermitian if we also reflect around the

midpoint of the fifth dimension,

Dy p = 1RO pw rRYs, (3.48)

where Rg gy = 051,-1-s. This still satisfies the condition det [Dpwr] = det [DTDWF]
needed to show the positivity of the action.

Qualitatively, we see that m couples the left and right walls, and we can understand
Eqns. 3.46 and 3.47 to represent light, chiral lattice modes localized near the domain walls.
The doublers (and additional modes from the enlarged dimensionality of the operator)
propagate in the fifth dimension, and obtain large masses from the Wilson term in the
action. As Lg increases, so does the number of these heavy modes, which the Pauli—Villars

regulator fields cancel in the limit Ly — oo.
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Although the domain wall fermion formulation introduces a fifth dimension, it describes
four-dimensional physics. Adopting the notation of Ref. [48], we define the four-dimensional
fermion fields g(x) as the chiral projections of the five-dimensional fermion fields ¥(z, s)

on the domain walls at s =0 and s = Lg — 1,
q(x) = PL¥(x,0) + PRV (z, Ls — 1) q(z) = ¥(z,Ls — 1)Py + ¥(z,0)PR. (3.49)

Since Prvs = v5Pr = Pr and Prvys = 5P, = — P, the flavor non-singlet pseudoscalar

operator is
Pz) = q(2)y5T%q(z) = VU(x,0)PRT*V (2, Ly — 1) — V(x, Ly — 1) PLT*¥(z,0), (3.50)

where the flavor matrices 7 = 17% are normalized so that Tr [T e b] = %5‘”’. A similar
“midpoint” pseudoscalar operator is defined by shifting s — s + Ls/2 (recall that s = L

is periodically identified with s = 0):

¢ (x) =V(x,Ls/2)PRT*V (2, Ls/2 — 1) — V(x, Ls/2 — 1) P, TV (x,Ls/2).  (3.51)

mid

We use J . (x) to determine the residual chiral symmetry breaking due to finite L,. At
low energies

@ = Myes P (z) + O(a?), (3.52)
where the residual mass m,.s quantifies chiral symmetry breaking as we now discuss.

3.3.2 Residual chiral symmetry breaking

As explained above, the chiral symmetry of domain wall fermions only becomes exact in
the limit Ly — oco. For the low-energy observables that we are interested in, at scales small
compared to the inverse lattice spacing a~', the residual chiral symmetry breaking due
to finite Ly can be represented as an additive renormalization m,.s of the input fermion
mass my¢. (Of course, my > 0 itself breaks chiral symmetry.) The chiral limit can then be

obtained as m = my + Myes — 0.
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For the Ny = 2 simulations discussed in Section 4 (which have large cutoff a1 and
relatively small Ly = 16), the residual mass m,.s is exponentially suppressed by Ls, domi-
nated by a term oc e *<Ls /L. Here ). is the “mobility edge”, adapted to lattice QCD from
condensed matter physics by Ref. [255]. At stronger coupling (smaller a~!) or larger Lg, an
additional contribution to m,.s that is o< 1/Lg becomes important [254]. This contribution
arises from eigenmodes of log fr, that have localized four-dimensional support and have
cigenvalues near zero, |A| < A.. (T is the transfer matrix defined in Eqn. 3.45 above.)
Such near-zero modes are believed to be lattice artifacts (“dislocations”) localized to a few
lattice spacings a; however, they contribute to the effects of chiral symmetry breaking on
low-energy observables. Because we must increase the coupling to match low-energy scales
for Ny > 2, such effects may become more important as Ny increases, cf. Section 4.1.2.

While we will not discuss further the analytic dependence of m,.s on Ly (or on other
DWF parameters such as Ms), we summarize here our non-perturbative calculation of

Mres. We consider the ratio

(DT [ OPY0,80)]) (5, o5, )P0, 1)
Rl =to) = S R P PO~ o P pPo )y )

which measures the pseudoscalar coupling to the midpoint operator (Eqn. 3.51), normalized
by the pseudoscalar correlator itself [48, 251, 252, 253]. We explicitly write the trace in
Eqn. 3.53 to emphasize that the flavor index ¢ in the final expression is not summed over,
but indicates that these operators are flavor non-singlet.

Similarly to the effective masses discussed in Section 3.2.2 above, for 1 < t < N; the
ratio R(t) should be approximately constant, and we identify m,.s as the value of this
plateau, as illustrated in Fig. 3-3. As discussed above, the physical domain wall fermion
modes are localized around the left (s = 0) and right (s = Ls — 1) walls in the fifth
dimension as chiral symmetry improves. Improving this localization reduces R(t) and
Myes, since P(x) is defined on the walls while J¢ . (x) is defined halfway between them.
Similarly, the ratio vanishes in the limit Ly, — oo, which reflects our statement that the

domain wall fermion formulation possesses exact chiral symmetry in this limit, even at
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non-zero lattice spacing.

3.3.3 Local and conserved currents

We conclude our brief overview of domain wall fermions by considering the vector and
axial currents that appear in the calculation of the S parameter. Here we actually have
two options. The simple approach is to use ¢(z) from Eqn. 3.49 in the usual continuum
expressions,

Vi (z) = q(2)y, () (3.54)

Al(z) = q(z)yuysTq(x)

= VU(z, Ly — 1)y, PRT*V(x, Ls — 1) — U(z,0)7,PLT"¥(z,0).

(3.55)

We refer to Vi(z) and Af,(z) as “local” currents because they involve ¢(x) and g(x) at the
same site . Ref. [47] introduced the corresponding conserved currents Vji(z) and Aj(z),

which are built from the point-split current

2

_ 1 _
jo(ws) = T + 7, s)%Ug,MTW@, §) — Tz, s)—— U, TU(z +f,s)  (3.56)

by summing over the fifth dimension,

Ls—1 Ls—1
Vi(z) = Z Ju(z,s) Aj(z) = Z sign <s — LSZ_ 1> Julw,s). (3.57)
s=0

s=0
Because jj;(z, s) is point-split, we should think of Vj(z) and Aj(z) as the currents carried
by the link between = and (z + fi), properly located at (x + fi/2).

Vi (z) is conserved in the sense that its divergence vanishes,

Ls—1
ALYV (@) =Y A (x,5) = 0. (3.58)
s=0
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Figure 3-3: Jackknife fit results for R(|t — tg|) and m,.s (solid black line)
from 322 x 64 LSD Collaboration ensembles with Ny = 2 and my = 0.01
(cf. Section 4.1.2 for details of ensembles and measurements). The bottom
panel zooms in on the plateau in the range 10 < t < 54. The dotted lines
show the statistical error in m.s.
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Here A, is the lattice finite difference operator with five-dimensional continuity equation

—j8(2,0) - mP () s=0
A (e, s) = Jji(x,s — 1) — jé(x,s) 0<s<Ls—1 (3.59)
Je(x, Lg — 2) + mP%(x) s=Ls—1

where for notational convenience we have defined
je(z,8) = U(z,s + 1) PRTV (2, 8) — VU(z, s) PLT"W(x,s + 1). (3.60)

Note that j¢(x,Ls — 1) = P*(x) and j¢(x,Ls/2 — 1) = J2,,(x). When acting on a four-
dimensional operator,

Apf(x) = f(x) = flo—p), (3.61)

so the local current V() is not conserved. We can also discuss current conservation in

terms of the Ward-Takahashi identity [256, 257]
Ay (V*#(2)O(y)) =i (60°O(y)) - (3.62)
Similarly, AZ(J:) is “partially” conserved (i.e., conserved in the chiral limit),

AAM (x) =2mp P (x) + 2J)4(x) = 2(myp + myes) P (x) (3.63)

Ap (A% (2)0(y)) = 2my (P*(2)O0(y)) + 2 (J54(2)O(y)) + i (6°O(y)) , (3.64)

which follows from Eqns. 3.57 and 3.59. If the operator O(x) is a flavor non-singlet defined
on the walls (i.e., built from the fields ¢(x) and g(x)), then (J%.. (x)O(y)) vanishes in the
limit Ly — oo [47].

While V() and Ajf; () approach the corresponding continuum currents with unit nor-

malization as a — 0,! the continuum limits of the non-conserved local currents Vi(z) and

! According to Ref. [258], the conserved axial current receives an additional multiplicative renormalization
Z4 from the effects of finite L, which is expected to be negligible in practice, Za4 — 1 o m2.s. Although
Ref. [247] argues that Z4 —1 o Myes, this is still a small (sub-percent level) effect, though it may become
more important for larger Ny, cf. Section 4.1.2.
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Af(z) may differ from the true currents by a multiplicative renormalization constant Z.
More generally, we can define Zy and Z4 for the vector and axial currents, respectively,

which relate
AZ(:E) = ZAAZ(:E) + O(a2) Vﬁ(:n) = Zvv;(:E) + O(a2) (3.65)

at finite lattice spacing. While Z4 = Zy in the chiral limit, these two renormalization
factors can differ in simulations at non-zero lattice spacing and fermion mass.

We can determine Zy and Z 4 non-perturbatively, much as we calculate m,.s above. The
basic idea is to consider a correlator involving one conserved current and one local current,
normalized by the corresponding correlator with only local currents. The cleanest signal
comes from coupling the temporal component of the axial current with the pseudoscalar

operator,

C(jt —to +1/2|)

<Z AZ(x,t)P“(O,t0)> (3.66)
L(|t —to]) = <Z AZ(x,t)P“(O,to)> (3.67)

(recall that A%(x,t) is located at (z + £/2), and we do not sum over the flavor index ¢).
Then, like R(t) in Eqn. 3.53, C(t)/L(t) is approximately constant for 1 < ¢ < Ny, and
this constant can be identified with Z 4. This procedure can be improved by constructing
arithmetic averages of C(|t —tg + 1/2|) and L(|t — tg|), to account for the fact that they

are not at exactly the same location. Ref. [48] argues that the ratio

1(C(t+1/2)+Ct—1/2)  2C(t+1/2) } (3.68)

Zas(t) ==

alt) =3 { 2L(t) L)+ L(t+1)

eliminates O(a) discretization effects and also reduces O(a?) effects. We show an example of

the Z4(t) plateau in Fig. 3-4 for LSD Collaboration ensembles with Ny = 2 and my = 0.01.
Fig. 3-4 also shows a plateau for Zy,, which we calculate non-perturbatively in a slightly

different way. Because Z4 = Zy in the chiral limit, independently measuring the two Z



65

factors can provide another measure of residual chiral symmetry breaking and its effects
on observables. In addition, because our calculation of Zy differs from that of Z 4, we may
be able to estimate the magnitude of O(a) discretization effects by comparing our results
for the two Z factors, especially in the chiral limit.

Straightforwardly changing Eqn. 3.68 from axial currents to the vector case would
replace P?%(x) with the (flavor non-singlet) scalar operator g(z)7T%¢g(x), and we find the
resulting correlators to be very noisy. Empirically, we find cleaner signals for Zy from the

ratio

(Yo V2 V(0. 10))
(S VPG V(0. 10) )

where we sum over the spatial indices 7 and j, but not the flavor index . The ratio in

Zy (|t —tol) = : (3.69)

Eqn. 3.69 also gives reasonable results for Z4 when we replace V{(z) and V,*(z) with A¢(x)
and A¢(z). We refer to these results as ZX) to distinguish them from Z4 as calculated by

Eqn. 3.68.
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Chapter 4

Lattice strong dynamics

We now bring together the two preceding discussions, by considering the application of
lattice gauge theory (Section 3) to models of dynamical electroweak symmetry breaking
(Section 2). Although technicolor theories are the immediate motivation for these studies,
even if strong dynamics are not directly responsible for EWSB, this work will help improve
our very limited understanding of strongly-interacting gauge theories beyond QCD. Because
theories of physics beyond the standard model generally involve strongly-coupled dynamics
(if in some cases only at very high energies such as the scale of supersymmetry breaking),
improving our understanding of strong interactions may prove invaluable to future efforts
to unravel BSM physics.

Lattice studies beyond QCD have generated a great deal of interest and activity in
recent years, and we begin this section with a brief overview of the field. We review the
goals and status of the work, as well as some of the unique challenges that face lattice studies
attempting to explore walking or IR-conformal dynamics. Although we sketch the current
state of results, detailed discussions of all the models and methods under consideration is
well beyond the scope of this document. Recent reviews include Refs. [35, 36, 37, 38, 39].

The remainder of Section 4.1.2 focuses on the program and initial results of the Lattice
Strong Dynamics (LSD) Collaboration. To address some of the challenges of studying non-
QCD theories on the lattice, LSD Collaboration explorations are grounded on the relatively
firm footing of lattice QCD. That is, we study SU(3) gauge theories and systematically
increase the number Ny of fermions in the fundamental representation, from Ny = 2
(lattice QCD) to Ny = 6 and Ny = 10. By matching the scales used in these studies, we

can search for deviations from QCD-like behavior, and from expectations based on scaling

67
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QCD results with Ny.

After briefly reviewing Ny = 6 (and some preliminary N; = 10) LSD Collaboration
results on the enhancement of the chiral condensate <E1,Z)> relative to lattice QCD [1, 4],
we consider the corresponding results for the masses and decay constants of the lightest
vector and axial mesons. This leads us to a detailed discussion of our lattice calculation
of the electroweak S parameter [3, 4]. For Ny = 2, we find S = 0.311(21), in agreement
with the initial estimate S = 0.32(3) made by scaling up experiment QCD spectrum data
to the electroweak scale [18]. For Ny = 6 and Ny = 10 we find results for S that can be
well below the value obtained by simply scaling QCD dynamics by a factor of Ny/2. We
conclude the section by discussing the systematic effects entering these results for the .S
parameter, and future directions both for this calculation and for the LSD Collaboration

program as a whole.
4.1 General considerations

We begin our discussion of lattice studies of theories beyond QCD by briefly summarizing
the current state of the field, focusing on the goals and recent results of these explorations,
as well as the particular challenges they face. We then introduce the program of the LSD

Collaboration and discuss some if its initial results.

4.1.1 Overview of the field

Goals

Although attempts to apply lattice gauge theory techniques to questions related to dynam-
ical electroweak symmetry breaking date back to the mid-1980s [259, 260, 261, 262, 263,
264, 265, 266, 267, 268], only in recent years have algorithmic advancements and steadily
increasing computational resources begun to produce reliable results that have attracted
great interest.

Beginning with Refs. [269, 270], most studies have focused on delineating the conformal

window for the theories with the fewest degrees of freedom (and therefore the minimal
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computational requirements), specifically SU(2) and SU(3) gauge theories with fermions
in the fundamental, adjoint or two-index symmetric representations. A related goal, for
those theories that appear to exhibit walking or IR-conformal behavior, is to determine
the mass anomalous dimension ~,,, with particular interest in identifying any theories with
Ym =, 1. Next, with the CERN Large Hadron Collider beginning direct exploration of the
TeV scale, predictions for the particle spectra of TeV-scale strongly-interacting theories
are of great interest. These calculations can also be used to calculate the .S parameter in
these theories, and search for any theories with S small enough to satisfy phenomenological
constraints." Finally, lattice simulations may observe more speculative possibilities such

as pseudo-dilatons [274].

Status

In Table 4.1, we attempt to compactly summarize the conclusions of recent lattice searches
for conformal windows, specifying whether the cited studies indicate an infrared fixed point
in the continuum chiral limit (IRFP), are better described by chiral symmetry breaking
(xSB), or could be consistent with both possibilities. (We also note in the table where
asymptotic freedom is lost, to reveal the range of possibilities.) This classification omits a
vast amount of information, and we encourage direct consultation of the cited sources and
references therein.

There is general consensus that both SU(3) gauge theory with Ny = 16 fundamental
fermions and SU(2) gauge theory with Ny = 2 adjoint fermions are IR-conformal. Simi-
larly, SU(3) gauge theories with Ny < 8 fermions in the fundamental representation are
thought to exhibit chiral symmetry breaking. With the exception of Refs. [290, 291], stud-
ies of SU(2) gauge theories with fermions in the fundamental representation have focused
on simulations performed at large temperatures and baryonic density (chemical potential),

rather than directly searching for the conformal window.

1Studying the spectrum and S is most natural in theories exhibiting chiral symmetry breaking, though
recent conjectures on the S parameter of “mass-deformed” IR-conformal theories may benefit from com-
parison with lattice studies [271, 155, 272, 273].
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Table 4.1: Lattice studies of the IR behavior of SU(N.) gauge theories
with N fermions in the specified representation.

N. | Nt | Rep. | Result | Ref.

2 2 | Adj. IRFP | [275, 276, 277, 278, 279, 280, 281]
Unclear | [282, 283, 284, 285, 278, 286]
Adj. | Asymptotic freedom lost

Fund. | xSB | [287, 288]

Fund. | xSB | [289]

Fund. | Unclear | [290]

Fund. | Unclear | [291]

Fund. | Asymptotic freedom lost

Fund. xSB [292, 293, 294]

GUNISUNIGUIIUI UG NI NI N
— = —
DR ©wo kD oo~ ow

Fund. | xSB | [1], this work
Fund. | xSB | [270, 295, 296, 294, 297, 298|
Fund. | xSB | [294]
Fund. | IRFP | [299]
Fund. | xSB | [294, 297, 300, 301]
IRFP | [270, 295, 302]
Unclear | [298 303]
3 | 16 | Fund. | IRFP | [266, 267, 293, 294, 304]
3 | 17 | Fund. | Asymptotic freedom lost

3 2 | Sym. xSB [300]
Unclear | [305, 306, 307, 308, 309]
3 4 | Sym. | Asymptotic freedom lost
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The case of SU(3) gauge theory with Ny = 2 fermions transforming in the two-index
symmetric (sextet) representation illustrates the potential sensitivity of these studies to
the method used: initial signs of an IRFP reported by Ref. [307] vanished when those
authors improved their action to reduce lattice artifacts [309]. The current disagreement
regarding the IR behavior of SU(3) gauge theory with Ny = 12 fermions in the fundamental
representation is also likely due (at least in part) to the different methods used by the
various studies. It is not clear at this time which of these methods may prove most reliable.

Detailed discussion of the many methods employed in these studies is well beyond the
scope of this document, but we mention that the most common lattice technique to search
for signs of an IRFP is to use step-scaling techniques that measure some definition of the
running coupling over a wide range of scales. The Schrédinger functional scheme for the
coupling [310, 311, 312] is widely used, as are definitions of the coupling from the potential
between static charges [313, 314, 304].2 Monte Carlo renormalization group techniques
operate similarly [315, 316, 317], applying blocking transformations to change the scale.
The spectrum or thermodynamical phase diagram of the theory can also be compared to
the behavior expected from either IR conformality or chiral symmetry breaking [318, 319,
320, 273].

Although SU(2) gauge theory with Ny = 2 fermions in the adjoint representation
appears to possess an IR fixed point in the continuum chiral limit, measurements of the
mass anomalous dimension at this fixed point have consistently found ~,, to be significantly
smaller than the ~,, = 1 that appears to be needed for the simplest theories of walking
technicolor to remain viable. Using a variety of different methods, Refs. [277, 279, 280, 281]

all find 7, < 0.6. Studies of SU(3) gauge theory with Ny = 2 fermions in the two-index

~

symmetric representation also find v, < 0.6 [319, 309]. For SU(3) gauge theory with

~

Ny = 16 fermions in the fundamental representation, the theory is weakly coupled and

Ym negligible; Ref. [298] finds a very small v, = 0.06(2) for Ny = 12 as well. So far,

2We reiterate the points made in Section 2.3, that although the value of the coupling associated with an
IRFP is scheme-dependent, the existence of an IRFP, and the mass anomalous dimension ~,, at that IRFP,
are scheme-independent.
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the only hint of a large 7, 2 1 comes from the SU(2) theory with Ny = 6 fermions in
the fundamental representation. Here Ref. [290] reports 0.135 < ~,, < 1.03, but large

uncertainties make it unclear whether or not the theory possesses an IRFP at all.

Challenges

One challenge that our discussion above clearly reveals is the large number of possible
models that could be candidates for physics beyond the standard model, or could be theo-
retically interesting in their own right. It is not practical (or possible) to study all of these
models in detail. Instead, our strategy (guided by experiment and model-building) must
be to map out isolated islands in the theoretical sea, and attempt to understand how the
properties of a given theory depend on its most basic features: the gauge group and matter
content.

Another difficulty is that, unlike lattice QCD, we do not have extensive experimental
information to guide us. Without this means of assessing the systematic effects of working
in a finite, discrete spacetime, we are obligated to carefully ensure that our lattice calcu-
lations provide reliable information about continuum physics. This produces a significant
increase in computational cost; the LSD Collaboration, for instance, uses computation-
ally expensive domain wall fermions due to the closer connection to continuum physics
possessed by this chiral lattice formulation, as opposed to cheaper Wilson or staggered
fermions. Similarly, the different methods employed by the various groups studying lattice
gauge theories beyond QCD cannot be evaluated by how well they reproduce experimen-
tal information; more care must be taken to understand and resolve any discrepancies in
results obtained by different methods.

Additional costs arise from the larger number of degrees of freedom possessed by most
of these theories compared to lattice QCD. Besides the linear growth in the number of
inversions required as N; increases, the additional fermions contribute to the total forces
entering into hybrid Monte Carlo simulations, requiring that the HMC step size be reduced

by a factor of roughly /Ny. The total cost of the simulations therefore increases o N]?c’/ 2,
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Finally, and perhaps most significantly, the walking or IR-conformal dynamics that we
aim to study present challenges to lattice methods by their very nature. As discussed in
Section 3.2.3, the emergence of widely separated scales that is associated with walking
behavior demands very large lattices (or the use of step-scaling techniques) for results to

be reliable.

4.1.2 Lattice Strong Dynamics Collaboration program

The challenges just discussed play a significant role shaping the strategy of the LSD Col-
laboration. As mentioned, we exploit the good chiral and flavor symmetries of domain wall
fermions, despite the associated computational expense. More broadly, we ground our en-
tire program of exploration on the relatively well understood case of lattice QCD, using it
as a baseline to help us observe and understand new features of other strongly-interacting
theories. Our initial studies of SU(3) gauge theories systematically increase the number
Ny of degenerate fermions in the fundamental representation, from the Ny = 2 of lattice
QCD to Ny =6 and Ny = 10. The N; = 10 studies are ongoing, and all Ny = 10 results
presented here are preliminary and may change prior to publication. Additional LSD
Collaboration studies of SU(2) gauge theories with Ny = 2, 4 and 6 are underway but will
not be discussed here. (In particular, we make no claim in Table 4.1 above regarding the
IR behavior implied by our Ny = 10 or SU(2) studies.)

Although we use only a single lattice spacing, we take care to match this scale between
all three sets of simulations (with Ny =2, Ny = 6 and Ny = 10) as described below. The
point of this scale matching is to permit the most direct comparisons possible between our
results for the different theories. Our main simulations (producing the results discussed
below) are performed on 323x64 lattices, and additional simulations on 163x32 and 243x32
lattices permit (ongoing) numerical checks of finite volume effects. Because our calculations
are exploratory, aiming for 10% accuracy, only short runs are performed at 5-6 different

input fermion masses 0.005 < mjy < 0.03 for each Ny.
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Simulation details

LSD Collaboration simulations use domain wall fermions with the Iwasaki improved gauge
action (Eqn. 3.12), using lattice volume 323 x 64, fifth-dimension length L, = 16 and do-
main wall height M5 = 1.8 (cf. Eqn. 3.46). Gauge configuration generation is performed
using the HMC algorithm implemented in the Columbia Physics System,® which provides a
well-optimized multilevel [321] symplectic integrator with Hasenbusch preconditioning [322]
and chronological inversion. Our computations are performed primarily on the BlueGene/L
supercomputer at Lawrence Livermore National Laboratory, with additional resources pro-
vided by the USQCD Collaboration, the NSF Teragrid, and Boston University.

The first step in our studies is matching the scale at which we perform simulations. This
is done by means of 163 x 32 simulations carried out with a range of 3 = 2N./g?, where
g is the bare coupling. Because the additional dynamical fermions in the path integral
have the effect of “smoothing out” the gauge field over many lattice spacings [251], the
gauge coupling must be increased (3 decreased) for larger Ny. Although the transition into
the strongly-coupled lattice phase is similarly shifted to lower 3, the effects of additional
fermions are less significant at the scale of one or two lattice spacings (as revealed by
the dramatic growth in m,.s discussed below), and we must carefully ensure that our
simulations are well away from this strong-coupling transition. Here we are helped by our
use of a very small lattice spacing, a ~ (5Mvo)_1 (where My = limM%_@ My and My is
the mass of the lightest vector state), which was originally chosen to maximize the range of
scales available for the coupling to evolve on these lattices. The § used in our simulations

are
Nf=2:8=27 Ny=6:8=21 Ny=10:03=195. (4.1)

In the context of technicolor, the proper dimensionful quantity to use to determine the

scale is the pseudoscalar decay constant in the chiral limit, lim M2—0 Fp=v =246 GeV. In

3http://qcdoc.phys.columbia.edu/cps.html
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practice, the short runs on small lattices that we use to match scales do not allow reliable
chiral extrapolations of Fp; instead we must consider these data at M}% > 0, along with the
more accessible observable Myq. In our Ny = 6 simulations, not only these two quantities,
but also the nucleon mass and Sommer scale [323] match their Ny = 2 values [1, 4], which
we consider “accidental” and unlikely to persist for Ny = 10. We estimate that the scale
as defined by Fp as well as that defined by My are matched to within our 10% target
accuracy across all three simulations (though the Ny = 10 results are preliminary), cf.
Figs. 4-8 and 4-10.

Finally, as discussed in Section 3.2.3 above, a disadvantage to performing simulations
at such a small lattice spacing is that the evolution of the topology can be very slow,
especially at small MI%. In our simulations for both Ny = 2 and Ny = 6, we find that
the topological charge evolves sufficiently to provide a reasonable sampling of different
topological sectors for all m; > 0.01. However, topological evolution is not sufficient for
my = 0.005, or for most of our Ny = 10 simulations, and the resulting systematic effects

are under investigation [1, 4].

Measurement details and analysis overview

Table 4.2 lists the 323 x 64 LSD Collaboration ensembles used in the analyses presented
below. For each ensemble, we begin performing measurements after a thermalization time
of several hundred molecular dynamics trajectories. The initial gauge configuration in each
ensemble is usually chosen to be random (a disordered start labelled by “dis” in Table 4.2),
or is set to unity, U(x) = 1 (an ordered start labelled by “ord”). In one case, the Ny = 2
my = 0.005 ensemble labelled “thm”, a new Monte Carlo Markov chain was started from a
thermalized configuration selected from the disordered-start Ny = 2 m; = 0.005 ensemble.
Instead of starting a Ny = 10 ensemble with m; = 0.005 from a completely random gauge
configuration, we set U(z) = 1 on one half of the lattice (0 <t < 31) and use a random
gauge field on the other half (32 < ¢ < 63), a mixed start labelled “mix”.

Thermalization times may vary for different observables, and for Ny = 2 and Ny = 6
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we choose the thermalization cuts shown in Table 4.2 by requiring that all of <E¢>, the
plaquette, pseudoscalar correlators and vector correlators reach a thermalized state. For
those Ny and m; where we generate both ordered- and disordered-start ensembles, we also
monitor the convergence of observables to common values. Similarly, the Ny = 10 m; =
0.005 mixed-start ensemble allows us to monitor thermalization by comparing observables
computed on each 324 subvolume, to see how the initially ordered and disordered domains
evolve. Thermalization generally occurs more quickly as my increases.

Because Ny = 10 simulations are ongoing, thermalization analyses have not yet been
finalized. We choose preliminary Ny = 10 thermalization cuts by examining pseudoscalar
and vector masses Mp and My calculated from measurements over a range of 100 trajec-
tories (e.g., trajectories 300 through 400, 320 through 420, etc.), as a function of the first
trajectory included in the range. We place the thermalization cut around the point where
Mp and My begin to fluctuate around a stable value, as opposed to evolving monotoni-
cally, as illustrated in Fig. 4-1. Although the LSD Collaboration is currently generating five
ordered-start Ny = 10 ensembles at the same values of m as the mixed- and disordered-
start ensembles listed in Table 4.2, only two of these ensembles have accumulated a sig-
nificant number of trajectories, and even these do not yet appear to be thermalized, as
illustrated in Fig. 4-2. We therefore omit these ordered-start Ny = 10 ensembles from this
preliminary analysis.

Once a given ensemble is thermalized, we perform measurements on every fifth trajec-
tory, alternating the time ¢ty at which we place the source. Specifically, we use point sources
at top = 0 and 32 on trajectories numbered with multiples of 10 (Nyq; mod 10 = 0), and
point sources at ¢y = 16 and 48 on alternating trajectories (Ny.q; mod 10 = 5). The fifth
column of Table 4.2 lists the resulting total number of measurements for each ensemble.
For Ny = 2 and Ny = 6, LSD Collaboration results for meson masses and decay con-
stants presented below do not include measurements on the alternating trajectories, but
add measurements using gauge-fixed wall sources placed at {5 = 0 and 32 on every tenth

trajectory.
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Figure 4-1: Mp and My for the mixed-start Ny = 10 my = 0.005 ensem-
ble, calculated from measurements over the 100 trajectories starting from
the trajectory number indicated on the horizontal axis.
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Figure 4-2: Mp and My for the ordered-start Ny = 10 my = 0.005
ensemble, calculated from measurements over the 100 trajectories starting
from the trajectory number indicated on the horizontal axis.
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Table 4.2: LSD Collaboration ensembles, thermalization cuts and blocks
used in analyses.

Nf myg Start Traj N LB NB
2 1 0.005 dis 515-1260 | 300 | 30
ord 405-820 | 168 | 30
thm 5-1080 | 432 | 30
Tot: 900 | 30 | 75
2 10.010 dis 5352450 | 768 | 30
ord 535-950 | 168 | 30
Tot: 936 | 30 | 78
0.015 dis 510-1495 | 396 | 30 | 33
0.020 dis 705-1420 | 288 | 30 | 24
0.025 | ord 205-830 | 252 | 30 | 21
0.030 | ord 225-610 | 156 | 30 | 13

0.005 dis 605-1200 | 240 | 30
ord | 435-1180 | 300 | 30
Tot: 540 | 30 | 45
6 | 0.010 dis 405-820 | 168 | 30
ord 425-510 | 36 | 30
675-1270 | 240 | 30
Tot: 444 | 30 | 37
0.015 dis 415-950 | 216 | 30 | 18
0.020 dis 415-800 | 156 | 30 | 13
0.025 dis 410-825 | 168 | 30 | 14
0.030 dis 505-760 | 104 | 20 | 13
10 | 0.005 | mix 405-520 | 48 | 30
550-665 | 48 | 30
Tot: 92 | 30 8
10 | 0.010 dis 405-790 | 156 | 30 | 13
10 | 0.015 dis 340-755 | 168 | 30 | 14
10 | 0.020 dis 325-890 | 228 | 30 | 19
10 | 0.025 dis 310-755 | 180 | 30 | 15

|| N N DN DN

[=2] Ner] Nep) Nep)
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The point of performing measurements only on every fifth trajectory, and at vary-
ing tp, is to minimize autocorrelations between the measurements, as discussed in Sec-
tion 3.2.3 above. To address remaining autocorrelations, we average the measurements
over blocks (sometimes called “bins”) of length Lp = 20-30 trajectories (8-12 measure-
ments per block), treating each block as a single measurement in our subsequent jackknife
analyses. Although larger block lengths are more effective at removing autocorrelations,
increasing Lp reduces the statistics available for analyses.

We choose Lp by calculating Mp and My with a variety of 10 < Lp < 60, and
comparing the statistical error bars and the stability of the reults. We find stable results
with comparable error bars for all L in this range. An example is shown in Fig. 4-3, which
plots Mp against Lp for the Ny = 10 ensemble with m; = 0.01. Details of this study for
Ny =2 and Ny = 6 will be presented in Ref. [4]; blocking parameters for Ny = 10 are
preliminary.

Mp for N; = 1, my = 0.01 disordered-start
0.2 . . . . . .

0.19 1

.

017

M
i
—p—
——

.16 _

“.IS L L L L 1 L
Ly

Figure 4-3: Mp for Ny = 10 with my = 0.01, as a function of block length
Lp.

In cases where we have generated multiple ensembles with the same Ny and my, we
analyze all of their blocks together as a single data set. The last column of Table 4.2 shows

the number of blocks Np for each Ny and my.
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Residual mass and renormalization factors

We calculate the residual mass m,..s as discussed in Section 3.3.2, fitting the ratio

_ <ZxTr[ 7[11%' (th)Pb(07t0)]> _ ( X ﬁn‘ (X7t)Pa(07t0)>
Rllt—to) = SR oo oo to)) — O P OPOR) Y

to a constant in the range 10 < ¢ < 54. Our results are plotted versus MI% /M‘2/0 in
Fig. 4-4 and tabulated in Table 4.3. (As discussed in the next section below, plotting versus
MI% / M\2/0 provides a more directly physical comparison between theories with different Ny,

since the relation between M]% and the fermion mass m is strongly Ny-dependent.)

“.“l_ T T T T T
[ J'ﬁr_lf = 2 L Y
Ne=1#6 ]
Ne=10 |
E N | u u
IHNH:— y e o ® Py ® ® g
£
00001} |
o P 'y A &
IE_“E 1 L L L L
1] 0.5 1 1.5 2 25
M3/ME,

Figure 4-4: m,.s for Ny =2, Ny = 6 and (preliminary) Ny = 10. Because
the empty point has MpL < 4, it may suffer from non-negligible finite-
volume effects, and is omitted from the linear M3 — 0 extrapolation (x).
Error bars are smaller than the symbols.

While m,..s varies little with M]% /M‘%O, as expected, we observe significant increases in
Myres as Ny increases. Following the argument of Ref. [251], we can ascribe this qualitative
behavior to the fact that we must significantly increase the bare coupling (decrease f3) in
order to match the scale a~! between the simulations with different N r, as discussed in

Section 4.1.2. Increasing Ny has little effect on short-distance lattice dislocations, which we
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Table 4.3: m,.; and Z factors for Ny = 2, Ny = 6 and (preliminary)
Ny = 10, using fit range 10 < ¢ < 54. The final lines for each Ny show
the results of linear MI% — 0 extrapolations. The Ny = 2 extrapolations
labelled “MpL > 47 only include the five heaviest data points that satisfy
this condition.

Ny | my | M2/M2Z, || mypes - 10° Za Zy 7
2 [0.005 | 02615 | 2.636(7) | 0.85078(7) | 0.84895(7) | 0.84775(13)
2 10010 | 04053 | 2.661(6) | 0.85079(5) | 0.84872(6) | 0.84709(15)
2 10015 | 05950 | 2.674(7) | 0.85104(7) | 0.84835(8) | 0.84651(20)
2 10020 | 08771 | 2.699(8) | 0.85146(7) | 0.84815(8) | 0.84623(30)
2 10025 | 1.0427 | 2.694(7) | 0.85166(6) | 0.84766(9) | 0.84624(23)
2 10.030 | 1.2877 | 2.723(9) | 0.85233(6) | 0.84771(12) | 0.84584(23)
2 | - =0 2.627(8) | 0.85021(13) | 0.84925(11) | 0.84801(23)
2 | — | MpL>4| 2.636(3) |0.85007(14) | 0.84919(17) | 0.84753(18)
6 ]0.005 | 04729 | 84.34(19) | 0.72676(6) | 0.72204(7) | 0.72099(11)
6 | 0.010 | 0.6546 | 85.59(47) | 0.72689(12) | 0.72100(8) | 0.71853(17)
6 | 0.015 | 09729 | 87.80(29) | 0.72675(5) | 0.72061(10) | 0.71666(26)
6 |0.020| 1.3487 | 88.70(29) | 0.72684(6) | 0.71952(17) | 0.71571(41)
6 |0.025 | 17190 | 90.45(35) | 0.72734(4) | 0.71871(14) | 0.71460(38)
6 |0.030| 21191 | 92.34(37) | 0.72760(8) | 0.71772(9) | 0.71297(52)
6 | - —0 | 82.28(38) | 0.72625(20) | 0.72300(8) | 0.72300(77)
10 [ 0.005] 0570 | 171.8(4) | 0.70727(9) | 0.70209(6) | 0.70098(12)
10 | 0.010 | 0783 || 173.7(4) | 0.70707(11) | 0.70184(7) | 0.70049(15)
10 | 0.015 | 1.107 || 177.0(2) | 0.70729(5) | 0.70116(5) | 0.69910(14)
10 | 0.020 | 1473 || 181.1(3) | 0.70735(5) | 0.70020(4) | 0.69689(15)
10 | 0.025 | 1.856 || 185.7(3) | 0.70765(6) | 0.69916(7) | 0.69394(19)
0| - —0 | 165.1(11) | 0.70690(17) | 0.70358(21) | 0.70436(65)
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expect to contribute to chiral symmetry breaking (i.e., increase m,.s), from the discussion
in Section 3.3.2.

Table 4.3 also includes our results for the renormalization constant Z, calculated in the

)

three ways described in Section 3.3.3. To review, Zy and ZX are both calculated from a

simple ratio,

<Zx Vf(x, t)Via(O, t0)>

Zv ([t —to]) = (4.3)
(S V(e V0, t0))
(and similarly for ZX)), while Z4 is built from the more elaborate expression
C(lt —to+1/2|) = <ZAZ(x,t)P“(O,t0)>
L(|t = to]) = <Z AZ(X7'5)PCL(07?50)>
1ot +1/2)+C(t—-1/2) 2C(t+1/2)
Zalt) = 5 { Y0 L) + L+ 1)} (44)

that accounts for the fact that the conserved and local currents are not defined at exactly
the same location. Results from these three different definitions are plotted in Fig. 4-5 for
Ny = 6, which has the most significant disagreement between the three Z factors in the
chiral limit MI% — 0.

At non-zero MI%, disagreement between the three Z factors comes from both chiral
symmetry breaking effects as well as the different ingredients in the calculation of each.
For example, we expect discretization errors for Zy and ZX) to be O(a), while the ratios
in Eqn. 4.4 are designed so that even a piece of the O(a?) discretization errors for Z4 will
cancel out. In addition, because the correlators (A% (z)A¢(0)) and (Af(x)A?(0)) are the
noisiest of those involved in these calculations, we expect ZX) to have the largest statistical
errors.

In the chiral limit M]% — 0, the remaining disagreement between our results for Z4, Zy
and ZX) can be used to estimate the O(a) discretization effects, which we find to be small
(half a percent or less). Because systematic effects should be smallest for Z4 as calculated

from Eqn. 4.4, we take the chiral extrapolation of Z4 as the common renormalization factor
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Figure 4-5: Comparison of Z factors for Ny = 6, with linear M]% — 0
extrapolations (x). Note the small vertical scale.

Z used in the calculation of the S parameter below. We plot Z4 and its linear MI% — 0

extrapolations in Fig. 4-6.

Light meson spectrum and condensate enhancement

The first physical result reported by the LSD Collaboration for the Ny = 6 theory was the
enhancement of the chiral condensate (1) at the scale of the lattice cutoff a=! [1]. By
virtue of the Gell-Mann—Oakes—Renner relation (equivalent to leading-order chiral pertur-

bation theory) [324, 101],

ME (9
2—75 = <11/;§> in the limit m,pr — 0 (4.5)

our matching of the pseudoscalar decay constant Fp between the simulations with different
Ny relates the enhancement of the condensate to a stronger dependence of the pseudoscalar
mass-squared Mz% on the renormalized fermion mass m. This effect is plotted in Fig. 4-7,
and is the reason we plot other results versus M]% /M‘z/0 to ensure a more directly physical

comparison between theories with different Vy.



84

0.9, T T T T
J\rf -— 2 ry
d J" -— fI' .
Ny=10 |
.85} L Ak A A A
0.8 :
o
0,75
@ L 2 L L L ]
o7l ] ] | ] ]
“_6\5 1 L 1 L
0.5 2
MM,

25

Figure 4-6: Z4 for Ny = 2, Ny = 6 and (preliminary) Ny = 10. Because
the empty point has MpL < 4, it may suffer from non-negligible finite-
volume effects, and is omitted from the linear M? — 0 extrapolation (x).
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Figure 4-7: Pseudoscalar mass-squared MI% plotted versus m = m s +mMyes
for Ny =2, Ny = 6 and (preliminary) Ny = 10. Error bars are smaller than

the symbols.
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Data for M123 are also presented in Table 4.4, which additionally includes results for the
masses My and My of the lightest vector and axial states. (M4 has not yet been reliably
measured for the Ny = 10 theory.) As mentioned in Secs. 2.2.4 and 2.3, parity doubling
between the vector and axial spectral functions has been conjectured as a possible means
to reduce the S parameter in walking theories. In Fig. 4-8 we compare My and M 4 plotted
versus M3/M2, for Ny = 6 and Ny = 2, and in Fig. 4-9 we plot the ratio M4 /My . For
Ny = 2, our results for the ratio are roughly consistent with the physical mg1/m, = 1.59(5)
of QCD [13], if we omit from the chiral extrapolation the lightest Ny = 2 point, which has

MpL < 4 and may suffer from non-negligible finite-volume effects as a result.
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Figure 4-8: Masses of the lightest vector (My, filled) and axial (M4,
empty) states, plotted versus M3/MZ, for Ny = 2 and Ny = 6.

For M% < M2,, Fig. 4.9 indicates a substantial decrease in M4/My for Ny = 6,
moving toward unity. In order to achieve parity doubling, the corresponding vector and
axial decay constants Fy and F4 must also be comparable. We plot these results for
Ny =2and Ny =6 in Fig. 4-11 and tabulate their values in Table 4.5, which also includes
results for Fp plotted in Fig. 4-10. We do not report chiral extrapolations of these data.

A particular difficulty for Fp that was raised in Section 3.2.3 is the need to perform chiral
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Table 4.4: LSD Collaboration results for the masses of the lightest pseu-
doscalar, vector and axial states, for Ny = 2 and Ny = 6. Some preliminary
results for Ny = 10 are also included. Chiral extrapolations are linear in
M3% — 0, and for Ny = 2 the lightest (m; = 0.005) data are omitted from

the extrapolations, as described in the text.

Ne | my M3 My My Ma /My
2 ]0.005 | 0. 01208( 3) ]0.2379(26) | 0.3132(58) | 1.316(25)
2 | 0.010 | 0.01873(20) | 0.2495(22) | 0.3533(67) | 1.416(27)
2 | 0.015 | 0.02750(40) | 0.2620(26) | 0.3857(113) | 1.472(42)
2 | 0.020 | 0.04053(61) | 0.2951(33) | 0.4142(99) | 1.404(44)
2 | 0.025 | 0.04819(67) | 0.3043(37) | 0.4211(110) | 1.384(32)
2 | 0.030 | 0.05951(67) | 0.3210(30) | 0.4264(131) | 1.328(38)
2 — 0 0.2150(31) | 0.3201(107) | 1.476(40)
6 | 0.005 | 0.02069(55) | 0.2430(44) | 0.2695(71) | 1.109(19)
6 | 0.010 | 0.02864(23) | 0.2661(30) | 0.3289(84) | 1.236(31)
6 | 0.015 | 0.04257(45) | 0.3096(23) | 0.4259(37) | 1.376(16)
6 | 0.020 | 0.05901(43) | 0.3422(25) | 0.4717(77) | 1.378(26)
6 | 0.025 | 0.07521(34) | 0.3742(22) | 0.4969(88) | 1.328(22)
6 | 0.030 | 0.09271(45) | 0.4045(35) | 0.5818(200) | 1.438(51)
6 — 0 0.2092(31) | 0.2253(78) | 1.123(23)
10 | 0.005 | 0.02229(29) | 0.2426(49) - -

10 | 0.010 | 0.03064(120) | 0.2531(71) - -

10 | 0.015 | 0.04332(43) | 0.2776(57) — -

10 | 0.020 | 0.05764(65) | 0.3083(33) - -

10 | 0.025 | 0.07262(56) | 0.3370(52) — -

10 — 0 0.1978(31) — -
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Figure 4-9: Ratio of axial and vector masses M,y /My plotted versus
MI%/M‘%O for Ny =2 and Ny = 6. Because the empty point has MpL < 4,
it may suffer from non-negligible finite-volume effects.

perturbation theory fits jointly for all of M3, Fp and <E1/1> While such fits function for
Ny = 2, they fail for Ny = 6, due both to the larger Mp of the Ny = 6 simulations, as well
as the Ny-dependence of next-to-leading and next-to-next-to-leading order coefficients in
XPT expansions [325].

Although the signs of parity doubling that we observe for Ny = 6 are suggestive, they
are not yet conclusive and should be viewed with caution. Similar parity doubling was
discovered to be caused by finite volume effects in an early Ny = 8 study [265], and a
careful analysis by Ref. [292] also found these observables to be more sensitive to finite
volume effects, considering the Ny = 4 theory compared to Ny = 2. In the next section we

report more compelling results from direct lattice calculation of the S parameter itself.
4.2 Electroweak S parameter

We now focus on our calculation of the S parameter on the LSD Collaboration ensembles
listed in Table 4.2 above. We first review the S parameter, expanding on the introduc-

tion presented in Section 2.2.3 and providing details of the lattice calculation. We then
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Figure 4-10: Pseudoscalar decay constant Fp plotted versus m = m; +
Myes for Ny = 2 and Ny = 6 and (preliminary) Ny = 10. Error bars are

smaller than the symbols.
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Table 4.5: LSD Collaboration results for the decay constants of the lightest
pseudoscalar, vector and axial states, for Ny = 2 and Ny = 6.

Ne | my | ME/ME, Fp Fy Fy
2 [0.005 | 0.2615 | 0.0258(5) | 0.0417(6) | 0.0393(11)
2 | 0.010 | 0.4053 || 0.0299(4) | 0.0430(5) | 0.0384(14)
2 10015 | 0.5950 || 0.0328(9) | 0.0435(14) | 0.0384(20)
2 0020 | 0.8771 || 0.0358(5) | 0.0487(8) | 0.0389(17)
2 0025 | 1.0427 || 0.0373(5) | 0.0476(13) | 0.0379(24)
2 [0.030 | 1.2877 || 0.0381(5) | 0.0502(14) | 0.0386(29)
6 | 0.005| 04729 [ 0.0208(7) | 0.0404(10) | 0.0365(14)
6 | 0.010 | 0.6546 | 0.0306(8) | 0.0426(10) | 0.0360(15)
6 | 0.015 | 09729 | 0.0377(5) | 0.0498(10) | 0.0459(22)
6 | 0.020 | 1.3487 | 0.0414(8) | 0.0555(13) | 0.0543(28)
6 | 0.025 | 1.7190 | 0.0451(11) | 0.0598(16) | 0.0500(34)
6 | 0.030 | 21191 | 0.0513(9) | 0.0686(28) | 0.0709(58)

summarize our analysis and results, which for Ny = 2 and Ny = 6 were first presented in

Ref. [3].
4.2.1 Formulation

We introduced the S parameter in Section 2.2.3 as the difference between the vector and

axial vacuum polarization functions due to new physics. Let us reformulate Eqn. 2.43 as
S = 4nNplli,_ 4(0) — ASsp(M3), (4.6)

where ITy,_ 4(Q?) = Hyv(Q?) — 1144Q? and we define II'(Q?) through [18]

(Q%) = 11(0) + Q*IT'(Q?), (4.7)
so that only at Q% =0
/ dI(@?)
Q% = : 4.8

Because the lattice measurement of Il as a current correlation function on a given gauge
configuration involves only a single pair of fermions, we include in Eqn. 4.6 the kinematic
factor Np, the number of electroweak doublets in the theory 1 < Np < Ny/2. We empha-

size that the gauge configurations on which these measurements are performed account for
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the dynamics of all Ny flavors of fermions. Finally, ASga/(M3) is the contribution of the
standard model (SM) Higgs sector, subtracted so that S = 0 in the SM. This subtraction
will also take into account the effects of working at non-zero fermion mass on the lattice,
M]% > 0; we discuss it further in Section 4.2.2 below.

In our lattice calculation, we use current correlators composed of a conserved domain

wall current and a local current (cf. Section 3.3.3),

I (x) = Z <Tr [V““(az)vb”(O)D

z [ T
=3 < > {(Disl—l_s(x)) Yoy VenDy (@ + )Y (4.9)
s=0

_ RV N
(D7 @+ ) s 27 Ul D' (x)y ’Ys} >

= L=t
5(8 Es—l—sx V5 T, 5_ T+ p)y (410)
<Zr<>{(D1 @) 355 D7 o+

_ - 14~* _ y
- (Dle—l—s(‘T + M))T’YE’ 9 U:-L‘r,uDs 1('%)7 } >7

where I's(s) = sign[s — (Ls — 1)/2], and the overall factors of } come from the normal-
ization of the flavor matrices Tr [T%T°] = 1§%. (Translation invariance lets us label
the generic source point as the origin, for notational convenience.) D;!(z) is the five-
dimensional domain wall propagator from the domain walls to fifth-dimensional index s.
We determine the common renormalization factor Z non-perturbatively as described in
Section 4.1.2 above.

Ref. [142] emphasizes that using at least one conserved current in the correlators en-
sures that lattice artifacts cancel in the V—A difference, which we will verify in Section 4.2.2
below. Correlators built from two conserved currents would not require renormalization,
making determination of Z unnecessary for this calculation. However, because the con-
served currents are involve sums over the fifth dimension, the resulting correlators would

require calculating propagators from every fifth-dimensional index s to every other s, in-
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creasing computational costs by a factor of Lgs ~ O(10).

Because the conserved currents are point-split, the appropriate Fourier transform is

1, (Q) = 37 I (a) = 0T (@) — T My (@) + QY (411

and similarly for 144, where @“ = 2sin(Q"/2) is the lattice momentum corresponding to
H =2mn* /L with n* an integer four-vector labelling each lattice site. Note that we take
the transverse and longitudinal correlators themselves to be functions of Q2 even though

we use @“ to define the decomposition of IT*(Q),

@)= -EHQ @)= @@ )
At small momenta, Q" = @“.

We now have all the necessary ingredients to calculate S. Before doing so, we refor-
mulate the calculation in terms of a dispersive integral over the vector and axial spectral
functions Ry and R4. Thinking in terms of Ry and R4 can provide more opportunities
to apply physical intuition, and it will also allow us to see a concrete form of the stan-

dard model subtraction (in the chiral limit ASgp(M2 = 0)). The connection between the

current correlators and the spectral functions is

R(s) = 127ImII'(s) (4.13)
so that
2 C Rals
(@) = QP4 (Q%) - Taa(0) = 15 [ & [%] LR 1)
0

(again in the chiral limit M2 = 0). For an asymptotically free theory, Iy 4(Q?%) ~ 1/Q*
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as Q% — oo, which produces the first and second Weinberg sum rules [326]

3% / ds[Ry(s) — Ra(s)] = 4nF} (4.15)
0

3% / ds[sRy(s) — sRa(s)] = 0. (4.16)
0

To obtain the S parameter, we take the derivative with respect to @2, in the limit Q — 0,

& (ref)y273
S = 3%/% No [Ry(s) ~ Ra(s)] — 5 |1 [1_7(MHS ) ] o(s — (M<Dy2)| V|
0

(4.17)
where the last term is the SM subtraction ASgp(0). Without the standard model sub-

traction, this ¢

‘zeroth” Weinberg sum rule has the form of the Das—Mathur—-Okubo sum
rule [327]. On the lattice, M}% > 0 implies a non-zero infrared cutoff on these spectral in-
tegrals, and changes the asymptotic behavior of Iy _ 4(Q?) to Iy _4(Q?) ~ 1/Q? at large

Q? 328, 329].
4.2.2 Results

We now discuss our results for the S parameter calculated from Eqn. 4.6, considering
in turn the conserved-local current correlators ITy_4(Q?), the Padé fits used to extract
IT;,_ 4(0), and the standard model subtraction ASgy(Mp). After discussing the systematic
uncertainties entering our final analyses, we relate our results for S to the vector and axial

spectra discussed above.

Current correlators

Because the conserved—local current correlators we use were implemented specifically for
this calculation, the first order of business is to confirm that the currents we calculate are

actually conserved. We verify the conservation of Vj; by checking the Ward identity

QuI1%,(Q) =0, (4.18)
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which is illustrated in the top panel of Fig. 4-12.% Note that the conserved current al-
ways corresponds to the index # in the correlator, so Eqn. 4.18 is the Fourier transform
of Eqn. 3.62. This figure also shows the corresponding quantity @HH%L‘(Q) for the ax-
ial correlator, which is consistent with partial conservation of the axial current (PCAC),
Eqn. 3.63.

The bottom panel of Fig. 4-12 confirms that these results are nontrivial tests of current
conservation, by contrasting them with the corresponding quantities from correlators that

use only local currents,
e (Q) = 22 Y e <Tr [V““(a:)Vb”(O)] > . (4.19)

Next, we confirm the claim made in Section 4.2.1 above, that using at least one con-
served domain wall current in the correlators ensures that lattice artifacts cancel in the
V-A difference Iy _4(Q?). The quantity H“ﬁVV(Q)@V is just such a lattice artifact: the
local current corresponding to the index ¥ in the correlator is not conserved at non-zero
lattice spacing (even though it is proportional to the conserved current in the continuum).
The top panel of Fig. 4-13 shows that even though H‘(/’;/(Q)@,, # 0 and Hff&(@)@,, # 0,

these lattice artifacts cancel in the difference
[177(Q) — T4 (Q)] Qu = 0. (4.20)

Again, this does not hold if we use only local currents in the correlators, shown in the
bottom panel of Fig. 4-13.

We now discuss our extraction of the S parameter from the transverse conserved—local
correlator Iy _ 4(Q?). First, we note from Fig. 4-14 that the magnitude of ITy _4(Q?) for
Q? < 0.2 is comparable to the magnitude of the lattice artifacts in the local-local V-A
correlator shown in the bottom panel of Fig. 4-13. The use of conserved—local correlators

appears crucial to the success of our calculation.

“Here we average all @ -TI(Q) that involve Q,, with the same magnitude Q. The product is therefore
a function of Q?, which is the horizontal axis of all plots in this section.
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Figure 4-12: Top panel: vector Ward identity (V) and PCAC (A) for
conserved-local correlators II*”(Q)) measured on a Ny = 2 lattice with
my = 0.02. Bottom panel: the corresponding quantities for correlators
I1"(Q) that use only local currents (note the vertical scale). The horizontal
displacements around each Q2 value distinguish different components v.
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ments around each Q2 value distinguish different components s.
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Padé fits

To analyze the V—-A current correlator, Refs. [141, 142] perform fits to chiral perturba-
tion theory expressions for the low-energy constant Ly (or equivalently ¢5) discussed in
Section 3.2.3. These authors find that they are only able to include in the chiral fits the
single IIy,_ 4(Q?) data point with the smallest Q2 in each of their ensembles. Due to the
larger scale a™!, the larger input fermion mass my, and (for Ny > 2) the enhanced chi-
ral condensate <Ew> characterizing LSD Collaboration simulations compared to those of
Refs. [141, 142], such xPT fits are not viable a viable option.

Instead we fit ITy 4 (Q?) to a four-parameter Padé approximant of the form

2
My 4(Q%) = 5 +ab°1;2aﬁ2 o (4.21)

This functional form has the correct asymptotic behavior ITy,_4(Q?) ~ Q2 at large Q2
(since MI% > 0, as discussed below Eqn. 4.17). We can further motivate Eqn. 4.21 by
considering the dispersion relation Eqn. 4.14. If we suppose that the vector and axial spec-
tral functions Ry, 4 are each saturated by the lightest state in the corresponding channel,

approximated as ¢ functions
Ry (s) = 1202 F26(s — M) Ra(s) = 1202 F36(s — M3), (4.22)

then the dispersion relation becomes

QFE Q%
M +Q* M3+ Q?
_—FRMPME — Q*(FR(MP + M3) — FPM3 + FAMY) — Q*(Fp — F + F})
M{ M3 + Q>(M + M3) + Q*

Q%) = ~F3 + (4.23)

Applying the first Weinberg sum rule (Eqn. 4.15) with this approximation for Ry 4,
F% = F2 — F3, (4.24)

immediately reproduces the form of Eqn. 4.21.
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We perform an independent fit for each value of Ny and my listed above in Table 4.2,
using the fit range Q? < 0.4. We include in this analysis the jackknife estimate of the
covariance matrix C,g discussed in Section 3.2.3 above. Fit results describe the data well
throughout the entire range of @2, as shown in Figs. 4-14, 4-15 and 4-16 for Ny =2,N;y=6
and Ny = 10, respectively. Fit results and statistical errors for the slope 47II},_ ,(0) are
plotted versus MI% /]\4‘2/0 in Fig. 4-17, and tabulated in Table 4.6. Adding more parameters
to the rational function in Eqn. 4.21 (such as an ao@Q* term in the numerator or a b3Q%
term in the denominator) does not significantly affect results.

M
LR

imy =S
— my=liii

iy =1
— =dilrhl

— my=Rlli5
p e
[LXL1] L5 .10 15 {20

Figure 4-14: IIy_4(Q?) data and Padé fits for Ny = 2 ensembles with
my = 0.005, ..., 0.03 from top to bottom.

Our fits are stable as the Q? fit range is varied somewhat, which we illustrate in
Figs. 4-18 and 4-19 for the case of Ny = 2 simulations with m; = 0.01. Fig. 4-18 plots fit
results for 471y, _ ,(0) versus the largest waax included in the fit range Q? < Q%M x> While
Fig. 4-19 shows the corresponding x? per degree of freedom (averaged over the fits for all
jackknife samples). The steady upward trend in II{,_ ,(0) as Q?VIM increases is small, and
all results match those from our chosen fit range Q% < 0.4 within uncertainties. Because
the data are strongly correlated in @2, the x? per degree of freedom is not a reliable mea-
sure of the goodness of fit. We can only require x?/dof < 1, which is satisfied by all the

fits as the Q2 fit range varies.
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Figure 4-15: IIy_4(Q?) data and Padé fits for Ny = 6 ensembles with

my = 0.005, ..., 0.03 from top to bottom.
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Figure 4-16: Preliminary ITy_4(Q?) data and Padé fits for Ny = 10 en-
sembles with my = 0.005, ..., 0.025 from top to bottom.
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Figure 4-17: 4xIIj,_ ,(0) for Ny = 2, Ny = 6 and (preliminary) N; = 10.
Because the empty point has MpL < 4, it may suffer from non-negligible
finite-volume effects.
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Figure 4-18: ? fit range dependence of Padé fit results for 471y, 4(0),
for Ny = 2 ensembles with m; = 0.01.
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Figure 4-19: Q? fit range dependence of x? per degree of freedom from
Padé fits for Ny = 2 ensembles with m; = 0.01.

Because the standard model subtraction ASg M(MI%) has no explicit dependence on Ny,
our 4rllj,_ ,(0) data already suggest that for M3 < M‘z,o, our results for the S parameter
in the Ny = 6 and Ny = 10 theories will be significantly smaller than what we would
get by scaling up the Ny = 2 values by a factor of N;/2. In the heavy-fermion limit
MI% > M‘z,o, the theories should all be effectively quenched. That is, the effects of the
very massive technihadrons should become negligible, and the results for all Ny should
approach a common value. This is consistent with our results for 47II{,_ ,(0), which all

appear to be approaching a common limit of approximately 0.25 for MI% > sz/o-

S parameter

Now that we have in hand results for 47II{,_ ,(0), the last remaining piece of the S param-
eter calculation from Eqn. 4.6 is the standard model subtraction ASgy(Mp). We begin
with the spectral integral of Eqn. 4.17, using 4M]23 > ( as the infrared cutoff. Further, we

take the reference mass to be our usual technihadronic scale, M gef ) = My o ~ 1 TeV. This
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gives
1 b ds M2\ °
A Mp)=— [ = |1—(1--0) 0(s— M 4.2
SsMe) = o= [ 1= (1-750) b - ay) (4.25)
4M3
1 11 M\2/0 2 2
m <€+log |:4M123:|> for 4MP<MV07
_ (4.26)

2= (T Joagh * moangy) e 1B 2 08

\ P P P

Our results for ASgy(Mp) as well as the S parameter itself (with Np = Ny/2) are
tabulated in Table 4.6, for Ny = 2, Ny = 6 and (preliminary) Ny = 10. We see that in
all cases ASgar(Mp) is small compared to 471l _ ,(0), with ASgy (Mp) < 0.04 for all
ensembles with MpL > 4.

Because ASgpr(Mp) is so small, the behavior of the S parameter itself is determined
primarily by the results for IT{,_ ,(0) discussed in the previous section. In the heavy-fermion
limit M]% > M\2/0’ we see the expected scaling S o< Np, where we take Np = Ny/2. For
MI% < M‘z,o, however, our Ny = 6 and Ny = 10 results for the S parameter are well below
Ny /2 times the Ny = 2 value.

For chirally-broken theories with 2 < Ny < NJ‘i below the conformal window, S diverges
logarithmically in M}% /M‘z,0 as M}% — 0 and the N]% — 4 uneaten pseudo-Nambu—Goldstone
bosons become massless. (For an IR-conformal theory, My ~ 1/L vanishes in the contin-
uum limit, and it would not make sense to plot our results against M%/MZ,.) We illustrate

the chiral divergence in Fig. 4-20 by including fits to the simple linear form accounting for

the chiral logarithms,

1 [ N? M2
P

For each Ny, we include in the fit only the three lightest data points that satisfy MpL > 4;
this limits the fit range to M3 < MZ,. This fit allows us to estimate the value of M3 /M2,

at which this chiral effect should become visible in our results. For Ny = 6, this occurs at a
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PNGB mass too low to simulate while satisfying the condition MpL > 4 with L = 32. It is
possible that the lightest Ny = 10 point shows signs of chiral effects from the 96 expected
PNGBEs, but these results are preliminary and may change prior to publication.

S=4(N,/2IT,_, (1)-A8g,,

| ]
| ]
n
L ™ L4
[ &
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[[X]] L5 1.4y 1.5 240 25
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Figure 4-20: S parameter for Ny = 2, Ny = 6 and (preliminary) Ny = 10.
The empty point has MpL < 4. The independent linear fits use the three
lightest solid points for each Ny, and account for expected chiral logarithmic
divergences as described in the text.

In a realistic context, the NJ% — 4 PNGBs receive mass from standard model and other
interactions not included here, even as the technifermions become massless, m — 0. These
PNGB masses determine the value of M%/MZ, > 0 at which the S parameter for Ny > 2
should be compared to the M]% — 0 limit of the Ny = 2 theory, which possesses no
additional PNGBs. Our result for Ny = 2 is S = 0.311(21), in close agreement with
the initial estimate S = 0.32(3) made by scaling up experimental QCD spectrum data to
the electroweak scale [18]. T'wo recent lattice studies performed similar QCD calculations,

determining the chiral perturbation theory low energy constant Lj,(x) at a renormalization
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Table 4.6: 47II|,_,(0), ASgy and S for Ny =2, Ny = 6 and (preliminary)
Ny = 10. The linear MI% — 0 extrapolation for Ny = 2 uses the three
lightest points with MpL > 4, which are 0.01 < m; < 0.02. All errors

included here are statistical; systematic errors are discussed in the text.
my | Mp/MZ, || AxIl,_ 4(0) | ASsm S

0.005 0.2615 0.349(18) 0.047 | 0.302(16
0.010 | 0.4053 0.323(11) 0.036 | 0.287(11
0.015 0.5950 0.306(11) 0.027 | 0.279(11
0.020 | 0.8771 0.280(11) 0.020 | 0.260(12
0.025 1.0427 0.252(9) 0.017 | 0.235(10
0.030 1.2877 0.250(9) 0.014 | 0.236(10

- —0 - - 0.311(21
0.005 0.4729 0.149(10) 0.032 | 0.415(30
0.010 | 0.6546 0.218(9) 0.025 | 0.628(26

0.020 | 1.3487 0.251(9) | 0.013 | 0.740(3
0.025 | 1.7190 0.236(9) | 0.011 | 0.699

0.030 2.1191 0.253(12 0.009 | 0.750

)
0.005 0.570 0.138(12) 0.028 | 0.664(60
0.010 0.783 0.136(12) 0.022 | 0.658
0.015 1.107 0.203(13) 0.016 | 0.999
0.020 1.473 0.223(9) 0.012 | 1.100
0.025 1.856 0.235(7) 0.010 | 1.170

= = =
Ooooom@mmm@wwwwwww3
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E
0.015 | 0.9729 || 0.252(11) | 0.018 | 0.738(35
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scale of u = m, = 770 MeV. They report

Liy(my,) = —0.0052(2)(F9) (%) (Re. [141])

Lio(m,) = —0.0057(11)(7) (Ref. [142]),

where in both cases the first error is statistical and the others systematic. Both results are
consistent with the experimental QCD value of L;(m,) = —0.00509(57) [330]. Ref. [142]
then scales m,, by a factor of v/ fr to find S = 0.42(7) at Mgef) = 120 GeV from Eqn. 3.40.
Shifting the reference mass to 1 TeV via AS = log (M I(LII ) /M I(? )> /(67) in order to compare

with our result, we find agreement,
Ref. [141] — S = 0.27(3) Ref. [142] — S = 0.31(7).

Formally, as discussed in Section 3.2.3, two of the Ny flavors of strongly-interacting
fermions must be extrapolated to the chiral limit in order to obtain the three exactly
massless NGBs that are eaten by the W* and Z. Such a procedure is too elaborate
to carry out consistently in our simulations, which take all of the Ny fermions to be
degenerate. However, we expect that the systematic errors introduced by our approach are
minor, and are accounted for by the Mp-dependence that we introduce to the standard
model subtraction ASgp(Mp). The main point of this subtraction is to remove from the
spectrum the three NGBs that are eaten in the course of electroweak symmetry breaking.
As MI% — 0 for the three NGBs, this cancellation continues to function, as illustrated by
the smooth extrapolation we observe for Ny = 2.

Although our Ny = 6 (10) results for S with Np = N;/2 are always larger than the
Ny = 2 value S = 0.311(21), these results are well below the S ~ 0.9 (1.6) that would
be obtained from naive Ny-scaling. In a model where only a single pair of the strongly-
interacting fermions transformed as an electroweak doublet, Np = 1, the resulting values
of S would be well below that of the Ny = 2 theory. However, even these results would still

be positive, S > 0, and in 2-30 disagreement with the experimental S ~ —0.15(10) [13].
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Systematics

As discussed above, our calculations are exploratory, not aimed at achieving very high
precision. Rather, our goal is to search for significant deviations from conventional wisdom
based on QCD, and for this purpose it is sufficient to achieve combined statistical and
systematic errors of roughly 10%-20% in our results for the S parameter. From Table 4.6,
we see that statistical uncertainties in S are typically around 5%, leaving enough room
in our error budget for the systematic effects we now summarize. The list below closely
follows the more general discussions in Section 3.2.3.

Discretization errors: Although we use only a single lattice spacing, it is small
(a =~ (5Myg)~ 1), and our Iwasaki+DWTF lattice action suffers only from O(a?) artifacts.
More concretely, we argued in Section 4.1.2 above that by comparing chiral extrapolations

)

of the different renormalization factors Z4, Zy and ZX , we could estimate discretization
errors to be below the percent level. While different observables may be affected differently
by discretization, we use the same conserved—local current correlators to calculate Zy and
ZX) that we use to determine S. Finally, our procedure of matching scales across all
simulations also ensures that results for different Ny can be compared directly with little
systematic error.

Finite volume effects: On the other hand, small lattice spacings lead to small phys-
ical volumes. By a combination of large (323 x64) lattices and fairly large pseudoscalar
masses M}%, we are able to satisfy the conventional lattice QCD condition MpL > 4 for
all ensembles included in our analyses. However, we mentioned above that finite volume
effects tend to become more severe as Ny increases [265, 292]. We are therefore in the
process of carrying out direct numerical studies of finite volume effects, to ensure that they
are under control.

Chiral extrapolation: The downside of working at large pseudoscalar masses MI% is
that long extrapolations are required to reach the chiral limit, with the related problem that

chiral perturbation theory cannot yet be applied to our simulations with Ny > 2. There

are also systematic effects from our procedure of taking all Ny fermions to be degenerate,
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rather than extrapolating two of them to the chiral limit to more closely reproduce EWSB
phenomenology. We argued in the previous section that these effects should be minor as a
result of our standard model subtraction procedure.

Finally, we expect issues due to autocorrelations, frozen topology and limited
statistics to be most significant. As discussed in Section 4.1.2 above, our use of a small
lattice spacing leads to slow topological evolution, with insufficient topological sampling for
most Ny = 10 simulations, and all simulations with m; = 0.005. The short, exploratory
runs summarized in Table 4.2 suggest that the effects of these and other autocorrelations
may be significant. These systematic effects related to these issues are being actively

studied, but at present remain poorly known.

Comparison to vector and axial spectra

In Secs. 2.2.4 and 2.3 we suggested that parity doubling associated with the proximity of
the conformal window might reduce the S parameter in walking theories. We have now seen
direct evidence of such a reduction in S for Ny = 6 and Ny = 10 compared to QCD-based
expectations. Earlier, in Section 4.1.2, we observed from the masses and decay constants of
the Ny = 6 theory that it is more parity doubled than Ny = 2. In this section, we explore
the potential relation between these two results, considering only the Ny = 2 and Ny =6
theories where analyses of the masses and decay constants have been completed.

Of necessity, we adopt the single-pole approximation of the vector and axial spectral
functions, Eqn. 4.22. Although this approximation transforms the M}% = ( dispersion
relation Eqn. 4.14 into an expression (Eqn. 4.23) with the same Q? dependence as the
Padé form of Eqn. 4.21, our Padé fits account for a complicated time-like structure with
cuts and multiple poles. We must therefore be wary of associating Padé fit parameters with
the values we would obtain from inserting the independently measured My, 4 and Fpy 4

into Eqn. 4.23. Figs. 4-21 and 4-22 compare direct Padé fit results for \/—IIy_4(0) and
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A7II;, 4 (0) (respectively) against the corresponding single-pole dominance predictions

~19)(0) = Fp (4.28)

-4y A(Q?)

0 (4.29)

These data are also tabulated in Table 4.7 (even though 47II{, _ ,(0) and Fp data appeared

above in Tables 4.6 and 4.5, respectively, we reproduce them here for more convenient

comparison).
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Figure 4-21: /—IIy_4(0) from Padé fits (filled) compared to indepen-
dently measured Fp (empty), for Ny =2 and Ny = 6.

While /—IIy_4(0) = Fp in the chiral limit MI% — 0, away from the chiral limit
there is a statistically significant difference between y/—IIy_4(0) and Fp, which increases
with M2. The single-pole dominance results for 4711}, ,(0) are in less disagreement with
our direct determination; although systematically lower, they show a similar decrease for
Ny = 6 compared to Ny = 2. We expect that excited states in the vector and axial channels
are likely to provide additional positive contributions to II{, _ ,(0), which will help reconcile
these approximate results with the direct fits.

We thus identify two likely sources of discrepancies between our direct results and
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Figure 4-22: 4rII{,_,(0) from Padé fits (filled) compared to Eqn. 4.29
(empty), for Ny =2 and Ny = 6.

Table 4.7: Comparing 47I1'(0) with Eqn. 4.29, and /—1IIy_4(0) with Fp,
for Ny =2 and Ny = 6.

Ny | my | ME/ME, || AnIT,_ 4(0) | Eqn. 4.29 | \/—IIy_4(0) Fp

2 10.005| 0.2615 0.349(18) | 0.188(24) | 0.0270(4) | 0.0258(5)
2 |0.010 | 0.4053 0.323(11) | 0.225(27) | 0.0324(3) | 0.0299(4)
2 10015 | 0.5950 0.306(11) | 0.222(47) | 0.0373(3) | 0.0328(9)
2 |0.020 | 0.8771 0.280(11) | 0.231(34) | 0.0415(3) | 0.0358(5)
2 10.025 | 1.0427 0.252(9) | 0.206(33) | 0.0446(3) | 0.0373(5)
2 10.030 | 1.2877 0.250(9) | 0.204(37) | 0.0481(4) | 0.0381(5)
6 |0.005 | 0.4729 0.149(10) | 0.117(24) | 0.0233(5) | 0.0208(7)
6 | 0.010 | 0.6546 0.218(9) | 0.172(26) | 0.0339(3) | 0.0306(8)
6 | 0.015 | 0.9729 0.252(11) | 0.179(12) | 0.0416(4) | 0.0377(5)
6 |0.020 | 1.3487 0.251(9) | 0.164(17) | 0.0484(5) | 0.0414(8)
6 |0.025 | 1.7190 0.236(9) | 0.194(21) | 0.0532(6) | 0.0451(11)
6 |0.030 | 2.1191 0.253(12) | 0.175(36) | 0.0594(6) | 0.0513(9)
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Eqns. 4.28, 4.29: the effects of working at MI% > 0, and the effects of approximating the
vector and axial spectral functions by single poles. To further explore the interplay of these
two effects, we can consider the single-pole dominance relations resulting from the first and

second Weinberg sum rules, Eqns. 4.15 and 4.16,

F} - FZ+F;=0 (4.30)

MEFZ — M3F3 =0. (4.31)

We plot data for these expressions in Figs. 4-23 and 4-24, and tabulate it in Table 4.8.
Although these relations are not well satisfied at any non-zero MI% > 0, we see signs that
they may describe our data well in the chiral limit. These single-pole dominance relations

may even work better in the chiral limit for Ny = 6 than for Ny = 2.
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Figure 4-23: Deviations from the single-pole relation F 12; - F\% + Fj =0
following from the first Weinberg sum rule, plotted versus MI% /M‘2/0 for
Nf:2ande:6.

4.2.3 Future directions

We have already mentioned ongoing work to improve and extend our investigations of the

S parameter on the lattice. These include both finalizing calculations for Ny = 10 as well
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Figure 4-24: Deviations from the single-pole relation M‘%F‘% — MiFﬁ =0
following from the second Weinberg sum rule, plotted versus M129 /M‘2/0 for
Nf:2ande:6.

Table 4.8: Deviations from the single-pole relations following from the first
and second Weinberg sum rules, for Ny = 2 and Ny = 6.

Ny | my [ ME/MZ, | (FF— F2+ F%) 10° | (MEFE — MEFS) -10°
2 10.005 | 0.2615 0.471(35) 0.250(19)
2 10010 | 0.4053 0.520(42) 0.299(26)
2 10.015 | 0.5950 0.658(88) 0.349(48)
2 10020 | 08771 0.562(41) 0.466(50)
2 10025 | 1.0427 0.562(79) 0.465(69)
2 10030 | 1.2877 0.422(68) 0.531(92)
6 10.005| 0.4729 0.133(15) 0.193(22)
6 |0.010 | 0.6546 0.418(46) 0.269(30)
6 |0.015| 0.9729 1.048(112) 0.620(66)
6 |0.020 | 1.3487 1.582(189) 1.017(121)
6 |0.025 | 1.7190 0.958(148) 1.118(169)
6 |0.030 | 21191 2.953(550) 2.472(485)
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as continuing to explore and constrain systematic effects. In particular, we are analyzing
16%x 32 and 243 x 32 lattices (with both fixed 3 and with a coarser lattice spacing tuned to
produce the same physical volume) in order to numerically assess finite volume effects for
various Ny. The 163x32 lattices may be too small to obtain much reliable information, but
we are taking advantage of their small size to use them as testbeds for the development of
GPU code for domain wall fermions. Determining the effects of fixed topology is of similar
concern, though here the best course of action is not as clear.

Even from the calculations we have already performed, there may be further physics
that we can investigate with our data on the vacuum polarization function IIy_4(Q?).
Ref. [331], for example, extracts the strong coupling constant and estimates some four-
quark condensates by applying of the operator product expansion [328, 329] for lattice
QCD with Ny = 2 overlap quarks. We are also working on extending our current results
by using partially twisted boundary conditions [332, 333]. This technique would allow
Iy _4(Q?) to be measured at smaller Q? values, potentially allowing us to supplement
Padé fits with analyses based on chiral perturbation theory.

Farther in the future, we will measure the S parameter as part of the LSD Collab-
oration’s studies of SU(2) gauge theories. In addition, the USQCD Collaboration has
initiated an investigation of SU(3) gauge theory with Ny = 8 fermions in the fundamental
representation, generating 63 x 128 gauge configurations with highly-improved staggered
fermions [334]. We plan to measure the S parameter on these lattices, through a mixed-
action calculation that uses domain wall fermions for these measurements even though
staggered fermions are used by the HMC evolution.

The high level of activity by the many groups applying lattice techniques to study dy-
namical electroweak symmetry breaking promise an interesting future for this field. Possi-
bilities for future studies are endless, but new results on physics beyond the standard model

coming from experiments at the LHC will soon guide the course of these investigations.



Chapter 5

Conclusion

In this dissertation we discussed the application of lattice gauge theory to models of elec-
troweak symmetry breaking that involve new strong dynamics. Such technicolor theories
are natural and viable scenarios, in which strong interactions at the TeV scale lead to chiral
symmetry breaking that drives EWSB. While the most direct means of extending techni-
color to communicate EWSB to fermions produces tension between fermion masses and
flavor-changing neutral currents, the most stringent constraints on technicolor itself come
from precision electroweak observables, in particular the S parameter. These difficulties
may be addressed if the theory possesses approximately conformal (walking) dynamics,
as opposed to QCD-like behavior. Walking is characterized by a large mass anomalous
dimension 7,,(p) ~ 1 over a large range of scales p, and is most likely to occur near the
lower (strongly-coupled) end of the conformal window.

To test such proposals, we turn to lattice gauge theory, the premier method for obtaining
quantitatively-reliable, non-perturbative predictions from strongly-interacting theories. We
formulate theories on the lattice by discretizing euclidean spacetime, in such a way that
the original theory is recovered in the infinite-volume, continuum limit. We carry out
numerical lattice simulations through Monte Carlo importance sampling, using the hybrid
Monte Carlo algorithm to generate ensembles of gauge configurations. Both configuration
generation and measurement of observables involving valence fermions requires inverting
the lattice Dirac operator, which is the main computational cost of the simulations.

Systematic effects due to autocorrelations and due to working in a finite, discrete space-
time are understood and under control in the case of lattice QCD, but are less certain in

other theories beyond QCD. In addition, lattice discretization of fermionic fields introduces
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spurious doubler modes, and the most straightforward ways of removing doublers explicitly
break chiral symmetry. Although chiral lattice fermion formulations have been developed,
these are much more computationally expensive than other lattice actions. The domain
wall fermions we use introduce a fifth dimension of length Lg, and possess exact chiral sym-
metry in the limit L — oo. At finite Lg, we absorb the effects of residual chiral symmetry
breaking into a small additive renormalization of the input fermion mass.

In order to gain the greatest possible control over systematic effects, we ground our in-
vestigations on lattice QCD (Ny = 2), proceeding systematically from this case toward the
conformal window (N]? > 8). Our initial investigations find an enhanced chiral condensate
<E1,Z)> in the Ny = 6 theory relative to lattice QCD, and the final focus of this dissertation
is our calculation of the S parameter in both of these theories, along with some preliminary
results for Ny = 10.

On the lattice, we extract S from Iy _4(Q?), the difference of vector and axial current
correlators (Eqn. 4.6). It is important to use at least one conserved current in these
correlators, to ensure that lattice artifacts cancel in the V—A difference. S is defined to
vanish in the standard model, so we use a dispersive integral to calculate and remove the
standard model contribution at non-zero PNGB mass MI% > 0. Although we work only
with all Ny fermions degenerate, we argue that this subtraction adequately approximates
the phenomenologically relevant limit where two flavors are exactly massless while the rest
remain massive.

For Ny = 2 we can perform the MI% — 0 extrapolation to obtain S = 0.311(21), in
agreement with both QCD-based estimates as well as recent lattice QCD calculations. For
Ny =6 and Ny = 10, we observe the expected naive scaling S oc Np in the heavy-fermion
limit M}% > M‘z,07 but we discover a substantial suppression for M}% < M‘z,o. We also
find signs of parity-doubling in the masses and decay constants of the lightest vector and
axial mesons, which may be related to a smaller S parameter. Fig. 4-20 presents our
results the most pessimistic scenarios with Np = Ny/2. With Np = 1, the Ny = 6 and

Ny = 10 models would possess S 2 0.1, much closer to (although still in tension with) the
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experimental S ~ —0.15(10). We repeat that Ny = 10 analyses are preliminary, and in
particular include only disordered-start simulations.

These results are encouraging for the very active field that has begun applying lattice
techniques to strongly-interacting gauge theories beyond QCD. Even though such explo-
rations are broadly valuable to improving our understanding of quantum field theory itself,
they are currently motivated in large part by the possibility that new strong dynamics may
explain EWSB. This hypothesis is being tested by the LHC, and is likely to be either con-
firmed or ruled out within the next few years. Although most lattice studies are focusing
on the question of whether or not theories lie within the conformal window, phenomeno-
logical results like the calculation of the S parameter are of particular importance in this
context. Our finding that S can be significantly reduced compared to the conventional
wisdom reinforces the continued viability of these theories.

Our calculation of the S parameter is exploratory, and I am working on improving
our understanding of and control over the relevant systematic effects. Additional Ny = 2
and Ny = 6 simulations with m; = 0.0075 are underway, as are ordered-start runs for
all Ny = 10 mass points. Calculations on smaller 163 x 32 and 242 x 32 lattices will allow
direct estimation of finite-volume effects, and are being used as testbeds to develop efficient
GPU code for domain wall fermions. Partially twisted boundary conditions may allow us
to measure Iy _4(Q?) at smaller Q2 values, and we are exploring prospects for extracting
additional physics from this polarization function.

I am also working on studies of other theories, where our investigations are still in
their early stages. Measuring the S parameter on Ny = 8 lattices generated with stag-
gered fermions will require testing mixed-action methods, while determining vector and
axial current correlators in SU(2) gauge theories may require even more significant modi-
fications. The S parameter is only one observable among many being considered in these
investigations, but may be one of the most interesting pieces of information we can obtain
from applying lattice gauge theory to models of electroweak symmetry breaking through

new strong dynamics.
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