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The angular momentum of fermion pairs generated by the Schwinger effect is studied in
homogeneous (chromo)electromagnetic fields, mimicking the early stages of a heavy-ion
collision. It is demonstrated that the angular momentum density of produced pairs is pro-
portional to that of the background fields. This is argued both heuristically in a virtual
breaking condensate model by evaluating Wong’s equations, and out-of-equilibrium to one-
loop using the in–in formalism.
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1. Introduction
Off-central heavy-ion collisions (HIC) of two nuclei produce enormous angular momenta and
are thought to give rise to the “most vortical fluid” in the world [1–3]. A by-product of this
is thought to be the spin polarization of the � and �̄ hyperons, measured by the STAR Col-
laboration at RHIC [4,5]. Several studies dissecting the transference of relativistic vorticity to
polarization exist, and include but are not limited to those on: the Einstein–de Haas and Barnett
effects [6–8], hydrodynamic models [9,10], the role of spin–orbit coupling [1,3], and quantum
kinetic theory based on a Wigner formalism [11–13]. Moreover, the global/local polarization
problem has renewed interest in the topic of angular momentum transport in HIC and the
frameworks for facilitation, namely quantum electrodynamics (QED) and quantum chromo-
dynamics (QCD). A phenomenon important in QED and QCD, but that has received little
attention to its quantum transport qualities, is the Schwinger effect.

The Schwinger effect is a nonperturbative process that predicts that the quantum field theory
vacuum is unstable against the production of particle–antiparticle pairs in the presence of a
strong electric field [14–16]. A feature of the Schwinger effect is an inheritance of the prop-
erties of the field onto the produced particles. Not only may the particles acquire energy and
momentum (depending on the makeup of background field), but also parity-violating charac-
teristics. Namely, under CP-odd background fields, such as parallel electric and magnetic fields,
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through the Schwinger effect, the produced particles are CP-odd, and their relationship is de-
scribed by the chiral anomaly [17–20]. Then it is intuitive and important to address whether the
Schwinger effect can provide the means to transport angular momentum from the field to the
constituents. Note that the idea that the Schwinger effect should furnish angular momentum
has been assumed in Refs. [21,22].

While the Schwinger effect in quantum electrodynamics (QED) is strongly suppressed in,
e.g., experimental setups at high-power laser facilities [23] (where it still remains unseen), for
the strong fields in heavy-ion collisions (HIC), the Schwinger effect is thought to underlie chro-
moelectric flux-tube breaking leading to hadronization [24]. In the early stages of an HIC, a
dense gluonic state called the glasma [25,26] forms, where such flux tubes are thought to be
present. The Schwinger effect in non-Abelian fields has been explored in Ref. [27], the effect for
gluons in Ref. [28], Nielsen–Olesen unstable modes in Ref. [29], and also its role in topological
background fields in Ref. [30].

We explore the inheritance of orbital and spin angular momentum via the Schwinger effect
from both a heuristic standpoint and using an out-of-equilibrium in–in framework. Specifi-
cally for the former, we treat a virtual breaking condensate model in which generated pairs
evolve classically according to Wong’s equations [31–33]. This approach is known to agree with
calculations up to one-loop, e.g., the axial-vector and vector currents associated with pair pro-
duction [34], and is physically transparent. We also analyze an out-of-equilibrium full quantum
in–in construction [35]. Background fields are taken as immutable, in which backreaction effects
may be ignored.

We first introduce the (chromo)electromagnetic background field setup that is motivated by
an HIC in Sect. 2. Next we derive and then evaluate Wong’s equations leading to a heuristic
picture of pair production in Sect. 3, and then confirm a similar angular momentum quantity
to one-loop and out-of-equilibrium in Sect. 4. Finally, our conclusions are presented in Sect. 5.

We use natural units such that c = h̵ = 1, and we work entirely in Minkowski spacetime with
gμν = diag(+, −, −, −). Our covariant derivative is defined as Dμ = ∂μ + ieAμ(x) + igAμ(x); for
the SU(2) fields we use the fundamental representation such thatAμ = Aa

μT a, with Ta = (1/2)σ a

being the usual Pauli matrices. The spin tensor reads σμν = i
2[γμ, γν]. In the coincidence limit

we take S(x, x) = limε → 0(1/2)[S(x, x + ε) + S(x + ε, x)], which will also define the Heaviside
theta function to be θ (0) = 1/2, about the origin where present. Finally, throughout this paper,
where appropriate, we make use of a compact matrix notation in Lorentz indices, i.e., F μ

ν =∶ F ,
and xμ =∶ x is a column vector with xμ =∶ xT.

2. HIC event averaged angular momentum
Our task is to explore the simplest possible theoretical setup in which a background field both
possesses a net angular momentum and resembles the early stages of an HIC. We find that
this can be had utilizing fields diagonal in color as are thought present in the chromoelectric
flux tubes [25,26], whereby, upon averaging over a number of collision events, the net angular
momentum would be finite. To accomplish this it is sufficient that we treat homogeneous and
diagonal in color—or rather Abelianized—non-Abelian fields, namely with

Aμ ∝ σ3 , (1)
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for our case of SU(2). To discuss the event-by-event averaged profile, let us first define the
homogeneous background electric and magnetic fields and their properties for the Abelian and
SU(2) non-Abelian fields with isospin I respectively as

Ei = F i0 , Bi = F̃ i0 , (2)

E i = trc[IGi0] , Bi = trc[IG̃i0] , (3)

for F̃ μν = 1
2ε

μναβFαβ , G̃μν = 1
2ε

μναβGαβ , for field strength given by Fμν = ∂μAν − ∂νAμ, and
Gμν = ∂μAν − ∂νAμ + ig[Aμ,Aν]. Here, εμναβ is the totally antisymmetric tensor with ε0123 =
+1. The isospin matrix, I ∈ SU(2)/U(1), characterizes the coupling of a particle with color to
its background non-Abelian field (the definition of this matrix will be given in Eq. (20)). trc de-
notes a trace with respect to color indices. The isospin and field strength change under a color
gauge transformation, U ∈ SU(2), as IGμν →U†IUU†GμνU, and therefore the descriptions given
in Eq. (3) are gauge-invariant. Moreover, due to the Abelianized field assumption in Eq. (1),
we will find that the isospin too takes on a diagonal in color representation with I∝σ 3. There-
fore, the field strength of our system may be taken as two independent homogeneous Abelian
strengths in superposition:

Fμν ∶= eFμν + gtrc[IGμν] . (4)

Then one may write for the Lorentz invariants of the combined field strength tensor

IF̃ F = −
1
4
F̃μνFμν = (gE + eE) ⋅ (gB + eB) , (5)

IF F =
1
2
FμνFμν = (gB + eB)2 − (gE + eE)2 . (6)

For the symmetric stress tensor of Abelian fields, �μν = F μαF ν
α + 1

4 gμνFαβF αβ , e.g., Ref. [36],
one can find the relativistic angular momentum density as �μνxσ −�μσ xν . An analogous sym-
metric stress tensor and relativistic angular momentum density can be found for non-Abelian
particles by summing over color indices, 2trc[GμαG ν

α ] + 1
2 gμνtrc[GαβGαβ]. It is, however, con-

venient to cast the gluonic relativistic angular momentum density with isospin, of which the
spatial components read

lF = x × (E ×B) . (7)

We note that lF is different from the ordinary angular momentum of gluons because E and
B contain the isospin matrix. If one takes the average over the isospin matrix with uniform
weight, it reduces to the ordinary one.

One may define a total spatial angular momentum density that includes Abelian fields with
the addition of x × (E ×B) to the above; however, for the background fields discussed below,
such a contribution will vanish.

Then, for two off-central oncoming nuclei, with offset parameter d/2, that have both gluon
momentum and a parity-violating component in the laboratory frame, we confine our attention
to the setup given in Fig. 1. For a given event the components of the electric and magnetic
chromo fields are decomposed as

E = Ez + E∥ , B = Bz +B∥ . (8)

On each HIC event a net gluon momentum in the collision direction is taken such that the
total momentum over many events is zero; however, the total angular momentum is finite. We
analyze a small spacetime volume, VT , over which Schwinger pair production is assumed to
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Fig. 1. U(1) and SU(2) background field theoretical model. The simplest case motivated by early stages of
an HIC event, with offset parameter, d/2, and gluon momentum, E ×B, is considered. Fields are treated
as homogeneous. Inhomogeneity as depicted in the figure results from an averaging over events. For a
given event, we take Eq. (9) for some z ∈ [−d/2, d/2] and we also take Eq. (11), where put together, Eq. (8),
E and B may be treated as homogeneous. A strong out-of-plane Abelian magnetic field, B = Bx̂⊥, can
also be seen.

occur, and we treat within the small volume homogeneous fields. Then we evaluate the effects
of Schwinger-produced pairs for a given event and then average over all events. We treat the
glasma flux-tube model of pair production (see Refs. [17] and references therein for its usage
under homogeneous and Abelian projected fields). The available spacetime volume for pair
production in a glasma flux tube is small; however, it is sufficient. For the model we assume
gE ∼ gB ∼ Q2

s ∼ 1 GeV2 and that is also homogeneous over a spatial scale of �T ∼ Q−1
s , where

the saturation scale is given by Qs. We assume that the quark mass is small in comparison to the
transverse momentum, which we assume is pT ∼ �−1

T ∼ Qs corresponding to the transverse size
in a flux tube. The space available for pair production is approximately given by the exponential
suppression factor as a function of transverse momentum, i.e., pT /gE ∼ Q−1

s , which we can see
is of the same order as the spatial scale of �T; in this way pair production would be applicable in
the given small spacetime volume. Nevertheless, in a real collision the fields are inhomogeneous,
and we use the idealized approximation of homogeneous fields for analytic tractability. We
can approximate this by assuming the idealized situation of Qs ≪ �−1

T , which enables the clear
relation of angular momentum that we will put forth. We also assume that the fields in the flux
tubes have a component that may be oriented so that IF̃ F scales as the saturation scale, Q4

s ,
but when averaged over are globally zero. A background Abelian magnetic field pointing in the
out-of-plane direction, x̂⊥, is also assumed, B = Bx̂⊥, while an electric field is assumed to vanish.
Although the electromagnetic magnetic field may reach as high as 104 MeV in HIC [37,38], we

4/27

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2023/2/023B08/7008911 by D

eutsches Elektronen Synchrotron D
ESY user on 25 M

arch 2023



PTEP 2023, 023B08 P. Copinger and Y. Hidaka

assume a scenario in which the electromagnetic magnetic field is 10–100 MeV to better study
the transference of angular momentum from the chromo fields. We assume, for the superposed
chromoelectromagnetic field in Eq. (8), that the component in the beam direction is entirely
sourced by E∥ and B∥; therefore we have that E∥ ⋅ Ez = B∥ ⋅ Ez = E∥ ⋅Bz = B∥ ⋅Bz = 0. We also
assume that all CP violation comes from E∥ andB∥ and therefore Ez andBz are perpendicular.
Finally, in assuming that the strengths of both are similar, i.e., ∣Ez∣ ∼ ∣Bz∣, we find that the pair
production is sourced by E∥ and B∥ since then IF̃ F ≈ g2

E∥ ⋅B∥ and IF F ≈ g2(B∥ ⋅B∥ − E∥ ⋅ E∥).
Let us first examine the gluon momentum part of Eq. (8); we take the momentum to be

Ez ×Bz = Emax
z Bmax

z
2z
d

x̂∥ , (9)

where for each event z is taken as an external parameter, and the fields, Ez and Bz, may then
be treated as homogeneous. z ∈ [−d/2, d/2] is oriented perpendicular to the Abelian magnetic
field and the gluon momentum as shown in Fig. 1. x̂∥ denotes the direction parallel to the beam
axis. With the exception of the fields described above, any configuration of Ez or Bz leading to
Eq. (9) is accepted.

Next, let us look at the parity-violating part of Eq. (8). Here we assume that E∥ and B∥ may
be oriented parallel or antiparallel to the beam axis so that IF̃ F ≈ ±g2E∥B∥, where

g2E∥B∥ ∼ Q4
s . (10)

To achieve this we take specifically

E∥ = ±E∥x̂∥ , B∥ = ±B∥x̂∥ . (11)

We take for an event the quantum expectation value of some observable (or background
field), oz, where for the given event z is treated as a fixed parameter. Then we may average over
all events such that

⟨⟨o⟩⟩ ∶= 1
4
∑

±E∥,±B∥

1
d ∫

d/2

−d/2
dz oz . (12)

For example, one may readily find the average momentum of the fields to be⟨⟨Ez ×Bz⟩⟩ = 0.
However, the average chromoelectromagnetic angular momentum of the system as viewed from
the center of the collision using Eq. (7) can be found as

⟨⟨lF ⟩⟩ = Emax
z Bmax

z
d
6

x̂⊥ , (13)

resulting in a net angular momentum of the fields over all events. Note that here a contribution
to the angular momentum from the Abelian magnetic field vanishes once averaged over in z.
Lastly, we also have for a global parity violation that

⟨⟨IF̃ F ⟩⟩ ≈ g2⟨⟨E∥ ⋅B∥⟩⟩ = 0 . (14)

Let us point out that realistic collisions differ from the simplified model, although we analyze
the above scenario, which mimics certain aspects of an HIC. We restrict our study to those of
homogeneous fields, and this is for physical opacity as well as benefitting from exactly solvable
setups; however, the fields in an HIC are inhomogeneous [39]. This also prevents an Abelian
decomposition of the SU(2) fields, which only holds for homogeneous fields. Furthermore,
dynamical gluons and photons are not treated here (in addition to the stong classical picture).
Also, the simple linear dependence in z for the angular momentum would not fully represent the
case of an HIC. We have not treated backreactions in our analysis, which could be important
in early-stage dynamics; see Ref. [40] for a study. The event-by-event analysis too would require
an average over any given and random configuration. In addition, the classical fields would be
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boost invariantly expanding [39], limiting the longitudinal size. Finally, pair production can
also occur for gluons [41], since they are self-interacting, as opposed to the Abelian photons.
Nevertheless, we will show, using our simplified model, which takes inspiration from HICs, how
angular momentum can arise. However, we caution that our findings, while thought to hold
more generally, have only been analyzed for the above model. A more realistic model would
need to address the above limitations.

Let us spell out our main findings. For the event-by-event averaging described above it is found
that the spatial orbital angular momentum of all permutations of pair-produced particles, l ,
once averaged over is proportional to that of the background fields, namely

⟨⟨l ⟩⟩ =
∣gB∥∣
8π2

e
− πm2

∣gE∥∣ coth(
π ∣B∥∣
∣E∥∣
)
E2
∥T 2

E2
∥ + B2

∥
g2⟨⟨lF ⟩⟩ . (15)

A characteristic exponential quadratic mass suppression is furthermore evident, making visi-
ble the connection to the Schwinger effect. While the occurrence of pair production is dictated
by the CP-violating parallel fields, the angular momentum dependence is entirely due to the
chromoelectromagnetic momenta. To demonstrate the above we will compute the angular mo-
mentum in two ways:

(1) The first is through an examination of Schwinger pair production occurring heuristically
as a virtual breaking condensate into a particle–antiparticle pair. This approach has the
virtue of physical opacity and simplicity. We will first determine the classical equations of
motion derived from the worldline for an arbitrary homogeneous field. Then we will mo-
tivate and define the heuristic model. Finally, we will apply event-by-event averaging. It
will be demonstrated that the physical mechanism for angular momentum inheritance
stems from classical processes; however, limitations on the interpretations for the under-
lying physics must be drawn since the Schwinger effect is ultimately a quantum process.

(2) For the second way, quantum observables are addressed. Since the Schwinger effect is
inherently out of equilibrium, we make use of the in–in formalism. Vacuum expecta-
tion values for homogeneous fields depicted above are evaluated, and then an event-by-
event averaging is applied. In this way we confirm angular momentum transport via the
Schwinger effect.

3. Wong’s equations: A classical treatment
One may make use of the heuristic splitting virtual condensate picture of Schwinger pair pro-
duction by first evaluating the classical equations of motions. For an SU(2) two-color QCD plus
QED framework, the classical equations of motion are provided by Wong’s equations [31–33]:
a set of equations for a non-Abelian system resembling that of the Abelian Lorentz force. The
equations describe the classical trajectories of particles with isospin (a non-Abelian charge) in-
teracting with a Yang–Mills field. Wong’s equations directly follow from the worldline action.
One may construct such an action through the one-loop effective action, whose imaginary part
predicts the vacuum non-persistence of the Schwinger effect.

To arrive at the worldline action, let us express the fermion effective action in the world-
line formalism [42]. Concretely, for the partition function, ∫ Dψ̄Dψ exp[i ∫ d4xψ̄(i /D −m)ψ] =
exp(i�[A,A]), one can make use of Schwinger proper time to write

�[A,A] = − i
2

Tr ln( /D2 +m2) = 1
2 ∫

∞

0

dT
T ∫ d4x trctrγK(x, x, T ) , (16)
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K(x, y, T ) = i⟨x∣e−i( /̂D
2
+m2)T ∣y⟩ . (17)

Tr is a functional trace, acting over both color and Dirac indices as well as the coordinate
basis. trγ is a trace over just Dirac indices. Also, one may confirm /D2 = D2 + 1

2(eFμν + gGμν)σμν .
Equation (16) may be expressed in worldline path integral form as [42–44]

�[A,A] = i
2 ∫

∞

0

dT
T ∮ DxDh�[h]trcPctrγPγ e−i ∫ T

0 dτ[m2h+ 1
4h ẋ2+eAμẋμ+gAμẋμ+ h

2 (eFμν+gGμν)σμν] .

(18)

Here the boundary conditions are understood to be x(0) = x(T) = x′, with the path integral
measure ∮ Dx = ∫ dx′ ∫ Dx. The path ordering here spans both color and Dirac indices, sub-
scripted with c and γ respectively. Also we have included the gauge-fixing functional term, �[h],
which introduces the fluctuating variable, h(τ ), into the action for a reparametrization-invariant
worldline expression [45]; the action is invariant under τ → f(τ ) and h(τ ) → h(τ )/f(τ ). We will
treat the simplest gauge of h = 1 that represents a δ functional, i.e., �[h] = δ[h − 1].

To arrive at Wong’s equations from the action, let us express the path-ordered elements as
path integrals over their respective coherent states [46] or Grassmann variables [45] for color and
spin degrees of freedom respectively. For the SU(2) color degrees of freedom, we employ the
coherent state adopted for the non-Abelian Stokes theorem [47,48]. Essentially, for the coherent
state, one may break up the matrix-weighted proper-time ordered exponential into infinitesimal
discretized elements, inserting them into an over-complete set of states described by a Haar
measure, and sum over all possible gauge transformations. For example, takeHc ∈ su(2). Then
for the Haar measure dμ of the coset SU(2)/U(1) (spanning S2) and gauge element u ∈ SU(2),
one can find

trcPce
−ig∫ T

0 dτHc = ∫ Dμ exp [−ig
2 ∫

T

0
dτ trc {σ3 [uHcu

† − i
g

uu̇†]}] . (19)

By virtue of the coherent state, we may characterize our non-Abelian particles interacting with
a Yang–Mills field with isospin (as introduced above in Eq. (3)) as

I ∶= 1
2

u†σ3u . (20)

We note that I is a matrix. Also, due to the trace, we have u(0) = u(T). In a similar way, one may
express the spin fermionic degrees of freedom, obeying a Clifford algebra, using anticommuting
Grassmann variables [45] as

trγPγ e−i ∫ T
0 dτ[ e

2 Fμνσ
μν] = ∫ Dθ exp [−i∫

T

0
dτ (− i

4
θμθ̇μ + ie

2
Fμνθ

μθν)] . (21)

The above can be constructed with a complete set of states for the Grassmann variables as well
as a trace in the Fock space. In contrast to the color degrees of freedom for the fermion statistic,
we have {θμ, θν} = gμν , and we have antiperiodic boundary conditions, θμ(0) = −θμ(T). It can
be seen that one may construct, from the path-ordered matrix expression in Eq. (18) (upon
infinitesimal segmentation) spanning both color and Dirac indices, the combined coherent state
path integration by virtue of color and Grassmann resolutions of identity. We also perform the
following variable changes: τ → τ /2m and T→T/2m. We find, for the effective action, �[A,A] =
(i/2) ∫

∞
0 dT T−1 ∮ DxDuDθ exp(iS), with worldline action

S = −∫
T

0
dτ [ 1

2m
+ m

2
ẋ2 − i

2
trc(σ3uu̇†) − i

4
θμθ̇μ + eAμẋμ + gtrc(IAμ)ẋμ + i

4m
Fμνθ

μθν] ,

(22)
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where we have used Eqs. (4) and (20).
Wong’s equations can be found from the worldline action. Let us first address the Grassmann

variable, whose equation of motion can be readily found as

θ̇μ =
1
m
Fμνθ

ν . (23)

To next determine the equations of motion for the coherent state representation over color, we
make use of the method outlined in Ref. [32]. We make use of the fact that u̇† = −u†u̇u† and
∂/∂θ iu† = −u†(∂/∂θ iu)u†. One can eventually find, for the isospin,

İ = −[igAμẋμ, I] , (24)

where we have used the fact that İ = [I, u†u̇]. Conservation of isospin is guaranteed in that 2trcI2

= IaIa = 1 with I = IaTa. Finally, one may determine the Lorentz force non-Abelian equivalent
expression in Wong’s equations:

ẍμ =
1
m
Fμν ẋν + i

4m
∂μFνρθ

νθρ . (25)

From Eqs. (23) and (25), one can show that θμẋμ is proper-time independent:
d

dτ
(θμẋμ) = 1

m
Fμνθ

ν ẋμ + θμ 1
m
Fμν ẋν + i

4m
∂μFνρθ

μθνθρ = 0. (26)

Here, we have employed θμθνθρ∝εμνρσ and the Bianchi identity εμνρσ ∂μFνρ = 0.
Let us make the connection to the Bargmann–Michel–Telegdi (BMT) equations [49,50].

However, as our scope is limited to a one-loop background, let us introduce a gyromagnetic
ratio phenomenologically. The discrepancy from 2 in the magnetic moment can be entirely at-
tributed to the coupling in the spin factor term; therefore, let us briefly digress to the case in
whichFμνθ

μθν → (s/2)Fμνθ
μθν . This would amend the spin equation of motion (23) such that

θ̇μ = (s/2m)Fμνθ
ν . To construct the BMT equations, let us introduce a spin tensor [51] as

Sμν ∶= −
i
2
θμθν . (27)

From this, one may find

Ṡμν =
s

2m
Fμσ Sσ

ν −
s

2m
S σ

μ Fσν . (28)

Then, let us write a Pauli–Lubanski pseudovector, or polarization tensor, as [50]

Wμ ∶=
1
2
εμναβSναẋβ. (29)

Note that one may also find that εανμβWμẋβ = Sνα by choosing the vanishing constant θμẋμ = 0
and the proper-time gauge ẋ2 = 1. Then after some steps, one may find the BMT equation in a
homogeneous background as

Ẇ μ
′

= s − 2
2m

ẋμ
′

F νν
′

Wν ẋν′ +
s

2m
Fμ

′
νWν , (30)

in agreement with Refs. [32,50].

3.1. Solutions to Wong’s equations in an SU(2) × U(1) homogeneous field
Furnished with Wong’s equations, including the BMT equation, we, however, make use of the
case of s = 2. Let us evaluate them exactly for SU(2) ×U(1) homogeneous fields. To do so, it is
convenient to illustrate the properties of the field strength tensor (4).

First, let us evaluate the equation of motion for isospin (24). The solution takes on a simple
form in Abelian projected background fields. For the case of homogeneous fields in Eq. (3),
one may always perform a gauge rotation to find A ∝ σ3. The isospin, I, is conserved such
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that 2 trcI2 = 1, with I ∈ SU(2)/U(1), describable with a Haar measure. However, for our pur-
poses here, the isospin will take a trivial value owing to the Abelian projection. Consider the
composition of the isospin given in Eq. (20) for u ∈ SU(2). A solution to Wong’s equation for
isospin (24) can be found for u in the form of a Wilson loop: u(τ) = P exp[ig∫

τ

0 Aμdxμ]u(0).
However, since A ∝ σ3 we can find a trivial solution of isospin that is independent of proper
time as I = (1/2)σ 3. Therefore, we see that the isospin dynamics have been fully decoupled from
the Lorentz force equation of motion, which is exactly solvable.

Let us take the case of homogeneous fields of Eq. (3). Throughout this paper, where appro-
priate, we make use of a compact matrix notation in Lorentz indices, i.e., F ∶= Fμ

ν , ẋ ∶= ẋμ is
a column vector, and we reserve the notation ẋT ∶= ẋμ for row vectors. Then, the Lorentz in-
variants (6) follow from the field strength tensor from F̃F = IF̃ F δ4×4 and F2 − F̃2 = −IF F δ4×4,
where we have made explicit the identity matrix with δ4 × 4. Also, by extension, F4 + IF FF2 −
I2

F̃ F
δ4×4 = 0, which actually follows from the Cayley–Hamilton theoreom since det(F − λδ4×4) =

λ4 + λ2IF F − I2
F̃ F
= 0 [52]. Then the eigenvalues of the field strength tensor can found as ±λE and

±iλB with respective magnitudes

λE ∶=
1√
2

√√
I2

F F + 4I2
F̃ F
− IF F , λB ∶=

1√
2

√√
I2

F F + 4I2
F̃ F
+ IF F , (31)

which are respectively projections of the electric and magnetic field strengths. The magnitudes
of the eigenvalues satisfy the following identities in terms of the Lorentz invariants: λEλB = ∣IF̃ F ∣
and λ2

B − λ2
E = IF F .

It is also convenient to perform the full eigendecomposition of the field strength tensor; we
use the approach used in Ref. [52]. Most relevant are the projection operators of the squared
eigenvalues, given in Eq. (31), which can be readily verified as

PE ∶=
λ2

B +F2

λ2
E + λ2

B

, PB ∶=
λ2

E −F2

λ2
E + λ2

B

, (32)

which satisfy F2PE = λ2
E PE and F2PB = −λ2

BPB. The projection operators are also idempotent,
complete, and orthogonal: P2

E = PE , P2
B = PB, PE + PB = 1, and PEPB = 0. Later, it will be neces-

sary to construct the eigenvectors of the tensor (we use the conventions of Ref. [35]), and they
can be verified as

n±E = (F ± λE)PEξ±E , n±B = (F ± iλB)PBξ±B , (33)

which satisfy Fn±E = ±λE n±E and Fn±B = ±iλBn±B. They are also orthogonal since n±T
E n±E =

n±T
B n±B = 0 and nT

E nB = nT
B nE = 0. ξ±E and ξ±B may be selected for normalization such that n−T

E n+E =
n+T

E n−E = 2 and n−T
B n+B = n+T

B n−B = −2; however, their specific form is unimportant for most of our
purposes; in the instances where it is important we will use parallel electric and magnetic fields
that have a physically transparent eigenvector construction. Rather than the eigenvectors given
in Eq. (33), it is convenient to use the following combinations:

n+λE
= 1

2
(n−E + n+E) , n−λE

= 1
2
(n−E − n+E) , (34)

n+λB
= 1

2
(n−B + n+B) , n−λB

= 1
2
(n−B − n+B) . (35)

The above combinations satisfy

Fn±λE
= −λE n∓λE

, Fn±λB
= −iλBn∓λB

. (36)

They are normalized such that n+T
λE

n+λE
= 1, n−T

λE
n−λE
= −1, n+T

λB
n+λB
= −1, and n−T

λB
n−λB
= 1. n+λE

is
time-like and thus its contraction with a vector represents the time component; e.g., for the case
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of a pure electric field in the x̂3 direction, n+T
λE

x would be x0 whereas n−T
λE

x would be sgn(gE)x3.
Let us also mention that the fully antisymmetric field strength tensor has a similar eigendecom-
position: for F̃n±E = ±(IF̃ F /λE)n±E and F̃n±B = ∓i(IF̃ F /λB)n±B, one can also find

F̃n±λE
= −IF̃ F

λE
n∓λE

, F̃n±λB
= i

IF̃ F

λB
n∓λB

. (37)

The combined eigenvectors in Eq. (35) allow one to perform the spectral decomposition of the
field strength tensors as

F = λE [n+λE
n−T

λE
− n−λE

n+T
λE
] − iλB [n+λB

n−T
λB
− n−λB

n+T
λB
] , (38)

F̃ = IF̃ F

λE
[n+λE

n−T
λE
− n−λE

n+T
λE
] + i

IF̃ F

λB
[n+λB

n−T
λB
− n−λB

n+T
λB
] . (39)

Finally, it is occasionally convenient to represent the projection operators (32) using the com-
bined eigenvectors as

PE = n+λE
n+T

λE
− n−λE

n−T
λE

, PB = n−λB
n−T

λB
− n+λB

n+T
λB

. (40)

Using the above eigendecomposition, particularly using the projection operators, one may
readily solve the Lorentz force equation (25) in homogeneous fields [52]; see also Ref. [30]. To
do so, let us define q such that ẋ =∶ (d/dτ +m−1F)q, with qE ∶= PEq, and qB ∶= PBq. Then the
use of qE and qB enables the Lorentz force equation to be decoupled as

( d2

dτ 2
− λ2

E

m2
)qE = 0 , ( d2

dτ 2
+ λ2

B

m2
)qB = 0 . (41)

Using the fact that PBqE = 0 and PEqB = 0, one can evaluate the two above equations separately
and then combine them to find

ẋ(τ) = {[cosh(λEτ

m
) + λ−1

E F sinh(λEτ

m
)]PE + [cos(λBτ

m
) + λ−1

B F sin(λBτ

m
)]PB} ẋ(0) .

(42)

Note that the expression in the curly brackets agrees with the exponential of the field strength
tensor such that ẋ(τ) = exp(Fτ/m)ẋ(0). We have also arbitrarily chosen an initial proper time
of τ 0 = 0. Lastly, the coordinate solution can be verified as

x(τ) = m
IF̃ F
F̃[ẋ(τ) − ẋ(0)] + x(0) . (43)

For not only the Lorentz force equation but also the BMT equation can one find an exact
solution in homogeneous fields. A general solution to the spin tensor equation given in Eq. (28)
can be found as S(τ) = exp[(s/2m)Fτ ]S(0) exp[−(s/2m)Fτ ]. Then let us introduce the fully
antisymmetric spin tensor as

S̃ = IS̃SS−1 , IS̃S = −
1
4

S̃μνSμν , (44)

from which one may directly write down the general solution to the BMT equation (30) as

W (τ) = S̃(τ)ẋ(τ) , S̃(τ) = e
s

2mFτ S̃(0)e− s
2mFτ , (45)

with ẋ(τ) given by Eq. (42). Let us, however, confine our attention to the case of a gyromagnetic
ratio of s = 2, which will simplify matters: W (τ) = exp(Fτ/m)W (0) for some initial polariza-
tion, W(0). Note that the selection of the gyromagnetic ratio entails the constraint ẋμθμ = 0.
The solution for the Pauli–Lubanski pseudovector can now be found, similar to that found for
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Eq. (42):

W (τ) = {[cosh(λEτ

m
) + λ−1

E F sinh(λEτ

m
)]PE + [cos(λBτ

m
) + λ−1

B F sin(λBτ

m
)]PB}W (0) .

(46)

3.2. Angular momentum from a splitting virtual condensate
Before we address the full one-loop quantum calculation of angular momentum via the
Schwinger effect, let us first ensure its validity in the classical picture of a virtual splitting
condensate. While the picture is indeed only heuristic, values derived from the picture agree
well with those of expectation values of one-loop background calculations in homogeneous
fields [17]. Let us describe the physical picture: Envision a pair of particles produced from the
vacuum, which we characterize as a virtual particle–antiparticle condensate, in some point in
spacetime. In the heuristic model we confine our attention to the n = 1 instanton contribution
to the non-persistence probability [21]. This is because the heuristic picture treats only a single
pair. Even so, the treatment is not limited to the case of just weak fields. Indeed we will find in the
following sections when computing in–in oberservables to all n orders that similar expectation
values can be had for fields with arbitrary strengths. For our SU(2) ×U(1) homogeneous fields
one can find for the imaginary part of the effective action (18) the following non-persistence
probability per unit volume-time of a single particle–antiparticle pair with opposite charge and
color as [17]

W =∑
±g

λEλBVT
4π2

coth(πλB

λE
) exp(−πm2

λE
) . (47)

Here V and T are the system volume and real-time; these formal divergent factors arise in
canonical momentum integrals in the effective action, and are a result of infinitely spanning
homogeneous fields [53]. A concrete form for the kernel (74) will be explicitly provided later
from which the above simply follows from the n = 1 pole on the imaginary proper-time axis.
Upon creation it is assumed that the particle–antiparticle pair evolves for a long real-time, ∼ T ,
classically according to Wong’s equations (including the BMT equation) (24), (25), (30). Lastly,
two types of pairs of particles may be produced: both the pair (e, g) and (−e, −g) as well as the
pair (e, −g) and (−e, g). However, while the sum of both probabilities of such pairs is encoded
into the non-persistence (47), their respective probabilities cannot be easily decoupled. Never-
theless, let us consider the HIC setup in Sect. 2; there one can see that λE, λB∣g→ +g ≈ λE, λB∣g→ −g

for fixed U(1) coupling. Furthermore, the non-persistence is positive definite. Therefore let us
treat the total non-persistence as

W ≈ λEλBVT
2π2

coth(πλB

λE
) exp(−πm2

λE
) , (48)

which holds for either ±g. With the above non-persistence, either pair will in fact give an iden-
tical rate of occurrence for the fields considered. Lastly, there is a factor of two in the above (in
contrast to the strictly Abelian case) since the rate of occurrence of both particle pairs is taken
into account.

For the heuristic picture, let us restrict our attention to the initial condition of rest: ẋμ(0) =
(1, 0, 0, 0) for either particles or antiparticles. Particles being produced with finite momentum
are exponentially suppressed, and thus this serves as a good approximation. Then it is conve-
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nient for the following calculations to write out the solution to the Lorentz force equation. The
velocity (42) and coordinates (43) become

ẋ0(τ) = 1
λ2

E + λ2
B

{(λ2
B + g2E2) cosh(λEτ

m
) + (λ2

E − g2E2) cos(λEτ

m
)} , (49)

ẋ(τ) = 1
λ2

E + λ2
B

⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎣
cosh
⎛
⎝

λEτ

m

⎞
⎠
− cos

⎛
⎝

λBτ

m

⎞
⎠

⎤⎥⎥⎥⎥⎦
gE × (gB + eB) +

⎡⎢⎢⎢⎢⎣
λE sinh

⎛
⎝

λEτ

m

⎞
⎠

+ λB sin
⎛
⎝

λBτ

m

⎞
⎠

⎤⎥⎥⎥⎥⎦
gE + IF̃ F

⎡⎢⎢⎢⎢⎣
λ−1

E sinh
⎛
⎝

λEτ

m

⎞
⎠
− λ−1

B sin
⎛
⎝

λBτ

m

⎞
⎠
](gB + eB)} , (50)

x0(τ) = m
λ2

E + λ2
B

{λ2
B + g2E2

λE
sinh(λEτ

m
) + λ2

E − g2E2

λB
sin(λBτ

m
)} + x0(0) , (51)

x(τ) = m
λ2

E + λ2
B

{[λ−1
E sinh(λEτ

m
) − λ−1

B sin(λBτ

m
)]gE × (gB + eB) + [ λ2

B

IF̃ F
(cosh(λEτ

m
) − 1)

+ λ2
E

IF̃ F
(cos(λBτ

m
) − 1)] (gB + eB) + [cosh(λEτ

m
) − cos(λBτ

m
)]gE} + x(0) . (52)

To show the heuristic picture and to ensure its validity, we demonstrate a simple calculation
of the electromagnetic vector current in a sole electric field in the x̂E direction. In the heuristic
picture one may show that for a particle–antiparticle pair with (±e, ±g)

J(±e,±g) =
e
2
W∫ d3y∫ dτ

⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎣
δ4(y − x(τ))ẋ(τ)∣

e,g→e,g
−
⎡⎢⎢⎢⎢⎣
δ4(y − x(τ))ẋ(τ)∣

e,g→−e,−g

⎫⎪⎪⎬⎪⎪⎭

= e
2
W
⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎣

ẋ(y0)
∣ẋ0(y0)∣

∣
e,g→e,g

−
⎡⎢⎢⎢⎢⎣

ẋ(y0)
∣ẋ0(y0)∣

∣
e,g→−e,−g

⎫⎪⎪⎬⎪⎪⎭
. (53)

Likewise, one may write a similar current for the pair (±e, ∓g). Here y0 ∼ T /2≫ 0. Note that
we have a factor of 1/2 in Eq. (48) to account for a single species of pairs. Let us also point out
that for the Lorentz invariants one finds

IF̃ F , IF F , λE , λB∣e,g→e,g
= IF̃ F , IF F , λE , λB∣e,g→−e,−g

. (54)

To simplify this cursory discussion, let us examine the case with only an electric field in the
direction x̂E , whose eigenvalues are simply limB→0 λE = ∣gE∣, and limB→ 0λB = 0. Then for large
y0 = (m/gE) sinh(gEτ/m) one will find as anticipated that the generated electromagnetic current
of the (±e, ±g) pair will saturate to 2e(1/2)W [17]:

J(±e,±g) = sgn(g) e
2

λ2
EVT
π3

exp(−πm2

λE
) x̂E . (55)

Importantly, there is an overall dependence on the sign of g in the vector current. Therefore
for the contribution from the other pair, we find that J(±e,±g) = −J(±e,∓g), and hence the total
current, J(±e,±g) + J(±e,∓g), is vanishing. That there can be no electromagnetic current from the
Schwinger effect in SU(2)×U(1) due to the cancellation from both color contributions has been
studied in Ref. [54]. Using the heuristic model, it appears as though transport of current (and
other observables) occurs from classical processes instead of the Schwinger effect, beginning
at time T /2 = 0. However, T is also the system duration, and depicts the time at which the
electric field is turned on, and hence T /2 = 0 depicts a scenario with no electric field. While
the heuristic model is powerful and intuitive, it is still a classical picture, while the Schwinger
effect is a quantum phenomenon, and there are limitations that we can draw concerning the
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underlying physics. We can demonstrate transport of the current as well as angular momentum
using the fully quantum in–in contruction in the following sections. Let us next determine the
orbital and spin angular momentum using the heuristic picture.

Let us first address the spin in the heuristic picture governed by the BMT equation (30). The
initial condition of rest for the particle–antiparticle pair also imposes a restriction on the ini-
tial Pauli–Lubanski pseudovector; i.e., from Eq. (29) one finds Wμ(0) = S̃μ0(0). For the totally
antisymmetric spin tensor, this corresponds to the magnetic-like part of the spin tensor. Fi-
nally note that in the worldline action the coupled spin tensor to field strength tensor term,
(1/2)FμνSμν , indicates that the energy is minimized for spin alignment with the magnetic field.
Therefore, we take for our initial spin state W (0) = (eB + gB)/∣eB + gB∣, and hence the polar-
ization vector (46) becomes

W 0(τ) = IF̃ F

λ2
E + λ2

B

{[λE sinh(λEτ

m
) + λB sin(λBτ

m
)] 1
∣eB + gB∣

+ [λ−1
E sinh(λEτ

m
) − λ−1

B sin(λBτ

m
)] ∣eB + gB∣} , (56)

W (τ) = 1
λ2

E + λ2
B

1
∣eB + gB∣ {[λ

2
B cosh(λEτ

m
) + λ2

E cos(λBτ

m
)] (eB + gB) + IF̃ F {[cosh(λEτ

m
)

− cos(λBτ

m
)]gE + [λ−1

E sinh(λEτ

m
) − λ−1

B sin(λBτ

m
)]gE × (eB + gB)}} . (57)

Here, the produced particle–antiparticle pair total pseudovector follows a form similar to the
current for the (±e, ±g) pair as

Pμ

(±e,±g) =
W
2

⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎣

W μ(y0)
∣ẋ0(y0)∣

∣
e,g→e,g

+
⎡⎢⎢⎢⎢⎣

W μ(y0)
∣ẋ0(y0)∣

∣
e,g→−e,−g

⎫⎪⎪⎬⎪⎪⎭
. (58)

Specializing to the fields as described in Sect. 2, one can find the temporal and spatial compo-
nents as

P0
(±e,±g) ≈ g2

E∥ ⋅B∥
∣E∥B∥∣T V

2π2(B2
∥ + E2

∥)
coth(

∣B∥∣π
∣E∥∣
) e
− m2π
∣gE∥∣ {

∣E∥∣
∣B∣ +

∣B∣
∣E∥∣
} = P0

(±e,∓g) , (59)

P(±e,±g) ≈ g2
E∥ ⋅B∥

T V
2π2

coth(
∣B∥∣π
∣E∥∣
) e
− m2π
∣gE∥∣

∣B∥∣
∣B∣(B2

∥ + E2
∥)

× [Ez ×Bz + Ez ×B∥ + E∥ ×Bz] = P(±e,∓g) . (60)

However, after averaging over ±E∥ and ±B∥ in Eq. (12), we can determine that the relevant
observables, i.e., ⟨⟨P0⟩⟩ and ⟨⟨z ×P⟩⟩, will vanish. Thus one may rule out spin as a contributor
to the total angular momentum here. This is, however, to be expected, since the pseudovector
can be likened to a chiral vector current that is proportional to IF̃ F , which will vanish according
to an averaging over all events as assumed in Eq. (12).

To further illustrate this point let us look at a scenario different to that given in Sect. 2 with
parallel electric and magnetic fields such that lF = 0—see Eq. (7)—and IF̃ F ≠ 0. Let us also
treat a strong magnetic field such that only the lowest Landau level would be present, in effect
polarizing the particles’ spins. Then, using Eq. (58), we can find that

P0
±e,±g =

WIF̃ F

λ2
B + g2E2

{ λE

∣eB + gB∣ +
∣eB + gB∣

λE
} ≈ IF̃ F

T V
2π2

e−
πm2

λE . (61)
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Furthermore, since P0
±e,±g = P0

±e,∓g (in contrast to the vector current found above), one can find
that the non-vanishing time component total pseudovector in parallel fields becomes

P0 = P0
±e,±g +P0

±e,∓g = IF̃ F
T V
π2

e−
πm2

λE . (62)

If one were to interpret the total time of the system, T , as a differentiable real-time, and fur-
thermore liken the time-like pseudovector to a chiral density, then the above would resemble
the chiral anomaly in the massless limit. As our background field’s total angular momentum
goes as E ×B, cf. Eq. (13), one should expect to see pairs with such an angular momentum
dependence, and we can show that this is the case with the orbital part.

For a single point-like particle, we require a Lorentz-covariant definition of the particle
momentum, which stems from the energy–momentum tensor density [55], m ∫

∞
−∞ dτ δ(y −

x(τ))ẋμ(τ)ẋν(τ). In addition, we have, for the combined point-like particle energy–
momentum tensor for the (±e, ±g) pair,

T μν

(±e,±g) =
mW

2

⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎣

ẋμ(y0)ẋν(y0)
∣ẋ0(y0)∣

∣
e,g→e,g

+
⎡⎢⎢⎢⎢⎣

ẋμ(y0)ẋν(y0)
∣ẋ0(y0)∣

∣
e,g→−e,−g

⎫⎪⎪⎬⎪⎪⎭
, (63)

whose T 0i components are the spatial momentum. However, here, in contrast to the vector
current and polarization, we see that the covariant spatial momentum grows (apart from the
pair-production rate,W , factor) with time, and hence is quadratic with time with theW factor.
The time growth and hence system real-time can be determined as

x0(τ ≫ 0) = m
λE

λ2
B + g2E2

λ2
E + λ2

B

sinh(λEτ

m
) → T

2
. (64)

Here the right arrow follows after the delta function takes x0→ y0. Using the conditions dictated
in Sect. 2, one may find for the combined momentum

T 0i
(±e,±g) =

T 2V
4π2

E2
∥ ∣gB∥∣
B2
∥ + E2

∥
coth(

∣B∥∣π
∣E∥∣
) e
− m2π
∣gE∥∣ g2[Ez ×Bz + Ez ×B∥ + E∥ ×Bz] . (65)

Thus, we see as expected a net momentum associated with pair production. Finally, we note
that T 0i

(±e,±g) = T 0i
(±e,∓g).

The total angular momentum density is then

Lμνσ = xνT μσ − xσT μν . (66)

Here xν and xσ are understood to act on both the (±e, ±g) and (±e, ∓g) pairs and are given by
Eq. (52). We take the initial criteria as x(0)∣e,g→e,g = x(0)∣e,g→−e,−g = z as illustrated in Sect. 2,
and hence both particles originate at a similar point. We confine our attention to the spatial
orbital angular momentum or (L)a = 1

2ε
ai jL0i j , in which case we can determine that only the

initial criteria will contribute, yielding

L = T
2V

2π2

E2
∥ ∣gB∥∣
B2
∥ + E2

∥
coth(

∣B∥∣π
∣E∥∣
) e
− m2π
∣gE∥∣ g2z × [Ez ×Bz + Ez ×B∥ + E∥ ×Bz] , (67)

where we have used Eq. (65). We can immediately see that the Schwinger-produced pair angular
momentum density is proportional to that given by the background fields in Eq. (7) as antic-
ipated. Also, as constructed there is a characteristic exponential quadratic mass suppression.
Let us now treat the event averaged scenario in Sect. 2. We can find the complete expression
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using Eq. (12) as

⟨⟨L⟩⟩ =
∣gB∥∣
2π2

E2
∥T 2V
B2
∥ + E2

∥
coth(

∣B∥∣π
∣E∥∣
) e
− m2π
∣gE∥∣ g2⟨⟨lF ⟩⟩ , (68)

where we have made use of Eq. (13). It is clear that the two angular momenta are proportional.
Equation (68) indicates how much of the angular momentum of the gluon fields is transferred
to those of Schwinger-produced pairs.

4. Nonequilibrium in–in formalism
Having seen above the emergence of a net angular momentum from fields possessing an angular
momentum in a classically motivated virtual condensate breaking picture, let us calculate the
full quantum observable. Since the Schwinger effect is a vacuum unstable phenomenon inher-
ently out of equilibrium, one must treat the vacuum state identification appropriately; this can
be achieved using an in–in formalism [35]. The in–in formalism is equivalent to a Schwinger–
Keldysh (or closed time path or real-time) formalism [56,57]. We make use of a one-loop for-
mulation for an in–in propagator in the Schwinger proper-time picture [35].

First let us digress to the Schwinger proper-time picture for the conventional matrix element,
in–out, application. The in–out casual propagator may be cast in Schwinger proper time as

S�(x, y) = i⟨out∣T ψ(x)ψ̄(y)∣in⟩⟨out∣in⟩−1 = (i /D +m)∫
∞

0
dT K(x, y, T ) , (69)

with the kernel given in Eq. (17). Observables calculated from the in–out propagator are asso-
ciated with the vacuum polarization quantities [58]. We wish to explore specifically quantities
related to the vacuum instability, which manifest as out-of-equilibrium observables and are
captured within the in–in formalism.

The extension to in–in vacuum states in the Schwinger proper-time picture has been derived
in Ref. [35]. There, it was demonstrated that the proper-time contour may be augmented with
a discontinuity about the space-like electric field eigenvector for the causal propagator as

Sin(x, y) = i⟨in∣T ψ(x)ψ̄(y)∣in⟩ = (i /D +m)∫
in

dT K(x, y, T ) , (70)

∫
in

dT ∶= ∫
∞

0
dT − ∫

∞−i π
λE

0−i π
λE

dT −�(z)∲−i π
λE

dT , (71)

�(z) ∶= θ (n−T
λE

z) θ [(n−T
λE

z)2 − (n+T
λE

z)2] . (72)

Here z ∶= x− y. The final integral in Eq. (71) represents an infinitesimal clockwise closed contour
in proper time about T = −iπ /λE. θ are the Heaviside theta functions; their argument about the
origin, z = 0, is defined as S(x, x) = (1/2)[S(x, x + ε) + S(x + ε, x)]; note that this will lead to θ (0)
= 1/2. n−λE

and n+λE
are respectively the space-like and time-like combinations of the eigenvectors,

which are null, of the electromagnetic field strength,F . We explored their properties in Sect. 3.1;
see Eq. (35) and thereafter. Notice, furthermore, that the vacuum polarization component (69)
is included within the in–in causal propagator.

Since we are concerned with the contribution coming from the nonequilibrium vacuum in-
stability, let us confine our attention to the portion of the propagator without the vacuum
polarization as

SC(x, y) ∶= Sin(x, y) − S�(x, y) or ∫
C
∶= ∫

in
−∫

∞

0
. (73)
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The kernel (17) can be solved exactly in SU(2) ×U(1) Abelian projected homogeneous fields.
We demonstrate this calculation in Appendix A, and for the manipulations to follow below it is
convenient to gather the results here. The kernel may be cast in a diagonal form asK(x, y, T ) =
diag(K+(x, y, T ),K−(x, y, T )), with

K+(x, y, T ) =
λEλB exp [−im2T + iϕ(x, y, T )]
(4π)2 sinh(λE T ) sin(λBT ) �(T ) , (74)

ϕ(x, y, T ) = 1
2

xTFy − 1
4
{λE coth(λE T )zT PE z + λB cot(λBT )zT PBz} , (75)

�(T ) = cos(λBT ) cosh(λE T ) + iγ5sgn(IF̃ F ) sin(λBT ) sinh(λE T )

− 1
2
[λB + iγ5sgn(IF̃ F )λE] ×

Fμνσ
μν

λ2
B + λ2

E

[i sin(λBT ) cosh(λE T )

+ γ5sgn(IF̃ F ) cos(λBT ) sinh(λE T )] . (76)

K−(x, y, T ) can be obtained with the replacement g→ −g.

4.1. Spin angular momentum
Let us first calculate the angular momentum coming from spin. The spin angular momentum
at operator level is (1/2)ψ̄γ μσ νσψ , with nonequilibrium expectation value

Sμνσ = i
2

lim
x→y

trctrγ [γ μσ νσ SC(x, y)] . (77)

Let us restrict our attention to the case of spatial spin angular momentum; this is nothing
but the axial current since γ 0σ ij = −εkijγ kγ

5. The calculations here then are similar to those
discussed in Ref. [34]. Then, applying the kernel solution given in Eq. (74) one can find that

S0i j = −1
2

lim
x→y

trγ εki jγkγ
5[/∂x�(z)]∲−i π

λE

dT {K+(x, y, T ) + K−(x, y, T )} . (78)

Let us confine our attention to just the K+ part; we refer to the part of the above with just the
g → +g component as S+ 0i j . We use this notation for similar calculations from here on. The
closed contour contributions about ϕ will not contribute in the z→ 0 limit [34]. We have

S+ 0i j = −1
2

lim
x→y∲−i π

λE

dT
λEλB exp(−im2T )

(4π)2 sinh(λE T ) sin(λBT ) trγ [εki jγkγ
5 /∂x�(z)�(T )] . (79)

Since pieces without a singularity will vanish after taking the integral about the closed contour,
we find for the quantity in the Dirac trace above the following:

− 4i

(λ2
B + λ2

E)
εki j [λBF̃ kν + sgn(IF̃ F )λEFkν] ∂x ν�(z) sin(λBT ) cosh(λE T ) . (80)

One can see here the appearance of a delta function singularity, δ(n−T
λE

z), caused by ∂x ν�(z).
This formally divergent contribution is associated with the real-time of the system [53]. It arises
in homogeneous electric fields through the appearance of a discontinuity in the proper-time
integration [59]; however, divergent expectation values can be connected to convergent equiva-
lents in a switched-on electric field for large switch-on times [58]. The real-time manifestation
is a consequence of a cutoff in the canonical momentum of the system as

lim
n−T

λE
z→0

δ (n−T
λE

z) = lim
n−T

λE
z→0
∫

λET /2

−λET /2

d p
2π

eip(n−T
λE

z) = λET
2π

. (81)
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Solutions to the Dirac equation in a homogeneous electric field give rise to an admixture of
particle and antiparticle states at times corresponding to the cutoff above, and can thus be
regarded as the time to produce pairs [60]. For further discussions on the interpretation, see
also Ref. [61].

The spin angular momentum becomes

S+ 0i j = 1
λ2

B + λ2
E

εki j [(λBF̃ + sgn(IF̃ F )λEF)n−λE
]k λEλBT

4π2
e−

πm2

λE . (82)

Finally, using Eqs. (36) and (37), we arrive at

S0i j = −εki j IF̃ FT
4π2

e−
πm2

λE n+ k
λE
+ [g→ −g] . (83)

In the HIC setup in Sect. 2, IF̃ F is invariant under g→ −g, IF̃ F ≈ g2
E∥ ⋅B∥, so that we can write

S0ij as

S0i j = −εki j g2
E∥ ⋅B∥T

4π2
e−

πm2

λE (n+ k
λE
∣g→g + n+ k

λE
∣g→−g) . (84)

Although the expression of n+ k
λE

is generally complicated, thanks to the parity and time reversal
properties of S0ij, (n+ k

λE
∣g→g + n+ k

λE
∣g→−g) should be proportional to gE × gB = g2(Ez ×Bz + Ez ×

B∥ + E∥ ×Bz). After averaging over ±E∥ and ±B∥, we obtain that ⟨⟨S0ij⟩⟩ = 0, as anticipated in
the heuristic picture.

Let us gain a better grasp of the expression not using the fields depicted in Sect. 2, but rather
those of parallel electric and magnetic fields in the x̂3 direction, with the electric field given as
E x̂3. For such a field the electromagnetic eigenvectors take on a simple form with n+μE = g0μ −
(gE/∣gE∣)g3μ and n−μE = g0μ + (gE/∣gE∣)g3μ. Then the combined eigenvectors read simply n+μλE

=
g0μ and n−μλE

= (gE/∣gE∣)g3μ. One can then see that a non-vanishing time component of n+0
λE

per-
sists even when summing over g→−g; this is the chiral density, (IF̃ FT /2π2) exp(−πm2/λE)g0μ,
thus confirming the heuristic expression given in Eq. (62). Such a chiral density has been shown
to be in agreement with the axial anomaly in the massless limit with an analogous calcula-
tion of the pseudoscalar condensate and Chern–Simons term making up the axial Ward iden-
tity [20,34].

One may go through an analogous calculation of the vector current, i.e., jμ =
ie limx→ ytrctrγ [γ μSC(x, y)], to find the conduction out-of-equilibrium current associated with
Schwinger pair production [35] as

jμ = e
λEλBT

2π2
e−

πm2

λE coth(πλB

λE
) n−μ

λE
+ [g→ −g] . (85)

Let us again make use of the parallel electric and magnetic fields described above. Then it can
be seen that, due to the g factor, which is odd in n−μ

λE
, the conduction current in SU(2) × U(1)

will vanish [54], confirming the heuristic picture quantity found in Eq. (55).

4.2. Orbital angular momentum
The other addition to the angular momentum comes from the orbital angular momentum.
Since the spin angular momentum vanishes in our setup, the total angular momentum coincides
with the orbital one. Let us here consider the total angular momentum, whose density is given
as

lμνσ = xνTμσ

C − xσTμν

C , (86)
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where the fully symmetric stress–energy tensor reads

Tμν = 1
4
⟨in∣ψ̄γ (μiDν)ψ − ψ̄ i

←QD (νγ μ)ψ ∣in⟩ − gμν⟨in∣ψ̄(i /D −m)ψ ∣in⟩ . (87)

Here A(μBν) = AμBν + AνBμ, and we have assumed by construction of the in–in propagator an
implicit averaging over Dirac operator order in the coincidence, x → y, limit. The second term
can be dropped by using the Dirac equation. As before, let us break up the vacuum polarization
and vacuum instability parts as Tμν = Tμν

C + Tμν
� . It is simpler to explicitly treat

T μν = ⟨in∣ψ̄γ μiDνψ ∣in⟩ , (88)

then one can find Tμν = (1/4)(T (μν) + [T (μν)]∗). Also T μν = T μν

C +T μν
� , where

T μν

C = − lim
x→y

trctrγ [γ μDν
xSC(x, y)] , T μν

� = − lim
x→y

trctrγ [γ μDν
xS�(x, y)] . (89)

Let us write this as before, again splitting up the ±g parts:

T μν = − lim
x→y

trγ γ μ {Dν +
x (i /D

+
x +m)∫

in
dT K+(x, y, T ) + Dν −

x (i /D
−
x +m)∫

in
dT K−(x, y, T )} .

(90)

We may drop the terms proportional to mass because K contains an even number of γ μ, and
thus the trace vanishes. It is convenient for us in the following to recast the in–in proper-time
integral as

∫
in

dT K+(x, y, T ) = {∫
∞

0
dT − ∫

∞−i π
λE

0−i π
λE

dT − θ (n−T
λE

z) ↷∫−i π
λE

dT}K+(x, y, T ) . (91)

The integral on the right denotes a semicircle contour from T = −iπ /λE − 0 to T = −iπ /λE

+ 0 going over the pole at T = −iπ /λE. The essential singularities at T = −inπ /λE in K+ may
be broken into upper and lower semicircle contours, each of which is finite within restricted
light cone electric field variables, namely for either θ(±[(n−T

λE
z)2 − (n+T

λE
z)2]); see Ref. [35] for

further discussions. Let us show that the two covariant derivatives together commute through
the Heaviside function. We first write

[Dμ+Dν+, θ(n−T
λE

z)]K+ = [n−νλE
(∂μδ(n−T

λE
z)) + n

−(μ
λE

δ(n−T
λE

z)Dν)]K+ . (92)

The delta functions in the above are even functions in z. Since iD+xK+(x, y, T ) = 1
2[F +

coth(FT )F]zK+(x, y, T ) is odd in z, once we take the coincidence limit (i.e., z → 0, where we
average over both z → ±ε for ε small), such terms will vanish. Let us remark that even though
there are divergences after taking the proper-time integral, the fact that the final expression is
still odd in z shows the translational invariance and hence why such terms disappear [62]. One
may show in an analogous fashion, using

∂μ
x δ (n−T

λE
z) = ∂μ

x ∫
λET /2

−λET /2

d p
2π

eipn−T
λE

z = n−μ
λE ∫

λET /2

−λET /2

d p
2π

ipeip(n−T
λE

z)
, (93)

that the corresponding term there too vanishes in the coincidence limit, and we find that

T μν+ = − lim
x→y

trγ γ μ∫
in

dT Dν +
x i /D+xK+(x, y, T ) . (94)

The covariant derivatives acting on the kernel read

iDν +
x iDσ +

x K+ = {
i
2
[F + coth(FT )F]σν + 1

4
[Fz + coth(FT )Fz]σ [Fz + coth(FT )Fz]ν}K+.

(95)

Let us next evaluate the Dirac trace. This is trγ γ μγ σ�(T), with the spin factor given by Eq. (76).
Making use of the following identities,
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trγ

1

2 (λ2
B + λ2

E)
{γ μγ σ (λB + iγ5sgn(IF̃ F )λE)Fμ′ν′σ

μ
′
ν
′

γ5} =
4
λB
[PE F̃]

μσ
, (96)

trγ

i

2 (λ2
B + λ2

E)
{γ μγ σ (λB + iγ5sgn(IF̃ F )λE)Fμ′ν′σ

μ
′
ν
′

} = −4
λB

IF̃ F

[PBF̃]
μσ

, (97)

we can find that

trγ γ μγ σ�(T ) = 4
⎧⎪⎪⎨⎪⎪⎩

gμσ cos(λBT ) cosh(λE T )

+ λB

IF̃ F

[PBF̃]
μσ

sin(λBT ) cosh(λE T ) − λE

IF̃ F
[PE F̃]μσ cos(λBT ) sinh(λE T )

⎫⎪⎪⎬⎪⎪⎭
.

(98)

The traced kernel becomes

T μν + = i lim
x→y∫in

dT
λEλBe−im2T+iϕ

4π2
{ i

2
W (T )μν + 1

4
[W (T )z]μ[Fz + coth(FT )Fz]ν} , (99)

where

W (T ) = coth(λE T )λBPB − cot(λBT )λE PE + cot(λBT ) coth(λE T ) coth(FT )F . (100)

Having written the traced kernel in a compact form, let us address the various integrals. No-
tice that contributions close to the singularities at T = −inπ /λE are formally divergent; as an-
ticipated earlier, this divergence in momentum indicates the total time of the electric field of
the system. Therefore let us approximate the integrals by expanding about such points. For the
in–in propagator only n = 0, 1 will contribute; one can easily see this by closing the contour
about ∫

∞
0 dT − ∫

∞−iπ/λE

0−iπ/λE
dT . Furthermore, let us now break up the energy–momentum tensor

as instructed in Eq. (89), then we find

T μν +
� ≈ i lim

x→y∫
∞

0
dT

e−im2T−i 1
4T zT z

4π2
{ i

2
gμν

T 3
+ zμzν

4T 4
} , (101)

T μν +
C = −i lim

x→y
[∫

∞

0
dT + θ (n−T

λE
z) ↷∫

0
dT ] λEλBe−im2T−m2π

λE
+iϕ(T−i π

λE
)

4π2

× { i
2

W μν (T − i
π

λE
) + 1

4
[W (T − i

π

λE
) z]

μ

[coth(F (T − i
π

λE
))Fz]

ν

} (102)

≈ −i lim
x→y
[∫

∞

0
dT + θ (n−T

λE
z) ↷∫

0
dT ] λEλBe−im2T−m2π

λE
− i

4T zT PE z

4π2

× {−1
2

coth(πλB

λE
) Pμν

E

λE T 2
+ i

4
[coth(πλB

λE
) PE z

λE T 2
]
μ

[PE z
T
]
ν

} . (103)

The integral on the right denotes a similar semicircle contour as before but about the origin T
= 0.

We can see that ultimately for T μν+
� there will be no field dependence as expected, and it will

be unrelated to Schwinger pair production. The term predicts the vacuum polarization energy–
momentum quantities. There are UV divergences and there are formal divergences in T μν+

C as
well. Let us simply use a proper-time UV cutoff of �−2 to illustrate briefly such divergences
in T μν+

� . Then one can find that the vacuum polarization energy–momentum tensor goes like
T μν+

� = (�4/16π2)gμν +O(�2) [63]. Hereafter we will treat the quantities associated with the
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Schwinger pair-production conduction current described in T μν+
C . However, divergences there,

and as we encountered previously, predict a real-time-like dependence and furthermore the
coordinates associated with magnetic degrees of freedom are not present; therefore we treat
such singular structures carefully, and elect to use a UV cutoff in the canonical momentum
integral after Fourier transform. It is convenient to introduce a shorthand notation such that the
two coordinate degrees of freedom associated with the electric field may be written as n+T

λE
z ∶= tE

and n−T
λE

z ∶= zE , then we label the integrals as

fn(z) ∶= ∫
∞

0

dT
T n

e−im2T−i 1
4T zT PE z = ∫

∞

0

dT
T n

e−im2T−i 1
4T (t

2
E−z2

E) . (104)

However, one need only evaluate f1(z), and use the fact that ∂μ∂ν f1(z) = −(i/2)Pμν

E f2(z) −
(1/4)(PE z)μ(PE z)ν f3(z). f1(z) in fact resembles a 2D solution to a Klein–Gordon equation,
and it proves convenient to replace the proper-time integral with one over canonical momen-
tum. Furthermore, the formally divergent large momenta indicate real-time dependence. There-
fore, let us take the Fourier then the inverse Fourier transforms; see Ref. [64] for a similar rep-
resentation of the propagator in 3+1 dimensions:

f1(p) = ∫
∞

0

dT
T ∫ dtE dzE eiptE tE−ipzE zE e−im2T−i 1

4T (t
2
E−z2

E) = 4π i
p2

tE
− p2

zE
−m2 + iε

, (105)

f1(z) = ∫
d ptE

2π

d pzE

2π
e−iptE tE+ipzE zE f1(p) = ∫ d pzE

e−i
√

p2
zE
+m2∣tE ∣+ipzE zE

√
p2

zE
+m2

. (106)

Then, taking the derivatives, we have

∂μ∂ν f1(z) = ∫ d pzE

⎧⎪⎪⎨⎪⎪⎩
− n+μλE

n+νλE

√
p2

zE
+m2 − n−νλE

n−μλE

p2
zE√

p2
zE
+m2

+(n+μλE
n−νλE
+ n+νλE

n−μλE
) sgn (n+T

λE
z) pzE − 2in+νλE

n+μλE
δ (n+T

λE
z)
⎫⎪⎪⎬⎪⎪⎭

× e−i
√

p2
zE
+m2∣n+T

λE
z∣+ipzE n−T

λE
z
. (107)

To evaluate the coincidence limit, we use conventions as outlined in Sect. 1. Also, as be-
fore, we introduce a cutoff in the canonical momentum for physical background fields; this
is ∫

λET /2
−λET /2 d pzE :

lim
x→y

∂μ∂ν f1(z) = −(2n−νλE
n−μλE
+Pμν

E )
λ2

ET 2

4
−Pμν

E m2 ln(λET
m
)

− lim
x→y

4π in+νλE
n+μλE

δ (n+T
λE

z) δ (n−T
λE

z) . (108)

We see that there is an imaginary part in the tensor (which for later comparison it is simpler to
leave without the cutoff), which we will show is canceled with the contributions coming from
the singularity. Let us show that the integral about the singularity is a Heaviside theta function
argument:

↷∫
0

dT
T

e−im2T−i 1
4T zT PE z ≈ ↷∫

0

dT
T

e−i 1
4T zT PE z = −∫

∞

−∞

dT ′

T ′ − iε
e−i T ′

4 zT PE z = −2π iθ (−1
4

zT PE z) .

(109)

Taking the derivatives and limit we can find that

lim
x→y

θ (n−T
λE

z) ∂μ
x ∂ν

xθ (−1
4

zT PE z) = − lim
x→y

Pμν

E δ (n−T
λE

z) δ (n+T
λE

z) . (110)
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In light of the above and Eq. (108), we can confirm that upon taking the trace in the energy–
momentum tensor, i.e., T μ+

C μ
, no imaginary part will remain, which must be the case due to the

Hermiticity construction of the in–in formalism. Furthermore, imaginary pieces will vanish in
the fully symmetric definition and therefore we finally have

Tμν+
C = coth(πλB

λE
) λB

4π2
e−

πm2

λE {(Pμν

E + 2n−μλE
n−νλE
) λ2

ET 2

4
+Pμν

E m2 ln(λET
m
)} . (111)

Let us pause at this point to highlight the fact that the trace of the energy–momentum tensor
is related to the chiral condensate. First, however, let us mention that, since we do not treat
quantum higher-loop corrections of the electromagnetic field, our analysis corresponds to a
tree-level calculation, and we do not see a trace anomaly of the energy–momentum tensor.
Then, one can easily show that Tμ

μ = m�, where � ∶= ⟨in∣ψ̄ψ ∣in⟩, and that �+C ∼ m ln(λET /m).
This also serves as a check for the above; one would expect a term proportional to the mass
simply by looking at the fact that �+ = im limx→y trγ ∫in dT K+(x, y, T ). Moreover, in the same
way, one would expect the other term, of O(T 2), to be traceless and not contribute to the chiral
condensate, but that it should contribute to the momentum and hence angular momentum of
the system.

As we encountered before with the axial-vector current (84) and vector current (85), notice
there are parts of the energy–momentum tensor that depend on the space-like eigenvector, n−μλE

;
however, similar to our reasoning for the two currents, one could find a special (center-of-mass)
frame in which n−0

λE
would vanish. Alternatively, using Eq. (40), one may find in another special

frame that the time-like eigenvector n+0
λE

vanishes, which would take P0i
E → −P0i

E in some new
frame in Eq. (111), indicating a shift in momentum. Let us treat the former transformation,
and we can then evaluate the angular momentum of the system (86) as

l0i j = λB

(4π)2 e−
πm2

λE (λET )2 coth(πλB

λE
) [xiP0 j

E − xjP0i
E ] + [g→ −g] + O(lnT ) . (112)

Using (l)a = 1
2ε

ai j l0i j we can find

l ≈ λB

(4π)2 e−
πm2

λE coth(πλB

λE
) (λET )2

λ2
E + λ2

B

x × (gE × (eB + gB)) + [g→ −g] . (113)

Finally, using the scenario depicted in Sect. 3.2, we can determine the event averaged angular
momentum as

⟨⟨l ⟩⟩ =
∣gB∥∣
8π2

e
− πm2

∣gE∥∣ coth(
π ∣B∥∣
∣E∥∣
)
E2
∥T 2

E2
∥ + B2

∥
g2⟨⟨lF ⟩⟩ , (114)

which is proportional to the quantity found using entirely classical and heuristic arguments in
Eq. (68). This then confirms that, for fields that possess a net angular momentum, the produced
Schwinger pairs should also be proportional to the angular momentum. Let us mention that
there is Abelian magnetic field dependence in the angular momentum density before the aver-
aging over events; however, after averaging over it disappears as a product of the fields depicted
in Sect. 2.

Let us point out, however, that there is a factor of four discrepancy between the one-loop
quantum computation of Eq. (114) and the heuristic computation of Eq. (68). This discrep-
ancy stems from a limitation of the heuristic picture in summing over the momentum. In the
heuristic picture each pair of particles is reasoned to occur with (small) probability governed by
the Schwinger non-persistence criteria (47) by means of a multiplicative factor. The sum over
momenta in the factor goes as 2 ∫

λET /2
0 d p = λET , and one would pick up another factor for
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the momentum p ∼ λET such that the momentum of the heuristically motivated stress–energy
tensor would go as (λET )2. However, for the momentum associated with the tensor, we must
have the linear term in momentum included in the sum. This can clearly be seen in the quan-
tum calculation in Eq. (107), and it can also be seen (as a naive product) in the definition of
the heuristic picture of the energy–momentum in Eq. (63). Then the true sum over momenta
should be reduced as 2 ∫

λET /2
0 d p p = (1/4)(λET )2 in the heuristic picture, accounting for the

difference.

5. Conclusions and extension to SU(3) × U(1)
The inheritance of angular momentum from background fields by means of the Schwinger ef-
fect on produced particles has been examined. Fields that were both thought relevant to HIC
and physically opaque were used; these were non-Abelian, SU(2), fields that resemble Abelian
projected fields in the color flux-tube model [24], coupled with a homogeneous Abelian electro-
magnetic field with a strong magnetic field component. The transport of angular momentum
was reasoned through both a physically intuitive heuristic picture of pair production as well
as an out-of-equilibrium calculation. It was found in both cases that the angular momentum
transference was inhibited by a Schwinger exponential suppression (i.e., exp (− πm2/λE) with
electric field λE given by Eq. (31)), and moreover was proportional to the angular momentum
of the gluonic background.

The heuristic picture of pair production stems from a virtual condensate breaking into
particle–antiparticle pairs, whose trajectory initiated at an arbitrary spacetime point follows
classically according to Wong’s equations (25). Also, to rigorously confirm the transport of an-
gular momentum from the background fields, a full quantum to one-loop out-of-equilibrium
in–in calculation was performed. Both the heuristic picture and in–in formalism calculations
were found to agree well with one another. The mechanism for angular momentum transport
in the heuristic picture is one of simple classical acceleration governed by Wong’s equations.
However, we can confirm that the Schwinger effect is responsible for angular momentum trans-
port through the in–in calculation. This is identifiable through the quadratic exponential mass
factor in the observable, which only appears in the out-of-equilibrium contruction due to the
Schwinger effect.

To more carefully compare to the target environment of HICs, let us remark that our re-
sults also may be extensible to the case of SU(3) ×U(1), and more generally to SU(N) ×U(1).
For relevance to HIC let us focus on SU(3) though. The most prominent difference is that,
whereas an isotropic color space exists for SU(2), the color space of SU(3) possesses a richer
non-isotropic structure enabling background fields with color directional dependence. Let us
follow Refs. [27,54,] for the SU(3) color diagonalization. Consider a homogeneous field in SU(3)
such that a gauge fieldAa

μ(x) = Aμ(x)na for na constant with color a. Then by means of a uni-
tary transform UnaTaU−1 = T3cos θ c − T8sin θ c = (1/2)diag[ω1, ω2, ω3] =∶ I3, where

ω1 =
2√
3

cos(θc +
π

6
) , ω2 =

2√
3

cos(θc +
5π

6
) , ω3 =

2√
3

cos(θc +
3π

2
) . (115)

Here Ta = (1/2)λa with λa being the Gell-Mann matrices. T3 and T8 are the usual diagonal
elements; one may find the eigenvalues of the field in terms of the second Casimir invariant of
SU(3), C2 = (dabcnanbnc)2 = (1/3)sin 2(3θ c) with dabc being the symmetric coefficients [65], which
project the color in a gauge-invariant way. The salient point here is that for SU(2) the couplings
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always come in equal and opposite pairs; however, for SU(3), the couplings need not be of the
same magnitude, and a sum over effective couplings that may have color dependence is needed.

To extend our study from SU(2) to SU(3), one need only replace the color isotropic sum
over ±g to one over ωng [27,54]. We have defined our non-Abelian fields in terms of isospin (3)
and for contrast with the SU(2) case let us define our SU(3) fields after diagonalization in the
dressed propagator and kernel (Eq. (A1) for SU(2)) with E = trc[I3Gi0] and likewise for the
chromomagnetic field. Then for quantum calculations one need only sum over the effective
coupling ωng accompanied by the field strengths. Our key quantum observables in SU(3) ×
U(1) of the spin and angular momentum then can be found as

S0i j = −∑
n

εki j IF̃ FT
4π2

exp(−πm2

λE
)n+ k

λE
, (116)

l ≈ ∑
n

λB

(4π)2
(λET )2
λ2

E + λ2
B

e−
πm2

λE coth(πλB

λE
)x × [ωngE × (eB +ωngB)] . (117)

where now IF̃ F = wngE ⋅ (ωngB + eB) and IF F = ω2
ng2B2 + e2B2 + 2eωngB ⋅B −ω2

ng2E2.
For simplicity let us look at two different cases of Abelian SU(3) background fields, those

proportional to T3 (with, e.g., θ c = π ) and those proportional to T8, (π /2), and those with no
preferential θ c direction. The first case, T3 = diag[1/2, −1/2, 0], provides an identical outcome to
the SU(2)σ 3 fields discussed throughout this paper, and therefore our results hold there. This is
the scenario where the background field is only dependent on two colors, effectively decoupling
one of the quarks [27]. Alternatively, for T 8 = (1/

√
3)diag[1/2, 1/2,−1] fields with color field

dependence there is a preferential likelihood that the same color quark, and its anticolor quark
pair, are produced in the pair-production process. One of the most notable differences is that the
conduction current (85) need not vanish [27]. In fact, for the case of a weak field and/or a large
mass, the T8 conduction current would resemble an Abelian field. This would be the case for
all observables with signature Schwinger pair-production exponential suppression with weak
fields/large mass.

Finally, let us remark on the case relevant to HIC, and moreover the case as depicted in
Sect. 3.2. We would find that after averaging over events the orbital angular momentum is still
transferred by the Schwinger mechanism. Furthermore, let us assume an isotropy in color space
such that there is no preferential θ c direction; then we may average over θ c in the final event
average in SU(3) × U(1) to find that

6
π
∫

π/6

0
dθ ⟨⟨l ⟩⟩ =

2∣B∥∣
3
√

3π3
coth(

π ∣B∥∣
∣E∥∣
)
E2
∥T 2

E2
∥ + B2

∥
∣g∣3⟨⟨lF ⟩⟩ . (118)

We have also assumed, for the above calculation, a small mass such that the exponential sup-
pression may be neglected. We find, as anticipated in the SU(2) ×U(1), that the orbital angular
momentum is directly proportional to the background fields from which the pairs were created.
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Appendix A. Kernel derivation
Here we derive the kernel given in Schwinger proper time (17) in combinatory Abelian and
non-Abelian SU(2) fields. The kernel is known to have an exact solution in homogeneous
fields [16]. Our approach for its evaluation follows that used in Ref. [34]. For the case of di-
agonal non-Abelian fields, i.e., ∝σ 3, we can express the kernel in an Abelian form (we have
made use of Wong’s isospin equation solution as I = (1/2)σ 3), since the kernel may be decou-
pled as K(x, y, T ) = diag(K+(x, y, T ),K−(x, y, T )) with

K±(x, y, T ) ∶= i∫ DxPγ e−i ∫ T
0 dτ[m2+ 1

4 ẋ2+eAμẋμ±gtrc[IAμ]ẋμ+ 1
2 (eFμν±gtrc[IGμν])σμν] . (A1)

In the following we restrict our attention to the case of K+(x, y, T ); however, one can simply
arrive at K−(x, y, T ) through the replacement g→ −g.

For homogeneous fields the kernel may be factored into a path integral portion about fluctu-
ating bosons as well as a spin factor portion; let us begin with the latter, which we write as

�(T ) ∶= e−
i
2Fμνσ

μνT . (A2)

Then using the relationship 1
2{σ

μν, σ αβ} = gμαgνβ − gναgμβ + iγ5ε
μναβ , one can find that

(Fμνσ
μν)2 = 4IF F − 8iγ5IF̃ F . Using the fact that 22(λB − iγ5sgn(IF̃ F )λE)2 = 4IF F − 8iγ5IF̃ F as

well, one can find that

sin(1
2
Fμνσ

μνT) = 1
2
(λB + iγ5sgn(IF̃ F )λE)

Fμνσ
μν

λ2
B + λ2

E

sin [(λB − iγ5sgn(IF̃ F )λE)T ] . (A3)

Then the spin factor becomes

�(T ) = cos [(λB − iγ5sgn(IF̃ F )λE)T ] − i sin(1
2
Fμνσ

μνT) . (A4)

Noting that

sin [(λB − iγ5sgn(IF̃ F )λE)T ] = sin(λBT ) cosh(λE T ) − iγ5sgn(IF̃ F ) cos(λBT ) sinh(λE T ),

(A5)

cos [(λB − iγ5sgn(IF̃ F )λE)T ] = cos(λBT ) cosh(λE T ) + iγ5sgn(IF̃ F ) sin(λBT ) sinh(λE T ),

(A6)

one may finally write the spin factor as

�(T ) = cos(λBT ) cosh(λE T ) + iγ5sgn(IF̃ F ) sin(λBT ) sinh(λE T ) − 1
2
[λB + iγ5sgn(IF̃ F )λE]

× Fμνσ
μν

λ2
B + λ2

E

[i sin(λBT ) cosh(λE T ) + γ5sgn(IF̃ F ) cos(λBT ) sinh(λE T )] . (A7)

Let us now address the bosonic path integral portion. The path integral in K+ (A1) is

b(x, y, T ) = ∫ Dx eiSB , SB = −∫
T

0
dτ [1

4
ẋ2 + eAμẋμ + gtrc(IAμ)ẋμ] . (A8)

Since the action is quadratic in x the path integral may be evaluated exactly. We expand about
x(τ ) = xcl + η(τ ), with the classical path obeying ẍcl(τ) = 2F ẋcl(τ); cf. Eq. (25). Then we have
for Dirichlet boundary conditions, i.e., η(0) = η(T) = 0,

b(x, y, T ) = eiSB(xcl)A f l , A f l = ∫ Dη exp{i∫
T

0
dτ [−1

4
η̇2 + 1

2
ημFμνη̇

ν]} . (A9)
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Let us first calculate the classical worldline action. Since xcl(T) = x and xcl(0) = y, one can find
for ẋ(τ) = exp(2Fτ)ẋ(0) the following:

z ∶= x − y = 1
2
F−1(e2FT − 1)ẋcl(0) , (A10)

from which it follows that ẋcl(T ) + ẋcl(0) = 2 coth(FT )Fz and ẋcl(T ) − ẋcl(0) = 2Fz. Next
let us select a gauge; we use the Fock–Schwinger gauge: eA(xcl) + gtrc[IA(xcl)] = −(1/2)Fxcl .
Then one can find for the gauge-dependent action

ϕ(x, y, T ) ∶= SB(xcl) = 1
2

xFy − 1
4

zT coth(FT )Fz . (A11)

Making use of the relations cosh(FT ) = cosh(λE T )PE + cos(λBT )PB and sinh(FT ) =
λ−1

E F sinh(λE T )PE + λ−1
B F sin(λBT )PB where the projection operators are given in Eq. (32),

one can express the above as

ϕ(x, y, T ) = 1
2

xTFy − 1
4
{λE coth(λE T )zT PE z + λB cot(λBT )zT PBz} . (A12)

The last step is to calculate the fluctuation prefactor, which, owing to its quadratic form, can
be written as

A f l = det [ 1
4T

d2

dτ 2
+ 1

2
F d

dτ
]
− 1

2

det [ 1
4T

d2

dτ 2
]

1
2

/∫ Dη exp{−i∫
1

0
dτ

1
4T

η̇2} . (A13)

In this expression, we have rescaled τ → Tτ such that the period of τ is from 0 to 1. To complete
the functional determinant, note that, since the field strength tensor is independent of time, we
can find a similarity transform such that for eigenvalues of F we have

det [ 1
4T

d2

dτ 2
+ 1

2
F d

dτ
] = det [ 1

4T
d2

dτ 2
+ 1

2
DF

d
dτ
] , (A14)

where DF = diag(λE ,−λE , iλB,−iλB). Let us look at λE. Since we now have 1D operators
with Dirichlet boundary conditions, we evaluate the determinants through the Gel’fand–
Yaglom technique [66,67]. Then for [(4T )−1d2/dτ 2 + (λE/2)d/dτ ]uλE = 0 one can find uλE =
(2λE T )−1[1 − exp(−2λE T τ)] that satisfies uλE (0) = 0 and u̇λE (0) = 1 and similarly for the other
eigenvalues. For the case of zero eigenvalue, [(4T)−1d2/dτ 2]u0 = 0, we find u0(1) = 1. The deter-
minant can then be found as

det [ 1
4T

d2

dτ 2 + 1
2F

d
dτ
]

det [ 1
4T

d2

dτ 2 ]
= uλE (1)u−λE (1)uiλB(1)u−iλB(1)

u0(1)4
= sinh2(λE T ) sin2(λBT )

λ2
Eλ2

BT 4
. (A15)

The normalizing factor can be found as ∫ Dη exp[−i ∫
1

0 dτ(4T )−1η̇2] = −i(4πT )−2. Finally, we
can gather all of the pieces of the kernel to find

K+(x, y, T ) =
λEλB exp [−im2T + iϕ(x, y, T )]
(4π)2 sinh(λE T ) sin(λBT ) �(T ) . (A16)
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26/27

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2023/2/023B08/7008911 by D

eutsches Elektronen Synchrotron D
ESY user on 25 M

arch 2023

http://dx.doi.org/10.1140/epjc/s10052-017-4765-1
http://dx.doi.org/10.1140/epjc/s10052-017-4765-1
http://dx.doi.org/10.1140/epjc/s10052-017-4765-1
http://dx.doi.org/10.1103/PhysRevC.96.054908
http://dx.doi.org/10.1103/PhysRevC.96.054908
http://dx.doi.org/10.1103/PhysRevC.96.054908
http://dx.doi.org/10.1103/PhysRevLett.109.232301
http://dx.doi.org/10.1103/PhysRevLett.109.232301
http://dx.doi.org/10.1103/PhysRevLett.109.232301
http://dx.doi.org/10.1103/PhysRevC.94.024904
http://dx.doi.org/10.1103/PhysRevC.94.024904
http://dx.doi.org/10.1103/PhysRevC.94.024904
http://dx.doi.org/10.1088/1742-6596/779/1/012069
http://dx.doi.org/10.1088/1742-6596/779/1/012069
http://dx.doi.org/10.1088/1742-6596/779/1/012069
http://dx.doi.org/10.1007/BF01339461
http://dx.doi.org/10.1007/BF01339461
http://dx.doi.org/10.1007/BF01339461
http://dx.doi.org/10.1007/BF01343663
http://dx.doi.org/10.1007/BF01343663
http://dx.doi.org/10.1007/BF01343663
http://dx.doi.org/10.1103/PhysRev.82.664
http://dx.doi.org/10.1103/PhysRev.82.664
http://dx.doi.org/10.1103/PhysRev.82.664
http://dx.doi.org/10.1103/PhysRevLett.104.212001
http://dx.doi.org/10.1103/PhysRevLett.104.212001
http://dx.doi.org/10.1103/PhysRevLett.104.212001
http://dx.doi.org/10.1103/PhysRevD.86.085029
http://dx.doi.org/10.1103/PhysRevD.86.085029
http://dx.doi.org/10.1103/PhysRevD.86.085029
http://dx.doi.org/10.1016/j.aop.2010.03.012
http://dx.doi.org/10.1016/j.aop.2010.03.012
http://dx.doi.org/10.1016/j.aop.2010.03.012
http://dx.doi.org/10.1103/PhysRevLett.121.261602
http://dx.doi.org/10.1103/PhysRevLett.121.261602
http://dx.doi.org/10.1103/PhysRevLett.121.261602
http://dx.doi.org/10.1103/PhysRevD.78.036008
http://dx.doi.org/10.1103/PhysRevD.78.036008
http://dx.doi.org/10.1103/PhysRevD.78.036008
http://dx.doi.org/10.1103/PhysRevD.100.045015
http://dx.doi.org/10.1103/PhysRevD.100.045015
http://dx.doi.org/10.1103/PhysRevD.100.045015
http://dx.doi.org/10.1017/hpl.2019.36
http://dx.doi.org/10.1017/hpl.2019.36
http://dx.doi.org/10.1017/hpl.2019.36
http://dx.doi.org/10.1103/PhysRevD.20.179
http://dx.doi.org/10.1103/PhysRevD.20.179
http://dx.doi.org/10.1103/PhysRevD.20.179
http://dx.doi.org/10.1016/S0370-2693(02)02630-8
http://dx.doi.org/10.1016/S0370-2693(02)02630-8
http://dx.doi.org/10.1016/S0370-2693(02)02630-8
http://dx.doi.org/10.1016/j.nuclphysa.2006.04.001
http://dx.doi.org/10.1016/j.nuclphysa.2006.04.001
http://dx.doi.org/10.1016/j.nuclphysa.2006.04.001
http://dx.doi.org/10.1016/j.aop.2010.03.012
http://dx.doi.org/10.1016/j.aop.2010.03.012
http://dx.doi.org/10.1016/j.aop.2010.03.012
http://dx.doi.org/10.1016/0370-2693(85)90711-7
http://dx.doi.org/10.1016/0370-2693(85)90711-7
http://dx.doi.org/10.1016/0370-2693(85)90711-7
http://dx.doi.org/10.1016/j.physletb.2012.05.043
http://dx.doi.org/10.1016/j.physletb.2012.05.043
http://dx.doi.org/10.1016/j.physletb.2012.05.043
http://dx.doi.org/10.1103/PhysRevD.103.036004
http://dx.doi.org/10.1103/PhysRevD.103.036004
http://dx.doi.org/10.1103/PhysRevD.103.036004
http://dx.doi.org/10.1007/BF02892134
http://dx.doi.org/10.1007/BF02892134
http://dx.doi.org/10.1007/BF02892134
http://dx.doi.org/10.1103/PhysRevD.17.3247
http://dx.doi.org/10.1103/PhysRevD.17.3247
http://dx.doi.org/10.1103/PhysRevD.17.3247
http://dx.doi.org/10.1103/PhysRevD.15.2308
http://dx.doi.org/10.1103/PhysRevD.15.2308
http://dx.doi.org/10.1103/PhysRevD.15.2308
http://dx.doi.org/10.1142/S0217751X2030015X
http://dx.doi.org/10.1142/S0217751X2030015X
http://dx.doi.org/10.1142/S0217751X2030015X
http://dx.doi.org/10.1007/978-3-642-84258-0
http://dx.doi.org/10.1086/427976
http://dx.doi.org/10.1016/j.nuclphysa.2008.02.298
http://dx.doi.org/10.1016/j.nuclphysa.2008.02.298
http://dx.doi.org/10.1016/j.nuclphysa.2008.02.298
http://dx.doi.org/10.1142/S0217751X09047570
http://dx.doi.org/10.1142/S0217751X09047570
http://dx.doi.org/10.1142/S0217751X09047570
https://arxiv.org/abs/1301.0099 \ignorespaces [hep-ph]
https://inspirehep.net/literature?q=find%20EPRINT%201301.0099
http://dx.doi.org/10.1103/PhysRevD.45.4659
http://dx.doi.org/10.1103/PhysRevD.45.4659
http://dx.doi.org/10.1103/PhysRevD.45.4659
http://dx.doi.org/10.1103/PhysRevD.21.1095
http://dx.doi.org/10.1103/PhysRevD.21.1095
http://dx.doi.org/10.1103/PhysRevD.21.1095
http://dx.doi.org/10.1016/S0370-1573(01)00013-8
http://dx.doi.org/10.1016/S0370-1573(01)00013-8
http://dx.doi.org/10.1016/S0370-1573(01)00013-8
http://dx.doi.org/10.1016/0370-2693(93)91537-W
http://dx.doi.org/10.1016/0370-2693(93)91537-W
http://dx.doi.org/10.1016/0370-2693(93)91537-W
http://dx.doi.org/10.1016/0370-2693(94)90944-X
http://dx.doi.org/10.1016/0370-2693(94)90944-X
http://dx.doi.org/10.1016/0370-2693(94)90944-X
http://dx.doi.org/10.1142/7305
http://dx.doi.org/10.1103/RevModPhys.62.867
http://dx.doi.org/10.1103/RevModPhys.62.867
http://dx.doi.org/10.1103/RevModPhys.62.867
http://dx.doi.org/10.1103/PhysRevD.58.105016
http://dx.doi.org/10.1103/PhysRevD.58.105016
http://dx.doi.org/10.1103/PhysRevD.58.105016
http://dx.doi.org/10.1103/PhysRevD.77.085029
http://dx.doi.org/10.1103/PhysRevD.77.085029
http://dx.doi.org/10.1103/PhysRevD.77.085029
http://dx.doi.org/10.1103/PhysRevLett.2.435
http://dx.doi.org/10.1103/PhysRevLett.2.435
http://dx.doi.org/10.1103/PhysRevLett.2.435
http://dx.doi.org/10.1088/0031-8949/24/3/002
http://dx.doi.org/10.1088/0031-8949/24/3/002
http://dx.doi.org/10.1088/0031-8949/24/3/002
http://dx.doi.org/10.1103/PhysRevD.16.2581
http://dx.doi.org/10.1103/PhysRevD.16.2581
http://dx.doi.org/10.1103/PhysRevD.16.2581
http://dx.doi.org/10.1088/0305-4470/11/6/010
http://dx.doi.org/10.1088/0305-4470/11/6/010
http://dx.doi.org/10.1088/0305-4470/11/6/010
http://dx.doi.org/10.1103/PhysRevD.92.125012
http://dx.doi.org/10.1103/PhysRevD.92.125012
http://dx.doi.org/10.1103/PhysRevD.92.125012
http://dx.doi.org/10.1063/1.1703727
http://dx.doi.org/10.1063/1.1703727
http://dx.doi.org/10.1063/1.1703727
http://dx.doi.org/10.1103/PhysRev.124.287
http://dx.doi.org/10.1103/PhysRev.124.287
http://dx.doi.org/10.1103/PhysRev.124.287
http://dx.doi.org/10.1103/PhysRevD.78.045017
http://dx.doi.org/10.1103/PhysRevD.78.045017
http://dx.doi.org/10.1103/PhysRevD.78.045017
http://dx.doi.org/10.1063/1.532451
http://dx.doi.org/10.1063/1.532451
http://dx.doi.org/10.1063/1.532451


PTEP 2023, 023B08 P. Copinger and Y. Hidaka

60 A. I. Nikishov, J. Sov. Laser Res. 6, 619 (1985).
61 N. Tanji, Ann. Phys. 324, 1691 (2009).
62 W. Greiner, Quantum Electrodynamics of Strong Fields (Springer, Berlin, 1985).
63 S. P. Klevansky and R. H. Lemmer, Phys. Rev. D 39, 3478 (1989).
64 W. Greiner and J. Reinhardt, Quantum Electrodynamics, Physics and Astronomy (Springer, Berlin,

2008).
65 G. C. Nayak, Phys. Rev. D 72, 125010 (2005) [arXiv: hep-ph/0510052] [Search inSPIRE].
66 I. M. Gel’fand and A. M. Yaglom, J. Math. Phys. 1, 48 (1960).
67 S. Levit and U. Smilansky, Proc. Am. Math. Soc. 65, 299 (1977).

27/27

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2023/2/023B08/7008911 by D

eutsches Elektronen Synchrotron D
ESY user on 25 M

arch 2023

http://dx.doi.org/10.1007/BF01120143
http://dx.doi.org/10.1007/BF01120143
http://dx.doi.org/10.1007/BF01120143
http://dx.doi.org/10.1016/j.aop.2009.03.012
http://dx.doi.org/10.1016/j.aop.2009.03.012
http://dx.doi.org/10.1016/j.aop.2009.03.012
http://dx.doi.org/10.1007/978-3-642-82272-8
http://dx.doi.org/10.1103/PhysRevD.39.3478
http://dx.doi.org/10.1103/PhysRevD.39.3478
http://dx.doi.org/10.1103/PhysRevD.39.3478
http://dx.doi.org/10.1103/PhysRevD.72.125010
http://dx.doi.org/10.1103/PhysRevD.72.125010
http://dx.doi.org/10.1103/PhysRevD.72.125010
http://dx.doi.org/10.1063/1.1703636
http://dx.doi.org/10.1063/1.1703636
http://dx.doi.org/10.1063/1.1703636
http://dx.doi.org/10.1090/S0002-9939-1977-0457836-8
http://dx.doi.org/10.1090/S0002-9939-1977-0457836-8
http://dx.doi.org/10.1090/S0002-9939-1977-0457836-8

