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Determining topological order with tensor networks

by Anna Francuz

Exotic phases of matter, which fall beyond the Landau paradigm of phases and phase
transitions, emerged as one of the main directions of research in the field of condensed
matter physics in the last few decades. This lead to both advancement in their experimental
realizations and progress in their analysis, thanks to powerful numerical methods like tensor
networks. Among those exotic phases there are topologically ordered phases, the analysis
of which is especially hard due to degeneracy of the ground state and no local order
parameter. Topological order gained recognition after it was realized, thanks to Alexei
Kitaev, that quantum computational models can be written in the language of condensed
matter systems. However, apart from few exactly solvable models, the analysis of lattice
Hamiltonians for the occurrence of topological order was considered a very hard problem.

This thesis provides a basic overview of theories aiming at classifying topologically
ordered states and novel numerical approaches to determine both Abelian and non-Abelian
topological order starting from a lattice Hamiltonian. The numerical method of choice
in the study of strongly correlated two-dimensional systems, like topologically ordered
systems, is projected entangled pair states (PEPS), as it allows analysing states which
were not achievable by the state-of-the-art 2D DMRG algorithms due to long correlation
length.

In this thesis, numerical methods of analysing the optimized infinite PEPS (iPEPS) are
presented, allowing to extract the information about the topological order. The key idea
is to find the infinite matrix product operator (iMPO) symmetries of the iPEPS, whose
existence is a necessary condition for the TN state to exhibit topological order. The iMPO
symmetries can be later used to obtain topological S and T matrices, which (in most known
cases) can be considered as a non-local order parameter of topologically ordered phases,
in the sense that they give us unambiguous information about the model along with its
excitations and their statistics. The method is immune to any small perturbations of the
tensors, which had been a long feared problem due to numerical inaccuracies which may
arise during the ground state optimization. Furthermore, finding iMPO symmetries enables
an elegant description of the model in terms of the mathematical structure underlying the
topologically ordered phases of matter – modular tensor category.
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Chapter 1

Introduction

One of the most successful theories in classifying different gapped phases used to be Landau-
Ginzburg theory [4, 5] of symmetry breaking, according to which all condensed matter
systems could be classified by a pair of groups (GH , Ggs) describing the symmetry of
the Hamiltonian – GH and the symmetry of the ground state – Ggs, with Ggs ⊆ GH .
In particular, for symmetry breaking phases Ggs ⊂ GH . Despite its success it failed to
describe many new exotic phases of matter which appeared in the experiments starting from
prominent example of Fractional Quantum Hall Effect[6], for which a 1998 Nobel Prize in
Physics was awarded (to Robert B. Laughlin, Horst L. Störmer and Daniel C. Tsui "for their
discovery of a new form of quantum fluid with fractionally charged excitations") [7], and
finishing with recent observations of quantized thermal Hall conductance in α−RuCl3[8].
It turns out that those exotic phases of matter fall beyond the Landau paradigm and also
exhibit some kind of order, which is not a symmetry-breaking order but a topological order.

Topological order proved to be very elusive, both from the perspective of theoretical
description and from the experiments. Gapped, as well as, gapless phases without any
sign of long-range order were therefore put into one box with label – spin liquids (SL).
Quantum spin liquids (QSL) are very highly entangled ground states, where strong quan-
tum fluctuations prevent ordering at low or at zero temperature [9]. This definition is still
very evasive, because it tries to capture extremely many of those exotic phases of matter,
a set, which is much more rich in different structures than the symmetry breaking phases.
The formal description of topological order can be grasped by fusion theory and category
theory [10]. The only numerical methods capable of providing such description seems to be
tensor networks, due to their ability to encode long-range entanglement and a very specific
construction, which enables access to these entanglement properties directly, at the level
of virtual degrees of freedom of tensor networks. Therefore, they are the methods of choice
in the study of topological order.

The thesis is based on three articles:

• [1] Determining topological order from infinite projected entangled pair states,
Anna Francuz, Jacek Dziarmaga, Guifre Vidal, and Lukasz Cincio,
Phys. Rev. B 101, 041108(R)

• [2] Determining non-Abelian topological order from infinite projected entangled pair
states,
Anna Francuz and Jacek Dziarmaga, Phys. Rev. B 102, 235112

• [3] Variational methods for characterizing matrix product operator symmetries,
Anna Francuz, Laurens Lootens, Frank Verstraete, Jacek Dziarmaga, accepted for
publication in Phys. Rev. B

In the articles, we propose a numerical method for analysing topologically ordered
states, which are beyond the standard description in terms of local order parameter and
symmetry breaking. Therefore, Chapters 2 and 3 constitute an introduction into the topics

15:7290466555



2 Chapter 1. Introduction

covered in the articles. Chapter 2 approaches the theory of topological order and classifi-
cation of topologically ordered phases, which cannot be captured by the Landau paradigm
of phases and phase transitions. Finally, Chapter 3 introduces the numerical methods –
tensor networks used in the articles. The use of tensor networks has grown extensively in
the last two decades and finds applications in the fields ranging from condensed matter
systems to neural networks and AdS/CFT correspondence. However, this introduction is
focused primarily on those aspects of tensor networks that are related to strongly corre-
lated systems in two spatial dimensions exhibiting topological order and underlines the
importance of entanglement degrees of freedom, in contrast to physical degrees of freedom,
in the description of these exotic phases of matter.

16:9899138368
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Chapter 2

Topological order

Topological order is a phase of matter beyond the Landau paradigm of phases and phase
transitions. While the Landau description captures extremely well many short-range en-
tangled states, which are related via local unitary transformations to product states (see
Sec. 2.1), topologically ordered states are described by different types of long range entan-
glement. The following summarizes the known characteristic features of 2D topologically
ordered phases:

• they belong to the class of insulators – there is an energy gap between the subspace
of degenerate ground states and excited states – Fig. 2.1(A),

• they are characterized by different patterns of long range entanglement – Fig. 2.1(B),

• there is a ground state degeneracy, which depends on the genus of the manifold,
on which the system is defined, and no local order parameter exists, that could
distinguish between different (orthogonal) degenerate ground states – Fig. 2.1(C),

• an amazing feature of some systems is the emergence of elementary quasiparticle
excitations with fractional statistics – anyons.

To be precise, anyons appear in non-invertible topological orders[11], which are of the
focus in this thesis. Among non-invertible topological orders we also distinguish non-chiral
topological orders, when both the bulk and the boundary are insulating, and the chiral
ones, characterized by the gap in the bulk and gapless chiral edge modes. In general,
two same chiral TO, but with opposite chiralities, produce a non-chiral TO when stacked
together. Last but not least, among all non-chiral topological orders, there still exist many
distinct ones. Thus, a new way of classifying different phases of matter is needed that
would grasp all these new kinds of phases and assign some universal labels to topological

Figure 2.1: The known characteristic features of 2D topologically ordered
states are: (A) gap between ground states and excited states, they are
insulating, (B) long range entanglement, (C) topological ground state de-
generacy, that depends on the topology of the manifold the system is defined

on.

17:1149960257



4 Chapter 2. Topological order

orders within the same universality class. There were a few attempts to achieve that goal,
including:

• topological S and T matrices encoding mutual and self-statistics of the emergent
anyons,

• F -symbols defining a fusion category – a mathematical structure underlying topolog-
ically ordered phases analogous to symmetry group for symmetry breaking phases.

Both approaches have its advantages and short-comings, and they are more broadly dis-
cussed in the Sec. 2.2 and Sec. 2.3 respectively. It should be noted at this point that from
F -symbols one can obtain unique topological S and T matrices, while the other way round
it is not always the case, which we also elaborate more later in this chapter.

2.1 Long range entanglement

Among the gapped phases of matter all ground states described by Landau symmetry
breaking are actually short range entangled, while topologically non-trivial phases are
characterized by long range entanglement, a term introduced by Xiao GangWen in Ref.[12].
Moreover, among the so-called topological phases of matter, many of them are actually
topologically trivial in a sense of being short range entangled, with the best example of
the SPT - symmetry protected topological phases, where the slightest symmetry-breaking
perturbation already destroys the protected edge modes[13]. Therefore, the distinguishing
factor of the topological order is long range entanglement and different topological orders
posses different pattern of long range entanglement. In order to define those entanglement
patterns let us first divide gapped quantum phases of matter into distinct universality
classes (see Fig 2.1(B)), hence below we present several definitions of this equivalence
relations [12].

Definition 2.1.1. Let H(g) be a Hamiltonian of a local quantum system with smooth de-
pendence on the parameter g ∈ [0, 1] with gapped ground states |ψ(0)〉 and |ψ(1)〉 at H(0)
and H(1) respectively. If there exist such a smooth path H(g) (family of Hamiltonians)
that H(g) is gapped1 for all g then there is no phase transition along 0 ≤ g ≤ 1 and two
states belong to the same phase.

With the paradigmatic example of the transverse-field Ising model:

H = −J
∑

<ij>

σzi σ
z
j − g

∑

i

σxi , (2.1)

it can be realized that ground states of the Hamiltonian at both limits J � g and J � g
are adiabatically connected, without undergoing a phase transition, to the gapped ground
states at g = 0 and J = 0 respectively. In both limits g = 0 and J = 0 the ground
states are exact product states: |ψ(g = 0)〉 = ⊗i| ↑〉i or |ψ(g = 0)〉 = ⊗i| ↓〉i and
|ψ(J = 0)〉 = ⊗i(| ↑〉i + | ↓〉i) ∝ ⊗i|+〉i, where | ↑〉, | ↓〉 are the σz eigenstates and |+〉 is
the σx eigenstate to eigenvalue +1, hence they are short range entangled.

However, in general, finding a path along which there is no phase transition is not a
computationally feasible task, therefore the next two definitions provide more insight from
the computational point of view.

1The energy gap in context of phase transitions is defined in the limit of infinite system size.

18:1104905550



2.2. Quantum statistics 5

Figure 2.2: In (A) local unitary operator Ui acting on l sites. In (B) a
piecewise local unitary operator Up defined as a product of local unitary
operators Ui acting on disjoint regions. In (C) finite depth quantum circuit
UMqc with depth M = 3 and a causal cone denoted with green colour.

Definition 2.1.2. Two gapped states |ψ(0)〉 and |ψ(1)〉 are in the same phase if and only
if they are related by a local unitary (LU) evolution:

|ψ(0)〉 ∼ |ψ(1)〉 iff |ψ(1)〉 = T
(

e−i
∫ 1
0 dgH̃(g)

)
|ψ(0)〉, (2.2)

where T denotes the path ordering and H̃(g) is a sum of local hermitian operators.

The Hamiltonian H̃(g) in general is not the same as H(g), however one can show,
using the Lieb-Robinson bound, that a local operator evolved with a local Hamiltonian in
a finite time remains local (with some larger range) determined by the maximal velocity of
spreading of the quasiparticle excitations. Even more direct causal structure can be seen
in the definition using quantum circuits.

Definition 2.1.3. Let Up =
∏
i Ui be a piecewise local unitary operator, with Ui being

a set of unitary operators acting on disjoint regions of maximal finite size l. A quantum
circuit with depth M UMqc = U

(1)
p U

(2)
p ...U

(M)
p is a product of M piecewise local unitary

operators, Up as shown in Fig.2.2. Then the equivalence relation between two gapped
states is:

|ψ(0)〉 ∼ |ψ(1)〉 iff |ψ(1)〉 = UMqc |ψ(0)〉. (2.3)

Two gapped states |ψ(0)〉, |ψ(1)〉 belong to the same phase if they are related by a finite
depth quantum circuit.

In the last two definitions, the LU evolution and constant depth quantum circuit can
be considered together under the common label of LU transformations. With these defini-
tions at hand, it can be stated that all gapped states which are related to product states
via LU transformation are short range entangled and can be transformed into each other
by LU transformation, while different topological orders correspond to different long range
entanglement patterns and form equivalence classes under LU transformations. Different
Landau symmetry-breaking phases or different SPT phases can be recovered when con-
sidering equivalence classes under symmetric LU transformations, but they still remain
short range entangled. Also, long range entangled phases can exhibit more phases under
symmetric LU transformations.

Having introduced the way of determining whether two states belong to the same
or different phase (universality class) we need to assign them certain characteristic and
unequivocal properties, which we approach in the following sections.

2.2 Quantum statistics

The relation between spin and quantum statistics of particles, commonly known as spin
statistics theorem[14] originally distinguishes between particles with intrinsic half-integer

19:7711128884



6 Chapter 2. Topological order

Figure 2.3: In (A) mutual statistics of 2 types of point-like particles a and
b and in (B) self statistics of a particle a. Self statistics is an interaction
involving a single swap of two same particles a, while the mutual statistics
encodes the change in the system after double swap, so that in the final
state the particles appear in the same place as in the initial state. In (C) on
a 2D plane the particles can be represented as holes and their winding as
loops denoted by Ci with C0 being the trivial loop. The loop C2 enclosing
another particle is not homotopic to the trivial one, whereas in 3D it could
be smoothly transformed into C1 homotopic to C0 by lifting it along the

third dimension.

spin obeying the Fermi-Dirac statistics and integer spin particles obeying the Bose-Einstein
statistics. Statistics can be interpreted as an interaction involving the exchange of two
particles along a specific trajectory in space-time[10]. When the swap involves the same
kind of particles then the process defines self-statistics and mutual statistics are defined
for different types of particles, when one of them makes a full revolution around the other
as shown in fig. 2.3. Indeed, in 3 spatial dimensions, point-like elementary excitations can
be either bosons or fermions, as a double exchange has to be an identity transformation.
Therefore, the only remaining possibility is the system acquiring a phase eiφ = ±1 after the
single swap, +1 for bosons and −1 for fermions. On the other hand, when considering only
2 spatial dimensions the physics becomes much richer allowing for point-like particles, for
which the exchange phase φ could be arbitrary, hence the name anyons – ’any-ons’. The
situation is different in 2D because unlike in 3D the process of winding one particle around
the other is topologically non-trivial as illustrated in the fig. 2.3(C). As long as the path
made by a particle winding around another particle is not homotopic to the trivial path,
the system after such an adiabatic transformation acquires a non-trivial Berry phase |Ψ〉 →
eiφ|Ψ〉 in case of Abelian anyons. In case of non-Abelian anyons such a transformation may
even lead to the mixing between different degenerate states: |Ψa〉 =

∑
b Uab|Ψb〉 [15]. The

information about the mutual and self statistics of anyons can be encoded in modular S
and T matrices respectively. Together they generate a representation of the modular group
SL(2,Z), with the following properties [16]:

• S is symmetric S = ST , unitary S · S† = 1 and S11 > 0, where a = 1 represents a
trivial anyon type.

• Two anyons can fuse to give a third anyon type

a× b = ⊕c N c
ab c (2.4)

20:8134960190



2.2. Quantum statistics 7

Figure 2.4: Modular transformations of the torus: s transformation cor-
responds to a 90◦ rotation, while t transformation is a Dehn twist, which

effectively makes a blue flux to wind around the torus once.

according to the fusion rules encoded in the 3-index fusion tensor N c
ab. Fusion rules

can be obtained from the topological S matrix through the Verlinde formula [17]:

N c
ab =

∑

d

SdaSdb(Sdc)
∗

Sd1
∈ N (2.5)

• The first column/row of the topological S matrix encodes quantum dimensions of
the anyons:

da =
S1a

S11
=
Sa1

S11
, D =

√∑

a

d2
a, (2.6)

where D is the total quantum dimension. It is also the largest magnitude eigenvalue
of the matrix Na with (Na)

c
b elements, and it describes the asymptotic growth of the

fusion space of the anyon type a. For Abelian anyons da = 1, as there is always just
one fusion outcome a×a = b (for self-inverse anyons b = 1), whereas for non-Abelian
anyons da > 1, as the number of possible fusion outcomes grows with the number of
fused particles, where for a single fusion a × a = ⊕cN c

aac the fusion rules allow for
more than one possible outcome, i.e. amount of labels c for which N c

aa 6= 0 is two or
more.

• T matrix is unitary and diagonal in this canonical basis, which we refer later to as
the basis of Minimally Entangled States (MES) or well-defined anyon fluxes:

Tab = δab e−2iπ c
24

+2iπsa , (2.7)

where sa is a topological spin of an anyon and c is the chiral central charge.

• Together, S and T satisfy the conditions for the generators of modular transforma-
tions:

(ST )3 = S2 = C, C2 = 1, Cab = N1
ab. (2.8)

This last property relates them to the modular transformations of the torus generated
by a π

2 rotation s and a Dehn twist t:

s =

(
0 1
−1 0

)
, t =

(
1 1
0 1

)
. (2.9)

21:1057127852



8 Chapter 2. Topological order

Figure 2.5: Reduced density matrix ρa on a half infinite cylinder of cir-
cumference L of a state with well-defined anyon flux a along the cylinder
(denoted by red arrow). Such a state has minimal entanglement entropy on

the entanglement cut shown on the left end of the cylinder.

Thus S and T transformations generate a unitary representation of the mapping class
group SL(2,Z) for the torus – group of automorphisms of the torus shown in the Fig. 2.4
Together with chiral central charge c this set of data, (S, T, c) was conjectured to uniquely
determine the topological order [18, 19, 20] and hence it was used in many numerical
studies of topologically ordered systems including Ref. [1, 2] for models for which it indeed
provides a unique classification. However, it was found that there exist distinct topological
orders with the same modular data (S, T, c) [21], therefore the modular data (S, T, c) alone
cannot always be used as a label distinguishing different topologically ordered phases of
matter. In the next section 2.3 we introduce a different mathematical tool to characterize
topological order based on category theory.

Despite its shortcomings, the modular data (S, T, c) is still capable of providing lots
of information about the topological order, in many cases even a unique characterization
of it. Moreover, although S and T matrices encode statistics of elementary excitations,
they can be extracted already from the ground states as shown in [22]. A crucial step to
achieve that is the identification of states with well-defined anyon fluxes along the torus in
the subspace of degenerate ground states. The states with well-defined anyon flux are also
called Minimally Entangled States (MES), which comes from the study of entanglement
entropy of a reduced density matrix ρ obtained by a non-trivial cut of the torus. It was
found by Kitaev and Preskill [23] that topologically ordered states exhibit non-vanishing
universal correction to the entanglement entropy:

S(ρ) = α · L− γ, γ = log(D) = log



√∑

a

d2
a


 , (2.10)

where the first term contains a non-universal constant α and scales with the system size
while D is the total quantum dimension and depends only on the universality class of the
system. The universal correction γ is called topological entanglement entropy (TEE) and
it is non-zero only for topologically ordered states. For a topologically ordered state with
well-defined anyon flux a along the infinite cylinder with circumference L the entanglement
entropy of a reduced density matrix ρa of a half-infinite cylinder (see Fig. 2.5) is minimal,
given by:

S(ρa) = α · L− log
(
D

da

)
. (2.11)

Any superposition of states with well-defined anyon flux will increase the entanglement
entropy by decreasing the TEE, hence the name Minimally Entangled States (MES). Now
the S matrix can be interpreted as a change of basis between MES in different directions

22:1031065582



2.2. Quantum statistics 9

Figure 2.6: In (A) on a hexagonal lattice with 120◦ rotation symmetry
a unit cell can be defined by unit vectors (w1, w2), which repeated many
times in both directions designate a torus. There are three distinguished
tori A,B,C all related by a st transformation, which corresponds to 120◦

rotation with properly chosen unit vectors (w1, w2). In (B) and (C) the
overlap between MES in different directions on tori related by some f(s, t)
transformation gives matrix elements of the corresponding combination of
topological matrices f(S, T ). In (B) f(s, t) = st results in matrix elements
of the topological S ·T matrix, while in (C) f(s, t) = s correspond to matrix

elements of the product of S.

x and y related by a 90◦ degree rotation:

|Ψy
a〉 =

∑

b

Sab|Ψx
b 〉. (2.12)

Minimally Entangled States in y direction is a superposition of MES in x direction, there-
fore its entanglement entropy at the non-trivial cut along x will be maximal. From (2.12)
one realizes that the matrix elements of the S matrix can be obtained by calculating proper
overlaps between MES in different directions:

〈Ψx
c |Ψy

a〉 = 〈Ψx
c |
(∑

b

Sab|Ψx
b 〉
)

=
∑

b

δbcSab = Sac, (2.13)

where in the second equality we use the orthonormality of MES. In a similar way we can
obtain the matrix elements of any combination of S and T matrices by taking overlaps
between states on tori related by the corresponding combinations of s and t transformations.
For example, the matrix elements of S ·T can be obtained by calculation of overlaps between
states on tori related via st transformation:

(S · T )ab = 〈Ψst
b |Ψa〉. (2.14)

With a proper choice of a unit cell on a hexagonal lattice designating the torus, given
by a pair of unit vectors (w1, w2) in Fig.2.6, a st transformation becomes a rotation by
120◦, which rotates torus A to torus B and torus B to torus C as shown in Fig. 2.6.
Independent calculation of MES on these three tori together with the calculation of the
overlaps between them allows us to extract the matrix elements of the topological S and
T matrices. And this is precisely the idea behind [1], where it was used for the first time
to determine Abelian topological order using infinite Projected Entangled Pair States (see
Chapter 3), as well as [2], where the formalism was extended to models with non-Abelian
anyonic statistics.

23:3015102210



10 Chapter 2. Topological order

2.3 String-nets and fusion category

Figure 2.7: Schematic diagram of a renormalization group flow towards
fixed point wave functions Φa,b,c,d,e with zero correlation length for different

long range entangled phases divided by lines of phase transitions.

Topologically ordered phases of matter, as it was shown in section 2.1 can be divided
into distinct universality classes. The universal properties of certain TO are best seen in the
RG fixed point wave functions with zero correlation length and long range entanglement.
All TO states within the same phase are related to its RG fixed points by generalized local
unitary transformations, Fig. 2.7 Those RG fixed point wave functions are characterized
by a set of local rules relating different amplitudes. Different topological orders can be
found by solving those local rules. Before providing a general description of string-net
models in terms of fusion categories, we start with a simple example below.

Figure 2.8: The action of a closed string of operators
∏
i∈loop σ

x
i results

in a formation of loops and the string-net models are defined through such
closed string on the background of some physical degrees of freedom like

spins- 12 on a lattice.

In order to introduce a class of models called string-nets let us start with a simple
product state of spins-1

2 on a lattice all pointing up – we can think of them as eigenstates
of σz Pauli matrix to eigenvalue +1 (first ket in Fig.2.8). We may flip any number of spins,
for example by an action of a string

∏
i∈loop σ

x
i of Pauli-x matrices, in a way that they

form a closed loop pattern and from now on we will only think in terms of such closed
strings instead of spins as shown in Fig.2.8. The action of a local σx operator on one of
the flipped spins forming the loop will open that loop, creating two endpoints of a string
as shown in Fig.2.9. The action of a string of

∏
i∈C σ

x
i corresponds to moving one of the

endpoints on the lattice along a path C. Those endpoints are particle-like excitations in a
sense that their existence results in higher energy-density distribution in some finite region
on the lattice. Moreover, they are topological particle-like excitations, as a single endpoint
cannot be created/annihilated by any local operator. In this setup they can be created and
annihilated only in pairs and the action of moving one away from the system corresponds
to an action of a string operator which size grows linearly with the system size. Those
topological particle-like excitations are anyons. In the ground state configuration, there
may be not one but many different closed strings crossing each other. However, this is still
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Figure 2.9: The action of a local operator on the closed string opens the
string, therefore creating two endpoints – topological defects, which can be

moved around the lattice by the action of a string
∏
i∈C σ

x
i .

a product state and not an eigenstate of a topologically ordered Hamiltonian. In order to
construct the simplest possible topologically ordered state, we take an equal-weight super-
position over all possible closed strings:

(2.15)

Such a string-net state describes an RG fixed point wave function of a toric code – the
simplest topologically ordered state, first introduced by Alexei Kitaev in the context of
fault-tolerant quantum computation in Ref.[24]. If the amplitudes are slightly modified, so
that their sign depends on the total number of loops of a given configuration, then such
state is a double semion string-net model – a completely different universality class than
the toric code:

(2.16)

The two wave-functions introduced above describe exact renormalization group fixed
points, with zero correlation length, of the toric code and double semion strings nets respec-
tively. However, there is no basis in which those expressions would simplify to a product
state, because they are long range entangled. Moreover, it becomes clear when going back
to spin representation that these states have no order, they represent different kinds of
spin liquid states and in general it is very hard to distinguish one from the other when
dealing directly with the amplitudes of different closed string configurations (especially
in the thermodynamic limit, when the number of possible configurations, hence terms in
these superpositions, become infinite). Fortunately, there exist a local description relating
different string configurations in terms of F -symbols, the associators of the underlying uni-
tary fusion category UFC.

(2.17)

In the examples above, such a possible reconnecting move may happen in the area
denoted by a red circle in Fig.2.10 when connecting the two string types i with a trivial
string 1.

Figure 2.10: The global string pattern may be described with local moves
given by F -symbols.
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Figure 2.11: In (A) reversing the string orientation results in a dual
(conjugate) string type. In (B) the fusion vertex N c

ab describing the allowed
fusions a× b → c. In (C) the F -symbols, defined with taking into account

the string orientations.

In this case, we can distinguish the toric code and double semion string nets locally
via its F symbols relating the amplitudes of the two string configurations with different
number of loops Nloops:

(2.18)

Given the examples we proceed with general definition of string-net models, which
require the following data [25]:

• string types, i = 1, 2, ...n, with i = 1 being the trivial string type and n the total
number of string types, which is n = 2 in the examples of toric code and double
semion. Nevertheless, N can be bigger than 2, for example n = 3 for the double
Ising string-net model, where the possible string types are i = 1, σ, ψ (see Ref. [2, 3])
or n = 6 for the Rep(S3) string-net (see Ref. [3]). Different anyon types are simple
objects in the input category C

• branching rules, describing all the allowed fusion rules at the vertices in terms of the
aforementioned fusion tensors N c

ab, shown in Fig. 2.11(B)

• string orientation, in general the dual string to a string type i is i∗ with opposite
orientation, Fig. 2.11(A), so that N1

ii∗ = N1
i∗i = 1. In the examples of toric code

and double semion i = i∗ and the string are unoriented and N1
ii = 1. Therefore, the

F -symbols take a simple form. However, for the oriented string types it is important
to properly define the F tensors, taking into account possible orientations [26] as
shown in Fig. 2.11(C). The only physical F -symbols are those allowed by fusion
rules at each vertex:

F abcdef ∝ N e
abN

d
ecN

f
bcN

d
af . (2.19)

F -symbols are the associators in the fusion category C, as they describe the associa-
tivity of the fusions of three simple objects:

(a× b)× c ∼ a× (b× c) (2.20)

For anyon models the F -symbols are unitary when treated as matrices in the e, f
indices: [26] (hence the name unitary fusion category):

[(F abcd )†]ef = (F abcd )∗fe = [(F abcd )−1]ef . (2.21)

Moreover when any of the labels a, b, c = 1 and the remaining vertices satisfy the fusion
rules then we require F abcdef = 1, as fusion with identity is an identity and commutes with
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Figure 2.12: Associativity condition gives rise to a consistency equation
for F -symbols and is called Pentagon equation due to the pentagon structure
of the diagram, which shows two equivalent paths in which the F -moves can
be performed in order to transform the leftmost fusion tree to the rightmost

fusion tree.

other fusions. When more anyons are fused (or split) to the same anyon the associativity
condition gives rise to a consistency equation between different F -symbols called Pentagon
equation, shown in Fig. 2.12

F fcdegl F
abl
efk =

∑

h

F abcgfhF
ahd
egk F

bcd
khl . (2.22)

Pentagon equation has only discrete solutions, which means that one solution cannot be
transformed into another by non-trivial small deformations, which comes under the name of
Ocneanu rigidity (Ocneanu actually never published his proof). Thanks to this property F -
symbols indeed are capable of labelling different topological orders unequivocally. However,
there is still some redundancy in this description, coming from two issues:

• gauge freedom, the change of F -symbols by non-zero complex numbers λcab ∈ C:

F abcdef →
λeabλ

d
ec

λfbcλ
d
af

· F abcdef , (2.23)

does not affect the Pentagon equation. This redundancy can be eliminated by re-
quiring the F abce matrices to be unitary and fixing F abcdef = 1 if any of a, b, c is trivial,
as mentioned above.

• Morita equivalence, any two UFC C1 and C2 describe the same topological order if
their Drinfeld centers are equal Z(C1) = Z(C2), which can be seen by direct calcula-
tion of the Drinfeld center [25].

Having addressed both issues, we conclude that the monoidal center Z(C) of the unitary
fusion category C provides a unique description of the topological order and in that sense
can be thought of as the mathematical description which uniquely determines the topo-
logically ordered quantum phases, analogous to symmetry groups for Landau’s symmetry
breaking phases. The numerical method to calculate the F -symbols of UFC C together
with the calculation of the Drinfeld center Z(C) and topological S and T matrices of 2D
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14 Chapter 2. Topological order

topologically ordered state (also states with non-zero correlation length – away from RG
fixed points) is a task accomplished in Ref. [3]. The method relies heavily on the concept
of virtual matrix product operator symmetries of infinite projected entangled pair states,
which is a property that can be accessed only with tensor networks formalism, as the MPO
symmetries are defined purely on the ’virtual’ degrees of freedom of iPEPS (see Chapter 3)
and therefore do not suffer from broadening caused by growing correlation length (unlike
approaches based on the optimization of ribbon operator symmetries [27] at the physical
level).
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Chapter 3

Tensor networks

Tensor networks are numerical methods which already proved to be extremely useful tools
in the studies of strongly correlated quantum systems, starting with the success of DMRG
(density matrix renormalization group) [28, 29] initiated by Steve White in 1992. DMRG
together with an independently developed MPS ansatz (matrix product states) [30, 31] be-
came the most powerful methods to study one dimensional gapped, local quantum many
body systems on a lattice [32, 33, 34]. The connection between DMRG and MPS was
realized only later [35] as the DMRG is a variational algorithm which leads to an MPS
representation of a state when converged. Subsequent developments lead to the exten-
sion of tensor network to higher dimensional systems with PEPS (projected entangled pair
states) [36], as well as critical systems with MERA (multiscale entanglement renormaliza-
tion ansatz ) [37].

Tensor networks are variational methods, which makes them immune to the sign prob-
lem in case of fermions [38, 39, 40, 41], which is the notorious limitation of methods based
on functional integrals [42] like Quantum Monte Carlo (QMC). Therefore, it makes them
the methods of choice to study not only fermionic systems but also systems with geometric
frustration. One of the remarkable successes of TN, specifically fermionic PEPS, is that it
provided the best variational ground state energies of the Hubbard model [43], as well as
simpler t− J model [40, 44, 45], which are believed to exhibit high-temperature supercon-
ductivity. Moreover, unlike the exact diagonalization (ED) [46], tensor networks are not
restricted by the system size and enable calculations in the thermodynamic limit at the
same time capturing faithfully the correlations and entanglement structure of the system
unlike mean-field based approaches. All this makes them the best available methods in the
study and search of topological order, especially in realistic materials, where there are only
few exactly solvable models [10, 24, 25]. Huge progress in the study of topological order
with tensor networks has taken place over the last two decades and is concisely summarized
in Section 3.5 after the introduction of certain crucial aspects of TN in Sections 3.1-3.4.

3.1 Variational ansatz

A tensor network is a variational ansatz for a ground state |Ψ(p)〉, or low-energy excited
states, of local gapped Hamiltonians Ĥ of many-body systems, where the parameters to
optimize p are the elements of the tensors. For example, in order to find a ground state
of a Hamiltonian Ĥ one would minimize the energy E(p) in order to obtain the optimal
parameters p? of the tensor network:

E(p) =
〈Ψ(p)|Ĥ|Ψ(p)〉
〈Ψ(p)|Ψ(p)〉 → 0 =

∂

∂p

〈Ψ(p)|Ĥ|Ψ(p)〉
〈Ψ(p)|Ψ(p)〉 ⇒ |Ψgs(p

?)〉. (3.1)

The parameters to optimize – the tensors are the main building blocks of the tensor net-
work, usually represented as some shapes with links, the number of which denotes the rank
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16 Chapter 3. Tensor networks

Figure 3.1: The basic building blocks of the tensor networks. In (A) dif-
ferent rank tensors may constitute the tensor network formalism. In (B)
mathematical formulas behind the diagrammatic tensor network represen-
tation, namely in the row order: matrix multiplication, scalar product of

two vectors and a trace of a product of two matrices.

of the tensor. Rank-0 tensor is just a scalar (a number), rank-1 tensor is a vector, rank-2
tensors is a matrix as shown in Fig. 3.1(A). Connecting tensors via a link represents a
summation over certain indices of one or multiple tensors, as shown on several examples
in Fig. 3.1(B). The idea of drawing shapes and links is analogous to Feynman’s diagrams,
which is to substitute long, complicated formulas (here summations) with some shortened
diagrammatic representation.

The main purpose of tensor networks is an efficient representation of a certain class
of many-body states. Instead of working directly with probability amplitudes Ci1,i2,...,iN
of different configurations of N local degrees of freedom (particles, spins), which can be
interpreted as a rank N tensor, we decompose it into a network of tensors of much smaller
rank:

|Ψ(p)〉 =
∑

i1,i2,...iN

Ci1,i2,...,iN |i1i2...iN 〉 =
∑

i1,i2,...,iN

∑
{αβ...ω}

Ai1αA
i2
αβ...A

iN−1
χω AiNω |i1i2...iN 〉.

(3.2)
Here actually the decomposition represents a finite one dimensional tensor network –matrix
product states – MPS and in the TN diagrammatic notation can be represented as:

(3.3)

The open red indices correspond to some local degrees of freedom ik = 1, 2, ...d, with d
being the dimension of the local Hilbert space throughout this thesis. The connected black
indices are called bond indices, α = 1, 2, ...D with D being the bond dimension (number
of values the bond index may take), which when summed over reproduce the big tensor
C. At this point we can compare the number of parameters needed to fully describe both
representations of this many-body system consisting of N lattice sites, and we notice that
in case of single tensor C the number of parameters is nC = dN , while in case of network
of tensors A, the number of parameters is at most nA = ND2d. In the first case the
number of parameters scales exponentially with the system size nC ∝ exp(N), while in
the second case in general the scaling is at most polynomial nA ∝ poly(N). Clearly, the
tensor network ansatz outperforms methods dealing directly with probability amplitudes
and enables numerical calculations in the thermodynamic limit for translationally invariant
systems. The question remains: does TN methods provide accurate results, or what class
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Figure 3.2: The iPEPS on a square lattice (B) is built from repeated
tensors Aitrbl (A). Here a single tensor A is rank 5 with one physical index i
numbering states in a given lattice site and 4 black bond indices t, r, b, l en-
coding correlations and entanglement between different lattice sites. When
the network from (B) is summed over all the black indices, it reproduces the
probability amplitudes, but this procedure is never done in practice during

numerical simulations, because it is extremely inefficient.

of states can be faithfully represented with tensor networks? The answers for these are
provided in Section 3.3.

Apart from the well-known and commonly used MPS there exist other TN ansatz,
including the two-dimensional projected entangled pair states – PEPS, shown in Fig. 3.2,
which together with MPS are of central importance in this thesis. In 1D the tensors
forming the state are rank 3, with one physical index ik and two bond indices of dimension
D (sometimes also denoted by χ), while in 2D the tensors are rank 4 or more, with one
physical index and at least 3 virtual (bond) indices. This allows for efficient simulations of
2D systems on a lattice. Fig. 3.2 shows an exemplary infinite PEPS (iPEPS) on a square
lattice built of tensors Aitrbl with one physical index i and 4 bond indices t, r, b, l.

Tensor networks enable studies of systems on different lattice geometries and sizes, both
finite and infinite (iMPS, iPEPS), as well as different boundary conditions: open (OBC)
or periodic (PBC) as shown respectively in Fig. 3.3(C).

Analogously to states, operators can also be represented by tensor networks. Naturally
in 1D they are called matrix product operators – MPO, shown in Fig. 3.3(A), whereas in
2D there are projected entangled pair operators – PEPO, shown in Fig. 3.3(B), where now
each tensor has 2 physical indices.

Figure 3.3: Similarly to states, TN are capable of encoding operators: (A)
matrix product operators in one dimension, built from tensors M ij , where
i, j are the physical indices and (B) projected entangled pair operators in
two dimensions. In (C) different boundary conditions for MPS are shown,
from top to bottom: open, periodic and infinite MPS structure. Analogous

diagrams can be drawn for 2D PEPS.
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18 Chapter 3. Tensor networks

Figure 3.4: Definition of the MPS transfer matrix (A), and its leading
left (B) and right (C) eigenvectors. Transfer matrix is a matrix between the
grouped indices (α, α′) to the left and (β, β′) to the right. MPS tensors Ai
can be normalized, so that the largest eigenvalue of the transfer matrix is
1, and so can be the eigenvectors 〈σL|σR〉 = 1. The eigenvectors σL,R are
actually boundary density matrices, when we treat the indices coming from

the bra and ket layer of the transfer matrix separately.

From now on, the attention is focused on translationally invariant tensor networks in
the thermodynamic limit, if not specified otherwise. This means that the whole state Ψ(A)
is determined by a single tensor A and the number of parameters to describe the whole
state is Dcd, where c is the connectivity of the network, c = 2 for 1D systems and c > 2
for higher dimensional systems (e.g. c = 3 for honeycomb lattices and c = 4 for square
lattices in 2D). In general, translationally invariant TN network may have a larger unit
cell, consisting of more than one tensor, however theoretically they can always be grouped
into a single tensor for simplicity of the description (numerically it is rather not efficient
to contract smaller tensors to bigger ones).

One of the main objects appearing in the calculations using TN are transfer matrices
(TM). For an MPS, the transfer matrix is defined as follows (Fig. 3.4 (A)):

EI =
∑

i

AiĀi, or in terms of matrix elements: (EI)αα′,ββ′ =
∑

i

AiαβĀ
i
α′β′ , (3.4)

where the bar Ā denotes complex conjugation and the summation is performed over a
physical index i. Actually the transfer matrix EI is a rank-4 tensor of dimensions D ×
D×D×D, however, we treat it as a matrix of dimensions D2 ×D2 between the grouped
indices (α, α′) and (β, β′). The name transfer matrix comes from similarity to 1D classical
statistical mechanical models.

An MPS, which is a result of an optimization, will typically be injective (for exact
definitions see Section 3.3), meaning that the largest magnitude eigenvalue λ0 is unique
and the corresponding left and right eigenvectors |σL,R〉 are positive definite. The latter
follows from realization that the transfer matrix acting on the eigenvectors is a completely
positive (CP) map, defined as [47, 48]:

EA(σL) =

d∑

i=1

AiσLĀi and its dual E∗A(σR) =
d∑

i=1

ĀiσRAi, (3.5)

shown in Fig. 3.4(B) and (C) respectively. Then the spectral decomposition of a transfer
matrix EI can be written as:

EI = λ0 |σR
) (
σL| +

D2−1∑

i=1

λi |vRi
) (
vLi | , (3.6)

where instead of typical braket notation |x〉〈y| round brackets |x) (y| are used to denote
the inner product (x|y) = xT y. For large system sizes N , especially for N →∞ the norm
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of the periodic MPS is given by tr(ENI ) ' λN0 , therefore the tensors A can always be
rescaled A→ 1√

λ0
A, such that the state is normalized to 1 and the corresponding CP map

has a spectral radius λ0 = 1. In Eq. 3.5 we used the fact, that it is convenient to write
the eigenvectors as operators σL,R with matrix elements σL,Rα,α′ = 〈α, α′|σL,R〉. They can be
normalized, so that:

(3.7)

Then σL,R are actually boundary density matrices related to the reduced density matrix
of the state as explained in Section 3.3.

From the numerical perspective the injectivity means that in case of degenerate ground
states, an MPS with finite bond dimension will typically choose one of the symmetry
broken ground states or one of the minimally entangled states, as this requires lower bond
dimension D than the superposition. This is indeed the case when simulating ground states
of topologically ordered models using quasi 2D DMRG on infinite cylinders (see Section
3.5).

A more general MPS construction allows for an MPS, whose transfer matrix has several
degenerate leading eigenvalues – non-injective MPS. This happens, for example in case
of non-Abelian anyons, when an MPO symmetry Za (see Section 3.4) is acting on the
injective-MPS eigenvectors |vi〉 of the PEPS transfer matrix (introduced below) yielding a
non-injective MPS as a result

Za|vi〉 = ⊕kNk
ia|vk〉. (3.8)

As an example, the action of the symmetry in the double Fibonacci string-net model is:

Zτ |vτ 〉 = |v1+τ 〉 = |v1〉 ⊕ |vτ 〉. (3.9)

In general a tensor Ai generating a non-injective MPS can be brought to canonical form
[47, 48], which is block diagonal:

Ai = ⊕jµjAij , Ai =



µ1A

i
1 0 ..

0 µ2A
i
2 ..

...


 (3.10)

such that the CP maps EAj (σ) =
∑

iA
i
jσĀ

i
j related to each tensor Aij are irreducible1.

The tensor Aij is then called normal tensors and the MPS they generate is also called
normal. The coefficients µj are chosen such that CP map related to each tensor Aij has
spectral radius λj = 1. Using the example of the double Fibonacci string-net model, we
can represent the resulting tensor as:

Ai = Ai1 ⊕Aiτ (3.11)

The transformation bringing a non-injective MPS into block diagonal canonical form is
a type of gauge transformation (see Section 3.4) and it is a basic step in the algorithm
presented in Ref. [3].

Still, non-injective MPS appears extremely rarely in the studies using tensor networks,
here only after an MPO symmetry acts on the MPS eigenvector, which is a result of

1The CP maps EAj (σ) =
∑
iA

i
jσĀ

i
j are irreducible if there is no non-trivial projector P , such that for

any j and D ×D matrix σ: EAj (PσP ) ∈ PσP [48]
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Figure 3.5: Definitions of PEPS transfer matrices on hexagonal lattice.
In (A) the PEPS tensor is contracted through its physical index to obtain
a double PEPS tensor Aα,β,γ =

∑
iA

i
a,b,cĀa′,b′,b′ . Figs. (B)-(D) represent

three simplest possible choices of PEPS transfer matrix on a hexagonal
lattice - all related by a 120◦ rotation.

algebraic, not numerical procedure. Therefore, the topic is continued with respect to
injective MPS.

The expectation values can be easily calculated using the transfer matrix and its lead-
ing eigenvectors. Thanks to the translational invariance, the expectation value of some
operator Ô in the thermodynamic limit is equal to:

(3.12)

The second-largest eigenvalue of the transfer matrix is related to the correlation length:

ξ = − 1

log(|λ1/λ0|)
= − 1

log(|λ1|)
, (3.13)

where the second equality follows from the normalization condition. In order to compare
two normalized states in the iMPS form |Ψ(A)〉, |Ψ(B)〉 it is enough to compute the lead-
ing eigenvalue of the mixed transfer matrix Emix =

∑
iA

iB̄i and due to orthogonality
catastrophe the overlap is either 0 or 1:

〈Ψ(B)|Ψ(A)〉 = tr(ENmix) = tr(λN0 )
N→∞−−−−→

{
1, if λ0 = 1

0, if λ0 < 1.
(3.14)

In case of equality, the tensors Ai, Bi generating the states |Ψ(A)〉, |Ψ(B)〉 are related by
a gauge transformation, which is explained in Section 3.4.

The transfer matrix of a 2D PEPS is a more complicated object, as it is actually an
MPO and the related boundary eigenvector is an MPS. For simplicity of the discussion,
we assume that PEPS is describing a state on a square lattice of Lx × Ly physical sites,
where Lx, Ly → ∞, but the generalization to other lattices is straightforward as shown
in Fig. 3.5. Then there are two simplest choices for the transfer matrix, horizontal Ωh of
dimensions (D2)Lx × (D2)Lx and vertical Ωv of dimensions (D2)Ly × (D2)Ly :

Ωh,v =
∑

I

Ah,v
I (Ah,v

I )∗, where Ah
I =

Lx∏

k=1

Aik , Av
I =

Ly∏

k=1

Aik . (3.15)

Here the bold tensor AI corresponds to the whole 1D chain of tensors with all physi-
cal indices grouped into one big index I to resemble the definition of the 1D TM. The
eigenvectors of the PEPS TM are given by MPS defined on the virtual space of PEPS or,
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equivalently, when the bra and ket indices are treated separately – MPO, similarly as in
the 1D case:

|σL,R
)

=

L∏

k=1

Mαk,α
′
k |αk, α′k

)
, L→∞. (3.16)

In the diagrammatic language the vertical transfer matrix Ωv made of PEPS tensors A
and its conjugate Ā together with its related right eigenvector in the form of MPS |σR

)
is:

(3.17)

Unlike for MPS, PEPS transfer matrix can be degenerate, as long as the optimization
of PEPS does not distinguish any direction, which would favour the choice of minimally
entangled state in that direction. Also, it is possible to construct a critical PEPS [49]. Due
to the fact that exact diagonalization of such big matrices, especially infinite matrices, is
impossible, the possible degeneracy of the PEPS transfer matrix is restored through the
number of orthogonal eigenvectors to the leading eigenvalue, where the orthogonality is
checked according to Eq. 3.14. The eigenvectors can be found using one of the algorithms
described in Section 3.2.

While MPS can be contracted exactly, PEPS has to be contracted approximately, either
through the eigenvectors or through corner transfer matrices (see Section 3.2) in order to
obtain the expectation values of local operators. Similarly, as with an MPS, one never
contracts the amplitudes of the state |Ψ(A)〉, but the norm 〈Ψ(A)|Ψ(A)〉. Hence, all the
reference to the contraction of PEPS (or iPEPS) should be implicitly understood as the
contraction of double PEPS, where the double PEPS tensor is defined as:

Aτρβλ =
∑

i

AitrblĀ
i
t′r′b′l′ , (3.18)

where the tensor Aitrbl (shown in the Fig. 3.2) generates the state |Ψ(A)〉, which is referred
to as ket layer, and its conjugate Āit′r′b′l′ generates 〈Ψ(A)|, which is referred to as the bra
layer. Analogously, to make contact with Refs. [1, 2, 3], on a hexagonal lattice the double
PEPS tensor is:

Aαβγ =
∑

i

AiabcĀ
i
a′b′c′ , (3.19)

which is shown in Fig. 3.6(A). The stripe of the double PEPS tensors connected via its
bond indices is a transfer matrix, as shown in Eq. 3.17 and in Fig. 3.5.

In Ref. [1, 2] we use the contraction of iPEPS with its eigenvectors, as this way allows
for clear definition of periodic boundary conditions and calculations performed on infinite
torus. The spectral decomposition of the iPEPS transfer matrix reduces to:

Ω =

n∑

i=1

λ |σRi
) (
σLi | , (3.20)
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Figure 3.6: Examples of impurity transfer matrices. The tensor network
on a honeycomb lattice is made of double PEPS tensors, i.e. tensors con-
tracted via its physical indices as shown in (A). Then the impurity may be

inserted in either bra, ket (C) or both layers (B).

where n denotes the degeneracy and σL,Ri denote orthogonal left and right MPS boundary
eigenvectors (fixed points). Then taking periodic boundary conditions is straightforward:

tr(ΩN )
N→∞−−−−→

∑

i

λN = n · λN , (3.21)

and the normalization of iPEPS is chosen to be 〈Ψ(A)|Ψ(A)〉 = n by setting λ = 1.
In Ref. [1, 2] the notion of transfer matrices is extended to impurity transfer matrices

(ITM), where apart from a repeatable PEPS tensors Aik there is a single line of iMPO
generated by tensors Z, called an impurity:

.
(3.22)

Here, the iMPO generated by Z tensors, denoted with a green colour, is defined solely on
the virtual bond indices of iPEPS, i.e. its physical indices are connected with the bond
indices of iPEPS. Then, the related eigenvector of such an ITM is an MPS generated by
tensors Mαk,α

′
k with a single additional tensor Xβkβ

′
k . Such an impurity may be inserted

in both bra and ket layers of the iPEPS, as shown above and in Fig. 3.6(B), but it may be
also inserted in just one of those layers, as shown in Fig. 3.6(C). Such an object is needed
in order to contract iPEPS with inserted iMPO symmetries (see Section 3.4), which are
necessary for calculating overlaps between different MES, which yield the matrix elements
of topological S and T matrices according to Eq. 2.14

3.2 Algorithms

The name Tensor Networks stands for the structures, as well as efficient algorithms for
their contraction and optimization. To name a few of the most common algorithms: [50]:

• DMRG - density matrix renormalization group [28, 29], the most known and used
TN optimization algorithm based on renormalization procedure of the ground state
wave functions of a 1D quantum systems on a lattice, yielding the optimal MPS
representation [51]. With χ being the bond dimension of an MPS, the cost of the
algorithm is only O(χ3) for iDMRG and systems with open boundary conditions and
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O(χ5) when periodic boundary conditions are imposed. The usage of DMRG was
extended also to 2D systems [52], where the MPS is wrapped around a cylinder in a
snake-like pattern:

(3.23)

The real properties of the 2D system should then be recovered by finite-size scalings
with the width of the cylinder Ly. This method is restricted only to models with short
correlation length ξ ' 1 ∼ 2 (less than 20 lattice sites), as the computational cost
grows exponentially with the cylinder’s circumference and the MPS with finite bond
dimension χ cannot capture the entanglement properties of a realistic 2D system.

• CTM - corner transfer matrix [53, 54, 55] is a method of approximate truncation of
double PEPS. In order to calculate the partition function or any local observable of a
large or infinite 2D tensor network, it has to be contracted approximately, as there is
no way to do it exactly unlike for 1D systems. Therefore, the CTM approach focuses
on approximating the environment of a single tensor (or a small group of tensors) by
substituting it with corner (C) and transfer (T) matrices, which are optimized new
tensors with finite bond dimension χ:

C

C

C

C
D2

D2D2

D2
D2

(3.24)

In the end, the partition function of a state encoded with iPEPS can be obtained by
calculating the trace of the product of all four corner matrices:

C

C

C

C

(3.25)

while calculation of a local observable requires additionally transfer matrices T :

C

C

C

C

(3.26)
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The cost of the contraction of iPEPS is O(D6χ3), with D being the bond dimension
of iPEPS tensor [56].

• Boundary MPS is another method of contracting 2D double PEPS, using the transfer
matrix, which is an MPO, defined in Eq.3.15. For finite systems one can start
with an actual MPS boundary |ψ(0)

A 〉 generated by tensor A and contract it with an
MPO transfer matrix formed by a stripe of double PEPS Ω, as in Fig. 3.5 or Eq.
3.17, however due to proliferation of indices, after each multiplication a new MPS,
generated by tensor B, have to be found to approximate that product [57]:

Ω |ψ(i−1)
A 〉 = |ψ(i)

A 〉 → minB|| |ψ(i)
A 〉 − |ψ

(i)
B 〉||2. (3.27)

In case of infinite systems the iMPS boundary is obtained as a fixed point |Φ〉 of the
iPEPS transfer matrix Ω, by subsequent application of the TM Ω to a random initial
vector in the form of iMPS |Φ0〉 until convergence, yielding an eigenvector |Φ〉 to the
largest eigenvalue λ of Ω [58]:

ΩN |Φ0〉 N→∞−−−−→ λN |Φ〉 (3.28)

The cost of contracting the boundary MPS with a PEPS transfer matrix is O(χ3D6+
χ2D8d), where χ is the bond dimension of the boundary MPS, D is the iPEPS bond
dimension and d being the dimension of the physical local Hilbert space. This cost
can be lowered if the iPEPS is contracted in a diagonal way [58]. If the transfer
matrix is degenerate, then the method yields several orthogonal MPS eigenvectors,
the number of which corresponds to the degeneracy in the system, n in the Eq. 3.20.
This is a crucial difference of the boundary MPS method with respect to the CTM
method, where corner and transfer matrices may encode degenerate iPEPS in a much
less obvious way. Boundary MPS method is the main ingredient of the algorithm for
distinguishing topological order presented in Refs. [1, 2, 3]. In Ref. [1] the boundary
MPS is obtained using the power method of Eq. 3.28, while in Refs. [2] and [3]
a qualitatively better method is used, resulting in faster convergence, based on the
tangent space to the MPS manifold.

• Tangent Space Methods [59], state-of-the-art methods for handling variety of prob-
lems, starting from time evolution of matrix product states (TDVP - time dependent
variational principle [60]), study of excitations and spectral functions, but also vari-
ational optimization of the expectation value of a Hamiltonian as in Eq. 3.1 – the
VUMPS algorithm [61] and approximation of fixed-points of 1D transfer matrices,
which can be used as a boundary MPS method of contraction of PEPS. These group
of methods is based on the idea that a set of uniform MPSs |Ψ(A)〉 generated by
tensors A of dimensions D × d ×D form a manifold in the full Hilbert space of the
system under investigation. This manifold is not a linear subspace (as the addition of
two MPSs with the same bond dimension does not belong to this manifold), therefore
a tangent space is associated to every point of |Ψ(A)〉 by differentiating with respect
to the parameters A. Then the tangent vector is defined as:

|Φ(B,A)〉 =
∑

i

Bi ∂

∂Ai
|Ψ(A)〉 ≡

∑

i

Bi|∂iΨ(A)〉, (3.29)
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where the partial derivative effectively removes the tensor A and the summation over
i denotes all

(3.30)

The overlap between two tangent vectors is:

〈Φ(B′, A)|Φ(B,A)〉 =
∑

ij

B̄′i (〈∂iΨ(A)|∂jΨ(A)〉)Bj =
∑

ij

B̄′iGijB
j , (3.31)

where Gij can be considered as a metric matrix and in the diagrammatic form it is:

(3.32)

Many problems under consideration can be projected onto and minimized in the
tangent space, which is analogous to calculating and minimizing the gradient of a
cost function of interest. The power of these methods lies in the usage of mixed
orthonormal gauge of MPS (see Section 3.4), which allows writing the metric matrix
as the identity, which is otherwise very often singular:

(3.33)
A broad review of all the algorithms based on tangent space methods can be found
in Ref. [62].

• PEPS optimization methods – apart from efficient contraction of PEPS, there are
also several methods to obtain optimal PEPS tensors describing the state. They fall
into two categories: variational PEPS, both for finite [57, 63] and infinite systems
[64, 65], based on minimizing the energy according to Eq. 3.1 and imaginary time
evolution, which may be performed using different schemes:

– simple update [66] is a local update, which makes it computationally cheap but
not very optimal,

– more optimal full update [58], which is more expensive, because it takes into
account full wave function,

– and fast-full update [67], which like full update takes into account the full PEPS
environment, but instead of calculating the new environment after every itera-
tion from scratch, it recycles the environment from the previous iteration.
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– an intermediate neighbourhood tensor update [68], which takes into account
only the nearest neighbour environment of updated tensors, which can be con-
tracted exactly.

However, out of all those methods, only the variationally optimized iPEPS was able
to recover topologically ordered state as was found in Ref. [1].

The tensor network structures and algorithms listed above are only a small subset of
all, but they are most commonly used and crucial to this thesis, therefore we do not delve
into other structures and algorithms.

3.3 Entanglement

The entropy in classical thermodynamics is usually used to quantify the lack of information
about the microstate of the system under consideration. The higher the entropy is, the less
information we possess about it. However, in quantum mechanics of many-body systems
the positive entropy may appear even when the state of the system is known, as the origins
of non-vanishing entropy are related to quantum entanglement[69]. The perfect example is
given by a quantum many-body system at zero temperature, which is expected to be in its
ground state |ψ〉, which is non-degenerate and pure ρ = |ψ〉〈ψ|, therefore its von-Neumann
entropy is zero:

S(ρ) = −tr (ρ logρ) = 0. (3.34)

However, if we divide this many body state into two connected but non-overlapping regions
A and B ≡ Ac (B is the complement of A), then the entropy of the subsystem A, which
is now described by a reduced density matrix ρA = trBρ, is in general positive S(ρA) ≥ 0.
The equality S(ρA) = 0 happens in a special case when the state |ψ〉 = |ϕA〉 ⊗ |ϕB〉
factorizes and there is no entanglement between subsystems A and B, with the simplest
example being a product state, in which case the division into any two subsystems results
in vanishing von-Neumann entropy of a reduced state. Therefore, the entropy of a subre-
gion quantifies the amount of entanglement in the system and is called the entanglement
entropy. The entanglement entropy, or rather its scaling, is important for studies of criti-
cal phenomena, as well as the ability to represent quantum many-body states, both trivial
ones and topologically ordered ones, where we observe a universal correction to the scaling
law – the topological entanglement entropy.

From the perspective of quantum many body systems, we are mostly interested if tensor
networks are capable of representing them faithfully, or rather, what class of states can be
represented faithfully. For a generic quantum many body state the entanglement entropy
is typically an extensive quantity, i.e. it grows with the volume of the system, hence it
obeys volume law. However, there is a tiny subset of all states in the full Hilbert space –
ground states of local, gapped Hamiltonians (see Fig 3.7), which are most relevant from
the perspective of realistic quantum systems, and they obey the so-called area law. Area
law means that the entanglement entropy scales with the boundary area of the subsystem
under consideration.

It was strictly proven by Hastings [33] that area law holds for 1D gapped systems with
finite range of interactions, so with Hamiltonians of the form:

H =
∑

j

hj,j+1, (3.35)

which is a Hamiltonian with only nearest neighbour (NN) interactions, but any finite
number of sites can be grouped together to result in an NN Hamiltonian. The boundary
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Figure 3.7: For a generic quantum state from the full Hilbert H space
of a many body system the entanglement entropy is an extensive quantity,
however there is a tiny relevant subspace of ground states and low excited
states of local gapped Hamiltonians that obey the so-called area law for the
entanglement entropy. This means that the entanglement entropy scales
with the size of the boundary ∂A of some region, A as shown in (I). Ten-
sor networks in (II) satisfy area law by construction, as the entanglement
entropy is bounded by S(ρA) ≤ Llog(D), where D is the bond dimension
and L is the amount of bond indices, which are cut by the division of the

system into subsystem A and its complement Ac.

of a region A of 1D chain is actually just a point (one or two sites, depending on the choice
of boundary conditions), therefore, the entanglement should be bounded by a number
S(ρA) ≤ Smax. Indeed, such a number can be found [33], but it grows exponentially with
the correlation length ξ:

S(ρA) ≤ Smax = c0ξ ln(6ξ) ln(d) 26ξln(d), (3.36)

with d being the dimension of local Hilbert space at each site and a numerical constant
c0 ∝ O(1). When the correlation length diverges, the system becomes scale invariant, in
other words critical. If the critical system can be described in terms of conformal field
theory, then the whole entanglement spectrum can be calculated, and the entanglement
entropy diverges only logarithmically from the area law [70] (see Fig. 3.7).

The situation becomes a bit more complicated in two and higher dimensions, as it is
hard to prove the area law in a mathematically rigorous way. Generally, it is believed
that gapped systems with local interactions always satisfy area law. In some specific cases
it can be proven, like for the free bosonic [71] or fermionic systems [72, 73], as well as
interacting quantum systems at finite temperature and systems with sufficiently fast decay
of correlations [74]. However, there is no general proof for interacting quantum systems in
dimensions higher than one. Still, what is important from the point of view of this thesis
is that topologically ordered states obey an area law with an additive correction: αL− γ,
where γ is always positive which means that TO states are less entangled than the trivial
ones, which is due to the symmetries reducing the support of the local reduced density
matrices [75].

At the same time, Tensor Network States, both MPS and PEPS satisfy area law by
construction. Namely, for an MPS the entanglement entropy is bounded just by a number,
which depends on the bond dimension D and for PEPS it scales with the size L of the
boundary ∂A of a region A and also depends on the bond dimension D:

SMPS(ρA) ' log(D), SPEPS(ρA) ' L log(D). (3.37)
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To see this, we proceed with the construction of projected entangled pair states. A state:

|ψD〉 =
1√
D

D∑

α=1

|α〉1|α〉2 (3.38)

is a maximally entangled state of a pair of particles with D degrees of freedom. The
entanglement entropy of a reduced density matrix of 1 particle in such a state is:

ρ1 = tr2(ρD) = tr2(|ψD〉〈ψD|) =
1

D

D∑

β=1

|β〉1〈β|1

S(ρ1) = −tr(ρ1log(ρ1)) = −
∑

β

1

D
log

(
1

D

)
= log(D).

(3.39)

We create a product state of such maximally entangled pairs |ψD〉⊗n and we group the
particles in such a way that every physical lattice site is maximally entangled to its neigh-
bours:

(3.40)

Now, both MPS and PEPS tensors can be written in terms of a projector of a Hilbert
space of 2 or 4 virtual particles, which are maximally entangled to their neighbours [76,
77]. The projectors on site k are:

A[k] : CD ⊗ CD → Cd, A[k] =
d∑

ik=1

D∑

α,β=1

Aikα,β|ik〉〈α, β|, for an MPS

A[k] :
(
CD
)⊗4 → Cd, A[k] =

d∑

ik=1

D∑

α,β,γ,δ=1

Aikα,β,γ,δ|ik〉〈α, β, γ, δ|, for PEPS.

(3.41)

Then a physical state in terms of TN is given by |Ψ〉 = ⊗kA[k]|ψD〉⊗n. If the projector
A[k] is an injective map from virtual space to physical space, i.e. there exist an inverse:
A[k]−1 : Cd → CD⊗c, with c the connectivity of the network, such that A[k]−1A[k], then
the TN is called injective, or sometimes in case of an MPS pure.

The upper bound for the entanglement entropy from Eq. 3.37 follows directly from this
construction. Another way to see it is through a Schmidt decomposition of a pure state
|Ψ〉 partitioned into two subsystems A and B.

|Ψ〉 =
∑

α

λα|φα〉A|φα〉B, (3.42)

where |φα〉A, |φα〉B form orthonormal bases for Hilbert spaces, HA, HB respectively.
Schmidt decomposition always exists, which can be proven with SVD, which in terms of
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matrix components is:

Ψij =
D∑

α,β=1

UiαΛαβ(V †)βj =
D∑

α=1

Uiαλα(V †)αj , (3.43)

with isometries U, V satisfying U †U = ID and V †V = ID, where the Schmidt rank
D ≤ min(da, db) being at most the dimension of the smaller of the two Hilbert spaces
HA, HB. Assuming translational invariance TN have finite bond dimension D at each cut
and assuming maximal entanglement between the two subsystems along the boundary of
L sites as in the construction above, we obtain:

S(ρA) = −tr(ρAlog(ρA)) = −
DL∑

α=1

1

DL
log
(
D−L

)
= L log(D). (3.44)

In 1D L = 1 if A is half-infinite chain or L = 2 if the chain is periodic and the boundary
consists of 2 lattice sites, whereas in 2D L is the number of virtual degrees of freedom,
which are cut as shown in Fig.3.7. This proves an area law for MPS and PEPS.

To conclude, if a state satisfies an area law for any bipartition A,B, S(ρA) ≤ O(∂A)
then it has a faithful TN representation [78, 34, 49].

Area law suggests that all the relevant information about the entanglement in the
bulk should be contained in its boundary. Indeed, it was shown in Ref. [79] that the
entanglement spectrum ξi, defined as the logarithm of the square of Schmidt values:

|ψ〉 =
∑

i

e−
1
2
ξi |ψiA〉|ψiB〉 (3.45)

in certain cases reveals more information than just a single number – the entanglement
entropy: S =

∑
i ξiexp(−ξi) and can determine the topological order in the bulk. Specifi-

cally, the low-lying entanglement spectrum for quantum Hall states is isomorphic with the
spectrum of the corresponding Hamiltonian of the CFT at the boundary. Interestingly,
PEPS provides a very natural description of this bulk-boundary correspondence via bound-
ary density operators [80]. A reduced density matrix of half of an infinite cylinder ρc can
be written in terms of the left and right boundary density operators σL, σR respectively,
which on the other hand can be expressed by the leading eigenvectors of the PEPS transfer
matrix on the infinite cylinder:

ρc = U
√
σTLσR

√
σTLU

†, (3.46)

where the isometry U maps the virtual space of bond indices onto the physical Hilbert
space. This isomorphism can be used to calculate second Rényi entropies[81]:

Sα(ρ) =
1

1− α log (tr(ρα))
α=2−−→ −log

(
tr(σT

LσRσ
T
LσR)

)
(3.47)

for topologically ordered states, for which it was shown, on the other hand, that all Rényi
entropies are the same (for all α) and no additional information can be recovered by study-
ing the entanglement spectrum. Then, in order to extract the topological entanglement
entropy γ all methods used to extrapolate the results from the large cylinder’s width L
to zero, leading to some finite size effects, while the method introduced in Refs. [1, 2]
allows obtaining results already in the thermodynamic limit. There the additive constant
γ follows directly from the structure of the projectors onto MES and does not require any
extrapolations, which is also the reason why it does not vanish despite numerical errors, in
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contrast to methods based on extrapolations, where even the slightest perturbation break-
ing the symmetry of the tensors causes the topological order to ’break down’ with the TEE
γ → 0 [82, 83].

An alternative derivation of the formula for the second Rényi entropy can be done using
tensor networks. The reduced density operator of a half-infinite cylinder is then defined
as:

(3.48)

where the partial trace is taken on the left side of the infinite cylinder. In the second
equality, the tensor network is contracted in the y direction for better visibility. Then:

(3.49)
Here, in the second line, transfer matrix structure appears with its leading eigenvectors
σL,R. In TN the numbering of indices is a matter of convention, therefore keeping this in
mind, together with the original definition of the eigenvectors of the TM in Section 3.1, we
arrive at the same result as in Eq. 3.47.

3.4 Gauge transformations and symmetries

Tensor network representation of a state is not unique, namely different tensors Ai and Bi

(i being the physical index) may generate the same state |Ψ(A)〉 = |Ψ(B)〉. This happens,
for example, when the tensors Ai and Bi are related by a gauge transformation. Actually,
in 1D it was proven that if |Ψ(A)〉 = |Ψ(B)〉 then the tensors generating states must be
related by a gauge transformation, which goes under the name of Fundamental Theorem
of MPS [47, 48]. For a fixed physical index i the rank 3 tensors Ai, Bi become matrices
and according to the fundamental theorem of MPS there must exist a non-singular matrix
G, such that:

Ai = G ·Bi ·G−1. (3.50)

When the tensors are contracted via their bond indices, the matrices G−1G = GG−1 = 1
cancel out as shown in the Fig. 3.8(A), hence the transformation leaves the state invariant.
The same situation may happen in 2D (or higher dimensions as well) for PEPS as shown
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Figure 3.8: Gauge transformations in MPS (panel A) and PEPS (panel
B) in general change the tensor generating the state A 6= B but leave the

state invariant |Ψ(A)〉 = |Ψ(B)〉.

in Fig. 3.8(B), with a slight difference that there may exist two nonsingular matrices G,H
such that for fixed i:

Aitrbl =
∑

t′r′b′l′
Htt′Grr′B

i
t′r′b′l′H

−1
b′bG

−1
l′l . (3.51)

This may hold for certain class of PEPS [84], however according to Ref. [85] it is impossible
to prove general Fundamental Theorem of PEPS, as already for 2D translationally invariant
PEPS there is no algorithm capable of showing if the generated states |Ψ(A)〉N , |Ψ(B)〉N
on N ×N lattice are the same for any N .

A special type of gauge transformation in 1D is the one, which brings an iMPS into an
orthonormal form:

AL = L ·AL−1, where L†L = σL. (3.52)

The MPS generated by tensors AL is then called left-orthonormal, because the leading left
eigenvector of its related transfer matrix is an identity:

(3.53)
Similarly, the right-orthonormal gauge is defined:

(3.54)

And finally, the mixed-canonical gauge is the one, where we choose a central site AC , from
where all tensors to the left are left-canonical and all tensors to the right are right-canonical,
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and the tensor AC fulfils the relations:

AC = LAR = LAL−1LR = ALC = CAR,

(3.55)

These transformations are sometimes referred to as gauge-fixing, however it still leaves
the possibility of unitary gauge transformation, which does not affect the boundary eigen-
vectors, but it affects the central tensor C, for example the tensor C can be brought to the
diagonal form.

Advantages of working with a canonical gauge, especially mixed-orthonormal form,
follow directly from the fact that its related transfer matrix eigenvectors are identities,
therefore there is no need to calculate them anymore.

Numerically, MPS can be brought to orthonormal form by calculating the eigenvectors
of the MPS TM and then decomposing it, either by diagonalization or Cholesky decompo-
sition:

σL = (U †L
√
gl) (
√
gl UL) = L†L. (3.56)

Then, however the final (left) orthonormal tensor AL is obtained according to Eq. 3.52,
where L−1 can be ill-conditioned and taking its pseudo-inverse is required. Moreover,
taking the square root of the eigenvalues gl effectively means that the error of the resulting
gauge-transformation can be several orders of magnitude larger than that of the boundary
density matrix εσ →

√
εσ, which makes this method very inefficient, however sometimes

necessary (see Ref. [3]). Therefore, whenever possible (especially in case of non-injective
MPS, with degenerate spectrum of the TM), it is better to use repeated QR decomposition
[62] until convergence, i.e. the procedure of decomposing:

L(k)A = A
(k+1)
L L(k+1) (3.57)

has to be repeated until L(k) = L(k+1) = L, with a matrix A(k)
L of dimensions Dd × D,

such that A(k)†
L A

(k)
L = 1 and Lk an upper triangular matrix of dimensions D × D. Then

the converged tensor AL is left-canonical by construction, the method does not suffer from
error magnification, and it is inverse-free. Unless the aim is to know the exact form of
the gauge transformation from Eq. 3.50, {G,G−1}. Both of these methods of finding the
gauge transformation are needed in Ref.[3] to find the exact gauge transformation, between
the product of MPO symmetries ZaZb and a single MPO symmetry Zc, according to the
equation:

Za · Zb =
∑

c

N c
abZc, (3.58)

which obeys the same fusion rules as in Eq. 2.4. This gauge transformation is called a
zipper Xc

ab, because it zips the product of iMPOs Za · Zb into a single iMPO Zc:

. (3.59)

It is important to stress that the labels a, b, c are the labels of iMPO symmetries Za,b,c and
not the labels of the indices.

46:2808816712



3.4. Gauge transformations and symmetries 33

Figure 3.9: Symmetries in tensor networks: G-symmetry denoted by black
dots representing a G matrix in (I) is a special case of MPO symmetry of
PEPS in (II) with green internal bond dimension equal to 1. In (III) green
iMPO symmetry of iPEPS when inserted along a single cut of the iPEPS
leaves the state invariant, preserving also the translational invariance, as it
can be inserted in any parallel cut. The iMPO symmetry in (III) may exist

despite the tensors not being symmetric by itself like in (II).

Staying with the topic of symmetries, another special type of gauge transformation is
a symmetry, when the transformation leaves the tensor itself invariant:

Ai = G ·Bi ·G−1 = Bi. (3.60)

These virtual symmetries in tensor networks play a crucial role in the classification of
phases, e.g. SPT phases in 1D and topological order in 2D. In 2D PEPS a symmetry
can be just a local group element - a matrix acting on the bond indices as shown in Fig.
3.9(I). However, this is a special case of an MPO with internal bond dimension 1 and in
general the MPO-symmetry of PEPS, depicted in Fig.3.9(II) can have any bond dimension
(denoted by the green indices). The MPO symmetries of iPEPS Za are crucial objects
in the study of topologically ordered systems in two dimensions with tensor networks. In
Ref. [1, 2] we show how to find them numerically from generic iPEPS. Their existence is a
necessary condition for the iPEPS to be topologically ordered. It is also a basic step in the
construction of exact correlation length zero fixed-point wave functions of string net models
with MPO-injective PEPS as shown in Ref. [86, 87, 88]. However, the exact symmetry
between tensors as shown in Fig. 3.9(II) is too restrictive from the numerical point of view,
and we relax it slightly to consider only infinite MPO symmetries along a single cut of the
iPEPS as shown in Fig. 3.9(III), which does not require keeping the tensors symmetric
in any way during the iPEPS ground state optimization. Later the symmetries are used
to check the fusion ring according to Eq. 3.58, which allows for the construction of either
projectors onto MES as in Ref. [1, 2], or zipper tensors Xc

ab as in Ref. [3], which are used
to find the F -symbols of the underlying unitary fusion category C:

. (3.61)
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3.5 Topological order with tensor networks

Initial studies of spin liquids (SL) in frustrated models, especially in the spin-1
2 Heisenberg

antiferromagnet:
H = J

∑

<i,j>

Si · Sj (3.62)

on kagome lattice (see Fig.3.10) were performed using quasi 2D DMRG on finite tori[89],
thus leading to large truncation erros [29, 90]. Since Ref. [90] 2D DMRG on long cylinders
instead became the common practice in the study of ground states of such highly frustrated
models in the possible spin liquid phase. In Ref.[90] the maximal circumference of c = 12
lattice sites allowed for correlation length ξ = 1.5 lattice spacings and concluded that the
ground state is a gapped spin liquid which could be represented by a resonating valence
bond – RVB state, first proposed by Anderson [91]. Later study [92] on cylinder with
circumference up to c = 17 lattice sites and short correlation length ξ ' 1 revealed a
gapped nonchiral Z2 spin liquid via calculation of energy gap, exponential decay of 2-
point correlation functions as well as topological entanglement entropy (TEE) yielding
γ = log(2) at the non-trivial cut across the cylinder. However, apart from few physical
arguments, it does not fully exclude the possibility of double-semion spin liquid. It was
pointed out that for unique characterization of the nature of the ground state of spin-1

2
Heisenberg antiferromagnet on kagome lattice one would need to calculate the overlaps
between minimally entangled states (MES) in different directions in order to obtain the
topological S and T matrices [22]. The big advantage of 2D DMRG on long cylinders is
that a single energy optimization naturally chooses one of the MES along the cylinder [93]
(see Fig. 3.11). On the other hand, the optimization may be biased towards only one of
the ground states, falsely suggesting no topological ground state degeneracy but at the
same time exhibiting non-trivial TEE.

The discovery of gapped Z2 SL in the kagome Heisenberg antiferromagnet, although
later challenged by the studies using iPEPS [94], started the interest in the realistic frus-
trated Heisenberg materials on different lattices and with different coupling ranges, yield-
ing chiral spin liquid in kagome Heisenberg model with second and third-nearest neighbour
(NN) interactions [95, 96], with a phase transition towards the known gapped Z2 SL in
the limit of disappearing second and third NN interactions (see Fig.3.10). The existence
of gapped Z2 SL was also confirmed in spin-1

2 J1 − J2 Heisenberg model on triangular
lattice in the intermediate range of the J2/J1 ratio. On the other hand, 2D DRMG studies
on long cylinders excluded the existence of spin liquid in the spin-1

2 honeycomb J1 − J2

Heisenberg model [97], as well as in frustrated XY models on the honeycomb lattice [98].
In the meantime a robust numerical method of characterizing topological order starting

from general lattice Hamiltonian using infinite 2D DMRG, based on the calculation of
topological S and T matrices, as well as gapless edge theory (in case of CSL) was proposed
in Ref. [99]. Together with a systematic method of accessing all topological sectors with
the iDMRG [100] it remained the method of choice to study different frustrated models,
like spin-1

2 XXZ kagome antiferromagnets, where first, second and third NN anisotropic
Heisenberg-like interactions on kagome lattice allow phase transition to the chiral semion
model [101] or bosonic fractional quantum Hall system with emerging Ising anyons in the
non-Abelian Moore-Read state [102].

Despite vast theoretical research on quantum spin liquids, their experimental realiza-
tion is generally very elusive, even up to now, due to non-existence of a single experimental
feature distinguishing QSL [103]. Materials, which are more likely to exhibit QSL at low
temperatures are those characterized by e.g. large frustration parameter or continuum ex-
citation spectra inferred from elastic and inelastic scattering measurements. Such features

48:1105049875



3.5. Topological order with tensor networks 35

Figure 3.10: Kagome, triangular and honeycomb lattices. On the kagome
lattice, red dots denote nearest neighbours to the black dot, green dots –
second NN and third NN are shown with blue dots. On kagome and tri-
angular lattices, geometric frustration (demonstrated by the arrows on the
triangular lattice: two green arrows are the lowest energy spin configura-
tions in case of antiferromagnetic interaction, but then the third red arrow
will always increase the energy, whichever direction it is placed) plays a

crucial role in the creation of so-called spin liquids.

were first observed in α-RuCl3 using polarized Raman scattering [104] and inelastic neutron
scattering experiments [105, 106, 107]. Motivated by the experimental results, Ref. [108]
performed iDMRG simulations on infinite cylinders with circumference Lcirc = 6 lattice
sites of the effective K − Γ model:

H =
∑

〈ij〉∈x

KxS
x
i S

x
j + Γx(Syi S

z
j + Szi S

y
j ) +

∑
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KyS
y
i S

y
j + Γy(S

x
i S

z
j + Szi S

x
j )+

∑

〈ij〉∈y

KzS
z
i S

z
j + Γz(S

x
i S

y
j + Syi S

x
j ),

(3.63)

with K being the Kitaev interaction and Γ symmetric-anisotropic interactions, which were
considered most likely dominant interactions in α-RuCl3. The numerical results revealed
high entanglement entropy and no sign of magnetic order for arbitrary ratio Γ/K with
ferro-like Kitaev interaction, which together with the existence of coherent two-dimensional
multi-particle excitations inferred from the transfer matrix spectrum, provided evidence
for QSL. Final experimental confirmation of the Kitaev spin liquid in α-RuCl3 compound
came with the observation of quantization of thermal Hall conductance after the parallel
magnetic field is applied [8], which opens the gap in the energy spectrum and leads to a
non-Abelian phase with chiral thermal edge current [10]. Another DMRG studies [109,
110] focused on the phase diagram of pure Kitaev model on honeycomb lattice coupled to
the magnetic field:

H =
∑

〈i,j〉

KγS
γ
i S

γ
j −

∑

i

H · Si, (3.64)

revealing gapped non-Abelian topological phase for very weak magnetic fields in the case
of ferromagnetic Kitaev interactions, HFM < 0.02, and a much more stable topologically
ordered phase for antiferromagnetic Kitaev interactions, HAFM < 0.2. Ref. [110] per-
formed their analysis on cylinders with circumference Lcirc = 6 and Lcirc = 10 lattice
sites and confirmed the existence of the non-Abelian topological phase by measurement
of topological entanglement entropy, yielding 2 Abelian anyons with quantum dimensions
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Figure 3.11: In (A) 2D DMRG on an infinite cylinder of circumference of
8 lattice sites, where an MPS has to be wrapped around the cylinder in a
snake-like pattern. Single energy minimization on long or infinite cylinders
minimizes the entanglement entropy along the cylinder, therefore it yields a
minimally entangled state. The bond dimension χ grows exponentially with
the circumference, as it has to accommodate the interactions between the
nearest neighbour sites, denoted by grey dashed lines. On the other hand,
the bonds in iPEPS in (B) connect the neighbouring sites by construction,
therefore allowing for the simulation of systems in the thermodynamic limit.

dA = 1 and one non-Abelian with quantum dimension dnA =
√

2, which corresponds to
Ising anyons. Thanks to the discretized time-evolution using matrix product operator, the
dynamical spin-structure factor can be calculated, thus providing information about the
excitation spectrum and gap opening when the magnetic field is applied, which can be
directly compared with the data from inelastic neutron scattering experiments.

Despite its remarkable success, the 2D DMRG on infinite cylinders allows for the effi-
cient analysis of topologically ordered states with correlation lengths up to ξ ' 1−2 lattice
sites, but with direct access to all minimally entangled states, as well as edge entanglement
spectra, Fig. 3.11(A). In case of competing low energy eigenstates, which are completely
different in nature, 2D DMRG may be biased towards those, which are lower in energy on
a finite system but not necessarily in the thermodynamic limit. This is probably the case
with the aforementioned Heisenberg antiferromagnet on Kagome lattice, in which case,
the recent study with a variant of 2D TNS favours gapless SL with U(1) symmetry in the
thermodynamic limit [94]. There, it is also argued that enforcing symmetries of tensors in
the ground state optimization may in fact lead to the excited states.

Therefore, a natural extension of an unbiased method of determining topological order
to 2D systems with arbitrary long correlation length was desirable and could be achieved
with a tensor network, which is 2D by construction – infinite PEPS, Fig. 3.11(B). However,
unlike in 2D DMRG case, single energy optimization of iPEPS leads to a superposition of
different MES along different directions, hence the first step towards the characterization
of topological order with iPEPS has to be the extraction of different degenerate anyonic
sectors before the calculation of modular data (topological S and T matrices). This task
was accomplished for Abelian anyon models in Ref.[1] as well as non-Abelian ones in Ref.
[2] by algebraic manipulations of variationally optimized iMPO symmetries of iPEPS (see
section 3.4, Fig. 3.9(III)), where the correct modular data can be obtained for models with
correlation lengths an order of magnitude larger than with 2D DMRG, ξ ' 10− 15.

In the meantime, a similar study of Z2 topological order via unbiased iPEPS simulations
appeared [111]. There is also no a priori imposed symmetry of the tensors, like in Refs.
[112, 113, 114], but instead after the iPEPS optimization the PEPS tensors are brought to a
gauge in which they exhibit an approximate virtual Z2 symmetry and later are additionally
symmetrized to obtain a stable topological order with non-trivial TEE also for very large
cylinder sizes.
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Although modular data does not uniquely determine all possible topological orders [21],
it is sufficient in case of most common models analysed in Ref.[1, 2]. Indeed, the unequiv-
ocal description of topological order starting from iPEPS can be obtained by application
of fundamental theorem of MPS [47] to variationally optimized iMPO symmetries Za and
extraction of F -symbols of the underlying unitary fusion category (see section 2.3), from
the associativity of multiplication of iMPO symmetries – the task accomplished in Ref.[3].

The analysis of topological order with iPEPS was tested on many non-chiral exam-
ples, and it is not yet known whether there exist an iPEPS description of a gapped chiral
topologically ordered state. On the contrary, there exist a no-go theorem [115] prohibiting
existence of a gapped fermionic Gaussian PEPS, however it does not imply criticality in
the interacting case. While Refs. [116] and [117] made an approach towards the descrip-
tion of the chiral non-Abelian topologically ordered ground state of Kitaev Spin Liquid,
our analysis in Ref. [2] shows that the ansatz for the chiral topological order from Ref.
[116] rather describes an Abelian toric code phase. A more promising ansatz is given in
Ref. [117], where the Kitaev model on a honeycomb-triangular lattice is studied and the
numerically obtained edge entanglement spectrum is consistent with the theoretical ex-
pectations for the non-Abelian Ising anyons. However, according to Ref. [118] the gap
opens in the second order perturbation expansion, yielding the non-Abelian anyons while
Ref. [117] takes into account terms in the first order in their ansatz. However, Ref. [119],
claims to have used successfully the ansatz from Ref. [116] in order to simulate K−Γ−Γ′

model. As the Kitaev model itself is not enough to capture all possible interactions in
α-RuCl3, which displays zig-zag (ZZ) magnetic order at low temperatures, the minimal
models considered in the theoretical studies are K − Γ − Γ′ and K − Γ − J3, where K
stands for Kitaev interactions, Γ is the anisotropic-symmetric interaction as in Eq. 3.63,
and interactions responsible for the ZZ ordering: anisotropic Γ′ or Heisenberg interaction
J3.

H =
∑

<ij>γ

Hγ
ij , Hγ

ij = −h

3
· (Si + Sj) +KSγi S

γ
j + Γ(Sµi S

ν
j + Sνi S

µ
j )+

Γ′(Sµi S
γ
j + Sγi S

µ
j + Sνi S

γ
j + Sγi S

ν
j ),

(3.65)

where < ij > denotes nearest neighbour on the bonds γ = x, y, z, with (γ, µ, ν) forming
cyclic permutations of (x, y, z). In Ref.[119] Γ′ is small, the Kitaev interaction is ferro-
magnetic K < 0 while the Γ > 0 is antiferromagnetic, which are relevant interactions for
α-RuCl3 compound. The optimization, using imaginary time evolution, and measurements
of energy, magnetization and plaquette operator of the Kitaev model [10] reveals 5 distinct
phases, among which a small region of phase diagram correspond to the chiral KSL phase
(KSL regime seems to be smaller than the one revealed by previous studies with ED and
DRMG, suggesting that finite sizes of the cylinders strongly influence the results). The
focus of Ref. [119] is however on the exact phase diagram of the K−Γ−Γ′ model and the
only indicator of the chiral KSL seems to be the plaquette operator:

Wp = σx1σ
y
2σ

z
3σ

x
4σ

y
5σ

z
6 ≈ 1, (3.66)

and no magnetization m < 1
2 , which again just puts this phase into the general spin-liquid

box.
It still remains unclear whether iMPO symmetries can be applied to chiral topological

order, and it is to be seen whether the method introduced in [1, 2], based on the calculation
of topological S and T matrices, is capable of determining chiral topological order or not.
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Chapter 4

Articles

To summarize all the scattered information about the following articles [1, 2, 3] throughout
the previous chapters, let me conclude with the main results.

In the following, we provide a robust numerical method of determining topological
order, starting from a lattice Hamiltonian, without a priori assuming any symmetries,
which could potentially influence the result and in the thermodynamic limit to avoid finite-
size effects. We use iPEPS TN methods to find the ground state |Ψg〉 of a Hamiltonian of
interest and use the iMPS techniques to contract and analyse the resulting state. The choice
of iPEPS in contrast to 2D DMRG allows working with states which have a correlation
length order of magnitude larger ξPEPS ≈ 10 ξMPS . Moreover, TN representation of
the topologically ordered ground state provides enough information to fully characterize
the phase of the system, together with its excitations, due to the direct access to the
entanglement properties, so that all the states exhibiting no long-range order do not have
to be put into the same spin liquid box.

In the first two articles [1, 2] we determine the topological order via modular data
(S, T, c) introduced in Section 2.2, while in the third article we show how to calculate the
F symbols of the underlying unitary fusion category introduced in Section 2.3. The first
steps in both cases are the same. We proceed by numerically finding the iMPO symmetries
Za of the iPEPS ground state |Ψg〉, which are operators acting between different boundary
fixed points |vL,Ri ) of the iPEPS transfer matrix Ω:

Ω =

n∑

i=1

|vRi )(vLi | ⇒ ∀a Za|vL1 ) = |vLa ), (Za)
T |vR1 ) = |vRā ) (4.1)

where n is the degeneracy of Ω and we admit the situation that the action of Za on the
left eigenvector |vL1 ) in general is not the same as the action of the transpose (Za)

T on the
right eigenvector |vR1 ), hence the label ā. The multiplication of iMPO symmetries forms
the fusion ring:

ZaZb =
∑

c

N c
abZc, (4.2)

where the coefficients N c
ab correspond to the fusion rules of anyons of the input category.

This data is not yet enough to distinguish different topological orders, e.g. toric code and
double semion models. From this point, the two methods diverge. In the case of modular
data, the fusion ring in Eq. 4.2 allows constructing projectors Pa onto minimally entangled
states in one of the directions on the torus. Due to the fact that initial degeneracy n of
iPEPS TM Ω is not yet the full degeneracy of |Ψg〉, we need to project onto one of the MES
in one direction to gain access to the full spectrum in the other direction. Therefore, we
introduce the impurity transfer matrix Ω̃, where the impurities are the iMPO projectors
Pa inserted into iPEPS bond indices and repeat the previous steps of finding the impurity
eigenvectors |ṽi〉, and impurity iMPO symmetries and finally all the projectors P̃a onto all
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MES {|Ψ̃〉}:
|Ψg〉

Ω, |vi〉, Za−−−−−−−→ {|Ψa〉}na=1
Ω̃, |ṽi〉, Z̃a−−−−−−−→ {|Ψ̃a〉}. (4.3)

We perform the procedure on different tori, related by a modular st transformation in
order to calculate overlaps between all the MES on those tori, which yields the topological
S and T matrices:

(S · T )ab = 〈Ψ̃st
b |Ψ̃a〉. (4.4)

In the second method, after finding the iMPO symmetries Za and their fusion rules, we
find the gauge transformation, so-called zipper tensors Xc

ab, which fuse a product of two
iMPO symmetries ZaZb into a single iMPO Zc:

(Xc
ab)
−1 (ZaZb) X

c
ab = Zc (4.5)

Then, using the associativity condition we calculate the F -symbols of the UFC C:

(ZaZb)Zc = Za(ZbZc) ⇒ (Xe
ab ⊗ 1c)X

d
ec =

∑

f

F abcdef (1a ⊗Xf
bc)X

d
af . (4.6)

Later, purely algebraic manipulations allow us to obtain the center of the UFC Z(C) and
again topological S and T matrices.

We successfully applied the first methods to both Abelian: toric code and double
semion fixed point string-net models, toric code string net model with perturbation as
well as the Kitaev model on honeycomb lattice in the gapped regime, and non-Abelian
models: fixed point and perturbed double Fibonacci and double Ising models, yielding
correct modular data with a good accuracy. As a direct consequence of having the explicit
formulas of the projectors onto MES we were able to obtain precise results of topological
entanglement entropy γ without the need of extrapolations. The second method seems
even simpler, because it consists of fewer steps and apart from the first step of calculating
the eigenvectors of the iPEPS TM, it uses only methods of 1D tensor networks. Similarly,
as the first method, it was successfully applied to the aforementioned models, as well as
the twisted quantum double of Z3 string-net model and two different representation of
quantum double of S3 string-nets.
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We present a method of extracting information about the topological order from the ground state of a strongly
correlated two-dimensional system computed with the infinite projected entangled pair state (iPEPS). For
topologically ordered systems, the iPEPS wrapped on a torus becomes a superposition of degenerate, locally
indistinguishable ground states. Projectors in the form of infinite matrix product operators onto states with
well-defined anyon flux are used to compute topological S and T matrices (encoding mutual and self-statistics
of emergent anyons). The algorithm is shown to be robust against a perturbation driving string-net toric code
across a phase transition to a ferromagnetic phase. Our approach provides accurate results near quantum phase
transition, where the correlation length is prohibitively large for other numerical methods. Moreover, we used
numerically optimized iPEPS describing the ground state of the Kitaev honeycomb model in the toric code phase
and obtained topological data in excellent agreement with theoretical prediction.

DOI: 10.1103/PhysRevB.101.041108

Introduction. Topologically ordered phases [1] have in
recent years attracted significant attention, mostly due to the
fact that they support anyonic excitations—exotic quasipar-
ticles that obey fractional statistics. They are of interest not
only from a fundamental perspective but also because of the
possibility of realizing fault-tolerant quantum computation [2]
based on the braiding of non-Abelian anyons. An important
challenge is to identify microscopic lattice Hamiltonians that
can realize such exotic phases of matter. Apart from a num-
ber of exactly solvable models [2–4], verifying whether a
given microscopic Hamiltonian realizes a topologically or-
dered phase and accessing its properties has traditionally been
regarded as an extremely hard task.

A leading computational approach is to use density ma-
trix renormalization group (DMRG) [5,6] on a long cylin-
der [7–20]. In the limit of infinitely long cylinders, DMRG
naturally produces ground states with well-defined anyonic
flux, from which one can obtain full characterization of a
topological order, via so-called topological S and T matrices
[21]. Since the proposal of Ref. [21], the study of topological
order by computing the ground states of an infinite cylinder
with DMRG has become a common practice [22–39].

The cost of a DMRG simulation grows exponentially
with the width of cylinder, effectively restricting this ap-
proach to thin cylinders. Instead, (infinite) projected entangled
pair states (iPEPS) allow for much larger systems [40–42].
However, (variationally optimized) iPEPS naturally describe
ground states with a superposition of anyonic fluxes. Here
we show, starting with one such PEPS, how to produce a
PEPS-like tensor network for each ground state with well-
defined flux. Such tensor networks are suitable for extracting

*Corresponding author: lcincio@lanl.gov

topological S and T matrices by computing overlaps between
ground states.

Our approach does not assume a clean realization of certain
symmetries on the bond indices, in contrast to [43–46]. It
also has much lower cost than methods based on the tensor
renormalization group [47].

In this Rapid Communication we employ a variational
method to minimize the energy of the iPEPS [48]. The op-
timized state is then wrapped on a torus and the boundary
conditions (with respect to the symmetry acting on the bond
indices of PEPS) are suitably modified to recover all anyonic
sectors. Figure 1 presents an overview of our approach. Com-
putations are performed in the limit of an infinitely large torus
allowing for accurate description of a topologically ordered
phase even for models displaying a large correlation length.
For clarity, we specialize the construction to PEPS describing
the toric code realized by a string-net model on a honeycomb
lattice [4]. The method can be applied to other Abelian anyon
models, as discussed below, and extended to non-Abelian ones
[49].

In the toric code, the entanglement spectrum along the
topologically nontrivial cut of a torus is supported on a vector
space, which is a direct sum of four sectors, corresponding to
the identity I, bosonic e and m, and fermionic ε fluxes:

V TC = V I ⊕ V e ⊕ Vm ⊕ V ε . (1)

We proceed by constructing projectors on ground states
with definite anyon flux. The projectors are optimized and
represented by matrix product operators (MPOs). When in-
serted into PEPS and wrapped on the torus, the optimal MPO
projects onto the desired ground state. Topological S and T
matrices are extracted [50,51] by calculating overlaps between
states with well-defined flux on tori related by modular trans-
formations.

2469-9950/2020/101(4)/041108(6) 041108-1 ©2020 American Physical Society
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FIG. 1. A set of states |�v〉, |�h〉, |�hv〉 is constructed from a
single PEPS |�〉 by inserting various MPOs in its bond indices. For
a topologically ordered phase (toric code on a honeycomb lattice in
this example), a proper combination of four states |�〉, |�v〉, |�h〉,
and |�hv〉 is used to construct a basis of states with well-defined
anyonic flux in a given direction. Physical indices are not drawn for
simplicity. See text for details.

Transfer matrices and their eigenvectors. PEPS for a toric
code on a honeycomb lattice may be characterized by two
tensors A and B with elements Ai

abc and Bi
abc, respectively.

Here, i is a physical index and a, b, c are bond indices. Let
A and B denote double tensors A = ∑

i Ai ⊗ (Ai )∗ and B =∑
i Bi ⊗ (Bi )∗ with double bond indices α = (a, a′), etc. [see

Fig. 2(a)]. PEPS transfer matrix (TM) � is defined by a line
of tensors A and B contracted via some of their indices, as
shown in Fig. 2(b).

For a toric code PEPS we observe that � contains a direct
sum of n = 2 topological sectors. Thus, the reduced density
matrix on the virtual indices (which is directly related to
the physical reduced density matrix [52]) at a topologically
nontrivial cut is a direct sum of two contributions

Vcut = V I ⊕ V e ⇒ ρcut = ρI ⊕ ρe (2)

(recall that the ground state degeneracy of a toric code on a
torus is n2 = 4). The use of a pure MPS [53] as an ansatz for

(a) (b)

FIG. 2. (a) Graphical representation of double tensors A and B.
(b) Left eigenvector vi of vertical TM � takes an MPO form. Vector
vi is constructed with a single tensor Mi with bond dimension χ , for
i = 1, 2 and is obtained using a boundary MPS method described in
detail in Appendix A of the Supplemental Material [55].

(a) (b)

FIG. 3. (a) Two eigenvectors v3 and v4 are obtained as pure
MPOs from v1 and v2 by introducing additional tensors X1 and X2,
which are obtained variationally. Tensors Xi are chosen such that v3

and v4 are leading eigenvectors of “impurity” TM �̃v. Double lines
are dropped to improve clarity. (b) Graphical illustration of one of
the conditions for Z̃v in Eq. (8).

the dominant eigenvectors v1, v2 of � selects a specific linear
combination of sectors. We note that only the method based
on boundary MPS (presented here) is capable of breaking
the degeneracy of the dominant eigenvectors into minimally
entangled states. Methods based on corner transfer matrix
treat vertical and horizontal directions on the same footing and
therefore will not select a minimally entangled state in a given
direction. Numerically, eigenvectors vi may be obtained using
a power method or by more advanced approaches such as the
VUMPS algorithm [54] (see Appendix A of the Supplemental
Material [55] for details). In the diagonal basis, they take the
following form:

v1 = ρI ⊕ ρe, v2 = ρI ⊕ −ρe, (3)

where we regard vector vi as an operator represented by
an MPO constructed with a single tensor Mi as shown in
Fig. 2(b). Here, ρI and ρe are boundary density matrices
in identity and bosonic sectors, respectively. For clarity, we
omitted the fact that vectors vi may contain a zero component,
that is, v1 = ρI ⊕ ρe ⊕ 0 and similarly for v2. This leads
to numerical instabilities and other complications that we
discuss in detail in Appendix A of the Supplemental Material
[55].

Matrix product description of v1 and v2 allows us to find an
operator Zv in the form of an MPO that maps v1 into v2 and
back by demanding that

v1Zv = v2, Zvv2 = v1. (4)

In the diagonal basis of Eq. (3), Zv = I ⊕ −I. We stress that
we are able to obtain the generator of the global Z2 “spin-flip”
symmetry that acts on the bond indices of PEPS, even though
the symmetry is not realized on site. In other words, PEPS
tensors A and B do not have to be symmetric, as required in
[43–46], for our construction to work.

Similarly, we define horizontal TM �h and obtain its n = 2
degenerate leading eigenvectors h1 and h2. Again, we are able
to find an operator Zh such that

h1Zh = h2, Zhh2 = h1. (5)

Finally, we build vertical “impurity” TM �̃v by inserting
the Zh operator on a horizontal cut of PEPS, as shown in
Fig. 3(a). Zh implements antiperiodic boundary conditions
with respect to Z2 “spin-flip” symmetry acting in the PEPS
bond indices. Note that, even if the Z2 symmetry is not

041108-2
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FIG. 4. Three tori A, B, and C on a honeycomb lattice considered
in our method. Torus A is defined by a pair of vectors (w1, w2).
Each torus is obtained by st modular transformation from another
torus. Transformation st corresponds to 120◦ rotation, (st)3 = I.
The described approach requires 120◦ rotation symmetry of the lat-
tice. Generalization to other symmetries is straightforward. Physical
indices are not drawn for simplicity.

realized on site, we still know that Zh changes the boundary
conditions from periodic to antiperiodic. Thus, inserting Zh

allows us to access two remaining sectors

Ṽcut = Vm ⊕ V ε ⇒ ρ̃cut = ρm ⊕ ρε. (6)

As expected, we find n = 2 leading eigenvectors of �̃v that
in some basis take the form

v3 = ρm ⊕ ρε, v4 = ρm ⊕ −ρε. (7)

Eigenvectors v3 and v4 are obtained as pure MPOs [53]
from v1 and v2 by allowing for additional tensors Xi, as
depicted in Fig. 3(a). Note that tensors Xi are obtained vari-
ationally. In the limit of vanishing correlation length ξ in the
toric code PEPS studied here, the above ansatz for v3 and v4

becomes exact. In other models, bond dimension χ of all vi

is increased to account for potentially large ξ . Our ansatz is
validated by the results presented below. There, the correlation
length ξ ≈ 25 does not significantly impact the quality of the
final result (see Fig. 5 and the discussion below it).

Z2 symmetry acting on the antiperiodic sectors is realized
by an operator Z̃v satisfying

v3Z̃v = v4, Z̃vv4 = v3. (8)

The construction of Z̃v mirrors that of v3 and v4. Z̃v is
obtained from Zv by allowing for additional variational tensor
F . Figure 3(b) shows one condition from Eq. (8) that is used
to compute F . F is one of the generators of C∗ algebra, from
which central idempotents can be found [44].

Appendix A of the Supplemental Material [55] details
some numerical issues associated with finding vectors vi,
i = 1, . . . , 4 as well as solving Eqs. (4) and (8).

Projectors onto definite anyon fluxes. Symmetry group
generators Zv and Z̃v can be used to construct ground states
with well-defined flux in the horizontal direction. Recall that

FIG. 5. Correlation length ξ as a function of perturbation
strength λ and a bond dimension χ of the TM eigenvectors vi. In-
creasing χ reveals a quantum phase transition at λ = 0.137 . . . 0.138.
It separates toric code and ferromagnetic phases.

Zv realizes Z2 symmetry in the periodic sector V I ⊕ V e.
Operators P± = (I ± Zv)/2 are thus projectors on definite
anyonic sectors and states

|�I〉 ∼ |�〉 + |�v〉 , |�e〉 ∼ |�〉 − |�v〉 (9)

have well-defined identity and electric flux in the horizontal
direction, respectively. Note that projectors P± do not act on
the physical Hilbert space. Instead, they are defined on the
bond indices of PEPS. The above construction is summarized
in Fig. 1. Here, |�〉 denotes the initial PEPS state and |�v〉 is
the state obtained by inserting Zv into bond indices of PEPS
that defines |�〉. We remark that projectors P± play the same
role as projector MPO’s in the construction of MPO-injective
PEPS [44].

Similarly, Z̃v generates the Z2 symmetry group in the
antiperiodic sector Vm ⊕ V ε . It defines projectors P̃± = (I ±
Z̃v)/2. States with well-defined magnetic |�m〉 and fermionic
|�ε〉 flux are obtained by first changing the boundary condi-
tions on the bond indices with Zh and then projecting onto the
proper subspace. That is,

|�m〉 ∼ |�h〉 + |�hv〉, |�ε〉 ∼ |�h〉 − |�hv〉, (10)

where |�h〉 stands for |�〉 with Zh inserted and |�hv〉 denotes
|�h〉 that has Z̃v embedded in together with the tensor F .
Figure 1 summarizes the construction of |�h〉 and |�hv〉.

Topological S and T matrices. States |� i〉 with well-
defined flux i = I, e, m, ε are used to calculate topological
S and T matrices. The T matrix is diagonal and stands for
self-statistics, while the S matrix encodes mutual statistics.
Together they form a representation of a modular group
SL(2,Z), by which they are related to the modular trans-
formations of a torus generated by s and t transformations
[56]. It follows that overlaps between |� i〉 transformed by
a combination of modular transformations s and t constitute
entries of a corresponding combination of topological S and
T matrices.

Throughout this Rapid Communication, for concreteness,
we work with the transformations on a lattice with 120◦
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rotational symmetry. The construction is, however, general
and applicable to lattices with other symmetries as well. We
start by defining torus A in Fig. 4 with unit vectors w1,w2 and
corresponding transfer matrices: vertical (w1, Nvw2) and hor-
izontal (Nhw1,w2) [see Fig. 2(b) for comparison]. Similarly,
we consider tori B and C together with their corresponding
transfer matrices as shown in Fig. 4.

Our method requires finding three complete sets of ground
states{∣∣� i

A
〉}

,
{∣∣� i

B
〉}

,
{∣∣� i

C
〉}

, i = I, e, m, ε (11)

with well-defined anyon fluxes corresponding to three dif-
ferent tori: A, B, C. Each torus is related to the previous
one by a modular transformation st, which generates 120◦
counterclockwise rotation (see Fig. 4). Topological S and T
matrices are extracted from all possible overlaps between
states in (11). This computation is presented in [51] and
described in Appendix B of the Supplemental Material [55].
We stress that the presented method does not require any
rotational invariance of the iPEPS tensors.

Toric code versus double semion and quantum double of
Z3. PEPS tensors that represent ground states of string-net
models on a honeycomb lattice with zero correlation length
can be found analytically [4,57]. As a proof of principle, we
numerically obtain topological S and T matrices for the toric
code and the double semion model. Moreover, the described
method gave exact S and T matrices for the quantum double
of Z3 model defined on a square lattice [58]. In this Rapid
Communication we restrict the description to the toric code
phase realized in the (i) perturbed string-net model and (ii)
Kitaev honeycomb model for which we analyze the iPEPS
ground state obtained by numerical energy optimization.

Perturbed string-net model. In order to drive the iPEPS
away from the fixed point with zero correlation length, we
apply a perturbation e−λV towards a ferromagnetic phase
similarly as in [59–61] but with a two-site interaction V =
−∑

〈i, j〉 σ x
i σ x

j (see Appendix C of the Supplemental Material
[55]).

Our method allows us to obtain accurate results even close
to the critical point, in the regime of very long correlation
lengths ξ (see Fig. 5). Indeed, for λ = 0.136, where ξ ≈ 25,
we obtain S = Stc + εS , T = Ttc + εT , where

Stc = 1

2

⎛
⎜⎜⎜⎝

1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

⎞
⎟⎟⎟⎠,

Ttc =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎟⎠. (12)

The maximal element of |εS| and |εT | is of the order of 10−3

and 10−8, respectively.
In the ferromagnetic phase we find two eigenvectors of

TM �, v1 = ρ1 ⊕ 0 and v2 = 0 ⊕ ρ2. However, in contrast to
the topologically ordered phase described by Eq. (4), there is
no operator that maps v1 to v2. Numerically, this situation is

FIG. 6. Correlation length ξ as a function of Jx = Jy in the Kitaev
honeycomb model. Results for several values of bond dimension χ

of TM eigenvectors vi are shown. Inset: graphical illustration of the
Hamiltonian defined in Eq. (13) displaying three different types of
coupling: x, y, and z.

detected by monitoring the distance (per lattice site) between
v1Zv and v2. In the topologically trivial phase the distance
converges to a finite value with growing bond dimension of
vi.

Kitaev honeycomb model. The model is defined by the
following Hamiltonian:

H = −
∑

α=x,y,z

Jα

∑
α links

σα
i σα

j (13)

on a honeycomb lattice. Here, σα
i , α = x, y, z are Pauli matri-

ces acting on site i. We set Jz = 1 and study the model along
the line Jx = Jy ∈ (0, 0.5) (see Fig. 6). The iPEPS ground
state is obtained using variational optimization. We find that
the bond dimension χ = 4 of boundary MPO’s vi suffices to
faithfully capture the entanglement properties of the phase.

We obtain correct topological S and T matrices within very
small error. We are able to uniquely determine the anyon
model for a range of parameters Jx = Jy ∈ [0.2, 0.48]. Most
notably for Jx = Jy = 0.44, which is close to the critical point
at Jx = Jy = 0.5, we compute topological matrices S = Stc +
εS , T = Ttc + εT , where the maximal element of |εS| (|εT |)
is 1.3 × 10−3 (2.2 × 10−3). The errors |εS|, |εT | grow with
increasing J , however stay below 4% in the interval Jx =
Jy ∈ [0.2, 0.48]. This accuracy is sufficient to unambiguously
determine the type of topological order.

Conclusions. We presented a method of identifying topo-
logical order from a microscopic lattice Hamiltonian that does
not have explicit limitations on the size of the system. The
method is based on extracting topological S and T matrices
from a single iPEPS. Our techniques allow us to analyze
systems with much bigger correlation length than the state-
of-the-art two-dimensional DMRG. Finally, we analyzed nu-
merically optimized iPEPS describing the ground state of the
Kitaev honeycomb model in the toric code phase. This compu-
tation shows that our approach does not require an artificially
implemented realization of topological symmetries. Instead, it
is applicable to generic, variationally obtained iPEPS.
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We generalize the method introduced in Phys. Rev. B 101, 041108 (2020) of extracting information about
topological order from the ground state of a strongly correlated two-dimensional system represented by an
infinite projected entangled pair state (iPEPS) to non-Abelian topological order. When wrapped on a torus
the unique iPEPS becomes a superposition of degenerate and locally indistinguishable ground states. We find
numerical symmetries of the iPEPS, represented by infinite matrix product operators (MPO) and their fusion
rules. The rules tell us how to combine the symmetries into projectors onto states with well defined anyon
flux. A linear structure of the MPO projectors allows for efficient determination for each state its second Renyi
topological entanglement entropy on an infinitely long cylinder directly in the limit of infinite cylinder’s width.
The same projectors are used to compute topological S and T matrices encoding mutual and self-statistics of
emergent anyons. The algorithm is illustrated by examples of Fibonacci and Ising non-Abelian string net models.

DOI: 10.1103/PhysRevB.102.235112

I. INTRODUCTION

Topologically ordered phases [1] support anyonic quasi-
particles. They open the possibility of realizing fault-tolerant
quantum computation [2] based on braiding of non-Abelian
anyons. Apart from a number of exactly solvable mod-
els [2–4], verifying whether a given microscopic Hamiltonian
realizes a topologically ordered phase has traditionally been
regarded as an extremely hard task. Recently, observation
of quantized Hall effect in Kitaev-like ruthenium chloride
α-RuCl3 in magnetic field [5] granted the problem with urgent
experimental relevance.

A leading numerical method is to use density matrix renor-
malization group (DMRG) [6,7] on a long cylinder [8–23].
In the limit of infinitely long cylinders, DMRG naturally
produces ground states with well-defined anyonic flux, from
which one can obtain full characterization of a topological
order, via so-called topological S and T matrices [24]. Since
the proposal of Ref. [24], this approach has become a common
practice [25–42].

Unfortunately, the cost of a DMRG simulation grows ex-
ponentially with the circumference of cylinder, limiting this
approach to thin cylinders (up to a width of �14 sites) and
short correlation lengths (up to 1–2 sites). Instead, infinite
projected entangled pair states (iPEPS) in principle allow for
much longer correlation lengths [43–45]. A unique ground
state on an infinite lattice can be represented by an iPEPS
that is either a variational ansatz [46] or a result of numerical
optimization [47,48]. When wrapped on a cylinder the iPEPS
becomes a superposition of degenerate ground states with
definite anyonic fluxes. Here we generalize the approach of
Ref. [48] to non-Abelian topological order and show how to
produce a PEPS-like tensor network for each ground state

*Corresponding author: anna.francuz@uj.edu.pl

with well-defined flux. Such tensor networks are suitable for
extracting topological S and T matrices by computing over-
laps between ground states. Furthermore, we show that they
allow for computation of topological second Renyi entropy
directly in the limit of infinite cylinder’s width. The approach
of Ref. [48] does not assume clean realization of certain
symmetries on the bond indices, in contrast to Refs. [49–52].
This has been demonstrated in Ref. [48] by examples of toric
code and double semions perturbed away from a fixed point
towards a ferromagnetic phase as well as for the numerical
iPEPS representing the ground state of the Kitaev model in
the gapped phase. The last example shows that the method
does not require restoring the symmetries by suitable gauge
transformations of a numerical iPEPS, a feat that was accom-
plished in Ref. [53] for the toric code with a perturbation.
Finally, it also has much lower cost than methods based on
the tensor renormalization group [54].

The ferromagnetic Kitaev model in a weak (1,1,1)
magnetic field supports non-Abelian chiral topological or-
der [3,23] and Ref. [5] is believed to provide the first
experimental realization of this universality class. However,
as the magnetic field is a tiny perturbation of a critical state,
the correlation length should be long [46]. This drives the
problem beyond accurate DMRG simulation on a thin cylinder
and, therefore, the non-Abelian phase observed in the experi-
ment [5] may require iPEPS for its accurate description.

In this work we consider mainly string-net models. The key
elements of the method introduced in Ref. [48] are shown in
Fig. 1. Virtual indices of iPEPS on a torus or cylinder can
be inserted with horizontal/vertical matrix product operator
(MPO) symmetries. Their action on iPEPS is the same as flux
operators(Wilson loops) winding around the torus in the same
horizontal/vertical direction. However, the MPO symmetries
are much easier to find than the nonlocal operators that—in
interacting systems—become complicated operator ribbons
rather than simple strings. Just as projectors on definite anyon

2469-9950/2020/102(23)/235112(13) 235112-1 ©2020 American Physical Society
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FIG. 1. General picture. From the unique ground state on an infi-
nite lattice represented by an iPEPS |�〉, we construct various states
inserted with MPO symmetries. Their linear combinations, whose
coefficients are determined by fusion rules of the MPO symmetries
Zh,v (corresponding to anyonic fusion rules), become a basis of states
with well defined anyonic flux. Here physical indices are not drawn
for simplicity.

fluxes could be in principle constructed as linear combinations
of flux operators, virtual projectors can be made as combina-
tions of the MPO symmetries.

The paper is organized in Secs. II–VIII where we gradually
introduce subsequent elements of the algorithm. Most sections
open with a general part introducing a new concept. Then a
series of subsections follows illustrating the general concept
with a series of examples: the Abelian toric code (to make
contact with Ref. [48]), Fibonacci string net, and Ising string
net. In the end the algorithm is summarized in Sec. IX. Addi-
tionally, in Appendix E we apply some of the same tools to a
variational ansatz proposed for the Kitaev model in magnetic
field [46]. A detailed plan is as follows.

In Sec. II we define fixed points of the iPEPS transfer ma-
trix in the form of MPS and introduce MPO symmetries that
map between different fixed points. We also identify fusion
rules of the MPO symmetries that are isomorfic with anyonic
fusion rules. In Sec. III we consider an iPEPS wrapped on an
infinite cylinder—that we visualize as horizontal without loss
of generality—and use the fusion rules to construct vertical
projectors on states with definite anyon flux along the horizon-
tal cylinder. In Sec. IV we consider again an iPEPS wrapped
on an infinite cylinder but this time the iPEPS is inserted with
a horizontal MPO symmetry that alters boundary conditions
in the vertical direction. We construct its vertical MPO sym-
metries that we call impurity MPO (IMPO) symmetries. We
also identify their fusion rules. In Sec. V the fusion rules are
used to construct vertical projectors as linear combinations of
the IMPO symmetries. The impurity projectors select states
with definite horizontal anyon flux in the iPEPS inserted with
the horizontal MPO symmetry. In Sec. VI we show how the
structure of vertical projectors enables efficient evaluation of

(c)

(b)

(a)

FIG. 2. Transfer matrix. In (a), graphical representation of a dou-
ble tensor A. In (b), leading left eigenvector (vL

i | of vertical transfer
matrix �v takes an MPO form vL

i . The uniform vL
i is made of tensors

ML
i with bond dimension χ that can be obtained with the VUMPS

algorithm [55,56]. In (c), up eigenvector vU
i of horizontal TM �h.

the topological second Renyi entanglement entropy directly
in the limit of infinite cylinder’s width. In Sec. VII the same
is done with impurity projectors. Finally, in Sec. VIII we
show how to obtain the topological S and T matrices from
overlaps between states with definite anyon flux. In the case
of string net models they provide full characterization of the
topological order. The paper is closed with a brief summary in
Sec. IX.

II. GENERATORS OF SYMMETRIES

Uniform iPEPS on a honeycomb lattice can be character-
ized by a tensor A with elements Ai

abc. Here, i is a physical
index and a, b, c are bond indices. Let A denote a double ten-
sor A = ∑

i Ai ⊗ (Ai )∗ with double bond indices α = (a, a′),
etc., see Fig. 2(a) and Appendix B. iPEPS transfer matrix
(TM) � is defined by a line of double tensors A contracted
via their bond indices along the line as shown in Figs. 2(b)
and 2(c). These figures show vertical TM �v and horizontal
TM �h, respectively. Their leading eigenvectors are TM fixed
points. In the thermodynamic limit only the leading eigenvec-
tors survive in TM’s spectral decomposition:

�v ≈ ω

n∑
i=1

∣∣vR
i

)(
vL

i

∣∣, �h ≈ ω

n∑
i=1

∣∣vU
i

)(
vD

i

∣∣. (1)

The leading eigenvalue ω is the same for both vertical and
horizontal TM. The leading eigenvectors are biorthonormal:

δi j = (
vL

i

∣∣vR
j

) = Tr
(
vL

i

)T
vR

j , (2)

δi j = (
vU

i

∣∣vD
j

) = Tr
(
vU

i

)T
vD

j . (3)

Here we use both the MPS |vi) and MPO vi forms. MPS |vi )
is MPO vi between bra and ket indices of the double iPEPS
TM. The ansatz for a fixed point boundary vX

i is a pure MPO
with spectral radius 1 [57] made out of tensors MX

i .
Different fixed points are connected by symmetries whose

existence is a distinctive feature of topologically ordered
states encoded in iPEPS. In contrast, in the trivial ferro-
magnetic phase the two boundary fixed points, v↑ and v↓,
corresponding to two different magnetizations have orthog-
onal support spaces and, therefore, the operator mapping
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between them does not exist. The symmetries act on virtual
indices of the tensor network. They are called MPO symme-
tries and, apart from a few exactly solvable models for which
they can be found analytically [49], they have to be found
numerically as described in Ref. [48]. The MPO symmetries
Za are operators which form certain algebra under their multi-
plication:

ZaZb =
∑

c

Nc
ab Zc, (4)

where the possible values of Nc
ab are 0,1. Each MPO symmetry

Za (including the trivial identity Z1 ≡ 1) corresponds to a
certain anyon type a in a sense that their algebra is the same
as the fusion rules of the anyons, see Appendix A. Once all
boundary fixed points vi are found numerically, the MPO
symmetries zi j are obtained as MPO’s mapping between the
boundaries:

vi · zi j = v j . (5)

The same set of symmetries exists for L/R and U/D boundary
fixed points. We completed these numerical procedures in the
following models.

A. Toric code

We begin with this basic example to make contact with
Ref. [48] where the Abelian version of the present method was
applied to this model and its realistic implementation with the
Kitaev model [3]. Each TM has two boundary fixed points. To
be more specific, for vertical transfer matrix �v in addition
to Zv

1 = 1 we find numerically one nontrivial MPO symmetry
zv

12 = zv
21 ≡ Zv

2 that satisfies

vL
1 · Zv

2 = vL
2 , vL

2 · Zv
2 = vL

1 . (6)

These equations imply Z2 algebra:

Zv
2 · Zv

2 = 1. (7)

It has to be strongly emphasized that in general the numerical
solution Zv

2 of equation (6) has zero modes that make the
algebra valid only in the sense that vL

i · Z2 · Z2 = vL
i for any

i. The same reservation applies to all fusion rules (4) to be
identified numerically in the rest of this paper. This is also why
all (numerically obtained) MPO symmetries throughout the
paper are used only in iPEPS embedding: The zero modes do
not matter when inserted between columns/rows of an iPEPS.
Keeping this in mind, for all fixed point tensors considered in
this paper the algebra (4) is satisfied with close to machine
precision.

B. Fibonacci string net

Here we employed the iPEPS tensors for a fixed point
Fibonacci string net model presented in Appendix B. For each
TM we found numerically two boundary fixed points and one
nontrivial MPO symmetry Z2 satisfying, e.g.,

vL
1 · Zv

2 = vL
2 . (8)

The same MPO was found to satisfy also

vL
2 · Zv

2 = vL
1 + vL

2 . (9)

These two equations imply the Fibonacci fusion rule

Zv
2 · Zv

2 = 1v + Zv
2 . (10)

Again, due to zero modes, the rule holds only when applied to
iPEPS boundaries. Similar MPO symmetries were also found
for the horizontal boundary fixed points.

C. Ising string net

Here we employed the iPEPS tensors for a fixed point Ising
string net model presented in Appendix B. This time each
TM has three boundary fixed points. We found two nontrivial
MPO symmetries, labeled as Zσ and Zψ , as numerical solu-
tions to equations, e.g.,

vL
1 · Zv

σ = vL
2 , vL

1 · Zv
ψ = vL

3 . (11)

Furthermore, we found that the solutions satisfy

vL
2 · Zv

σ = vL
1 + vL

3 , vL
3 · Zv

ψ = vL
1 ,

vL
2 · Zv

ψ = vL
2 , vL

3 · Zv
σ = vL

2 . (12)

These six equations imply nontrivial fusion rules:

Zv
σ · Zv

σ = 1v + Zv
ψ,

Zv
σ · Zv

ψ = Zv
σ = Zv

ψ · Zv
σ , (13)

Zv
ψ · Zv

ψ = 1v,

which justify the labeling. For our numerical Zv
ψ and Zv

σ the
rules hold only when applied to vL

i . Similar MPO symmetries
were also found for the horizontal boundary fixed points.

III. VERTICAL PROJECTORS

The MPO symmetries alone are enough to construct some
of the projectors on states with definite anyon fluxes. Let us
consider vertical MPO symmetries Zv

a for definiteness. Their
linear combinations

P =
∑

a

caZv
a , (14)

which satisfy P · P = P, make vertical projectors. When these
projectors are inserted into iPEPS wrapped on an infinite
horizontal cylinder, they yield states with definite anyon fluxes
along that cylinder. The remaining projectors that can be ap-
plied when the iPEPS is inserted with a line of Zh are the
subject of the following section.

A. Toric code

The Z2 algebra (7) allows for two projectors,

P± = 1
2

(
1 ± Zv

2

)
, (15)

that satisfy P± · P± = P± and P+ · P− = 0 = P− · P+. Later on
they will be identified as P+ ≡ Pvac and P− ≡ Pe, i.e., projec-
tors on the vacuum and the electric flux, respectively.

B. Fibonacci string net

The fusion rules (10) determine two projectors:

P± = 1√
5

(
φ±11 ∓ Zv

2

)
. (16)
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(a) (b)

FIG. 3. Impurity transfer matrix. In (a), with Zh inserted into
both bra and ket layers of the iPEPS the transfer matrix �v becomes
impurity transfer matrix �̃v . Its leading left eigenvectors (xL| are
obtained from MPOs from vL by inserting additional tensors XL .
Here double lines are dropped to improve clarity. In (b), graphical
illustration of Eq. (22).

Here φ = (
√

5 + 1)/2. They will be identified as P+ ≡ Pvac

and P− ≡ Pτ τ̄ , i.e., projectors on the vacuum and the sector
with both Fibonacci anyons: τ and τ̄ .

C. Ising string net

The fusion rules (13) allow for six projectors:

P1,2 = 1

2

(
1v ± Zv

ψ

)
, (17)

P3,4 = 1

4

(
3 1v − Zv

ψ

) ± 1√
8

Zv
σ , (18)

P5,6 = 1

4

(
1v + Zv

ψ

) ± 1√
8

Zv
σ . (19)

Not all of them are the minimal projectors on definite anyon
flux. It is easy to check that P3 · P4 = P2 and, therefore, out
of the three it is enough to keep only P2. Furthermore, we
can see that P5 + P6 = P1 hence we can skip P1. After this
selection we are left with three minimal projectors P2,5,6 that
satisfy Pa · Pb = Paδab. They will be identified as P5 ≡ Pvac,
P6 ≡ Pψψ̄ , and P2 ≡ Pσ σ̄ .

IV. IMPURITY MPO SYMMETRIES

In order to construct the remaining projectors that are to
be applied to an iPEPS inserted with a nontrivial horizontal
MPO symmetry Zh, we need to introduce an impurity transfer
matrix (ITM), see Fig. 3(a). In general ITM has a number
of leading left and right eigenvectors, respectively (xL

i | and
|xR

j ), that are biorthonormal: (xL
i |xR

j ) = δi j . The eigenvectors
are constructed by inserting the eigenvectors of the vertical
TM, respectively vL and vR, with additional tensors XL

i and
XR

j , see Fig. 3(a). The same figure shows equations that need
to be satisfied by the additional tensors. They are efficiently
obtained from a generalized eigenvalue problem:(

xL
i

∣∣�̃v

∣∣xR
j

) = λ
(
xL

i

∣∣xR
j

)
. (20)

Here λ = 1 is the maximal generalized eigenvalue. The prob-
lem is to be understood as(

XL
i

)T · M · XR
j = λ

(
XL

i

)T · N · XR
j , (21)

where XL
i and XR

j are vectorized and matrices M and N are
tensor environments of XL

i and XR
j in (xL

i |�̃v|xR
j ) and (xL

i |xR
j ),

respectively.

Furthermore, as shown in Fig. 3(b), the left eigenvector
(xL

i | can be acted on by any vertical MPO symmetry Zv ,
including the trivial identity Zv

1 = 1v . In order to make the
action possible, Zv has to be inserted with additional tensor
F that acts on Zh. With the appropriate choice of Fi j their
combination gives rise to impurity MPO-symmetry z̃v

i j such
that

xL
i z̃i j = xL

j . (22)

A necessary condition for symmetry z̃v
i j to exist is that vL in

xL
i , here denoted by vL(i), and vL in xL

j , here denoted by vL( j),
are related by vL(i) · Zv = vL( j).

A straightforward but essential observation is that, in anal-
ogy to MPO symmetries, the IMPO symmetries also satisfy
their own fusion rules:

Z̃v
a · Z̃v

b =
∑

c

Ñc
abZ̃v

c . (23)

Here we keep only the minimal set of independent IMPO
symmetries denoted by a capital Z̃ and labeled with a single
index a, b, c. In general the coefficients Ñc

ab do not need to be
integers as they depend on normalization of the eigenvectors
(xL

i | and |xR
j ).

V. IMPURITY PROJECTORS

In analogy to the vertical MPO symmetries and vertical
projectors, as a product of two IMPO symmetries is a linear
combination of IMPO symmetries, see Eq. (23), we can find
projectors as linear combinations of IMPO symmetries,

P̃ =
∑

a

c̃aZ̃v
a . (24)

The condition P̃ · P̃ = P̃ is equivalent to a set of quadratic
equations for coefficients c̃a. Numerically it seems more ef-
ficient to find the coefficients by repeated Lanczos iterations:

P̃′ ∝ P̃ · P̃. (25)

In each iteration the IMPO fusion rules (23) are used to
express the product P̃ · P̃ as a new linear combination P̃′ =∑

a c̃′
aZ̃v

a and then new coefficients c̃′
a are normalized so

that the maximal magnitude of the eigenvalues of P̃′ is 1.
Therefore, each iteration is a map {ca} → {c′

a} which is re-
peated until the coefficients converge. These computations
are performed in the biorthonormal eigenbasis of impurity
eigenvectors, (xL

a | and |xR
a ), where all involved MPO’s become

small matrices like, e.g., (xL
a |Z̃v

c |xR
b ) ≡ [Zv

c ]ab. Repeating the
Lanczos scheme with random initial coefficients we obtain all
impurity projectors.

A. Toric code

There is one ITM with Zh = Zh
2 . It has two eigenvectors

(xL
a |, one for each TM eigenvector vL

a . In addition to an iden-
tity, 1̃v , there is one nontrivial IMPO symmetry z̃v

12 = z̃v
21 ≡

Z̃v
2 . A nontrivial fusion Z2 algebra, Z̃v · Z̃v = 1v , implies two

projectors:

P̃± = 1
2

(̃
1v ± Z̃v

2

)
. (26)
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They will be identified as magnetic and fermionic projectors,
P̃+ ≡ P̃m and P̃− ≡ P̃ε , respectively.

B. Fibonacci string net

There is one ITM with Zh = Zh
2 . It has one eigenvector

(xL
1 | embedded in vL

1 and two eigenvectors (xL
2,3| embedded in

vL
2 . We choose the two to be Hermitian and orthonormal but

this still leaves (gauge) freedom of their rotation. In addition
to the trivial identity, 1̃v , there are two ITM symmetries: z̃v

12
and z̃v

13. Their fusion rules do depend on the gauge but inde-
pendently of the gauge we find numerically three projectors
P̃1,2,3. Only two of them project on states that are orthogonal
to the states obtained with vertical projectors, as can be veri-
fied by calculating overlaps between their respective projected
iPEPS on infinite torus. The new projectors will be identified
as P̃1 ≡ P̃τ and P̃2 ≡ P̃τ̄ .

Interestingly, the third one, P̃3, projects on the same hor-
izontal anyon flux as vertical projector P− and both will be
identified as P̃τ τ̄ and Pτ τ̄ , respectively. This way we have two
equivalent ways to obtain τ τ̄ flux: one with and one without
Zh

2 MPO symmetry. In other words, with or without inserted
Zh

2 symmetry the iPEPS wrapped on an infinite cylinder has a
nonzero overlap with the ground state with τ τ̄ flux.

C. Ising string net

There are two ITM with Zh
σ and Zh

ψ . For each of them
independently we construct impurity projectors. In case of Zh

σ

we find four projectors to be identified later as P̃σ , P̃σ̄ , P̃σψ̄ ,
and P̃ψσ̄ . In the case of Zh

ψ we find three projectors to be
identified as P̃ψ , P̃ψ̄ , and P̃σ σ̄ . The last one provides a new way
to obtain σ σ̄ flux in addition to vertical projector P2 ≡ Pσ σ̄ .
This is similar redundancy as in the Fibonacci model.

VI. TOPOLOGICAL ENTROPY: VERTICAL PROJECTORS

The topological entanglement entropy (TEE) [58] is not
full characterization of topological order but it may provide
quick and numerically stable diagnostic for an iPEPS obtained
by numerical minimization. Studies of von Neumann TEE of
PEPS wave functions have long tradition [59] but they require
finding full entanglement spectrum of an infinite half-cylinder
and extrapolation to the limit of its infinite width, a task that
may be hard to accomplish for a long correlation length. In
contrast, the projector formalism is naturally compatible with
the second Renyi entropy allowing for its efficient evaluation
directly in the thermodynamic limit. What is more, in the
realm of string net models the Renyi and von Neumann TEE
were shown to be the same [60].

Here we consider a vertical cut in an iPEPS wrapped on an
infinite horizontal cylinder of width Lv . Its right/left boundary
fixed point on the left/right half-cylinder is σL/σR. A reduced
density matrix for a half cylinder is isomorfic to [59]

ρ ∝
√

σ T
L σR

√
σ T

L (27)

and its second Renyi entropy is

S2 = − log Tr ρ2 = − log Tr σ T
L σRσ T

L σR. (28)

(a) (b)

FIG. 4. Topological entropy. In (a), tensor network representing
(vL

1 )T
vR

1 (vL
1 )T

vR
b on a vertical cut in an infinite horizontal cylinder of

vertical width Lv . The network is Lvth power of a transfer matrix.
In (b), tensor network representing (xL

1 )T xR
1 (xL

1 )T xR
b . The network

is Lvth power of the same transfer matrix inserted with a layer of
impurities XL,R

b .

We want the entropy in a state with a definite anyon flux a
along the cylinder.

Towards this end, we begin with σL,R ∝ vL,R
1 that is a com-

bination of all anyon fluxes. After inserting projector Pa into
the vertical cut we obtain

ρa = Na

√(
vL

1

)T (
vR

1 · PT
a

)√(
vL

1

)T
. (29)

Here the projector was applied to σR ∝ vR
1 without loss of

generality and normalization Na is such that Trρa = 1. The
entropy becomes

S2(a) = − log Tr ρ2
a

= − log N 2
a Tr

(
vL

1

)T (
vR

1 · PT
a

)(
vL

1

)T (
vR

1 · PT
a

)
= − log N 2

a Tr
(
vL

1

)T
vR

1

(
vL

1

)T
P∗

a vR
1 · PT

a

= − log N 2
a Tr

(
vL

1

)T
vR

1

(
vL

1

)T
vR

1 PT
a PT

a

= − log N 2
a Tr

(
vL

1

)T
vR

1

(
vL

1

)T (
vR

1 · PT
a

)
. (30)

Here we used PT
a (vL

1 )T = (vL
1 )T P∗

a and P∗
a vR

1 = vR
1 PT

a that fol-
low from the fact that v’s are edges of a double-layer iPEPS
with bra and ket layers. In this way we are left with only one
projector that yields a linear combination,

vR
1 · PT

a =
∑

b

sa
bv

R
b , (31)

with coefficients sa
b that follow from the properties of the MPO

symmetries whose linear combination is Pa.
The normalization Tr ρa = 1 and the biorthonormality,

Tr(vL
1 )T

vR
b = δ1b, fix Na = 1/sa

1. The entropy becomes

S2(a) = − log
∑

b

sa
b(

sa
1

)2 Tr
(
vL

1

)T
vR

1

(
vL

1

)T
vR

b . (32)

The trace is a tensor network in Fig. 4(a). It is equal to a trace
of Lvth power of a transfer matrix. For large enough Lv the
network becomes

Tr
(
vL

1

)T
vR

1

(
vL

1

)T
vR

b = Gb �
Lv

b . (33)

Here �b is the leading eigenvalue of the transfer matrix and Gb

its degeneracy. For large enough Lv the entropy is dominated
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by terms with the maximal leading eigenvalue,

� = Maxb �b, (34)

and becomes

S2(a) = − log �Lv

∑̃
b

Gbsa
b(

sa
1

)2 ≡ αLv − γa. (35)

Here the sum is restricted to indices b with �b = �. The area
law has a coefficient

α = − log � (36)

that does not depend on anyon flux a and the TEE is

γa = log
∑̃

b

Gbsa
b(

sa
1

)2 . (37)

We evaluate this expression in several examples.

A. Toric code

The projector yields vR
1 · PT

± = (vR
1 ± vR

2 )/2, hence
s±

1 = 1/2 and s±
2 = ±1/2. Furthermore, we obtain

Tr(vL
1 )T

vR
1 (vL

1 )T
vR

b = �Lv when b = 1 and zero otherwise.
There is no degeneracy, G1 = 1. Therefore,

γ± = log
∑̃

b

4s±
b = log 4s±

1 = log 2. (38)

This number is consistent with the anticipated identification
P+ ≡ Pvac and P− ≡ Pe.

B. Fibonacci string net

The projector yields vR
1 · PT

± = (φ±1vR
1 ∓ vR

2 )/
√

5, hence
s±

1 = φ±1/
√

5 and s±
2 = ∓1/

√
5. We obtain with numerical

precision:

γ+ = log D, γ− = log
D

dτ dτ̄

, (39)

where D = 2 + φ is the total quantum dimension and dτ =
dτ̄ = φ. These numbers are consistent with the identification
P+ ≡ Pvac and P− ≡ Pτ τ̄ .

C. Ising string net

Following similar lines for the double Fibonacci string net
we obtain

γ5 = log D, γ6 = log
D

dψdψ̄

, γ2 = log
D

dσ dσ̄

(40)

with numerical precision. Here the total quantum dimension
D = 4, dσ = dσ̄ = √

2, and dψ = dψ̄ = 1. They are consis-
tent with the identifications: P5 ≡ Pvac, P6 ≡ Pψψ̄ , and P2 ≡
Pσ σ̄ .

VII. TOPOLOGICAL ENTROPY: IMPURITY PROJECTORS

For impurity projectors that act on an iPEPS that is in-
serted with Zh calculation of entropy goes along similar lines
but with modifications accounting for Zh. Accordingly, we
begin with σ L,R = xL,R

1 . Here xL
i and xR

j are MPO forms of
impurity eigenstates (xL

i | and |xR
j ), respectively. As usual, their

left/right indices correspond to the bra/ket layer. The action
of P̃a yields

xR
1 · P̃T

a =
∑

b

s̃a
bxR

b . (41)

Here coefficients s̃a
b are real because xR

b are Hermitian. Taking
into account normalization that follows from their biorthonor-
mality, δi1i2 = (xL

i1 |xR
i2 ) = Tr (xL

i1 )T xR
i2 , the entropy in sector a

becomes

S2(a) = − log
∑

b

s̃a
b(

s̃a
1

)2 Tr
(
xL

1

)T
xR

1

(
xL

1

)T
xR

b . (42)

The trace is a trace of the tensor network in Fig. 4(b). It is
a trace of Lvth power of a transfer matrix times a layer of
impurities XL,R

b . The transfer matrix is the same as in Fig. 4(a).
For large enough cylinder width Lv the sum is dominated by
indices b such that �b = �, where � is the same maximal
leading eigenvalue of the transfer matrices:

S2(a) = αLv − γ̃a. (43)

Here α = − log � is the same as for vertical projectors and
independent of anyon flux a. The topological entropy is

γ̃a = log
∑̃

b

s̃a
b(

s̃a
1

)2

Gb∑
m=1

X a
b,m. (44)

Here

X a
b,m = (

Ub,m

∣∣Tr
(
XL

1

)T
XR

1

(
XL

1

)T
XR

1

∣∣D{bi},m
)

(45)

is a form factor where (U1,m| and |D1,m) are the up and
down leading eigenvectors of the transfer matrix in Fig. 4(b),
numbered by m = 1...Gb where Gb is the degeneracy of the
leading eigenvalue, and Tr(XL

1 )T
XR

1 (XL
1 )T

XR
b is the MPO

equal to the horizontal layer of impurities XL,R
b in the same

figure. The numerical procedure was applied in the following
examples.

A. Toric code

The impurity projectors P̃± together with IMPO fusion
rules (23) determine the coefficients s̃±1 = 1/2 and s̃±2 =
±1/2. As for vertical projectors, the truncated sum runs
over b = 1 only with degeneracy G1 = 1. The topological
entropies are

γ̃± = log 2X a
1,1 = log 2 (46)

within numerical precision. This number is obtained after
numerical evaluation of the form factors and is consistent with
the identification P̃+ = P̃m and P̃− = P̃ε .

B. Fibonacci string net

Numerical evaluation of coefficients s̃a
b and the form factors

yields

γ̃1 = log
D
dτ

, γ̃2 = log
D
dτ̄

, γ− = log
D

dτ dτ̄

(47)

with numerical precision. Here D = 2 + φ is the to-
tal quantum dimension and dτ = dτ̄ = φ. These numbers
are consistent with the identifications: P̃1 = P̃τ , P̃2 = P̃τ̄ ,
and P̃3 = P̃τ τ̄ .

235112-6

66:8564714357



DETERMINING NON-ABELIAN TOPOLOGICAL ORDER … PHYSICAL REVIEW B 102, 235112 (2020)

FIG. 5. Basic state. The object F k
bc, includes the lines of Zh

b and
Zv

c and a tensor at their intersection. When b = 1 (c = 1) then F
is just vertical MPO symmetry Zv

c (horizontal Zh
b ). When b > 1

then F k
bc is one of the IMPO symmetries. Inserted into an iPEPS

wrapped on an infinite torus it yields state |F k
bc〉. The same set of

states (for each b, c, k) can be found on each of the tori related by
modular st transformation, where (st)3 = I, which corresponds to
120◦ counterclockwise rotation on the honeycomb lattice with the
chosen tori defined by a pair of unit vectors (w1, w2).

C. Ising string net

Similar numerical evaluation as for Fibonacci model yields

γ̃σ = log
D
dσ

, γ̃σ̄ = log
D
dσ̄

, (48)

γ̃σ ψ̄ = log
D

dσ dψ̄

, γ̃ψσ̄ = log
D

dψdσ̄

, (49)

γ̃ψ = log
D
dψ

, γ̃ψ̄ = log
D
dψ̄

, (50)

γ̃σ σ̄ = log
D

dσ dσ̄

(51)

within numerical precision. Here the total quantum dimension
is D = 4 while dσ = dσ̄ = √

2 and dψ = dψ̄ = 1. The num-
bers are consistent with the anticipated identification of the
projectors.

VIII. TOPOLOGICAL S AND T MATRICES

For pedagogical reasons, up to this point we distinguished
between vertical projectors, with a trivial Zh

1 = 1h, and im-
purity projectors. For the present purpose of calculating
topological S and T matrices it may be more convenient to
treat them all on equal footing. We number MPO symme-
tries as Zh,v

a with a = 1, ..., n, where a = 1 labels the trivial
identities 1h,v . A basic building block for the projectors is
F k

bc, shown in Fig. 5, including the lines of Zh
b and Zv

c and a
tensor at their intersection. When b = 1 (c = 1) then F is just
vertical MPO symmetry Zv

c (horizontal Zh
b ). When b > 1 then

F k
bc is one of the IMPO symmetries. Therefore, in this unified

FIG. 6. The overlap in Eq. (55) between iPEPS’ on infinite tori
A and B calculated on torus B, using its vertical boundary MPS.
It involves a new class of impurity transfer matrices and their eigen-
vectors, where a nontrivial MPO symmetry is in only one layer of the
PEPS (either bra or ket) or there are two nontrivial MPO symmetries
in both layers but they are of a different type. Inserting an MPO
symmetry may in general change the boundaries, hence the change of
indices Mi → M j and the gray shaded regions denoting these sector
changes.

notation each (vertical or impurity) projector on anyon flux a
can be expressed as a linear combination

Pa =
∑

bc

∑
k

ca
kbcF

k
bc, (52)

where the range of k depends on bc. When inserted into iPEPS
wrapped on an infinite torus, the projector yields the ground
state with anyon flux a in the horizontal direction:

|�a〉 =
∑

ab

∑
k

ca
kab

∣∣F k
ab

〉
. (53)

Here the last ket is the iPEPS inserted with F k
αβ . Up to this

point there is nothing essentially new in this paragraph except
for fixing notation.

States |�a〉 are used to calculate topological S and T matri-
ces. Diagonal T matrix encodes self-statistics, while S matrix
stands for mutual statistics. Together they form a representa-
tion of a modular group SL(2,Z), by which they are related
to the modular transformations of a torus generated by s and
t transformations [61]. It follows that the matrix elements of
a combination of the topological S and T matrices are given
by the overlaps between |�a〉 transformed by a combination
of corresponding modular matrices s and t.

Here we work with states on a hexagonal lattice with
120◦ rotational symmetry and we start by defining torus A
in Fig. 5 with unit vectors w1, w2 and corresponding transfer

235112-7
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matrices: vertical (w1, Lvw2) and horizontal (Lhw1,w2) with
Lh,v → ∞, see Fig. 2(b) for comparison. Next, we consider all
transformations of the unit cell by st matrix, which generates
120◦ counterclockwise rotation, see Fig. 5. This results in tori
B and C together with their corresponding transfer matrices
as shown in Fig. 5. This construction, however, is general and
can be applied to lattices with other symmetries as well.

Our method requires finding three complete sets of ground
states {∣∣�a

A
〉}

,
{∣∣�a

B
〉}

,
{∣∣�a

C
〉}

, (54)

with well-defined anyon fluxes corresponding to three differ-
ent tori: A, B, C. Topological S and T matrices are extracted
from all possible overlaps between states in (54). This algo-
rithm is presented in Ref. [62] and slightly generalized in the
Appendix of Ref. [48].

The core of the calculation is an overlap〈(
F k

ab

)
A

∣∣(F k′
a′b′

)
B
〉
, (55)

shown in Fig. 6, between two iPEPS’s on infinite tori A and
B. It involves a new class of impurity transfer matrices and
their eigenvectors, where a nontrivial MPO symmetry is in
only one layer of the PEPS (either bra or ket) or there are two
nontrivial MPO symmetries in both layers but they are of a
different type. This type of overlap was encountered already
in the Abelian case in Ref. [48] where they are explained in
more detail. In the Abelian case the nontrivial MPO symmetry
inserted in just one layer of the PEPS changes the boundary
MPS |vi〉 → |v j〉, where i �= j. However in the non-Abelian

case, all changes of the boundary MPS have to be consid-
ered including i = j. The possible change of the boundary
conditions is denoted in Fig. 6 by shaded gray regions. Once
the overlaps are found, we follow the algebra in Appendix B
of Ref. [48] to obtain the following topological matrices S
and T .

A. Toric code

For analytic tensors with D = 4 we obtain the exact matri-
ces up to numerical precision:

STC = 1

2

⎛
⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎠,

TTC =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠ .

Here consecutive columns and rows correspond to projectors
that were labeled as 1, e, m, ε. These matrices confirm cor-
rectness of this labeling up to possible interchange of e and m
that is a matter of convention.

B. Fibonacci string net

For the five states obtained with projectors Pvac, Pτ τ̄ , P̃τ τ̄ ,
P̃τ , P̃τ̄ we obtain the matrices:

SFib = 1
D

⎛
⎜⎜⎜⎜⎝

1 ϕ2 ϕ2 ϕ ϕ

ϕ2 1 1 −ϕ −ϕ

ϕ2 1 1 −ϕ −ϕ

ϕ −ϕ −ϕ −1 ϕ2

ϕ −ϕ −ϕ ϕ2 −1

⎞
⎟⎟⎟⎟⎠, TFib =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 e4iπ/5 0
0 0 0 0 e−4iπ/5

⎞
⎟⎟⎟⎟⎠.

For brevity matrix SFib is shown exact with ϕ = dτ = 1
2 (1 + √

5) although we obtain it with numerical accuracy O(10−10). It
is clear that we can remove either second or third row and column because they both correspond to two equivalent ways of
obtaining flux τ τ̄ .

C. Ising string net

For the ten states obtained with projectors Pvac, Pψψ̄ , Pσ σ̄ , P̃σ σ̄ , P̃ψ̄ , P̃ψ , P̃σ , P̃σψ̄ , P̃σ̄ , P̃ψσ̄ we obtain the matrices with numerical
accuracy O(10−13):

SIs = 1
4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 2 2 1 1
√

2
√

2
√

2
√

2
1 1 2 2 1 1 −√

2 −√
2 −√

2 −√
2

2 2 0 0 −2 −2 0 0 0 0
2 2 0 0 −2 −2 0 0 0 0
1 1 −2 −2 1 1

√
2

√
2 −√

2 −√
2

1 1 −2 −2 1 1 −√
2 −√

2
√

2
√

2√
2 −√

2 0 0
√

2 −√
2 0 0 2 −2√

2 −√
2 0 0

√
2 −√

2 0 0 −2 2√
2 −√

2 0 0 −√
2

√
2 2 −2 0 0√

2 −√
2 0 0 −√

2
√

2 −2 2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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TIs =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 eiπ/8 0 0 0
0 0 0 0 0 0 0 −eiπ/8 0 0
0 0 0 0 0 0 0 0 e−iπ/8 0
0 0 0 0 0 0 0 0 0 −e−iπ/8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is clear that we can remove either the third or fourth row and
column because they both correspond to two equivalent ways
of obtaining flux σ σ̄ .

IX. SUMMARY

We presented numerical method to determine non-Abelian
topological order in iPEPS representing the unique ground
state on infinite two-dimensional lattice. The method is based
on finding consecutively the following elements:

(1) All of the boundary fixed points of PEPS transfer ma-
trices in the form of matrix product operators vi;

(2) All MPO symmetries Za mapping between the bound-
aries and their fusion rules;

(3) All impurity eigenvectors xa of vertical impurity
transfer matrices of PEPS inserted with horizontal MPO sym-
metries Zh;

(4) All impurity MPO symmetries Z̃ mapping between the
impurity eigenvectors;

(5) All projectors on states with well defined anyon flux
along horizontal direction. They are linear combinations of
either vertical MPO symmetries or vertical impurity MPO
symmetries: Pa = ∑

bc

∑
k ca

kbcF
k
bc;

(6) All overlaps between states with definite anyon flux on
different infinite tori related by modular transformations.

The topological charges and mutual statistics in the form of
topological S and T matrices are recovered from the overlaps.
They provide full topological characterization of string net
models.

A byproduct of the linear ansatz for a projector is an
efficient algorithm to obtain the second Renyi topological
entanglement entropy directly in the thermodynamic limit. In
addition to tests for the string net models, we found nonzero
TEE in the variational ansatz of Ref. [46] for the Kitaev model
in magnetic field [3], see Appendix E.
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APPENDIX A: FUSION RULES

Fusion rules are encoded in F symbols which have to
satisfy the Pentagon equation:

F symbols of both non-Abelian models are mostly given
by the allowed fusions: Nc

ab describing a × b → c with all its
(allowed) permutations:

(i) for Fibonacci: N1
11 = N1

ττ = Nτ
ττ = 1

(ii) for Ising: N1
11 = N1

σσ = N1
ψψ = Nσ

ψψ = 1.

Then F abc
de f = Ne

abNe
cd N f

ad N f
bc unless they are overwritten by

additional special rules:
(i) for Fibonacci: F τττ

τ11 = −F τττ
τττ = 1

dτ
and F τττ

ττ1 =
F τττ

τ1τ = 1√
dτ

.

(ii) for Ising: F σσσ
σ11 = F σσσ

σ1ψ = F σσσ
σψ1 = −F σσσ

σψψ = 1√
2

and

Fψσψ
σσσ = F σψσ

ψσσ = −1.

APPENDIX B: iPEPS TENSORS

iPEPS tensors, shown in Fig. 7, are given by the following
combination of F symbols and quantum dimensions di:

Ai
αβγ =

(
dadb

dc

)1/4

F dab
f ec δaa′δbb′δcc′δdd ′δee′δ f f ′ (B1)

Bi
αβγ =

(
dadb

dc

)1/4

F dab
f ec δaa′δbb′δcc′δdd ′δee′δ f f ′ . (B2)

By construction each tensor has a triple of bond indices
along each of the three bonds towards NN lattice sites. We
concatenate each triple into a single bond index, e.g., α =
(a, e, d ′). The physical index is also a triple index i =
(a′, b′, c′). These basic tensors are forming the topological
state after proper contraction of bond indices with respect to
their triplet structure. For the toric code and double Fibonacci
string nets the bond dimension D = 23 = 8 is redundantly
large and can be reduced to D = 4 and D = 5 after apply-
ing projectors on the bond indices, namely the only nonzero
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FIG. 7. Tensors forming the iPEPS are defined via combination
of F -symbols and corresponding quantum dimensions di. All bond
indices and the physical index are in fact a triple index. The bond
dimension can be reduced by applying projectors on the non zero
bond indices.

combinations of bond indices (i, j, k) are those in which the
fusion product i × j × k = 1 + · · · contains the trivial anyon.
For the double Ising string net, on the other hand, the original
bond dimension D = 33 = 27 can be reduced to D = 10.

APPENDIX C: PERTURBATION OF TENSOR SYMMETRY

In Ref. [48] we demonstrated that with our method it is
possible to obtain accurate results for topological S and T
matrices from a numerically optimized iPEPS ground state of
the Kitaev honeycomb model for a wide range of coupling
parameters. In the case of Fibonacci and Ising string nets,
whose parent Hamiltonians are far more complex, the same
test would go far beyond the scope of the present paper.

FIG. 8. Symmetry breaking perturbations in Fibonacci (left) and
Ising (right) string nets.

However, as most concerns about stability arise from
Ref. [64], we can introduce their perturbation at the virtual
level of the tensor network—which violates the exact MPO
symmetries—to see how our algorithm performs under this
crash test.

The vertex violating terms [64], Tp, which are allowed in
the stand-alone space but do not represent the physical ground
state, are shown in Fig. 8. Additionally we allow all three
rotations of the red indices. The fixed-point tensors T are
perturbed by adding a vertex violating term Tp controlled by a
small parameter ε:

T → T + ε Tp. (C1)

For the Fibonacci string-net model perturbed with a strong
ε = 0.1 we obtained the following topological entanglement
entropies: ⎛

⎜⎜⎜⎝
1.2847
0.3235
0.3235
0.8047
0.8047

⎞
⎟⎟⎟⎠, (C2)

and the following topological matrices:

SFib =

⎛
⎜⎜⎜⎝

0.2771 0.7251 0.7252 0.4484 0.4484
0.7251 0.2735 0.2749 −0.4486 −0.4486
0.7252 0.2749 0.2764 −0.4472 −0.4472
0.4484 −0.4486 −0.4472 −0.2764 0.7236
0.4484 −0.4486 −0.4472 0.7236 −0.2764

⎞
⎟⎟⎟⎠

and

diag(TFib) =

⎛
⎜⎜⎜⎝

1.0000 − 0.0000i
1.0000 + 0.0000i
1.0000 − 0.0000i

−0.8090 − 0.5878i
−0.8090 + 0.5878i

⎞
⎟⎟⎟⎠.

When compared to the exact numbers, their maximal error is
of the order of 10−3. Although there are four anyon fluxes in
the Fibonacci model, here as in the main text we keep both
Pτ τ̄ and P̃τ τ̄ which project on the same flux τ τ̄ .

For the Ising string-net model we added a perturbation
shown in Fig. 8 with strength ε = 0.5, which lead to even
more accurate results. We obtained topological entanglement
entropy and topological S and T matrices with accuracy
O(10−6).

In order to complete the discussion about random perturba-
tions that may arise during numerical optimization of iPEPS

we calculated the topological data for a completely random,
real perturbation in the Fibonacci string-net model:

T → T + ε Trandom. (C3)

For ε = 0.01 we recovered the topological entanglement en-
tropies and topological matrices with accuracy of the order
of O(10−4).

APPENDIX D: INTRODUCING FINITE
CORRELATION LENGTH

In order to see how the algorithm performs when the iPEPS
tensors are driven away from the fixed point by introducing
a finite correlation length, we apply the local filtering intro-
duced in Refs. [65–67] to the fixed point of the Fibonacci
string-net model. The perturbation has the following form:

|�〉 →
∏

i

eβσ z
i |�〉, (D1)
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FIG. 9. The correlation length ξ in the Fibonacci string net model
in function of the perturbation parameter β in Eq. (D1). Different
colors correspond to different bond dimensions χ of the boundary
MPS vi.

where the index i runs over all physical indices and σ z is
the third Pauli matrix. In Ref. [48], by considering a similar
perturbation to the toric code, we demonstrated that with our
algorithm it is possible to obtain topological S and T matrices
for states with correlation length much longer than achievable
by the state of the art 2D DMRG techniques.

Figure 9 shows how the correlation length grows with pa-
rameter β for the perturbed Fibonacci string-net model. In the
Fibonacci model, for parameters β = 0.14, 0.15, 0.16 such
that the correlation length ξ > 1, we obtained the topological
entanglement entropies and the topological S and T matrices.
Their maximal errors are listed in Table I.

APPENDIX E: VARIATIONAL ANSATZ FOR THE KITAEV
MODEL IN (1,1,1) MAGNETIC FIELD

We investigate the ansatz proposed in the Supplemen-
tal Material of Ref. [46]. Although it satisfies all desired

TABLE I. For different values of the perturbation parameter β

in Eq. (D1), the table lists corresponding correlation lengths, ξ , and
maximal errors of the entries of the list of topological entanglement
entropies, εγ , and the S and T matrices, εS and εT .

β ξ εγ εS εT

0 0 O(10−10 ) O(10−10 ) O(10−10 )
0.14 1.64 O(10−3) O(10−4) O(10−6)
0.15 2.32 O(10−2) O(10−3) O(10−7)
0.16 4.3 O(10−2) O(10−3) O(10−4)

symmetries and has competitive energy, the ansatz was not
demonstrated to possess the expected chiral Ising universality
class [3]. We show that at least it has nontrivial topological
entanglement entropy.

Each TM has two boundary fixed points. They have large
bond dimension χ necessary to accommodate a long corre-
lation length. For χ = 150 the correlation length saturates at
ξ � 15.4. However, when it comes to calculating the topologi-
cal entanglement entropy, whose cost is much steeper in χ , we
will be satisfied with χ = 50, corresponding to ξ � 10.3, that
is sufficient to recover exact symmetries. There is one nontriv-
ial Z2 symmetry such that vL

1 · Zv
2 = vL

2 and vL
2 · Zv

2 = vL
1 and,

consequently,

Zv
2 · Zv

2 = 1v. (E1)

This is the algebra of the Z2 gauge field that was implemented
in the ansatz by construction.

Like in the toric code, the Z2 algebra (E1) allows for two
vertical projectors:

P± = 1
2 (1v ± Zv ). (E2)

They project on ±1 horizontal flux of the Z2 gauge field, see
Ref. [46]. In this model, when the horizontal cylinder is closed
into a torus, the vertical flux also becomes a good quantum
number. For an iPEPS wrapped on a torus (without horizontal
line Zh

2 ) the state is a superposition of both ±1 vertical fluxes
with equal amplitudes.

We also find nontrivial IMPO symmetry Z̃v
2 satisfying the

Z2 algebra. It allows for two projectors:

P̃± = 1
2

(̃
1v ± Z̃v

2

)
. (E3)

Like the vertical projectors, they project on ±1 horizontal flux
of the Z2 gauge field but with a superposition of vertical fluxes
with opposite amplitudes. Therefore, unlike the Fibonacci and
Ising string net, neither of these two impurity projectors can
be identified with any of the two vertical projectors P±.

For vertical projectors we obtain topological entanglement
entropy

γ± = log 2 (E4)

in the vacuum and vortex sector, respectively. This demon-
strates topological order in the variational iPEPS of Ref. [46].
The impurity projectors also yield

γ̃± = log 2 (E5)

but here the minimally entangled states ± are different com-
binations of the vertical Z2 flux than in Eq. (E4).
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bonacci anyons and charge density order in the 12/5 and 13/5
quantum Hall plateaus, Phys. Rev. B 95, 115136 (2017).

[36] Y.-C. He, F. Grusdt, A. Kaufman, M. Greiner, and A.
Vishwanath, Realizing and adiabatically preparing bosonic in-
teger and fractional quantum Hall states in optical lattices,
Phys. Rev. B 96, 201103(R) (2017).

[37] E. M. Stoudenmire, D. J. Clarke, R. S. K. Mong, and J. Alicea,
Assembling Fibonacci anyons from a Z3 parafermion lattice
model, Phys. Rev. B 91, 235112 (2015).

[38] Y.-C. He, M. P. Zaletel, M. Oshikawa, and F. Pollmann, Sig-
natures of Dirac Cones in a DMRG Study of the Kagome
Heisenberg Model, Phys. Rev. X 7, 031020 (2017).

[39] S. N. Saadatmand and I. P. McCulloch, Symmetry fraction-
alization in the topological phase of the spin-1/2 J1 − J2

235112-12

72:2934581858



DETERMINING NON-ABELIAN TOPOLOGICAL ORDER … PHYSICAL REVIEW B 102, 235112 (2020)

triangular Heisenberg model, Phys. Rev. B 94, 121111(R)
(2016).

[40] C. Hickey, L. Cincio, Z. Papić, and A. Paramekanti,
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[64] S. K. Shukla, M. B. Şahinoğlu, F. Pollmann, and X. Chen,
Boson condensation and instability in the tensor network repre-
sentation of string-net states, Phys. Rev. B 98, 125112 (2018).

[65] J. Haegeman, K. Van Acoleyen, N. Schuch, J. I. Cirac, and
F. Verstraete, Gauging Quantum States: From Global to Local
Symmetries in Many-Body Systems, Phys. Rev. X 5, 011024
(2015).

[66] J. Haegeman, V. Zauner, N. Schuch, and F. Verstraete, Shadows
of anyons and the entanglement structure of topological phases,
Nat. Commun. 6, 8284 (2015).

[67] G.-Y. Zhu and G.-M. Zhang, Gapless Coulomb State Emerging
from a Self-Dual Topological Tensor-Network State, Phys. Rev.
Lett. 122, 176401 (2019).

235112-13

73:2434171645



Variational methods for characterizing matrix product operator symmetries

Anna Francuz,1, ∗ Laurens Lootens,2 Frank Verstraete,2 and Jacek Dziarmaga1

1Jagiellonian University, Institute of Theoretical Physics,  Lojasiewicza 11, PL-30348 Kraków, Poland
2Department of Physics and Astronomy, Ghent University, Krijgslaan 281, S9, B-9000 Ghent, Belgium

(Dated: November 14, 2021)

We present a method of extracting information about topological order from the ground state of a
strongly correlated two-dimensional system represented by an infinite projected entangled pair state
(iPEPS). As in Phys. Rev. B 101, 041108 (2020) and 102, 235112 (2020) we begin by determining
symmetries of the iPEPS represented by infinite matrix product operators (iMPO) that map between
the different iPEPS transfer matrix fixed points, to which we apply the fundamental theorem of MPS
to find zipper tensors between products of iMPO’s that encode fusion properties of the anyons. The
zippers can be combined to extract topological F -symbols of the underlying fusion category, which
unequivocally identifies the topological order of the ground state. We bring the F -symbols to the
canonical gauge, and also compute the Drinfeld center of this unitary fusion category to extract
the topological S and T matrices encoding mutual- and self-statistics of the emergent anyons. The
algorithm is applied to Abelian toric code, Kitaev model, double semion and twisted quantum
double of Z3, as well as to non-Abelian double Fibonacci, double Ising, and quantum double of S3

and Rep(S3) string net models.

I. INTRODUCTION

Topologically ordered phases1 support anyonic ex-
citations that open the possibility of realizing fault-
tolerant quantum computation2 by braiding of non-
Abelian anyons. Besides the class of exactly solvable
models2–4, verifying if a more general microscopic Hamil-
tonian has a topologically ordered ground state was tra-
ditionally regarded to be an extremely hard task. Re-
cently, observation of quantized Hall effect in Kitaev-like
ruthenium chloride α-RuCl3 in magnetic field5 granted
the problem with urgent experimental relevance. Inten-
sive experimental search for other Kitaev-like materials
is under way6.

The density matrix renormalization group (DMRG)7,8

on a long cylinder used to be the numerical method
of choice9–24. In the limit of infinitely long cylin-
ders, DMRG naturally produces ground states with well-
defined anyonic flux from which one can obtain charac-
terization of a topological order via so-called topological
S and T matrices25. Since the proposal of Ref. 25, this
approach has become a common practice26–43.

Unfortunately, the cost of a DMRG simulation grows
exponentially with the circumference of cylinder, limiting
this approach to thin cylinders (up to a circumference of
' 14 sites) and thus to short correlation lengths (up to
ξ = 1∼2 sites), since the circumference has to be at least
≈ 6ξ to reach convergence in the cylinder width. Instead,
infinite projected entangled pair states (iPEPS) in prin-
ciple allow for much longer correlation lengths44–46. A
unique ground state on an infinite lattice can be repre-
sented by an iPEPS that is either a variational ansatz47

or a result of numerical optimization48–51.
When wrapped on a cylinder the iPEPS becomes a

superposition of degenerate ground states with definite
anyonic fluxes. In the realm of the string-net models it
is possible49,52 to produce a PEPS-like tensor network
for each ground state with well-defined flux, see Fig. 1.

FIG. 1. The method of Refs. 49 and 52. From the
unique ground state on an infinite lattice – represented by
an iPEPS |Ψ〉 – various states inserted with infinite MPO
symmetries, Zh and Zv, are constructed. Their linear combi-
nations, whose coefficients are determined by fusion rules of
the iMPO symmetries (corresponding to anyonic fusion rules),
become a basis of states with well defined anyonic flux. Over-
laps of these infinite states determine the topological matrices
S and T . Here physical indices are not shown for simplicity.

Such tensor networks are suitable for extracting topolog-
ical S and T matrices by computing overlaps between the
ground states. Furthermore, they allow for computation
of topological second Renyi entropy directly in the limit
of infinite cylinder’s width. The approach of Refs. 49
and 52 does not assume clean realization of certain sym-
metries on the bond indices, in contrast to53–56. This
has been demonstrated in Ref. 49 by examples of toric
code and double semions perturbed away from a fixed
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point towards a ferromagnetic phase as well as for the
numerical iPEPS representing the ground state of the
Kitaev model in the gapped phase. The same approach
was generalized to non-Abelian topological order in Ref.
52. The method does not require restoring the symme-
tries by suitable gauge transformations of a numerical
iPEPS, a feat that was accomplished in Ref. 57 for the
toric code with a perturbation. It is also not necessary to
optimize symmetry-constrained iPEPS tensors as in Ref.
58. Finally, it also has much lower numerical cost than
methods based on the tensor renormalization group59.

In this work we reconsider the string-net models. Simi-
larly as in Refs. 49 and 52, for a given iPEPS we numeri-
cally obtain its infinite matrix product operator (iMPO)
symmetries. Products of the iMPO-symmetries realize
fusion rules of the corresponding anyons of a unitary fu-
sion category (UFC) C. We use the fundamental the-
orem of matrix product states (MPS)60,61 and apply it
to the iMPO products in order to classify topological
order through its related fusion categories. The funda-
mental theorem of MPS has already been widely used
in characterization of phases of both 1D and 2D gapped
systems62,63 as well as the construction of exact renor-
malization fixed point representations of string-nets with
iPEPS53,54. The theorem allows us to construct gauge
transformations (zippers) between products of iMPO’s
and their fusion outcomes. The zippers encode informa-
tion on fusion properties of the corresponding anyons,
and they can be combined in order to extract the F -
symbols of the underlying UFC C describing the topo-
logical order unequivocally. The different ground states
and possible anyonic excitations of the string-net model
are actually described by the Drinfeld center Z(C), and
different UFCs C associated to the iMPO symmetries
can give the same topological order if their centers are
isomorphic64. To deal with this redundancy, we compute
the center by constructing idempotents of the tube al-
gebra and compute invariants such as the topological S
and T matrices which encode mutual- and self-statistics
of the emergent anyons. While the S and T matrices pro-
vide a useful characterization of the type of topological
order, in general they do not uniquely specify the mod-
ular category Z(C)65. By explicitly constructing Z(C),
our approach does not suffer from this problem.

The method we use has similarities with previous ap-
proaches where one looks for string-like operators on the
physical level that commute with the Hamiltonian called
ribbon operators66. An important fact is that in these ap-
proaches, when moving away from the fixed point, these
ribbon operators get dressed67 and their width is pro-
portional to the correlation length. In contrast, in our
approach, the iMPO symmetries are not fattened when
perturbing the system away from the fixed point since
they act purely on the virtual level.

The paper is organized in sections II to IX where
we gradually introduce subsequent elements of the al-
gorithm. In Sec. II we give a brief review of 2+1d topo-
logical order in PEPS and virtual MPO symmetries, the

properties of which are governed by the F -symbols of
a UFC C that we aim to numerically determine for a
generic iPEPS. In Sec. III we define fixed points of the
iPEPS transfer matrix in the form of iMPS and intro-
duce iMPO symmetries that map between different fixed
points. We also identify fusion rules of the iMPO sym-
metries that are isomorphic with the fusion rules of some
input category C. In Sec. IV we introduce X zippers
that are gauge transformations between products of two
iMPO symmetries acting on a trivial fixed point of the
transfer matrix and a single iMPO symmetry applied to
the same trivial fixed point. We distinguish between up
and down X zippers for, respectively, up and down fixed
points. In Sec. V we introduce and construct more ele-
mentary Y zippers. Each Y zipper is a gauge transfor-
mation between a product of an iMPO symmetry and a
fixed point of the transfer matrix and the resulting fixed
point. X zippers can be constructed out of the elemen-
tary Y zippers. In Sec. VI pairs of complementary left
and right X zippers are normalized to become pairs of
gauge and inverse gauge transformations. In particular, a
non-trivial normalization between up and down zippers is
imposed. In Sec. VII we construct F symbols out of the
normalized up and down X zippers. The fusion symbols
have arbitrary/random numerical gauge. In Sec. VIII
we parameterize the gauge freedom and outline how the
F symbols can be brought to some canonical gauge that
allows to identify the topological order. In Sec. IX we
algebraically construct the gauge-invariant central idem-
potents of the tube algebra made of the zippers, which
when inserted into iPEPS – as in Fig. 1 – can be thought
of as projectors onto minimally entangled states (MES).
However, here we do not construct the MES but use the
central idempotents of the tube algebra to directly ex-
tract topological S and T matrices54,68. Unlike the F
symbols, the S and T matrices are gauge-invariant ob-
servables with a physical interpretation of statistics of
the emergent anyons. In contrast to Ref. 49 and 52, here
they are obtained by algebraic manipulation from the F -
symbols, the calculation of which is a purely 1D problem,
which significantly reduces the complexity of the numer-
ical algorithms. The route via F -symbols therefore pro-
vides an alternative that is potentially more stable nu-
merically. The paper is closed with a brief summary of
the algorithm in section X and an outlook towards future
applications.

II. MPO SYMMETRIES IN PEPS

A necessary condition for a tensor network to exhibit
topological order is the existence of string-like operators
on the virtual level that can be freely moved through the
lattice. These operators are represented as MPO symme-
tries, that at the level of the local PEPS tensors satisfy
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FIG. 2. Transfer matrix. In (A), graphical represen-
tation of a double iPEPS tensor A that is made out of an
iPEPS tensor A contracted through a physical index with
its complex conjugate A∗. In (B) and (C), a horizontal
row of A makes a horizontal transfer matrix Ωh. Its lead-
ing up-eigenvectors,

(
vUi

∣∣ and down-eigenvectors,
(
vDi

∣∣, with
the leading degenerate eigenvalue 1, can be obtained with the
VUMPS algorithm69,70. The eigenvector can be reshaped into
an iMPO form vUi . The uniform vUi is made of tensors MU

i

with bond dimension χi.

the pulling-through condition:

(1)

With periodic boundary conditions these MPO symme-
tries, which we denote as Za, form a representation of a
fusion ring

ZaZb =
∑

c

N c
abZc, (2)

where, for the remainder, we will restrict to the
multiplicity-free case, i.e. N c

ab = 0, 1. Locally this im-
plies the existence of a fusion tensor Xc

ab that satisfies
the zipper condition

(3)

Multiplication of these MPO symmetries is associative,
which imposes the following condition on the fusion ten-
sors:

(4)

where F abcdef = (F abcd )fe is a unitary matrix from e to f .
These F -symbols satisfy a consistency condition known
as the pentagon equation:

∑

f

F abcdef · F bcihfj · F afigdh = F abjgeh · F ecigdj , (5)

which turns the data N c
ab and F abcdef into consistent a uni-

tary fusion category (UFC) C. This UFC completely de-
termines the topological order of the PEPS, and it is the
goal of this work to numerically determine its data for an
arbitrary PEPS tensor.

III. NUMERICAL MPO SYMMETRIES

The iPEPS representing the ground state on an infi-
nite lattice, |ψ〉, is assumed to be normalized: 〈ψ|ψ〉 = n.
Its norm, which is a contraction between the iPEPS (ket)
and its complex conjugate (bra), is a 2D tensor network
made of double iPEPS tensors shown in Fig. 2(A). Each
row of the network is a horizontal transfer matrix Ωh
in Fig. 2(B). The transfer matrix has several leading
up-eigenvectors, |vUi

)
numbered by i, whose degenerate

leading eigenvalue is 1 (hence the double iPEPS with n
leading eigenvectors is normalized to n). These boundary
fixed points can be reshaped as iMPO’s, vUi , acting be-
tween virtual bra and ket indices. Together with their
corresponding biorthonormal down-eigenvectors,

(
vDi | ,

that can be also reshaped as iMPO, vDi , they satisfy:

Ωh ≈ 1
n∑

i=1

|vUi
) (
vDi | , (6)

δij =
(
vUi |vDj

)
= Tr

(
vUi
)T
vDj . (7)

The first and the most important step to identify the
topological order is finding the virtual iMPO symmetries
of the iPEPS as their existence is a necessary condition
for the iPEPS to exhibit topological order. As described
in Ref. 49 and 52, the iMPO symmetries Za are found nu-
merically as operators mapping between different iMPO
boundary fixed points vi:

vUi · Za =
∑

k

δiakv
U
k ,

vDi · ZTa =
∑

k

δ̄iakv
D
k . (8)

Here δiak and δ̄iak take values either 0 or 1 and in general

they do not have to be the same. A trivial vU,D1 can be
identified such that its trace with all the iMPO symme-
tries is equal 1: Tr(vU1 ·Za ·vD1 ·Z†a) = 1. In particular for
the up-eigenvector vU1 all other vUi>1 are obtained from it
by the action of corresponding iMPO symmetries:

vU1 · Za = vUa , (9)

while at the same time for the down-eigenvectors:

vD1 · ZTa = vDā . (10)
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Each symmetry Za, including the trivial Z1 = I, repre-
sents certain anyon type a. Here ā is an inverse of anyon
type a that in general can be different than a. We note
that these numerical iMPO symmetries defined in this
way are only required to be symmetries of the iPEPS
in the sense that they can be pushed through an entire
row/column of the network, and in general will not sat-
isfy the local pulling through condition of (1).

The iMPO symmetries can be obtained by variational
minimization of a cost function that follows from Eqs.
(9) and (10):

|vU1 · Za − vUa |2 + |vD1 · ZTa − vDā |2, (11)

Here Za is made of tensors za and va of MU
a . The cost

function is quadratic in the infinite MPO symmetry Za
but highly non-linear in its tensor za. The minimization
is performed with respect to za in a quasi-local manner.
Namely, we choose one tensor za in the infinite Za and
minimize with respect to it as if it were independent of
all other tensors za. As the cost function is quadratic
in the chosen tensor, its derivative with respect to z†a
yields a linear equation for za. Its solution is a candidate
to be substituted in place of all tensors za. In practice
we substitute its linear combination with the previous za
with coefficients optimized to minimize the global cost
function. This optimization is done in the same way as
in Ref. 48. This quasi-local procedure is iterated until
convergence of the cost function. In order to avoid lo-
cal minima, the whole minimization is repeated several
times, with different random initial conditions.

In order to minimize the effect of the unnecessary
modes in the nullspace of an iMPO symmetry acting on
the up and down boundary eigenvectors the bond dimen-
sion of Za, χa, has to be the minimal one that still allows
the cost function to be nullified. By definition, this cost
function guarantees the correct action of the symmetries
on the boundary fixed points but not the “abstract” fu-
sion ring (2). However, the algebra is satisfied in a weaker
sense:

vUi Za · Zb =
∑

c

N c
ab v

U
i Zc, (12)

vDi Z
T
a · ZTb =

∑

d

Nd
ba v

D
i Z

T
d , (13)

i.e., when applied to any boundary fixed point. This is
all that we need in the following construction.

Just as (2) is replaced by (12,13), in the realm of nu-
merical iMPO symmetries, the definition of the F -symbol
is replaced by

.
(14)

This diagram includes up and down boundary fixed
points in order to execute the weaker “numerical” al-
gebra (12,13). Accordingly, we introduce more general
up and down zippers, XU and XD, that realize the fu-
sions in (12,13). Their construction is the subject of the
following sections IV, V, and VI.

Before proceeding to the X zippers in Sec. IV., we first
illustrate this numerical procedure for iMPO symmetries
in the following models. Some of the examples are the
same as in Ref. 52 but notice that here the symmetries
have to be recalculated because the cost function in (11)
is in principle more demanding as it has two terms instead
of just one. Indeed, in Refs. 49 and 52 it was enough
for an iMPO symmetry to satisfy only one of conditions
(9,10) because the iMPO symmetries were inserted in
an iPEPS as in Fig. 1 and, therefore, it was enough
that they acted properly on either the up or the down
boundary of the iPEPS. In the present method we use
them in the diagrammatic equation 14 where on the left
hand side they act on the up boundary and on the right
hand side on the down one. Therefore, for the equation
to make sense both their up and down action has to be
correct.

Finally, as a last remark before we proceed to the ex-
amples, numerically there is a freedom of the global phase

of the eigenvectors, vU,Di , which can be partially elimi-
nated (up to minus sign) by requiring their Hermiticity
(when applicable). In general the random global phases
change the fusion rules, so that only their magnitudes are
0 or 1, |N c

ab| = 0,1. However, in all the examples below
the random global phases are adjusted so that all N c

ab are
real, either 0 or 1.

A. Toric code and double semions

For analytic fixed point tensors defined in appendix A
transfer matrix Ωh has 2 numerical boundary fixed points

vU,D1,2 and one non-trivial numerical iMPO symmetry Z2

which fulfils the Z2 algebra:

vU1 · Z2 = vU2
vU2 · Z2 = vU1

}
⇒ Z2 · Z2 = I. (15)

The cost function (11) was minimized to zero within ma-
chine precision. The fusion rules can be summarized as

N1
11 = N1

22 = 1 (16)

with all possible permutation of indices. It has to be
strongly emphasized that in general the numerical Z2

iMPO symmetry is not necessarily nullified outside the
support subspace of the boundary eigenvectors, therefore
the ring on the right of (15) is valid only in the sense of
the equalities on the left. The same reservation applies
to all fusion rules to be identified numerically in the rest
of this paper.
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B. Kitaev model

As a realistic example of the toric code universality
class we consider the Kitaev model on a honeycomb lat-
tice defined by the following Hamiltonian,

H = −
∑

α=x,y,z

Jα
∑

α links

σαi σ
α
j . (17)

Here, σαi , α = x, y, z are Pauli matrices acting on site i.
We set Jz = 1 and study the model along the line J =
Jx = Jy ∈ (0, 0.5). The iPEPS ground state was obtained
in Ref. 49 by variational optimization. For iPEPS bond
dimension D = 4 we find that the bond dimension χ = 4

of boundary iMPO’s vU,D1,2 suffices to faithfully capture
the entanglement properties of the phase. An accurate
iMPO symmetry Z2 is found with the minimal non-trivial
bond dimension χZ = 2. Its error can be quantified by
two numbers:

εUZ =
∣∣1− Λ[〈vU1 · Z2|vU2 〉]

∣∣ ,
εDZ =

∣∣1− Λ[〈vD1 · ZT2 |vD2 〉]
∣∣ . (18)

Here Λ(x) is the leading eigenvalue of a transfer matrix
of overlap x. The errors are listed in the following table
I. Even though the numerical iPEPS tensors do not as-
sume any symmetry or any special gauge, and their bond
dimension is small, the iMPO symmetries turn out to be
very accurate.

J ξ εUZ εDZ

0.4 0.21 O(10−3) O(10−3)

0.42 0.22 O(10−2) O(10−2)

0.44 0.23 O(10−4) O(10−4)

0.46 0.25 O(10−2) O(10−2)

0.48 0.26 O(10−3) O(10−3)

TABLE I. The errors (18) of the fusion ring of the numerical
iMPO symmetry Z2 with the corresponding up- and down-
eigenvectors vU,D

1 . Here J = Jx = Jy is the coupling constant
in the Kitaev model with Jz = 1 (17). The iPEPS approx-
imating its ground state with bond dimension D = 4 was
obtained by variational optimization49. Here ξ is the correla-
tion length calculated from the second leading eigenvalue of
the iPEPS transfer matrix in the environment of the bound-
ary eigenvectors.

C. Twisted quantum double of Z3

For this example, the transfer matrix Ωh has 3 bound-

ary fixed points vU,D1,2,3, out of which only one, vU1 and cor-

responding vD1 , is Hermitian and it plays the role of the
trivial boundary. The other two boundary fixed points

are their own Hermitian conjugates : vU,D2 = (vU,D3 )†.
Here the labels in eq.11 are not self-inverse, i.e. a 6= ā
for a = 2, 3. The iMPO symmetry has bond dimension

χ = 2 and it fulfils:

vU1 · Zq = vU2
vU2 · Zq = vU3
vU3 · Zq = vU1

,

vU1 · Zq∗ = vU3
vU2 · Zq∗ = vU1
vU3 · Zq∗ = vU2




⇒ ZqZq∗ = I,(19)

vD1 · ZTq = vD3
vD2 · ZTq = vD1
vD3 · ZTq = vD2

,

vD1 · ZTq∗ = vD2
vD2 · ZTq∗ = vD3
vD3 · ZTq∗ = vD1




⇒ Zq∗Zq = I.(20)

The two iMPO symmetries Zq, Zq∗ , are denoted with the

subscripts q, q∗ = e±2iπ/3. Despite different fusions with
the eigenvectors δiak 6= δ̄iak the fusion rules of the iMPO
symmetries are given by the following non-zero elements
of the fusion tensor

∀i=1,q,q∗ N
i
1i = N i

i1 = 1,

N1
qq∗ = N1

q∗q = Nq∗
qq = Nq

q∗q∗ = 1. (21)

In this case the anyon types q and q∗ are the inverses of
each other, which justifies the labeling.

D. Fibonacci string-net

Here we employed the iPEPS tensors for a fixed point
Fibonacci string net model presented in appendix A.
The transfer matrix Ωh has 2 numerical boundary fixed

points, vU,D1,2 , and one non-trivial numerical iMPO sym-
metry Zτ which fulfills:

vU1 · Zτ = vU2
vU2 · Zτ = vU1 + vU2

}
⇒ Zτ · Zτ = I + Zτ . (22)

Again, the cost function (11) was minimized to vanish
up to machine precision and the fusion on the right holds
only in the sense of the equalities on the left. The fusion
algebra on the right of (22) allows us to label the iMPO
symmetry with a non-Abelian Fibonacci anyon τ . The
fusion rules can be summarized as

N1
11 = N1

ττ = Nτ
ττ = 1. (23)

with all possible permutation of indices.

E. Fibonacci string-net with local filtering

In order to drive the iPEPS away from a fixed point
and introduce a finite correlation length we apply the lo-
cal filtering71–73 to the fixed point of the Fibonacci string-
net model. The modification has the following form:

|Ψ〉 →
∏

i

eβσ
z
i |Ψ〉, (24)

where i runs over all physical indices, σz is the Pauli
matrix, and β is a parameter. Correlation lengths ξ are
listed in table II. In the table we also present errors (18)
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of the two terms appearing in the cost function. The
difference between errors of εUZ , εDZ arises from the fact
that with growing correlation length it becomes harder to
nullify both errors at the same time, therefore, in order to
ensure convergence, in the step where we find an optimal
update of tensor za we use only one of the conditions
(18), namely εUZ .

β ξ εUZ εDZ

0.01 0.23 O(10−7) O(10−7)

0.05 0.42 O(10−4) O(10−3)

0.12 1.04 O(10−4) O(10−2)

0.15 2.32 O(10−2) 0.05

TABLE II. The errors (18) of the fusion ring of the the numer-
ical iMPO symmetry with the corresponding up- and down-
eigenvectors vU,D

1 . Parameter β represents the perturbation
strength from Eq. (24), while ξ is the corresponding correla-
tion length calculated from the second leading eigenvalue of
the iPEPS transfer matrix in the environment of the bound-
ary eigenvectors.

F. Ising string net

Here again we employed the iPEPS tensors for a fixed
point Ising string net model presented in appendix A.
This time each TM has 3 numerical boundary fixed

points, vU,D1,2,3, corresponding to 3 anyon types of the input
category: 1, σ, ψ. We found two non-trivial iMPO sym-
metries, labelled as Zσ and Zψ. The fixed points and the
symmetries are related by the following set of equations:

vU1 · Zψ = vU2
vU2 · Zψ = vU1
vU3 · Zψ = vU3




⇒ Zψ · Zψ = I, (25)

vU1 · Zσ = vU3
vU2 · Zσ = vU3
vU3 · Zσ = vU1 + vU2




⇒ Zσ · Zσ = I + Zψ. (26)

The cost function (11) was minimized to machine preci-
sion. Furthermore, we verified that with machine preci-
sion the symmetries satisfy:

vUi Zσ · Zψ = vUi Zσ ⇒ Zσ · Zψ = Zσ (27)

The equations justify labelling of the symmetries. The
fusion rules can be summarized as

N1
11 = N1

σσ = N1
ψψ = Nσ

ψψ = 1 (28)

with all possible permutation of indices.

G. Quantum double of S3 and Rep(S3) string-net

In this section we analyze two different iPEPS repre-
sentations from Ref. 64 for the quantum double S3 and

the Rep(S3) string-net model, with MPO symmetries re-
spectively given by UFCs C1 = Rep(S3) and C2 = VecS3 .
These two iPEPS representations describe the same topo-
logically ordered phase since Z(Rep(S3)) = Z(VecS3).

Rep(S3) MPO symmetries

In this representation iPEPS tensor has virtual bond
dimension D = 6 and its related transfer matrix Ωh has 3
leading eigenvectors vU,D1,2,3 corresponding to 3 anyon types
1, π, ψ. There are two non-trivial iMPO symmetries, with
corresponding labels π, ψ and they fulfill the following
fusion rules with the eigenvectors:

vU1 · Zψ = vU3
vU2 · Zψ = vU2 + vU3
vU3 · Zψ = vU1




⇒ Zψ · Zψ = I, (29)

vU1 · Zπ = vU3
vU2 · Zπ = vU1 + vU2 + vU3
vU3 · Zπ = vU1




⇒ Zσ · Zσ = I + Zψ + Zπ.

(30)

The same set of equations can be written for the down-
eigenvectors. Moreover we observe that:

vUi Zπ · Zψ = vUi Zπ ⇒ Zπ · Zψ = Zπ, (31)

which enables identification of all allowed fusion rules:

N1
11 = N1

ππ = N1
ψψ = Nσ

ψψ = Nπ
ππ = 1 (32)

with all possible permutation of indices.

VecS3 MPO symmetries

In this representation the iPEPS tensor has bond di-
mension that is just D = 4 while its related transfer
matrix Ωh has degeneracy 6 corresponding to 6 leading

eigenvectors vU,D1,2,3,4,5,6. There are 5 non-trivial iMPO
symmetries Za, which are all product iMPOs. There is
only one eigenvector, which we label as identity, for which
Tr(vU1 ·Za · vD1 · (Za)†) = 1 for all a = 1, ..., 6. All the re-
maining up and down eigenvectors can be obtained from

vU,D1 by proper action of the iMPO symmetries:

vU1 · Za = vUa , ∀a = 1, 2, 3, 4, 5, 6

vD1 · ZTa = vDa , ∀a = 1, 2, 3, 4,

vD1 · ZT5 = vD6 , v
D
1 · ZT6 = vD5 (33)

In this case the fusion ring is non-Abelian in the sense
that N c

ab 6= N c
ba and apart from trivial fusion rules Na

1a =
Na
a1 = 1, there are 25 non-trivial ones, all equal 1:

N1
22, N

1
33, N

1
44, N

1
65, N

1
56, N

2
63, N

2
54, N

2
35, N

2
46,

N3
52, N

3
64, N

3
45, N

3
26, N

4
62, N

4
53, N

4
25, N

4
36,

N5
32, N

5
43, N

5
24, N

5
66, N

6
42, N

6
23, N

6
34, N

6
55. (34)

From this we notice that iMPO symmetries Za for a =
1, 2, 3, 4 are self-inverse, while Z5 is the inverse of Z6.
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IV. NUMERICAL X ZIPPERS

In this work we employ the fundamental theorem of
MPS60,61 according to which there exist an invertible
gauge transformation Gl between two tensors Ai and Bi,
where i is the “physical” index, both in a canonical form,
generating equal iMPS’s such that

Ai = Gl ·Bi ·Gr, (35)

where Gr = G−1
l . It can be further extended to iMPO

and products of iMPO’s where, e.g., A = vi · Za and
B = vk. In that case the bond dimension of the product
vi · Za is usually bigger than the bond dimension of vk:
χi · χz > χk. Therefore, the gauge transformation Gl is
actually a composition of an isometry U of dimensions
(χi · χz, χk) and an invertible χk × χk matrix g. Gr is a
pseudo-inverse of Gl and vice versa.

Due to the algebra of iMPO symmetries (2), which is
fulfilled only when acting on the boundary fixed points
(13), our goal is to find zipper tensors Xc

ab which serve as
gauge transformations between products v1 · Za · Zb and
v1 · Zc:

v1 · Za · Zb
Xcab←→ v1 · Zc (36)

Here we consider only the trivial fixed point v1 to make
sure the fusions actually occur only between the iMPO
symmetries Z.

This goal can be achieved in two steps, first by ob-
taining smaller zippers Y kia which fuse a product vi · Za
into a single MPO vk. The second step is the proper
contraction of zippers Y kia to form Xc

ab as shown in Fig.
3.

FIG. 3. Contraction of Y zippers that makes an X zipper.
Here we show only U -zippers but similar equations hold for
their D counterparts. We distinguish between left, l, and
right, r, zippers. Contraction of a left zipper with its cor-
responding right zipper yields an identity. One is a pseudo-
inverse of the other.

V. NUMERICAL Y ZIPPERS

The iMPO symmetry algebra, Za, includes a trivial
symmetry Z1 = I corresponding to the trivial anyon type.
This identity iMPO is a product of identity matrices and
has bond dimension χ1 = 1. Therefore, all the zippers
(Yl)

j
j1, together with their r (inverse) counterparts, are

trivial identity matrices of dimensions χj × χj . We em-
phasize again, that Z1 as a product of identity matrices
is sufficient for our construction, because it still acts as

the identity on the support subspace of PEPS, but it is
not an exact MPO symmetry from Ref.54, where a larger
bond dimension is needed to encode the identity action
on the relevant subspace only.

From now on we focus the attention on non-trivial zip-
pers between the left and right hand side of the equation
vj · Za =

∑
k δjakvk with a > 1. The product MPO ten-

sor M = vj · Za is either normal, for which a transfer
matrix of TrMM† has only one leading eigenvalue equal
1, or a direct sum of normal tensors, so the transfer ma-
trix has several degenerate leading eigenvalues equal 1.
In both cases we proceed by bringing the tensors M into
left-canonical form using a repeated QR decomposition.
For a fixed point of QR decomposition the relation be-
tween the initial tensor and the converged canonical form
is:

L ·M i = M i
L · L, (37)

which means that the transformation bringing the tensor
M i into its canonical form M i

L is:

L ·M i · pinv(L) = M i
L. (38)

Here i denotes “physical” indices of tensor M . The
pseudo-inverse deals with singularity due to too large
bond dimension of M : χj · χa >

∑
k χk.

In the next step we reduce the bond dimension for M i
L

and find the gauge transformation relating it with one of
the vik tensors. Towards this end we construct a mixed

transfer matrix for TrMLv
†
k. Its left fixed point, σL, is

an isometry of dimension χj ·χa×χk truncating the left-
canonized product ML to vk:

σTL ·M i
L · pinv(σTL ) = vik. (39)

Putting the isometry together with the gauge transfor-
mation L we can write:

(Yl)
k
ja (vj · Za)

i
(Yr)

k
ja = vik, (40)

where

(Yl)
k
ja = σTL · L, (41)

(Yr)
k
ja = pinv(L) · pinv(σTL ). (42)

In diagramatic form equation (40) is:

(43)

In all equations above we did not include the labels
of the eigenvectors vi, as there are two sets of them: vUi
and vDi . However, the procedure is the same for both
sets with a sole difference that for the down eigenvectors
we need to use the transpose ZTa in place of Za.

80:4693959508



8

FIG. 4. Normalization conditions for the Xl and Xr zippers.
The projectors XU

l X
U
r and XD

l X
D
r in the top row act like

identities when inserted between the left, Lc, and right, Rc,
fixed points of the transfer matrix Tr(vU1 ⊗Zc⊗vD1 ⊗Z†c ). Here
the Z†c , which is necessary for the diagram to be non-zero is
represented by the dashed line. The mixed products XU

l X
D
r

and XD
l X

U
r in the bottom row yield n and 1/n, respectively.

The arbitrary n can be brought to 1 by rescaling the right X
zippers.

VI. NORMALIZATION OF X ZIPPERS

Having the full set of required Y -zippers
{Y Ul , Y Ur , Y Dl , Y Dr }, we construct the X-zippers ac-
cording to Fig. 3. From this construction we get
that:

∑

a,b

(XU
l )cab (XU

r )cab = (Y Ur )c1c (Y Ul )c1c, (44)

which is not necessarily equal to identity matrix Iχ1·χc .
However, it is a projector that acts like an identity when
inserted between the left, Lc, and right, Rc, fixed points
of the transfer matrix Tr(vU1 ⊗ Zc ⊗ vD1 ⊗ Z†c ), as shown
in the top row of Fig. 4 that includes also the comple-
mentary XD case.

A similar normalization between XU
l and its corre-

sponding XD
r is not automatic, see the bottom row of

Fig. 4. Here the number n depends on somewhat ar-
bitrary normalization of Y zippers making the X zip-
pers. The number can be brought to 1 by rescaling, e.g.,
XD
l → nXD

l and XD
r → (1/n)XD

r . Having thus properly
normalized all of the X-zippers we can proceed with the
calculation of the F -symbols.

VII. NUMERICAL F SYMBOLS

The last step of the algorithm is to calculate the F -
symbols in the equation in Fig. 14. This is a cou-
pled set of equations for F abcdef with different index f .
In order to decouple them we project both sides onto(
(XD

l )dag · (XD
l )gbc

∣∣ from the left. At this point we verify

that
(
(XD

l )dag · (XD
l )gbc

∣∣ (XD
r )gbc · (XD

r )dag
)

= δgf and we

obtain an explicit formula:

(45)
Here we have immersed the equation in the environment
of left Lc and right Rc fixed points of the transfer ma-

trix Tr(vU1 ⊗ Zd ⊗ vD1 ⊗ Z†d), the same as was used to
find relative normalization of XU and XD zippers. The
dotted red line denoted by d∗ is the trace over indices

corresponding to Z†d.
A similar formula for an inverse of the matrix F is

(46)
Both F and F ′ satisfy the Pentagon equation:

∑

f

F abcdef · F bcihfj · F afigdh = F abjgeh · F ecigdj , (47)

and describe the same topological order, although the
value of their elements are in general different. The dif-
ference is manifestation of “gauge freedom” of F abcdef due
to remaining freedom in normalization of X zippers:

{XU
l , X

U
r , X

D
l , X

D
r } → {λXU

l ,
1

λ
XU
r , λX

D
l ,

1

λ
XD
r }.

(48)

Here arbitrary λcab ∈ C depend on the labels of X = Xc
ab.

Their values cannot be fixed by the Pentagon equation.
λcab parametrize gauge freedom of the F symbols:

F abcdef →
λfbcλ

d
af

λeabλ
d
ec

F abcdef , F ′abcdef →
λeabλ

d
ec

λfbcλ
d
af

F ′abcdef . (49)

A straightforward way to proceed is to look for a gauge
λcab that brings the F symbols, within numerical error, to
a textbook form characteristic for a given type of topo-
logical order. This is what we do in the next section.

It is important to point out that the topological order
is given by the monoidal center Z(C), meaning that two
fusion categories C1 and C2 that a priori look completely
different may describe the same topological order64, in
which case C1 and C2 are said to be Morita equivalent.
In order to deal with this redundancy, we compute the
monoidal center in section IX, as well as the correspond-
ing S and T matrices.

VIII. F SYMBOLS IN CANONICAL GAUGE

We use the gauge freedom in (49) to bring F symbols
to a canonical gauge where, for a unitary fusion category,
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the matrices F abcd are unitary and most elements of F are
one, especially if any of a, b, c, d is trivial. To begin we
notice that Eq. (49) implies that a product

F abcdefF
′abc
def , (50)

is gauge invariant. Therefore its square root will be used
later to eliminate some of the gauge freedom of the F -
symbols.

Additionally, all Xc
ab where either a = 1 (b = 1) are

chosen as identities between b and c (a and c). This
choice fixes the gauge partially as λc1c = 1 = λcc1 but we
are still left with freedom to choose the λcab where both
a 6= 1 and b 6= 1. This residual gauge freedom leaves
invariant all the F abcdef where one of a, b, c is equal to 1.

Moreover, when there are only 2 anyon types in the
input category, then also the F abc1ef are left invariant by
the residual gauge transformation. The only F -symbols
that transform in a non-trivial way are:

F 222
212 →

λ1
22

λ2
22λ

2
22

F 222
212 ≡ µF 222

212 , (51)

F 222
221 →

λ2
22λ

2
22

λ1
22

F 222
221 ≡

1

µ
F 222

221 . (52)

In the unitary gauge for every fixed set of indices a, b, c, d
the matrix F abcdef is unitary in indices ef . We can choose

|µ| such that magnitudes of F 222
2ef become the same as

square roots of corresponding products in (50). With a
proper phase of µ the matrix F 222

2ef can be made unitary
making manifest that the obtained F symbols describe
unitary fusion category.

When there are more than 2 anyon types then there is
a freedom:

F abc1ef = F abc1ca →
λcabλ

1
cc

λabcλ
1
aa

F abc1ca (53)

For a = c this freedom is given by a simple ratio:

F aba1aa →
λaab
λaba

F aba1aa ≡ µ(a, b)F aba1aa (54)

which allows to determine first non-trivial gauge trans-
formation and eliminate it from all F abcdef in which it ap-

pears, by a substitution λaab → µ(a, b)λaba. The remaining
scheme is largely model-dependent, but the general idea
is to replace unknown λ’s with known ratios µ as we
present on the examples below.

A. Toric code and double semions

We obtain the Y and X zipper tensors. For those 2
Abelian models there are 2 trivial Y -zippers: Y 1

11, Y
2
21 = I

and 2 non-trivial Y -zippers: Y 2
12, Y

1
22 giving rise to 4 non-

zero X-zippers: X1
11, X

2
12, X

2
21, X

1
22. For both the toric

code and the double semion model all gauges λ in Eq.
(48) cancel each other in the expressions for F symbols.

We obtain numerically exact F -symbols immediately in
the canonical gauge for toric code:

F abcdef = Ne
abN

e
cdN

f
adN

f
bc (55)

and the same for double semions with the exception for
F 222

211 = −1.

B. Kitaev model

We obtain the same set of Y and X zippers as for the
toric code phase and then use them to find F symbols
with an error calculated as the Frobenius norm:

εF = ||Fnumerical − Fcanonical||. (56)

Here Fcanonical are the exact F symbols in (55). Their
errors are listed in the following table III. Not quite sur-
prisingly, good accuracy of the iMPO symmetry, see table
I, results in accurate F symbols.

J εF

0.40 O(10−3)

0.42 O(10−3)

0.44 O(10−4)

0.46 O(10−2)

0.48 O(10−2)

TABLE III. The error of the numerical F symbols, defined
as the Frobenius norm of the difference with respect to the
exact ones (56). Here J = Jx = Jy is the coupling in the
Kitaev Hamiltonian (17) with Jz = 1.

C. Twisted quantum double of Z3

We find 3 trivial Y zippers with both up and down
eigenvectors Y ii1 for i = 1, q, q∗ and 6 non-trivial with
up-eigenvectors:

(Y U )2
12, (Y

U )3
13, (Y

U )1
23, (Y

U )1
32, (Y

U )3
22, (Y

U )2
33 (57)

and with down eigenvectors:

(Y D)3
12, (Y

D)2
13, (Y

D)3
23, (Y

D)2
32, (Y

D)1
22, (Y

D)1
33, (58)

which altogether give rise to a unique set of X
zippers: trivial Xa

1a, X
a
a1 for a = 1, q, q∗ and

X3
22, X

2
33, X

1
23, X

1
32. Therefore there are 4 random resid-

ual gauges: λ1
23, λ

1
32, λ

3
22, λ

2
33, which appear in only 2

combinations:

ρ1 =
λ1

23

λ1
32

, ρ2 =
λ1

32

λ3
22λ

2
33

, (59)

where ρ1 and its inverse fully fixes F 222
133 , F

323
311 , F

232
211 , F

333
122

while ρ2 fully fixes F 332
321 , F

322
213 and there are only two

remaining F -symbols:

F 223
231 → ρ1ρ2 F

223
231

F 233
312 →

1

ρ1ρ2
F 233

312 . (60)
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This procedure allows us to obtain F abcdef =

Ne
abN

e
cdN

f
adN

f
bc with the exception of

F 222
133 = F 333

122 = (F 332
321 )∗ = (F 223

231 )∗ = e
2iπ
3 . (61)

The obtained F -symbols necessarily satisfy the Pentagon
equation, both before and after the gauge transforma-
tion. This is the only example we present, in which the
F -symbols and their inverses F−1 are not equal, but ac-
tually (F abcdef )−1 = (F abcdef )∗.

D. Fibonacci string net

We obtain 2 trivial Y -zippers: Y 1
11, Y

2
21 = I and 3 non-

trivial Y -zippers: Y 2
12, Y

1
22, Y

2
22 giving rise to 5 non-zero

X-zippers: X1
11, X

2
12, X

2
21, X

1
22, X

2
22. With X-zippers we

obtain F symbols that satisfy the Pentagon equation
within machine precision. However, the obtained F sym-
bols turn out to be in a random non-unitary gauge.

As the double Fibonacci model has 2 anyon types, the
residual gauge freedom in Eq. 52 can be employed to
adjust both F abcdef or F ′abcdef to the absolute values obtained

from a square root of the product (50) and then to fix
their phase in such a way that F abcdef and F ′abcdef become
unitary in indices e, f within numerical precision. This

way we obtain F abcdef = Ne
abN

e
cdN

f
adN

f
bc except for

F ττττ11 = −F ττττττ =
1

dτ
, F τττττ1 = F ττττ1τ =

1√
dτ
. (62)

Here the quantum dimension dτ = (
√

5 + 1)/2.

E. Fibonacci string net with local filtering

We applied the same algorithm for the local filtering
that introduces a finite correlation length ξ and drives the
state away from the fixed point. Errors of the obtained F
symbols are listed in table IV. The error remains small
up to the correlation length ξ = 2.32. Better results
for longer correlations lengths would require further im-
provement of the algorithm to obtain iMPO symmetries.
We leave this refinement for future work.

β ξ εF

0.01 0.23 O(10−7)

0.05 0.42 O(10−5)

0.12 1.04 O(10−2)

0.15 2.32 O(10−2)

TABLE IV. The error (56) of numerical F symbols. Here the
first column represents the perturbation strength β.

F. Ising string net

As the double Ising model has 3 anyon types in the
input category C there are 5 random residual gauges:

λ1
ψψ, λ

1
σσ, λ

σ
ψσ, λ

σ
σψ, λ

ψ
σσ. They appear in only 3 combi-

nations:

ρ1 =
λσψσ
λσσψ

, ρ2 =
λ1
σσ

λσσψλ
ψ
σσ

, ρ3 =
λ1
ψψ

(λσσψ)2
. (63)

Starting with ρ1, which fully fixes Fσψσ1σσ , F
σψσ
ψσσ and Fσσσσψψ,

we find ρ2 fixing Fσσψψ1σ , F
σσσ
σ1ψ , and finally ρ3 which is

fully fixing Fσψψσσ1 . The remaining F symbols are fixed
by proper combinations:

Fψψσσ1σ →
ρ3

ρ2
1

Fψψσσ1σ

Fψσσ1σψ →
ρ1 · ρ2

ρ3
Fψσσ1σψ

Fψσσψσ1 →
ρ1

ρ2
Fψσσψσ1

Fσσσσψ1 →
ρ1

ρ2
Fσσσσψ1

Fσσψ1ψσ →
ρ3

ρ2
Fσσψ1ψσ (64)

This way we obtain F abcdef = Ne
abN

e
cdN

f
adN

f
bc except for

Fσσσσ11 = Fσσσσ1ψ = Fσσσσψ1 = −Fσσσσψψ =
1√
2
, (65)

Fψσψσσσ = Fσψσψσσ = −1, (66)

all with numerical precision.

G. Quantum double of S3

Rep(S3) MPO symmetries

Apart from the trivial X-zippers with an identity sym-
metry Xa

1a = Xa
a1 = Ia there are 6 non-trivial ones

X1
22, X

1
33, X

2
22, X

3
22, X

2
32, X

2
23, all with its corresponding

gauge-freedom λcab. However there are only 4 indepen-
dent variables:

ρ1 =
λ2

23

λ2
32

, ρ2 =
(λ2

22)2

λ1
22

, ρ3 =
λ1

22

λ3
22λ

1
33

, ρ4 =
λ1

33

(λ3
22)2

. (67)

After elimination of the gauge freedom from all possi-
ble F -symbols containing the aforementioned ratios we

obtain that F abcdef = Ne
abN

e
cdN

f
adN

f
bc, except for:

F 322
222 = F 232

222 = F 223
222 = F 222

322 = −1

F 222
211 = F 222

231 = F 222
213 = F 222

223 = 1
dπ

F 222
221 = F 222

212 = −F 222
232 = −F 222

223 = 1√
dπ

F 222
222 = 0, (68)

where dπ = 2 is the quantum dimension of π and the
remaining quantum dimensions are d1 = dψ = 1.
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Vec(S3) MPO symmetries

There are 25 non-trivial fusion rules N c
ab giving rise to

corresponding X zippers Xc
ab, hence 25 random gauges

λcab, which can be eliminated using only 20 ratios ρi. It
can be done by subsequent substitution of certain ratios

ρi =
λeabλ

d
ec

λfbcλ
d
af

, so that the final F -symbols are all trivial:

F abcdef = Ne
abN

e
cdN

f
adN

f
bc, with every index taking up to 6

values. All the quantum dimensions are da = 1.
At first glance the F -symbols in both examples above

may seem to describe completely different topological or-
ders as they describe different unitary fusion categories
UFC. However the calculation of the Drinfeld center in
the following sections proves that this is not the case.

IX. S AND T MATRICES FROM F SYMBOLS

The topological S and T matrices are gauge invari-
ant quantities, which in principle could be obtained from
the F symbols in arbitrary gauge by considering proper
gauge-cancelling factors74. Here instead, we make use
of the F -symbols in canonical gauge, obtained in section
VIII, to derive a simpler expression.

An important observation is that the labels of all non-
zero elements of both X and Y zippers define the possible
fusions N c

ab of the anyons in the category, from which we
obtain their quantum dimensions da, as the largest mag-
nitude eigenvalue of the Na matrix. In this sense fusion
rules and quantum dimensions are exact independently
of the correlations in the models.

In order to obtain all the anyons or definite anyonic sec-
tors (MES) in the tensor network ansatz we need to find
central idempotents of the algebra generated by elements
Aabcd ∝ N b

daN
b
cd ∝ (Xr)

b
da(Xl)

b
cd (connected through the

index b, but not summed over b), where we omit pos-
sible multiplicities as they are all equal 1 in our exam-
ples. Central idempotents, when inserted into PEPS, can
be thought of as projectors onto states with well-defined
anyon flux along the torus. The multiplication of the ba-
sis elements ei := Aabcd defines some algebra, from which
we find both central and simple idempotents as desrcibed
in Appendix B. The algebra of Aabcd can be used to cal-
culate the action of the Dehn twist on a state with a
symmetry Za along the torus68:

T̃ (Aabad) = Aa1aā ·Aabad

=
∑

e,c

√
dadādcdd
dedb

(F āadd1b )−1F ādadeb F
aād
d1e Aacaeδcd,

ei =
∑

j

T̃ijej (69)

This formula gives rise to the T̃ matrix in the basis of
ei ≡ Aabcd. In the eigenbasis (the MES basis) this ma-
trix is diagonal and contains the phases corresponding to
topological spins: T = diag(θ1, ...θN ). However, at this

point we do not posses enough knowledge to assign anyon
labels to them and certain topological spins belonging to
multidimensional particles in non-Abelian anyon models
are repeated (e.g. θττ̄ in the double Fibonacci string net
and θσσ̄ in the double Ising string net). Therefore we
proceed with the calculation of the topological S and T
matrices in the MES basis. If we denote central idempo-
tents inserted in PEPS to create a minimally entangled
state in y-direction by Pyi and similarly in the x-direction
by Pxi , then the transformation between these two basis
is actually an S matrix:

Pyi =
∑

j

SijPxj (70)

We can further write this expression in terms of the basis
elements ek := Aabcd:

Pyi =
∑

a

ciae
y
a =

∑

j

Sij
∑

b

cjbe
x
b , (71)

which written in the matrix forms without summations,
with Ex,y being the basis in x and y respectively, B the
basis change between x and y, P - the matrix of coeffi-
cients of the central idempotents in the E basis, is:

PEy = PBEx = SPEx, ⇒ S = PBP−1 (72)

Similarly we obtain the expression for the T matrix in
the MES basis:

T = PT̃P−1 (73)

The T̃ was is given in eq.69 and the basis change B is
given by the combination of F-symbols, as shown in68:

S(Aabad) =
∑

e

da

√
dddd̄
dedb

(F add̄ab1 )∗F dd̄aa1e F
dad̄
abe Ad̄ed̄a (74)

For non-Abelian anyon models, the inversion P−1 for
2 or more dimensional idempotents actually means the
sum of inverted simple idempotents. Unlike the matrix
of central idempotent, the matrix of simple idempotents
Psimple in most cases is square and invertible. Techni-
cally it means that the matrix Psimple is made of rows
of all simple idempotents, which makes it block-diagonal
with two (or more) rows in different blocks correspond-
ing to the same anyon type. Next we invert the matrix
of simple idempotents Psimple, so that the columns of

P−1
simple correspond to the inverses of simple idempotents.

In the end we sum up the columns that correspond to
the same anyon flux to get P−1. Moreover the rows of P
corresponding to anyon types that are supported on this
multidimensional spaces have to be normalized (divided
by their dimensionality).

A. Toric code, double semion, Fibonacci and Ising
string net

For all the RG fixed point wave-functions of toric code,
double semion, double Fibonacci and double Ising we ob-
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tain correct topological S and T matrices within machine
precision. All the results are listed below.

• Toric code

STC =
1

2




1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1


 , TTC =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


 .

• double semion

Sds =
1

2

(
1 1

1 −1

)⊗2

, Tds =

(
1 0

0 i

)
⊗
(

1 0

0 −i

)
.

• double Fibonacci, with ϕ = 1+
√

2
2

SdFib =
1

ϕ+ 2

(
1 ϕ

ϕ −1

)⊗2

,

TdFib =

(
1 0

0 e
4iπ
5

)
⊗
(

1 0

0 e
−4iπ

5

)
.

• double Ising

SdIs =
1

4




1
√

2 1√
2 0 −

√
2

1 −
√

2 1




⊗2

,

TdIs =




1 0 0

0 e
iπ
8 0

0 0 −1


⊗




1 0 0

0 e
−iπ
8 0

0 0 −1


 .

B. Kitaev model

With the F symbols whose errors are listed in table III
we can recover topological S and T matrices. The same
matrices were obtained in Ref.49 by a different method.
Interestingly, for J = 0.44 where the errors of the iMPO
symmetries happen to be the most accurate, see table I,
the topological matrices obtained here are one order of
magnitude more accurate than those in Ref.49.

J εS εT

0.40 O(10−3) O(10−3)

0.42 O(10−4) O(10−3)

0.44 O(10−4) O(10−4)

0.46 O(10−3) O(10−3)

0.48 O(10−3) O(10−2)

TABLE V. Maximal errors of the elements of the topological
S and T matrices in the Kitaev model (17). Here J = Jx = Jy
for a fixed Jz = 1.

C. Fibonacci string-net with local filtering

By direct application of the described procedure for
perturbations β = 0.01, 0.05 we can recover topological
modular matrices with satisfying precision as shown in
the table VI. For higher β in order to obtain the SFib

and TFib matrices we need to improve the quality of F abcdef
to satisfy the Pentagon equation 47 with better accuracy.
Here we perform a simple Monte Carlo (MC), where we
sweep over all non-zero elements of F tensor, apart from
F 111

111 , F 211
221 , F 121

222 , F 112
212 , which are all equal 1 by construc-

tion. In a single MC move we change an element of F
tensor F ′abcdef = F abcdef +δ ·r1, where r1 is a random complex

number and δ = 0.01 · ε(F ) is the MC step with ε(F ) be-
ing the error of the Pentagon equation. We calculate the
new error of the Pentagon equation ε(F ′) and accept it

if ε(F ′) < ε(F ) or check if the ratio ε(F )
ε(F ′) is smaller than

another random real number r2 and accept the move if
this is fulfilled. We perform such sweeps over all afore-
mentioned elements of F tensor, which enables to obtain
an error low enough to calculate the topological S and
T matrices. We list the new error of F symbols together
with the errors for the topological S and T matrices in
table VI. For β = 0.15, where the correlation length is
ξ = 2.32, we can make a comparison with Ref.52 and
we see that the error of topological S matrix is of the
same order while the error of topological T matrix is an
order of magnitude bigger though the latter one is still
negligible.

D. Twisted quantum double of Z3

For the twisted quantum double of Z3 we obtain the
following T and S matrices:

diag(TZ3
) =

(
1, 1, 1, e

4iπ
9 , e

−8iπ
9 , e

−2iπ
9 , e

−2iπ
9 , e

−8iπ
9 , e

4iπ
9

)
,

arg(SZ3
)

2π
=




0 0 0 0 0 0 0 0 0

0 0 0 − 1
3 − 1

3 − 1
3

1
3

1
3

1
3

0 0 0 1
3

1
3

1
3 − 1

3 − 1
3 − 1

3

0 − 1
3

1
3 − 4

9
2
9 − 1

9
1
9 − 2

9
4
9

0 − 1
3

1
3

2
9 − 1

9 − 4
9

4
9

1
9 − 2

9

0 − 1
3

1
3 − 1

9 − 4
9

2
9 − 2

9
4
9

1
9

0 1
3 − 1

3
1
9

4
9 − 2

9
2
9 − 4

9 − 1
9

0 1
3 − 1

3 − 2
9

1
9

4
9 − 4

9 − 1
9

2
9

0 1
3 − 1

3
4
9 − 2

9
1
9 − 1

9
2
9 − 4

9




,

|(SZ3
)ij | =

1

3
.
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β ξ χ εS εT εMC
F

0.01 0.23 8 O(10−7) O(10−7) —

0.05 0.42 12 O(10−5) O(10−5) —

0.12 1.04 16 O(10−3) O(10−6) O(10−3)

0.15 2.32 20 O(10−3) O(10−6) O(10−3)

TABLE VI. The error of the final S and T matrices, εS and
εT respectively, calculated as the Frobenius norm of the dif-
ference between the numerical and the exact ones for differ-
ent perturbation strengths β. Here χ is the bond dimension
of the boundary eigenvectors vU,D

i used for the calculations.
The numerical S and T matrices for bigger perturbations
β = 0.12, 0.15 can be obtained only after the error of the
numerical F -symbols is reduced up to the value of εMC

F by
simple Monte Carlo minimization of the error of Pentagon
equation.

E. Quantum double of S3

For both iPEPS representations we obtain the topolog-
ical S and T matrices which agree with machine precision
with the exact ones up to the simultaneous permutation
of columns and rows.

diag(TS3
) =

(
1, e

−2i·π
3 , 1,−1, e

2i·π
3 , 1, 1, 1

)
,

SS3
=

1

6




1 3 2 1 2 3 2 2

3 3 0 −3 0 −3 0 0

2 0 4 2 −2 0 −2 −2

1 −3 2 1 2 −3 2 2

2 0 −2 2 −2 0 −2 4

3 −3 0 −3 0 3 0 0

2 0 −2 2 −2 0 4 −2

2 0 −2 2 4 0 −2 −2




.

The algorithm we present in Appendix B fails to de-
compose the two-dimensional central idempotent corre-
sponding to the anyon flux (1, π) into simple idempo-
tents, which should be done as shown in68:

(1, π) = (1, π)00 + (1, π)11

(1, π) =
1

3
(2 ·A1111 −A1515 −A1616) (75)

(1, π)00 =
1

3

(
A1111 + e

−2i·π
3 A1515 + e

2i·π
3 A1616

)
(76)

(1, π)11 =
1

3

(
A1111 + e

2i·π
3 A1515 + e

−2i·π
3 A1616

)
(77)

However that is a necessary step to do in order to obtain
correct modular S and T matrices shown above.

X. CONCLUSION AND OUTLOOK

The numerical method to obtain the F -symbols of the
fusion category fully characterizing the topological order
can be summarized in the following few steps:

1. Finding all boundary fixed points, both up and
down, vUi , vDi of the double iPEPS horizontal trans-
fer matrix Ωh.

2. Calculating all iMPO symmetries Za mapping be-
tween different boundary fixed points: vUi ·Za = vuj
and vDj · ZTa = vDj .

3. Finding the gauge transformations Y kia between
equal iMPOs M = vi · Za and vk for both up and
down eigenvectors and combining them to yield zip-
pers Xc

ab fusing the product of iMPO symmetries
v1Za · Zb into single iMPO symmetry v1Zc.

4. Calculating the F -symbols using the associativity
of the fusions of iMPO symmetries Za.

5. The numerical F -symbols in the random gauge can
be brought into canonical gauge by proper inspec-
tion of the freedom in the normalization of Xc

ab
zipppers. They can also be used to calculate gauge
invariant topological data in the form of S and T
matrices encoding mutual and self statistics of the
emergent anyons of the doubled category.

After slight purification of the F -symbols, by minimizing
the error of the pentagon equation, the method proved
to give accurate results for states with correlation length
up to ξ = 2.3. Their accuracy is comparable with those
from Refs. 49 and 52. On the other hand, in the realistic
case of the numerically optimized iPEPS representing the
ground state of the Kitaev model, we were able to obtain
topological S and T matrices with accuracy an order of
magnitude better than with the previous method49. A
possible explanation is that the present method consists
of significantly less numerical steps, therefore it leaves
less room for the accumulation of errors. Apart from
the first step of finding the boundary fixed points, all
the remaining steps are based on contractions of one-
dimensional tensor networks. Finally, it provides not
only topological S and T matrices but also F symbols
that allow for an unambiguous identification of topolog-
ical order.

As mentioned in the introduction, by studying the vir-
tual iMPO symmetries rather than the physical Wilson
line operators, we avoid the complications that arise due
to the broadening of these Wilson lines away from the
fixed point. Although we have shown that the method
is applicable with nonzero correlation length, the correla-
tion lengths for which the correct results are recovered are
still rather small and it is clear there is still much room
for improvement in several aspects of the algorithm.

Such improvements would allow us to study the change
in topological order when driving a certain state through
a phase transition. These phase transitions are charac-
terized by the breaking and emergence of MPO symme-
tries, which should be reflected in the fixed point struc-
ture. This becomes particularly interesting when con-
sidering variationally optimized iPEPS, where a specific
choice of PEPS representation and corresponding MPO
symmetries is not imposed but rather chosen by the al-
gorithm. Close to a phase transition, we expect the algo-
rithm to prefer the PEPS representation that most nat-
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urally allows the relevant MPO symmetries to be broken
or emerge.
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Appendix A: iPEPS tensors

iPEPS tensors, shown in Fig. 5 are given by the follow-
ing combination of F -symbols and quantum dimensions

di:

Aiαβγ =

(
dadb
dc

)1/4

F dabfec δaa′δbb′δcc′δdd′δee′δff ′ (A1)

Biαβγ =

(
dadb
dc

)1/4

F dabfec δaa′δbb′δcc′δdd′δee′δff ′ (A2)

By construction each tensor has a triple of bond indices
along each of the three bonds towards NN lattice sites.
We concatenate each triple into a single bond index, e.g.,
α = (a, e, d′). The physical index is also a triple in-
dex i = (a′, b′, c′). These basic tensors are forming the
topological state after proper contraction of bond indices
with respect to their triplet structure. For the toric code
and double Fibonacci string nets the bond dimension
D = 23 = 8 is redundantly large and can be reduced
to D = 4 and D = 5 after applying projectors on the
bond indices, namely the only non-zero combinations of
bond indices (i, j, k) are those, in which the fusion prod-
uct i× j × k = 1 + ... contains the trivial anyon. For the
double Ising string net, on the other hand, the original
bond dimension D = 33 = 27 can be reduced to D = 10.

Appendix B: Algorithm for central idempotents

In this appendix we present an algorithm for numerical
calculation of central idempotents from fusion rules N i

jk
and F -symbols in a random gauge. When inserted into
iPEPS, central idempotents can be thought of as projec-
tors onto minimally entangled states. Central idempo-
tents are build from elements Aabcd, which form an alge-
bra A (more precisely it is a C∗ algebra). The algorithm
can be divided into several points as follows.

1. In the first step we determine all non-zero elements
of the algebra A generated by Aabcd:

Aabcd ∝ N b
daN

b
cd, (B1)

FIG. 5. Tensors forming the iPEPS are defined via combi-
nation of F -symbols and corresponding quantum dimensions
di. All bond indices and the physical index are in fact a triple
index. The bond dimension can be reduced by applying pro-
jectors on the non zero bond indices.
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FIG. 6. The tensors Aabcd are proportional toNb
daN

b
cd and can

be represented by the zippers connected by, but not summed
over, the index b.

FIG. 7. Derivation of the algebra generated by the tensors
Aabcd including proper normalization by the quantum dimen-
sions.

as shown in Fig.6. Those non-zero elements are
the basis vectors of the algebra A, so we can make
assigments ei = Aabcd 6= 0 and find their multipli-
cation table.

2. When treated as matrices in the a, c indices, the
multiplication of Aabcd satisfies:

AabcdAefah = eiej =
∑

k

fkij ek =
∑

k

fkij Aencl (B2)

Using the tensor network diagrammatic expres-
sions, as shown in Fig.7, we can derive the formula
for the structure factors fkij , which are given by the
F -symbols:

fkij =

√
dndadddh
dfdbdl

F dhenlf (F dahnbf )−1F cdhnbl (B3)

3. Now we find the center Z(A) of the algebra A,
i.e. we look for such elements z =

∑
a zaea that

∀b : zeb = ebz. We observe that this simplifies to
an equation involving only the structure factors:

∑

a

za(eaeb−ebea) = 0 ⇒ ∀b, c :
∑

a

(f cab−f cba)za = 0.

(B4)
Therefore the vector of coefficients of z in ea ba-
sis belongs to the kernel of the matrix F : c(z) :=
(z1, ..., zn) ∈ Ker(F), whose elements are Fb⊕c,a =
f cab − f cba with b ⊕ c index going through all the
combinations of b, c indices.

4. From now on we work only with the commutative
algebra Z(A), with elements Zk =

∑
a z

k
aea, which

are linear combinations of the original basis with
coefficients from c(z) ∈ Ker(F). We construct its
adjoint representation, which is given by the struc-
ture factors

[ad(Zk)]ab =
∑

c

f bacz
k
c (B5)

5. Due to commutation of the elements of the center
Z(A), if we take random element from the cen-
ter Z ∈ Z(A) : Z =

∑
k ckad(Zk) and find the

transformation bringing it into the diagonal form:
U−1ZU , we know that this transformation is diag-
onalizing all other elements from the center:

∀k : U−1ad(Zk)U = Dk, (B6)

where Dk is diagonal.

6. We now have to find linear combinations of the ma-
trices Dk to obtain idempotents. Defining dk as
the vectors containing the diagonal elements of Dk,
finding idempotents boils down to finding orthogo-
nal linear combinations of the vectors dk that only
contain 1’s and 0’s. To do this, we build a matrix
D with dk as its row vectors, and compute the row
reduced echelon form of the augmented matrix

D′ = [D | I], rref(D′) = [rref(D) |M ]. (B7)

7. The central idempotents are now obtained as

Pi =
∑

j

MijZj =
∑

ja

Mijz
j
aea. (B8)

These central idempotents can be further split into
simple idempotents by grouping the different ea ac-
cording to the a = c string of the associated tube
algebra elements Aabcd. We note however that this
does not always work, as exemplified by the case
of VecS3 in the main text; an alternative general
algorithm will be provided in Ref.76.
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