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Abstract We review models of the accelerating universe from the perspective of high-energy physics. Focus-
ing on supergravity and the String Theory, we discuss the general framework for the construction of these
models. We then go on to discuss explicit constructions.

1 Introduction

The discovery of a transition from a decelerating to
an accelerating Universe in the recent epoch of cosmic
evolution is one of the greatest scientific achievements
of modern times. The observational data suggest that
around 70% of the total energy density of the current
Universe belongs to an unknown component of the Uni-
verse, broadly called dark energy.1 The observations
suggest that the current energy density of dark energy
is ρDE ∼ 10−47 GeV4. More specifically, the equation
of state parameter of the dark energy fluid is reported
to be w0 = −1.028 ± 0.032 [1].

The simplest solution for the dark energy is the exis-
tence of a positive cosmological constant Λ with the
constant equation of state parameter w = −1. The pos-
itive contributions to the cosmological constant come
from the vacuum fluctuations of any quantum field,
and its estimated value is typically much larger than
the observed value. We pretend this contribution to
the cosmological constant is zero, or at the least, it
does not gravitate [2]. On the other hand, the dark
energy can also be described by the value of a scalar
field potential at its minimum V (φmin), also called vac-
uum energy, whose magnitude at present is approx-
imate V (φmin) ∼ ρDE ∼ Λ4. The other possibility
that is often considered is quintessence where the vac-
uum energy can be positive, zero, or negative, while
at present the quintessence field is slow-rolling at pos-
itive value of its potential with V (φtoday) ∼ ρDE. Cru-
cially, in this case, the w is time-dependent. If the future

1The observed acceleration may also happen due to the
modifications of gravity at cosmological distances.
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observations find w �= −1, it will be crucial to under-
stand the fundamental origin of the field, and it will
confirm the existence of new dynamical matter d.o.f in
the Universe [3].

In the context of vacuum energy, the important ques-
tion is to find scalar field potential with a de Sitter
minimum. This is an issue that is discussed in the con-
text of supergravity, or more aptly in the context of
String Theory. De Sitter constructions remain a subject
of intense debate, particularly in light of the swampland
conjectures on dS initiated with the papers2 [4,5]. In
this review article, we shall not discuss de Sitter vacua
via examining the swampland conjecture, progress in
proving/disproving them and their implications. The
literature on swampland conjectures is vast, we refer
the reader to the review [9] for a comprehensive dis-
cussion of the subject. Our approach will be to give a
summary of the de Sitter constructions in string theory
and also a description of further work required to put
them in a firm footing.

In an effective field theory approach, the value of
V (φmin) is obtained (in principle) by integrating out
all modes from the UV to the cosmological constant
scale Λ. In string models, we integrate out all string
modes and Kaluza–Klein modes down to the compact-
ification scale MKK to find out the 4D effective action.
It gives the vacuum energy 〈V 〉 at scale MKK which
is different from V (φmin) as it does not take into
account corrections coming from integrating out light
degrees of freedom associated with any energy scale M̃
between MKK and Λ. Therefore, generically we will have
V (φmin) = 〈V 〉 + O(M̃4). For models where supersym-
metry (SUSY) is used for explanation of the gauge hier-
archy, one expects contributions M̃ ∼ TeV, otherwise,
even larger energy scales could also be present. Thus,

2 For earlier criticisms of dS in string theory, see, for exam-
ple, [6–8].
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it is important to be able to obtain four-dimensional
string vacua with a value of the vacuum energy which
can be tuned to cancel low-energy O(M̃4) corrections
leading to V (φmin) ∼ Λ4. This is usually argued to be
possible due to the presence of the flux landscape where
one can choose background fluxes so that 〈V 〉 cancels off
the low energy correction. Note that similar arguments
hold for the constructions of the quintessence potential
which has appropriate magnitude, but with the addi-
tional constraint that the mass for the scalar field must
be tuned as well as be protected from quantum correc-
tions to make it cosmologically relevant.

This article is structured in the following manner:
in the next section, we outline the basic requirements
for the quintessence field with a brief outlines of typi-
cal potential forms. In Sect. 3, we discuss quintessence
models in the framework of supergravity which includes
the effects of SUSY breaking as well as quintessence
being a pNGB. We then proceed to discuss the issue in
the context of String Theory.

2 Requirement for a quintessence field

In the simplest form of scalar field dark energy model, it
is assumed that a canonically normalized scalar field φ,
called quintessence, is minimally coupled with gravity,
and it dominates the energy density of the Universe
at the current epoch [10–13]. In accordance with the
observation, if φ̇2 < V (φ), the Universe accelerates, but
the stringent requirement of w � −1 enforces the field
to roll very slowly, i.e φ̇2 � V (φ). Moreover, a sub-
stantial amount of dark matter at the present epoch
plays a crucial role in the dynamics of quintessence.
The fact that the quintessence field is away from its
minimum and dynamical at the present epoch requires
the field to be extremely light, namely its mass mφ �
H0 ∼ 10−33 eV, where H0 is the present Hubble con-
stant. Finally, related to the quintessence potential,
there must be a mass scale ∼ 10−3 eV which essen-
tially determines the current energy density contribu-
tions from the field. The fundamental origin of this scale
along with the value of mφ is a crucial issue to be under-
stood. These two fine-tuning of parameters exist even
at the classical level of a given potential.

From the phenomenological point of view, there are
many potentials that can satisfy the above require-
ments. Broadly, those potentials can be discussed in two
categories [14]. The first one being the thawing models
where the field was frozen due to the Hubble damping
at the earlier epochs, and only started to roll in recent
time. A well-known example of this kind of model is the
periodic potential. For the case of the freezing model,
the field gradually slows down as the Universe evolves.
Among all the potentials, the inverse power-law poten-
tials of the form

V (φ) = M4+α/φα, (1)

with α > 0 requires special attention due to its tracking
behaviour of the background energy density [11–13]. In
this case, both the coincidence problem and the initial
problem have natural resolutions.

Unless there is a special symmetry, the quintessence
field typically has O(1) couplings with the Standard
Model particles which will lead to a long-range fifth
force of gravitational strength, as well as it introduces
time variations of the fundamental constants [15]. The
observations put severe constraints on these couplings
[16,17]. Even with O(1) couplings, these constraints
can be evaded by several mechanisms [18,19]. On the
other hand, if the quintessence field is a pseudo-Nambu–
Goldstone–Boson (pNGB), i.e a pseudo-scalar these
couplings can be suppressed due to their derivative
nature [15].

It is straight forward to write down effective
Lagrangian with potential V0(φ) for the quintessence
field that satisfies all the above conditions. In the con-
text of a more fundamental theory, the crucial point
is the natural origin of the dark energy scale and the
radiative stability of the light mass of the field. In addi-
tion to the quintessence field φ, if a theory involves a
field with a mass M̃ , once the heavy field is integrated
out, the quintessence potential typically receives cor-
rections proportional to M̃4. These corrections vanish
in the presence of unbroken SUSY, but SUSY is broken
at a much higher scale than Λ. In effect, the correc-
tions are � TeV4, and it spoils the flatness of the orig-
inal potential V0 that we started with. This issue will
be much clearer in coming sections where we discuss
quintessence potential in the context of supergravity
and SUSY breaking.

On the other hand, if the field originates from a spon-
taneously broken global symmetry, it is a pNGB with a
periodic potential. In this case, radiative stability of the
potential is guaranteed by the associated shift symme-
try [20]. On the other hand, the observations require the
symmetry breaking scale f � Mpl [21,22], where Mpl is
the reduced Planck mass. This is difficult to accommo-
date in the context of a fundamental theory like String
Theory [23,24]. As we will see, a pNGB like axion with
its suppressed couplings with the SM particles and with
radiative stability of its mass, it is a promising candi-
date for the quintessence field.

3 Models in supergravity

The nature of the quintessence field as described in the
previous section does not allow it to be identified with
a Standard Model (SM) d.o.f. Therefore, we must look
beyond the SM physics to identify the field. Among sev-
eral possibilities, SUSY is being considered the most
promising candidate. For typical quintessence poten-
tial, the field value at the present epoch is of order
the Planck mass, and it enforces us to consider the
effects of gravity in a supersymmetric theory, i.e. in
supergravity (SUGRA). The supergravity theories can
be thought of as the effective four-dimensional action of
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the String Theory where the low-energy effective action
can be derived where heavy fields have been integrated
out. We now discuss certain representative models of
quintessence in supergravity, and in the end, we discuss
the generic difficulties with these models.

3.1 Power-law models

Before discussing models in supergravity, let us review
the first model of supersymmetric quintessence. Using
nonperturbative effects in globally supersymmetric
gauge theories, the inverse power law quintessence
potential of the form of Eq. (1) has been constructed in
[25,26] using the following superpotential:

W = Λ3+γφ−γ , (2)

where 2(1 + γ) = α and Λ = M . But, this set-up is
excluded by the current observational data as w always
remain larger than −0.7. On theoretical side, the typ-
ical field value is larger than the UV cut-off scale Λ.
Moreover, the analysis does not incorporate the super-
gravity corrections when the field tracks at the present
epoch with φ ∼ Mpl.

In N = 1 supergravity the F-term scalar potential
(we ignore the D-term contributions to the potential
for simplicity now) for a chiral field ϕ is given in terms
of Kahler potential K, and the superpotential W

V = eK/M2
pl

(
Kij∗DiW (DjW )∗ − 3|W |2/M2

pl

)
, (3)

where DiW ≡ ∂W/∂ϕi +(W/Mpl)∂K/∂ϕi, and Kij∗ ≡
∂2K/∂ϕi∂ϕj∗ with Kij∗ is inverse of Kij∗. Although
the last term in the bracket allows us to realise SUSY
breaking (DiW �= 0) with zero vacuum energy (V = 0),
on the other hand it puts obstacle in realising positive
vacuum energy. Using the same superpotential as above
in Eq. (2) and K = φφ∗, the potential looks like (setting
Mpl = 1) [27,28]

V = e(φ
2/2) Λ4+β

φβ

[
(β − 2)2/4 − (β + 1)(φ2/2) + φ4/4

]
,

(4)

where β = 2γ + 2. Note that the the potential becomes
negative for φ ∼ Mpl. Even though this problem can
be solved by choosing particular values of Λ, but that
value does not satisfy other observational constraints.
This is true for all values of γ.

The above mentioned general problem in supergrav-
ity can be solved either by choosing a specific super-
potential with the property of its expectation value
〈W 〉 = 0 [27,28] (but its derivative being non-zero), or
more general Kahler potential [29] than the canonical
one we have chosen till now. For the first case, theory
consists of charged matter field Y in addition to the
quintessence field. The field rolls along a D-flat direc-
tion with D-term potential contributions being zero,

and F -term of a matter field contributes to the poten-
tial energy such that the potential becomes positive
[27,28]

V = eK/M2
plKY Y ∗ |WY |2 , (5)

and the potential becomes of the form

V = e
φ2

2
Λ4+γ

φγ
. (6)

First, note that the potential is positive, and an impor-
tant difference appear due to the exponential factor.
The equation of state parameter w is pushed toward
further lower values w � −0.86 in comparison to the
usual inverse power law potential of Eq. (1), and this
result is nearly independent of the values of γ. Still, note
that the model is excluded by the current observational
data [1].

The negativity of supergravity potential of Eq. (3)
can also be taken care by the appropriate choice of
the Kahler potential. With the choice of superpotential
W = Λ3+γ φ̃−γ of the form of Eq. (2), and the Kahler
potential of the form K = −M2

pl ln[(φ̃ + φ̃∗)/Mpl],
the scalar potential in terms of canonically normalised
quintessence field φ looks like [29]

V = M4e−√
2βφ/Mpl , (7)

where M4 = M−β−1
pl Λβ+5(β2 − 3)/2, and β = 2γ + 1.

For β >
√

3 the potential is positive, and a scaling
solution exists where the ratio of quintessence energy
density and the matter energy density remain con-
stant. Obviously, this solution can not make transition
to a quintessence dominated era, and thus the poten-
tial needs to be appropriately modified. The reference
[29] further proposed a Kahler potential of the form
K = M2

pl[ln (φ̃ + φ̃∗)/Mpl]2. For |φ| � Mpl, the poten-
tial behaves as V ∼ (−φ)−2/3, and for |φ| 
 Mpl,
V ∼ (−φ)−2/3e(−φ/Mpl)

4/3
with having a minimum with

positive potential energy in the intermediate field range
φ ∼ Mpl. In this case, depending on the initial values of
the field two different kinds of attractor solutions exist.
In both the cases, when the field approaches its min-
imum it starts to dominate the energy density of the
Universe, and the field starts behaving as a cosmolog-
ical constant with w � −1. Broadly, in this category
of models, the dynamics of the field are non-trivial due
to non-canonical terms, and therefore, a potential that
might look unsuitable for dark energy becomes consis-
tent in terms of the canonically normalized field.

3.2 SUSY breaking effects and other issues

The above models in pure supergravity look fine, even
though not fully satisfactory in terms of recent strin-
gent observational constraints. In addition to that it
is important to remember that in reality the SUSY
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must be broken. It turns out that the effect of SUSY
breaking generically induces unacceptably large correc-
tions to the otherwise suitable quintessence potential in
supergravity [30].

The F -term scalar potential can be written in the
following form

VF = |F |2 − 3m2
3/2M

2
pl, (8)

where the non-zero vev of F = eK/MplKij∗DiW (DjW )∗
corresponds to the SUSY breaking, and the gravitino
mass m3/2 = eK/2M2

pl |W |/M2
pl. Considering the poten-

tial VF must be of the order of dark energy scale, we
need F ∼ m3/2Mpl which essentially corresponds to a
corrections δV ∼ m2

3/2M
2
pl to the supergravity poten-

tial due to SUSY breaking. Now,
√

F ∼ 1010GeV, and
104GeV for gravity- and gauge-mediated SUSY break-
ing respectively, and it makes δV 
 VF , and it spoils
the flatness of the original potential.

This can be explicitly seen with with the following
separable Kahler potential K = φφ∗ + XX∗ and the
superpotential W = W (φ)+W̃ (X), where X is the chi-
ral field responsible for SUSY breaking.3 In this case,
the F -term potential will contain a term which is pro-
portional to |W |2|φ|2 ∼ m2

3/2|φ|2 such that

Vtot = V0 + m2
3/2|φ|2. (9)

Here V0 is the potential without SUSY breaking effects
being taken care of. Thus, the SUSY breaking effects
induce a mass to the quintessence field of the order
of m3/2 which is much heavier than the required mass
for acceleration to drive. In this case, the field quickly
rolls to its minimum and behaves as a nondynamical
cosmological constant depending on the value of the
potential at its minimum.

The solution to this generic problem requires an
unconventional mechanism of SUSY breaking. For
example, due to the effects of higher-dimensional
physics, it is possible that even though mass differ-
ences between the supersymmetric particles arise, the
SUSY may still remain unbroken, and thus does not
contribute any corrections to the potential. In this case,
the quintessence sector and the SUSY breaking sector
is sequestered [38]. In some extended models of super-
gravity, the mass of the scalar field is not related to the
SUSY breaking scale. In this case m2

φ = nH2
0 where n

is an integer. For example, in the N = 2 case n = 6,
and N = 8 case n = −6 with the following potential
[39,40]

V = 3H2
0M2

pl

(
1 ± (φ/Mpl)2

)
. (10)

In the context of supergravity, another generic prob-
lem is the couplings of the quintessence field to the

3 Note that in more realistic cases, this separation may not
be possible, making the problem much worse.

supersymmetric version of the SM fields (MSSM).
These couplings induce the time dependence of fermion
masses, violations of the weak equivalence principle,
variations of the gauge coupling constants, and extra
fifth force carried by the field [41,42].

Many of these problems can be resolved by demand-
ing shift symmetry in the Kahler potential of the
quintessence field [43]. Due to the underlying symme-
try, higher-order shift symmetry breaking corrections
to the Kahler potential does not make large contribu-
tions to the potential. For the case of [43] the dynamics
of the field becomes indistinguishable from the cosmo-
logical constant, whereas for [38] the potential become
axionic—see the next section.

3.3 pNGB models

A crucial approach for dark energy model building is
the idea that the quintessence field is a pseudo-Nambu–
Goldstone–Boson (pNGB) [20]. In this case, the under-
lying theory posses a U(1) global symmetry which gets
spontaneously broken at the scale f , and an angular
field φ appears as a massless Goldstone Boson. Due to
an explicit symmetry breaking at the scale μ, the scalar
field acquires a mass, and the potential looks in the fol-
lowing form:

V (φ) = μ4 (1 + Cos(φ/f)) . (11)

In the limit μ → 0, the potential vanishes. The radia-
tive corrections to the potential are proportional to μ4

due to the underlying symmetry, and therefore, its mass
is technically natural and protected from possible quan-
tum corrections. At the same time, the approximate
symmetry also suppresses the couplings between φ and
the matter fields [15]. The most famous example of the
pNGB is the QCD axion where the underlying U(1) is
the Peccei–Quinn symmetry.

When the above potential drives cosmic accelera-
tion, we need μ ∼ 10−3eV, and f � Mpl [21,22].
In this case, the field starts rolling along with the
potential very recently when mφ ∼ H0, and thus
behaving as a thawing dark energy model. In the con-
text of high-energy physics, it is crucial to under-
stand the origin of the scale μ. In reference [31],
the quintessence field is a model-independent axion
field whose potential scale originates from the hidden
sector gaugino condensation. It mixes with another
hidden sector axion where one linear combination
behaves as dark energy and the other one behaves
as the dark matter related to the QCD-axion. The
idea of generating the quintessence potential from elec-
troweak instanton effects when axion couples to elec-
troweak gauge fields have been explored in [32]. In
ref [33], the scale of the axion potential is related
to the electroweak scale v by see-saw like mech-
anism where the dark energy scale μ ∼ v2/Mpl,
and mφ ∝ v4/M3

pl. For several other ideas where
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a pNGB is the quintessence field, see the references
[34–36].

4 De Sitter in string theory for dark energy

Moduli stabilisation is best understood in the context of
type II B models, therefore we will focus mostly on type
II B. An attractive feature of the IIB models is the no-
scale structure, this keeps the Kähler moduli massless
at tree level. These directions are then stabilised by the
inclusion of perturbative (in both α′ and gs) and non-
perturbative corrections to the effective action, leading
to stabilisation at weak coupling and large volume. In
this way, one can hope to address the the Dine–Seiberg
problem [44]. For this reason, several dS mechanisms
have been proposed and developed in IIB. We first dis-
cuss II B models in detail and then go on to briefly
discuss models in other settings. For more technical
summaries of the state of the art in dS constructions
see for example [45,46].

4.1 Overview of IIB flux compactifications

Type IIB compactifications on orientifolds of a Calabi–
Yau (CY) manifolds have many features that make
them attractive for phenomenology. We briefly review
the structure of their low-energy effective field theory
(EFT). The relevant closed string fields are the the com-
plex structure moduli Ua, a = 1, · · · , h1,2 axio-dilaton
S, and the Kähler moduli Ti, i = 1, · · · , h1,1 where h1,2

and h1,1 are the Hodge numbers of the compact CY
manifold (after orientifolding). The tree-level Kähler
potential is given by :

K = −2 ln V − ln
(
S + S̄

) − ln
(

−i
∫

X

Ω ∧ Ω̄

)
,

(12)

where V = �−6
s

∫
X

√
g(6) d6y is the volume of the inter-

nal manifold in units of the string length �s. The inter-
nal volume V is a homogeneous function of degree 3/2
of the real parts of the Kähler moduli τi that determine
the sizes of four cycles. Ω is the holomorphic (3, 0)-form
of the manifold. In the presence of fluxes, the superpo-
tential is given by [47]:

Wflux =
∫

X

G3 ∧ Ω , (13)

where the 3-form flux G3 = F3 − iSH3. These 3-
form fluxes are quantised. The superpotential (13) thus
fixes the dilaton and all complex structure moduli and
reduces the number of vacua from a continuum to a
discrete but large set of points [48,49]. The equations
of motion require G3 to be imaginary self-dual, i.e.
∗6G3 = iG3; in terms of Hodge decomposition G3 ∈
(2, 1) ⊕ (0, 3). Note that in general the solutions break

supersymmetry (supersymmetry is preserved only if the
(0, 3) component is turned off).

The Kähler moduli are not stabilised by the fluxes.
This is due to the fact that there exists a Peccei–Quinn
symmetry Ti → Ti +ici with constant ci’s that together
with the holomorphy of the superpotential, does not
allow any Ti dependence of W to all orders in pertur-
bation theory. However these moduli are the gauge cou-
plings for matter fields on D7-branes, and so effects like
gaugino condensation on D7-branes or Euclidean D3-
instantons (see e.g [50]) generate a non-perturbative
superpotential for them. The full superpotential for
closed string moduli is

W = Wflux(S,U) + Wnp(S,U, T ) . (14)

The starting point for the search for vacua in the 4D
EFT is the F-term supergravity scalar potential for
arbitrary superpotential W (ΦM ) and Kähler potential
K(ΦM , Φ̄M̄ ) (3), which we record again for ease in the
discussion. In units of Mp,

VF = eK
(
KMN DMWDMW − 3|W |2

)
, (15)

where DMW = ∂MW + (∂MK) W . The tree-level
Kähler potential for the Kähler moduli satisfies the no-
scale condition KTiT̄j̄ KTi

KT̄j̄
= 3 . Two major scenar-

ios have emerged to fix the Kähler moduli: the KKLT
proposal [51] and the Large Volume Scenario (LVS) [52–
54]. Both are in the W0 �= 0 case. KKLT makes use
of the fact that W0 can be tuned to small values and
then compete with the small non-perturbative effects in
Wnp to produce an AdS minimum for the T -fields. In
this case, the minimum is at DTi

W = 0 and is super-
symmetric. For LVS, instead of tuning W0, the leading
order no-scale breaking effect, which is a V-dependent
α′ correction, competes with non-perturbative correc-
tions on a small (blow-up) four cycle. At the AdS min-
imum obtained, the volume V ∼ e1/gs 
 1 is exponen-
tially large in string units and supersymmetry is broken
by the F-terms associated with the Kähler moduli.

Since perturbative and non-perturbative effects play
a central role in fixing the Kähler moduli, we begin by
sketching the general structure of these corrections to
K and W . First, since string theory has no free param-
eter, each coupling corresponds to the value of a dif-
ferent modulus: the string coupling gs = 1/Re(S) is
set by the dilaton, the Kähler moduli control α′ effects
and the coupling of gauge theories on D7-branes wrap-
ping internal four cycles. Thus moduli stabilising cor-
responds to fixing the values of the expansion parame-
ters. Contrary to field theories, string compactifications
have feature many expansion parameters. This makes
it hard to obtain exact results but also provides more
flexibility regarding weak coupling expansions. At weak
coupling, the leading order correction to the tree-level
Kähler potential for the T -moduli in (12) arises from
perturbative effects (either in α′ or gs) and we denote
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this as

K = −2 ln V + Kp . (16)

We will write superpotential (14) in the schematic
form:

W = W0 + Wnp . (17)

The F-term scalar potential can be expanded as

V = V0 + δV , (18)

where the tree-level potential V0 is positive definite due
to the no-scale symmetry. Since V0 is independent of
the Kahler moduli, the minimum of the potential in the
Kähler moduli space is determined by the corrections
δV . Thus, determining the leading contributions to δV
is central to properly stabilising the moduli. From the
expressions in (16) and (17), the structure of δV takes
the form [53]:

δV ∝ eK
(
W 2

0 Kp + W0 Wnp

)
. (19)

If there were only one expansion parameter, and if
W0 
 Wnp and Kp 
 Wnp the the first term would
be the leading order term. It would lift the poten-
tial, but would necessarily give rise to a runaway
behaviour, unless terms of different order in the pertur-
bative expansion compete to give a minimum. This can
however arise only in a regime where the perturbative
expansion would break down since the corresponding
expansion parameter would not be small. This is the
essence of the Dine–Seiberg problem [44].

Type IIB flux compactifications, however, provide
two ways to overcome this issue. First, in the KKLT
scenario the big discrete degeneracy of flux vacua is
used to tune W0 to be exponentially small such that
W0 ∼ Wnp. This then requires that the W 2

np terms to
be also included in (19), they stabilise the T -fields as
they compete with the W0 Wnp terms [51]. Note that in
this regime quantum corrections to the Kähler poten-
tial can be consistently neglected since the first term
in (19) is subdominant since W 2

0 Kp � W0,Wnp ∼ W 2
0

for Kp � 1.
The second possibility is exploited in the LVS mod-

els. Here, the fact that there is more than one expan-
sion parameter plays the key rôle. In this case, the two
terms in (19) can compete with each other to provide a
minimum as long as each arises from a different expan-
sion. Thus, at the minimum one has W 2

0 Kp ∼ W0 Wnp

which, for Kp ∼ 1/V and Wnp ∼ e−τs , yields an overall
volume of order V ∼ W0 eτs . Here τs is a blow-up four
cycle that gets stabilised at a value of order of 1/gs. It
is therefore large at weak string coupling, as a result
the CY volume is exponentially large [52–54].

In summary, KKLT exploits tuning of the fluxes to
obtain W0 ∼ Wnp � 1. Recently, a systematic proce-
dure to obtain vacua with low W0 has been put forward
in [55]. Whereas LVS works for natural values of the flux

superpotential of order W0 ∼ O(1 − 100) (see [56] for
a concrete example) but depends more on perturbative
corrections to K.

4.1.1 Advantages

Let emphasise several advantages of type IIB construc-
tions:

1. Suppressed scalar potential scale: The starting point
of the dS models is the classical low-energy effective
action of type IIB string theory compactified on a
CY orientifold. This is a controlled approximation
if the compactification volume is large and the ener-
gies involved (E) are such that

E � MKK =
Ms

V1/6
� Ms ≡ 1

�s
≡ 1

2π
√

α′ = g
1/4
s

Mp√
4πV ,

(20)

where Ms is the string scale. As mentioned above,
the scale of the potential at tree-level is of order
V0 ∼ M4

s but the vacuum energy vanishes due to the
no-scale cancellation. This allows one to keep the
value of the scalar potential around the minimum
well below the string and the Kaluza–Klein scale,
and the effective field theory approach justified.

2. Controlled flux backreaction: Fluxes can be turned
on to generate a potential for the moduli in a con-
trolled fashion since their backreaction on the inter-
nal geometry just makes the compactification mani-
fold conformally Calabi–Yau. Thus, the understand-
ing of the underlying moduli space is better than in
other settings. Progress has been made recently in
computing the form of the Kähler potential includ-
ing the effects of warping [58–65]. We note that the
warping induces corrections to the definition of the
correct moduli coordinates which are however neg-
ligible at large volume.

3. Suppressed SUSY breaking scale: Supersymmetry is
broken at tree-level by the F-terms of the Kähler
moduli which are proportional to the (0, 3) compo-
nent of G3 and scale as FT = eK/2 KT T̄ KT̄ W0 ∼
W0

V1/3 . Thus the scale of supersymmetry breaking
is well below the KK scale: the gravitino mass
m3/2 = eK/2W0 ∼ W0

V is hierarchically smaller than
the Kaluza–Klein scale MKK ∼ Ms/V1/6 ∼ 1/V2/3

for either W0 � 1 (as in KKLT constructions) or
V 
 1 (as in LVS models).4 For a recent analysis
of the distribution of the scale of supersymmetry
breaking in IIB models, see [66].

4. Progress in computing quantum effects: Much
progress has been made in computing non-
perturbative contributions to the superpotential
(Euclidean D3-brane instantons in particular [50])
and perturbative corrections to the Kähler poten-
tial. After the first computation of N = 2 O(α′3)

4 Note that in F-theory models the string coupling can be
arbitrarily large, this tree-level analysis is not valid.
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corrections to the Kähler potential K [67], addi-
tional N = 2 O(g2sα′2) and O(g2sα′4) contribu-
tions to K have been obtained in [68] and further
advanced in [69]. Ref. [70] showed the existence of an
extended no-scale structure since O(g2sα′2) contri-
butions to the scalar potential vanish. More recently,
there has been substantial progress in understand-
ing N = 1 perturbative effects. Reference [71]
showed that N = 1 O(α′2) corrections to the effec-
tive action lead to moduli redefinitions, while Ref.
[72] found that N = 1 O(α′3) effects are captured
by a shift of the CY Euler number term.5 Moreover,
Ref. [74] reconsidered N = 2 O(α′3) contributions
to the Kahler potential incorporating the backreac-
tion of these corrections on the internal geometry
and found that they lead to moduli redefinitions.
Progress has also been made in the computation
of higher derivative N = 2 O(α′3) terms [75,76]
which can have implications for moduli stabilisation
and cosmology [77,78]. Finally Ref. [79–81] have
recently obtained N = 1 string loop corrections to
the Einstein-Hilbert term showing that they gener-
ate g2s corrections to a term involving the CY Euler
number.6
It is worth emphasising that none of the perturba-
tive α′ and gs corrections listed above create insta-
bilities for LVS constructions. On the other hand,
corrections subleading in an inverse volume expan-
sion turn out to be useful to lift leading order flat
directions. We also note it is at times not necessary
to obtain the full functional dependence of these cor-
rections on all moduli, but it is sufficient to deter-
mine their dependence on the Kähler moduli which
are yet to be stabilised. The functional dependence
of string loop corrections to K on the Kähler mod-
uli can often be determined from generalisations
of toroidal computations and low-energy arguments
[70,83]. Another powerful requirement is the posi-
tivity of the Kähler metric (see section 5.2 of [84]).
It has been shown in [85], that even though the flux
superpotential W0 depends explicitly on the dilaton
it is still not renormalised at any order in pertur-
bation theory. This is non-trivial since the standard
arguments for the non-renormalisability of W used
the fact that W did not depend on the string cou-
pling [86–88].

5. Controlled higher derivative corrections: As shown
in [89], the superspace derivative expansion is jus-
tified if W0 � V1/3 which corresponds to requir-
ing a gravitino mass which much smaller than the
Kaluza–Klein scale. As discussed earlier, this can
be achieved by either tuning W0 � 1 as in KKLT
models or by V 
 1 as in LVS constructions.

6. dS mechanisms: Several mechanisms have been pro-
posed to obtain dS vacua in type IIB models. Some
of the better examined dS mechanisms are: (i) anti-

5 See also [73] for N = 1 O(α′2) corrections to K in het-
erotic strings which should get mapped to type IIB O(g2

sα′2)
effects that have the extended no-scale cancellation.
6 See also [82].

branes [51], (ii) T-branes [90], (iii) α′ effects [91],
(iv) non-perturbative effects at singularities [92], (v)
non-zero S and U F-terms [93].

7. Explicit global models: A full model, should not only
lead to a dS vacuum but also include SM-like chiral
matter and an inflationary sector. A lot of progress
in this direction has been made in the type IIB [57,
97–104]. Supersymmetry breaking in such settings
has been studied in detail recently in [105,106].

4.2 Other dS mechanisms

Some other string motivated proposals are:

– Non-critical strings [107]: Non-critical strings have a
positive cosmological term (for D > 10) that can be
used to obtain dS by compactification while fixing
the moduli. The major challenge here is obtaining a
better understanding of the EFT, so as to establish
that the approximations are under control.

– Negative curvature spaces [108]: Non-supersymmetric
compactifications on manifolds with negative cur-
vature lead to a positive term in the effective
potential that can yield dS solutions. Being non-
supersymmetric, the EFT is under less control but
these compactifications can have interesting impli-
cations for the landscape.

– Kähler uplift [91,109,110]: The α′ corrections to the
Kähler potential in the KKLT scenario can be made
to compete with the fluxes and the non-perturbative
effects to produce solutions with positive vacuum
energy. The dS minima so obtained are in regions
at the edge of validity of the EFT. An explicit con-
struction has been carried out in [56] with all geo-
metric moduli stabilised.

– Dilaton-dependent non-perturbative effects [92]: In
type IIB models hidden and observable sectors can
be localised in D3 or D7-branes. One possibility is to
consider dilaton-dependent non-perturbative effects
coming from E(−1)-instantons or strong dynamics
on a hidden sector of D3-branes at singularities.
The non-perturbative term yields a positive definite
contribution to the scalar potential similar to that
which arises from anti-branes.

– Complex structure F-terms [93]: The complex struc-
ture moduli have minima at the supersymmetric
points DUW = 0. But there may be other min-
ima for these fields for which DUW �= 0. These
can in principle give rise to dS minima without
the need of further ingredients.. A concrete example
with V � 104 was constructed in [93].

– Non-perturbative dS vacua [94]: dS minima can
emerge from stabilising all the geometric moduli in
just one-step via the inclusion of just background
fluxes and non-perturbative effects. The main prob-
lems of this approach are: the poor knowledge of
the S and U -moduli dependence of the prefactor of
non-perturbative effects and the computational dif-
ficulty to find a numerical solution for the minimi-
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sation equations in the presence of a large number
of geometric moduli.

– Heterotic dS vacua [95,96]: The heterotic strings
on smooth Calabi–Yau threefolds yield dS models
where the gauge bundle moduli, together with the
dilaton and the U -moduli are fixed supersymmet-
rically at leading order. The Kähler moduli can
be fixed as in LVS by the interplay of worldsheet
instantons, α′ effects and threshold corrections to
the gauge kinetic function.

– G2 compactifications [111,112]: G2 holonomy com-
pactifications of M-theory can also lead to dS
vacua. Here, interesting scenarios have been stud-
ied addressing phenomenological issues. Superpo-
tentials with two exponentials but without fluxes
have been proposed to stabilise the moduli. The
freedom to tune the cosmological constant arises by
scanning through different ranks of the condensing
gauge groups.

– IIA models Type IIA models allow for fixing of all
the moduli at tree-level by background fluxes. How-
ever, so far no stable dS vacua have been found
[113–119]. These constructions have the advantage
of stabilising all the moduli at the classical level. But
the ten-dimensional equations can be solved exactly
only under the approximation of smearing which
would lead to a Calabi–Yau internal manifold. But,
in the localised case, the four dimensional effective
field theory is not under control since the backre-
action of the fluxes on the internal manifold cannot
be neglected leading to a half-flat non-Calabi–Yau
metric [120,121].

– Non-Geometric Constructions Non-geometric con-
structions seem to yield dS vacua without tachyons
[122–126]. However the exact form of the moduli
space is unknown, this is required to check the valid-
ity of the approximations. Moreover, the tree-level
stabilisation procedure leads to a four-dimensional
potential of order the string scale with O(1) values
of the volume of the internal manifold, thus it is not
clear if α′ effects can consistently be ignored.

5 Quintessence in string theory

The key challenges for quintessence in string theory
are the bounds from fifth forces and finding poten-
tials which are flat after quantum corrections are incor-
porated (for a recent discussion of these issues, see,
e.g [127]). Axions are ideal candidates to overcome
these difficulties are their shift symmetry protects their
potential at the perturbative level. Furthermore, they
couple to matter through derivative couplings; as a
result the fifth force constraints are not severe. Thus
they have been widely used for constructing models
of quintessence in String Theory [128–135]. In fact,
a generic prediction of string compactifications is the
string axiverse [136]. A large number of axions aris-
ing upon dimensional reduction of the antisymmet-
ric form fields on the internal cycles of the compact-

ification space. The number of axions is given by to
the number of cycles in the compactification manifold
which can easily be of O(100) or larger. Shift symme-
tries prevent them from acquiring masses at the per-
turbative level. The mass of an axionic particle is given
by

ma ∼ Mple
−τa , (21)

where τa is the volume (in string units) of the cycle on
which the non-perturbative effect responsible for the
mass of the axion is supported. One can have compact-
ification scenarios in which a good number of the τa are
large, leading to a many ultra-light axions. The poten-
tial for such axions takes the form

V = Λ4 −
NULA∑

i=1

Λ4
i cos

(
ai

fi

)
, (22)

where NULA is the number of ultra-light axions. The
axions can have a range of masses, the late time cosmo-
logical dynamics can be examined by integrating out
the heavier ones (with each integrating out, cosmolog-
ical constant term Λ has to suitably corrected). The
potential of Eq. (22) allows for realising various sce-
narios of quintessence: (a) natural inflation (b) hill-
top (c) quasi-natural and (d) oscillating scalar. We
refer the reader to [46] and references there in for the
details of these scenarios.7 The detailed phenomenolog-
ical implications of these scenarios have been explored
in [139].

6 Conclusions

The current acceleration of the Universe due to either
vacuum energy at the bottom of a scalar poten-
tial with positive potential energy or a rolling field
(quintessence) which is away from its minimum are
well-established mechanisms. The difficulties arise when
the idea is incorporated within our knowledge of high-
energy physics. The main difficulty arises due to the
small scale of the associated energy density in compar-
ison to the known scales of high-energy physics. String
compactifications seem to have the necessary ingredi-
ents for construction of de Sitter vacua. There has been
substantial progress in this direction, but still many
open questions remain. These are being actively inves-
tigated, particularly in light of the swampland conjec-
tures. In the context of quintessence, the associated dif-
ficulties also arise from its ultralight mass and negligi-
ble coupling to matter, in particular to baryons. When
the idea of quintessence is thought in supergravity, the
main difficulty is controlling the SUSY breaking effects
to its mass, and avoiding generic couplings to the mat-
ter particles. From that point of view, a pNGB is a

7 Once challenge is to the field range to be suitably large
[23,24]. Various possible solutions have been proposed, see
for e.g [9,46,137,138] and the references there in.
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good starting point that naturally has a small coupling
to other fields, and its mass is also technically small.
Therefore, as we have seen in this article, a pNGB
(or many) is the favourite choice of quintessence model
building. Although, getting a working model in string
theory under full computational control which evades
the bounds and has the suitable field range remains a
challenge. Thus, there is a lot to do from the theoreti-
cal perspective. At the same time, existing observations
have constrained the departure from a pure de Sitter
solution today severely.
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