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Abstract: We analyze a rotating black hole (BH) in a four-dimensional space-time embedded in

five-dimensional flat bulk. In Boyer–Lindquist coordinates, we use a generic extension of the Kerr

metric by the line element of Gürses–Gürsey metric. We discuss their horizon properties and shadow

cast which is tailored by the influence of the extrinsic curvature. By means of the model based on

the Nash–Greene theorem, we analyze the Gürses–Gürsey metric embedded in five dimensions

acting as a rotating “charged” BH which may be regarded as a source of ultrahigh-energy cosmic

rays (UHECRs). We also show that this type of BH presents a different structure of the accretion disk

which is modified by the extrinsic curvature leading to an enlargement of the photons ring and an

increase in the BH’s inner shadow. In the presence of a magnetic field, our initial results suggest that

such BHs may be efficient free-test particle accelerators orbiting the inner stable circular orbit (ISCO).

Keywords: black hole; Nash–Greene theorem; gravitational field

1. Introduction

A renewal of interest in studying black holes (BHs) came from the direct detection
of gravitational waves by Laser Interferometer Gravitational-Wave Observatory (LIGO)
detectors from two merging stellar mass BH systems [1] in 2016 that opened a new era
of possibilities in astronomy, astrophysics and gravitational theories. One of the routes
for the understanding of gravity and its relation with the other fundamental interactions,
namely the hierarchy problem, considers that the universe is somewhat embedded and
evolves in a higher-dimensional space-time. This is not a new idea. Most of these models
have been Kaluza–Klein and/or string inspired, such as the seminal works of Arkani-
Hamed, Dvali, and Dimopolous (ADD) [2] with a six-dimensional bulk for large extra
dimensions where only the sub millimeter gravity accessed and the other gauge interactions
remain confined in the four-dimensional space-time. With the use of the Israel–Lanczos
junction condition [3], the popular Randall–Sundrum model [4,5] attracted much attention,
specifically model II [5] that proposed an infinite five-dimensional model that shared
similarities with a four-dimensional model that appealed to the holographic AdS/CFT
conjecture [6]. In model II, the so-called three-brane is embedded in a five-dimensional anti-
de Sitter (AdS5) space-time focused on an explanation of the behavior of gravity. Another
popular high-dimensional model relies on the Dvali–Gabadadze–Porrati [7] model that
considers the 3 + 1 Minkowski space-time embedded in a flat five-dimensional bulk. One
common characteristic of these models and variants is that the embedding is not completely
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defined. Thus, in such models, the embedding is static, i.e., it is fixed to a boundary and/or
specific conditions are needed to obtain its dynamics. The extrinsic curvature does not
exert any dynamical influence on the relation of the bulk and the embedded space-time
and is commonly replaced by those conditions.

Our present work is essentially based on previous communications [8–10] that pro-
posed a five-dimensional model using dynamical embedding using the Nash embedding
theorem [11,12] to investigate possible physical consequences of the perturbations of the
geometry in embedded spaces. This present framework is different from the standard
braneworld models since the extrinsic curvature exerts a fundamental role leading to a dy-
namical embedding rather than static embedding. Then, we propose a model-independent
formulation, avoiding referring to this model as a braneworld model considering all the dif-
ferences between the formulations. In fact, standard braneworld models may be described
as a particular case of the covariant-independent approach presented in this paper and may
be regarded as a family of stable perturbations of a given locally embedded background
space-time.

Due to the fact that BHs turned out to be one of the crucial elements to understand the
behavior of gravity, the study of exact solutions provides an important test for alternative
theories of gravity [13–19]. In previous communications, we explored a four-dimensional
spherically symmetric geometry embedded in a five-dimensional bulk. For such geometry,
we found that a higher space for embedding with a bulk larger than 5 is a must due to
strong restrictions on the embedding itself [20]. In this case, the Newtonian limit could
not be correctly obtained. We obtained similar results with a classical thermodynamic
analysis for the before-mentioned geometry in which global stability was not a preferred
state [21]. Moreover, the analysis of the quasinormal frequencies of the BHs produced
using the Wentzel, Kramers, and Brillouin (WKB) approximation [22] also indicated se-
rious constraints on embedding models in five dimensions, and the correct analysis of
spherically symmetric geometry in an embedded space should be made at least with a
six-dimensional bulk. This was effectively implemented in Ref. [23] in which, besides the
extrinsic curvature, we had the influence of the torsion vector Aµab as a gauge group of
rotations SO(2) in the extra dimensions. As a result, we obtained the correct embedding
for a spherically symmetric metric producing a lukewarm BH and the appearance of an
emergent cosmological constant Λ.

BHs are true accelerators of cosmic particles, capable of generating cosmic rays with
unimaginable energies. To explain this phenomenon, some fundamental processes are
evoked and take place in the vicinity of black holes, collisional processes [24,25] or those re-
lated to particle decay [26] both arising from a process of harnessing gravitational energyor
accelerating processes related to electromagnetic fields from the relationship between BHs
and plasma structures, such as accretion disks and jets [27–29]. From a broader perspective,
BHs are perfect cosmic laboratories for testing fundamental theories, such as the theory
of general relativity, but they also serve to scrutinize astrophysical phenomena that are
still poorly understood. In astronomy, for example, understanding the behavior of galactic
black holes is the same as understanding the formation properties of the host galaxy [30,31].
The gravitational influence of these BHs affects star formation and galactic dynamics. The
interplay between these supermassive BHs and the surrounding gas can influence the
formation and evolution of galaxies, regulating the rate of star formation and the distribu-
tion of matter. Also noteworthy is the case of stellar mass BHs, born from the collapse of
massive stars, which provide insights into the process of stellar formation and evolution.
The observation of gamma ray burst data associated with the multimessenger astronomy
of gravitational wave emission can be a good way to link the way particles accelerate at
the edge of stellar BHs. For instance, in both the stellar and galactic cases, the acceleration
of particles near black holes can lead to the appearance of UHECRs, which have energies
much higher than any particle that can be produced in terrestrial accelerators [25,32–37].

Investigating the origin of these particles and how they propagate through space
is one of the main focuses of astroparticle physics. These cosmic messengers can come
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from gamma-ray bursts and other extreme phenomena in the universe, but in particular,
they can be accelerated at the edge of BHs. The most standard way to understand this
is through the acceleration of particles in accretion disks. In these disks, particles are
accelerated to speeds close to that of light, thanks to intense electric fields, modulated by
the powerful magnetic fields present in the region. This acceleration is the main mechanism
for the production of cosmic rays. Another way comes from the fact that many black holes,
especially supermassive ones, launch jets of high-energy particles in opposite directions.
These jets are composed of matter accelerated to speeds close to that of light and can
extend for millions of light-years. It is worth noting, however, that the energies of UHECRs
that exceed the Greisen–Zatsepin–Kuzmin (GZK) limit denote energy sources that are
not yet understood [27,32,34,38]. A deep understanding of the spectrum beyond GZK
can provide important contributions to the link between the phenomenon described here
(the acceleration of particles at the edge of black holes from the collisional BSW effect)
and the observation of UHECRs. By describing a collisional mechanism for extracting
gravitorotational energy from a black hole, the BSW effect suggests that these objects are
not only sinks of matter but can also be sources of energy.

In this paper, we maintain the same five-dimensional bulk with a different metric. We
investigate some consequences of a vacuum solution of an embedded four-dimensional
model of an axially symmetric gravitational field for a rotating BH to obtain a model for
the final fate of the gravitational collapse. In the second section, we make highlights of a
mathematical review on embeddings and the general mechanism to obtain the induced
field equations in four-dimensional space-time starting from a five-dimensional bulk. The
third section focuses on an analysis of the line element of the generic extension of the Kerr
metric known as the Gürses–Gürsey metric [39], where we obtain the metric’s singularity
and horizons. In the fourth section, we discuss the geodesic of test particles and collision
effects. In the final section, we present our final remarks and prospects.

2. Highlights on Embeddings and Induced Field Equations

To study the physics of embeddings, we simplify our analyses, starting from a classical
approach. Mainly motivated from the hierarchy problem of fundamental interactions, the
“not-so-new" physical problems such as dark matter and dark energy problems suggest that
something is missing in the LHS of Einstein’s equations. To solve these issues, embeddings
may provide a viable direction to follow. We adopt dynamical embedding to differ from
popular braneworld models, where the perturbations are triggered from the confined sources
and the brane is generated by a scalar field coupled to gravity that needs a sophisticated
mechanism to localize matter on the brane. Generally speaking, in these models, a common
practice is to rely on junction conditions that replace the extrinsic curvature by the energy–
momentum tensor of the confined sources. In fact, braneworld models may be described as a
particular case of the covariant-independent approach presented in this paper.

The general solution for embedding between geometries is credit to J. Nash [11]. The
Nash theorem proposes that a stable embedding with a regular map X : Vn → VD (n < D)
occurs by means of a smooth and differentiable process. This makes it possible for any
embedded metric geometry to be generated continuously through a sequence of small metric
orthogonal perturbations such as

gµν = ḡµν + δy k̄µν + (δy)2 ḡρσk̄µρk̄νσ . . . . (1)

where gµν is the perturbed metric and k̄µν is the extrinsic curvature. The y parameter is an
arbitrary spatial coordinate wherein orthogonal perturbations are driven. The overbar sign
indicates a background (non-perturbed) quantity.

By definition, written in the Gaussian frame {XA
µ , η̄A

a }, the extrinsic curvature is given by

k̄µν = −X A
,µ ηB

,νGAB , (2)
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which tells us how normal unitary vector ηA in the embedded space deviates from the tangent
plane. As a result, the embedded geometry bends. This characteristic sounds interesting
to investigate physical problems in cosmology and astrophysics with strong gravitational
sources. Then, we investigated the extrinsic curvature per se as an orthogonal complement
to the tangent component of the gravitational field, gµν. Concerning notation, capital Latin
indices are fixed to 5. Small-case Latin indices refer to the only one extra dimension fixed to 1.
All Greek indices refer to the embedded space-time running from 1 to 4.

From Equation (1), one obtains Nash’s deformation formula given by

kµν = −1

2

∂gµν

∂y
. (3)

This is the core of Nash’s embedding theorem published in 1954 applied to non-Euclidean
metrics [11] and in 1956 to Riemannian metrics [12] and later extended to pseudo-Riemanian
manifolds by Greene [40]. This is a key condition for the perturbations of an embedded space
inside the bulk. It also imposes a geometric constraint on the deformations of the embedded
space. In this framework, these deformations are not arbitrary and can be generated by
perturbations along the direction δy orthogonal to the embedded space Vn by the Lie transport
of the Gaussian frame {XA

µ , η̄A
a } that gives

ZA
,µ = XA

,µ + δy £η̄XA
,µ = XA

,µ + δy η̄A
,µ (4)

ηA = η̄A + δy [η̄, η̄]A = η̄A , (5)

where we define a differentiable and regular map by X : Vn → VD. In Equation (5), the
independent unit vector field, ηA, is orthogonal to Vn and is not affected by perturbations
in that direction. This mechanism avoids possible coordinate gauges that may lead to false
perturbations. The perturbed coordinate ZA

,µ defines a coordinate chart between the bulk
and the embedded space-time. Equations (4) and (5) link the freedom of perturbations of
the embedded space-time to the bulk once the extra dimensions do not share the same
diffeomorphism invariance of the embedded space. In five dimensions, this process is
simplified and just one deformation parameter suffices to locally deform the embedded
background in the same way as conducted in Equations (4) and (5).

In the present application, we adopt a five-dimensional bulk, V5, wherein a smaller space,
V4, is isometrically embedded. Then, one defines chart X : V4 → V5 and the bulk metric
GAB as

GAB =

(

gµν 0
0 1

)

. (6)

Consequently, gravitational action S can be defined with confined matter fields as

S = − 1

2κ2
5

∫ √

|G|
(

5R+ L∗
m

)

d5x , (7)

where κ2
5 is a fundamental energy scale on the embedded space, and the curly 5R de-

notes the five-dimensional Ricci scalar of the bulk. The Lagrangian L∗
m denotes the bulk

source Lagrangian.
One important aspect of the embedding is the Gauss and Codazzi equations given by

5RABCDZA
,αZB

,βZC
,γZD

,δ = Rαβγδ+ (kαγ kβδ− kαδ kβγ) , (8)

5RABCDZA
,αZB

,βZC
,γηD = kα[β;γ] , (9)

where 5RABCD denotes the five-dimensional Riemann tensor, and Rαβγδ is the four-dimensional
Riemann tensor. The semicolon sign in Equation (9) represents the ordinary covariant
derivative with respect to the metric gµν and kα[β;γ] ≡ kαβ;γ − kαγ;β. These equations reflect
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the integrability conditions for the embedding to assure the relation of the bulk with the
embedded space. The Nash deformation formula in Equation (3) guarantees the dynamics
of the embedded space by solving Equations (8) and (9). The bulk Lagrangian source L∗

m is
somewhat independent of the embedding. Since only gravity should access the bulk by the
geometrical constraint of Equation (3), L∗

m is confined as

κ2
5T∗

µν = −8πGTµν , (10)

κ2
5T∗

µa = 0 ,

κ2
5T∗

ab = 0 ,

from the generic components of T ∗
AB of the energy–momentum tensor of the bulk. The com-

ponents T∗
µν, T∗

µa, and T∗
ab define the energy–momentum of the tangent (tensor), vector, and

scalar components of T ∗
AB. Tµν and G denote the matter gauge fields and the gravitational

Newtonian constant, respectively.
As a common practice, the variation in the Einstein–Hilbert action in Equation (7) with

respect to the bulk metric GAB gives higher-dimensional Einstein equations written as

5RAB − 1

2
GAB = α⋆TAB , (11)

where α⋆ is the energy scale parameter and T ∗
AB is the energy–momentum tensor for

the bulk, and the five-dimensional bulk with constant curvature whose related Riemann
tensor is

5RABCD = K∗(GACGBD − GADGBC), A . . . D = 1 . . . 5 ,

where GAB denotes the bulk metric components in arbitrary coordinates and constant
curvature K∗ is either zero (flat bulk) or it can have positive (deSitter) or negative (anti-
deSitter) cosmological constant Λ. For a flat bulk, one obtains the four non-perturbed
induced gravitational field equations from a five-dimensional bulk as [8–10,41,42]

Gµν − Qµν = 8πGTµν , (12)

kµ[ν;ρ] = 0 , (13)

where Gµν denotes the four-dimensional Einstein tensor and Qµν is the deformation tensor.
The non-perturbed extrinsic term Qµν in Equation (12) is given by

Qµν = k
ρ
µkρν − kµνh − 1

2

(

K2 − h2
)

gµν , (14)

where we denote the mean curvature by h2 = h·h and h = gµν kµν and the Gaussian
curvature by K2 = kµνkµν. By direct derivation, Equation (14) is conserved in the sense that

Qµν;µ = 0 . (15)

3. A Gürses–Gürsey Metric Embedded in Five-Dimensions

In the present application, we are interested in realizing how the extrinsic effect unfolds
in this gravitational system. Then, we consider a vacuum solution of a four-dimensional
axially symmetric gravitational field. In Boyer–Lindquist coordinates, we start with a
generic extension of the Kerr metric, i.e., the line element of the Gürses–Gürsey metric [39]
written as

ds2 =

(

2 r f (r)

ρ2
− 1

)

dt2 − 4 ar f (r) sin2 θ

ρ2
dtdφ +

ρ2

∆
dr2 + ρ2dθ2 +

Σ

ρ2
sin2 θdφ2 , (16)

where we have introduced the notation ρ2 = a2 cos2 θ + r2, ∆ = a2 + r2 − 2 r f (r) and
Σ = (r2 + a2)2 − a2∆ sin2 θ at the scale a = J/m, in which J is the angular momentum and
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m is a rotating mass. The function f (r) is an arbitrary function of the radial coordinate
r. In principle, it should absorb a non-trivial effect from extrinsic geometry as a result
of the embedding. In other words, we should calculate Equation (13) to realize how the
extrinsic effects propagate in the main field equation, i.e., Equation (12). Clearly, when
f (r) = m = constant, one obtains the standard Kerr solution, and fixing a = 0 and
f (r) = m, we recover the standard Schwarzchild metric. Thus, the solution of Equation (13)
can be generically written as

kµν = pµgµν (no sum on µ) , (17)

where pµ = {p1(r, θ, φ, t), p2(r, θ, φ, t), p3(r, θ, φ, t), p4(r, θ, φ, t)} is a generic coordinate
function.

Taking Equations (17) and (13), one obtains (with no sum for µ)

Qµν = p2
µgµν −

(

∑
α

pα

)

pµgµν −
1

2



∑
α

p2
α −

(

∑
α

pα

)2


gµν ,

where we can identify

Uµ = p2
µ −

(

∑
α

pα

)

pµ − 1

2



∑
α

p2
α −

(

∑
α

pα

)2


δ
µ
µ ,

and we can write the quantity Qµν in terms of pµ as

Qµν = Uµgµν (no sum on µ) . (18)

As Qµν is a conserved quantity, we can find six equations regarding ∑ν gµνUµ;ν = 0.
After carrying out a calculation, one finds only two independent equations















U1 = p2
1 −

(

∑
4
α=1 pα

)

p1 − 1
2

(

∑
4
α=1 p2

α −
(

∑
4
α=1 pα

)2
)

U2 = p2
2 −

(

∑
4
α=1 pα

)

p2 − 1
2

(

∑
4
α=1 p2

α −
(

∑
4
α=1 pα

)2
)

and the relations
{

p1 = p2 = α(r, θ) ,
p3 = p4 = β(r, θ) ,

where α(r, θ) = α and β(r, θ) = β are generic functions from the direct integration of the
functions in ∑ν gµνUµ;ν = 0. Hence, calculating Uµ quantities, taking into account that
U1 = U2 and U3 = U4, we write Qµν as

Qµν =
1

2
(4αβ + α2 + β2)gµν . (19)

Assuming the simplest isotropic solution when α = β, one obtains

Qµν = 3α2gµν . (20)

In order to determinate the function f (r), we insert Equation (20) into the scalar gravi-
tational equation of Equation (12). In vacuum, with Tµν = 0, we rewrite Equation (12)
contracted with gµν in a more convenient form as

Rµν +
1

2
Q = Qµν , (21)
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where we define the extrinsic scalar as Q = gµνQµν. Thus, using Equations (16) and (20),
we calculate Equation (21) and obtain the radial equation for the function f (r) as

r
d2 f

dr2
+

1

2

d f

dr
+ 6α2ρ2 = 0 . (22)

For the choice α =
√

α0

ρ , we obtain the solution

f (r) = c0 − 4
α0

r
+ 2

√
rc1 , (23)

where the α0 parameter is regarded as a relic from extrinsic geometry, and c0 and c1 are
integration constants.

To find the horizons r = rH of the metric in Equation (16), we start calculating the
component grr = 0. Then, we obtain the related inner and outer horizons given by

rin
H = 2 α1

√
r + m −

√

4 α2
1r + 4 α1m

√
r − a2 + m2 − 8 α0 ,

rout
H = 2 α1

√
r + m +

√

4 α2
1r + 4 α1m

√
r − a2 + m2 − 8 α0 . (24)

By the condition gtt < 0, we obtain the inner and outer ergospheres as

rin
ergo = 2 α1

√
r + m −

√

−a2 cos(θ)2 + 4 α2
1r + 4 α1m

√
r + m2 − 8 α0 , (25)

rout
ergo = 2 α1

√
r + m +

√

−a2 cos(θ)2 + 4 α2
1r + 4 α1m

√
r + m2 − 8 α0 ,

where we appropriately choose c0 = m and c1 = α1.
When extrinsic curvature vanishes, setting α0 = 0, in the previous results, then we

recover the standard Kerr horizons. A real physical curvature singularity is seen in the
Kretschmann scalar RαβµνRαβµν → ∞ at r → 0 but it remains finite at r = {rin

H , rout
H }. A

singular ring is found at r = 0, θ = 1
2 π and this result is independent of the presence

of extrinsic curvature. Moreover, an important remark is that the zero mass limit of
Equation (23) does not lead to a flat Minkowski space of the metric in Equation (16). In
order to study a real solution, the radial coordinate is assumed to have one asymptotic
region corresponding to r → ∞, but at this limit, the horizons r = {rin

H , rout
H } become

singular and so is the metric in Equation (16). Clearly, this can be avoided when imposing
the boundary α1 = 0 and Equation (23) that results in the simpler form

f (r) = m − 4
α0

r
. (26)

As a result, the inner and outer horizons are now given by

rin
H = m −

√

−a2 + m2 − 8 α0 ,

rout
H = m +

√

−a2 + m2 − 8 α0 . (27)

Moreover, the inner and outer ergospheres are

rin
ergo = m −

√

−a2 cos(θ)2 + m2 − 8 α0, (28)

rout
ergo = m +

√

−a2 cos(θ)2 + m2 − 8 α0 .

When extrinsic curvature vanishes, setting α0 = 0, in the previous results, then the standard
Kerr horizons and ergospheres are recovered again. In this case, α0 is referred as a tidal
“extrinsic charge” in resemblance to Kerr–Newman solutions.
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Using the free open-source SageMath [43], we obtain Figures 1 and 2. In Figure 1, we
propose an ansatz to constrain the dimensionless tidal “extrinsic charge” that should have a
cosmological magnitude, as defined in Ref. ([44]), given by

α0 =
√

1 − Ωm(0) h , (29)

where h = 0.674 is the dimensionless Hubble factor and Ωm(0) = 0.315 denotes the current
cosmological parameter for matter density content adopting the baseline mean values of
68% intervals of base-ΛCDM model from Planck TT,TE,EE+lowE+lensing [45]. Thus, one
obtains α0 = 0.558 and we use it as a reference value.

    

    

Figure 1. Surfaces in Kerr–Schild coordinates. In the left upper panel, we have the surfaces of the

Kerr space-time with m = 1 and a = 0.999. The upper right panel represents Gürses–Gürsey surfaces

for m = 2.4 and a = 0.999. From left to right regarding the bottom panels, we have Gürses–Gürsey

surfaces for m > 2.4 and m < 2.4 for the same a = 0.999. The outer and inner ergosphere, outer and

inner horizon and singular ring are colored as grey, lilac, blue, orange, and red, respectively. For an

interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.

Figure 2. Relativistic aberration to the accretion disk around BHs modified by different values of α0

for optimal mass m = 2.4 and a = 0.999.
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In Figure 1, we present Gürses–Gürsey surfaces in the upper right and bottom panels.
Fixing the values of α0 = 0.558 and a = 0.999, for the optimal mass m = 2.4, the ring
singularity is naked and is shielded by the inner ergosphere. The curvature singularity
lies at the kink in the inner ergosurface on the inside. The outer and inner ergosphere
and horizons and singular ring are represented as grey, lilac, blue, orange, and red colors,
respectively. For masses less than 2.4, the geometry is progressively “mutilated”, i.e.,
all horizons and ergospheres cease to converge to the ring singularity. On the other
hand, regarding masses higher than 2.4, the inner horizon and inner ergosphere become
progressively smaller up to being shielded by the ring singularity covered by the outer
ergosphere and outer horizon. Just for the sake of comparison, Kerr surfaces are represented
in the upper left panel. The overall pattern is similar to that described in the case of the
Gürses–Gürsey metric. The difference lies in the fact that the masses in Kerr surfaces are
lower to maintain the Kerr geometry. Thus, the reference values of mass is fixed at m = 1
but masses less than or higher than 1 progressively generate smaller inner horizons and
ergospheres up to the ring singularity.

In Figure 2, we compare images with relativistic aberration added to the accretion disk
around BHs changed by extrinsic curvature relaxing to different values of α0.The optimal
mass value is m = 2.4 for all cases. Scale a is fixed as a = 0.999, and from left to right in the
upper and bottom panels, we have the results for α0 = {0.4, 0.558, 1.2, 1.5}, respectively.
We found that higher values of the extrinsic term lead to the enlargement of the photon
rings but also with an increase in the BH’s inner shadow. It is important to point out that
the increase in the shadow comes from an increase in the inner horizons until the image
of the disk’s underside vanishes. The upper left panel shows a lower value of α0 and the
photon ring is not visible.

4. Geodesic of Test Particles and Collisional Effects

Once the properties of these BHs have been obtained with this approach, we analyze
the geodesics of colliding classical charged particles at the BH stable orbits. For simplicity,
we consider that particle geodesics do not present backreaction effects. It appears from
the results that charged particles can be accelerated to ultrahigh energies in marginally
bound orbits near extreme rotating embedded BHs in the presence of magnetic fields. Such
a result can help us to understand, for example, high-energy astrophysical phenomena
associated with BHs in the universe, in particular, the origin and mechanisms within the
acceleration of UHECRs. The sources of UHECRs are still a subject of discussion and BHs
are potential particle acceleration sources [46–48].

Suppose that the described BH is surrounded by collisional particles along its possible
stable orbits. When considering the motion of particles only under the action of gravity,
the conserved quantities along geodesics are the energy and the angular momentum,
represented, respectively, by the free-test particle energy in terms of the four-momentum
p̄µ as

E = −gtµ p̄µ, (30)

and the free-test particle angular momentum per unit rest mass

ℓ = −gφµ p̄µ. (31)

Such conserved quantities are respectively associated to Killing vectors ξ(t) = ξ
µ

(t)
∂µ = ∂

∂t

and ξ(φ) = ξ
µ

(φ)
∂µ = ∂

∂φ . Assuming the properties and symmetries presented here are

similar to those of a Kerr or a Kerr–Newman BH, we can envisage that when particles are
crossing the ergosphere, they acquire negative energy as ascertained by an observer at
infinity [49]. In this framework, the scattering process of colliding particles near the horizon
of an extremal BH (a → 1) can extract mass and angular momentum from the hole, reaching
arbitrarily high center-of-mass energy, i.e., a particular case of the so-called Bañados–Silk–
West (BSW) effect [50]. Particle geodesics determined by an effective potential enables the
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determination of energy and angular momentum values in which the particles may escape
to infinity [51,52]. Additionally, when magnetic fields are present and when a charged
particle orbits the ISCO of the embedded BH of Equation (16), an incoming particle can
collide, leading to the expelling of the charged particle to infinity, even if a ≤ 0.998 [47],
where a = 0.998 is the rotational astrophysical limit, a.k.a. the Thorne Limit [53]. In
this case, the presence of magnetic fields may change the frame-dragging aspects of the
space-time near the ISCO, permitting the BSW effect for arbitrary values of a.

Consider now two particles, each one with mass m0, one of them at the ISCO and
the other coming from infinity, with energies E1 and E2 and different angular momenta ℓ1

and ℓ2. In this case, the center-of-mass energy (normalized by the particle mass m0) of the
two-particle system is given by [50]

Ecm =
√

2
√

1 − gµνu
µ

(1)
uν
(2)

, (32)

where u
µ

(1)
and uν

(2)
are the four velocities (uα = ẋα ≡ dxα/dτ, where τ is the proper time)

of each particle. The four-momentum of the particle reads p̄µ = uµ + qAµ, where Aµ is the
electromagnetic four-potential and q is the charge of the particle. From the Lorentz gauge
A

µ
;µ = 0, the only nonzero component of the four-potential is Aφ = Bgφφ/2, where B is

the uniform magnetic field present in the system. Therefore, the conserved quantities in
Equations (30) and (31) are written, normalized by the particle mass m0, as

E = −gtµ(u
µ + qAµ), (33)

ℓ = −gφµ(u
µ + qAµ). (34)

Considering the conserved quantities in (33) and (34) (E(i) = 1) and the normalization
condition gµνuµuν = −1, we have the following system of equations:

φ̇(i) =
gttℓi + gφtEi − gttgφφB

gttgφφ − (gtφ)2
, (35)

ṫ(i) =
−Ei − gtφφ̇

gtt
, (36)

ṙ(i) =

√

−1 − gtt(ṫ(i))
2 − 2gtφ ṫ(i)φ̇(i) − gφφ(φ̇(i))

2

grr
, (37)

where B ≡ qB
2m0

is the normalized magnetic field strength. Here, we considered for simplic-

ity only equatorial motions (i.e., θ̇(i) = 0).
The center-of-mass collision energy of two particles is calculated from Equation (32).

Figures 3 and 4 show the results of the Ecm for a set of possible particle angular momenta
for BH spins of order a ∼ 0.9 and BH spins in a near-extremal (a = 0.99) regime. Here,
we use the permitted range −2(1 +

√
1 + a) < ℓ < 2(1 +

√
1 − a) [50] for the particle

angular momenta. The results presented point to the possibility of particles being expelled
to infinity at positions slightly shifted from the BH ISCO which depends on the intensity of
B and also on the intensity of α0. For a fixed value of spin, say a = 0.9, larger “extrinsic
charge” values α0 cause accelerations to infinity, even at points relatively far from the event
horizon. When the magnetic field is turned on, this effect becomes even more effective.
The higher the values of α0, the greater the chances that the particles will be expelled at
positions far from the ISCO. For instance, when a > 0.9, the ISCO is located at 1 < r < 1.5.
For the extreme value of α0 = 10, in the presence of magnetic fields, the particle is expelled
at r ∼ 5, far from the ISCO.
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Figure 3. Ecm values for a = 0.9 and different normalized magnetic field strengths (in C.T/m units).

Figure 4. Ecm values for a = 0.999 and different normalized magnetic field strengths (in C.T/m units).

5. Remarks

By means of the model based on the Nash–Greene theorem, we analyze a Gürses–
Gürsey metric embedded in five dimensions. The novelty of this approach is examining
the influence of the extrinsic geometry on a rotating “charged” BH. Such characteristics
allow us to study this rotating BH as, e.g., a source of UHECRs. In this case, in the presence
of a magnetic field, particle acceleration is more efficient. This phenomenon occurs in a
nonlinear manner due to the complex relation between the magnetic field and the black
hole particle system properties. The effects on the particle acceleration of evolving event
horizons and magnetic field dynamics in time-dependent embedded space-times demand
future meticulous investigations. Nevertheless, the present picture is a first hint towards
the possibility of embedded BHs as efficient accelerators. In particular, specific signatures in
the spectrum may even contribute to the understanding of the energy signature proposed
here when embedding is introduced into the model. An example of a way to detect
such signatures comes from synchrotron radiation. When accelerated particles at the
edge of embedded space-time BHs interact with magnetic fields, they deflect and emit
synchrotron radiation, which manifests itself in this case as high-energy gamma rays. Thus,
the design of experiments in the context of the next large gamma-ray telescopes is essential
to understand the signatures arising from phenomena such as those described in this work
(see, e.g., [54–58]). Other subjects should also be added to the present study to express a
complete picture of a UHECR regarding the many energy features produced by accretion
dynamics surrounding the embedded BHs. Furthermore, as expected, there is an increase
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in the strength of the gravitational field due to the addition of the extrinsic curvature, and
higher values of the extrinsic term lead to an enlargement of the photon ring and an increase
in the BH’s inner shadow. In terms of prospects, a classical thermodynamic analysis and
quasinormal frequencies using the WKB approximation are currently in progress and will
be reported elsewhere.
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