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In the first part of this thesis we study the classification and quantifica-
tion of quantum entanglement between fermionic particles. We reformulate
the classification problem under stochastic local operations and classical
communications (SLOCC) in the language of Clifford algebras and show
that when extended with Bogoliubov transformations the SLOCC group
turns into the so called even Clifford group. This allows us to reinter-
pret several results in the mathematical literature on the classification of
spinors as the solutions to the entanglement classification problem for cer-
tain fermionic systems. We discuss how to describe distinguishable systems
via embedding them into fermionic ones with particular emphasis put on
three and four qubits and three qutrits.

In the second part of this thesis we study classical black hole solutions
of ungauged N = 2 supergravity in four dimensions. These black holes
are connected to simple entangled qubit and fermion systems via the black
hole/qubit correspondence. Extending results on extremal black holes, we
show that nonextremal STU black holes correspond to a particular semisim-
ple SLOCC orbit of four qubits. The dictionary between fermionic systems
and black holes allows us to write down a new formula for the entropy of
general nonextremal STU black holes in terms of U-duality invariants of the
asymptotic charges.
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Kivonat

Az értekezés első felében a fermionikus részecskék közötti kvantum
összefonódás klasszifikálásának és kvantifikálásának lehetőségeit tanulmá-
nyozzuk. A sztochasztikus lokális operációkon és klasszikus kommuniká-
ción (SLOCC) alapuló összefonódottsági klasszifikációs problémát újrafo-
galmazzuk a Clifford algebrák nyelvén és megmutatjuk, hogy ha az in-
vertálható SLOCC protokollokat kombináljuk Bogoliubov transzformáci-
ókkal, akkor az úgynevezett páros Clifford csoportot kapjuk. Ez lehetőséget
teremt, hogy a matematikai irodalom spinorok klasszifikációjára vonatkozó
eredményeit újraértelmezzük, mint bizonyos fermionikus rendszerek össze-
fonódottsági klasszifikációs problémáinak megoldásait. Bemutatjuk hogyan
lehet megkülönböztethető rendszerekben az összefonódottságot tárgyalni a
fermionikus rendszerekbe való beágyazás segítségével, különös hangsúlyt
fektetve a három és négy qubit, illetve a három qutrit rendszerekre.

A dolgozat második felében a négy dimenziós N = 2 szupergravitá-
ció klasszikus fekete lyuk megoldásait vizsgáljuk. Ezeket a fekete lyukakat
a fekete lyuk/qubit megfelelés köti össze egyszerű összefonódott rendsz-
erekkel. Az extremális fekete lyukakra vonatkozó megfeleléseket kiegészít-
jük azzal a megfigyeléssel, hogy az általános nem extremális fekete lyuk
töltéseinek megfelelő négy qubit állapot mindig egy bizonyos félegyszerű
négy qubit SLOCC osztályban található. A fekete lyuk töltések fermionos
leírásának segítségével új formulát adunk az általános nem extremális fekete
lyuk entrópiájára, mely az asszimptotikus töltések U-dualitás invariáns füg-
gvénye.
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1

Chapter 1

Introduction and conclusion

Black holes are interesting and important objects. They have been discov-
ered as classical solutions of Einstein’s general relativity and they were
quickly recognized to possess regions with a curvature singularity, where
general relativity is not meaningful. This, however, does not prevent them
from being physical. Today, it is widely accepted that black holes can form
in nature from certain collapsing stars.

An important feature of classical black hole solutions that they satisfy
thermodynamic laws such as the first law [6, 7]. As such, they have an
entropy (proportional to the area of their horizon) and a temperature (pro-
portional to their surface gravity). The fact that they have a temperature
suggests that they radiate which is indeed possible via quantum tunnel-
ing [8]. Semiclassical considerations predict that, via this radiation, a black
hole evaporates into a perfectly thermal gas of Hawking radiation, which
implies a loss of unitarity at the semiclassical level [9]. This result is known
as the black hole information paradox. It shows that a complete description
of the physics of black holes requires a theory of quantum gravity.

The fact that black holes have an entropy suggests that there should be
many microstates in this putative theory of quantum gravity correspond-
ing to the same classical black hole. While we do not yet understand mi-
crostates of realistic astrophysical black holes, a huge triumph of string the-
ory, as a particular theory of quantum gravity, that it can give account for
the number of microstates of certain black holes. Since the seminal result of
Strominger and Vafa [10] for supersymmetric black holes in 5d, there have
been results along these lines over the last two decades, mostly for near
extremal or asymptotically anti de-Sitter black holes. The Schwartzschild
black hole remains elusive.

Another important area of research is quantum information theory, specif-
ically the study of quantum entanglement. This "spooky action at a dis-
tance"1 is the resource behind the idea of quantum computing allowing
some fascinating applications, like quantum teleportation or quantum cryp-
tography [24]. It is also the key property that distinguishes classical from
quantum physics, standing behind many phenomena in strongly correlated
quantum systems. It is not so surprising then that it appears to play a key
role in the physics of black holes [11, 12], or more broadly speaking even in
the emergence of semiclassical spacetime itself [13].

The research presented in this dissertation was initiated by one of the
early attempts to connect the physics of black holes to quantum entangle-
ment. This attempt is based on the observation of Duff, that some charged
supersymmetric black hole solutions in a variant of four dimensional N = 2

1A saying attributed to Einstein.
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supergravity have a Bekenstein-Hawking entropy that is the square root
of a well-known entanglement measure for three qubits, the three-tangle,
provided that we associate a three qubit state to the charges of the black
hole [14]. As these black holes can be embedded in string theory in terms
of D-branes wrapping cycles of a compact six dimensional internal space,
people had hopes that this 3-qubit state can be connected to the physics of
D-branes. This turned out to be possible, but not quite in the way people
might have hoped for. The three qubit Hilbert space was identified to be
the space of harmonic 3-forms on the extra dimensions of the embedding
into type IIB string theory [15]. Such a 3-form is Poincaré dual to the homol-
ogy class that some D3 branes wrap and contains the electric and magnetic
charges of the black hole as wrapping numbers. Then, a symmetry of string
theory, called U-duality, acts in the same way on these charges as the group
of invertible stochastic local operations and classical communication (SLOCC)
on three qubit states. As we will review, SLOCC protocols are constructed
in a way that they cannot increase entanglement between parties and hence
a way of constructing measures for entanglement is to look for relative in-
variant2 quantities under invertible SLOCC transformations.

Now the key observation is then that this particular group acting on
this particular vector space forms a so called prehomogeneous vector space.
Recall, that a homogeneous vector space is a pair (G, V ) (with an action of
G on V being implicit) such that every element of V is cyclic: we can just
fix a v

0

2 V and reach any other element by the action of G: v = gv
0

. A
prehomogeneous vector space is a slight generalization of this definition:
it is a pair (G, V ) such that G has a dense orbit in V . In particular, this
guarantees that there is a single relative G-invariant f : V ! C which one
can form from a given element of V . The dense orbit is then the open set
satisfying f(v) 6= 0.

As both the entropy of a black hole and the 3-tangle of three qubits
are relative invariants under U-duality and SLOCC transformations respec-
tively, prehomogenity guarantees that they are a homogeneous function of
each other3. This might be all the reason behind the black hole/qubit cor-
respondence, as we now undertand it. Nevertheless, it is a fruitful recog-
nition that such a central role is played by the prehomogenity of the pair
(G, V ), as a complete classification of such prehomogeneous vector spaces
is available due to the work of Sato and Kimura [16]. One might hope then
to find "new" black hole/qubit correspondences by simply going through
the Sato Kimura list. This is indeed the case, prehomogenity is a key as-
pect of the symmetries of supersymmetric stringy black holes. The reason
for this is their connection to Hitchin’s functionals – defining form theories
of gravity, which we will review in section 4.2 of this thesis – for which
prehomogenity turns into the crucial requirement of stability.

Examination of the Sato Kimura list allows one to find the SLOCC clas-
sification for a handful of systems where the entanglement classification

2Suppose that a group G acts on some topological space X . We will call relative invariant
a continuous function f : X ! C such that f(g�) = �(g)mf(�), where � 2 X , g 2 G, m is
some integer and � is a one dimensional representation of G.

3Note that this reasoning only applies to extremal black holes, when the attractor mecha-
nism is in action so that the entropy is a function of the charges only and not of the asymp-
totic values of the scalar fields of the model. Otherwise, because U-dualities act on the
scalars as well, the entropy can depend on several other invariants. We will discuss this
very explicitly in chapter 4 of this dissertation.
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was unknown to the physics literature, along with the respective relative
invariants being candidate entanglement measures. Such systems are the
ones of three fermions with either seven or eight single particle states. An-
other interesting thing is that the list contains pairs of the form (C⇥ ⇥
Spin(2d),^even/oddCd), with d = 6, 7. These cases already made their debut
to physics via generalized Hitchin functionals, but a somewhat simpler idea
is that they can be regarded as even or odd parity states in the Fock space
of fermions. It turns out that this is indeed a good interpretation, and the
physical meaning of the group G = C

⇥ ⇥ Spin(2d) is that it is the group of
SLOCC transformations combined with Bogoliubov transformations. This
group turns out to be well know in the study of Clifford algebras. It is the
so called even Clifford group, which we will discuss in great detail. This
leads us to the mathematical problem known as the classification of spinors
which we will show to be naturally connected to the description of entan-
glement between fermions4.

Another main concern of this thesis is to understand more about the
classification and the structure of the entropy formula of certain nonextremal
black holes in four dimensions with a stringy origin. There is a good chance
that the microscopics of these black holes can be understood in terms of
interacting BPS objects [18], and since that this class of nonextremal black
holes contains the Schwartzschild and Kerr solutions, the importance of this
chance cannot be overstated. A small, but neccessary step in this direction
is to write down and analyse the classical Bekenstein-Hawking entropy for-
mula for the general nonextremal black hole, which is the main concern of
chapter 4 of this dissertation.

We organize this thesis as follows. The remainder of chapter 1 contains a
list of thesis points and a short introduction into the theory of entanglement
of three qubits, which will be a recurring theme.

Chapter 2 is devoted to the extension of the fermionic SLOCC classifi-
cation problem based on the theory of spinors [19]. We set up the notion
of fermionic entanglement at the beginning of this chapter. We outline the
connection of the classification problem of spinors with fermionic entan-
glement and review the neccessary mathematical background material in
a second quantized fermionic language. The end of the chapter is devoted
to a canonical real structure which we introduce for any fermionic Hilbert
space and describe how it connects spinor invariants to reduced density
matrix elements via so called Fierz identities.

In Chapter 3 we delve into the problem of finding the SLOCC and ex-
tended SLOCC classification of certain fermionic systems. This mostly con-
sists of borrowing the classification from the mathematical (and sometimes
physical) literature and presenting it in a unified spinor language, but we
will describe several new results along the way such as monogamy equa-
tions for three fermions with six modes or new invariants for three fermions
with nine modes.

Chapter 4 reviews the nonextremal black hole solutions of 4d ungauged
N = 2 supergravity coupled to three vector multiplets, from which the
most general black holes of maximal N = 8 supergravity can be obtained.
We construct the duality invariant entropy formula for these black holes

4There were some previous attempts to connect the mathematics of Clifford algebras to
entanglement theory, see [17].



4 Chapter 1. Introduction and conclusion

as a main result of this chapter. We also discuss how this general black
hole fits into the black hole/qubit correspondence via connecting it to a
particular semisimple four qubit SLOCC orbit. We discuss several known
limits. In the last section of this chapter, section 4.2 we discuss Hitchin
functionals as the main bridge between BPS black holes and the fermionic
systems described in chapter 2. This last section does not contain any new
results, it is included with the hope that it makes the global picture more
complete.

1.1 Summary of the authors original contribution

In this section, we summarize the results in this dissertation which are the
authors own work, by collecting them into thesis points. We indicate the
connecting publications at the end of each point and the connecting sections
of this dissertation in a superscript.

1. We observe that the even Clifford group acting on spinors is a natural
extension of the usual SLOCC group acting on fermionic states with
a fixed number of particlessec. 2.1,2.3. The additional transformations
in the even Clifford group can be interpreted as Bogoliubov trans-
formations. We propose the classification of spinors under the ac-
tion of the even Clifford group to be a natural generalization of the
fermionic SLOCC classification problem. Therefore, we call the even
Clifford group, the extended SLOCC group. Pure spinors, which form
the simplest orbit under the Clifford group, are shown to generalize
the notion of separable statessec. 2.3.3. We observe that spinor invari-
ants give possible entanglement measures and we show how various
known entanglement measures, like the pure state concurrence for
two qubits or the three tangle for three qubits originate from known
spinor invariantssec. 2.4,3.2,3.4. The connecting publication is [P.2].

2. We identify a real structure which is present on fermionic Fock spaces.
We use this to relate SLOCC covariants, used to separate entangle-
ment classes of states, with reduced density matrix elements via spinor
Fierz identitiessec. 2.5. The entanglement monogamy equations for the
tangles of three qubits are shown to be a consequence of such a Fierz
identity. In fact, we show that these equations are special cases of
monogamy equations obeyed by three fermions with six single parti-
cle statessec. 3.4.4. As a consequence, we confirm that the quartic SLOCC
invariant introduced in [20] indeed measures three body entangle-
ment. We identify the fermionic concurrences measuring two body
entanglementsec. 3.4.5. The connecting publication is [P.4].

3. We study the SLOCC and extended SLOCC classes of certain low di-
mensional fermionic systems where the solution to the classification
problems can be extracted from the mathematical literature. Partic-
ular emphasis is put on three fermion systems with up to nine sin-
gle particle modes. We present invariants and covariants of these
systems in the unified language of spinor invariantsch. 3. We give a
complete set of (noncontinuous) invariants separating the SLOCC or-
bits in the case of three fermion systems with six, seven and eight
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modessec. 3.4.2,3.5.2,3.6.2. In the nine mode case we give new combina-
tions of the four independent continuous invariants which can be
used to separate the semisimple families of Vinberg and Elashvilisec. 3.7.
We discuss how to embed the distinguishable system of three qutrits
and present how the fermionic invariants reduce to the invariants of
three qutrits. As a consequence, we also obtain invariants separating
families of three qutrits. The embedding between families is observed
to be injective, a property that previously studied fermionic embed-
dings of three qubits and four qubits also satisfy. We emphasize the
connection of the six and seven mode cases to the theory of SU(3)
and G

2

special holonomy manifolds via their connection to Hitchin
functionalssec. 4.2. The connecting publications are [P.1, P.3]

4. We identify the U-duality invariant which is required to express the
Bekenstein-Hawking entropy of the most general 4 dimensional, sta-
tionary, asymptotically flat, nonextremal STU black holes constructed
recently in [21, 22]. This allows us to write the general nonextremal
entropy formula entirely in terms of asymptotic charges for the first
timesec. 4.1.7. The expression also involves the "scalar charges" of these
black holes which can in principle be solved in terms of the dyonic
charges and the mass. We discuss how the formula reduces to some
of the known results as the Klauza-Klein black hole and the dilute
gas limit of Cvetič and Larsensec. 4.1.10 and how its dependence on
the asymptotic scalar moduli can be removed via U-dualitiessec. 4.1.5.
We discuss the identification of the charges of the black hole with a
four qubit state and show that the nonextremal black holes of [22] are
in a single semisimple entanglement classsec. 4.1.11, in contrary to the
complete identification between extremal black holes and nilpotent
classes worked out it [23]. The connecting publication is [P.5].
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1.2 A short review on multipartite entanglement for
three qubits

Since almost everything in this thesis can in some way or another be con-
nected to entanglement properties of three qubits, here we give a short sum-
mary of this relatively well understood system.

1.2.1 Bipartite entanglement in two qubit mixed states

Before discussing entanglement between several qubits it is essential to un-
derstand entanglement between two qubits. This is a very simple problem
in the case of pure states

| i =
1X

ij=0

 ij |iji. (1.1)

This state is separable into a product state if and only if the 2⇥ 2 matrix  ij

is a dyad. The neccessary and sufficient condition for this is

det ⌘ 1

2
✏ij✏i

0j0 ii0 jj0 = 0. (1.2)

Let us assume that the above state is normalized i.e.
P

ij | ij |2 = 1 and
define its reduced density matrices as

(⇢A)ij = (  †)ij , (⇢B)ij = ( † )ji, (1.3)

where † denotes the Hermitian conjugate of matrices. It is clear that the
condition (1.2) can also be written as

det ⇢A ⌘ det ⇢B = | det |2 = 0. (1.4)

A quantity to measure the entanglement between qubit A and B with a
clear operational meaning[24] is the entanglement entropy, which is the von-
Neumann entropy of the reduced density matrix, i.e.

EA(| i) ⌘ S(⇢A) = �Tr⇢A log ⇢A. (1.5)

For pure states one has S(⇢A) = S(⇢B). Now notice that as the eigenvalues
�
1

and �
2

of ⇢A satisfiy �
1

�
2

= det ⇢A and �
1

+ �
2

= 1 we can express the
entanglement entropy via the quantities appearing in (1.4) as

EA(| i) = h

✓
1 +
p
1� 4 det ⇢A

2

◆
, (1.6)

where h(x) = �x log x�(1�x) log(1�x) is the binary entropy function. The
upshot of this simple formula is that the operationally meaningful entropic
quantity S(⇢A) is entirely captured by a somewhat algebraically simpler
quantity, a homogeneous function of the amplitudes

C =
p
4 det ⇢A, (1.7)
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which goes by the name concurrence. Notice that this quantity is bounded
from both above and below as 0  det ⇢A  1

4

. It will be very useful to
recast this formula in terms of a dual two qubit state

| ̃i =
1X

ijj0j0=0

✏ii
0
✏jj

0
 ̄ij |i0j0i, (1.8)

as
C = |h | ̃i|. (1.9)

While it is very easy to understand bipartite entanglement for pure
states, this task is much less trivial for mixed states. The reason is that
mixed states contain classical correlations between the parties. Indeed, they
are the quantum generalization of a probability distribution on a classical
phase space which in general encodes nontrivial correlations among sub-
systems. For a mixed quantum state our aim is then to get rid of the classical
part of the correlations and quantify only the quantum part.

To illustrate this, let us consider a general mixed state ⇢ of a bipartite
system HA ⌦ HB . In general, ⇢ can be written as a convex combination of
pure states in several ways

⇢ =
X
i

pi| iih i|, pi � 0,
X
i

pi = 1. (1.10)

The states | ii are not required to be orthonormal or to form a basis. We
may think of them as the pure states that we can draw from ⇢ according to
the distribution {pi} but again, the important point is that this decompo-
sition is not unique. We will say that the state ⇢ is separable if we can find
such a decomposition where all | ii are product states. Notice that decid-
ing whether ⇢ is separable or not is a hard problem, so hard that to date no
easily computable neccessary and sufficient criteria are known to decide it.

So how do we quantify entanglement in a mixed state? It is clear that
the entanglement entropy doesn’t work: it is full with classical correlations.
We may, however, introduce its convex roof extension [24]

E(⇢) = min
pi,| ii|⇢=

P
i pi| iih i|

X
i

piEA(| ii), (1.11)

i.e. we take the minimum of the average of the entanglement entropy over
all pure decompositions of ⇢. This quantity is called the entanglement of
formation [25]. It is clear that E(⇢) = 0 if and only if ⇢ is separable. Also, it
can be shown that E(⇢) has a clear operational meaning: it is the asymptotic
number of Bell pairs shared between A and B required to construct the state
⇢.

In general, the entanglement of formation is very hard to calculate as it
is defined as a solution of a variational problem. However, in the case of
two qubits a simple formula can be obtained for it, reminiscent of (1.6)[26].
It can be written as follows. Define the spin-flipped dual state to ⇢ as

⇢̃ = ✏⌦ ✏⇢̄✏⌦ ✏, (1.12)

where¯denotes complex conjugation and ✏ is the 2 ⇥ 2 totally antisymmet-
ric matrix. It is clear that ⇢̃ is a positive matrix with positive eigenvalues
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�2
1

,�2
2

,�2
3

,�2
4

sorted in decreasing order. Let us define the mixed state con-
currence

C(⇢) = max{0,�
1

� �
2

� �
3

� �
4

}. (1.13)

A remarkable result is that the entanglement of formation takes the simple
form[26]

E(| i) = h

 
1 +

p
1� C(⇢)
2

!
, (1.14)

so that the mixed concurrence is really a true measure of quantum entan-
glement in a mixed state.

It might not be immediately obvious that the mixed state concurrence
agrees with the one (1.4) for pure states. To see this, notice that with the use
of (1.8) we may write

⇢⇢̃ = h | ̃i| ih ̃|, (1.15)

which is a single dyad so indeed its only non-vanishing eigenvalue is �2
1

=
|h | ̃i|2.

1.2.2 Three qubits

The system of three qubits is the smallest possible entangled setup posess-
ing genuine multipartite entanglement. For pure states, this multipartite en-
tanglement can in fact be explicitly quantified through a quantity, called the
3-tangle, due to Coffman, Kundu and Wootters [27].

Let us consider a normalized pure three qubit state

| i =
1X

ijk=0

 ijk|ijki, (1.16)

and define its marginals as

(⇢AB)ij,kl =
X
n

 ijn ̄kln, (⇢AC)ij,kl =
X
n

 inj ̄knl, (⇢BC)ij,kl =
X
n

 nij ̄nkl,

(⇢A)ik =
X
n,m

 inm ̄knm, (⇢B)ik =
X
n,m

 nim ̄nkm, (⇢C)ik =
X
n,m

 nmi ̄nmk.

(1.17)
A natural question is: how much genuine quantum entanglement is there
between a pair of qubits? We can obtain the answer by calculating the two
qubit concurrence (1.13) of the corresponding two qubit reduced density
matrix. Because these RDMs come from a pure three qubit state, the calcu-
lation simplifies. Indeed, we may think of  ijk as a map C

2 ⇥ C

2 ! C

2

by grouping two of its indices into in and the remaining one to an out
index and so we easily see that the two body RDMs correspond to maps
C

2 ⇥ C

2 ! C

2 ⇥ C

2 of the form  † �  and that the one body RDMs cor-
respond to maps C

2 ! C

2 of the form  �  †. This way, it is easy to see
that nonzero eigenvalues of ⇢A and ⇢BC must agree, and similar relations
hold for the other two pairs. It follows, that ⇢AB ⇢̃AB can have at most two
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nonzero eigenvalues and we may write

C(⇢AB)
2 ⌘ ⌧AB = (�

1

� �
2

)2

= Tr(⇢AB ⇢̃AB)� 2�
1

�
2

 Tr(⇢AB ⇢̃AB),

(1.18)

where we have defined the 2-tangle ⌧AB and a similar upper bound holds
for ⌧BC and ⌧AC . A short calculation shows that for normalized states one
has

Tr(⇢AB ⇢̃AB) = 2(det ⇢A + det ⇢B � det ⇢C), (1.19)

and hence
Tr(⇢AB ⇢̃AB) + Tr(⇢AC ⇢̃AC) = 4 det ⇢A. (1.20)

Combine this with the bound (1.18) to obtain the seminal result of Coffman,
Kundu and Wootters [27]

⌧AB + ⌧AC  4 det ⇢A ⌘ C(⇢A)2 ⌘ ⌧A(BC)

. (1.21)

This inequality expresses the monogamy of entanglement. The tangle ⌧A(BC)

measures the entanglement of qubit A with the joint system BC while ⌧AB

and ⌧AC measure the entanglement between A and B and A and C respec-
tively. The sum of the latter two must be less than the former. The fact that
there is an inequality instead of an equality signals the existence of genuine
tripartite entanglement, i.e. entanglement which is not shared by any pair
of the tree parties. One can quantify this with the positive quantity

⌧ABC = ⌧A(BC)

� ⌧AB � ⌧AC , (1.22)

which we call 3-tangle. Note the crucial fact that the value of this quantity
is independent of which subsystem we select at the first place i.e. ⌧ABC =
⌧B(AC)

� ⌧AB � ⌧BC and a similar relation holds with ⌧C(AB)

. An explicit
calculation reveals that the 3-tangle is expressed with the amplitudes as

⌧ABC = 4|HDet( )|, (1.23)

where

HDet( ) =  2

000

 2

111

+  2

001

 2

110

+  2

010

 2

101

+  2

100

 2

011

� 2( 
000

 
001

 
100

 
111

+  
000

 
010

 
101

 
111

+  
000

 
100

 
011

 
111

+  
001

 
010

 
101

 
110

+  
001

 
100

 
011

 
110

+  
010

 
100

 
011

 
101

)

+ 4( 
000

 
011

 
101

 
110

+  
001

 
010

 
100

 
111

).

(1.24)

is Cayley’s hyperdeterminant for 2⇥ 2⇥ 2 arrays.
We will rederive these results in 3.4.4 as a special case of the monogamy

inequality for three fermions with six single particle states. The somewhat
arbitrary form of the spin-flip (1.12) required to compute the 2-tangle will
be understood in terms of a canonical spinor conjugation (see sec. 2.5) and
the origin of the CKW equations

⌧AB + ⌧AC + ⌧ABC = ⌧A(BC)

, (1.25)
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will be tracked back to follow from Fierz identities for spinors.

1.2.3 Stochastic local operations and classical communication

The appearance of a quantity HDet( ) in (1.24), well known in invariant
theory, as an entanglement measure is not a coincidence. Let us briefly
review an old idea for a systematic way of classifying different types of
entanglement: the classification based on equivalence under stochastic local
operations and classical communication (SLOCC).

The basic idea is that when we have a multipartite composite quantum
system, we cannot create or increase any kind of entanglement by allowing
the parties to perform arbitrary quantum operations (e.g. time evolution or
measurement) on their part of the subsystem and share the results with each
other via classical channels. These operations are rougly make up what we
call local operations and classical communication (LOCC). As these opera-
tions do not create entanglement we may say that the states | 

1

i and | 
2

i
are equally entangled when they can be mutually transformed into each
other by means of LOCC. It follows that finding classes of equally entangled
states requires finding the orbits of the group of invertible LOCC transfor-
mations on the Hilbert space of the system. This group turns out to be the
group of local unitaries, for the case of three qubits, it is U(2)⇥U(2)⇥U(2).
The action of an element (u

1

, u
2

, u
3

) 2 U(2)⇥U(2)⇥U(2) on the amplitudes
of the state is just

 ijk 7! (u
1

)i
i0(u

2

)j
j0(u

3

)k
k0 i0j0k0 , (1.26)

where we are beginning to use Einstein convention for the summation of
upper and lower indices.

It is not difficult to see that this classification problem gives rise to a con-
tinuum family of orbits, even in the simplest cases. Indeed, clearly all the
eigenvalues of the reduced density matrices are invariant under this action,
so that whenever they have different values, the state is automatically from
a different orbit. An attempt to coarse grain this classification problem is
the idea of classification under SLOCC. Here, we only require that we can
turn | 

1

i and | 
2

i into each other by means of LOCC with probability greater
than zero. This amounts to finding the orbits of the group of invertible lo-
cal operators, which we will call the SLOCC group. For the case of three
qubits, this is GL(2,C)⇥3 and an element (g

1

, g
2

, g
3

) 2 GL(2,C)⇥3 acts as

 ijk 7! (g
1

)i
i0(g

2

)j
j0(g

3

)k
k0 i0j0k0 . (1.27)

We will see later very clearly, that the hyperdeterminant (1.24), giving rise
to the 3-tangle, is a relative invariant under this group action, transforming
as

HDet(g
1

⌦ g
2

⌦ g
3

 ) = (det g
1

det g
1

det g
1

)2HDet( ), (1.28)

hence states which contain genuine tripartite entanglement are in a differ-
ent SLOCC class than those of which do not.

The SLOCC classification problem can be solved for three qubits[28, 29].
It turns out that there are six SLOCC classes, and the one with HDet( ) 6= 0
is dense in the space of all three qubit states. This is because the single rel-
ative invariant of the action of the SLOCC group is HDet( ) which makes
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the pair (GL(2,C)⇥3,C2 ⌦ C

2 ⌦ C

2) a prehomogeneous vector space. We
illustrate these classes on figure 1.1. An arrow points from class A to class
B if there is a nonzero probability of turning a state from A into a state from
B by means of LOCC but states from B cannot be turned into states from
A. Now let us list some representative states for these classes:

1p
2
(|000i+ |111i) is in GHZ,

1p
3
(|100i+ |010i+ |001i) is in W,

1p
2
|0i ⌦ (|10i+ |01i) and its permutations

are in A(BC), B(AC), C(AB) respectively,
|000i is separable.

(1.29)

Sep

BisepA HBCL BisepB HACL BisepC HABL

W GHZ

FIGURE 1.1: SLOCC classes for three qubits. An arrow
points from class A to class B if there is a degenerate SLOCC

transformation turning a state in A to a state in B.

Notice that the class W contains states which cannot be separated (in
particular can have maximally mixed one qubit reduced density matrices)
but still do not contain any tripartite entanglement. We will review this
classification in more detail as a special case of a similar classification of a
fermionic system in section 3.4. We will see that the classes can be separated
in a very natural way with the use of a fermionic quantity.

It turns out that for general quantum system the concept of SLOCC clas-
sification becomes untractable and needs further coarse graining. In fact,
precisely the small quantum systems corresponding to prehomogeneous
vector spaces are the ones where one can hope for a finite number of SLOCC
classes. Indeed, let us assume that we happen to have more then one rela-
tive invariants of the SLOCC group, say I

1

and I
2

, and let us assume that
they have different homogeneous degree, say k

1

and k
2

. This means that
for states | 

1

i and | 
2

i to be SLOCC equivalent there has to be a nonzero
complex number � such that

(I
1

, I
2

)|| 
1

i = (�k1I
1

,�k2I
2

)|| 
2

i, (1.30)

i.e. different values of I
1/k

1

1

I
1/k

2

2

correspond to different SLOCC orbits so that
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we have a continuum number of orbits. In this case there are different ways
to coarse grain the SLOCC classification problem. For example, for four
qubits[30], for fermions with eight single particle states[31], three qutrits
[32] or three fermions with nine single particle states [P.3] one can group
these orbits into a finite number of families. This, however, is strongly
based on another nonuniversal feature: the SLOCC problem for these sys-
tems can be turned into a problem in the theory of semisimple Lie algebras.
We will briefly return to this question of coarse graining the SLOCC classi-
fication for fermionic systems in section 2.4.3.
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Chapter 2

Entanglement between
fermions

2.1 Fermionic states and Clifford algebras

We are interested in the algebra of fermionic observables A which is as-
sociated to the vector space H of some single particle modes1. We se-
lect some basis to this space and associate fermionic creation operators pa,
a = 1, ..., dimH = d to them. Let us denote the vector space spanned by
these operators by W . We introduce annihilation operators na as the basis
of the dual vector space W ⇤ through na(pb) = �ab. We generate A through
the canonical anticommutation relations (CAR):

{pa, nb} = �abI. (2.1)

Equivalently for vectors x = xapa + xana and y = yapa + yana taken from
V ⌘W �W ⇤ this reads as

{x, y} = 2(x, y)I, (2.2)

where the symmetric inner product is (x, y) = 1

2

(xaya + xbyb). The alge-
bra generated by such a relation is by definition a Clifford algebra, hence
A = Cliff(V ). The (up to isomorphism) unique representation of this alge-
bra is built as follows. One chooses a vacuum state |0iwhich is annihilated
by half of the space V e.g. na|0i = 0, a = 1, ..., d. Then one acts in all the
possible ways with the creation operators. The representation space is then
spanned by basis vectors pa1 ...pak |0i, k = 0, ..., d. The resulting 2d dimen-
sional space is called the fermionic Fock space F and is in fact identical2

to the vector space underlying the exterior algebra of the single particle
space3: F = ^•H. The states in F can be rightfully called spinors as they
form a representation of a Clifford algebra.

1Notice that we do not assume that there is an inner product on H for now. We will
introduce it later to emphasize what role it does and does not play. As a consequence, the
adjoint of operators is not defined for the time being.

2Some authors add an extra one dimensional factor so that F = ^•H ⌦ (^dH)

� 1
2 . This

is to obtain the correct action of GL(H) acting as a subgroup of Spin(V ) but it clearly does
not change the linear structure. We will comment on this in more detail later, in sec. 2.3.2

3 As such, by writing a single particle basis element as ea = pa|0i we may write the basis
elements of the Fock space in the exterior algebra notation pa1 ...pak |0i = ea1 ^ ... ^ eak .
The action of the space W �W ⇤ of creation and annihilation operators turns into the usual
exterior ^ and interior ◆ products of vectors and dual vectors respectively with exterior
forms. Indeed, one has

{x^, ◆y} = y(x)1, x 2 H, y 2 H⇤, (2.3)
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There are two canonical maps that come with every Clifford algebra:

• Parity or main automorphism. This is generated by the map x 7! �x on
V which leaves (2.2) invariant. It follows that we can lift this up to
Cliff(V ) by extending linearly the action on monomials:

P : x
1

x
2

...xk 7! (�x
1

)(�x
2

)...(�xk) = (�1)kx
1

x
2

...xk. (2.4)

It is clear that since P 2 = I and P is an automorphism it introduces
a Z

2

grading of Cliff(V ). This is just the grading into even and odd
elements.

• Transposition or main antiautomorphism We define on monomials the
map

t : x
1

x
2

...xk 7! xk...x2x1, (2.5)

and extend it linearly on Cliff(V ). Again, this definition is indepen-
dent of the blocking of the Clifford algebra elements into monomials
as t leaves (2.2) invariant. It is clear that t is an antiautomorphism:

(AB)t = BtAt, A,B 2 Cliff(V ). (2.6)

The orthogonal group of the inner product (2.2) on V is defined as

(Ox,Oy) = (x, y), O 2 O(V ). (2.7)

In writing O(V ) we mean O(V, (., .)) and keep the inner product implicit.
These transformations do not change the anticommutator, so they posess a
clear physical meaning: they are (not necessarily unitary) Bogoliubov trans-
formations. We define the Clifford group � as the group of invertible elements
g of Cliff(V ) which fix V in the sense that gxg�1 2 V for every x 2 V . The
even subgroup �

0

consists of even elements P (g) = g with respect to (2.4).
Now notice that

(gxg�1, gxg�1)I = gxg�1gxg�1 = g(x, x)Ig�1 = (x, x)I, (2.8)

so the transformation
x 7! Ogx = gxg�1, (2.9)

is in O(V ). The map g 7! Og is a homomorphism between � and O(V ) with
kernel C⇥. Notice that since for every x 2 V we have xt = x and it follows
that

gxg�1 = (gxg�1)t

= (gt)�1xgt
(2.10)

so that gtgx = xgtg and hence consistency requires

g�1 = ↵gg
t, g 2 �, ↵g 2 C

⇥. (2.11)

We call the number ↵�1

g the Clifford norm of g. It is easy to see that g 7! ↵�1

g

is a group homomorphism from � to C

⇥. We define the double cover of

which represents the canonical anticommutation relation. Throughout this chapter, we will
stick to the creation/annihilation operator formalism.



2.1. Fermionic states and Clifford algebras 15

O(V ), the pin(V ) group as elements in �with norm plus or minus one:

OOt = ±I, O 2 pin(V ). (2.12)

The subgroup Spin(V ) is the one which is even under P i.e. the ±1 norm
subgroup of �

0

. The component Spin
0

(V ) connected to the identity clearly
has OOt = I . It is clear that all these definitions define subgroups of �
and examination of the homomorphism Og defined through (2.9) reveals
that pin(V ) and Spin(V ) are indeed the double covers of O(V ) and SO(V )
respectively.

All these groups are naturally represented on the fermionic Fock space
^•H by their action as Clifford algebra elements:

| i 7! g| i, | i 2 ^•H, g 2 �. (2.13)

Now let us examine more closely the even Clifford group �
0

. It is clear that
�
0

⇠= C

⇥ ⇥ Spin
0

(V ) and hence we may write every element of g 2 �
0

as

g = �es, (2.14)

where � is a nonzero complex number and s is a generator of Spin
0

(V ), i.e.
an element of the Lie-algebra so(V ). We claim that any element s of this Lie
algebra can be written with the creation and annihilation operators as the
bilinear expression

s =
1

2
Aa

b[pa, nb] +
1

2
Babp

apb +
1

2
Cabnanb (2.15)

Indeed, putting g = es in the double cover equation (2.9) and expanding to
first order in s yields the generator Ts

Tsx = [s, x], (2.16)

acting on V . We see that in order for the right hand side to be in V the gen-
erator s must be at most a bilinear expression of creation and annihilation
operators. Such a bilinear is indeed in so(V ) as it satisfies

(Tsx, y)I + (x, Tsy)I ⌘ {Tsx, y}+ {x, Tsy} = [s, {x, y}] = 0, (2.17)

where we have used that {x, y} is proportional to the identity. It will later
be rewarding to write out (2.16) explicitly in the basis pa, na:

[s,

✓
pa

nb

◆
] =

✓
Aa0

a Cab0

Bba0 �Ab
b0

◆✓
pa

0

nb0

◆
, (2.18)

so that it is really straightforward to see that the block matrix is in so(V )
with respect to the inner product matrix

g =

✓
0 I
I 0

◆
, (2.19)

where I is now the d⇥d identity matrix. The Lie algebra of the even Clifford
group �

0

is then obtained by setting � = e✏ and expanding in ✏. The gen-
erators are of the form s + ✏I , where I is the identity of Cliff(V ). Adding
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this to (2.15) we see that the Lie algebra of �
0

consists of the most general
bilinears formed by creation and annihilation operators. Notice that the Lie
algebra of Spin(V ) is recovered inside this as the�1 eigenspace of the main
antiautomorphism (2.5).

2.2 Entanglement between particles and entanglement
between modes

In order to talk about entanglement one needs to split the system in ques-
tion into smaller subsystems. This is an easy task when there is a clear phys-
ical guide how to factor a Hilbert space into the tensor product of smaller
spaces. There are situations, however, when physics does not provide us
such a naive factorization. There are far from trivial examples of such am-
biguities, like entanglement in gauge theories [33], but one has to be careful
describing free fermions as well.

There are two physically different ways to study entanglement in fer-
mionic systems. One can consider entanglement between particles, say two
electrons, or entanglement between modes say modes corresponding to a
subregion of space and its complement. It is immediately clear that the
local operations can be wildly different in these two cases. Consider for
example two fermions on a lattice, each being in a plane wave state

| i = pk1pk2 |0i, (2.20)

with
pk =

1p
V

X
R

eikRpR, (2.21)

where R are some lattice vectors and pR creates an electron localized on a
given site. It is clear that for any bipartition of the lattice | i is an entangled
state when considering entanglement between spatial modes4,5. On the
other hand, the two electrons are in a Slater determinant state and hence
the state contains only statistical correlations. It is unentangled, a "prod-
uct state" when the entanglement between particles is considered. We will
see later that despite the significant physical difference between these two
concepts, they are not entirely unrelated.

Let us be a little more explicit what we mean by entanglement between
modes and entanglement between particles.

4Otherwise stated, (2.21) is a nonlocal unitary transformation from the point of view of
a bipartitioning of the lattice modes pR.

5In relativistic quantum field theories even the vacuum is spatially entangled. Indeed,
as an example consider the local modes of a free field theory (say a Majorana field  (x))
and the modes diagonalizing the Hamiltonian (say c†k with momentum k). These modes are
already related via a Bogoliubov transformation  (x) ⇠ R

dk(eikxck + e�ikxc†k) due to the
requirement that the anticommutator of two (not equal time) (x) should vanish outside the
light cone. This results in the Fock vacuum of the modes ck being entangled with respect to
a spatial bipartitioning of the modes  (x). On the contrary to this, in a lattice model where
the local modes are related to energy eigenstates via (2.21), the vacuum is not entangled.
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2.2.1 Entanglement between fermionic modes

Consider dividing the space of single particle modes into two pieces as

W = W
1

�W
2

. (2.22)

Notice that we use a direct sum and not a product. We are interested in en-
tanglement between modes from W

1

and W
2

. The generating vector space
of the Clifford algebra decomposes as

V = (W
1

�W
2

)� (W
1

�W
2

)⇤ = (W
1

�W ⇤
1

)� (W
2

�W ⇤
2

) = V
1

�V
2

, (2.23)

where V
1

and V
2

generate the Clifford algebra of the modes from the first
set and the second set respectively. Notice that

{V
1

, V
2

} = 0. (2.24)

Actually this is the only requirement we need to divide the generating vec-
tor space V into two pieces without a priori deciding how to split it into
creation and annihilation operators. Say that the split is defined by a pro-
jection ⇡ : V ! V

1

, ⇡2 = ⇡. Then (2.24) is equivalent with demanding

0 = {(I � ⇡)x,⇡y} = 2(x,⇡y)� 2(⇡x,⇡y), (2.25)

for all x, y 2 V . Since ⇡2 = ⇡ we see that this is satisfied if and only if
(⇡x, y) = (x,⇡y) i.e. ⇡ is an orthogonal projection with respect to the inner
product of the Clifford algebra. Note that one always has Cliff(V

1

� V
2

) =
Cliff(V

1

)⌦Cliff(V
2

) as vector spaces but certainly not as algebras. How-
ever if (2.24) is satisfied we have a graded tensor product of graded algebras

Cliff(V
1

� V
2

) ⇠= Cliff(V
1

)⌦̂Cliff(V
2

), (2.26)

where the Z

2

grading is the one introduced by the parity (2.4). The symbol
⌦̂ denotes that one defines the algebra product on the tensor product vector
space via extending bilinearly the product rule

(A
1

⌦B
1

)(A
2

⌦B
2

) = (�1)|A2

||B
1

|(A
1

A
2

)⌦ (B
1

B
2

), (2.27)

where |A| denotes the parity of A and A
1,2 are composed of V

1

modes while
B

1,2 are composed of V
2

modes. This rule is indeed valid, as if (2.24) is true,
we can just (anti)commute A

2

over B
1

and we only need to compensate for
the introduced sign. A more formal way of saying the same thing is to note
that the linear map

f : V
1

� V
2

! Cliff(V
1

)⌦̂Cliff(V
2

)

(x
1

, x
2

) 7! x
1

⌦ I + I ⌦ x
2

,
(2.28)

is Clifford, i.e. f(x
1

, x
2

)2 = x2
1

⌦ I + I ⌦ x2
2

⌘ 2((x
1

, x
1

) + (x
2

, x
2

))I ⌦ I pro-
vided we use (2.27) as the multiplication rule. This ensures that f can be ex-
tended uniquely into an isomorphism Cliff(V

1

�V
2

)! Cliff(V
1

)⌦̂Cliff(V
2

).
This is the splitting of the algebra of observables that we are looking for

when we wish to describe mode entanglement: local operations acting on
the first and second subsystem are the ones built out from Cliff(V

1

) and
Cliff(V

2

) respectively. It is important to keep in mind that such a splitting
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is possible because in the case of mode entanglement, the subsystems in
question – the modes – are distinguishable, despite the Hilbert space being
fermionic.

Mode entanglement is a vast field and can be argueably more useful
than entanglement between particles when one wishes to learn about im-
portant topics like the entanglement structure of quantum field theories.
Yet, in the following, we will almost exclusively focus on entanglement be-
tween particles as this is the concept which emerges in generalizations of
the black hole/qubit correspondence.

2.2.2 Entanglement between fermionic particles

Suppose we have an n particle state. When we wish to describe entangle-
ment between particles the first thing that we want is to somehow define a
split into a system of k and n� k particles. As we have seen in the previous
case, this should naturally be done by splitting the algebra of observables
into two commuting subalgebras. Now our observables are k-particle op-
erators. Recall, that the set of single particle operators is

O(1) = {I} [ {Aa
bpanb|Aa

b 2 C}, (2.29)

while the set of k particle operators is

O(k) =
k[

l=0

{Aa
1

...al
b
1

...blpa1 ...palnb
1

...nbl |Aa
1

...al
b
1

...bl 2 C}. (2.30)

We immediately meet a serious obstacle: these sets, appart from the trivial
cases O(0) and O(d), do not form closed subalgebras. This, of course, pre-
vents us from splitting the observables into subsystems. However, there
are some crucial notions which are still well defined. Such is the k-particle
reduced density matrix ⇢(k) : ^kH ! ^kH of a state | i, which has the
standard definition6

h |A i = Tr(⇢(k)A), 8A 2 O(k), (2.31)

which means that the expectation value of a k particle operator can still be
expressed if we keep only a reduced amount of information about the state
| i encoded in a mixed state on ^kH. Expanding A shows that the matrix
elements of ⇢(k) are

(⇢(k))j
1

...jk
i
1

...ik
= h |pi1 ...piknj

1

...njk i. (2.32)

For example, for an n particle state

|P i = 1

n!
Pi

1

...inp
i
1 ...pin |0i, (2.33)

6In this subsection we temporarly reintroduce the Hermitian inner product h.|.i which
we need to define expectation values and hence density matrices. We will describe the
consequences of introducing this extra structure in more detail in section 2.5.
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we have

(⇢(k))j
1

...jk
i
1

...ik
=

1

(n� k)!
Pj

1

...jkik+1

...inP̄
i
1

...ikik+1

...in , (2.34)

which satisfies Löwdin normalization

Tr⇢(k) =
✓
n

k

◆
hP |P i. (2.35)

Note that we have adopted the convention that a complex conjugation raises
an index. Spectral data of ⇢(k) contains information about how entangled a
set of k particles are with the rest. For example, the one particle RDM ⇢(1) is
a projection to an n dimensional subspace, i.e. n of its eigenvalues are 1 and
d�n of them are 0, if and only if the state |P i is a single Slater determinant,
i.e. it is separable. The fermionic single particle local unitary group is defined
to be U(d) and it acts on the amplitudes of (2.33) as

Pi
1

...in 7! Ui
1

i0
1 ...Uin

i0nPi0
1

...i0n
, (2.36)

where the matrix Ui
i0 is unitary. It is worth to compare this to the qubit

case (1.26). We see that we must act with the same U on each slot due to
the indistinguishability of the parties. The spectral information contained
in the reduced density matrices ⇢(k) is clearly invariant under the action of
the fermionic local unitary group.

There is a nice way of connecting these reduced density matrices to the
better understood case of mode entanglement [34]. To see this, consider
for example the splitting of the mode space W = span(p1, ..., pd) into the
pair of a lone single particle mode and the rest, Wj = span(pj) and W

¯j =

span(p1, ..., pj�1, pj+1, ..., pd). One can find the reduced density matrix of a
state | i to the algebra Cliff(Wj �W ⇤

j ) to be7

⇢j = h |pjnj ipj |0ih0|nj + (1� h |pjnj i)|0ih0| (no sum). (2.37)

For bipartite entanglement of pure states, a standard measure of entangle-
ment is the entanglement entropy that we have already met in (1.5) for
qubits. It reads in this case as

Ej( ) = �Tr⇢j log ⇢j = h(h |pjnj i), (2.38)

where h is the same binary entropy function as in (1.6). It vanishes if and
only if we can separate the mode j in | i. As noticed in [34], a natural way
of obtaining a quantity measuring the separability of a single particle is to
eliminate the dependence from Ej( ) on the basis picked on the space of
single particle modes. This is done in two steps. First we sum up j and then
we take the minimum of the resulting quantity over all possible choice of
basis vectors on W , the space of creation operators. This clearly gives an
invariant of the group action (2.36). The minimum is reached in the basis
which diagonalizes the single particle reduced density matrix ⇢(1) (not to
be confused with ⇢j !). This is sometimes called the basis of natural orbitals.

7By |0ih0| in this formula we mean njp
j (no sum), i.e. the vacuum projector of a single

mode. The point here is that ⇢j acts on the two dimensional Fock space spanned by |0i and
pj |0i.
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Indeed, for any other basis there is a diagonalizing unitary Ua
b such that

h |panb i = Ua
a0Ū

b0
b �a

0
b0 �b0 , (2.39)

and therefore using the concavity of h we haveX
j

h(h |pjnj i) �
X
j,b

U j
bŪ

b
j h(�b) =

X
b

h(�b). (2.40)

On the right hand side we see appearing the von-Neumann entropy of the
single particle RDM ⇢(1) which describes measurements of single particle
operators. This way we may reinterpret entanglement between particles as
a state dependent version of entanglement between modes: the entangle-
ment of a single particle with the rest is the average mode entanglement of
a single natural orbital with the rest.

2.3 SLOCC and extended SLOCC

2.3.1 SLOCC

Now consider an n fermion state with a d � n dimensional single particle
Hilbert space H

| i = 1

n!
 a

1

,...,anp
a
1 ...pan |0i 2 ^nH. (2.41)

The ordinary fermionic SLOCC group is GL(H) ⇠= GL(d,C) and it acts on
the amplitudes as

 a
1

,...,an 7! Ga
1

b
1 ...Ga

1

b
1 b

1

,...,bn , G 2 GL(H). (2.42)

This corresponds to an invertible protocol acting locally on a single parti-
cle, but as the particles are indistinguishable, we can only apply the same
protocol to all of the particles. It is the same short of coarse graining of the
local unitary group (2.36) as (1.27) to (1.26) in the case of qubits.

Finding the orbits of the above defined group action is what we call the
SLOCC classification problem for fermions. States on the same orbit are called
SLOCC equivalent and we think of them as being equally entangled in the
sence that they can be turned into each other by a SLOCC protocol with
probability greater than zero. We may say that a state | 

1

i is less entangled
than | 

2

i if there is a degenerate SLOCC protocol transforming | 
2

i into
| 

1

i.

2.3.2 Extended SLOCC

One can ask the question if there is a natural way to describe these trans-
formations, originaly introduced on a physical basis, in the formalism of
section 2.1. where the fermionic state space is regarded to be the spinor rep-
resentation of the Clifford algebra generated by the single particle modes.
It is easy to see that the answer to this question is affirmative. The SLOCC
transformation (2.42) is implemented by an invertible transformation pa 7!
Ga0

apa
0 on the space W of creation operators which is clearly just a special

case of the Bogoliubov transformation introduced in e.q. (2.7). Let us find
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the elements of the even Clifford group �
0

which implement this transfor-
mation through (2.9). From (2.14) and (2.15) we see that the elements

g = �e
1

2

Aa
b
[pa,nb] (2.43)

act on V as
gpag�1 = Gb

apb, gnag
�1 = (G�1)a

b
nb, (2.44)

where the matrix Ga
b is the exponential of the matrix Aa

b. Using the iden-
tity eTrA = detG we easily find that the action of g on the vaccum is

g|0i = �(detG)�
1

2 |0i, (2.45)

and hence we may fix � = (detG)
1

2 to keep the vacuum invariant8. The
resulting action on n-particle states (2.41) is

g| i = 1

n!
 a

1

,...,an(gp
a
1g�1)...(gpang�1)g|0i

=
1

n!
(Ga

1

b
1 ...Gan

bn b
1

,...,bn)p
a
1 ...pan |0i,

(2.46)

which is indeed the same as (2.42). In fact, elements of the form (2.43) in
�
0

are precisely the ones which conserve particle number, i.e. keep the Zd

grading of the exterior algebra underlying the fermionic Fock space.
We have seen in section 2.1 that the groups �,�

0

, Spin(V ), etc. and
their action arise naturally only by prescribing canonical anticommutation
relations between fermionic modes, without fixing anything additionally.
Finding the orbits of these groups on F is then a natural problem, known
to mathematicians as the classification problem of spinors [19, 35]. It is
satisfying to see that the the SLOCC classification problem for fermions is
recovered in this framework as a special case. Now it is tempting to con-
sider coarse grainings of the SLOCC classification problem by replacing the
SLOCC group by a bigger one. The natural candidate is the even Clifford
group �

0

because of the following physical reason. We do not want to con-
sider entanglement between states with different overall statistics i.e. even
and odd particle number. This is sometimes refered to as the parity super-
selection rule. Indeed, by definition, the action of the even Clifford group
does not change the parity (see (2.4)) of the states: it acts reducibly on F
with irreducible invariant subspaces F+ and F� corresponding to left and
right handed Weyl spinors.

This motivates us to call the even Clifford group �
0

⇠= C

⇥ ⇥ Spin
0

(V )
the generalized, or more appropriately, the extended SLOCC group.

A recent result [34] shows that there is a way of thinking about entangle-
ment classification under the extended SLOCC group as a type of average
mode entanglement, by a suitable generalization of the argument given at
the end of section 2.2.2. We will give a review of this at the end of section
2.5.3.

8Recall that the spin group is recovered with � = 1. The determinant factor then justifies
writing the Fock space as F = ^•H⌦ (^dH)

� 1
2 as this is how GL(H) acts as a subgroup of

Spin(V ).
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2.3.3 Pure spinors and Slater determinants

The first, somewhat obious step in solving the SLOCC classification prob-
lem is to notice that states that are just exterior products of vectors from W
always form a single SLOCC orbit. Indeed, using the definition (2.42), we
have

(v1a
1

pa1)...(vnanp
an)|0i 7! (v1a

1

Gb
1

a
1pb1)...(vnanGbn

anpbn)|0i. (2.47)

We call these states separable or more traditionally single Slater determinant as
they only contain statistical correlations between the parties which cannot
be removed due to the indistinguishable nature of the particles.

One may wonder what happens to this orbit when we extend the clas-
sification to the extended SLOCC group �

0

. The answer is that it will be a
part of the orbit of so called pure spinors. A state | i 2 F is called a pure
spinor if its annihilator subspace E = {x 2 V |x| i = 0} is of maximal di-
mension. Note that every element x of the annihilator subspace have zero
inner product with itself since 0 = x2| i = (x, x)| i. As a consequence,
the maximal dimension of E is d and if  is pure, we may decompose V
into new creation and annihilation operators as V = E � E⇤

 . This makes
it clear why these states are sometimes called quasiparticle vacuum states or
quasifree states in the physics literature. We call a B-transformation an ele-
ment of �

0

written in the form (2.14), (2.15) with the matrices A and C set
to zero. It can be shown that every pure spinor can be written as

| i = e
1

2

Babpapb(v1a
1

pa1)...(vnanp
an)|0i, (2.48)

i.e. a Slater determinant transformed by a B-transformation.
We can actually identify what the orbit of pure spinors is in the general

case. It is clear that the orbit of a vector | i is homeomorphic to the coset
space �

0

/� where � is the stabilizer of | i. It is not too difficult to de-
termine � for pure spinors, as we will now show. We can write a general
element of �

0

in the form described by equations (2.14) and (2.15). We may
rewrite this as

g = �e�
1

2

TrAeAa
bpanb+

1

2

Babpapb+
1

2

Cabnanb . (2.49)

Now without the loss of generality, we can take the na to form a basis of
annihilation operators corresponding to the pure spinor | i, i.e. a basis of
E . Then, the pa operators form a basis of E⇤

 . It should be clear, that in this
case the elements fixing | imust have

Bab = 0 and � = e
1

2

TrA. (2.50)

Under the image of (2.9) we obtain matrices in O(V ) of the form✓
G 0

0 (G�1)T

◆✓
I C
0 I

◆
, (2.51)

where G 2 GL(E ) ⇠= GL(d,C) and C is antisymmetric. As � is fixed
to a unique value in (2.50), the group formed by these matrices is actually
isomorphic to � . This group is just the semidirect product � = GL(d,C)n
H(d), where H(d) is the 1

2

d(d � 1) dimensional Abelian group of upper
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triangular matrices of the form ✓
I C
0 I

◆
, (2.52)

where C is a d ⇥ d antisymmetric matrix. It follows, that the pure spinor
orbit is nothing else than

C

⇥⇥[Spin
0

(V )/(GL(d,C)nH(d))] ⇠= C

⇥⇥[SO(2d,C)/(GL(d,C)nH(d))] .
(2.53)

and has dimension 1+ 1

2

d(d�1). We note that it is possible to write the orbit
of pure spinors in a different form as C⇥⇥SO(2d,R)/U(d) by noticing that
it is just the quadratic Grassmanian Q(2d, d).

2.4 Covariants and invariants of the extended SLOCC
group

We proceed by introducing the basic building blocks of covariants and in-
variants under the extended SLOCC group. These are necessary to describe
the orbits of this group and to construct entanglement measures and mono-
tones.

2.4.1 The invariant bilinear product

Recall that so far we have not used the usual Hermitian inner product h.|.i
associating probabilities to states and observables. This is an extra structure
on the single particle space H which we did not need to build up the group
�
0

and its action on F . Here, still without fixing the Hermitian inner prod-
uct, we introduce a natural non-degenerate bilinear form, called the Mukai
pairing [36], which is very different from the usual Hermitian product, and
is canonically defined (up to a constant multiplier) once the Clifford algebra
and its vacuum state |0i are fixed. This product has the nice property that it
is invariant under the action of the connected component of the spin group
Spin

0

(V ) and relative invariant under the action of �
0

.
To define this product we use the transposition defined in (2.5). Usu-

ally, transposition of operators is defined with respect to a bilinear product.
Now we go the other way around. We are looking for a product satisfying9

(�, � ) = (�t�, ), (2.54)

for all |�i, | i 2 F and � 2 Cliff(V ). Before proceeding, recall that for all
O 2 Spin

0

(V ) we have OOt = I (see comments around (2.12)) and hence
any such product automatically satisfies

(O�, O ) = (�, ), 8O 2 Spin
0

(V ), (2.55)

so that it is indeed invariant. Now we show that the condition (2.54) de-
fines the bilinear product uniquely, up to a constant multiplier. To see this,
consider the one dimensional d-particle subspace ^dH and pick a vector in

9Note that we abuse notation here by using (., .) which is the same as we used for the
inner product (2.2) of V . We hope that it will be clear from the context which one we mean.
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it, say |topi = p1...pd|0i. This is unique up to a constant. It is clear that the
"k-hole" Slater determinants

na
1

...nak |topi, k = 0, 1, ..., d, (2.56)

form a basis of F in the same way as the k-particle states do. Using the
requirement (2.54) the pairing of any basis vector with the vacuum reads as

(|0i, na
1

...nak |topi) = (na
1

|0i, na
2

...nak |topi) = 0, (2.57)

unless k = 0 and hence, by bilinearity, the only state that can have a non-
vanishing pairing with the vacuum must be proportional to |topi. By the
assumption of nondegeneracy, (|0i, |topi) must be a nonzero number. This
number is all our freedom in (., .). To see this it is convenient to expand the
states on a Slater basis

| i =  |0i,  ⌘
dX

k=0

1

k!
 (k)
a
1

...akp
a
1 ...pak 2 Cliff(V ). (2.58)

Using this, we may write

(�, ) = (�|0i, |0i)
= (|0i,�t |0i)
= (|0i, |topi)(�t |0i)top,

(2.59)

where ()top denotes the top component of the vector, i.e. the coefficient
multiplying |topi. This shows that the product between any two states is
determined once (|0i, |topi) is fixed.

Notice that the symmetry properties of the pairing under exchange of
the arguments are determined by the symmetry of (|0i, |topi). Indeed, run-
ing (2.59) the other way around we have

( ,�) = (�t |0i, |0i) = (|topi, |0i)(�t |0i)top. (2.60)

But it is clear that

(|0i, |topi) = (|0i, p1...pd|0i)
= (pd...p1|0i, |0i)

= (�1)
d(d�1)

2 (p1...pd|0i, |0i)

= (�1)
d(d�1)

2 (|topi, |0i),

(2.61)

and hence
(�, ) = (�1)

d(d�1)

2 ( ,�). (2.62)

We see that the product is symmetric when d = 0, 1( mod 4) while antisym-
metric when d = 2, 3( mod 4). In the following, we will set (|0i, |topi) = 1
for convenience. It is worth to comment on the value of the pairing between
states of definite parity. We have seen that ( ,�) is proportional to the top
component of | it ^ |�i so that depending on the dimension d of the single
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particle space H we have

(F+,F�) = 0, when d is even,
(F+,F+) = (F�,F�) = 0, when d is odd.

(2.63)

To conclude this section, we give an alternative expression for (., .) which
will be useful to perform some manipulations later in the thesis. Define
⌦ = n

1

...nd. It is easy to see that every state is annihilated by ⌦ except the
subspace of |topi:

⌦|topi = (�1)
d(d�1)

2 |0i, (2.64)

Using this, we easily see that

(�, )|0i = (�1)
d(d�1)

2 ⌦�t |0i. (2.65)

2.4.2 The basic covariants

It turns out, that all covariants of the action of the Spin group on a state
| i 2 F can be built out from a set of basic covariants bilinear10 in | i.

Let us introduce a general basis of V , and denote it with {eI}2dI=1

. The
inner product of V defined by the CAR (2.2) will be

{eI , eJ} = 2(eI , eJ)I ⌘ 2gIJI, (2.66)

where the equation above defines the symmetric, non-degenerate matrix
gIJ . In this basis, the matrices of the orthogonal group O(V ) of this inner
product satisfy

OI
I0OJ

J 0gIJ = gI0J 0 , O 2 O(V ). (2.67)

Specially, de action of the homomorphism (2.9) will be

geIg
�1 = (Og)

J
IeJ , g 2 �. (2.68)

As the simplest example of a bilinear, let us consider the vector

K( )I = ( , eI ). (2.69)

It is clear that
K(g )I = ( , gteIg )

= ↵�1

g ( , g�1eIg )

= ↵�1

g (Og�1)J
I
(K )J ,

(2.70)

where we have used the definition (2.11) of the Clifford norm ↵g. The map
K : F ! V is an example of an equivariant function. It turns the action of
the Clifford group on F into its action on V . This latter is basically the same
as the action of O(V ) on V which admits a single invariant

I
0

( ) = K( )IK( )I , (2.71)
10When d = 2 this is closely related to the result that all covariants of Spin(3, 1) are built

out of from Dirac bilinears. Note that here we will not have a conjugation in the bilinears.
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where the index is raised by the inverse of gIJ , which we will denote as gIJ .
Under the Clifford group this defines a relative invariant:

I
0

(g ) = ↵�2

g I
0

( ). (2.72)

After discussing this simple example we define a general bilinear to be

K( )I
1

...Im = ( , eI
1

...eIm ), (2.73)

which satisfies

K(g )I
1

...Im = ↵�1

g (Og�1)J1
I
1

...(Og�1)Jm
Im

K( )J
1

...Jm . (2.74)

These are the basic covariants that we will work with. Continous relative
invariants can be created by multiplying a certain number of K( )s and
contracting all indices with the invariant tensors gIJ and ✏I

1

...I
2d

. In addition
we can form non-continous invariants as well. By grouping, say p indices
of K( ) and raising them with gIJ to obtain K( )I1...IpIp+1

...Im we can form
linear maps (W�W ⇤)m ! (W�W ⇤)p, which have a rank which is invariant
under the action of �

0

.
An extremely important subcase is when our state has a fixed parity i.e.

when | i 2 F±. According to (2.63) in this case we have

K( )I
1

...I
2k+1

= 0, when d = dimH is even,
K( )I

1

...I
2k

= 0, when d = dimH is odd.
(2.75)

It is also convenient to organize these covariants in the following way. We
call an orthogonal basis of V a Majorana basis. Denoting the basis elements
with �I to distinguish from the general basis elements eI , the Majorana ba-
sis satisfies

{�I , �J} = 2�IJI, (2.76)

i.e. gIJ = �IJ . We can enlist all bilinears as {( , �I
1

...�Im )|I1 < ... <
Im, m = 0, ..., 2d} as �2I = I . Moreover, in this basis all the covariants are
totaly antisymmetric in their indices. This observation makes it possible
to organize these covariants into an element of the exterior algebra ^•V
underlying the Clifford algebra Cliff(V ). Then, the map

K : F ! ^•V,

| i 7!
X
m

1

m!
( , �I

1

...�Im )e
I
1 ^ ... ^ eIm ,

(2.77)

turns the action of the Clifford group on F into the (reducible) action of
O(V ) on ^•V . Note that due to the symmetry property (2.62) we have

( , �I
1

...�Im ) = (�1)
d(d�1)

2 (�I
1

...�Im , )

= (�1)
d(d�1)+m(m�1)

2 ( , �I
1

...�Im ), I
1

< ... < Im,
(2.78)

and hence in a Majorana basis we have K( )I
1

...Im = (�1)
d(d�1)+m(m�1)

2 K( )I
1

...Im .
This shows that either K( )I

1

...Im vanishes or (�1)
d(d�1)+m(m�1)

2 = 1. It fol-
lows, that when the number of single particle modes is d = 0, 1( mod 4)
only covariants with m = 0, 1( mod 4) are nonzero, while when d = 2, 3(
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mod 4) only covariants with m = 2, 3( mod 4) are nonzero. For states with
a definite parity, this means that an m index bilinear in the Majorana basis
must have m = d( mod 4) in order to be nonzero.

Pure spinor conditions

As a first application of these covariants, let us write down the condition for
| i to be a pure spinor. We have seen that any pure spinor can be regarded
as a vacuum generating the Fock space F so we can use identical argu-
ments as in sec. 2.4.1, leading up to the uniqueness of the Mukai pairing, to
conclude that

( , pa1 ...pam ) = 0, unless m = d, (2.79)

where {pm}dm=1

⇢ E⇤
 is a basis of creation operators with respect to the

quasi-particle vacuum | i. It turns out that these are actually sufficient
conditions for | i to be pure. It can be shown [19] that the condition

K( )I
1

...Im = ( , eI
1

...eIm ) = 0, m = 1, 2, ..., d� 1 (2.80)

implies that | i is pure. For k-particle states 1

k! a
1

...akp
a
1 ...pal |0i one can

show that these conditions reduce to the Plücker relations [37]

 a
1

[a
2

...ak b
1

...bk] = 0, (2.81)

which are the neccessary and sufficient criteria for a k-particle state to be a
Slater determinant [38].

2.4.3 Coarse graining: nullity and pure index

Though extending the fermionic SLOCC group to �
0

is a good coarse grain-
ing of the orbit structure, it is not good enough in the sense that finding the
extended SLOCC classes still becomes untractable for large dimensions. To
overcome this difficulty, it is a common method to try grouping SLOCC or-
bits into families based on some SLOCC invariant property that we think is
important. We will see some examples of this in chapter 3. Here we would
like to mention a way one can coarse grain the classification problem of
spinors when the number of dimensions is large, see e.g. [39, 40]. First, we
define two invariant quantities.

• We have already met the notion of the annihilator subspace E ⇢
W �W ⇤ of a state | i in section 2.3.3. It is just the subspace of cre-
ation/annihilation operators which annihilates the state | i. We have
seen that dimE  d where we have equality only for pure spinors.
This is the reason why pure spinors are called quasi particle vacuum
states: they are annihilated by exactly half of the mode operators.
Now for a general state the quantity

Null( ) = dimE , (2.82)

called nullity, is clearly an invariant under the action of �. Indeed, we
easily see that for g 2 � we have Eg = OgE , see (2.9). Note that
the nullity is easy, though for large dimension computationaly costy
to compute. It is just the dimension of the kernel of the �-covariant
linear map W �W ⇤ ! F±, x 7! x| i.
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• The other quantity is called pure index. It is defined to be the minimal
number of pure spinors we need to add up to obtain the state | i, i.e.

P( ) = min{m| | i =
mX
i=1

|'ii where |'ii are pure spinors}. (2.83)

To see that this is indeed a �-invariant quantity note that the image of
a pure spinor under g 2 � is clearly a pure spinor, so that acting with
g on a minimal decomposition of | i shows that P(g )  P( ). Con-
versely, acting on a minimal decomposition of g| i with g�1 shows
that P( )  P(g ). It follows that P(g ) = P( ). It is clear that the
pure index is a Fock space generalization of the Slater rank [41, 42],
the minimal number of Slater determinants required to form a fixed
particle state through linear combination. The pure index of such a
state is clearly less than or equal to its Slater rank. We note that the
pure index is hard to compute: to the authors knowledge there is no
algorithm to date to compute the pure index of a general state.

The dimensions of the collections of extended SLOCC orbits with a
given nullity was computed in [39]. Let us consider the even or odd particle
subspace F± of the fermionic Fock space of a d dimensional single particle
state space. These have dimension 2d�1. Let us define the sets

⌃m
d = {| i 2 F±|Null( ) = m}, (2.84)

which are clearly a collection of some number of extended SLOCC orbits.
The key result of [39] is that

dim⌃d
d = 1 +

1

2
d(d� 1),

⌃d�1

d ,⌃d�2

d ,⌃d�3

d ,⌃d�5

d are empty,

dim⌃m
d = m(2d� 1

2
(3m+ 1)) + 2d�m�1 for m = d� 4 and m < d� 5.

(2.85)
The first number dim⌃d

d is the dimension of the pure spinor orbit. This
agrees with the dimension coming from the explicit form of the orbit (2.53).
We also have dim⌃0

d = 2d�1 which shows that ⌃0

d is dense in F±: a generic
state has nullity 0.

This classification can be refined in principle by adding the pure index
which allows one to group the states into families ⌃m,p

d where p is the pure
index of states in ⌃m,p

d . This gives a finite number of families as we clearly
have P( )  2d�1, since F± admits bases consisting of pure spinors. How-
ever, for this grouping to be useful, we would need a method to calculate
P( ).

2.4.4 Isomorphisms between F� and F+

When the number of single particle modes d is odd, we have a natural
way of identifying the odd and even particle subspaces F� = ^oddW and
F+ = ^evenW . This is via particle-hole duality ^kW ⇠= ^d�kW ⇤. Instead of
this, in this subsection we would like to consider the linear invertible maps
between F� and F+, for general d, which are generated by odd elements of



2.4. Covariants and invariants of the extended SLOCC group 29

the Clifford group �. These maps act as intertwiners between the action of
the extended SLOCC group �

0

on F� and F+. We may acually write any
odd element g 2 � as g = vg

0

, where g
0

is an extended SLOCC transforma-
tion g

0

2 �
0

and v 2 V is a vector of creation and annihilation operators. It
is then sufficient to take g

0

= I and consider the map

|�i 2 ^oddW 7! v|�i 2 ^evenW. (2.86)

Now we would like to work out the properties of this intertwiner. In order
to do this define the following linear map for each v 2 V , v2 = (v, v)I 6= 0:

Vv : V ! V,

x 7! Vv(x) =
1

(v, v)
vxv

(2.87)

It is not difficult to see that 1

(v,v)vxv is indeed an element of V :

1

(v, v)
vxv =

1

(v, v)
({v, x}v � xv2) =

2(v, x)

(v, v)
v � x. (2.88)

Obviously, Vv is just a reflection. Let us define its matrix as Vv(eI) = VJ
IeJ

which is then an element of O(V ) and squares to the identity. Using this
matrix, it is easy to write down how a general covariant transforms under
the action of the intertwiner (2.86), given that v2 6= 0.

(K(v�))I
1

...Im = (v�, eI
1

...eImv�)

=
1

(v, v)m�1

(�, veI
1

v...veImv�)

= (v, v)VI0
1I

1

...VI0mIm(�, eI0
1

...eI0m�)

= (v, v)VI0
1I

1

...VI0mIm(K(�))I0
1

...I0m
.

(2.89)

In particular, all realtive invariants agree up to a rescaling by a power of
(v, v). These maps are indeed intertwiners for the acion of the extended
SLOCC group between F+ and F�

vg|�i = (vgv�1)v|�i, g 2 �
0

. (2.90)

Since vectors with v2 6= 0 exist in any dimensions (e.g. elements of the
Majorana basis), the orbit structure of F+ and F� agrees. We note that
these intertwiners are closely related to T-dualities for topological strings,
see sec. 4.2.4.

2.4.5 Fermions and qudits

An important feature of the introduced notion and formalism of the fermionic
extended SLOCC group is that it can be used to learn things about entan-
glement between distinguishable systems. In order to see this, consider
the composite system of n distinguishable subsystems with Hilbert spaces
of dimensions d

1

,...,dn respectively. The whole system has Hilbert space
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H = C

d
1 ⌦ ...⌦ C

dn . A pure state of this system is described by the vector

| i =
d
1X

µ
1

=1

...
dnX

µn=1

 µ
1

...µn |µ1

i ⌦ ...⌦ |µni 2 H. (2.91)

Now consider a system of n fermions with single particle Hilbert space
H0 = C

d
1 � ... � C

dn where there is a sum between the original Hilbert
spaces instead of a product. The fermionic Hilbert space is now ^nH0. Any
| i 2 H can be embedded[43] in this space using the map

| i 7! |P i =
d
1X

µ
1

=1

...
dnX

µn=1

 µ
1

...µnp
µ
1pd1+µ

2 ...pd1+...+dn�1

+µn |0i. (2.92)

This embedding has the nice propierty that it also embeds the SLOCC group
of the distinguishable system into the ordinary fermionic SLOCC group in
a nice way. The SLOCC group of the distinguishable system is GL(d

1

,C)⌦
...⌦GL(dn,C) acting locally as

 µ
1

...µn 7! (g
1

)µ
1

⌫
1 ...(g

1

)µn

⌫n ⌫
1

...⌫n ,

g
1

⌦ ...⌦ gn 2 GL(d
1

,C)⌦ ...⌦GL(dn,C).
(2.93)

These transformations are implemented via the fermionic SLOCC transfor-
mations of (2.42) as

G =

0B@ g
1

. . .
gn

1CA 2 GL(H0) (2.94)

This shows that states of the embedded system on the same GL(d
1

,C)⌦...⌦
GL(dn,C) orbit are on the same GL(H0) orbit when considered as fermionic
states. Hence the entanglement classes of the fermionic system give a coarse
graining of the classes of the distinguishable system.

Note that the embedding (2.92) has a nice physical interpretation. Con-
sider n nodes where fermions can be localized and on the kth node a fermion
can have dk internal states. These nodes can be energy levels of atoms or
nodes in a lattice or anything alike. The subspace of the n fermion Hilbert
space ^nH0 defined by (2.92) is just the single occupancy subspace of this
node interpretation: where we allow only states where on each node there
is exactly one fermion. If we prescribe this condition it is clear that the
fermions suddenly become distinguishable and the resulting Hilbert space
is just H.

For a further coarse graining we may regard (2.94) as an element of the
extended SLOCC group. This allows one to realize more exotic ways of
describing qudit systems as part of a fermionic system[P.2, 44]. Indeed, for
example take an arbitrary element h of the Clifford group � and consider
the embedding

| i 7! h|P i, (2.95)

where |P i is defined in (2.92). The states h|P i can be rather exotic com-
pared to the previous simple node picture, e.g. they can be superpositions
of states with different fermion number. Nevertheless, the original SLOCC
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transformations of the distinguishable system are clearly implemented as
extended SLOCC transformations hgh�1, where g is the ordinary fermionic
SLOCC transformation given by (2.94). We will see examples of such exotic
embeddings in section 3.4.3. For a recent extended discussion, we refer the
reader to [44].

2.5 The Hermitian inner product

2.5.1 Canonical real structure

We have seen that there are many useful structures on the fermionic Fock
space which exist solely because of the requirement that the Fock space
should represent the canonical anticommutation relations. In addition to
these, a physical fermion Hilbert space also posesses a Hermitian inner
product11 h.|.i associating probability distributions to states and observ-
ables. This inner product originates from an inner product of the single par-
ticle state space H, which is from now on rightfully called a Hilbert space.
This introduces a real structure on the space W �W ⇤ of creation and anni-
hilation operators: for an orthonormal basis hei|eji = �ij one has pi = (ni)

†:
the creation operators are the adjoints of the annihilation operators. Stated
in a more formal way, for every state vi|eii 2 H one can associate a creation
operator pv = vipi and for every dual state ui|eii 2 H⇤ one can associate an
annihilation operator nu = uini. The inner product introduces an antilinear
map A : H ! H⇤ defined as A(v)(w) = hv|wi. Then the adjoint defined
from this inner product satisfies (nA(v))

† = pv.
Recall that on every fermionic Fock space there is a canonical invariant

bilinear pairing, which we have described in section 2.4.1. When we have
an additional Hermitian inner product, the two can be related giving rise
to an antilinear map of F [P.4]. We define this antilinear automorphism
� : F ! F of the Fock space as12

� :|�i 7! �(|�i) ⌘ |�̃i,
h�̃| i = (�, ), 8|�i, | i 2 F .

(2.96)

We will denote this conjugate state of |�i with �(|�i) ⌘ |�̃i. Using the
form (2.65) with the assumption that we chose a normalized vacuum we
can write this as

h0|(�̃)† |0i = (�1)
d(d�1)

2 h0|⌦�t |0i, (2.97)

from where we can read off the action of � on an arbitary state:

|�̃i = (�1)
d(d�1)

2 (⌦�t)†|0i. (2.98)
11We have used the Dirac ket notation for states so far. We will use the bra-ket notation for

the Hermitian inner product from now on. We can think about this as now we are allowed
to flip ket vectors to obtain bra vectors.

12We note that this conjugation operation was first considered in [45, 41] in the special case
of two fermions with four single particle states (see sec. 3.2). Here we give its definition for
arbitrary fermionic states. We now see that a self dual basis, called a magic basis in [41], is
nothing else but a basis consisting of Majorana spinors.
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Now it is easy to see that ⌦† = n†
d...n

†
1

= (�1)
d(d�1)

2 n†
1

...n†
d and hence

(�1)
d(d�1)

2 ⌦†|0i = |topi. One is left with

|�̃i = (�t)†|topi. (2.99)

The adjoint conjugates every amplitude in � and changes creation opera-
tors to annihilation ones with reversing the order. The transpose restores
the original order i.e. for

� = �(0) + �(1)i n†
i +

1

2
�(2)ij n†

in
†
j + ... (2.100)

one has
(�t)† = �̄(0) + (�̄(1))ini +

1

2
(�̄(2))ijninj + ... . (2.101)

This shows that |�̃i is short of a particle-hole dual of |�i with an additional
complex conjugation: the complex conjugate state is annihilated out of the
fully filled state. This picture is reassured if one calculates the action on
Slater determinant states:

�(n†
i
1

...n†
ik
|0i) = (�1)

k(k�1)

2

1

(d� k)!
✏i

1

...ikjk+1

...jdn
†
jk+1

...n†
jd
|0i. (2.102)

From e.q. (2.98) it is easy to see that �2 = (�1)
d(d�1)

2 . It follows that either
� or i� is an antilinear involution and hence a real structure. Since � is
uniquely defined by the Hermitian inner product it follows that fixing a
Hermitian inner product on H is equivalent with fixing a real structure on
F .

The particle-hole picture for this conjugation can also be seen from the
matrix elements of the one particle reduced density matrix, see (2.32). Using
that ��1 = (�1)

d(d�1)

2 � and e.q. (2.62) it is easy to see that � is antiunitary:
h�̃| ̃i = h |�i. Using this the following result is straightforward

h ̃
1

|A ̃
2

i = ( 
1

, A ̃
2

)

= (At 
1

,  ̃
2

)

= h�(At 
1

)|�( 
2

)i
= h 

2

|At 
1

i, 8A 2 Cliff(V ),

(2.103)

hence the expectation values of operators in the conjugated state are just the
expectation values of the Clifford transpositions of (2.5). Since (n†

inj)
t =

njn
†
i = �ij � n†

inj we indeed have a particle-hole relation

⇢̃ij = h ̃|ni
†nj ̃i = �ij � h |ni

†nj i = �ij � ⇢ij , (2.104)

between the matrix elements of the one particle RDM of the state and its
conjugate.
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2.5.2 Unitary Bogoliubov transformations

Now let us consider unitary elements of the Clifford group with respect to
the Hermitian inner product, i.e. u 2 � such that

hu |u�i = h |�i. (2.105)

A consequence of this relation is that that (unau�1)† = u(n†
a)u�1 i.e. the Bo-

goliubov transformed creation operators remain the adjoints of the trans-
formed annihilation operators. Let us restrict our attention to the identity
component of the spin group Spin

0

(V ). Unitarity of u = es 2 Spin
0

(V )
translates to anti-Hermicity of the generator s given explicitly in (2.15) One
can check that this means that the matrix Aa

b must be anti-Hermitian and
the matrices Bab, Cab must satisfy (B†)ab = �Cab, thus the group of unitary
Bogoliubov transformations is restricted to SO(W �W ⇤)

T
SU(W �W ⇤).

Let us identify what this group is. With the inner product matrix g of (2.66)
the SO property of the matrix Ou defined via (2.9) reads as OugOT

u = g. On
the other hand, clearly O†

u = O�1

u . Combine the two to get the following
reality condition

Ōu = gOug. (2.106)

Now we shall prove that the subgroup of SO(W�W ⇤) = SO(2d,C) satisfy-
ing the above reality condition is just the compact real form SO(2d,R). The
inner product matrix gIJ in the basis of orthonormal creation/annihilation
operators {pa, nb} = �ab reads as

g =

✓
0 I
I 0

◆
, (2.107)

where I is now the d⇥ d identity matrix. Define the 2d⇥ 2d unitary matrix

N =
1p
2

✓
I iI
I �iI

◆
. (2.108)

which diagonalizes g
gN = Ng

0

, (2.109)

where we have defined

g
0

=

✓
I 0

0 �I

◆
. (2.110)

Now we show that the map O 7! S = N †ON is a group isomorphism from
the subgroup {O 2 SO(2d,C)|O⇤ = gOg} to the group SO(2d,R). Indeed,
it is very easy to directly check that gN⇤ = N and hence NT = N †g. We
have

SST = N †ONNTOTN⇤ = N †gN⇤ = I, (2.111)

hence for every unitary O satisfying OgOT = g, S is an element of SO(2d,R).
For the converse, we have to check whether O = NSN † is a unitary matrix
with the condition OgOT = g satisfied for all S 2 SO(2d,R). It is obvious
that O is unitary. For the other write

OgOT = NSN †gN⇤STNT , (2.112)
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but again gN⇤ = N so

OgOT = NSN †NSTNT = NSSTNT = NNT = g. (2.113)

Notice that by restricting our attention to particle number conserving
transformations i.e. setting Bab = Cab = 0 in (2.15) we end up with the
usual local unitary transformations (LU) corresponding to invertible LOCC
transformations. Indeed, an unitary element u = e

1

2

Aa
b
[pa,nb] of the spin

group has the following action on creation operators

upau�1 = (eA)b
a
pb. (2.114)

As Ab
a is an anti-Hermitian, (eA)b

a is an unitary matrix.

2.5.3 Extended density matrix

Now recall from secion 2.2.2 that the matrix elements of the k particle re-
duced density matrix of a state | i are

(⇢(k))j
1

...jk
i
1

...ik
= h |pi1 ...piknj

1

...njk i. (2.115)

For a state with a fixed number of particles only expectation values of the
product of the same number of creation and annihilation operators is non-
vanishing. However, if | i is a general element of F± this set of matrix el-
ements misses information contained in expectation values like h |nanb i.
It is clear how to add this information to ⇢: we need to extend our def-
initions of k-particle operators of section 2.2.2 to incorporate all operators
which are combinations of at most k-tuples of arbitrary single particle mode
operators:

O(k) = {AI
1

...I
2k
eI1 ...eI2k}. (2.116)

Notice that there is no longer a need to take the union of bilinears with
2l  2k operators as with an appropriate choice of the AI

1

...I
2k

and the use
of {eI , eJ} = 2gIJI we can produce operators which are actually tuples
of 2l  2k number of mode operators. The reason for allowing only an
even number of modes comes from the requirement that physical operators
should not change the parity (statistics) of a state.

Defining the sets O(k) as k-particle operators is in fact even more natural
in the Clifford algebra setting. This is because a Clifford algebra does not
have a Z

2d grading into rank 2d objects and hence the sets of k-particle
operators defined in section 2.2.2 depend heavily on the choice of basis.
Instead of this, all Clifford algebras have a natural filtration

O(0) ⇢ O(1/2) ⇢ ... ⇢ O(d� 1

2

) ⇢ O(d) ⌘ Cliff(V ), (2.117)

into elements containing linear combination of at most 2k modes. This is
independent of the choice of basis.

Now the requirement

h |A i = Tr(⇢(k)A), 8A 2 O(k), (2.118)
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fixes ⇢(k) to live in O(k) with coefficients

(⇢(k))I
1

...I
2k

= h |eI
1

...eI
2k
 i, (2.119)

which contains the ordinary k particle density matrix elements and any ad-
ditional anomalous pairing with 2k modes. Following [34], we will call this
object an extended reduced density matrix13. For example, the single particle
extended reduced density matrix is

⇢(1) =

✓
h |pana0 i h |papb

0
 i

h |nbna0 i h |nbpb
0
 i

◆
. (2.120)

Now there is a way of relating this extended density matrix to mode
entanglement by a slight modification of the argument at the end of sec-
tion 2.2.2, due to [34]. We consider the same quantity as there, the average
entanglement entropy of a single mode with the rest

dX
j=1

Ej( ) =
dX

j=1

h(h |pjnj i), (2.121)

and minimize it again, but instead of minimizing only over different choice
of basis vectors in W , now we minimize it over different choice of basis
vectors in V = W�W ⇤, i.e. we allow Bogoliubov transformations to reduce
the value. It is clear that the minimum is reached at the basis diagonalizing
the extended reduced density matrix ⇢(1). Indeed, we may rewrite (2.121)
as

dX
j=1

Ej( ) =
2dX
I

f(h |eIeI i), (2.122)

where f(x) = �x log x, eI = (pa, nb) and the index is lowered with the
inverse of the inner product matrix gIJ satisfying {eI , eJ} = gIJI as usual.
Using concavity of f it is then manifest that

2dX
I=1

f(h |eIeI i) �
2dX

I,K,L=1

(O†)IKOL
If(�

K
L ⇤K) ⌘

2dX
K=1

f(⇤K), (2.123)

where O is a unitary Bogoliubov transformation, described in section 2.5.2,
diagonalizing (⇢(1))IJ , while ⇤K are the eigenvalues of ⇢(k). It is clear, that
these latter come in pairs: ⇤k + ⇤k+d = 1, k = 1, ..., d. This again gives
a state dependent way of connecting mode entanglement to entanglement
based on classification under the extended SLOCC group: the latter can be
regarded as describing the average mode entanglement between a single
eigenmode of the extended density matrix with the rest of the eigenmodes.

We note that by studying the extended density matrix ⇢(2), the authors
of [34] recover some of the extended SLOCC invariants, like the ones that
will be discussed in section 3.2. This is not a coincidence, as we describe in
the following section.

13We could annihilate the words extended and reduced with each other and call this object
a density matrix, but that would only increase confusion.
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2.5.4 SLOCC covariants and reduced density matrices

Notice the following duality. Invariants and covariants of the local unitary
group are calculated from the Hermitian inner product. These in particular
involve elements of the reduced density matrices, extended reduced den-
sity matrices and also their Rényi entropies. On the other hand, SLOCC
covariants and invariants are calculated from the invariant bilinear pair-
ing of (2.65). One then sees that the role of the conjugation (2.96) is to allow
one the calculation of SLOCC invariants with the use of the Hermitian inner
product. We now make this more explicit and relate reduced density matrix
elements to extended SLOCC covariants[P.4]. This is done via using Fierz
identities for spinors. We will later see in secion 3.4.4 that the entangle-
ment monogamy equations of [27] for three qubits are direct consequences
of such a Fierz identity.

To derive the general relations between reduced density matrix elements
and SLOCC covariants, first note that there are two type of projections de-
fined from the two inner products. The first is the usual one defining den-
sity matrices from pure states:

P : F ! F ,

|�i 7! h |�i| i.
(2.124)

We can write this as P = | ih |. The other one is defined from the invari-
ant bilinear product:

P̃ : F ! F ,

|�i 7! ( ,�)| i.
(2.125)

From the definition (2.96) one sees that this can be written as P̃ = | ih ̃|.
On the other hand from (2.65) we have P̃ = (�1)

d(d�1)

2  ⌦ t. We would
now like an expansion of P and P 0

 in terms of density matrix elements
and SLOCC covariants respectively. To obtain this we employ that since
Cliff(W �W ⇤) ⇠= End(F) the trace of an arbitary Clifford algebra element
is well-defined. Let {|#ii}2

d

i=1

be a basis of F and |#⇤ii be the dual basis with
respect to the product h.|.i while |#̃⇤i i is clearly the dual basis with respect
to the product (., .). We have

TrA =
X
i

h#⇤i|A#ii =
X
i

(#̃⇤i , A#i), A 2 Cliff(W �W ⇤). (2.126)

It is obvious that this trace with the previously introduced projections sat-
isfies

Tr(AP ) = h |A i, (2.127)

and
Tr(AP̃ ) = ( , A ). (2.128)

Now choose a basis {✓i}2
2d

i=1

of Cliff(W � W ⇤) and denote its trace-dual
with ✓i i.e. tr✓i✓j = �ij . A self-dual basis for example can be obtained
from a Majorana basis (see (3.42)) of W �W ⇤ as { 1

k!�[I1 ...�Ik]|{I1, ..., Ik} ✓
{1, ...2d}, 0  k  2d}. Using such a basis to expand P and P̃ and
e.q. (2.127) along with (2.128) with A = ✓i it is straightforward to get the
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expansions
P = | ih | =

X
i

h |✓i i✓i,

P̃ = | ih ̃| =
X
i

( , ✓i )✓
i.

(2.129)

Notice that the coefficients of P are nothing else than matrix elements of
the extended reduced density matrices, see (2.119), while the coefficients of
P̃ are the extended SLOCC covariant bilinears of section 2.4.2. Using these
expansions we can easily derive our final results

( , A )( , B ) = hB | ̃ih ̃|A i =
X
i

h |B†✓iA ih ̃|✓i ̃i, (2.130)

and
h |A ih ̃|B ̃i =

X
i

( , ✓i )( , (A✓iB)† ), (2.131)

valid for all A,B 2 Cliff(W �W ⇤). Physically speaking the first relation
expresses that a SLOCC covariant multiplied by its conjugate can be ex-
panded with the use of reduced density matrix elements of the state and its
conjugate or “spin-flipped” dual, while the second relation is basically the
inverse of the first. Mathematically speaking these equations relate spinor
bilinears between the spinor | i and its conjugate | ̃i with the bilinears
of these spinors with themselves. These kinds of relations between two
spinors are called Fierz identities[46] in the theory of spinors.
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Chapter 3

Results on SLOCC
classification of certain
fermionic systems

The previously introduced classification problems are in general very hard.
In this chapter, we will review the available results, which are for d  9 sin-
gle particle modes, and comment on some of their physical interpretations.

There is an interesting common point in all of the mode numbers dis-
cussed bellow. For d  8 the orbit classification is entirely governed by the
covariant K( )I

1

...Id�4

with d� 4 indices.

3.1 Two and three modes

Let us discuss briefly the d = 2 and d = 3 cases, which both turn out to be
trivial. In the case of d = 2 the single particle space is H = C

2. The full Fock
space is C� C

2 � ^2C2 with even and odd components:

F+ = C� ^2C2,

F� = C

2,
(3.1)

which are simply one qubit Hilbert spaces. Take

|�i = �
0

|0i+ �tp
1p2|0i 2 F+,

| i =  ip
i|0i 2 F�.

(3.2)

In the case of | i the generators (2.15) act as C| i = B| i = 0 thus only the
A generators have nontrivial action on F�. This means that we only have
to consider the action of GL(2,C) ⇢ Spin(4,C) which is just the SLOCC
group of the trivial one-qubit system.

Note that both |�i and | i are pure spinors. Indeed, we see that | i is
manifestly of the form (2.48), while |�i can be written as

|�i = �
0

exp
✓
�t
�
0

p1p2
◆
|0i, (3.3)

hence both F+ and F� forms a single orbit under the extended SLOCC
group.

Now let us briefly consider the three state system H = C

3. It is clear
that we only need to consider one parity due to particle-hole duality. This
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is always true when d is odd. Let us pick F+ and write a general vector as

|�i = (�
0

+ �
1

p2p3 + �
2

p1p3 + �
3

p1p2)|0i. (3.4)

It is again clear that this can be written as

|�i = �
0

exp

✓
1

�
0

(�
1

p2p3 + �
2

p1p3 + �
3

p1p2)

◆
|0i, (3.5)

and hence every state is a pure spinor.
Moving to ordinary SLOCC classification the only case not immediately

trivial is the case of the two particle subspace, where a general state reads as
1

2!

�ijpipj |0i. But all 3 ⇥ 3 antisymmetric matrices have a degenerate eigen-
vector and hence using the canonical form of the 3⇥ 3 array �ij we see that
|�i can be written as a wedge product of two vectors and hence it is always
a Slater determinant.

3.2 Four modes

3.2.1 Extended SLOCC classification

Here the single particle space is H = C

4. In the case of even particle number
F+ we parametrize a state as

|�i = ⌘|0i+ 1

2
⇠abp

apb|0i+ 1

4!
⇢✏abcdp

apbpcpd|0i. (3.6)

The covariant, relevant for the classification, is the one with d � 4 = 0 in-
dices, i.e. the quadratic invariant

(�,�) = 2⌘⇢� 2Pf(⇠), (3.7)

where the Pfaffian of the antisymmetrix matrix ⇠ is Pf(⇠) = 1

2

2

2!

✏ijkl⇠ij⇠kl.
The orbit of pure spinors has (�,�) = 0. Indeed, the additional bilinears in
the pure spinor conditions (2.80) in this case are

K(�)IJ = (�, [
1

2
[eI , eJ ] +

1

2
{eI , eJ}]�)

= gIJ(�,�),
(3.8)

as the commutator piece gives zero due to the symmetry of the product. We
see that (�,�) = 0 implies the pure spinor conditions on |�i.

Now let us move on to F�. Take an element | i of F� parametrized as

| i = vap
a|0i+ 1

3!
Pabcp

apbpc|0i. (3.9)

For this we have
( , ) =

1

3
vaPbcd✏

abcd, (3.10)

showing us in particular that for a three fermion state with vi = 0 no en-
tanglement can occur. This can also be understood to be a consequence of
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the duality ^3C4 ⇠= ^1C. The spaces F± contain two Spin orbits respec-
tively (other than the zero vector) [35] one with ( , ) = 0 (the orbit of pure
spinors) and one with ( , ) 6= 0.

3.2.2 SLOCC classification

Consider two fermion states which are of the form (3.6) with ⌘ = ⇢ = 0.
The pure spinor condition (�,�) = �2Pf(⇠) = 0 requires the antisymmet-
ric matrix ⇠ab to be degenerate which in four dimensions is neccesary and
sufficient for the state to be separable. Again, there are two orbits under
SLOCC, one with Pf(⇠) = 0 and one with Pf(⇠) 6= 0. Note that for normal-
ized states the quantity 0  64|Pf(⇠)|  1 is just the canonical entanglement
measure used for two fermions with four single particle states[42].

3.2.3 Two qubits and the Wootters spin-flip

An arbitrary two-qubit state

|�i =
X

i,j2{0,1}
�ij |ii ⌦ |ji (3.11)

can be embedded into this fermionic system via (2.92) as[43, 31]

|⇠�i =
X

i,j2{0,1}
�ijp

i+1pj+3|0i. (3.12)

Under this embedding the entanglement measure 64|Pf(⇠)| = 2| det�| is
just the usual pure state concurrence (1.4). We can also express the some-
what arbitrary spin-flipp operation of (1.12), required to calculate the two
qubit concurrence, in the fermionic language. The two body density matrix
⇢ : ^2C4 ! ^2C4 defines an element of the Clifford algebra of four modes
as

⇢ = ⇢ab
cdn†

an
†
b|0ih0|ncnd, (3.13)

where |0ih0| =
Q

4

a=1

nan
†
a Now let us determine what happens with the

matrix elements of ⇢ under the Clifford transposition (2.5). To do this, we
use (2.103) and (2.102) to arrive at

⇢t = ⇢̃ cd
ab n†

an
†
b|0ih0|ncnd,

⇢̃ cd
ab =

1

4
✏aba0b0 ⇢̄

a0b0
c0d0✏

cdc0d0 .
(3.14)

This dual fermionic density matrix was first considered in [41] in the con-
text of entanglement1. Here we have shown that it is nothing else but the
Clifford transposition of the original density matrix. The two qubit den-
sity matrices are recovered by considering fermionic density matrices re-
stricted to the single occupancy subspace. Then this expression recovers
(1.12). This means that the spin-flip operation naturally descends from the

1The entanglement of formation for mixed states of this system can be calculated from
the eigenvalues of ⇢⇢t in a similar way as it is done for two qubits, see [41]. We point out
here that ⇢⇢t is a covariant object under the action of �

0

while ⇢ and ⇢t alone are not.
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Clifford transposition of (2.5). For pure states one has

⇢ = | ih |, ⇢t = | ̃ih ̃|, (3.15)

where | i is the conjugate state of (2.96). We have

|( , )|2 = Tr⇢⇢t, (3.16)

which is a special case of the Fierz identity (2.130) relating density matrix
elements to SLOCC covariants, with A = B = I .

3.3 Five modes

3.3.1 Extended SLOCC classification

We note again, that in the case of an odd dimensional single particle space
F+ is dual to F� so one only has to consider one of them. We parametrize
a state from F+ as

|�i = ⌘|0i+ 1

2!
⇠abp

apb|0i+ 1

4!
�e✏eabcdp

apbpcpd|0i. (3.17)

The relevant covariant is the one with d � 4 = 1 indices, i.e. K(�)I =
(�, eI�). A short calculation shows that the components of K(�) are

K(�)a = (�, na�) = 2⇠ab�
b, K(�)a = (�, pa�) =

1

12
⌘�a � 1

4
⇠bc⇠de✏

abcde,

(3.18)
and by construction it transforms as an SO(10,C) vector under Spin(10,C).
A quartic invariant can be constructed as K(�)IK(�)I but this turns out
to be identically zero. However, F+ consists of two orbits[35] one with
K(�)I = 0 (the orbit of pure spinors) and one with K(�)I 6= 0.

3.3.2 SLOCC classification

The only nontrivial case is the one of two fermions with five modes. The
case of three fermions is obviously dual to this. We set ⌘ = 0 and �e =
0 in (3.17). These states are then single Slater determinants if K(�)a =
1

4

⇠bc⇠de✏abcde = 0. The antisymmetric coefficient matrix ⇠ab can have rank
at most 4 which is decreased to 2 if this quantity vanishes. These are the
only two SLOCC orbits.

3.4 Six modes

3.4.1 Extended SLOCC classification

Here H = C

6 and the Fock space is of dimension 64. Let us begin with the
32 dimensional even particle subspace F+.
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We parametrize a general state with two complex scalars ⌘, ⇠ and two
antisymmetric 6⇥ 6 complex matrices y and x in the following way

|�i =⌘|0i+ 1

2!
yabp

ab|0i+ 1

2!4!
xab✏abcdefp

cdef |0i

+
1

6!
⇠✏abcdefp

abcdef |0i,
(3.19)

where we have introduced the shorthand notation pab...z = papb...pz . The
covariant governing the classification is the one with d � 4 = 2 indices, i.e.
K(�)IJ . It has components

K(�)IJ =

 
[A�]

i
j [B�]i0j

[C�]
ij0 �[A�]j

0

i0

!
, (3.20)

where
[A�]

i
k = (�, pink�) = 2xiayak �

✓
1

2
Tr(xy) + ⌘⇠

◆
�ik,

[B�]jk = (�, njnk�) =
1

4
xabxcd✏abcdjk � 2⇠yjk,

[C�]
il = (�, pipl�) =

1

4
yabycd✏

abcdil � 2⌘xil.

(3.21)

Notice that K(�)IJ , being a two index antisymmetric covariant (recall that
(�,�) = 0 due to the antisymmetry of the product in d = 6), is an element
of the Lie algebra of Spin(V ). For this reason, the map |�i 7! K(�)IJ is
sometimes refered to as the moment map. An easy calculation shows that
we have a non-trivial quartic invariant

q
even

(�) =
1

12
K(�)IJK(�)J I

=

✓
⌘⇠ +

1

2
Tr(yx)

◆
2

+ 4⌘Pf(x) + 4⇠Pf(y)� 1

2

�
(Tr(yx))2 � 2Tr(yxyx)

�
,

(3.22)
where we have introduced the Pfaffian of an antisymmetric matrix Pf(x) =
1

3!2

3

✏abcdefxabxcdxef .
It turns out [35] that there are four distinct orbits of the extended SLOCC

group �
0

. These are closely related to SLOCC classes of three qubits, as we
will soon see. Because of this reason, we call the classes separable, bisep-
arable, W and GHZ. Compared to three qubits, the difference is that there
is only one orbit in the biseparable class2. We can list representatives from
all of the classes. Consider a state parametrized by four complex numbers
a, b, c, d defined by

⌘ = 0, y =

0BBBBBB@

0 a 0 0 0 0
�a 0 0 0 0 0
0 0 0 b 0 0
0 0 �b 0 0 0
0 0 0 0 0 c
0 0 0 0 �c 0

1CCCCCCA , x = 0, ⇠ = d. (3.23)

2We will later see that the reason for this is that we can embedd three qubits in a system
of three fermions. The SLOCC group of this system contains the permutation of qubits as
well, hence there is no distinction between the biseparable classes.
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For these states we have 1

12

K(�)IJK(�)J I = 4⇠Pf(x) = 4abcd. The values
of the four parameters for the different classes can be found in table 3.1. The
structure of the classes can be seen on figure 3.1.

Class rank K(�)IJ K(�)IJK(�)J I Null( ) a b c d

GHZ 12 6= 0 0 1 1 1 1
W 6 0 0 1 1 1 0

Bisep 2 0 2 1 1 0 0
Sep 0 0 6 1 0 0 0
Null 0 0 12 0 0 0 0

TABLE 3.1: Separation of the orbits of F± using the covari-
ant K(�)IJ , canonical forms for F+ and nullity (2.82) in six

dimensions. The parametrization is given in (3.23).

Sep

Bisep

W GHZ

FIGURE 3.1: Extended SLOCC classes for fermions with six
single particle modes. An arrow points from class A to class
B if there is a degenerate SLOCC transformation turning a

state in A to a state in B.

Let us move on to the odd particle subspace, F�. A general state can be
parametrized as

| i = uap
a|0i+ 1

3!
Pabcp

abc|0i+ 1

5!
wl✏labcdep

abcde|0i, (3.24)

where u and w are six dimensional complex vectors and P is a rank 3 anti-
symmetric tensor. The components of the covariant (3.20) read as

[A�]
i
k = 2wiuk � (KP )

i
k � waua�

i
k,

[B�]jk = 2Pakjw
a,

[C�]
il =

2

3!
uaPbcd✏

ilbcda,

(3.25)

where we have defined the matrix

(KP )
i
k =

1

3!2!
PkabPcde✏

iabcde, (3.26)
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which, as we will see, is important in the ordinary SLOCC classification of
the three particle subspace. The nontrivial quartic invariant is

q
odd

( ) =
1

12
K( )IJK( )J I = (wiui)

2 � 2

3
wiuj(KP )

j
i +

1

6
TrK2

P . (3.27)

The orbits under �
0

are in one to one correspondence with the case of F+

and the ranks of K( )IJ are the same as well. Hence, table 3.1 and figure
3.1 applies to this case as well.

It is clear that K(�)IJ defines an element of the Lie algebra so(12,C) as
TrK(�) = 0 both in the even and the odd particle case. The corresponding
generator can be represented on the Fock space as (K�)⇤ = 1

2

(K(�))IJ [e
J , eI ],

see (2.15). One can prove with explicit calculations that the states

|'i =

0@1 +
1q

q
even/odd(�)

(K�)⇤

1A |�i,

|'̄i =

0@1� 1q
q
even/odd(�)

(K�)⇤

1A |�i,

(3.28)

are both pure spinors for all |�i 2 F± in the respective GHZ class. Moreover,
they have a vanishing Mukai pairing: (', '̄) = 0. This gives a canonical
decomposition of a GHZ state |�i as a sum of two pure spinors:

|�i = |'i+ |'̄i
2

, (3.29)

so we see, as a byproduct, that the pure index of this class, defined in (2.83),
is 2. Finally, notice that the dual state

|�̂i = |'i � |'̄i
2i

= �i 1q
q
even/odd(�)

(K�)⇤|�i, (3.30)

transforms exactly the same way under the extended SLOCC group C

⇥ ⇥
Spin(12,C) as |�i. Indeed, the factors of the Clifford norm ↵g coming from
(K�)⇤ and 1p

q
even/odd(�)

cancel each other, see sec. 2.4.2. The extra factor of

�i is just a convention for now, we have inserted it in for later convencience.

3.4.2 SLOCC classification

There are two inequivalent nontrivial setups for six modes. One of them
is the case of two particles, this is identical through particle-hole duality
to the four particle case. The other is the case of three particles, which is
the smallest setup with genuine tripartite entanglement. There are many
interesting features of this latter case which is lately dubbed in the literature
as the Borland-Dennis setup.

Let us briefly discuss the simpler case of two particles. In the notation
of (3.19), we have ⇠ = ⌘ = 0 along with xab = 0. The ordinary SLOCC
classes are resolved by the rank of the coefficient matrix yab, which can be
2 (separable), 4 or 6. The single SLOCC invariant, as always in the case of
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two particles with an even number of modes, is the Pfaffian of y i.e.

Pf(y) =
1

3!23
✏abcdefyabycdyef . (3.31)

Now we move on to the case of three fermions[20]. The states of interest
are obtained by setting u = v = 0 in (3.24)

|P i = 1

3!
Pabcp

abc|0i. (3.32)

The 12 ⇥ 12 matrix K(P )IJ reduces to the direct sum of the 6 ⇥ 6 matrix
(KP )

i
j (see (3.26)) with minus its transpose. Its rank is therefore rankK(P )IJ =

2 ·rankKP and the claim is that rankKP is enought to resolve all the SLOCC
classes, namely if rankKP = 6, 3, 1, or 0 then | 

0

i belongs to the GHZ, W,
biseparable or separable class respectively[20, P.3], see table 3.2. We may
give representatives of each orbit in the following way

|P
0

i = ↵p123|0i+ �p145|0i+ �p246|0i+ �p356|0i. (3.33)

It follows that the SLOCC classes of three fermions with six single particle
states and the extended SLOCC classes of fermions with six modes are in
one to one correspondence with each other. The quartic invariant reads as

D(P ) =
1

12
K(P )IJK(P )J I =

1

6
TrK2

P , (3.34)

which is just the usual quartic invariant of three fermions with six single
particle states[20].

Class ↵ � � � rank KP TrK2

P

GHZ 6= 0 6= 0 6= 0 6= 0 6 6= 0
W 6= 0 6= 0 6= 0 = 0 3 0

Bisep 6= 0 6= 0 = 0 = 0 1 0
Sep 6= 0 = 0 = 0 = 0 0 0
Null = 0 = 0 = 0 = 0 0 0

TABLE 3.2: Separation of the orbits of ^3C6 under SLOCC
using the matrix KP . The parameters of the canonical form

(3.33) are listed as well.

We note one additional feature of the matrix KP which will be useful
later. By using the canonical form (3.33) it is easy to see that

K2

P = D(P )I, (3.35)

which, by covariance, is true for all states. It follows that KP is nilpo-
tent when |P i is not from the GHZ orbit. It has three Jordan blocks for
W class states, and two for biseparable states. For GHZ states, it has two
eigenspaces, each of dimension 3, with eigenvalues ±

p
D(P ). Let us de-

note the single particle creation/annihilation operators diagonalizing KP

with p↵± and n↵,±, ↵ = 1, 2, 3, i.e.

(P, p↵±n�,±P ) = ⌥
p
D(P )�↵� . (3.36)
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Now consider the product states

|⌦abci = p1ap
2

bp
3

c |0i, a, b, c = ±, (3.37)

which form a natural basis of three particle states corresponding to the
eigenmodes of KP for a GHZ state |P i. They are clearly orthogonal with
respect to the Mukai pairing: (⌦

+++

,⌦���) = 0. Now consider the gen-
erator (KP )⇤ = (KP )

a
bp

bna which is a special case of (2.15). We have the
identities  

1 +
1p
D(P )

(KP )⇤

!
|P i = |⌦

+++

i, 
1� 1p

D(P )
(KP )⇤

!
|P i = |⌦���i,

(3.38)

which are then the special cases of (3.28) for three particle states as the |⌦abci
are all separable. The easiest way to directly prove these identities is to
explicitly prove them for the GHZ state |P i = (p123 + p456)|0i and then use
that every GHZ state is on the same GL(6,C) orbit. This is then also a proof
of (3.28) by the same reasoning, just with the group �

0

replacing GL(6,C).
The projectors (1± 1p

D(P )

(KP )⇤) give the canonical decomposition of GHZ

states in terms of a pair of Slater determinants.

3.4.3 Ways of embedding three qubits

Using the construction described in section 2.4.5 we may embed three qubit
states

P
1

i,j,k=0

 ijk|ijki into the system of three fermions with six modes as

| i 7! |P i =
1X

i,j,k=0

 ijkp
3i+1p3j+2p3k+3|0i. (3.39)

Note that this map differs from (2.92) by a permutation of the fermionic
indices (1, 2, 3, 4, 5, 6) 7! (1, 4, 2, 5, 3, 6). This difference has no physical sig-
nificance but it gives an intuitively more clear presentation after we relabel
the indices (4, 5, 6) to (1̄, 2̄, 3̄) respectively. The mapping between the first
few basis states is

|000i $ p1p2p3|0i, |001i $ p1p2p
¯

3|0i,
|011i $ p1p

¯

2p
¯

3|0i, etc.,
(3.40)

i.e. indices 1 and 1̄ correspond to the first qubit being 0 or 1. This embed-
ding has the remarkable property that it intersects all the fermionic SLOCC
orbits and the three qubit SLOCC classes are basically identical3 with the
fermionic ones of table 3.1. The quartic invariant D(P ) reduces to the hy-
perdeterminant (1.24) of the 2⇥ 2⇥ 2 array  ijk:

D(P ) = HDet( ), (3.41)

3The single biseparable class of the fermionic system splits into three different classes
of the qubit system: the A(BC), B(AC) and C(AB) biseparable classes. These are iden-
tified under the permutation of qubits. Precisely, there is a one-to-one map between the
fermionic SLOCC classes and the orbits of GL(2,C)⇥3

o S
3

on three qubits, where S
3

is the
permutation group of three elements.
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This embedding posesses the simple single occupancy node picture of sec-
tion 2.4.5. However, we have also seen there that it is possible to construct
more exotic embeddings. As an example let us consider the embedding into
the 8 dimensional subspace of double occupancy states[P.2, 44]. This can be
obtained from the single occupancy embedding by composing it with an
intertwiner between F+ and F� as discussed in 2.4.4. The relevant inter-
twiner can be constructed from the Majorana basis

�j = pj + nj , �j+d =
pj � nj

i
, (3.42)

of V . Consider the state

�
1

�
2

�
3

|P i = ⌘ |0i+
1

2!
(y )abp

ab|0i+ 1

2!4!
xab ✏abcdefp

cdef |0i

+
1

6!
⇠ ✏abcdefp

abcdef |0i 2 F+.
(3.43)

with the qubit amplitudes sitting in the coefficients as

⌘ =  
000

, y =

0BBBBBB@

0 0 0  
100

0 0
0 0 0 0  

010

0
0 0 0 0 0  

001

� 
100

0 0 0 0 0
0 � 

010

0 0 0 0
0 0 � 

001

0 0 0

1CCCCCCA ,

⇠ = � 
111

, x =

0BBBBBB@

0 0 0 � 
011

0 0
0 0 0 0 � 

101

0
0 0 0 0 0 � 

110

 
011

0 0 0 0 0
0  

101

0 0 0 0
0 0  

110

0 0 0

1CCCCCCA .

(3.44)
As we have described in 2.4.5, the conventional embedding of three qubits
(3.39) gives the single occupancy states in a fermions on a lattice picture,
where single particle states (1, 1̄) are the internal states associated to the
first node, (2, 2̄) are associated to the second node and finally (3, 3̄) are as-
sociated to the third node. On the other hand when the embedding is made
into the even particle Fock space as in (3.43) the correspondence between
states reads as

|000i $ |0i, |001i $ [p3p
¯

3]|0i,
|011i $ [p2p

¯

2][p3p
¯

3]|0i, etc.
(3.45)

This shows that the three qubit states are mapped to the double occupancy
states of the even particle number Fock space. Schematically, the states cor-
respond to each other in the following way

|000i  ! " " "  !
|001i  ! " " #  ! "#
|011i  ! " # #  ! "# "#

. (3.46)
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There are also other, mixed occupancy ways to embedd a three qubit sys-
tem in F . Let us denote with F000 the eight dimensional subspace of F�

spanned by the single occupancy state (3.39). Now let us define seven other
eight dimensional subspaces by intertwining with half of the Majorana op-
erators of (3.42)

Fµ
1

µ
2

µ
3 = �µ1

1

�µ2

2

�µ3

3

F000, µ
1

, µ
2

, µ
3

2 {0, 1}. (3.47)

It is clear that the previously discussed double occupancy state spans F111.
The other spaces correspond to states where a node having 0 is in a single
occupancy, while a node having 1 is in a double occupancy state, i.e. F001

means that the first two nodes have single and the last one has double oc-
cupancy. It can be shown[44] that this way the whole Fock space can be
generated:

F = F��F+ = (F000�F011�F101�F110)� (F001�F010�F100�F111),
(3.48)

i.e. one may think about the fermionic Fock space F as describing the tri-
partite entanglement of six qubits, a term first appeared in the context of the
black hole/qubit correspondence. Indeed, we have two types of qubits, a
single and a double occupancy for each node, which adds up to six.

3.4.4 Monogamy and three tangle for three fermions

As we have already mentioned, the system of three fermions with six single
particle states mimics very closely the system of three qubits. In particu-
lar, measures for genuine two- and threebody entanglement can be identi-
fied and they satisfy the same monogamy equations as in the case of three
qubits[P.4].

At the heart of this seemingly surprising analogy is the following ob-
servation. The one particle reduced density matrix of (3.32) reads as (see
(2.34))

⇢i
j =

1

2
PinmP̄ jnm. (3.49)

This is a covariant quantity under local unitary transformations (correspond-
ing to invertible LOCC) but not under local invertible transformations (cor-
responding to invertible SLOCC). Note that we have adopted the conven-
tion that a complex conjugation raises an index, however indices contracted
this way only stay invariant under unitary transformations and not SLOCC
transformations. Note also that we have adopted Löwdin normalization[47]:
Tr⇢ = 3||P ||2. The eigenvalues �i, i = 1...6 of ⇢ are unitary invariants and
they are not all independent, even for a generic normalized state. The clas-
sical result of Borland and Dennis[48] is that these eigenvalues satisfy the
(in)equalities:

�
1

+ �
6

= 1, �
2

+ �
5

= 1,

�
3

+ �
4

= 1, �
5

+ �
6

� �
4

,
(3.50)

where the eigenvalues are ordered as �
1

� �
2

� ... � �
6

. The first three
equations are relevant with respect to the relationship of the system to the
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one of three qubits. They show that occupancy of natural orbitals4 is pair-
wise linked: the largest and the smallest occupancy always add up to one
etc. When the eigenvalues of the one particle RDM satisfy extra equations
in addition to Tr⇢ = 3, we say that the state in question is pinned. As we will
later explain in section 3.8.1, pinning of eigenvalues leads to selection rules
for the amplitudes of the state in the basis of natural orbitals. In the present
case, this implies that any state in this basis can have at most 8 nonzero
amplitudes and hence all states are local unitary equivalent to three qubit
states of the form (3.39).

A remarkable consequence is that it is possible to express the (tangles)
of three qubits with local unitary invariants of the fermionic system. There-
fore, two and three body entanglement can be quantified for any 3 fermion
state.

As a first step, recall that the matrix KP transforms under an invertible
SLOCC transformation G 2 GL(6,C) (see (2.42)) as

KP 7! (detG)(GT )�1KPG
T . (3.51)

If we restrict ourselves to local unitary transformations we have G 2 U(6)

and then both KP and K†
P transform the same way: they can be multiplied

in a local unitary invariant way. Now one can confirm with explicit calcu-
lation the identity

4⇢(I � ⇢) = (TrKPK
†
P )I � {KP ,K

†
P }. (3.52)

The eigenvalues µi of the l.h.s. are µi = 4�i(1 � �i) and they are pairwise
degenerate as a consequence of the Borland-Dennis relations (3.50). Now
define the concurrence matrix

C = i(e�i'/2KP � ei'/2K†
P ), (3.53)

where ' is the phase of D(P ) = 1

6

TrK2

P . We see that C† = C and hence
C is a diagonalizable matrix with real eigenvalues. It is straightforward to
calculate

C2 = {KP ,K
†
P }� 2|D(P )|I = (TrKPK

†
P � 2|D(P )|)I � 4⇢(I � ⇢), (3.54)

where we have made use of (3.52). Hence the eigenvalues ⇠i of C satisfy

⇠2i =
1

2

3X
j=1

µj � 2|D(P )|� µi, (3.55)

or written out
⇠2
1

=
1

2
(�µ

1

+ µ
2

+ µ
3

)� 2|D(P )|,

⇠2
2

=
1

2
(µ

1

� µ
2

+ µ
3

)� 2|D(P )|,

⇠2
3

=
1

2
(µ

1

+ µ
2

� µ
3

)� 2|D(P )|,

(3.56)

4Natural orbitals are the eigenstates of the one particle RDM.
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Solving for µi gives

µ
1

⌘ 4�
1

(1� �
1

) = ⇠2
2

+ ⇠2
3

+ 4|D(P )|,
µ
2

⌘ 4�
2

(1� �
2

) = ⇠2
1

+ ⇠2
3

+ 4|D(P )|,
µ
3

⌘ 4�
3

(1� �
3

) = ⇠2
1

+ ⇠2
2

+ 4|D(P )|.
(3.57)

These are precisely the CKW equations for three qubits corresponding to
the Borland-Dennis tripartitioning of the natural orbitals with the identi-
fication with the tangles being ⌧ABC = 4|D(P )|, ⌧A(BC)

= µ
1

, ⌧AB = ⇠2
2

,
⌧AC = ⇠2

3

and so on. One can check this explicitly for the embedding (3.39).
On the other hand, µi and ⇠i are well defined, local unitary invariants for any
fermionic pure state and they quantify the entanglement of a single parti-
cle with the rest of the system and the amount of two-body entanglement
respectively, as we will describe in the next subsection. Before doing this,
let us emphasize how these fermionic CKW equations, and hence the three
qubit CKW equations which directly follow from them, fit into the general
spinor picture. Notice that equation (3.52) is just a special case of (2.130)
with A = panb and B = pbnc and a sum over b. It follows that (3.52) is
nothing else than a spinorial Fierz identity between bilinears of the state and
its conjugate.

3.4.5 Entanglement entropy and entanglement of formation

First of all, it is clear that the invariants µi = 4�i(1 � �i) are sufficient to
express the entanglement entropy of the single particle RDM ⇢. Indeed,
from (3.50) and (3.52) one has

S(⇢) ⌘ �Tr⇢ log ⇢ =

3X
i=1

h

✓
1

2

⇣
1 +

p
1� µi

⌘◆
, (3.58)

where the binary entropy function h is defined by5

h(x) = � (x log x+ (1� x) log(1� x)) , (3.59)

where the 1/3 factors appear to restore the probability normalization of the
eigenvalues from the Tr⇢ = 3 normalization. This shows that the µi in-
variants quantify the entanglement of a single particle with the rest of the
system.

Now we move on to quantify two-body entanglement, which requires
a measure of entanglement for mixed states. We will rely on the previously
introduced entanglement of formation, as it has a clear operational mean-
ing. We will give an upper bound for this quantity in terms of the 3 qubit
concurrences ⇠i and discuss its consequences. Recall, that the entanglement
of formation is the convex roof of the entanglement entropy

E(⇢(2)) = min
⇢(2)=

P
i pi|EiihEi|

X
i

piS(|EiihEi|), (3.60)

5Note that we use the Tr⇢ = 3 normalization so that this quantity is not the entropy of a
probability distribution. The properly normalized quantity would be �Tr ⇢

3

log

⇢
3

. However,
the minimal value of this quantity is log 3 due to the fermionic nature of the system. It is
common to remove this shift of log 3 and multiply by 3 which results in the S(⇢) we use.
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where ⇢(2) is the two-body RDM, in this case it has matrix elements

(⇢(2))ij
kl
=

1

2
PijmP̄ klm. (3.61)

Before proceeding to discuss the entanglement of formation, let us mention
some properties of ⇢(2).

• It is clear that the map ⇢(2) : ^2C6 ! ^2C6 can be written as 1

2

P �
P †, where P : C6 ! ^2C6 is the map taking the vector vi to Pijkvk.
From this, one readily sees that the maximal rank of ⇢(2) is 6. The
reason why this is interesting is that ⇢(2) effectively works on a

�
4

2

�
= 6

dimensional subspace, i.e. a mixed state of two fermions with four
single particle states. As we have seen, this is the natural fermionic
system to incorporate two qubit entanglement.

• The six eigenvectors (corresponding to nonzero eigenvalues) of ⇢(2)
can be written as Pijkēk

(n), where {ēk
(n)}6n=1

are the eigenvectors of
the conjugate of the one particle RDM ⇢ij . They have eigenvalues
�n which are the same as the eigenvalues of ⇢ij . It follows that the
(nonzero part of the) spectrum of the one body and the two body
density matrices agree. Recall a similar well-known fact: for a bipar-
tite system the reduced density matrices of the two subsystems have
the same non-zero eigenvalues[24]. This is also well-known to be true
for a composite sytem of two fermions[42]. In our case one can think
of dividing the system of three fermions into the "bipartite" system of
one fermion entangled with two fermions. In this case the non-zero
eigenvalues of the reduced density matrices agree as one expects. This
observation trivialy generalizes to N fermions: the non-zero eigenval-
ues of the k particle and the N � k particle RDMs agree in general.

Now let us move on to give the promised upper bound to the entanglement
of formation E(⇢(2)). It is clear that E(⇢(2)) is invariant under local unitary
transformations. But the selection rules implied by (3.50) ensure that all
states can be brought to the form (3.39) by means of a local unitary trans-
formation. The two particle reduced density matrix of this state has matrix
elements

⇢(2)
12

12

=
1

2
⇢AB
00|00, ⇢(2)

12

1

¯

2

=
1

2
⇢AB
00|01, ⇢(2)

12

¯

1

¯

2

=
1

2
⇢AB
00|11,

⇢(2)
1

¯

2

12

=
1

2
⇢AB
01|00, · · · , ⇢(2)

¯

1

¯

2

¯

1

¯

2

=
1

2
⇢AB
11|11,

⇢(2)
13

13

=
1

2
⇢AC
00|00, · · · , ⇢(2)

¯

1

¯

3

¯

1

¯

3

=
1

2
⇢AC
11|11,

(3.62)

and so on. Here, ⇢AB
ij|kl, etc. are the two qubit reduced density matrixes of

the state
P

1

i,j,k=0

 ijk|ijki. One observes the scheme that the indices 1, 2, 3
correspond to qubits A,B,C respectively. Cases where index pairs contain

the same number multiple times like ⇢(2)
2

¯

2

12

or where the lower and upper

indices contain different numbers like ⇢(2)
12

13

give zero. Indices without a
bar correspond to the corresponding qubit in |0i state while with a bar to
the qubit in |1i state. Therefore, ⇢(2) for the state (3.39) is just the diagonal
direct sum of the two qubit RDMs. As such, we may consider its convex
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decomposition into pure states which consists of the direct sum of the opti-
mal decompositions of the two qubit density matrices. In this decomposition,
its average entanglement entropy is just E(⇢AB) + E(⇢AC) + E(⇢BC), i.e. the
sum of the entanglement of formations for each two qubit RDM. The opti-
mal decomposition for the fermionic RDM must be at least this good, hence
we have

E(⇢(2))  E(⇢AB) + E(⇢AC) + E(⇢BC). (3.63)

The right hand side can be expressed with the qubit squared concurrences
⇠i and hence

E(⇢(2)) 
3X

i=1

h(
1

2

✓
1 +

q
1� ⇠2i

◆
), (3.64)

where we remind the reader that ⇠i are eigenvalues of the matrix (3.53) and
hence are well defined for any 3-fermion state. Although a proof is not
yet available, the author believes that this bound is actually an equality.
Regardless of weather this is true, an immediate consequence of this bound
is that when all ⇠i = 0, i.e. the concurrence matrix C of (3.53) is zero, the
entanglement of formation vanishes and hence the three fermion state |P i
does not contain bipartite entanglement. In this case the two body RDM
⇢(2) is a convex combination of separable states. A remarkable property of
multipartite systems is that separability of the whole state does not follow
from this. Indeed, we may ensure ⇠i = 0 by demanding the vanishing of
the quantity

TrC2 = 2TrKPK
†
P � 6|D(P )|, (3.65)

which can happen in the GHZ class! We will call states for which 2TrKPK
†
P =

6|D(P )| states with vanishing concurrence. In this case, all entanglement is
in the form of tripartite entanglement, which is measured by the quantity
4|D(P )|, as readily seen from the monogamy equations (3.57).

3.4.6 Conjugation and the Wootters spin-flip

Now that we understand how to describe three qubits as the single occu-
pancy states of fermions with six modes, we are in position to discuss again
the somewhat arbitrary quantity, the spin-flipped density matrix of (1.12)
required to calculate the two qubit concurrence. We have seen in section
3.2.3. that this quantity is naturally related to the transposition (2.5) of the
Clifford algebra with four modes. In the present situation, we are required
to take a partial trace of the fermionic density matrix |P ihP |. It is not dif-
ficult to see that the spin-flip can be obtained by taking the partial trace of
the conjugate state |P̃ i of |P i under the conjugation introducied in (2.96).
Supposing that the amplitudes Pabc correspond to a h.|.i-orthonormal basis,
the amplitudes of |P̃ i are easily found to be

P̃ijk =
1

3!
✏ijklmnP̄

lmn. (3.66)
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For the embedded three qubit state |P i, the dual |P̃ i can be obtained with
the embedding (3.39) from the dual three qubit state | ̃i with coefficients:

 ̃ijk =

1X
i0j0k0=0

"ii0"jj0"kk0 ̄i0j0k0 , (3.67)

It is straightforward to see that the spin-flipped density matrix (1.12) for
pure three qubit states is just the two particle RDM of qubits A and B for
the dual three qubit state | ̃i.

3.5 Seven modes

3.5.1 Extended SLOCC classification

The single particle space is now H = C

7 and the spaces F±, with fixed
parity, are 64 dimensional. The relevant bilinear is the one with d � 4 = 3
indices

K( )IJK = ( , eIeJeK ). (3.68)

Notice that as eIeJ = �eJeI + gIJI , K( )IJK is totally antisymmetric in its
indices in any basis not just the Majorana basis. It is useful to think about
these covariants giving rise to the linear map

M : V ! so(V )

v = vIeI 7! T (v) =
�
K( )IJ

KvK
�1
4
[eI , eJ ],

(3.69)

where, as usual, indices are raised by gIJ . It is clear that this linear map
has an invariant rank under the action of the extended SLOCC group as
Tg (v) = ↵�1

g g�1T (Ogv)g for every g 2 �
0

. It is then natural to introduce
and endomorphism of V which is just the map composed with its transpo-
sition6

L = MT
 �M . (3.70)

This also has a �
0

invariant rank. The matrix of L reads as

(L )
I
J =

1

4
( , eIeKeL )( , eJe

KeL ), (3.71)

Moreover, we have a relative invariant

I
8

( ) = TrL2

 , (3.72)

which is a homogeneous function of order 8 of | i.
Let us be more explicit, and work out the bilinears K( )IJK for the odd

particle subspace F�. Formulae for F+ can be obtained from these in a
trivial manner by dualizing every odd index amplitude with ✏a

1

...a
7

. We
6The transposition here is with respect to the inner product (2.2) on V and the Killing

form on so(V ).
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parametrize a state as

| i = uap
a|0i+ 1

3!
Pabcp

abc|0i+ 1

2!5!
Qab✏abcdefgp

cdefg|0i

+
1

7!
⇠✏abcdefgp

abcdefg|0i.
(3.73)

Then the explicit form of the bilinears ( , eIeJeK ) are:

( , nanbnc ) =
1

4
QpqQnm✏pqnmcba � 2⇠Pcba,

( , panbnc ) = ⇠(uc�
a
b � ub�

a
c )�

1

2
Qpq(Ppqc�

a
b � Ppqb�

a
c )� 2QapPbcp,

( , papbnc ) = ud(�
b
cQ

da � �acQbd)� (MP)abc +Qabuc,

( , papbpc ) =
2

3!
Pdefup✏

abcdefp.

(3.74)
Here we introduced the notation

(MP)abc =
1

2!3!
✏abpqijkPcpqPijk. (3.75)

This is a covariant important for the ordinary SLOCC classification of the
three particle subspace, as we will see.

It is useful to introduce the seven parameter family of states

| 
0

i =
�
�
1

p123 + �
2

p145 + �
3

p167 + �
4

p246 + �
5

p257 + �
6

p347 + �
7

p356

+ p1234567
�
|0i.

(3.76)
which intersects every �

0

orbit. The orbit structure was found by Popov[49]
and is listed in table 3.3 along with the invariants sufficient to resolve them.
Notice that in addition to the bilinears K( )IJK we need the nullity of (2.82)
to resolve the classes. There is a lone orbit for which I

8

( ) is nonzero: the
orbit IX in 3.3. For the state (3.76) we have

I
8

( 
0

) = 29327 · �
1

�
2

�
3

�
4

�
5

�
6

�
7

. (3.77)

Name �
1

�
2

�
3

�
4

�
5

�
6

�
7

rank L 
0

rank M 
0

Null( 
0

)
IX 1 1 1 1 1 1 1 14 14 0

VIII 1 1 1 1 1 1 0 7 14 0
VII 1 1 1 1 1 0 0 3 14 0
VI 1 1 1 1 0 0 0 1 13 0
V 1 1 1 0 0 0 0 1 13 1
IV 1 1 0 1 0 0 0 0 10 0
III 1 1 0 0 0 0 0 0 7 1
II 1 0 0 0 0 0 0 0 3 3
I 0 0 0 0 0 0 0 0 0 7

TABLE 3.3: Extended SLOCC classes for d = 7, their canon-
ical forms and the invariants resolving them.

The hierarchy of the classes can be seen on figure 3.2.
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I

II

III

IV

V

VI VII VIII IX

FIGURE 3.2: Extended SLOCC classes for fermions with
seven single particle modes. An arrow points from class
A to class B if all the ranks of class B are smaller than those

of class A.

3.5.2 SLOCC classification

Again, there are two cases when nontrivial entanglement can occur for fixed
particle number. We can consider two particles (which is dual to five) and
three particles (which is dual to four). The two particle SLOCC classes7, as
usual, are given by the rank of the antisymmetric coefficient matrix, which
can be 0,2,4 and 6.

The interesting case is again the one of three particles[P.1, P.3]. As in
the case of six modes, we can deduce the relevant covariants from the ones
introduced to resolve the extended SLOCC classes. In order to do this, first
consider the state

| i = 1

3!
Pabcp

abc|0i+ 1

7!
⇠✏abcdefgp

abcdefg|0i, (3.78)

which is the three particle state we wish to consider, deformed by the top
form. From (3.74) it is easy to see that the only non-vanishing component
of the bilinear K( )IJK is ( , papbnc ) = �(MP)abc, given by (3.75), and
( , nanbnc ) = �2⇠Pabc. It is clear that these are covariants themselves
when only the action of the ordinary SLOCC group GL(7,C) is considered.
The other important quantity can be extracted from L , which for this state
has components

(L )
ab = �1

2
LPab,

(L )ab = �⇠NPab,

(L )
a
b = (L )b

a = 0,

(3.79)

where we have introduced the 7⇥ 7 matrices

LPab = MPac
dMP bd

c,

NPab =
1

2
MPpq

bPapq,
(3.80)

which are themselves covariants under the ordinary SLOCC group GL(7,C).
The covariants (MP)abc, LPab and NPab depend only on the amplitudes
Pabc of the three particle part and hence we may use them to characterize

7After dualization, this corresponds to keeping only the matrix Qab in (3.73).
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the SLOCC orbits of the state

|Pi = 1

3!
Pabcp

abc|0i. (3.81)

The single relative invariant of the action of the SLOCC group can be writ-
ten as

J
7

(P) =
1

24327
Tr(LPNP) = (detNP)

1

3 , (3.82)

which is a homogeneous function of degree 7 of the amplitudes. We also
have the relation

LPacNP cb =
1

243272
J
7

(P)�ab. (3.83)

Note that the degree 8 extended SLOCC invariant for the state (3.78) can be
expressed with this as

I
8

( ) = 2(L )
ab(L )ab = ⇠Tr(LPNP) = 24327 · ⇠J

7

(P). (3.84)

The orbit structure of ^3C7 can be found in the mathematical literature[50,
51]. There are a couple of intuitive ways to present representatives in each
class. For the first one, it is convenient to introduce a complex basis in the
one particle Hilbert space8

q1,2,3 = p1,2,3 + ip4,5,6, q
¯

1,¯2,¯3 = p1,2,3 � ip4,5,6, q7 = ip7 (3.85)

and let us denote the three particle Slater determinants with the shorthand

|Eabci ⌘ qaqbqc|0i. (3.86)

Now consider the states

|SEPi = |E123i
|BISEPi = |E1i ^ (|E23i+ |E¯

2

¯

3i)
|Wi = |E12

¯

3i+ |E1

¯

23i+ |E¯

123i
|GHZi = |E123i+ |E¯

1

¯

2

¯

3i
|Sympl

3

i = (|E1

¯

1i+ |E2

¯

2i+ |E3

¯

3i) ^ |E7i
|Sympl

3

/SEPi = (|E1

¯

1i+ |E2

¯

2i+ |E3

¯

3i) ^ |E7i+ |E123i
|Sympl

3

/BISEPi = (|E1

¯

1i+ |E2

¯

2i+ |E3

¯

3i) ^ |E7i+ |E1i ^ (|E23i+ |E¯

2

¯

3i)
|Sympl

3

/Wi = (|E1

¯

1i+ |E2

¯

2i+ |E3

¯

3i) ^ |E7i+ |E12

¯

3i+ |E1

¯

23i+ |E¯

123i
|Sympl

3

/GHZi = (|E1

¯

1i+ |E2

¯

2i+ |E3

¯

3i) ^ |E7i+ |E123i+ |E¯

1

¯

2

¯

3i.
(3.87)

The origin of the name |Sympl
3

i is that a two particle state 1

2

!ijqiqj |0i is
given by an antisymmetric matrix !ij which in turn defines a symplectic
form in six dimensions (i, j runs from 1 to 6 now). In |Sympl

3

i the !ij is in
the normal form for a rank 3 symplectic matrix. In table 3.4 we summarize
the SLOCC orbits and label them by the above representatives. We also
give their resolution in terms of the above introduced covariants. There is
a single orbit, labeled by the state |Sympl

3

/GHZi, where the invariant J
7

is
8For now, this is just a fancy way of changing the indices 4, 5, 6 to ¯

1, ¯2, ¯3. The relations
will be important to relate to the second type of presentation.
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nonzero. This is the dense orbit.

Representative rank NP rank MP Extended SLOCC class
|SEPi 0 0 I

|BISEPi 0 1 II
|Wi 0 3 III

|GHZi 0 6 V
|Sympl

3

i 1 1 III
|Sympl

3

/SEPi 1 4 VI
|Sympl

3

/BISEPi 2 6 VI
|Sympl

3

/Wi 4 7 VII
|Sympl

3

/GHZi 7 7 VIII

TABLE 3.4: Entanglement classes of three fermions with
seven single particle states, the ranks resolving them and
their extended SLOCC class, when considered as states in
F� (see table 3.3). Notice that no orbits are inside the dense
extended SLOCC orbit IX. Also, there are states (like |Wi
and |Sympl3i) which can be converted into each other using

extended SLOCC but not ordinary SLOCC.

The other way of writing representatives for these classes is to reexpress
them in terms of the pa modes through (3.85). This is clearly just a SLOCC
transformation, hence the class of the states does not change. For example,
for the representative of the dense orbit, we have

|Sympl
3

/GHZi = 2(p123 � p156 + p246 � p345 + p147 + p257 + p367)|0i. (3.88)

The structure of this state is encoded in the incidence structure of the lines
of the oriented Fano plane which is also encoding the multiplication table
of the octonions. Motivated by this, the way we associate a graphical repre-
sentative to a state is the following. We draw seven nodes corresponding to
the seven single particle states and represent a Slater determinant by draw-
ing an oriented line through three points, e.g. for p123|0i, we draw a line
going through nodes 1,2 and 3, with orientation pointing towards 3. A re-
verse orientation means a minus sign and multiple lines mean that we add
up the Slater determinants. With this dictionary in mind, we can represent
the states in table 3.4 as parts of the Fano plane, as depicted on figure 3.3.

Notice that the number of points which are part of at least two lines (i.e.
more than one lines intersect there) is just given by rankMP . Similarly, the
number of points which are part of at least three lines is given by rankNP .
Although an analysis to determine what kind of correlations the covariants
MP and NP and the invariant J

7

measure, similar to the one performed for
three fermions with six modes in section 3.4.4, has not yet been done, it is
tempting to think about MP as being connected to two body entanglement
and about NP as being connected to three body entanglement. Indeed, in
all the previously discussed cases, the bilinear invariant was directly con-
nected to two body separability, while for six single particle modes, the
quartic invariant measured three body entanglement. For seven single par-
ticle states, the natural quartic object is not a scalar but the matrix LP . The
previous observation about the ranks of these covariants seems to be very
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2
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7

IV: W III: Bisep II: Sep

FIGURE 3.3: Graphical representation of the SLOCC classes
of three fermions with seven single particle states.

Sep

Bisep

W GHZ

Sympl3

Sympl3êSep Sympl3êBisep Sympl3êW Sympl3êGHZ

FIGURE 3.4: SLOCC classes for three fermions with seven
single particle modes. An arrow points from class A to class
B if all the ranks of class B are smaller than those of class

A.

well in line with this intuition. The hierarchy of the classes under nonin-
vertibe SLOCC can be seen on figure 3.4.
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3.6 Eight modes

3.6.1 Extended SLOCC classification

In this case we have H = C

8 and the fixed parity Fock spaces F± are 128
dimensional. The relevant bilinear is the one with d� 4 = 4 indices i.e.

K( )IJKL = ( , eIeJeKeL ). (3.89)

We can equivalently write

K( )IJKL =
1

4
( , [eI , eJ ][eK , eL] ) +

1

4
gIJgKL( , ). (3.90)

The second term gives rise to a nonzero quadratic invariant ( , ). We can
think about the first term as a linear map

R : so(16)! so(16)

T = T IJ 1

4
[eI , eJ ] 7!

�1
4
( , [eI , eJ ][eK , eL] )T

KL
�1
4
[eI , eJ ],

(3.91)

where indices, as usual, are raised with gIJ . The map R has a �
0

invariant
rank, moreover, we have the relative invariants

I
2p = TrRp

 , (3.92)

with homogeneous degree 2p. Now in contrary to the cases discussed so far,
the pair (C⇥ ⇥ Spin

0

(16),^oddC8) is not a prehomogeneous vector space.
In fact, it can be shown that the algebra of polynomial invariants under
Spin

0

(16) is eight dimensional[52]. An algebraically independent set of in-
variants can be given as[44]

{I
2

, I
8

, I
12

, I
14

, I
18

, I
20

, I
24

, I
30

}. (3.93)

The basic observation behind finding the orbit decomposition is to notice
that one can write the Lie algebra of e

8

as a semisimple complex symmetric
space decomposition

e

8

= so

16

� ^evenC8, (3.94)

where [so
16

, so
16

] ✓ so

16

, [^evenC8,^evenC8] ✓ so

16

and [so
16

,^evenC8] ✓
^evenC8. This latter is just the action of the group on the even Fock space
that we are after. We refrain from listing the orbit structure explicitly, which
was identified [52]. Instead, we note some general features of the classifica-
tion which turn out to be important when we consider the subcases of four
fermions and four qubits. First, notice that as we may think of any state
| i as a Lie algebra element, | i admits a unique Jordan decomposition into
semisimple and nilpotent elements

| i = [| i]s + [| i]n, (3.95)

such that [| si, | ni] = 0. It is clear that this decomposition is invariant
under the adjoint action, hence, after exponentiation, we have g[| i]s =
[g| i]s and g[| i]n = [g| i]n for every g 2 Spin

0

(16) i.e. the semisimple
and nilpotent parts of a state transform independently. The entanglement
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classes can be grouped into families according to the type of their nilpotent
parts9. There is a single family with vanishing nilpotent part, the family
of semisimple states. It can be shown that this is also the collection of all
Zariski-closed orbits. It is very easy to resolve the extended SLOCC classes
within this family. The claim is that [52] the Spin

0

(16) orbits of semisim-
ple states are in one-to-one correspondence with the points of the affine
variety ^oddC8/Spin

0

(16) ⇠= C

8. Practically this means that two semisim-
ple states | 

1

i and | 
2

i are in the same Spin
0

(16) orbit iff all the invariants
(3.93) take the same values on them. It follows that they are in the same
extended SLOCC orbit if there exists a � nonzero complex number such
that I

2p( 1

) = �2pI
2p( 2

). A convenient representative of the family of
semisimple orbits was given in [44] and reads as

|Gi =
7X

↵=1

y↵|E↵i+ y
8

(1 + p12345678)|0i, (3.96)

where

|E
1

i = (p1234 + p5678)|0i, |E
2

i = (p1357 + p6824)|0i,
|E

3

i = (p1562 + p8437)|0i, |E
4

i = (p1683 + p4752)|0i,
|E

5

i = (p1845 + p7263)|0i, |E
6

i = (p1467 + p2358)|0i,
|E

7

i = (p1278 + p3456)|0i.

(3.97)

This way one can trade in the eight invariants of (3.93) to the eight param-
eters y↵ to parametrize the semisimple orbits.

This simple criterion is not true if there is a nilpotent part to the state. It
is not difficult to see that nilpotent states have the zero vector in the closure
of their Spin

0

(16) orbit. From this, it follows that the value of any continous
invariant is actually independent of the nilpotent part of a state.

Now we proceed with a short review of the ordinary SLOCC classifica-
tion and the systems connection to four qubits.

3.6.2 SLOCC classification

There are three different fixed particle subspace where nontrivial entangle-
ment can occur. The easiest one, as usual, is the one of two particles. In
this case the SLOCC classes are identified by the rank of the antisymmetric
coefficient matrix, as before. This can be 0,2,4,6 and 8. The other two cases
are the one of three fermions (dual to five) and the one of four fermions.
The former case corresponds to the pair (GL(8,C),^3C8) which is actu-
ally a prehomogeneous vector space, the last one for three fermions. As a
result, there is a single relative invariant and the orbit structure is qualita-
tively similar to the previously discussed d  7 cases. The latter case, four
fermions with eight single particle states, is the one which is directly related
to four qubits through single occupancy embedding.

9The classification of nilpotent orbits, and hence possible nilpotent parts, is done via the
Kostant-Sekiguchi correspondence, see e.g. [53].
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Three fermions

We consider the three fermion state

|P i = 1

3!
Pabcp

abc|0i. (3.98)

We can extract two covariants for the ordinary SLOCC group GL(8,C) from
K( )IJKL. The first just comes from (P, pa1pa2pa3nbP ):

(Ea
1

a
2

a
3)b =

1

12
✏a1a2a3i1i2i3i4i5Pbi

1

i
2

Pi
3

i
4

i
5

. (3.99)

For the second one, as in the case of seven modes, we need to be a little trick-
ier. The way to go is to add the seven particle state 1

7!

va1✏a
1

a
2

...a
8

pa2...a8 |0i
to (3.98) and consider the quartic covariant QIJ = K( )IKLMK( )J

KLM .
It will have non-vanishing elements for

Qa
b ⇠ vc (F a)bc , (3.100)

where we have introduced the degree three covariant of |P i

(F a)b
1

b
2

=
1

24
✏ai1i2i3i4i5i6i7Pb

1

i
1

i
2

Pb
2

i
3

i
4

Pi
5

i
6

i
7

. (3.101)

These two turn out to keep in hand the SLOCC orbits of this system, but
in order to separate the classes we need to introduce some compositons.
Define first the 8⇥ 8 symmetric matrix

Gab ⌘ (F c)ad

⇣
F d
⌘
bc
, (3.102)

which is of homogeneous degree six. Alternatively, we can define a degree
ten 8⇥ 8 symmetric matrix

Hab = (F a)ci

⇣
Eckl

⌘
j

⇣
F b
⌘
dk

⇣
Edij

⌘
l
. (3.103)

As mentioned previously, we have a single relative invariant which we can
now write as

I
16

(P ) = Tr(GH), (3.104)

and it has homogeneous degree 16. Finally, let us introduce the degree five
combination of E and F

(F • E)aklij ⌘ (F a)ci

⇣
Eckl

⌘
j
, (3.105)

which we need in addition to resolve all the SLOCC classes.
The orbit structure of^3C8 is available in the mathematical literature[51].

It turns out that in addition to the 9 classes of three fermions with seven sin-
gle particle states we have 13 more classes.

The entanglement classes and the corresponding ranks are shown in
TABLE 3.5. The representative states are encoded as

⇤ = ↵|E123i+ �|E567i+ �|E154i+ �|E264i+ ✏|E374i+ �|E278i+ µ|E368i,
(3.106)
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Name ↵ � � � ✏ � µ Rank G Rank F Rank E Rank F • E
XI 0 0 1 1 1 0 1 0 3 6 0
XII 0 1 1 1 1 0 1 0 4 7 0
XIII 1 1 1 0 0 0 1 0 4 8 0
XIV 1 1 1 1 0 0 1 0 5 8 1
XV 1 1 1 1 1 0 1 0 6 8 2
XVI 0 0 1 0 0 1 1 1 8 8 1
XVII 0 0 1 1 0 1 1 1 8 8 2
XVIII 0 1 1 1 0 1 1 1 8 8 4
XIX 0 0 1 1 1 0 1 2 8 8 2
XX 0 1 1 1 1 1 1 2 8 8 5
XXI 1 1 1 0 0 1 1 3 8 8 7
XXII 1 1 1 1 0 1 1 5 8 8 8
XXIII 1 1 1 1 1 1 1 8 8 8 8

TABLE 3.5: Entanglement classes of three fermions with
eight single particle states. The classes of table 3.4. are omit-

ted here.

where as ususal |Eijki = pipjpk|0i. The continuous invariant of Eq. (3.104)
is only non-zero for the class XXIII which is the single Zariski-open orbit of
the prehomogeneous vector space[16] (GL(8,C),^3C8).

Four fermions

We may write a four fermion state as

|Zi = 1

4!
Zijklp

ijkl|0i. (3.107)

Now there is a lone SLOCC covariant that we can extract from the four
index extended SLOCC bilinear (3.89). It reads as[44]

Rij
kl = ( , pipjnknl ) =

1

2!4!
✏ijabcdefZlkabZcdef , (3.108)

while all the other components of K( )IJKL are zero or can be expressed
with Rij

kl. This covariant was first introduced by Katanova[54].
It turns out that a description in terms of a semisimple complex sym-

metric space is possible in this case as well and is very similar to the ex-
tended SLOCC classification of the total four mode system. It is based on
the decomposition

e

7

= sl

8

� ^4C8, (3.109)

and the orbit structure was identified in [55] and first considered in a phys-
ical setting in [31]. From this decomposition it follows that it again makes
sense to talk about semisimple and nilpotent states and the orbits are conve-
niently grouped into families according to their nilpotent part. The family
of semisimple orbits is easy to resolve again: it is just isomorphic to the
affine variety ^4C8/SL(8,C) ⇠= C

7 and the orbits are resolved by the values
of the seven independent SL(8,C) invariants

{I
2

, I
6

, I
8

, I
10

, I
12

, I
14

, I
18

}, (3.110)
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where
I
2p = Ri

1

j
1

i
2

j
2

Ri
2

j
2

i
3

j
3

...Ripjp
i
1

j
1

. (3.111)

Representative for the semisimple orbits can be constructed by setting y
8

=
0 in (3.96):

|Gi =
7X

↵=1

y↵|E↵i, (3.112)

which is in a different SL(8,C) class four each values of the parameters
y
1

, ..., y
7

for which the invariants of (3.110) can be traded in.

3.6.3 Four qubits

Now consider a four qubit state

|�i =
1X

ijkl=0

�ijkl|ijkli 2 C

2 ⌦ C

2 ⌦ C

2 ⌦ C

2. (3.113)

It turns out that the four qubit SLOCC problem can also be treated as a
semisimple complex symmetric space as one has

so

8

=

 
4M

i=1

sl

2

!
�
 

4O
i=1

C

2

!
. (3.114)

The classification problem was solved partially in [30] and completed in
[56]. We list the families obtained in these references, along with repre-
sentatives, in table 3.6. From the nine families of this table the first one
corresponds to the family of semisimple states. The last three families do
not have a semisimple part. The nilpotent states characterizing families 2-6
may be obtained by setting all the continuous parameters to zero.

Now let us move on to the fermionic description of four qubits. As
before, a single occupancy fermionic state can be associated to this through
(2.92):

| �i =
1X

ijkl=0

�ijklp
i+1pj+3pk+5pl+7|0i. (3.115)

These states span F0000 ⇢ F , the subspace of single occupancy states. The
spaces with mixed occupancy are otained via acting with the first four Ma-
jorana operators of (3.42).

Fµ
1

µ
2

µ
3

µ
4 = �µ1

1

�µ2

2

�µ3

3

�µ4

4

F0000. (3.116)

Then, the total Fock space can be written[44] as the direct sum of mixed
occupancy four qubit state spaces F =

L
1

µ
1

µ
2

µ
3

µ
4

=0

Fµ
1

µ
2

µ
3

µ
4 . It is clear

that the single occupancy subspace F0000 is the one which is also inside the
four particle subspace ^4C4.

The invariant algebra of the action of SL(2,C)⇥4 on four qubits is gener-
ated by four invariants of homogeneous degree 2,4,4 and 6 respectively. We
omit the definition of these invariants here, they can be found in [56]. It is
natural to identify orbits different under the permutation of the four qubits
and hence look at the orbit structure under the action of S

4

oSL(2,C)⇥4. In
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Family Canonical form

Gabcd

a+d
2

(|0000i+ |1111i) + a�d
2

(|0011i+ |0011i) +
b+c
2

(|0101i+ |1010i) + b�c
2

(|0110i+ |1001i)

Labc
2

a+b
2

(|0000i+ |1111i) + a�b
2

(|0011i+ |0011i) +
c (|0101i+ |1010i) + |0110i

La
2

b
2

a (|0000i+ |1111i) + b (|0101i+ |1010i) + |0110i+
|0011i

Lab
3

a (|0000i+ |1111i) + a+b
2

(|0101i+ |1010i) +
a�b
2

(|0110i+ |1001i) +
ip
2

(|0001i+ |0010i+ |0111i+ |1011i)

La
4

a (|0000i+ |0101i+ |1010i+ |1111i) + i|0001i+
|0110i � i|1011i

La
2

0

3�¯

1

a (|0000i+ |1111i) + |0011i+ |0101i+ |0110i

L
0

5�¯

3

|0000i+ |0101i+ |1000i+ |1110i

L
0

7�¯

1

|0000i+ |1011i+ |1101i+ |1110i

L
0

3�¯

1

0

3�¯

1

|0000i+ |0111i

TABLE 3.6: Representatives for the nine families of SLOCC
orbits of four qubits, see [30] and [56]. The first line is the
family of generic semisimple states where each different
value of the parameters a, b, c, d correspond to a different
orbit. The last three orbits are nilpotent and cannot have
a semisimple part. There are eight nilpotent orbits under
S4 n SL(2,C)⇥4 which are obtained by sending all the pa-

rameters in these representatives to zero.

this case the invariant algebra is generated by four invariants of degree 2, 6,
8 and 12 respectively. A generating set can be easily written in terms of the
four fermion invariants (3.110) evaluated on the image of the embedding
(3.115). It is just

{I
2

, I
6

, I
8

, I
12

}, (3.117)

while in this case we can express all the other invariants of (3.110) with
these four. For expressions relating these invariants to the ones of [56], see
section 6.7 of [44].

The embedding (3.115) of four qubits into the single occupancy sub-
space of the fermionic Fock space has very nice properties, similarly to
the embedding of three qubits into the single occupancy subspace of three
fermions with six single particle states, as shown in [31]. In particular the
embedding is injective, i.e. whenever the fermionic SLOCC class of two sin-
gle occupancy states is different, their four qubit SLOCC class is different
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as well. However, contrary to the case of three qubits, the correspondence
between fermionic and four qubit SLOCC classes is not one-to-one. There
are fermionic SLOCC orbits which are not intersected by single occupancy
states. Another nice result of [31] is that two states in a given family are
SL(2,C)⇥4

o S
4

equivalent iff all the invariants I
2

,...,I
12

take the same val-
ues on them.

In summary, the entanglement classification of four qubits, four fermions
with eight modes and the extended SLOCC classification of fermions with
eight modes is based on the semisimple symmetric space decomposition of
the following sequence of Lie algebras

Four qubits so

8

=

 
4M

i=1

sl

2

!
�
 

4O
i=1

C

2

!
,

\
Four fermions e

7

= sl

8

� ^4C8,

\
Fock space with eight modes e

8

= so

16

� ^evenC8.

(3.118)

When we restrict the map (3.115) to semisimple states it gives rise to the
sequence of embeddings of the corresponding affine varieties 

4O
i=1

C

2

!
/SL(2,C)⇥4 ⇠= C

4

#
^4C8/SL(8,C) ⇠= C

7

#
^evenC8/Spin

0

(16) ⇠= C

8,

(3.119)

and these embeddings are injective. This property is clearly required for the
map between SLOCC classes to be injective. We know that this is the case
between the SLOCC classes of four qubits and four fermions [31] but the
question is not yet settled for the extended SLOCC classes. This provides
an interesting line of future research.

A somewhat more physical question, which is still open, is the precise
quantification of tripartite and fourpartite entanglement for these systems.
This is not yet settled even for the case of four qubits, appart from a couple
of remarks in [30] about the type of multipartite entanglement each family
posesses. It is likely, that the bilinear (3.108) plays a central role in this ques-
tion and a similar analysis as in section 3.4.4 can be conducted. Hopefully,
this question will be a subject of future investigations.

3.7 Nine modes

Let us consider the single particle Hilbert space H = C

9. The fixed chirality
spaces F± are of dimension 256 and they are dual under particle-hole sym-
metry, as always when we have an odd dimensional single particle space.
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There are currently no results available about the extended SLOCC classifi-
cation for the nine mode case. Following the scheme so far, it is likely that
a central role is played by the bilinear with d� 4 = 5 indices i.e. K( )I

1

...I
5

.
On the other hand, there are extensive results available for the SLOCC

classification of the three particle subspace which turn out to be in a deep
connection with the system of three qutrits10 [P.3], in a very similar manner
as the three fermions with six modes are connected to three qubits and four
fermions with eight modes are connected to four qubits. Let us consider a
three fermion state with nine modes

|P i = 1

3!
Pi

1

i
2

i
3

pi1pi2pi3 |0i 2 ^3C9, (3.120)

and review the classification under the SLOCC group GL(V ) = GL(9,C).
The orbit structure is available due to the work of Vinberg and Élashvili

[57]. It is obtained via a similar method to the semisimple symmetric space
decomposition of four fermions with eight modes. We can decompose the
Lie algebra e

8

as
e

8

= sl

9

� ^3C9 �
�
^3C9

�⇤
, (3.121)

where ⇤ denotes the dual vector space. Notice that, contrary to the case of
four fermions, there are two copies of the state space inside e

8

. This split
behaves under the Lie bracket as

[sl
9

, sl
9

] ✓ sl

9

, [sl
9

,^3C9] ✓ ^3C9,

[sl
9

,
�
^3C9

�⇤
] ✓

�
^3C9

�⇤
, [^3C9,^3C9] ✓

�
^3C9

�⇤
,

[
�
^3C9

�⇤
,
�
^3C9

�⇤
] ✓ ^3C9, [

�
^3C9

�⇤
,^3C9] ✓ sl

9

,

(3.122)

and hence the action of the SLOCC group is again conveniently described
as a special case of the adjoint action of E

8

on its Lie algebra. It again makes
sense to define semisimple and nilpotent states. Recall that semisimple
states have closed orbits under SL(9,C) while the closure of orbits of nilpo-
tent states contains the zero vector. The GL(9,C) orbits can be grouped into
seven families according to the type of their semisimple part.

Let us move on to discussing the invariants. We recall that continuous
invariants are independent of the nilpotent part of a state. The family of
semisimple orbits is isomoprhic to the affine variety ^3C9/SL(9,C) ⇠= C

4

so that we have four algebraically independent invariants, or equivalently,
we may represent all these orbits with a four parameter family of states.
A generating set for the invariants were first found by Egorov[58], but a
construction based on covariants were first used by Katanova[54]. Let us
define the covariant

T abc
def =

1

2!3!
✏abcpqrstuPdepPfqrPstu. (3.123)

It is clear that T has homogeneous degree 3. Although an explicit com-
putation has not yet been performed, it is reasonable to think that T in-
deed emerges from the five index extended SLOCC bilinear K( )I

1

...I
5

=
( , eI

1

...eI
2

 ). To motivate this we add the top state ⇠p1...9|0i to the state
(3.120) thus turning it into an element of F�. We calculate the quantity

10We call a three state system with Hilber space C

3 a qutrit.
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QIJKLMN = K( )IJK
I0J 0K0

K( )I0J 0K0LMN of degree 4, for which the com-
ponent with three upper little and lower little indices has to take the form

Qabc
def ⇠ ⇠T abc

def . (3.124)

Now because T has 3 upper and 3 lower indices one can take its powers
wich will have the same index structure:

(T 2)a1b1c1a
3

b
3

c
3

= T a
1

b
1

c
1

a
2

b
2

c
2

T a
2

b
2

c
2

a
3

b
3

c
3

,

...

(Tm)a1b1c1am+1

bm+1

cm+1

= T a
1

b
1

c
1

a
2

b
2

c
2

...T ambmcm
am+1

bm+1

cm+1

.

(3.125)

More strictly speaking by antisymmetrization of its lower indices, T can be
regarded as a linear map T : ^3C9 ! ^3C9 hence one can compose T with
itself and form T 2 = T � T , ...,Tm = T � ... � T . Now define a set of relative
invariants by

�
3n = TrTn = (Tn)abcabc. (3.126)

The subscript 3n denotes the homogeneous degree of �
3n in the amplitudes

Pijk. Note that we have �
3n = 0 for n odd and n = 2. Using these, a

generating set for the four dimensional algebra of SL(9,C) invariants can
be conveniently given as

{�
12

,�
18

,�
24

,�
20

}. (3.127)

For later convenience, we introduce the following rescaled versions of these
invariants

J
12

=
1

27337
�
12

, J
18

= � 1

210337 · 13�18,

J
24

=
1

211327 · 19�24, J
30

= � 1

212335 · 7 · 13�30.
(3.128)

Now any semisimple state |Psi can be brougth by an SL(V ) transfor-
mation to the following form[57]

|Psi = a|q
1

i+ b|q
2

i+ c|q
3

i+ d|q
4

i, (3.129)

where for simplicity we have introduced

|q
1

i = (p123 + p456 + p789)|0i, |q
2

i = (p147 + p258 + p369)|0i,
|q
3

i = (p159 + p267 + p348)|0i, |q
4

i = (p168 + p249 + p357)|0i.
(3.130)

We may group these semisimple orbits into families in the following way.
For certain subvarieties of the space C4 of semisimple SL(9,C) orbits it may
happen that the invariants (3.128) become dependent. The number of inde-
pendent invariants is measured by the rank of the matrix

M =

0BB@
@aJ12 @aJ18 @aJ24 @aJ30
@bJ12 @bJ18 @bJ24 @bJ30
@cJ12 @cJ18 @cJ24 @cJ30
@dJ12 @dJ18 @dJ24 @dJ30

1CCA , (3.131)

which is nothing else but the Jacobian between coordinates {a, b, c, d} and
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{J
12

, J
18

, J
24

, J
30

} on the variety ^3C9/SL(9,C) of semisimple orbits. Note
that the determinant of M is a not identically zero degree 80 polynomial
expression in the coefficients a, b, c, d:

1

2143457112 · 6 · 199 detM =a2b2c2d2

((a3 + b3 � c3)3 + (3abc)3)2

((a3 � b3 + d3)3 + (3abd)3)2

((c3 + b3 + d3)3 � (3cbd)3)2

((c3 + a3 � d3)3 + (3cad)3)2.

(3.132)

Whenever M is not full rank, we may find one or more combination of the
invariants (3.128) that vanishes. This gives a convenient way to determine
which family a generic state is in. We now review the seven families of
semisimple orbits as described in [57]. Along the way, we find the invari-
ants which vanish on each family [P.3].

First family
This family contains only semisimple states with no possible nilpotent
part. This family is specified by the condition[57]

detM 6= 0, (3.133)

on the canonical states and it forms a Zariski-open subset in the space
of all states. It is dense in the variety of semisimple states.

Second family
The semisimple part has the canonical form

a|q
1

i � b|q
2

i+ d|q
4

i. (3.134)

Formaly, we can obtain this by putting c = 0 and b ! �b in (3.129).
The canonical amplitudes in this family satisfy[57]

abd(a3 � b3)(a3 � d3)(b3 � d3)((a3 + b3 + d3)3 � (3abd)3) 6= 0. (3.135)

Now one can check that this is equivalent to dropping the third row
of M , putting c = 0 and b ! �b in it and requiring any of the 3 ⇥ 3
subdeterminant of the resulting 3 ⇥ 4 matrix to be non zero. This is
equivalent with

rankM = 3 (3.136)

for these semisimple states. The vanishing of detM means that it is
possible that a function of the four invariants exists which equals zero.
Indeed, we have found an invariant of degree 132 which vanishes for
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this family11:

�
132

= J11

12

� 44940218765172270463

2232199994248855116
J8

12

J2

18

+
113325967730636958495085217

1009180965699898771226274
J5

12

J4

18

� 11518845901768651039

329340982758027804
J2

12

J6

18

� 188875

1526823
J9

12

J
24

+
20955843759677134000

15067349961179772033
J6

12

J2

18

J
24

� 48098757899275092625

15067349961179772033
J3

12

J4

18

J
24

+
156259946875

27974261679948
J7

12

J2

24

� 43381098724294271875

2440910693711123069346
J4

12

J2

18

J2

24

� 32778366465625

48591292538069676
J
12

J4

18

J2

24

� 37339826093750

327991224631970313
J5

12

J3

24

� 198339133437500

741017211205562559
J2

12

J2

18

J3

24

+
351718750000

327991224631970313
J3

12

J4

24

� 1250000000

327991224631970313
J
12

J5

24

+
522717082571600510

5022449987059924011
J7

12

J
18

J
30

� 4631798176278228432974860

4541314345649544470518233
J4

12

J3

18

J
30

+
45691574382263590

741017211205562559
J
12

J5

18

J
30

� 951594557840795000

135606149650617948297
J5

12

J
18

J
24

J
30

+
2133816827644645000

135606149650617948297
J2

12

J3

18

J
24

J
30

+
140973248590625000

1220455346855561534673
J3

12

J
18

J2

24

J
30

+
10890275000000

20007464702550189093
J
12

J
18

J3

24

J
30

� 8007699664851700

45202049883539316099
J6

12

J2

30

+
6686357462527147925300

1513771448549848156839411
J3

12

J2

18

J2

30

+
1392403335812500

135606149650617948297
J4

12

J
24

J2

30

� 2371961791512500

135606149650617948297
J
12

J2

18

J
24

J2

30

� 216716472500000

1220455346855561534673
J2

12

J2

24

J2

30

� 14445540571041712000

1513771448549848156839411
J2

12

J
18

J3

30

+
34328756109890000

4541314345649544470518233
J
12

J4

30

.

(3.137)
We have �

132

= 0 for any state in this family. It follows that the first
family is defined by the equation �

132

6= 0 which confirms that it is
Zariski-open. There are three types of possible nilpotent parts in this
family. These can be found in [57].

Third family
The canonical form of the semisimple part is

a|q
1

i+ d|q
4

i. (3.138)

We can obtain this by putting b = 0 in the canonical form of the
second family. The coefficients satisfy ad(a6 � d6) 6= 0 which forces
rankM = 2. There are nine types of possible nilpotent parts[57]. One
can check that �

132

= 0 in this family. As the rank of the matrix M is
2, one expects that there exists one more combination of the invariants
which is identically zero in this family. Indeed, we have found that

11This expression is found by considering multinomials of the
four invariants with a fixed homogeneous degree k like �k =P

n1n2n3n4|12n1+18n2+24n3+30n4=k ↵n1n2n3n4J
n1
12

Jn2
18

Jn3
24

Jn4
30

and numerically generat-
ing a bunch of equations �k = 0 for some randomly selected states from the second family.
The result is an overcomplete system of linear equations for the coefficients ↵n1n2n3n4 .
The first value with a solution to this system is k = 132. The found coefficients were
rationalized with a computer algebra system and the resulting expression was tested
analytically to vanish in the second family.
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the invariant of homogeneous degree 48 given by

�
48

= J2

24

+
13 · 232 · 293

2254
J4

12

+
32 · 11 · 127 · 1992

2354 · 61 J
12

J2

18

� 257 · 32
5 · 23 J2

12

J
24

� 11 · 1992
2253 · 61J18J30,

(3.139)

vanishes in this family but�
48

6= 0 for the first and the second family.

Fourth family
The canonical form of the semisimple part is

a|q
1

i+ b|q
2

i � b|q
3

i. (3.140)

Formaly, one obtains this by putting d = 0 and c = �b in (3.129). The
coefficients must satisfy ab(a3 � b3)(a3 + 8b3) 6= 0 which sets the rank
of the matrix M to be 2. We have

�
48

= 22 · 5 · 112 · 1992 · b9
�
a3 � b3

�
9

�
a4 + 8ab3

�
3 (3.141)

for this family. The condition�
48

6= 0 is obviously equivalent with the
previous one. Of course we have �

132

= 0 but we can find another
invariant of degree 48 wich vanishes here:

�0
48

= 113 · 193J4

12

� 11 · 1992 · 21347
3561

J
12

J2

18

+
2 · 53 · 257

34
J2

12

J
24

� 2454

36
J2

24

+
23 · 5 · 11 · 1992

35 · 61 J
18

J
30

.

(3.142)
One can check that �0

48

6= 0 for the first, second and third families.
There are six types of possible nilpotent parts, as listed in [57].

Fifth family
The canonical form of the semisimple part is

�c|q
2

i+ c|q
3

i. (3.143)

This is just the canonical form of the fourth family with a = 0. We
require c 6= 0. The matrix M has rank 1. We have �

132

= �
48

=
�0

48

= 0. There are 18 different types of possible nilpotent parts.

Sixth family
The canonical form of the semisimple part is

a|q
1

i, (3.144)

with a 6= 0. This is just the state (3.129) with b = c = d = 0. The matrix
M has rank 1 and�

132

= �
48

= �0
48

= 0. Moreover it is fairly easy to
see that the degree 24 invariant

�
24

= J2

12

� 1

111
J
24

(3.145)

is zero for this family while it is non-zero for families 1-5. There are
25 different types of possible nilpotent parts.
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Seventh family
The semisimple part is zero here thus this family is the family of nilpo-
tent states. Clearly, all continuous invariants vanish here. There are
102 different types of nilpotent states listed in the work of Vinberg
and Élashvili[57]. All the previously discussed three fermion states
(with 6, 7 and 8 single particle states) when considered as states of the
nine dimensional system are in this family.

Family �
132

�
48

�0
48

�
24

Rank T

First 6= 0 6= 0 6= 0 6= 0 80
Second 0 6= 0 6= 0 6= 0 78
Third 0 0 6= 0 6= 0 76

Fourth 0 6= 0 0 6= 0 72
Fifth 0 0 0 6= 0 70
Sixth 0 0 0 0 56

TABLE 3.7: Values of the new continuous invariants on fam-
ilies of three fermions with nine single particle states. The
last column is the rank of the map T on semisimple states

of the given family.

A summary of the families and their resolution with the new invariants
�

132

,�
48

,�0
48

,�
24

can be found in table 3.7. We have calculated in this
table the rank of T for semisimple states in each family. Comparing to ref.
[57] we observe that the rank of the linear map T : ^3C9 ! ^3C9 defined in
(3.123) satisfies the relation

rankT = 80� dim stab(|Psi), (3.146)

where stab(|Psi) ✓ SL(9,C) is the stabilizer of the semisimple part |Psi.

3.7.1 Entanglement of three qutrits

A qutrit is a three state quantum system with Hilbert space H = C

3. The
Hilbert space of three distinguishable qutrits is just H⌦3 ⇠= C

9. With {|1i, |2i, |3i}
being a basis of H a general 3 qutrit state can be written as

|�i =
3X

µ
1

,µ
2

µ
3

=1

�µ
1

µ
2

µ
3

|µ
1

µ
2

µ
3

i. (3.147)

The SLOCC group is GL(3,C)⇥3 and it acts on the 9 complex amplitudes as

�µ
1

µ
2

µ
3

7! (S
1

) ⌫1µ
1

(S
2

) ⌫2µ
2

(S
3

) ⌫3µ
3

�⌫
1

⌫
2

⌫
3

, S
1

⌦S
2

⌦S
3

2 GL(3,C)⇥3. (3.148)

The mathematical problem of finding the SLOCC classes was solved by
Nurmiev[59, 60]. Explicit expressions for the three continuous invariants
generating the invariant algebra of this system was found by Briand et
al.[61] where the problem was also recognized as the problem of SLOCC
classification of three qutrits. Later Bremner and Hu managed to express
the hyperdeterminant of a 3 ⇥ 3 ⇥ 3 array with these three invariants[32,
62]. In the following we identify the problem of three qutrit entanglement
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as a special case of entanglement of three fermions with nine single particle
states. We relate the invariants I

6

, I
9

, I
12

and the hyperdeterminant �
333

of
Bremner and Hu with the invariants of eq. (3.128).

According to Nurmiev[59, 60] any 3⇥3⇥3 array can be uniquely written
as the sum of a semisimple and a nilpotent part. Just like in the case of three
fermions a semisimple state is defined to have a closed SL(3,C)⇥3 orbit
while a nilpotent state has the zero vector in the closure of its orbit. Now
any semisimple state can be brought to a so called normal form:

|�
0

i = a|X
1

i � b|X
2

i+ c|X
3

i, (3.149)

where

|X
1

i = |111i+ |222i+ |333i, |X
2

i = |123i+ |231i+ |312i,
|X

3

i = |132i+ |213i+ |321i.
(3.150)

There are a total of 43 orbits under the action of GL(3,C)⇥3 and these can
be grouped into five families according to the type of their semisimple part.
The three fundamental invariants evaluated at the normal form | 

0

i are[62]:

I
6

= a6 + 10a3b3 + b6 � 10a3c3 + 10b3c3 + c6,

I
9

= (a+ b)(a� c)(b+ c)
�
a2 � ab+ b2

� �
a2 + ac+ c2

� �
b2 � bc+ c2

�
,

I
12

= �a9b3 � 4a6b6 � a3b9 + a9c3 � 2a6b3c3 + 2a3b6c3 � b9c3 � 4a6c6

� 2a3b3c6 � 4b6c6 + a3c9 � b3c9.
(3.151)

The hyperdeterminant for 3⇥3⇥3 arrays has degree 36 and expressed with
these invariants as[62]:

�
333

= I3
6

I2
9

� I2
12

I2
6

� 32I3
12

+ 36I
12

I
6

I2
9

+ 108I4
9

. (3.152)

It has the propierty that it is zero for all families except the first one. Now as
3⇥3 = 9 it is clear that we can identify this system via (2.92) with the single
occupancy states of the system of three fermions with nine single particle
states. Let us denote this embedding by E : C3 ⌦ C

3 ⌦ C

3 ! ^3C9:

E :|�i 7! |P�i =

3X
µ
1

,µ
2

,µ
3

=1

�µ
1

µ
2

µ
3

pµ1p3+µ
2p6+µ

3 |0i. (3.153)

Now it is very easy to check that

E(|X
1

i) = |PX
1

i = |q
2

i, E(|X
2

i) = |PX
2

i = |q
3

i, E(|X
3

i) = |PX
3

i = |q
4

i,
(3.154)

where |q
1

i, ..., |q
4

i are defined in e.q. (3.130).
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We found that on ImE ⇢ ^3C9 the invariants of (3.128) can be expressed
with the fundamental invariants of three qutrits as

J
12

= I2
6

+ 20I
12

,

J
18

= I3
6

+ 30I
12

I
6

+ 100I2
9

,

J
24

= 111I4
6

+ 4440I2
6

I
12

+ 2 · 34 · 193I2
12

+ 22 · 11 · 199I
6

I2
9

,

J
30

= 2 · 32 · 52 · 2521I2
9

I
12

+ 33 · 5 · 2521I
6

I2
12

+ 2 · 5 · 17 · 383I2
6

I2
9

+ 24 · 52 · 73I3
6

I
12

+ 23 · 73I5
6

.

(3.155)

Moreover the invariant�
48

is expressed with the hyperdeterminant as

�
48

= �5 · 112 · 1992
2

�
333

I
12

. (3.156)

For the other � invariants we have:

�
138

= 0,

�0
48

=
24551121992

35

✓
23I

12

+
1

3
I2
6

◆
I4
9

,

�
24

=
2 · 11 · 199

37

✓
I2
12

� 2

3
I
6

I2
9

◆
.

(3.157)

Define

D
36

= �
333

, D
24

= I2
12

� 2

3
I
6

I2
9

, D
21

= (23I
12

+
1

3
I2
6

)I
9

. (3.158)

Clearly, the invariants D
36

, D
24

, D
21

completely separate the five families of
three qutrits. One can find representatives of these five families e.g. in the
work of Bremner et. al.[62]. We followed the enumeration of the families
used there. The first family has D

36

6= 0, the second family has D
36

=
0, D

24

6= 0, D
21

6= 0, the third family has D
36

= D
24

= D
21

= 0 and finally
the fourth family has D

36

= D
21

= 0, D
24

6= 0. For the nilpotent orbits of
the fifth family every fundamental invariant vanishes. On figure 3.5. we
sketched how the embedding E works. The mapping between the families
is injective.

It remains an open question whether E is injective between the SLOCC
classes, as is the case between four qubits and four fermions with eight sin-
gle particle states. Another intriguing question is whether an analysis, sim-
ilar to the one performed in section 3.4.4, can quantify the amount of gen-
uine bipartite and tripartite entanglement for both three qutrits and three
fermions.

3.8 Outlook

3.8.1 Pinning of occupation numbers

As a possibly relevant physical application, we now comment on the con-
nection of the ordinary SLOCC classification problem for fermionic quan-
tum states with the constraints of Klyachko [63] on the eigenvalues of the
one particle reduced density matrix (or one-matrix). This section is based
in part on [P.3].
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Families of three qutrits

First family

Second family

Third family

Fourth family

Fifth family

C

3 ⌦ C

3 ⌦ C

3

Families of three fermions

First family

Second family

Third family

Fourth family

Fifth family

Sixth family

Seventh family

^3
C

9

E

FIGURE 3.5: A sketch showing how the embedding E :
C

3 ⌦ C

3 ⌦ C

3 ! ^3C9 defined in (3.153) works. The grey
rectangles on the right side represent the image of the three
qutrit families under E . Different families are mapped into

different families.

The constraints of Klyachko define a polytope in the space of possi-
ble eigenvalues of the one-matrix. An important concept is the so called
pinning of occupation numbers which means the saturation of these con-
straints[64, 65]. It is widely believed that energy minima of many fermion
systems usually do not lie inside the Klyachko polytope thus the ground
state will be on the boundary and hence it will be pinned. Indeed there
are both analytical[65] and numerical[66] results that such a pinning occurs
in ground states of realistic systems. As shown by Klyachko[64] pinning
of a state imposes selection rules on it reducing the number of separable
states or Slater determinants that it contains. This is particularly useful in
molecular physics since it simplifies the form of the ansatz one must use in
variational methods to find the ground state.

Selection rules from pinning

Now we review the selection rules imposed by saturation of these inequal-
ities. Let us concentrate on three fermion states with an arbitrary single
particle Hilbert space H, i.e.

|P i = 1

3!
Pijkp

ipjpk|0i. (3.159)

Recall, that the one particle reduced density matrix is given by

⇢i
j =

1

2
PinmP̄ jnm, (3.160)

and that we use Löwdin normalization Tr⇢ = 3hP |P i. Let us also assume
that the state is normalized

hP |P i = 1

3!
P̄ i

1

i
2

i
3Pi

1

i
2

i
3

= 1. (3.161)
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Now every Klyachko inequality can be brought to the form

dimHX
i=1

yi�i � 0, (3.162)

where �i are eigenvalues of the one particle reduced density matrix and yi
are real numbers. Indeed, if there is a constant term in an inequality it can
always be multiplied by 1 = 1

3

P
i �i which homogenizes it.

Now we show that if a Klyachko constraint
P

dimH
i=1

yi�i � 0 is saturated
(i.e.

P
dimH
i=1

yi�i = 0) for the eigenvalues of the one particle reduced density
matrix of |P

0

i then |P
0

i satisfies 
dimHX
i=1

yia
†
iai

!
|P

0

i = 0, (3.163)

where a†i creates12 a natural orbital i.e. h0|ai⇢a†j |0i = �i�ij . To see this, define
the function f : ^3H! R�0

as

f(|P i) =
dimHX
i=1

yi�i. (3.164)

We can express this as

f(|P i) =
dimHX
i=1

yi�i

=

dimHX
i=1

yi⇢ii

=
X
ikl

yi|Pikl|2,

(3.165)

where Pijk are the amplitudes of |P i when expanded on its natural orbitals.
Using antisymmetry of Pijk we can writeX

ikl

yi|Pikl|2 =
1

3

X
ikl

(yi|Pikl|2 + yi|Pkil|2 + yi|Pkli|2). (3.166)

Now in the second term relabel indices as i $ k and in the third term as
i$ l. We obtain

f(|P i) = 1

3

X
ikl

|Pikl|2(yi + yk + yl) (3.167)

Recall that f(|P i) � 0 for all states. Then, by the ususal Ritz variational
reasoning we have �f(|P

0

i) = 0 for minima of f . Hence a pinned state |P
0

i
should satisfy

@f

@P ⇤
ikl

(|P
0

i) = 1

3
(P

0

)ikl(yi + yk + yl) = 0, 8i, k, l, (3.168)

12Here we are using the Hermitian inner product h.|.i so that we have an adjoint opera-
tion. Natural orbitals are orthonormal with respect to this inner product so {ai, a

†
j} = �ij .



3.8. Outlook 77

hence for a given set of indices i, k, l either (P
0

)ikl = 0 or yi + yk + yl =
0. Now it is easy to see that for a Slater determinant made up from three
natural orbitals we have X

i

yia
†
iai

!
a†ma†na

†
o|0i = (ym + yn + yo)a

†
ma†na

†
o|0i. (3.169)

Using that by (3.168) any Slater determinant in |P
0

i satisfies yi+ yk + yl = 0
we arrive at  X

i

yia
†
iai

!
|P

0

i = 0. (3.170)

As a byproduct, we are now in position to understand why every three
fermion state with six single particle states (discussed in section 3.4.2) can
be transformed into a three qubit state with a local unitary transformation.
Recall that for this system the Borland-Dennis relations (3.50) are true for
the eigenvalues of any one particle RDM. Applying (3.163) to the first three
equations of (3.50) tells us that in the basis of natural orbitals, the only pos-
sible nonzero amplitudes are

P
123

, P
124

, P
135

, P
145

,

P
236

, P
246

, P
356

, P
456

,
(3.171)

which is indeed a three qubit subspace.

Constrainst on SLOCC classes from pinning

Consider first the case of three fermions with six single particle states dis-
cussed in section 3.4.2. The classical Borland-Dennis result[48] is that if one
orders the eigenvalues of the one-matrix as �i+1

� �i then one has a non-
trivial inequality

�
5

+ �
6

� �
4

. (3.172)

Note that this inequality is independent of the normalization of the original
pure state. Now if (3.172) is saturated for a state |P i then according to
(3.163) it must have the form[65, 64]

|P i = ↵a†
1

a†
2

a†
3

|0i+ �a†
1

a†
4

a†
5

|0i+ �a†
2

a†
4

a†
6

|0i, (3.173)

in the basis of natural orbitals. It is clear that transforming an arbitary state
to its natural orbital form amounts to a local unitary transformation hence
it does not change the SLOCC class of it. Now if we calculate the matrix KP

of (3.26) for the state (3.173) we get0BBBBBB@

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 �2�� 0 0
0 0 0 0 0 0
0 2↵� 0 0 0 0

�2↵� 0 0 0 0 0

1CCCCCCA . (3.174)

This matrix has rank 3, 1 or 0 depending on the value of the coefficients.
Looking at table 3.2 we already conclude that pinning is impossible for states
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in the GHZ class or otherwise stated pinning is impossible for states with
D(P ) = 1

6

TrK2

P 6= 0. One might think that this means that all states with
D(P ) = 0 are pinned but this is not the case since the spectrum of the one-
matrix is not invariant under general SLOCC transformations thus pinning
is not a SLOCC invariant concept. Indeed one can easily find both pinned
and unpinned states in the W class. Note that these observations are in per-
fect agreement with the numerical work done by C. L. Benavides-Riveros
et. al.[66] where pinning was studied in finite rank variational approxima-
tions of the ground state of lithium. It was observed there that pinning in
the rank six approximation can only occur if the invariant D(P ) is zero.

Consider now the case of seven single particle states of Section 3.5.2.
Pinning for this system is investigated by Klyachko as it is important in
studying the first excited state of beryllium[64]. Moreover it is used as
the rank 7 approximation of lithium orbitals where pinning was also ob-
served[66]. For seven single particle states we have four non-trivial Kly-
achko constraints:

�
1

+ �
2

+ �
4

+ �
7

 2,

�
1

+ �
2

+ �
5

+ �
6

 2,

�
2

+ �
3

+ �
4

+ �
5

 2,

�
1

+ �
3

+ �
4

+ �
6

 2.

(3.175)

Suppose we saturate the first one: �
1

+ �
2

+ �
4

+ �
7

= 2 for a normalized
state P . Then the selection rules arising from (3.163) imply[64] that |Pi 2
^2C4 ⌦ C

3 ⇢ ^3C7. In particular in the basis of natural orbitals |Pi must
be a linear combination of separable states with two indices from the set
{1, 2, 4, 7} and one index from the set {3, 5, 6}. One can easily calculate the
covariants NPab and MPab

c of eqs. (3.80) and (3.75) for such states and
conclude that rank NP = 4 and rank MP = 7. Looking at table 3.4. we
already deduce that there is no pinning for states in class of |Sympl

3

/GHZi,
or equivalently, for states with a non-vanishing J (P) invariant.

Now suppose we saturate three (the first two and the last one in e.q.
(3.175)) of the constraints. In this case |Pimust have the form[64]

|Pi = ↵p123|0i+ �p145|0i+ �p167|0i+ �p246|0i, (3.176)

when expanded on its natural orbitals. Calculating the relevant ranks for
this state gives rank NP = 1 and rank MP = 4 which identifies the class of
|Sympl

3

/SEPi in table 3.4. Moreover one can check that one cannot increase
the rank of MP by setting any of the coefficients to zero. This means that
states of the form (3.176) cannot be in class |GHZi. However, they do cross
the remaining classes of table 3.4 with smaller ranks, so we deduce that pin-
ning of three Klyachko constraints is only possible for states in these classes.
If we require the saturation of all four constraints then we have to put � = 0
in (3.176) and we get back to a state of the form (3.173). Thus pinning of all
four constraints is only possible in a six single particle subspace and only
in the classes |SEPi, |BISEPi and |Wi.
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Chapter 4

Stringy black holes and
entanglement

This chapter is mainly devoted to the construction of the entropy formula
for nonextremal black holes of the STU model using the covariants intro-
duced in section 3.4 in the fermionic context. Along the way we review the
construction of these black hole solutions and, towards the end, we review
some aspects of the black hole/qubit correspondence. In particular, in sec-
tion 4.1.11, we comment on how general nonextremal STU black holes fit
into the four qubit classification of STU black holes.

4.1 Single centered black holes and duality invariant
entropy formulae

4.1.1 N = 2 supergravity

The term STU model refers to ungauged N = 2 supergravity in four di-
mensions coupled to 3 vector multiplets[67, 68]. The model is of central
importance in string theory as it can be obtained from most string theo-
ries and is related to various other supergravity theories through dualities.
Also, a suitable solution of the STU model can be used[69] to generate all
single centered stationary black holes of maximal N = 8 supergravity[70,
71] which describes the low energy limit of M-theory compactified on T 7.
The black hole solutions in the theory can be obtained from the bosonic part
of the action without the hypermultiplets. There are several formulations
of this action, here we simply pick one and refer to the literature on further
details. The action we choose is

S =
1

16⇡

Z
dx4

p
|g|{� R

2
+Gi¯j@µ⌧

i@µ⌧̄
¯i

+ (ImNIJ(FI)µ⌫(FJ)µ⌫ + ReNIJ(FI)µ⌫(?FJ)µ⌫)}.
(4.1)

Here, FI , I = 0, 1, 2, 3 are four U(1) gauge field strengths and ?FI is the
dual of FI . The complex scalars ⌧ i, i = 1, 2, 3 are coordinates of the pro-
jective special Kähler manifold [SL(2,R)/SO(2)]⇥3 and Gi¯j is the Kähler
metric of this space. The four dimensional Ricci scalar is R. We will usualy
use the decomposition of ⌧ i into real and imaginary parts as

⌧ i = xi + iyi. (4.2)
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Then, the Kähler metric explicitly reads as Gi¯j =
�i¯j

(2yi)2
. The period matrix

NIJ depends only on the scalars ⌧ i and is given as
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1CCCA .

(4.3)
Note that the equations of motion coming from (4.1) are invariant under

the SL(2,R)3⇥U subgroup of the full U-duality group E
7(7)

mapping the STU
model to itself. An element

S
1

⌦ S
2

⌦ S
3

2 SL(2,R)3⇥U , (4.4)

is parametrized as

Si =

✓
ai bi
ci di

◆
, aidi � bici = 1, i = 1, 2, 3, (4.5)

and it acts on the 3 dimensional fields the following way. The scalars ⌧ i are
transformed as

⌧ i 7! ai⌧ i + bi
ci⌧ i + di

, (4.6)

while the electromagnetic potentials ⇣I , ⇣̃I transform in the fundamental
(2, 2, 2) = 8 dimensional representation. Explicitely if one defines the three
index tensor  ijk corresponding to the amplitudes of a 3 qubit state as✓

 
000

 
001

 
010

 
011

 
100

 
101

 
110

 
111

◆
=

✓
⇣̃
4

⇣3 ⇣2 �⇣̃
1

⇣1 �⇣̃
2

�⇣̃
3

�⇣4
◆

(4.7)

the transformation rule is

 ijk 7! (S
1

)i
i0(S

2

)j
j0(S

3

)k
k0 i0j0k0 . (4.8)

In the following when we write SL(2) we are referring ot SL(2,R) unless
explicitly otherwise stated.

4.1.2 Timelike dimensional reduction

To describe stationary black hole solutions we proceed with the usual pro-
cedure of dimensional reduction along the time coordinate. For details of
this procedure see e.g. [72, 22]. The ansatz for the metric and the gauge
fields is

ds2 = �e2U (dt+ !)2 + e�2Uds2
(3d),

FI = dAI = d(⇣I(dt+ !) +AI).
(4.9)

Here, ds2
(3d) = habdxadxb is the three dimensional line element with a, b

being 3d indices. The scalars U and ⇣I and the one-forms ! and AI are
considered to be three dimensional fields. One then dualizes ! and AI to
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scalars � and ⇣̃I as

d⇣̃I = ReNIJd⇣J � e2U ImNIJ ?
(3d) (dAJ + ⇣Jd!),

d� = e4U ?
(3d) d! + ⇣Id⇣̃I � ⇣̃Id⇣I .

(4.10)

The resulting three dimensional theory is Euclidean gravity coupled to 16
real scalars {U,�, ⌧ i, ⌧̄¯i, ⇣I , ⇣̃I} parametrizing the coset space SO(4,4)

SL(2,R)⇥4

. The
Lagrangian can be written as

L = �1

2

p
hR[h] +

p
hgmn@a�

m@a�n, (4.11)

where�m denotes the scalars with m = 1, .., 16. The metric gmn on SO(4,4)
SL(2,R)⇥4

is expressed through the line element as

1

4
gmnd�md�n = Gi¯jd⌧

id⌧̄¯j + dU2 +
1

4
e�4U (d� + ⇣̃Id⇣I � ⇣Id⇣̃I)2

+
1

2
e�2U

⇥
ImNIJd⇣Id⇣J

+ (ImN )�1

IJ (d⇣̃I � ReNIKd⇣K)(d⇣̃J � ReNJLd⇣L)
⇤
.

(4.12)

We can describe the second term in the 3d Lagrangian (4.11) as a sigma
model with target space SO(4, 4)/SL(2)⇥4. The Lie algebra so(4, 4) has 28
generators. To describe this coset model we have to split this as so(4, 4) =
h�m, where h is an sl

⇥4

2

subalgebra and m is its 16 dimensional fundamental
representation which we denote as (2, 2, 2, 2). There are actually three ways
to perform this split. We summarize bellow two of them which are relevant
for our purposes.

(2,2,2,2)
�

H
⇤

, p
⇤

=E
⇤

+F
⇤

| pQI
=EQI�FQI , pP

I
=EPI�FPI

sl

⇥4

2

�| {z }
(sl

⇥4

2

)U

k
⇤

=E
⇤

�F
⇤

| | {z }
(2, 2, 2, 2)U

kQI
=EQI

+FQI , kP
I
=EPI

+FPI (4.13)

Here, H
⇤

, E
⇤

, F
⇤

, ⇤ = 0, ..., 3 and EQI , EP I , FQI , FP I , I = 1, ..., 4 are the 28
generators of so(4, 4). For an explicit definition of these generators and a de-
tailed review of the splits, we refer to Appendix A.1. The subscript U refers
to the splitting suited to describe the action of the U-duality group SL(2)⇥3.
The extra SL(2) factor in this split is the so called Ehlers symmetry, which
always appears when an Einstein metric is dimensionally reduced along
the time direction with a stationary ansatz. The subalgebras without the
subscript answer the split suited to describe the 3d fields parametrizing the
coset SO(4, 4)/SL(2)⇥4.

Let us represent an element of this coset by an SO(4, 4) matrix as[73, 22]

V = e�UH
0e�

1

2

P
i log yiHie�

P
i xiEie�

P
I(⇣

IEQI
+

˜⇣IEPI
)e�

1

2

�E
0 , (4.14)

Notice that there are no F -type generators in the above formula. This choice
of gauge is called the Iwasawa gauge. The next step is to project the Mauer-
Cartan 1-form to the 16 dimensional space spanned by the first line of (4.13)
as

P⇤ =
1

2
(dVV�1 + (dVV�1)#). (4.15)
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Here, # is the anti-involution defineing the horizontal split of (4.13) (see
also e.q. (A.9)). One finds that the target space metric (4.12) can be written
as the right invariant metric on SO(4, 4)/SL(2)⇥4:

gmnd�md�n = Tr(P 2

⇤ ). (4.16)

The other way of writing this line element is to define the matrix

M = V#V. (4.17)

Then we have
gmnd�md�n =

1

4
Tr((M�1dM)2). (4.18)

We note that on the contrary to P⇤, in general M�1dM is not required to
sit inside the 16 dimensional subspace which is spanned by the first line of
(4.13). The action of the 3d theory (4.11) can be conveniently written as

S =
1

2

Z
?
3d

R[h]� 1

4

Z
Tr
�
M�1dM ^ ?

3d

M�1dM
�

=
1

2

Z
?
3d

R[h]�
Z

Tr (P⇤ ^ ?
3d

P⇤) ,
(4.19)

so that the equations of motion are readily found to be

d
�
?
3d

M�1dM
�
⌘ 2 · d

�
?
3d

V�1P⇤V
�
= 0,

R[h]ab �
1

2
R[h]hab = Tr

�
� 2(M�1@aM)(M�1@bM)

+ hab(M�1@aM)(M�1@aM)
�
.

(4.20)

The 16 three dimensional fields can be extracted directly from M (see
[22] for details) so we may proceed describing the theory in terms of M. A
group element h 2 SO(4, 4) acts naturaly on V as

V 7! qVh, (4.21)

where q 2 SL(2)⇥4 is a (possibly field dependent) compensator which puts
V back to the Iwasawa gauge. We will see an example of this in sec. 4.1.4
when we work out the action of the U-duality group on V . The same action
in terms of M reads as

M 7! h#Mh. (4.22)

It is then manifest that the line element and hence the 3d Lagrangian is
invariat under this action of SO(4, 4).

4.1.3 Asymptotic charges

The general single centered, non-extremal, rotating, asymptotically Taub-
NUT black hole solution of the STU model have 11 independent conserved
charges[21, 22]. These are the mass, NUT charge, angular momentum and 8
independent dyonic charges. These charges can be extracted from the fields
as follows. Define the inverse radial coordinate ⇢ = 1

r and expand the fields
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around asymptotic infinity. We assume the following expansion

e2U = 1� 2M⇢+O(⇢2), ⇣I = QI⇢+O(⇢2),

� = �4N⇢+ (4J cos ✓ + c)⇢2 +O(⇢3), ⇣̃I = P I⇢+O(⇢2),

yi = Yi
�
1� ⌃i⇢+O(⇢2)

�
, xi = Xi + ⌅i⇢+O(⇢2).

(4.23)

Here M and J are the ADM mass and angular momentum of the spacetime,
QI and P I are electric and magnetic charges associated to the original 4d
U(1) gauge fields and ⌅i, ⌃i denote 6 scalar charges. The constant c is not
playing any role in the following. We can conveniently pack these asymp-
totic charges into an element Q of so(4, 4). In order to do this first expand
the coset matrix M of (4.17) around asymptotic infinity as

M = M(0) +M(1)⇢+O(⇢2). (4.24)

Note that the matrix M(1) does not contain the angulat momentum J which
only enters in subleading order. Now notice that M = V#V is a proper
element of SO(4, 4) for every value of the coordinates. It follows that M(0)

and (M(0))�1M are all good SO(4, 4) elements. Expanding this latter yields

(M(0))�1M = I +Q⇢+O(⇢2), (4.25)

where we have defined the "dressed" charge matrix[69]

Q = (M(0))�1M(1). (4.26)

As this is an expansion of an element of SO(4, 4) around the identity, Q is
indeed an element of the Lie algebra so(4, 4). We can also write this charge
matrix in terms of the coset representative (4.14). In order to do this we
assume the expansion

V = V(0) + V(1)⇢+O(⇢2). (4.27)

Plugging this into the projected Mauer-Cartan form (4.15) and comparing
the result with the definition of M (4.17) we see that P⇤ has the expansion

P⇤ =
1

2
V(0)Q(V(0))�1d⇢+O(⇢), (4.28)

which is the usual form in which the asymptotic charge matrix appears in
the literature [74] for static extremal solutions1 .

In most of what follows we set the moduli to Xi = 0 and Yi = 1 so
that M(0) is just the identity matrix. However, we stress that Xi and Yi do
transform under U-duality. One should not worry about this too much as
everything we do in the following relies only on the fact that Q is an element
of so(4, 4) which is independent of this choice and hence straightforwardly
generalize to arbitrary Xi and Yi. We will treat the cases when Xi 6= 0 and
Yi 6= 1 separately in section 4.1.5. Setting Xi = 0 and Yi = 1 results in the

1The equation of motion for P⇤ can be found from (4.19), and it is just the conservation
law d(?

3d

V�1P⇤V) = 0. Conservation here means conservation with respect to radial evo-
lution in ⇢. This only makes sense when we can slice the 3d metric into nice S2s, i.e. for
static solutions. In this case the corresponding Noether charge is precisely 2⇡Q.
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simple form of the charge vector Q

Q = 2MH
0

+
X
i

⌃iHi + 2Np
0

�
X
i

⌅ipi �
X
I

(QIp
QI + P IpP

I
), (4.29)

which we then call the "undressed" charge matrix. We see that in this case
Q lives in the 16 dimensional subspace (2, 2, 2, 2) spanned by the first line
of (4.13).

4.1.4 The action of the U-duality group

In this section we describe in detail the transformation properties of the
asymptotic charges of the black hole under U-duality. This allows us to
construct polynomial invariants of these in the next section.

Action on fields

Recall that the coset element is parametrized in Iwasawa gauge as

V = e�UH
0e�

1

2

P
i log yiHie�

P
i xiEie�

P
I(⇣

IEQI
+

˜⇣IEPI
)e�

1

2

�E
0 . (4.30)

Notice that the gauge is such that the scalar fields are in an "upper triangu-
lar" form in the sence that the F type generators are not present. We claim
that the U-duality group is generated by the generators Hi, Ei, Fi, i = 1, 2, 3
of (4.13) and the action is a simple right action on V followed by the left ac-
tion of a local compensator q 2 SO(2)⇥3 ⇢ SL(2)⇥3

U restoring the Iwasawa
gauge:

V 7! qVg, g 2 SL(2)⇥3

U . (4.31)

Indeed, we may write this as

qVg = e�UH
0

⇣
qe�

1

2
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i log yiHie�

P
i xiEig
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�E
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(4.32)
as the generators E

0

and H
0

commute with SL(2)⇥3

U . We see that the part
with the potentials transform simply with the adjoint action. It is conve-
nient to describe the 16 dimensional representation (2, 2, 2, 2)U and its el-
ement

P
I(⇣

IEQI + ⇣̃IEP I
) with the amplitudes  ijkl of a four qubit state

through (A.7). Since there are no FP I and FQI generators present this four
qubit state has  

1jkl ⌘ 0 and therefore it is actually a three qubit state. We
can think of  

1jkl ⌘ 0 as the gauge fixing condition. Then, under the U-
duality transformationX

I

(⇣IEQI + ⇣̃IE
P I

) 7! g�1

X
I

(⇣IEQI + ⇣̃IE
P I

)g, g 2 SL(2)⇥3

U , (4.33)

this associated state transform as

 ijkl 7! (S
1

)j
j0(S

2

)k
k0(S

3

)l
l0 ij0k0l0 , S

1

⌦ S
2

⌦ S
3

2 SL(2)⇥3

U , (4.34)

where, according to (A.7), S
1

⌦ S
2

⌦ S
3

is the SL(2)⇥3

U element associated
to g�1. We see that the gauge condition  

1jkl ⌘ 0 on the coset element
does not change. Therefore, this gives the required action of the U-duality
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group on the potentials given in (4.7) and no compensator is needed. We
only need to worry about the gauge condition on the scalars. Multiplying
the scalar term from the right with g spoils the gauge we chose and hence
we need a local compensator. Using the fact that each scalar parametrizes
the coset space SL(2)/SO(2) we expect the local compensator to be from
SO(2)⇥3[75] and therefore to have the form

q = e
P

3

i=1

↵iki = e
P

3

i=1

↵i(Ei�Fi). (4.35)

Now it is easy to verify that if we let g to be the SL(2)⇥3

U element corre-
sponding to✓

d
1

�b
1

�c
1

a
1

◆
⌦
✓

d
2

�b
2

�c
2

a
2

◆
⌦
✓

d
3

�b
3

�c
3

a
3

◆
, (4.36)

in the standard representation, then in order to restore the Iwasawa gauge
the ↵i of the compensator have to be chosen as

tan↵i =
ciyi

cixi + ai
. (4.37)

Then, we have

qe�
1

2

P
i log yiHie�

P
i xiEig = e�

1

2

P
i log y

0
iHie�

P
i x

0
iEi , (4.38)

with the primed scalars being

x0i =
(di + cixi)(bi + aixi) + aici(x2i + y2i )

(di + cixi)2 + c2i y
2

i

, y0i =
yi

(di + cixi)2 + c2i y
2

i

,

(4.39)
which just corresponds to the usual action of the U-duality group on the
scalars

⌧ 0i =
ai⌧i + bi
ci⌧i + di

, (4.40)

with ⌧i = xi + iyi.

Action on asymptotic charges

Now recall that the asymptotic values of the fields are conveniently en-
coded in a charge matrix Q (see (4.26)) defined from the series expasion
of M = V#V around asymptotic infinity. From the previous subsection we
conclude that M transforms under 4d U-duality as M 7! g#Mg, and hence
the charge matrix simply transforms with the adjoint action

Q 7! g�1Qg, g 2 SL(2)⇥3

U . (4.41)

Now from (4.29) we easily see that under the decomposition (4.13) of so(4, 4)
suitable for U-duality, Q has components both in sl

⇥4

2 U and (2, 2, 2, 2)U . As
the splitting ensures that these components do not mix under the adjoint
action of sl⇥4

2 U we may consider these parts separately

Q = Q� +Q
+

, (4.42)
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where
Q� = 2MH

0

+
X
i

⌃iHi + 2Np
0

�
X
i

⌅ipi 2 sl

⇥4

2 U ,

Q
+

= �
X
I

(QIp
QI + P IpP

I
) 2 (2, 2, 2, 2)U .

(4.43)

Let us first consider Q�. Clearly, M and N are invariant under the adjoint
action of SL(2)⇥3

U as expected. The six scalar charges ⌃i, ⌅i parametrize
an element sl⇥3

2 U and hence they transform in the adjoint representation of
SL(2)⇥3

U . We define the matrices

Ri =

✓
⌃i �⌅i

�⌅i �⌃i

◆
, (4.44)

transforming under U-duality as

Ri 7!
✓

ai bi
ci di

◆
Ri

✓
ai bi
ci di

◆�1

, (4.45)

with
✓

ai bi
ci di

◆
2 SL(2). Note that the symmetricity of Ri is spoiled by

this transformation but this is simply a consequence of fixing the asymp-
totic values of the scalars which, again, are not invariant under U-duality
(see section 4.1.5. for the general form of R).

The element Q
+

transforms as a four qubit state  ijkl under the full
SL(2)⇥4

U and it decomposes into a pair of three qubit states ( 
1

)jkl ⌘  
0jkl

and ( 
2

)jkl ⌘  
1jkl when just the U-duality group SL(2)⇥3

U is used. The
explicit amplitudes can be read off using (A.7) and are given as0BB@
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�P 4 �Q

3

�Q
2

P 1
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P 3 P 2 Q
1

P 1 Q
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Q
3

�P 4

1CCA . (4.46)

Note that this pair is related through

| 
2

i =
✓

0 �1
1 0

◆
⌦
✓

0 �1
1 0

◆
⌦
✓

0 �1
1 0

◆
| 

1

i. (4.47)

For the corresponding pair of three qubit states dressed with non-trivial
scalar asymptotics, see again the next section 4.1.5. The index correspond-
ing to the first qubit transforms as a doublet under the extra Ehlers SL(2).
Note that the scalar charges are singlets under the Ehlers symmetry: the
adjoint 28 of SO(4, 4), where Q lives in, decomposes under the maximal
subgroup SL(2)⇥4

U = SL(2)Ehlers⇥ (SL(2)⇥3

U ) as 28 = (3, 1)� (1, 9)� (2, 8).

4.1.5 Dealing with scalar asymptotics

Here we consider explicitly the case of general asymptotic values Xi and
Yi of the moduli. We expand the "dressed" charge matrix defined in (4.26)
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using (4.23) as

Q = qH
⇤

H
⇤

+ qE
⇤

E
⇤

+ qF
⇤

F
⇤

+ qEQIE
QI + q

EPIEP I
+ qFQIF

QI + q
FPIFP I

,
(4.48)

Note that in general this matrix does not live in the 16 dimensional four
qubit subspace corresponding to the first line of (4.13). However, we will
soon see that there is always a 4d U-duality transformation which rotates it
back into this subspace. The part in sl

⇥4

2 U reads as

Q� = 2MH
0

+ 2Np
0

+
3X
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i

Fi

�
,

(4.49)
and hence the Ri matrices of (4.44) obtain the following dressing

Ri =

0@ ⌃i � ⌅iXi

Y 2

i
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⌅iX2

i

Y 2

i

� ⌅i

Y 2

i
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Y 2

i

1A . (4.50)

The four qubit state in (2, 2, 2, 2)U is

Q
+

= qEQIE
QI + q

EPIEP I
+ qFQIF

QI + q
FPIFP I

. (4.51)

The amplitudes corresponding to the first three qubit state (see (A.7)) are
unchanged✓
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(4.52)
On the other hand the second three qubit state✓
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(4.53)

has the following dressing

 
1ijk = D(1)

ii0 D
(2)

jj0D
(3)

kk0 0i0j0k0 , (4.54)

or equivalently,
| 

2

i = (D(1) ⌦D(2) ⌦D(3))| 
1

i, (4.55)

with
D(i) =

1

Yi

✓
Xi �X2

i � Y 2

i
1 �Xi

◆
. (4.56)

This is the generalization of the relation (4.47) and shows that the pair of
three qubit states are related by a moduli dependent SL(2)3⇥U transforma-
tion.

Now we can also relate the charge matrix of an arbitrary solution through
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U-duality to an auxiliary charge matrix with trivial scalar asymptotics. In-
deed, looking at (4.14) it is manifest that we can remove the scalar hair from
the coset element V by the U-duality transformation V 7! VJ �1 where

J = e�
1

2

P
i log YiHie�

P
i XiEi ⌘ V(0), (4.57)

is the SO(4, 4) matrix corresponding to the SL(2)⇥3

U element

J
1

⌦ J
2

⌦ J
3

2 SL(2)⇥3

U , Ji =
1p
Yi

✓
1 �Xi

0 Yi

◆
. (4.58)

Notice that due to (4.37) this transformation does not require a local com-
pensator to go back to the Iwasawa gauge with V . One may check with
explicit computation that the asymptotic value of the coset element (4.24)
indeed satisfies

J#J = M(0). (4.59)

As a consequence, for any general charge matrix Q we may define a duality
transformed one

Q̃ = JQJ �1, (4.60)

which corresponds to a black hole with trivial moduli. From (4.28) it is
immediate that the projected Mauer-Cartan form expands as

P⇤ =
1

2
Q̃d⇢+O(⇢), (4.61)

and hence Q̃ is inside the 16 dimensional subspace (2, 2, 2, 2) spanned by
the first line of (4.13). To obtain the explicit expression for Q̃ we use the
relations

D(i) = J�1

i

✓
0 �1
1 0

◆
Ji, Ri = J�1

i
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�⌅i
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�⌃i

!
Ji (4.62)

to relate the auxiliary charges of Q̃ to the physical ones of Q. Following 4.1.4
we deduce that the dyonic charge vectors | ̃

1,2i of Q̃ are expressed with the
physical charges | 
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i as
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(4.63)

We see that the vectors | ̃
1,2i are indeed related as in (4.47) which is valid

only for the trivial moduli. For the scalar charges one has

R̃i = JiRiJ
�1

i ⌘
 

⌃i �⌅i
Yi

�⌅i
Yi
�⌃i

!
. (4.64)

Since the entropy of black holes is blind to the 4d U-duality transformation
(4.60) we obtained the result that for any asymptotics we may calculate
the entropy by just using the formula for canonical moduli with replacing
the dyonic charges by (J

1

⌦ J
1

⌦ J
3

)| 
1

i and scaling the scalar charges as
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⌅i 7! ⌅i
Yi

, i.e.

S(Xi, Yi, | 1

i,⌃i,⌅i) = S
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◆
.

(4.65)

4.1.6 The most general non-extremal single center black hole so-
lution

Here we give a short review of some of the results and the solution gener-
ating technique presented in [22]. We have seen that if M is a solution to
the equations of motion then so is h#Mh. This fact can be used to generate
new solutions from a known seed. This method is used by the authors of
[22] to find the most general single centered stationary black hole solutions
of the STU model. They chose the four dimensional Kerr-Taub-NUT metric
as their seed with mass m, NUT charge n and angular momentum J = ma
(here a is a parameter). This solution can be given in terms of the 3d coset
language as follows[76, 22]. The 3d metric hab is

ds2
3d

=
RU
a2

d�2 + (R� U)
✓

dr2

R
+

du2

U2

◆
, (4.66)

where u = n+ a cos ✓, � and ✓ are the usual angular coordinates and

R = r2 + a2 � n2 � 2mr, U = a2 � n2 � u2 + 2nu. (4.67)

The coset matrix is expressed as

MKTN =
1

R� U⇥0BBBBBBBBBB@

R�U 0 0 0 0 0 0 0

0 R�U 0 0 0 0 0 0

0 0 r2+u2

0 0 0 0 2(mu�nr)
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0 0 �2(mu�nr) 0

0 0 0 0 R�U 0 0 0

0 0 0 0 0 R�U 0 0

0 0 0 �2(mu�nr) 0 0 (r�2m)

2

+(u�2n)2 0

0 0 2(mu�nr) 0 0 0 0 (r�2m)

2

+(u�2n)2

1CCCCCCCCCCA
.

(4.68)
This solution is then charged up with the group element[22]

h = e�
P

I �Ik
PI

e�
P

I �Ik
QI , (4.69)

as
M = h#MKTNh. (4.70)

The next thing we need to know is how the physical charges of the black
hole are expressed with the 11 parameters m,n, a, �I , �I . Without J , there
are all together 16 asymptotic charges in Q, which can be expressed in terms
of 10 seed & charge parameters, m, n, �I , �I . Therefore, the scalar charges
are not independent of M , N and the dyonic charges, but we will keep
them explicit until section 4.1.9. Notice though that when we turn on the
asymptotic moduli Xi and Yi this black hole is described by 16 independent
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parameters, which is the number of components in the auxilary charge ma-
trix Q̃ of (4.60). Therefore, there is a sense in which we can think of the
scalar charges as being independent variables: we exchange the moduli de-
pendence for them.

We quote the formula for the mass and the NUT charge

M = µ
1

m+ µ
1

n, N = ⌫
1

m+ ⌫
2

n, (4.71)

where µ
1

, µ
2

, ⌫
1

, ⌫
2

are functions only of �I , �I and are given explicitly as
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, ⌫
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= ◆�D, (4.73)

with

◆ = c�1234c�1234 + s�1234s�1234 +
X
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c�IJ
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X
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c�1234
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c�IJ

s�IJ
c�IJ

c�1234.
(4.74)

Here the notation is resolved as follows: c�I = cosh �I , s�I = sinh �I and the
same for �I . Multiple indices denote that one should take the product of
the hyperbolic functions e.g. c�IJ = cosh �I cosh �J . The rest of the charges
can be obtained through the formulae

@2M

@�I
= QI ,

@2N

@�I
= �P I , (4.75)
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(4.78)

Note that these identities are simple consequences of the fact that we have
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defined the charging up element h with the �I parameters being on the
right. Therefore, for the charge matrix Q = h#QKTNh one has

@Q

@�I
= [kQI , Q], (4.79)

and hence taking the �I derivative of a component of Q in some basis just
amounts to multiplying with the adjoint representation of kQI in the same
basis. We have used here that h is generated by the subalgebra in the second
line of (4.13) and hence we have h# = h�1.

After reconstructing the 4d solution the Bekenstein-Hawking entropy
of the black hole can be calculated. It reads as[22]

S = 2⇡(
p
�+ F +

p
�J2 + F ), (4.80)

where � = � 1

16

HDet( ijk) is the quartic invariant (hyperdeterminant) of
(1.24) formed from the dyonic charges via (4.46) and F is expressed with
the seed and charge parameters as

F = (m2 + n2)(m⌫
2

� n⌫
1

)2. (4.81)

To obtain asymptotically flat black holes one can cancel the NUT charge by
setting n = �m⌫

1

⌫
2

.

4.1.7 The F -invariant

The aim of this section is to construct an expression for the quantity F ap-
pearing in the entropy formula (4.80) in terms of the asymptotic charges
of the black hole. In general, we expect F to be a very complicated func-
tion, but we know that it has to be invariant under the four dimensional
U-dualtity group SL(2)⇥3

U . This is because the quantized version of this
symmetry is expected to be a symmetry of the full string theoy spectrum[77]
and the black hole entropy only counts the number of states with a given set
of charges. As all other quantities appearing in the entropy are U-duality
invariants, the quantity F has to be an U-duality invariant as well. Our
strategy to obtain an expression for F is then the following. We construct
the polynomial duality invariants which can be formed from the asymp-
totic charge vector Q of (4.29). It turns out that there are only a reasonable
amount of these invariants with a homogeneous degree agreeing with that
of F . Then we take linear combinations of these invariants and find the
coefficients by requiring the expression to agree with the parametric ex-
pression of (4.81) for F .

In order to be able to write up invariants we first need to construct co-
variants with indices transforming the same way. We have seen that this
transforms under four dimensional U-duality as a (not general) vector in
9 � 8 � 8, where 9 refers to the adjoint representation, while 8 is the fun-
damental corresponding to a three qubit state. Luckily, there exists a con-
struction, called the moment map, which allows one to associate an element
transforming in 9 to a pair of vectors in 8. Unfortunately, this construc-
tion will result in an unnecessaryly large covariant algebra. We can signif-
icantly reduce this by incorporating "triality" symmetry of the STU model:
the symmetry under permutation of the three SL(2) factors. This leads us
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to consider the embedding sl

⇥3

2 U ⇢ sl

6

and to construct the moment map
in the SL(6) covariant language of three fermions with six single particle
states, which is described in great detail in section 3.4

Now recall that an unnormalized three fermion state with six modes, as
described in section 3.4, can be written as

|P i = 1

3!
Pabcp

apbpc|0i 2 ^3(C6), (4.82)

where pa are creation operators associated to some single particle basis
and the antisymmetric tensor Pabc have 20 independent components. The
SLOCC group of this system contains SL(6,C) which acts locally on the
amplitudes as

Pabc 7! Sa
a0Sb

b0Sc
c0Pa0b0c0 , S 2 SL(6,C). (4.83)

Now let us recall that we have a 6⇥ 6 matrix KP defined in (3.26), bilinear
in the amplitudes, that transforms nicely under this action

KP 7! (ST )�1KPS
T . (4.84)

There is a single independent continous invariant that we can form for
which is quartic in the amplitudes. We recall its formula here:

D(P ) =
1

6
TrK2

P . (4.85)

Note that this quantity is a measure of tripartite entanglement for the fermions,
see section 3.4.4 for details. The situation is different if we have two states
|P i and |Qi at our disposal. In this case we can define the following covari-
ants
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(4.86)

This is the polarization of (3.26). Traces of products of these define invari-
ants. In particular the fermionic Mukai pairing of section 2.4.1 can be ex-
pressed as

(P,Q) =
1

3
TrKPQ = �1

3
TrKQP =

1

3!3!
✏c1c2c3c4c5c6Pc
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4

c
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. (4.87)

Notice that, in the Clifford algebra language of section 2.4.2 we can write
these quantities as the bilinars

(KPQ)
a
b = �(P, p

anbQ). (4.88)

Now recall that we can identify three qubit states with the single oc-
cupancy states of this fermionic system, see section 3.4.3 for details. The
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identification is given by

| i 7! |P i =
1X

i,j,k=0

 ijkp
i+1pj+3pk+5|0i. (4.89)

Then, it is easy to see that a three qubit SLOCC transformation
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2

⌦ S
3

2 SL(2)⇥3

U , (4.90)

can be implemented in the language of of three fermions (4.83) by choosing

S =

0@ S
1

S
2

S
3

1A 2 SL(6,C). (4.91)

As permutations of these three 2 ⇥ 2 blocks is also in SL(6), this way we
also covariantize the triality symmetry of the STU model.

The 8 dyonic charges transform under U-duality as a three qubit state
under SLOCC. We can therefore associate covariants transforming in the
adjoint of SL(2)⇥3

U to the pair of three qubit states given in (4.46) using
(4.86) and (4.89) as

(K
11

)ab =
1

2!3!
✏ac1c2c3c4c5(P 

1

)bc
1

c
2

(P 
1

)c
3

c
4

c
5

,

(K
22

)ab =
1

2!3!
✏ac1c2c3c4c5(P 

2

)bc
1

c
2

(P 
2

)c
3

c
4

c
5

,

(K
12

)ab =
1

2!3!
✏ac1c2c3c4c5(P 

1

)bc
1

c
2

(P 
2

)c
3

c
4

c
5

,

(K
21

)ab =
1

2!3!
✏ac1c2c3c4c5(P 

2

)bc
1

c
2

(P 
1

)c
3

c
4

c
5

.

(4.92)

The main point of defining these bilinears borrowed from entanglement
theory is that they transform exactly the same way under SL(2)⇥3

U as the
scalar charge matrix

R =

0@ RT
1

RT
2

RT
3

1A =

0BBBBBB@

⌃
1

�⌅
1

0 0 0 0
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1
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3

�⌃
3

1CCCCCCA ,

(4.93)
see e.q. (4.44).

The four matrices of (4.92) can be grouped into a 2⇥ 2 block matrix Kab

transforming under the Ehlers SL(2) as 2 ⇥ 2 = 1 � 3 in its ab indices. We
note that the singlet part satisfies the relation

K
21

�K
12

=

✓X
I

(Q2

I + (P I)2)

◆
I, (4.94)

and hence only three of the Kabs give independent covariants.
Let us proceed by listing the independent primitive invariants of homo-

geneous degree less than or equal to four in the asymptotic charges, that
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can be formed by our covariants.

• Degree 1 invariants:
M, N. (4.95)

• Degree 2 invariants:
Tr(K

12

), Tr(R2). (4.96)

• Degree 3 invariants:

Tr(K
12

R), Tr(K
11

R). (4.97)

• Degree 4 invariants:

TrK2

11

, TrK2

12

, Tr(K
11

K
22

), Tr(R4). (4.98)

To reduce the set of independent invariants we have used the identities
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(4.99)
Note that we can write some well-known U-duality invariants in this

language. First of all, Cayley’s hyperdeterminant

� =
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Q
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+P 1P 2P 3P 4)+2
X
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(4.100)

is just given as

� = � 1

96
TrK2

11

= � 1

96
TrK2

22

. (4.101)

With the notations of section 3.4, we can write this as � = � 1

16

D(P ). Sim-
ilarly, the relation to the hyperdeterminant HDet( ijk) of (1.24) is just

� = � 1

16
HDet( ijk), (4.102)

where  ijk is given by (4.46). The asymptotic value of the quadratic sym-
plectic invariant I

2

is

I1
2

=
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4

X
I

(Q2

I + (P I)2) = � 1

12
TrK
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. (4.103)

The quadratic invariant

S1
2

=
1

4
Gi¯j@r⌧

i@r ⌧̄
¯i|r!1 =

1

4

X
i

(⌅2

i + ⌃
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i ), (4.104)

can be expressed as

S1
2

=
1

8
Tr(R2). (4.105)
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Now recall the formula for the F invariant in terms of the charge-up
parameters �I , �I and seed variables m and n:

F = (m2 + n2)(m⌫
2

� n⌫
1

)2, (4.106)

where ⌫
1

and ⌫
2

are the functions given in e.q. (4.73) and they do not scale
with the charges. We see that F is of homogeneous degree 4 in the charges
and we expect it to be U-duality invariant. From the 10 invariants that we
have identified at the begining of this section we can form 22 monomials
of homogeneous degree four. We can form a linear combination of these,
equate it to F and try to solve for the coefficients. The simplest way to
do this is to generate various random sets of parameters m, n, �I and �I
and try to solve the resulting numerical, linear equations simultenaously. If
this works for a considerably higher number of equations than the number
of variables, which is 22, we can probably trust our coefficients. We did
this procedure for 600 equations and we have found a single solution. The
obtained numerical coefficients have been rationalized and the result was
tested analyticaly with a computer algebra system. The result is [P.5]
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(4.107)
In the asymptotically flat case one sets N = 0 (or n = �m⌫

1

⌫
2

). In this case
the F invariant reads as
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(4.108)

where we have reintroduced the familiar U-duality invariants where it is
possible. We stress that for general scalar asymptotics one should use the
R and Kab matrices as given in section 4.1.5. It is useful to write the F
invariant without an explicit reference to the auxilary 6 dimensional repre-
sentation that we have introduced. We may employ the invariant bilinear
product of (4.87) to write

TrK
12

= 3(P 
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, P 
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),

Tr(K
12

R) = �(P 
1

, R⇤P 
2

),

Tr(K
11

K
22

) = �(P 
1

, (K
22

)⇤P 
1

),

Tr(K2

11

) = �(P 
1

, (K
11

)⇤P 
1

),

(4.109)

where we have defined the action of a Lie algebra element t 2 sl(6) on
P 2 ^3C as

(t⇤P )abc = tdaPdbc + tdbPadc + tdcPabd. (4.110)

Also, let us define the 8⇥8 matrix R̂ corresponding to R in the fundamental
representation of the U-duality group:

R̂ = RT
1

⌦ I ⌦ I + I ⌦RT
2

⌦ I + I ⌦ I ⌦RT
3

, (4.111)
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see (4.44) for the definition of Ris. Then we have TrR̂2 = 4TrR2 and
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2
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We may then rewrite the F invariant as

F = M4 +M2N2 +
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(4.113)

which will be well suited for generalization to the E
7

invariant case.
As a final remark, we note that a single centered STU back hole para-

metrized by six moduli and eight dyonic charges is expected to have five
independent U-duality invariants[78]. The reason that we have more than
this in (4.96)-(4.98) is that we treat the scalar charges as independent vari-
ables. This allowed us to turn F into a polynomial invariant.

4.1.8 E
7

invariant entropy for black holes in N = 8 supergravity

As we have mentioned all 4d black holes of maximal N = 8 supergrav-
ity can be obtained from STU black holes via U-dualities. Therefore, if we
manage to write up (4.113) with the use of E

7

invariants, we automatically
obtain the entropy formula for these black holes. This was partially done
in [P.5] and then subsequently completed in [79]. In this section we review
this generalization.

We have seen that in the STU case the charge matrix is an element of
so(4, 4) and the U-duality group SL(2)⇥3

U ⇢ SO(4, 4) acts on it through
the adjoint representation of SO(4, 4). This representation decomposes as
28 = 1� 1� 1� 9� 8� 8. There is a general way of constructing invariants
on 9�8�8 which allowed us to identify the F -invariant. In the N = 8 case
the 3d coset model is E

8(8)

/SO⇤(16) and the U-duality group is E
7(7)

. We
expect that in this case the asymptotic charges of the black hole parametrize
a Lie-algebra element Q 2 e

8

and the U-duality group E
7(7)

⇢ E
8(8)

just
acts by the adjoint action of E

8(8)

. This representation decomposes as 248 =
1 � 1 � 1 � 133 � 56 � 56 and hence the relevant representation space is
133�56�56 with 56 replacing three qubit states containing dyonic charges
and 133 replacing 9 containing the 70 scalar charges 2. The moment map
from pairs of 56 to 133 can be formulated. The construction goes as follows.
There is an E

7(7)

invariant antisymmetric bilinear form on 56, let us denote
this by h., .i. We may define an e

7

element T
 

1

 

2

associated to the pair
 

1

, 
2

2 56 by demanding

(T, T
 

1

 

2

) = h 
1

, T 
2

i, 8T 2 e

7

. (4.114)

Here,  is the Killing form on e

7

. We note that the covariants (4.86) may
be obtained in the same way from the Mukai pairing (4.87) so that this is

2Recall that in the STU case 9 contained 6 scalar charges, this is just an artifact of fixing
the scalar asymptotics.
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indeed a direct generalization of these to E
7

. Using 56 ⇠= ^2C8�^2(C8)⇤ we
may parametrize  a, a = 1, 2 with a pair of antisymmetric 8⇥ 8 matrixes:

 a =
�
(x(a))ij , y(a)ij

�
, (x(a))ij = �(x(a))ji, y(a)ij = �y(a)ji (4.115)

and using e

7

⇠= sl

8

� ^4C8 we can parametrize the generators as

T = (⇤i
j ,⌃ijkl), ⇤

i
i = 0, (4.116)

and ⌃ijkl totaly antisymmetric. We refer to appendix A.2 for the commu-
tation relations, the action of e

7

on 56 and the Killing form in terms of this
parametrization. The invariant bilinear product reads as

h 
1

, 
2

i = (x(1))ijy(2)ij � (x(2))ijy(1)ij . (4.117)

Then, using the definition (4.114) of the moment map and equations (A.21),
(A.22) and (A.23), a short excercise reveals the explicit form of the moment
map to be
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(4.118)
Note that in this formalism we have the Cartan-Cremmer-Julia invariant
expressed as
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(4.119)

The conventions of [22] are such that I
4

= 4} and } is the one that reduces
to � of (4.100) for the STU duality frame. The dyonic charges parametrize
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(4.120)
with all the remaining (x(a))ij and y(a)ij vanishing. See [80, 81] for details.
One imediately verifies that the relation to the fermionic inner product of
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e.q. (4.87) is simply
h 

1

, 
2

i = (P 
1

, P 
2

), (4.121)

and that } reduces to �.
As the next step, we have to parametrize an element R 2 e

7

with the
70 scalar charges. Denote the corresponding 56 ⇥ 56 matrix in the adjoint
representation with R. In the STU duality frame R should reduce to R̂ of
(4.111) on the eight dimensional SL(2)⇥4 invariant subspace of 56, where
the pair of (4.120) lives, and to some apriory unknown action on its com-
plement which completes it into an elment of e

7

. Such a complement part is
clearly required as one may check explicitly that for any generator T of E

7

represented in 56 the invariant TrT 4 satisfies

TrT 4 =
1

24
(TrT 2)2, (4.122)

and hence the last part of the F invariant (4.113) involving TrR̂4 cannot be
written directly in this form using R. Finding the scalar charge matrix R
requires the explicit knowledge of how the scalars parametrize the 4d coset
E

7(7)

/SU(8) and how the STU duality frame sits inside this parametriza-
tion. This program was done recently in [79]. The coset representative here
is chosen to be

V = exp
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log yi~vi · ~H
!
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�
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3

E567

�
, (4.123)

for the definitions of ~H and Eijk see appendix A.2. The vectors ~vi are3
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(4.124)

The scalars xi and yi are the scalar fields of the STU duality frame. The
scalar charge matrix R is obtained via expanding M = VTV around ⇢ =
1

r ! 0

M = M(0) +M(1)⇢+O(⇢2), (4.125)

R = (M(0))�1M(1). (4.126)

We have
TrR̂2 =

1

3
TrR2, (4.127)

3Notice that our ~v
1

is minus the one in [79]. This is to obtain a correct match of R with ˆR
on the STU subspace.
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and we also have [79]

3(TrR̂2)2 � 8TrR̂4 =

2

345

�
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p
5
p
53(TrR2)4 � 283311TrR2TrR6 + 2936TrR8

�
.

(4.128)
We can also confirm the following relation through explicit calculation:
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i. (4.129)

Now everything is in place to write the F invariant (4.113) in a manifestly
E

7

invariant way as:

F = M4 +M2N2 +
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(4.130)

4.1.9 Relations between scalar charges and physical charges

The formula (4.107) is entirely in terms of the asymptotic charges of the
black hole and is manifestly invariant under U-duality and permutation
of scalars. However, it does contain explicitly the scalar charges ⌃i and
⌅i which are not independent of M , N , QI and P I . A formula entirely
in terms of the physical charges would require solving for the functions
⌃i(M,N,Q, P ), ⌅i(M,N,Q, P ). In this section, we provide constraints that
these functions must satisfy and solve them for some special cases. We
illustrate on the example of the four electric charge Cvetič-Youm black hole
that in general it is not possible to give the F -invariant in terms of radicals
of the physical charges.

We start by describing the constraint equations. Recall, that the charge
matrix Q of (4.26) tranforms as a four qubit state (see (A.6)) under the action
of the SL(2)4⇥ spanned by the second line of (4.13). The charge-up matrix
h of e.q. (4.69) is an element of this SL(2)4⇥. We have reviewed in sec-
tion 3.6.3 that this 16 dimensional representation admits four algebraically
independent continous invariants. All of these can be checked to be pro-
portional to the appropriate power of the combination (m2 + n2) of the
seed parameters. It follows that they provide 3 independent polynomial
equations among the 16 asymptotic charges in Q. We could in principle
write up these equations in terms of the invariants of (3.117) but it is alge-
braically somewhat simpler (but equivalent) to proceed slightly differently.
Consider the characteristic polynomial of the charge matrix Q:

p(�) = det(�I �Q). (4.131)

It is clear that the characteristic polynomial is invariant under the charge
up operation and hence we have

p(�) = p
0

(�), (4.132)
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where the characteristic polynomial for the seed solution is

p
0

(�) = det(�I �QKTN )

= �4
�
�2 � 4m2 � 4n2

�
2

= �4
✓
�2 � 1

4
TrQ2

◆
2

,

(4.133)

where we have used the invariance of TrQ2 to express m2 + n2 in terms of
asymptotic charges. The two polynomials agree iff all of their coefficients
agree hence we have the following 9 polynomial equations

dk

d�k
(p(�)� p

0

(�))|�=0

= 0, k = 0, ..., 8. (4.134)

One can check that for k = 1, 3, 5, 6, 7, 8 these are trivially satisfied and
hence we are left with 3 equations. These 3 equations have linearly inde-
pendent gradients in the scalar charges which indicates a three dimensional
solution set. However, this does not tell us anything about the set of real
solutions. One can easily check that as one approaches the seed solution
by taking QI ! 0 and P I ! 0, there is only one real root satisfying the
consistency requirement ⌃i ! 0. This shows that it is possible that the
three equations are enough to determine the scalar charges uniquely. To
say something more precise about this one would need to determine at least
the real dimension of the semialgebraic set defined by these equations, but
to our knowledge, there is no method to do this to date. Instead, in the
next section we provide solutions to (4.134) for some special charge vec-
tors, where the F -invariant is known explicilty, and hence we can compare
our results with the existing literature.

Before doing so, we comment on what happens with these constraints
when one considers black holes with non-trivial asymptotic moduli. In this
case one can just replace Q in (4.131) with the auxiliary charge vector Q̃,
as readily seen from (4.60). This shows that whatever expressions ⌃i =
fi(M, | 

1

i), ⌅i = gi(M, | 
1

i) we find for trivial moduli by solving (4.134),
we can safely use them for non-trivial moduli as ⌃i = fi(M, (J

1

⌦ J
2

⌦
J
3

)| 
1

i) and ⌅i = Yigi(M, (J
1

⌦ J
2

⌦ J
3

)| 
1

i). Combine this with (4.65) to
get the expected result

F (Xi, Yi, | 1

i) = F (Xi = 0, Yi = 1, (J
1

⌦ J
2

⌦ J
3

)| 
1

i), (4.135)

which is then guaranteed to be valid as long as we can use (4.134) to solve
for the scalar charges. This is the case for the first two of the following
examples.

4.1.10 Non-extremal special cases

Klauza-Klein black hole

The Klauza-Klein black hole[82] is obtained by setting Q
2

= Q
3

= Q
4

= 0
and P 2 = P 3 = P 4 = 0 and N = 0. From the parametrization (4.75)-(4.78)
we can deduce that ⌅i = 0 and ⌃

2

= ⌃
3

= �⌃
1

in this case. We can put
this into (4.134) as an ansatz and observe that it automaticaly solves two
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equations. The third equation reads as

⌃
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�
8M2 + (P 1)2 +Q2

1

� 2⌃2

1

�
= 2M

�
(P 1)2 �Q2

1

�
. (4.136)

As expected, there is only one root that vanishes for zero charges. For this
root we have found numerical agreement between our formula

F =
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16
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, (4.137)

for the F-invarant and the complicated expression presented in [22] for the
Klauza-Klein black hole. We may further specialize by setting P 1 = 0. In
this case the above equation factorizes as

(2M + ⌃
1

)
�
Q2

1

+ 4M⌃
1

� 2⌃2

1

�
= 0. (4.138)

The physical root is ⌃
1

= M �
q
M2 + 1

2

Q2

1

. Upon substituing this into the
formula for the F -invariant we get

F =
1

64

✓
32M4 � 40M2Q2

1

�Q4

1

+ 4M(4M2 + 2Q2

1

)
3

2

◆
, (4.139)

in complete agreement with [22].

�iX0X1 supergravity black hole

Now let us consider the axion-dilaton black hole of [83]. We set the electric
and magnetic charges pairwise equal Q

1

= Q
4

, Q
2

= Q
3

, P 1 = P 4 and
P 2 = P 3. We also set the NUT charge to zero. From (4.75)-(4.78) we observe
that in this case we have ⌃

2

= ⌃
3

= ⌅
2

= ⌅
3

= 0. Using this as an ansatz in
(4.134) we are left with a single equation

2(P 1)2
�
2M⌃

1

+ (P 2)2 �Q2

1

�Q2

2

�
+ 2Q

2

�
4M⌅

1

(P 2) + 2MQ
2

⌃
1

+Q2

1

Q
2

�
= 4M2⌅2

1

+ 4M2⌃2

1

+ (P 1)(8M⌅
1

Q
1

� 8(P 2)Q
1

Q
2

)

+ 2(P 2)2
�
2M⌃

1

+Q2

1

+Q2

2

�
+ 4MQ2

1

⌃
1

+ (P 1)4 + (P 2)4 +Q4

1

+Q4

2

,
(4.140)

which admits a single real solution

⌃
1

=
(P 1)2 � (P 2)2 �Q2

1

+Q2

2

2M
,

⌅
1

=
P 2Q

2

� P 1Q
1

M
.

(4.141)

This agrees with the axion-dilaton charge obtained in [83]

⌥ = i(⌅
1

� i⌃
1

) = �(Q
1

+ iP 1)2 + (�P 2 + iQ
2

)2

2M
. (4.142)

Upon inserting this into our formula (4.107) for the F -invariant we obtain

F =
1

16

�
4M2 � (P 1 � P 2)2 � (Q

1

�Q
2

)2
� �

4M2 � (P 1 + P 2)2 � (Q
1

+Q
2

)2
�
,

(4.143)
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in complete agreement with [22, 83]. We note here that when the single
modulus of this model is turned on we have to replace the charges accord-
ing to (4.135). Explicitly, this leads to the following replacement rule✓

P 1

Q
1

◆
7! 1p

Y
1

✓
1 �X

1

0 Y
1

◆✓
P 1

Q
1

◆
,✓

Q
2

�P 2

◆
7! 1p

Y
1

✓
1 �X

1

0 Y
1

◆✓
Q

2

�P 2

◆
,

(4.144)

which, again, agrees with [83].

Dilute gas limit

We can recover the dilute gas limit of [84] as well. In this limit, we have the
following constraint among the magnetic charges

P 1 + P 2 + P 3 + P 4 = 0. (4.145)

Provided that this is true, all three equations of (4.134) can be solved exactly
by setting

⌃
1

= �2M +Q
2

+Q
3

, ⌃
2

= 2M �Q
2

�Q
4

, ⌃
3

= 2M �Q
3

�Q
4

,

⌅
1

= P 2 + P 3, ⌅
2

= �P 2 � P 4, ⌅
3

= �P 3 � P 4.
(4.146)

These roots cannot be physical for all values of the charges as for vanishing
charges we must have ⌃i = 0 . However, in the dilute gas limit, the charges
are large and hence this requirement is outside of the region of validity.
Define the excitation energy as �M = M �MBPS = M � 1

4

(Q
1

+Q
2

+Q
3

+
Q

4

). We obtain the dilute gas limit of F by substituing (4.146) into (4.107)
and scaling Qi ! µ2Qi, i = 2, 3, 4 and P I ! µP I , while keeping �M fixed.
Upon µ!1 the leading order µ8 in F vanishes. The next to leading order
contribution is the coefficient of µ6 which is

F
0

=
1

2
�MQ

2

Q
3

Q
4

, (4.147)

which agrees with the result of [84].

Four charge Cvetič-Youm black hole

Here we set all the magnetic charges and the NUT charge to zero but al-
low for arbitrary electric charges[85]. We have all ⌅i = 0 but we still need
to solve for all the ⌃i. Instead of trying to solve the constraint equations
we can simply use that as all �I = 0, the equations for the �I derivatives
(4.75)-(4.78) give the full Jacobian for the change of variables from boost pa-
rameters to asymptotic charges. The best thing to do is to write differential
equations for the functions QI(2M,⌃i) because these are remarkably easily
solved. The solution is such thatq

4Q2

I + CI =
@QI

@�I
, (4.148)
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where the right hand side is understood to be given through (4.76). The
CI are constants of integration. Comparing with the actual parametrization
reveals that CI = 4m, I = 1, ..., 4. The solution for the scalar charges is then
easily obtained to be

⌃
1

= �1

2

q
m2 +Q2

1

+
1

2

q
m2 +Q2

2

+
1

2

q
m2 +Q2

3

� 1

2

q
m2 +Q2

4

,

⌃
2

=
1

2

q
m2 +Q2

1

� 1

2

q
m2 +Q2

2

+
1

2

q
m2 +Q2

3

� 1

2

q
m2 +Q2

4

,

⌃
3

=
1

2

q
m2 +Q2

1

+
1

2

q
m2 +Q2

2

� 1

2

q
m2 +Q2

3

� 1

2

q
m2 +Q2

4

.

(4.149)
Plugging these expressions into the formula (4.107) for the F -invariant we
recover the expression given in [22]. This expression still depends on the
seed parameter m. It is determined in terms of the physical charges through
the equation

M =
1

4

✓q
m2 +Q2

1

+
q

m2 +Q2

2

+
q
m2 +Q2

3

+
q
m2 +Q2

4

◆
. (4.150)

We happily acknowledge that the right hand side is greater than 1

4

�
Q

1

+
Q

2

+Q
3

+Q
4

�
, and hence the requirement of solvability is M �MBPS . Note

that this example illustrates that it is in general not possible to express the
F -invariant in terms of radicals of the physical charges. Indeed, one may
rewrite (4.150) as a system of five polynomial equations as M = 1

4

P
4

I=1

xI
and x2I = m2+Q2

I for the five variables m2 and xI . Then one may use some
algorithm to cast this system into regular chains. The first element of the
chain can be chosen to depend only on m2 and then to aquire m we need to
consider only this equation and forget about the others4. We do not present
this equation here due to its length but it is a general, fifth order polynomial
equation for m2. Then, due to the Abel-Ruffini theorem, one cannot have
an expression for m in terms of radicals of the coefficients.

4.1.11 Extremal limits and the black hole/qubit correspondence

As we have already mentioned, the auxilary charge vector Q̃ of (4.60) sits
always inside the 16 dimensional four qubit subspace spanned by the first
line of (4.13). It makes sense then to compare the classification of single
centered STU black holes under 3d dualities to classification of four qubits,
briefly reviewed in 3.6.3. This program was carried out for extremal solu-
tions in [23].

Let us first consider the general nonextremal solutions reviewed in sec-
tion 4.1.6. We have mentioned before that the four independent four qubit
invariants which are also permutation invariants are all proportional to

4Note that not all of the roots of this equation are solutions to (4.150).
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m2 + n2. Explicitly, the invariants of (3.117) read as

I
2

= �6(m2 + n2) = �3

8
TrQ2,

I
6

= �3

2
(m2 + n2)3 = � 3

2 · 46 (TrQ2)3,

I
8

=
3

4
(m2 + n2)4 =

3

49
(TrQ2)4,

I
12

=
3

16
(m2 + n2)6 =

3

414
(TrQ2)6.

(4.151)

We see something very interesting. Though this state is in the generic
semisimple orbit Gabcd, there is only a single four qubit SLOCC class that it
intersects. Indeed, recall from section 3.6, that two semisimple states | 

1

i
and | 

2

i are in the same GL(2)⇥4 class if there is a nonzero number � such
that Ip(| 1

i) = �pIp(| 2

i) for the invariants [31]. In this case this nonzero
number is just

p
TrQ2. We can write the canonical form of this state in a

very convenient way.

|QKTN i =
i

4

p
m2 + n2

�
|0000i � |0011i+ |0101i � |0110i

� |1001i+ |1010i � |1100i+ |1111i
�
,

(4.152)

which is just the canonical form of the semisimple family Gabcd of table 3.6
with parameters a = b = 0 and d = c = i

2

p
m2 + n2 = i

8

p
TrQ2. One

can easily check that this choice reproduces (4.151) which, according to the
discussions in 3.6.3, ensures that the two states are on the same SL(2,C)⇥4

orbit5,6. It is in fact not unexpected that not all charge vectors correspond
to single centered black hole solutions, we will comment more on this soon.
However, it is a very interesting question what kind of other stationary
solutions of the STU model we have for charge vectors which are not on
this particular semisimple orbit. A strongly related question is the follow-
ing. The 3d coset model in maximal N = 8 supergravity is E

8(8)

/SO⇤(16)
so that the charge vector in this case can be regarded as an even or odd
fermionic state with eight single particle modes (see sec. 3.6), with SO⇤(16)
being a real form of the extended SLOCC group of this system, replacing
the SL(2,R)⇥4 of four qubits. We have seen in sec. 3.6 that the semisim-
ple orbits are parametrized by eight numbers instead of four and that the
mapping between qubit classes and fermion classes is only injective but not
every fermionic class can be represented as four qubits. This suggests that
there could be some nonextremal stationary solutions in N = 8 supergrav-
ity which are invisible from the N = 2 point of view.

Now let us move on to discuss the extremal limits. A black hole is called
extremal if it has vanishing Hawking temperature. This condition is equiv-
alent with the requirement that the outer and inner horizons are at the same
location, thus forming an infinite throat for the black hole. The inner and

5Of course, this is only true if QKTN doesn’t have a nilpotent part. It can be easily
checked that this is the case.

6Notice that we can elliminate the complex coefficients by acting with
✓

i 0

0 �i

◆
on

any one of the four qubits.
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outer horizons are located at[22]

r± = m±
p
m2 + n2 � a2, (4.153)

where m, n and a are parameters of the seed solution. Their difference is
given by

r
+

� r� = 2
p
m2 + n2 � a2 =

1

2

s
TrQ2

✓
1� J2

F

◆
, (4.154)

We see that there are two ways to get an extremal solution: we either set
J2 = F or TrQ2 = 0. The first case corresponds to fast rotating extremal
solutions which are important e.g. in Kerr/CFT [86]. We will not discuss
these solutions here, the interested reader should consult [22]. We just note
that their entropy (4.80) is clearly given by

S = 2⇡
p
�+ J2. (4.155)

The latter case corresponds to nilpotent charge vectors. Indeed, it is clear
from (4.151) that all the invariants vanish and hence the four qubit state
corresponding to Q̃ is nilpotent, therefore, it is in one of the eight7 nilpotent
classes of table 3.6. The identifiaction of these classes with explicit extremal
supergravity solutions was done in [23], see table II of that reference. Here
it is claimed that the nilpotent orbits La

4

=0

, L
0

5�¯

3

and L
0

7�¯

1

of table 3.6 can-
not be obtained as a limit of the general nonextremal black hole. It was later
revealed in [87] that these three orbits in fact correspond to extremal mul-
ticenter solutions, see also [88]. This shows that some charge vectors cor-
responding to stationary solitions may not describe single centered black
holes. Along these lines, it would be interesting to learn more about what
nonextremal configurations the charge vectors in different semisimple or-
bits than the one defined by (4.151) may correspond to. The remaining five
nilpotent orbits corresponding to single centered black holes are summa-
rized in table 4.1.

Labc
2

doubly-critical 1

2

BPS
La

2

b
2

critical 1

2

BPS and non-BPS
La

2

0

3�¯

1

lightlike 1

2

BPS and non-BPS
Lab

2

large non-BPS
L
0

3�¯

1

0

3�¯

1

large 1

2

BPS and small non-BPS

TABLE 4.1: Nilpotent orbits corresponding to single cen-
tered extremal black holes. For representative states, take
the corresponding representative of table 3.6 and set all the

parameters to zero.

Let us examine closer the entropy of extremal black holes with nilpotent
charge vectors. The inner and outer horizon entropies are [22]8

S± = 2⇡(
p
�+ F ±

p
F � J2), (4.156)

7There are eight nilpotent classes under the action of S
4

nSL⇥4

2

which split into 16 classes
when only the action of SL⇥4

2

is considered.
8These are just A±

4G
.
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hence naively, in the an extremal limit we must have S
+

= S�, i.e.p
F � J2 = 0, (4.157)

so that F = J2 or F = J = 0. We have already met the first case. The second
case corresponds to static large 1

2

BPS black holes for which Q̃ 2 L
0

3�¯

1

0

3�¯

1

.
For these black holes

S = 2⇡
p
�, (4.158)

thus they are only possible with charges satisfying� > 0. We may ask what
about extremal black holes where the charges give � < 0? The answer is
that we may only conclude S

+

= S� at extremality when r
+

= r� 6= 0. We
may instead formally take a limit where we first set m = 0 and then take
a nilpotent limit of Q̃ [78]. This way, in the end we have r

+

= r� = 0 but
during the limiting procedure r

+

= �r� which implies9 S
+

= �S�, i.e.

F = ��. (4.159)

These are the so called slow rotating non-BPS black holes with entropy

S = 2⇡
p
��� J2. (4.160)

For this branch, we clearly need to have � < 0 and J2  |�|. These solu-
tions comprise the nilpotent orbit Lab

2

. The remaining three orbits of table
4.1 correspond to small black holes, which by definition means that they
have vanishing horizon area.

4.1.12 BPS attractors and the black hole/qubit correspondence

Notice that the extremal entropy formulae (4.155), (4.158) and (4.160) de-
pend only on � and J , both of which are invariant under 4d duality. The
dependence on the scalar hair can be taken into account via a duality trans-
formation as we have described in e.q. (4.65). But all scalar charge depen-
dence have explicitly dropped out from all the extremal entropies and the
quartic invariant � of the charges is clearly invairant under the action of
J
1

⌦ J
2

⌦ J
3

. We can conclude that the entropy of extremal black holes is
independent of the asymptotic values of the moduli. Behind this phenomenon
is the attractor mechanism of extremal black holes[89, 90] which ensures that
the moduli stabilize on the horizon to values depending only on the dyonic
charges and not on their values at infinity[91, 92]For static extremal black
holes, the entropy can be universally written as S = 2⇡

p
|�|. Using equa-

tion (4.102) and the definition (1.23) of the three tangle measuring tripartite
entanglement for three qubits, the static extremal entropy reads as

S =
⇡

2

q
|HDet( ijk)| ⌘

⇡

4

p
⌧ABC . (4.161)

9Notice that the entropy formula (4.156) has a Cardy form
p
NL+

p
NR. We see that there

are two qualitatively district extremal limits: setting the right moving sector to its vaccum
NR = 0 gives the 1

2

BPS and the overspining extremal limits while when the left movers are
in the vacuum NL = 0 we end up with the non-BPS extremal branch.
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This is the original observation [14] which led to the study of the relation-
ship between simple entangled systems and stringy black holes. The attrac-
tor mechanism was later related to an entanglement distillation procedure
in this language[93, 94].

Let us elaborate on this a little more. To describe the attractor equa-
tions of the STU model, which give the values of the scalar moduli ⌧ i,
i = 1, 2, 3 on the horizon, it is convenient to think about the STU model (4.1)
as the bosonic sector of type IIB supergravity compactified on the Calabi-
Yau threefold T 2 ⇥ T 2 ⇥ T 2. Calabi-Yau three-folds naturaly arise in super-
tring theory as the six dimensional manifolds preserving upon compactifi-
cation 1/4 of the 32 supercharges of the ten dimensional parent theory. We
will have a little more to say about Calabi-Yau manifolds in the next section,
for now, it is enough for us that they are complex (Kähler) manifolds with
a nowhere vanishing holomorphic 3-form ⌦. For the case of our interest,
T 2 ⇥ T 2 ⇥ T 2, this 3-form can be explicitly written as

⌦ = eK/2dz1 ^ dz2 ^ dz3, (4.162)

where zi = ui+⌧ ivi are the holomorphic coordinates10 of the tori, i = 1, 2, 3.
The numbers ⌧ i parametrize the space of complex structure deformations
of T 2 ⇥ T 2 ⇥ T 2 which is H(2,1) i.e. the space of twice holomorphic, once
antiholomorhic harmonic 3-forms. This space is Kähler with potential

K(⌧, ⌧̄) ⌘ � log

✓
i

Z
T 2⇥T 2⇥T 2

⌦ ^ ⌦̄
◆

= � log(8y
1

y
2

y
3

), (4.163)

where yi = Im⌧ i. Upon compactification of IIB supergravity to T 2⇥T 2⇥T 2

the complex structure moduli ⌧ i become 4d fields which are identified with
the fields (4.2) of the STU model. Now we are in position to write down the
BPS attractor equations:

2Im
�
Z̄(�)⌦

�
|
horizon

= �, (4.164)

where � is a moduli independent closed 3-form encoding the dyonic charges11

of the black hole, QI and P I . The function

Z(�) =

Z
T 2⇥T 2⇥T 2

� ^ ⌦, (4.165)

boils down to the N = 2 central charge when evaluated at asymptotic in-
finity. However, we need to plug its value at the horizon into (4.164) which
is different. It satisfies

|Z(�)|2|
horizon

= e�2U |
horizon

⌘ S

⇡
= 2
p
�. (4.166)

Notice that (4.164) can be explicitly written as

� = �i(Z̄(�)eK/2dz1 ^ dz2 ^ dz3 � Z(�)eK/2dz̄1 ^ dz̄2 ^ dz̄3), (4.167)
10The antiholomorphic coordinates are obviously z̄i = ui

+⌧̄ ivi and the complex structure
J is defined implicitly via J(dzi) = idzi and J(dz̄i) = �idz̄i

11The 3-form � corresponds to the Poincaré dual of the 3-cycle that a bunch of D3 brane
wraps. Indeed, extremal BPS STU black holes may be interpreted as supersymmetric bound
states of D3 branes in the IIB duality frame [95].



108 Chapter 4. Stringy black holes and entanglement

which looks like a 3-qubit GHZ state provided we identify

|000i = eK/2dz1 ^ dz2 ^ dz3, |111i = eK/2dz̄1 ^ dz̄2 ^ dz̄3. (4.168)

There is a precise sense in which this identification is true: the space of har-
monic 3-forms on T 2⇥T 2⇥T 2 is 8 dimensional and has a natural Hermitian
inner product under which the above vectors are orthonormal, see [15] for
further details on this.

The attractor equation (4.164) may be solved in the following way. We
have a dual 3-form �̂ defined as the derivative of |Z(�)|2 via

|Z(�+ ✏�)|2 = |Z(�)|2 + ✏

Z
�̂ ^ � +O(✏2). (4.169)

Clearly,
�̂ = �2Re(Z̄(�)⌦), (4.170)

so that
2Z̄(�)⌦ = ��̂+ i�. (4.171)

This form will be very useful in the next section where we explain the rela-
tion to Hitchin functionals. For now, it is enough to see that it indeed fixes
the moduli in terms of the charges. Indeed, picking a basis of 3-cocycles ✓A,
A = 1, ..., 8 in H3(T 2⇥T 2⇥T 2) with intersection matrix IAB =

R
✓A^✓B we

may expand ⌦ = XA✓A and � = �A✓A. Then, the projective12 coordinates
on the complex structure moduli space can be extracted as

tA =
XA

X0

=
2IAB@

�

B

p
�+ i�A

2I0B@
�

B

p
�+ i�0

. (4.172)

With an appropriate choice of ✓A we can have ti+1 = ⌧ i for i = 1, 2, 3 and
�A = (QI , P J).

4.2 Hitchin’s functionals and measures of entanglement

In this section we briefly discuss Hitchin functionals, which define form
theories on certain manifolds. As we will see, they have a rich and fruitful
connection to physics as they are related to topological strings, BPS black
holes[96] and fermionic entanglement theory[P.1]. In fact, much of the work
in chapter 3 was done via borrowing some formalism from Hitchin’s origi-
nal papers[97, 98]. Also, the introduction of the extended SLOCC group of
chapter 2 was largely inspired by the existence of generlized Hitchin func-
tionals[99]. Despite of this, we will take a reversed route in this section and
rely heavily on notions introduced in chapters 2 and 3 and introduce these
functionals via the discussed fermionic entanglement measures.

At the very heart of the possibility of defining Hitchin’s functionals is
the already familiar concept of prehomogeneous vector spaces. Here, the
pair (G, V ) which needs to be prehomogeneous is the local diffeomorphism
group13 G = GL(d,R) and the space of q-forms V = ^qTpX⇤ at a point p
of the manifold X . Indeed, when this space is prehomogeneous, there is a

12The change in the overal normalization of ⌦ is not a complex structure deformation.
13Or generalized local diffeomorphism group, see later.
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single scalar function that we can associate to our q-form which is a natural
candidate to define an action functional. The fact that q-forms for which this
invariant is nonzero lie in a dense, open orbit ensures that the variational
problem is well-posed. This property of q-forms is called stability in the
corresponding literature.

Another unifying theme of the manifolds with Hitchin functionals is
the notion of special holonomy, which has its roots in the requirement that
the manifold is capable of preserving supersymmetries. Special holonomy
means that the holonomy group of the oriented Riemannian manifold X is
restricted

Hol(X) ( SO(d). (4.173)

This requirement can be characterised via p-forms which are invariant un-
der Hol(X). For manifolds which admit a covariantly constant spinorr⇠ =
0 this is automatically satisfied by the p-forms

(⇠†�i
1

...�ip⇠)e
i
1 ^ ... ^ eip , (4.174)

where ei are the veilbein. This turns out to be nontrivial for a very restricted
set of cases. For example, in the case of Calabi-Yau three-folds, the invari-
ant p-form is just the holomorphic 3-form ⌦ and the holonomy group is
SU(3) ( SO(6).

4.2.1 Six dimensions

Three forms

Let us consider the three fermion states with six single particle modes of
section 3.4.2. These are elements of the vector space ^3C6. Now consider
a six dimensional orientable manifold X and its cotangent space TpX⇤ at
a point p which is a six dimensional real vector space. We may consider
differential 3-forms

% =
1

3!
%abcdxa ^ dxb ^ dxc 2 ^3TpX

⇤. (4.175)

We may loosely think about these as three fermion states (3.32) with real and
position dependent amplitudes. The local diffeomorphism group GL(6,R) ⇢
GL(6,C) acts on the amplitudes of % as a real SLOCC transformation, see
(2.42,4.83). Recall, that the quartic invariant of (3.34), measuring the tripar-
tite entanglement, transforms under this action as

D(%) 7! (detG)2D(%), G 2 GL(6,C), (4.176)

and hence
p
D(%) transforms under diffeomorphisms the same way as a

volume form. This can be made more precise by considering the 3-form %̂
corresponding to the dual three fermion state of e.q. (3.30). We clearly have

1

2
%̂ ^ % =

p
�D(%)dx1 ^ ... ^ dx6, (4.177)

which can be integrated over X to define the Hitchin functional

VH(%) =
1

2

Z
X
%̂ ^ %. (4.178)
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Now under the action of GL(6,R) the stable GHZ class of table 3.2 splits
into two classes, one with D(%) > 0 and one with D(%) < 0. Recall, that
for static extremal STU black holes, the former corresponds to non-BPS and
the latter to BPS charge configurations, see section 4.1.11. This is the reason
why we have inserted an extra minus sign under the square root in (4.177):
we want % to be in the cohomology class of a BPS wrapping configuration.
Indeed, as we shall see, there is a sense in which we can think about X as
the extra dimensions of our type IIB compactification over the horizon of a
BPS black hole and a critical point % of (4.178) as a closed 3-form encoding
the warping configuration of the corresponding D3 branes. Now we quote
one of the central results of [97].

Theorem: Let X be an oriented closed six dimensional manifold and
% a closed (d% = 0) real 3-form. Then the following two statements are
equivalent.

• D(%) < 0 at every point of X and % is a critical point of the functional
(4.178) in a fixed [%] cohomology class.

• The almost complex structure J% =
K%p
�D(%)

, J2

% = �I is integrable and

⌦ = % + i%̂ is a nowhere vanishing holomorphic (with respect to J%)
3-form, hence X is a Calabi-Yau manifold.

For the definition of the 6 ⇥ 6 matrix K%, we again refer to section 3.4.2.
We omit the full proof which can be found in [97]. The basic ingedients are
the following. Since VH(%) is homogeneous of degree 2 in % (see (4.177)), its
derivative satisfies14

VH(%) =
1

2

Z
�VH(%)

�%
^ ⇢, (4.179)

so that by (4.178) we have �VH(%)
�% = %̂. Now varying (4.178) as % 7! % + d↵

and using the previous equation along with the fact that X is closed leads
to the Euler-Lagrange equation

d%̂ = 0, (4.180)

which is equivalent with d⌦ = 0. Equation (3.38) and the discussion around
it shows that ⌦ is a (3, 0) form with respect to J%. Then @̄⌦ = d⌦ = 0 shows
that it is indeed holomorphic, while the condition D(%) < 0 ensures that it
is nowhere vanishing.

Note that while it is in general a very hard task to explicitly extract
the Calabi-Yau metric of X , the existence of the nowhere vanishing holo-
morphic three-form ⌦ guarantees that a unique such metric exists due to
Yau’s theorem [100, 101]. This way we see that critical points of (4.178)
associate Calabi-Yau metrics to cohomology classes [%] 2 H3(X). This is
the natural generalization of what the attractor mechanism does: there,
we have fixed X to be Calabi-Yau but we let the metric vary in the mod-
uli space of all Calabi-Yau metrics on X . The moduli is then fixed by the
eight charges of the black hole which encode the cohomology class of �,
dual to the 3-cycles that the D3 branes wrap. We can in fact see explic-
itly that the formula ⌦ = % + i%̂ gives the solution to the attractor equa-
tions: it is just the same as equation (4.171)! There, �̂ is the derivative of

14To derive this, write VH(�%) = �2VH(%), take the � derivative and set � = 1.



4.2. Hitchin’s functionals and measures of entanglement 111

|Z(�)|2|
horizon

= 2
p
� ⌘ 1

2

p
�D(�) so that we really have %̂ = �̂ provided

that % = �. Note that an overall rescaling of ⌦ in (4.171) by the coordinate
independent factor �i2Z̄(�) does not change the complex structure of X .
Actually, deriving the attractor equation (4.164) from a variational problem
is an old idea: they can be obtained via the extremalisation of the black hole
potential [102]

VBH =

Z
T 2⇥T 2⇥T 2

� ^ ?�, (4.181)

with respect to the moduli ⌧ i. Here ? denotes the Hodge dualization of the
tori T 2 ⇥ T 2 ⇥ T 2 with moduli ⌧ i. At attractor values one has ?� = �̂ and
VBH agrees with twice the Hitchin functional (4.178). As at the attractor
point we also have VBH = 2|Z(�)|2|

horizon

= 4
p
�, we see that the critical

value of the Hitchi functional gives the BPS black hole entropy

S = 2⇡
p
� = ⇡VH(⇢c). (4.182)

Four forms

There is an analoguos functional in six dimensions for closed 4-forms � [96].
The stability condition in this case is that the single invariant

C(�) = 1

384
�a

1

a
2

b
1

b
2

�a
3

a
4

b
3

b
4

�a
5

a
6

b
5

b
6

✏a1a2a3a4a5a6✏b1b2b3b4b5b6 , (4.183)

is nowhere vanishing. The square root of this invariant transforms as a
volume form. In fact, the stability condition can be recast as the requirement
that there is a 2-form k such that � = 1

2

k ^ k and then we have

1

6
k ^ k ^ k =

p
C(�)dx1 ^ ... ^ dx6. (4.184)

The corresponding Hitchin functional is

VS(�) =
1

6

Z
X
k ^ k ^ k, (4.185)

which is just the symplectic volume of X when k is considered as a candi-
date symplectic 2-form. Upon fixing the cohomology class [�] 2 H4(X),
variation of VS gives the equation of motion

dk = 0, (4.186)

thus k indeed defines a good symplectic structure. There is a story about
relating critical points of this functional to BPS black holes, similar to the
one described in the previous section. However, the black holes in ques-
tion are now the BPS black holes of the uplift of the STU model to five
dimensions[103]. These can be regarded as solutions of 11 dimensional
supergravity compactified on the six dimensional manifold in question.
The BPS black holes are interpreted as supersymmetric bound states of M2
branes and thus the wraping configuration is encoded by 2-cycles which
are Poincaré dual to 4-cocycles. The claim is that these 4-cocycles are criti-
cal points of VS(�), which turns out to be proportional to the entropy of the
black hole[96].
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Now as both VH and VS are defined for six dimensional manifolds, a
natural question is that when they are compatible in the sense that k can be
regarded as a Kähler form of the Calabi-Yau corresponding to ⌦. There are
two neccessary conditions which are immediate. First we must have

k ^ % = 0, (4.187)

which just states that k is of type (1,1) under the complex structure15 J%.
Second, the volumes of X must agree when determined by using either k
or ⌦ which leads to the constraint

2VS(�) = VH(%). (4.188)

Taking a look at the Sato-Kimura classification [16] reveals that the stabilizer
of a stable 3-form % is SL(3,C)⇥SL(3,C) ⇢ GL(6,R), which via ⌦ reduces
the structure group to a single SL(3,C). On the other hand, the stabilizer
of the 2-form k is obviously Sp(6,R) ⇢ GL(6,R). Given that k ^ % = 0
these two stable forms define an SU(3) structure which is the intersection
of their stabilizer groups. Now recall that the Kähler form is related to the
Hermitian metric h via

k(u, v) = h(u, Jv), (4.189)

so given that we know compatible critical points k = 1

2

kabdxa ^ dxb and %
we can reconstruct the Calabi-Yau metric as

hab = kac(J%)
c
b =

1p
�D(%)

kac(K%)
c
b. (4.190)

The next section describes another way of describing such pairs.

4.2.2 Seven dimensions

Now let us move on to describe the Hitchin functional corresponding to the
J
7

invariant of (3.82) for three fermions with seven single particle states. As
in the previous section, we now regard the three fermion states of (3.81) as
closed differential 3-forms on a seven dimensional closed manifold M :

� =
1

3!
�abcdxa ^ dxb ^ dxc 2 ^3TpM

⇤ (4.191)

The 35 coefficients �abc are analoguos to Pabc in (3.81) but can depend on
the coordinates x1, ..., x7. An element of the dense orbit has J

7

6= 0 and
is called stable. Its stabilizer can be read off from [16] to be the exeptional
group G

2

⇢ GL(7,R). This can also be seen from the discussion we had
about the canonical form (3.88): this state encodes the multiplication table
of the octonions which is well known to be stabilized by G

2

. Therefore, the
symmetric 7⇥ 7 matrix N

�

of (3.80) is a natural candidate to be a metric of
15One can actually derive from this that k ^ %̂ = 0 also holds (see e.g. the appendix of

[P.3]), so that this constraint is indeed equivalent with k ^ ⌦ = k ^ ¯

⌦ = 0.
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G
2

holonomy16 on M . Let us define a rescaled version of this matrix

(B
�

)ab = �
1

6
(N

�

)ab ⌘ �
1

144
✏i1i2i3i4i5i6i7�ai

1

i
2

�bi
3

i
4

�i
5

i
6

i
7

, (4.192)

to be in accordance with the literature on Hitchin’s functionals. Now re-
call that N

�

and thus B
�

picks up a determinant factor under the action
of GL(7,R), which we need to cancel by a suitable power of the relative
invariant J

7

in order to obtain a quantity transforming as a metric:

(g
�

)ab =
1

(J
7

)
1

3

(B
�

)ab. (4.193)

Clearly, our invariant functional will be the volume of M determined by g
�

:

V
7

(�) =

Z
M

p
det g

�

d7x ⌘
Z
M
(J

7

)
1

3 d7x. (4.194)

There is a Hodge operator ?
�

associated to the metric g
�

. One may check
that the functional can equivalently be written as

V
7

(�) =

Z
M
� ^ ?

�

�, (4.195)

so that by the usual homogenity argument, its derivative is just 7

3

?
�

�. Crit-
ical points in a fixed cohomology class [�] 2 H3(M) are found by varying
� 7! � + dB and setting the variation to zero, thus the equation for the
critical points is

d ?
�

� = 0. (4.196)

Another result of [97] is the following.
Theorem: Let M be an oriented closed seven dimensional manifold and

� a closed (d� = 0) real 3-form. Then the following two statements are
equivalent.

• The matrix B
�

is nondegenerate and positive definite at every point
of M and � is a critical point of the functional (4.195) in a fixed [�]
cohomology class.

• g
�

= 1

(J
7

)

1

3

B
�

is a metric with G
2

holonomy on M .

We can obviously have an equivalent treatment of this geometry in terms
of a four-form.

Now let us briefly discuss a construction relating the functional V
7

to the
previously discussed functionals VH and VS in six dimension. This gives a

16As M is a real manifold, we need to choose a real form of GC
2

which corresponds to
fixing the signature of this candidate metric. This is the same redundancy as in the six
dimensional case: under GL(7,R), the stable orbit splits into two, one with J

7

> 0 and one
with J

7

< 0. The choice relevant in string theory is the one where the metric has signature
(+++++++). This corresponds to the compact real form of G

2

as the stabilizer subgroup.
The other possible choice is the noncompact real form of GC

2

which is the automorphism
group of the split octonions. It corresponds to a metric with signature (+ + +����).
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method of obtaining G
2

manifolds from manifolds with weak SU(3) holon-
omy17. To this end, suppose that the seven dimensional manifold is locally
a direct product of a six dimensional manifold X with an interval (a, b) of
R, i.e. M = X ⇥ (a, b). Now write the 3-form � in a decomposed way

� = %(t) + k(t) ^ dt, (4.197)

where t is a coordinate on the interval (a, b). Now suppose that the com-
patibility conditions (4.187) and (4.188) are satisfied for the stable forms %
and k for all t in the interval. As before, we assume % and � = 1

2

k ^ k to be
closed as six dimensional forms. In this case we have

?
�

� = � + %̂ ^ dt, (4.198)

so that the equations of motion are easily written in the form

d� = 0! @t⇢ = d
6

k,

d ?
�

� = 0! @t� = �d
6

⇢̂.
(4.199)

Here, d
6

denotes the exterior derivative on X only, d = d
6

+ dt ^ @t. These
two equations can be interpreted as Hamiltonian flow equations. The phase
space is the space of variations of % and �, i.e. (^3TpX⇤)

exact

⇥(^4TpX⇤)
exact

.
Writing �% = d↵ and �� = d� the symplectic form is given by

h��, �%i =
Z
X
↵ ^ d�. (4.200)

The Hamiltonian is just

H = 2VS(�)� VH(%), (4.201)

which vanishes onshell due to (4.188). Now insert the ansatz %(t) = f(t)%
0

and k(t) = �@tf(t)k0 to (4.199). The resulting equations are

%
0

= �d
6

k
0

,

�
0

= �2

3
�d

6

⇢̂
0

,
(4.202)

provided that f(t) is a solution to

(@tf(t))(@
2

t f(t)) =
3

4�
f(t). (4.203)

General solutions to this equation can be given in terms of inverse hy-
pergeometric functions, but a particularly simple solution is f(t) = 1

24� t
3.

Equations (4.202) guarantee that the metric (k
0

)acJc
%
0b

on X has weak SU(3)
holonomy. In fact, they are the Euler-Lagrange equations giving the critical
points of the functional 3VH(%) + 8VS(�) subject to the constraint h�%, ��i =

17A weak holonomy manifold is defined to be a Riemannian manifold with a Killing
spinor ⇠ satisfying rX = �X for all vector fields X , where � 2 C is the Killing constant.
By X we mean the action of X on the spinor  as an element of the Clifford algebra
generated from the vector space TpM via the Riemannian metric at p, see (2.2). The subcase
� = 0 corresponds to special holonomy manifolds.
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const. These constrained critical points indeed define weak SU(3) holon-
omy metrics, see [98] for further details.

Note that the B
�

matrix of the decomposed form � = %+ k ^ dt can be
written in the simple block matrix form [P.3]

B
�

=
1

(J
7

)
1

3

✓
1

2

kK% 0

0 �Pf(k),

◆
, (4.204)

provided that the compatibility condition k ^ % = 0 holds. The Pfaffian of
the 6 ⇥ 6 matrix kab was defined in (3.31). Clearly, the invariant J

7

also
factorizes in this case:

J
7

=
1

4
Pf(k)D(%). (4.205)

The compatibility condition (4.188) requires Pf(k) = 1

2

p
�D(%), from which

J
7

=
1

8
(�D(%))

3

2 . (4.206)

4.2.3 Generalized geometry

The fundamental concept underlying the construction of Hitchin is stability,
which is the requirement that the structure group locally acts on a differen-
tial form in a prehomogeneous way. We have more or less exhausted18 the
examples of prehomogeneous vector spaces (G, V ) where the group G can
correspond to the general linear group of the tangent space of a point. But
what about other prehomogeneous vector spaces? It turns out that the cases
when (G, V ) is the spin group acting on polyforms (or in the terminology of
chapter 2, the extended SLOCC group acting on the fermionic Fock space)
emerge naturally in the field of generalized geometry [99, 104, 105, 106].

The basic idea of generalized geometry is to replace the tangent bundle
TpX of a manifold X with the generalized tangent bundle E which is locally
the direct sum TpX � (TpX)⇤. For sections of this bundle, we locally have
X = X + ⇠, where X is a vector field and ⇠ is a 1-form. To glue together
this bundle between coordinate patches U↵ and U� , we can introduce in
addition to the usual Jacobian matrices a

(↵�) a closed 2-form !
(↵�):

x
(↵) + ⇠

(↵) = a
(↵�)x(�) +

h
(a�1

(↵�))
T ⇠

(�) � ◆a
(↵�)x(�)

!
(↵�)

i
, (4.207)

satisfying !
(↵�)+!(��)+!(�↵) = 0 on triple intersections U↵ \U� \U� . The

interior product ◆ is the same as the action of annihilation operators on the
exterior algebra, see footnote 3. In fact, joining TpX and TpX⇤ is moraly the
same as joining fermionic creation and annihilation operators as discussed
in chapter 2 in great detail. In particular, the symmetric bilinear product
introduced in (2.2) becomes a metric on E

(X + ⇠, Y + ⌘) =
1

2
(⌘(X) + ⇠(Y )), (4.208)

18In fact there are a couple of other examples where Hitchin functionals can be defined,
e.g. for three forms in eight dimension for which we have discussed the invariant in sec.
3.6.2. See [98] for details on the geometric construction.
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which has real signature (d, d). This introduces an O(d, d) structure on E.
The differentiable structure of E is encoded in the Courant bracket as a re-
placement of the standard Lie bracket [X,Y ]

Lie

of vector fields X and Y :

[X + ⇠, Y + ⌘] = [X,Y ]
Lie

+ LX⌘ � LY ⇠ �
1

2
d(⌘(X)� ⇠(Y )),

X, Y 2 TpX, ⇠, ⌘ 2 TpX
⇤,

(4.209)

where LX is the Lie-derivative with respect to X . This bracket is invariant
under the off-diagonal action

X + ⇠ 7! X + (⇠ � ◆XB), B 2 ^2TpX
⇤, (4.210)

when dB = 0. This is indeed realized inside O(d, d) and is the same B-
transformation as the one appearing in (2.48). In the fermionic picture this
is just a special Bogoliubov transformation. The Courant bracket is the an-
tisymmetrization of the generalized Lie-derivative

LVX = [V,X]
Lie

+ (LV ⇠ � ◆Xd⇣), (4.211)

where X = X+⇠ and V = V +⇣. This action defines infinitesimally the gen-
eralized diffeomorphisms. There are various structures that can be defined
on E such as a generalized complex structure, which is a linear automorphism
of E which squares to�1, or a generalized metric which one may understand
as reduction of the structure group to O(d)⇥O(d) ⇢ O(d, d), see [105, 106].
This latter can always be written as

H =

✓
g �Bg�1B Bg�1

�g�1B g�1

◆
, (4.212)

where g is a Riemaninan metric on TpX , or equivalently, a nondegenerate
map TpX ! TpX⇤, while B is a 2-form gauge field. Under the general-
ized Lie-derivative (4.211) the fields g and B transforms as g 7! g + LV g
and B 7! B + LV B � d⇣, and hence generalized diffeomorphisms contain
the gauge transformations of B. In fact, the generalized metric on E is a
natural way of encoding closed string backgrounds in a way that makes
T-duality manifest19 [106]. In this picture, B is just the Neveu-Schwartz 2-
form B-field. There are far reaching applications of generalized geometry
in supergravity, such us double field theory [107, 108].

A generalized almost complex structure is defined to be an endomor-
phism J of E which satisfies J 2 = �1 and it is orthogonal, i.e. (JX ,JY) =
(X ,Y). If it satisfies an additional Courant integrability condition [99, 105],
which is a certain compatibility condition with the bracket (4.209), then we
say that its a generalized complex structure, and an (even dimensional)
manifold equipped with such a structure is a generalized complex mani-
fold. In a similar way as a generalized metric unifies two different objects,

19In this picture, T-dualities are just the intertwiners between the even and odd particle
Fock spaces, discussed in section 2.4.4. In particular, any non-isotropic element of E defines
a T-duality via (2.87). We may think of a general element of E as being a B-transformed
version of a section locally of the form X

0

= @t + dt for some local coordinate t. Then T-
dualization happens along the coordinate t. The generalized metric (or complex structure)
transforms as H 7! (X ,X )VX

THVX as described in (2.89).
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the metric and a 2-form field, the generalized complex structure unifies or-
dinary complex structures and symplectic structures: a J with no mixing
among TpX and TpX⇤ defines an almost complex structure while a J which
takes every element of TpX to TpX⇤ and vice-versa, defines a symplectic
structure. The Courant integrability condition can also shown [105] to in-
terpolate between the integrability of a complex structure and a symplectic
structure.

4.2.4 Generalized Hitchin functionals

With this short, and far from complete introduction to the idea of general-
ized geometry, now we are in position to briefly discuss the Hitchin func-
tionals which are defined by the invariants (3.22), (3.27) and (3.72) which, in
the fermionic context, were candidate entanglement measures for fermions
with six and seven modes respectively.

Let us start with the quartic invariants (3.22), (3.27) defined in six di-
mensions. Let again X be a compact oriented six dimensional manifold.
We take the differential polyforms � 2 ^evenTpX⇤ and  2 ^oddTpM⇤ which
can be expanded in an analoguos way as in equations (3.19) and (3.24). We
can define the functionals

V even

GH (�) =

Z
X

p
�q

even

(�)d6x,

V odd

GH ( ) =

Z
X

p
�q

odd

( )d6x.
(4.213)

Note that these functionals are T-dual to each other: for any X 2 E with
(X ,X ) ⌘ 1 we have

V even

GH (�) = V odd

GH (X�), (4.214)

where X� denotes the same Clifford action as in (2.86) and is now inter-
preted as the T-dual of � along X .

It is clear that the matrices K(�)IJ and K( )IJ of (3.20) with either (3.21)
or (3.25) inserted can be used to define generalized almost complex struc-
tures:

J I
� J

=
1p

�q
even

(�)
K(�)IJ ,

J I
 J

=
1p

�q
odd

( )
K( )IJ .

(4.215)

These satisfy the Courant integrability conditions, when the stable forms �
and  are critical points of the functionals V even

GH (�) and V odd

GH ( ) in a fixed
cohomology class respectively, in a very similar way as critical points of
VH give complex and critical points of VS give symplectic manifolds. In
addition to this, due to (3.28), the polyforms

� = �+ i�̂, �̄ = �� i�̂,

 =  + i ̂,  ̄ =  � i ̂,
(4.216)

are complex pure spinors which are the analogues of the holomorphic 3-form
⌦. This motivates the notion of generalized Calabi-Yau manifolds [99, 105].
These are generalized complex manifolds X for which there is a closed
complex poly-form ' 2 ^even/oddTpX⇤ ⌦ C such that it is a pure spinor
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and (', '̄) = 0 for the Mukai pairing. Here, conjugation is with respect
to the generalized complex structure. Note that Calabi-Yau and symplectic
manifolds are both generalized Calabi-Yau manifolds, but there are more
exotic examples as well, see for example [105].

Now that we see that the invariants (3.22) and (3.27) of the prehomo-
geneous vector spaces (C⇥ ⇥ Spin

0

(12,C),^even/oddC6) define action func-
tionals which give meaningful geometrical structures in the context of gen-
eralized geometry, we move on to briefly mention their possible physical
significance. The fact that these functionals are T-dual to each other hints
that they have some connection to string theory. This is indeed the case, it
turns out that they are related to topological strings.

4.2.5 Topological strings

Let us give a lightning introduction into the idea of topological strings. For
an excellent introduction, we refer the reader to [109]. In string theory one
considers maps� from a two-dimensional world-sheet⌃ into a target space
X . One weights these maps by the Polyakov action and integrates over all
the maps and all the metrics on the world-sheets ⌃ of different genera to
obtain the perturbative series for string scattering amplitudes or the string
partition function. This two dimensional gravity theory contains a large
amount of gauge symmetries, so in the end the integral over metrics on ⌃
boils down to a finite dimensional integral for the complex structure mod-
uli of the Riemann surface ⌃. Along the way, to ensure that our gauge
symmetries are not anomalous, we are enforced to choose our world sheet
theory (including ghosts coming from the Faddeev-Popov method in ad-
dition to the maps � and their superpartners) to be a superconformal field
theory20 with vanishing central charge c = 0. Now taking the Polyakov
action seriously tells us that we need to choose the target space dimension
to be 10. However, there is another way to change the central charge of a
superconformal algebra: it is called twisting. The world sheet theory has a
so called N = (2, 2) superconformal symmetry which is generated by the
left moving world sheet currents

J,G+, G�, T, (4.217)

and their right moving counterparts which are denoted the same way with
an additional bar on top. Here, T is the stress energy tensor, G± are super-
translations and J is the U(1) current generating left moving R-symmetry.
The zero modes of these currents are analogous to the degree, @̄, @̄† and
� operators on target space differential forms. The zero mode part of the
affine algebra of the modes of the currents corresponds to the algebra of
these differential operators, extended by the central charge c. Now the re-
defined stress tensor

T 0 = T ± 1

2
@J, (4.218)

20Of course, the Polyakov action does not give automatically a conformal field theory for
any target space. The "good" target spaces are precisely the solutions of the corresponding
classical supergravity.
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has no central extension in its operator product expansion with itself. With
a similar redefinition in the right moving sector, we can eliminate the con-
formal anomaly by coupling the world sheet metric to (T 0, T̄ 0) instead of
(T, T̄ ). This procedure is called twisting. The two different ways of twist-
ings correspond to the so called A and B models of topological strings:
when we twist T and T̄ with the same sign we obtain the A and Ā mod-
els while when we twist them with a different sign we obtain the B and B̄
models21. Note that under T 0, the conformal weights of the states change,
but this is not the reason why the obtained world sheet theories are differ-
ent from the ones we have started with. The source of the difference is that
the theory becomes a topological field theory22, moreover a very special kind
of it, a cohomological field theory. This means that to obtain physical states we
need to form the cohomology of a nilpotent operator Q. For cohomologi-
cal field theories, the stress tensor is Q exact which implies that correlation
functions of physical operators are independent of any continuous changes
of the metric. The nilpotent operator Q in question is some combination of
the zero modes of the currents G⌥. The twisting also changes the spin of
the corresponding current from 3

2

to 1. This makes the analogy with target
space differential operators even tighter. Forming the cohomology of these
operators is then analogous to passing from the de Rahm complex to its co-
homology. This analogy turns out to be sharp: the physical observables of
the A model are elements of H(1,1)(X), which are in fact in one-to-one corre-
spondence with the moduli space of the Kähler structure of the target space
X . The observables of the B model on the other hand are deformations of
the complex structure of the target space manifold X . They are represented
with Oi, i = 1, ..., h

2,1 = dimH(2,1)(X) marginal operators.
Let us focus on the B-model. To obtain a topological string partition

function, one must integrate some expectation value of the topological field
theory over the world sheet metrics. This integral turns out to reduce to an
integral over the moduli space Mg of the genus g Riemann surfaces ⌃. The
tangent space of this space is spanned by Beltrami differentials µi = (µi)

z
z̄dz̄⌦

@z , i = 3g�3, (0,1)-forms taking values in the holomorphic tangent bundle.
They correspond to infinitesimal deformations of the complex structure of
⌃ of the form dz 7! dz + µi(dz). One needs to choose a measure on Mg

which has the right invariance properties under changes of basis. The only
nontrivial possibility for the B model turns out to be

3g�3Y
i=1

dmidm̄i
Z
⌃

G�(µi)

Z
⌃

Ḡ�(µ̄i), (4.219)

where mi are coordinates on Mg corresponding to µi while G�(µi) = G�
zz(µi)

z
z̄dz^

dz̄ is indeed a top-form. The genus g free energy (log of the partition func-
tion) of the topological string is defined to be

Fg =

Z
Mg

h
3g�3Y
i=1

dmidm̄i
Z
⌃

G�(µi)

Z
⌃

Ḡ�(µ̄i)i, (4.220)

21Barred and undbarred models differ only by an overall complex conjugation.
22We roughly call a theory a topological field theory if it does not depend on continuous

changes of the background metric.
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where h.i is the topological field theory expectation value23. The full topo-
logical string free energy is defined perturbatively by the asymptotic series

F =
1X
g=0

�2g�2Fg, (4.221)

where � is the string coupling. The topological string partition function is

ZB = eF . (4.222)

Now a generating functional can be defined by deforming the action of the
topological theory with the marginal operator

Ph
2,1

i=1

ti
R
⌃

Oi+ c.c.. The par-
tition function now depends on a set of ti complex structure moduli in addi-
tion to the string coupling: ZB = ZB(�, ti, t̄i,⌦0

). Derivatives with respect
to ti give multipoint functions of nonlocal operators. The ⌦

0

stands for the
background holomorphic 3-form of the Calabi Yau target space. We note
that the dependence of ZB on t̄i is determined by the so called holomorphic
anomaly equations [110]. The term anomaly appears because the operators
Ōi can be shown to be Q-exact so that one naively expects that ZB is inde-
pendent of t̄i. However, the moduli space measure (4.219) is not invariant
under the action of Q. Since it is a remnant of a path integral measure, the t̄i

dependence it introduces is indeed a Fujikawa-type quantum anomaly. The
anomaly equations determine the t̄i dependence completely, so that ZB is
effectively the function of h

2,1 + 1 parameters. In fact, this is just half the
real dimension of the space H3(X,C) of complex harmonic 3-forms. This
vector space is a symplectic space, where the symplectic product is evalu-
ated as the integral wedge product of two 3-forms. It can be shown [111],
that the holomorphic anomaly equations are equivalent with the statement
that ZB is a wavefunction depending on half the coordinates of the classi-
cal phase space H3(X,C). This way we may think about the B-model as a
quantization of H3(X,R).

4.2.6 Topological strings, black holes and generalized Hitchin func-
tionals

There is a remarkable relation between the number of 4d BPS black hole mi-
crostates and the topological B-model, conjectured by Ooguri, Strominger
and Vafa [112]. The relation is based on two relatively well known facts.
The first is that the genus zero free energy F

0

of the B model is just i times
the prepotential F of the Calabi-Yau target space. The second is that the
classical BPS black hole entropy (4.158) can be obtained as the Legendre
transform of the imaginary part of the same prepotential with respect to
the imaginary parts of a set of particular homogeneous coordinates on the
complex structure moduli space, called holomorphic sections. One then

23We note the subtlety that this definition is valid as it stands only for g > 1. One has
to be careful that physical correlators must be neutral under the U(1) R-charge. It turns
out that the topological string, similarly to the ordinary string, has something like a critical
dimension: R-neutral correlators are possible for all g only in the case of six dimensional
target spaces. Moreover, these correlators must have 3,1, or 0 additional local insertions to
the G� insertions for g = 0, 1 and g > 1 respectively. For g > 1 thus the expression for Fg is
R-neutral but for g = 0, 1 one has to extract Fg from the 3 and 1-point function respectively.
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has to substitute the attractor values of these sections into this Legendre
transformed function to obtain the black hole entropy.

Now one can remove the factor of ��2 in the genus zero part of (4.221)
by rescaling the holomorphic sections by �. This does not change the com-
plex structure moduli. Therefore, one may think about ZB as a function
of the h

2,1 + 1 holomorphic sections. Then it is tempting to think that the
above Legendre transform property of the BPS entropy is a saddle point ap-
proximation24 of a relation like

⌦(P I , QI) =

Z
d�Ie

�QI
�I |ZB(PI + i�I)|2, (4.223)

where ⌦(P I , QI) = eS is the microcanonical partition function for the BPS
black hole, P I and QI , I = 1, ..., h

2,1 + 1 are its dyonic charges and on
the right hand side, ZB is evaluated at the attractor values of the moduli25,
shifted by a potential �I . Notice that on the right hand side we have the
Wigner transform of the density matrix formed from ZB regarded as a wave
function. At tree level we have ZB = eiF and for large charges this relation
is equivalent with the statement about the black hole entropy being a Leg-
endre transform. Beyond tree level, this relation is what is known as the
OSV conjecture [112].

We have seen in section 4.2.1 that the Hitchin functional VH of (4.178) at
its critical point in a fixed [%] 2 H3(X,R) cohomology class agrees with the
BPS black hole entropy corresponding to the charges coming from [%]. Now
if we define the partition function

ZH([%]) =

Z
D�eVH(%+d�), (4.224)

which is a quantization of the Hitchin functional regarded as an action, we
see that the relation

ZH([%]) = ⌦(P I , QI), (4.225)

is true in the saddle point approximation when the charges of [%] are large.
This was originaly observed in [96] where it was proposed that ZH cal-
culates the partition function of both the B ⇥ B̄ model and the BPS black
hole exactly. A one loop calculation was performed subsequently in [113]
by Pestun and Witten. They found that the formula does not hold at one-
loop. Instead, at one-loop the Wigner transform of the B ⇥ B̄ partition
function agrees with the partition function defined from the generalized
Hitchin functional (4.213)

Zodd

GH ([ ]) =

Z
D�eV odd

GH ( +d�). (4.226)

Now we have seen that at tree level the two functionals can in fact have
the same Calabi-Yau critical points. This amounts to choosing [ ] to be an
element of H3(X,R) so that (3.27) agrees with D( ). However, the fluctu-
ations d� can now have 1-form and 5-form parts which changes the result
beyond tree level. The fact that it is the generalized Hitchin functional that
can be related to topological strings is even more natural if we recall that

24Valid for large charges.
25With an appropriate choice of polarization on H3

(X,C).
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V even

GH and V odd

GH are T-dual to each other. Note that in [96] it was also put for-
ward that the A-model is equivalent to the theory defined by VS of (4.185).
This was checked at the semiclassical level but no proposal was made for a
relation between a partition function defined from VS and the A-model par-
tition function. If such a relation exists, it might be more natural to expect
it to involve the generalized Hitchin functional V even

GH .
As a final remark, let us briefly mention the role of the seven dimen-

sional functional (4.195) and its generalized version, which can be defined
from the invariant26 (3.72). It was put forward in [96] that a theory based on
V
7

(�) could be regarded as a topological M -theory. This was supported by
several arguments, among them is the fact that this theory naturally incor-
porates and couples the two types of six dimensional Hitchin functionals,
as reviewed in section 4.2.1, and that it seems to be the unique form the-
ory in one dimension higher. This latter is not quite true, we can define
a generalized Hitchin functional in seven dimensions based on the invari-
ant (3.72). This was studied in [114] and connected to so called generalized
G

2

manifolds, which are manifolds with a generalized metric reducing the
generalized structure group all the way to G

2

⇥G
2

⇢ O(7, 7). In light of the
fact that for the B-model one should use generalized Hitchin’s functionals,
one is tempted to think that the generalized G

2

functional could be related
to topological M -theory. However, there are other interesting world sheet
theories with G

2

target spaces such as the G
2

topological string of [115].
The quantization of both seven dimensional Hitchin functionals was per-
formed at one loop in [116]. Here it was found that the G

2

string result is
related to the generalized Hitchin functional at one loop, but only up to a
multiplicative factor depending on a certain invariant of the background
G

2

metric.
Getting a grasp on what topological M theory is requires one to compare

the predictions of these form theories to something known. For example the
six dimensional topological string calculates quantum corrected F -term su-
perpotentials for the dimensionally reduced physical string. One could ex-
pect a similar relation between topological M -theory and the physical one
reduced to four dimensions. This latter requirement points towards some-
thing called exceptional generalized geometry[117, 118], where the gener-
alized structure group O(d, d) is replaced by the Ed(d) series. This would
lead one to consider a functional of a tensor transforming in the 912 of E

7(7)

replacing the differential forms we have been discussing so far. However,
this pair is not prehomogeneous, so there is no notion of stability.

26Indeed, (C

⇥ ⇥ Spin
0

(14,C),^even/odd
C

7

) is the last prehomogeneous vector space
where the group is a spin group so that a functional can be defined in the context of gener-
alized geometry.
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Appendix A

Conventions on some Lie
algebras

A.1 Different ways of splitting so(4, 4) as sl⇥42 �(2, 2, 2, 2)
We define the group SO(4, 4) as the set of 8 ⇥ 8 matrices O keeping the
bilinear form

G =

✓
0 I
I 0

◆
, (A.1)

i.e. OGOT = G. Here, I is the 4 ⇥ 4 identity matrix. The Lie algebra
so(4, 4) is spanned by matrices T satisfying TG + GT T = 0. We use the
same parametrization of these matrices as in [22]. We denote by Eij the
8⇥ 8 matrix with 1 in the (i, j) component and zeros everywhere else. The
Cartan generators are given by

H
0

= E
33

+ E
44

� E
77

� E
88

, H
1

= E
33

� E
44

� E
77

+ E
88

,

H
2

= E
11

+ E
22

� E
55

� E
66

, H
3

= E
11

� E
22

� E
55

+ E
66

,
(A.2)

while the roots are parametrized as

E
0

= E
47

� E
38

, E
1

= E
87

� E
34

, E
2

= E
25

� E
16

, E
3

= E
65

� E
12

,

EQ
1 = E

45

� E
18

, EQ
2 = E

32

� E
67

, EQ
3 = E

36

� E
27

, EQ
4 = E

41

� E
58

,

EP 1

= E
57

� E
31

, EP 2

= E
46

� E
28

, EP 3

= E
42

� E
68

, EP 4

= E
17

� E
35

,

F
0

= E
74

� E
83

, F
1

= E
78

� E
43

, F
2

= E
52

� E
61

, F
3

= E
56

� E
21

,

FQ
1 = E

54

� E
81

, FQ
2 = E

23

� E
76

, FQ
3 = E

63

� E
72

, FQ
4 = E

14

� E
85

,

FP 1

= E
75

� E
13

, FP 2

= E
64

� E
82

, FP 3

= E
24

� E
86

, FP 4

= E
71

� E
53

.
(A.3)

A.1.1 U-duality split

It is easy to see that the generators H
⇤

, E
⇤

, F
⇤

, ⇤ = 0, 1, 2, 3 form four
commuting sl

2

algebras:

[H
⇤

, E
⇤

] = 2E
⇤

, [H
⇤

, F
⇤

] = �2F
⇤

, [E
⇤

, F
⇤

] = H
⇤

. (A.4)

The remaining 16 generators EP I , EQI , FP I , FQI form the fundamental
(2, 2, 2, 2)U representation of this (sl⇥4

2

)U algebra under the adjoint action.
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A vector of this representation can nicely be described by the 16 ampli-
tudes  ijkl of a four qubit state

| i =
1X

i,j,k,l=0

 ijkl|ijkli, (A.5)

transforming as

 ijkl 7! (S
0

)i
i0(S

1

)j
j0(S

2

)k
k0(S

3

)l
l0 i0j0k0l0 , S

0

⌦ S
1

⌦ S
2

⌦ S
3

2 SL(2)⇥4,
(A.6)

under the action of the group SL(2)⇥4 generated by the algebra (A.4). In
terms of the Lie algebra generators one writes this vector as

 =  
0000

EP 4

+  
0001

EQ
3 +  

0010

EQ
2 �  

0011

EP 1

+  
0100

EQ
1 �  

0101

EP 2 �  
0110

EP 3 �  
0111

EQ
4

�  
1000

FQ
1 +  

1001

FP 3

+  
1010

FP 2

+  
1011

FQ
1

+  
1100

FP 1

+  
1101

FQ
2 +  

1110

FQ
3 �  

1111

FP
4 ,

(A.7)

transforming as (A.6) under  7! g g�1.

A.1.2 Sigma model split

We can realize the split sl⇥4

2

� (2, 2, 2, 2) in a different way suited to writing
the timelike reduced STU action (4.11) as a sigma model on SO(4, 4)/SL(2)⇥4.
We may introduce the symmetric bilinear form

⌘ = diag(�1,�1, 1, 1,�1,�1, 1, 1), (A.8)

and look for the subgroup SO(2, 2)⇥SO(2, 2) ⇠= SL(2)⇥4 keeping this fixed.
This subgroup is generated by the �1 eigenspace of the involution

T# = ⌘T T ⌘. (A.9)

This eigenspace is spanned by the 12 generators

k
⇤

= E
⇤

� F
⇤

, kQI = EQI + FQI , kP
I
= EP I

+ FP I
, (A.10)

while the +1 eigenspace is spanned by

H
⇤

, p
⇤

= E
⇤

+ F
⇤

, pQI = EQI � FQI , pP
I
= EP I � FP I

. (A.11)
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To see that this indeed realizes a sl

⇥4

2

� (2, 2, 2, 2) split define[119, 120]

H̃
1

= 1/2(�kQ4 � kQ1 � kQ2 � kQ3),

H̃
2

= 1/2(kQ4 + kQ1 � kQ2 � kQ3),

H̃
3

= 1/2(kQ4 � kQ1 + kQ2 � kQ3),

H̃
4

= 1/2(kQ4 � kQ1 � kQ2 + kQ3),

Ẽ
1

= 1/4(�k
0

+ k
1

+ k
2

+ k
3

+ kP
1

+ kP
2

+ kP
3

+ kP
4

),

Ẽ
2

= 1/4(k
0

� k
1

+ k
2

+ k
3

+ kP
1 � kP

2 � kP
3

+ kP
4

),

Ẽ
3

= 1/4(k
0

+ k
1

� k
2

+ k
3

� kP
1

+ kP
2 � kP

3

+ kP
4

),

Ẽ
4

= 1/4(k
0

+ k
1

+ k
2

� k
3

� kP
1 � kP

2

+ kP
3

+ kP
4

),

F̃
1

= 1/4(k
0

� k
1

� k
2

� k
3

+ kP
1

+ kP
2

+ kP
3

+ kP
4

),

F̃
2

= 1/4(�k
0

+ k
1

� k
2

� k
3

+ kP
1 � kP

2 � kP
3

+ kP
4

),

F̃
3

= 1/4(�k
0

� k
1

+ k
2

� k
3

� kP
1

+ kP
2 � kP

3

+ kP
4

),

F̃
4

= 1/4(�k
0

� k
1

� k
2

+ k
3

� kP
1 � kP

2

+ kP
3

+ kP
4

).

(A.12)

One easily verifies that

[H̃J , ẼJ ] = 2ẼJ , [H̃J , F̃J ] = �2F̃J , [ẼJ , F̃J ] = H̃J , (A.13)

with J = 1, .., 4 and all other commutators vanishing. We can write an
element of the +1 eigenspace of # in terms of four qubit amplitudes  ijkl

transforming as in (A.6) under this new SL(2)⇥4. It reads explicitly as

 ̃ =  ̃H
⇤

H
⇤

+  ̃p
⇤

p
⇤

+  ̃QI
pQI +  ̃P IpP

I
, (A.14)
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where

 ̃H
0

=  
0001

+  
0010

+  
0100

�  
0111

�  
1000

+  
1011

+  
1101

+  
1110

,

 ̃H
1

=  
0001

+  
0010

�  
0100

+  
0111

+  
1000

�  
1011

+  
1101

+  
1110

,

 ̃H
2

=  
0001

�  
0010

+  
0100

+  
0111

+  
1000

+  
1011

�  
1101

+  
1110

,

 ̃H
3

= � 
0001

+  
0010

+  
0100

+  
0111

+  
1000

+  
1011

+  
1101

�  
1110

,

 ̃p
0

= � 
0000

+  
0011

+  
0101

+  
0110

�  
1001

�  
1010

�  
1100

+  
1111

,

 ̃p
1

= � 
0000

+  
0011

�  
0101

�  
0110

+  
1001

+  
1010

�  
1100

+  
1111

,

 ̃p
2

= � 
0000

�  
0011

+  
0101

�  
0110

+  
1001

�  
1010

+  
1100

+  
1111

,

 ̃p
3

= � 
0000

�  
0011

�  
0101

+  
0110

�  
1001

+  
1010

+  
1100

+  
1111

,

 ̃Q
1

= 2 ( 
0100

�  
1011

) ,

 ̃Q
2

= 2 ( 
0010

�  
1101

) ,

 ̃Q
3

= 2 ( 
0001

�  
1110

) ,

 ̃Q
4

= 2( 
1000

�  
0111

),

 ̃P 1 =  
0000

+  
0011

�  
0101

�  
0110

�  
1001

�  
1010

+  
1100

+  
1111

,

 ̃P 2 =  
0000

�  
0011

+  
0101

�  
0110

�  
1001

+  
1010

�  
1100

+  
1111

,

 ̃P 3 =  
0000

�  
0011

�  
0101

+  
0110

+  
1001

�  
1010

�  
1100

+  
1111

,

 ̃P 4 = � 
0000

�  
0011

�  
0101

�  
0110

�  
1001

�  
1010

�  
1100

�  
1111

.
(A.15)

Note that the SL(2)⇥4 invariant Tr ̃2 is a quadratic measure of four qubit
entanglement[30].

A.1.3 The third split

The previous two splits are related by triality of so(4, 4) and hence there
must be one more inequivalent splitting of the algebra. Indeed this split is
given by the ±1 eigenspaces of the involution

T 7! ⌘
2

T T ⌘
2

, (A.16)

where
⌘
2

=

✓
✏⌦ ✏ 0
0 ✏⌦ ✏

◆
, (A.17)

where ✏ =
✓

0 1
�1 0

◆
. The�1 eigenspace is 12 dimensional and spans sl⇥4

2

algebra. The +1 eigenspace forms the representation (2, 2, 2, 2) under this.
We do not need this split in the following hence we omit the explicit form
of the generators.

A.2 Lie algebra of E7

We will use the symmetric space splitting

e

7

⇠= sl

8

� ^4C8, (A.18)
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to describe the Lie algebra of E
7

, following [70]. Recall that this splitting
plays a key role in finding the SLOCC classification of four fermions with
four single particle states, see section 3.6. According to this splitting, we
parametrize an element T 2 e

7

by the pair

T = (⇤i
j ,⌃ijkl), ⇤

i
i = 0, (A.19)

where ⌃ijkl totaly antisymmetric and the indices can take eight values. The
commutation relations of the algbra are given explicitly as

T
3

= [T
1

, T
2

], (A.20)

where

⇤
3

i
j = [⇤

1

,⇤
2

]ij �
1

3
(⇤⌃iklm

1

⌃
2klmj � ⇤⌃iklm

2

⌃
1klmj)

⌃
3ijkl = 4(⇤

1

m
[i⌃2jkl]m � ⇤2

m
[i⌃1jkl]m).

(A.21)

Here, the brackets denote antisymmetrization and ⇤⌃ijkl
1

= 1

24

✏ijklmnop⌃mnop.

A.2.1 The 56 of E
7

The fundamental 56 dimensional representation of E
7

is conveniently de-
scribed by a pair of antisymmetric 8⇥ 8 matrixes (xij , yij). The generator T
acts in this representation via

T

✓
xij

yij

◆
=

 
2⇤[i

[k�
j]
l]

⇤⌃ijkl

⌃ijkl �2⇤[k
[i�

l]
j]

!✓
xkl

ykl

◆
(A.22)

The Killing form of e
7

agrees with the trace of the product of generators in
its fundamental. It reads as

(T
1

, T
2

) = Tr(T
1

T
2

) = 12⇤
1

i
k⇤2

k
i + 2⌃

1ijkl
⇤⌃

2

ijkl. (A.23)

To express the representative of the coset E
7(7)

/SU(8) we borrow the
basis used by [79]. We set

Ga
b = (⇤a

b, 0), (⇤a
b)ij = �ia�

b
j �

1

8
�ab �

i
j ,

Gabcd = (0,⌃abcd), (⌃abcd)ijkl = �[ai �
b
j�

c
k�

d]
l ,

(A.24)

and then define

Ei
j = Gi

j , Eijk = �12Gijk8, Di = Gi
8, ~H =

7X
j=1

⇣
�~fj + ~g

⌘
Gj

j ,

(A.25)
where the indices i, j only take the first 7 values and

~fj = (| {z }
j � 1

0, ..., 0, (10� j)sj , sj+1

, ..., s
7

),
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~g = 3(s
1

, s
2

, ..., s
7

),

si =

s
2

(10� i)(9� i)
.

(A.26)

This is the basis used in e.q. (4.123)
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